

TECHNICAL SERVICE

ELECTRONICS

VALVES

This series of tubes will be available with types 1,4,7,11 & 26 screen phosphors as indicated below.

SCREENS	Persistence +	Colour	Application
6EP1	100 ms	Green	Visual
бер4	l ms	White	Visual/Photo- graphic
6EP7	20 s	Blue Flash (Yellow after-)	Visual
6 E P11	1 ms	glow Blue	Photographic
6 E P26	170 s	Orange flash Orange after- glow	Visual

+ Persistence is the time taken for the brightness to decrease from 1 f.l. to approximately 0.01 f.l, measured with all anode potentials at maximum.

16 cm electrostatic focus and deflection instrument cathode ray tube suitable for use in high precision instruments having a flat screen and one stage of post deflection acceleration.

Base	Connecti	ions	(B14A Base)	Medium	shell diheptal	14A	J
	1	2	3	4	5	6	7
	h	k	g	^a 1	^a 2	N.P.	Y1
	8	9	10	11	12	13	14
	Y2	а 3	X2	X1	N.C.	N.P.	h

Side contact CT8 a4.

Heater

 V_h 6.3 V I_h 0.5

The heater is suitable for parallel operation only.

THE GENERAL ELECTRIC CO. LTD OF ENGLAND.
Head Office: Magnet House, Kingsway, London, W.C.2.

Кa	ti	ngs

V _{a4}	5 2 min.		kV kV
V _{a3}	2.5 1 min.		kV kV
V _{a2}	2		kV
V _{a1}	2.5 1 min.		kV kV
-Vg (cathode hot)	0 min 200	· · · · · · · · · · · · · · · · · · ·	v V
Vg (cathode cold)	200		Λ
$v_{\mathbf{h}-\mathbf{k}}$	150		v
V _{x1-x2}	1		kV
R _{x-a3}	5	· · · · · · · · · · · · · · · · · · · ·	Mohma
Ry-a3	5		Mohms
R _{g-k}	2		Mehms

The maximum ratio between Val and Vaj is two.

Typical Operation

•	Val	4.0	kV
	Va3	2.0	kV
·	Va2 (focus)	Va3 approx.	v
	Val	2.0	kV
	Vg (for cut-off)	$\frac{V_{a1}}{30}$ approx.	V
	I _{a3}	1	microamp
	Iscreen	5	microamps
.	$s_{\mathbf{x}}$	1000 Va3	m.m./V
¥	$s_{\mathbf{y}}$	720 V _{a3}	m.m./V

ø S _X	<u>850</u> V _{a.3}	m.m./V
ø s _y	600 Va3	m.m./V

Capacitance

C _{k-all}	8	pr
Cg-all	17	pF
C _{x1-x2}	2.5 approx.	pF
C _{y1-y2}	3 approx.	pF
C_{x1-all}) C_{x2-all})	8 approx.	pF
Cy1-all) Cy2-all)	7.5 approx.	pF
C _{y1-x1} or x2	0.1 approx.	pF
Cy2-x1 on x2	0.2 approx.	pF

Screen Phosphor

The tube will be available with standard green and photographic blue screens.

Spot Centring

The undeflected spot will fall within a radius of 7 m.m. concentric with the tube plates.

face.

Screen Area

The minimum useful screen area is a circle radius 7 cms from the centre of the screen.

General

The plate sensitivity for a deflection of less than 75% of the useful scan will not differ from the plate sensitivity for a deflection of 25% of the useful scan by more than 2%.

Orthogon: llity of deflection axis # 10.

Viewed from the screen end with the spigot upwards and a positive voltage on deflector plate X1 the spot will move to the left. Viewed from the screen end with the spigot up a positive voltage on the deflector plate Y1 the spot will move upwards.

WITH THE TUBE VIEWED FROM THE SCREEN END AND WITH THE BASE SPIGOT UPPERMOST A POSITIVE POTENTIAL APPLIED TO CONTACT II SHALL DEFLECT THE SPOT TOTHE LEFT & A POSITIVE POTENTIAL APPLIED TO CONTACT 7 SHALL DEFLECT THE SPOT UPWARDS

VIEW OF UNDERSIDE OF BASE