

PRODUCT INFORMATION—

Planar Triode

Page 1

GE17241

12-70

FOR PULSED OSCILLATOR OR AMPLIFIER APPLICATIONS

The GE17241 is a metal-ceramic triode intended for grid-pulsed or plate-pulsed oscillator and amplifier service. This tube was designed specifically for use in general aviation transponders.

GENERAL

ELECTRICAL	
Cathode - Coated Unipotential	
Heater Characteristics and Ratings Heater Voltage, AC or DC*	Volts Amperes
Grid to Plate: (g to p)	pf
Input: g to (h+k)	pf pf
Output, p to (ii i k), waxiiidiii 0.035	Pι

MECHANICAL

Operating Position - Any

See Outline Drawing on page 4 for dimensions and electrical connections

MAXIMUM RATINGS

GRID-PULSED OSCILLATOR OR AMPLIFIER SERVICE—ABSOLUTE-MAXIMUM VALUES

Plate Voltage	1750	Volts
Plate Dissipation4	10	Watts
Peak Plate Current	2.0	Amperes
Peak Grid Current		Amperes
Duty Factor	0.01	•
Pulse Duration	4	Microseconds
Envelope Temperature at Hottest Point	250	°C

PLATE-PULSED OSCILLATOR OR AMPLIFIER SERVICE—ABSOLUTE-MAXIMUM VALUES

Peak Positive-Pulse Plate Supply Voltage	2500	Volts
Plate Dissipation	10	Watts
Peak Plate Current	2.5	Amperes
Peak Grid Current	1.0	Amperes
Duty Factor	0.01	•
Envelope Temperature at Hottest Point	250	∘ C

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron device of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and

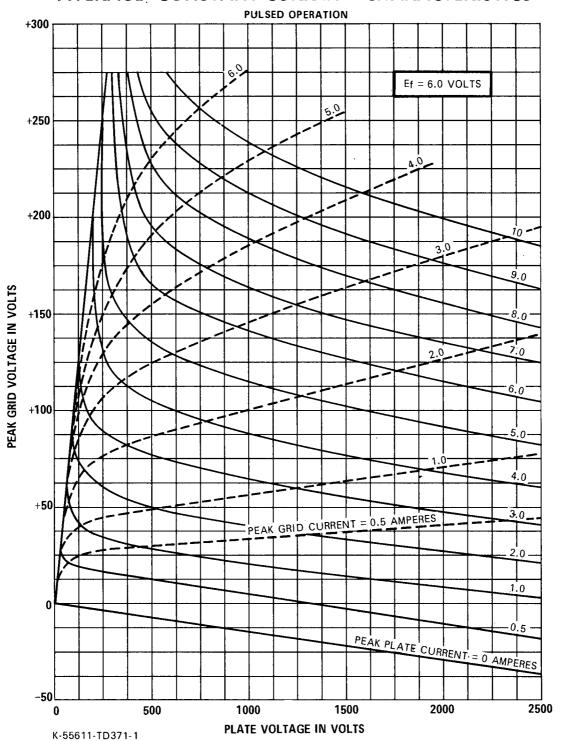
of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the device under consideration and of all other electron devices in the equipment.

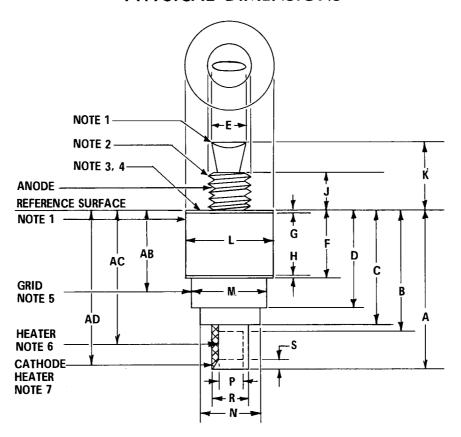
CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Heater Voltage	Volts
Plate Voltage 600	Volts
Grid Voltage (Vary for lb @ 25 Milliamperes)5	Volts
Grid Voltage (Vary for Ib @ 25 Milliamperes)5 Amplification Factor 95	
Transconductance	Micromhos
Plate Current	Milliamperes
Grid Voltage, Maximum	•
1) 4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Volts
lb = 1.0 Milliampere @ Eb = 2000 Volts	
Ib = 1.0 Milliampere @ Eb = 2000 Voits50	
GRID-PULSED RADIO-FREQUENCY AMPLIFIER	
GRID-PULSED RADIO-FREQUENCY AMPLIFIER	Megahertz
GRID-PULSED RADIO-FREQUENCY AMPLIFIER Frequency	Megahertz Volts
GRID-PULSED RADIO-FREQUENCY AMPLIFIER Frequency	J
GRID-PULSED RADIO-FREQUENCY AMPLIFIER Frequency	Volts
GRID-PULSED RADIO-FREQUENCY AMPLIFIER Frequency	Volts Volts
GRID-PULSED RADIO-FREQUENCY AMPLIFIER Frequency	Volts Volts Volts
GRID-PULSED RADIO-FREQUENCY AMPLIFIER Frequency	Volts Volts Volts


NOTES

- ★ The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance. When used at low peak plate current the heater voltage should be reduced for longer life.
- Heater current of a bogey tube at Ef = 6.0 volts.


- ♦ Without external shield.
- ▲ With adequate heat sink.
- The impedance of the plate supply should be such as to limit the plate current to 10 times the normal operating plate current if the tube is considered a short circuit.

Watts

AVERAGE CONSTANT-CURRENT CHARACTERISTICS

PHYSICAL DIMENSIONS

	INCHES	
REF	MINIMUM	MAXIMUM
Α	1.365	1.425
В		1.084
С		1.025
D	0.850	0.900
E		0.320
F	0.520	0.560
G		0.040
Н		0.030
J		0.340
K		0.600
L	0.760	0.800
M	0.655	0.665
N		0.545
Р	0.213	0.223
R	0.315	0.325
S		0.086

ELECTRODE CONTACT AREA		
REF	LIMITS (INCHES)	CONTACT
AB	0.775 ± 0.040	GRID
AC	1.181 ± 0.097	HEATER
AD	1.195 ± 0.070	CATHODE

NOTES:

- 1. Do not clamp on this surface.
- 2. Thread 3/8" UNC 2A.
- 3. Electrode Contact Surface, Anode.
- 4. Measure Anode Shank temperature here.
- 5. Electrode Contact Surface, Grid.
- 6. Electrode Contact Surface, Heater.
- 7. Electrode Contact Surface, Heater and Cathode rf.

TUBE PRODUCTS DEPARTMENT

Owensboro, Kentucky 42301