MILITARY EQUIPMENT TYPES TUBE MANUAL

Schenectady, New York 12305, U.S.A.

$$
\rightarrow
$$

MILITARY EQUIPMENT TYPES TUBE MANUAL

REGISTRATION PAGE

```
3-BCD ET-11-E00-00 12-?8-65 599
Mr. P. G. Durham
Chief of Technical Pub. Dept.
English Electric Valve Co., Ltd.
Chelmsford Essex, England
```

This tube manual is recorded in the name and at the address shown above. To assure prompt receipt of the revised and new data that are issued in regular supplemental mailings, will you please notify us immediately of any changes of address or transfer of the manual to another person. If you should move, or if you transfer this manual to another person, RETURN THIS PAGE TO US WITH YOUR NEW ADDRESS OR WITH THE NEW OWNER (AND ADDRESS) OF THE MANUAL INDICATED IN THE ABOVE SQUARE.

WE CANNOT CHANGE YOUR ADDRESS OR TRANSFER ANY MANUAL UNLESS YOU RETURN THIS PAGE WITH THE NECESSARY CHANGES INDICATED TO:

General Electric Company
Advertising and Sales Promotion
316 E. 9th St.
Owensboro, Ky. 42301

We will apply this change, if you have more than one manual, to all those recorded in your name.

Date change requested \qquad

Schenectady, New York 12305, U.S.A.

$$
\begin{aligned}
& 00-C C L-15-T L \\
& \partial-59--55 \\
& p e S^{2}
\end{aligned}
$$

Abstract

WARNING: WITHOUT PROPER AND ADEQUATE PRECAUTIONS, THE OPERATION, HANDLING, OR SHIPMENT OF MICROWAVE AND HIGH-VOLTAGE ELECTRONIC TUBES CAN BE HAZARDOUS TO PERSONNEL AND PROPERTY. READ THE FOLLOWING INFORMATION. TAKE ALL REQUIRED PRECAUTIONS.

GENERAL

This information is provided to alert the purchaser of high-voltage tubes and microwave tubes to the potential hazards which may be created by improper operation, handling or shipment of these devices: All persons responsible for the operation, handling and shipping of these tubes should familiarize themselves with the potential hazards, and suitable safety precautions should be established and followed for the protection of personnel and equipment.

Do not operate high-voltage and microwave tubes except in accordance with adequate understanding of the potential hazards and with proper equipment-operating instructions and safety precautions.

Questions regarding proper and safe use of such tubes should be addressed to:

General Electric Company
Microwave Tube Operation
Building 269 - Application Engineering
1 River Road
Schenectady, New York 12305

Several of the potential hazards are defined and regulated by state or federal governmental agencies and bureaus. Since the documentation and specifications of such agencies and bureaus are frequently revised, it is not feasible to make full or precise reference to their content in this publication. If current governmental information is desired or if there are questions, the appropriate agency should be consulted.

HIGH VOLTAGE

The voltages used to operate microwave and high-voltage electronic tubes can cause death or serious injury due to electric shock and burns. Depending on the device and equipment designs, and considering the possibility of malfunctions in either, part or all of the exterior tube surfaces may be at, or may quickly reach, dangerous voltages. Equipment design and laboratory testing must take this into account by following design and operating precautions so that contact with, and proximity to, high-voltage circuits is not possible under operating conditions. High-voltage circuits should be enclosed in protective housings, and interlock circuits should be provided so that primary power is removed, and high-voltage terminals and capacitors are quickly grounded, whenever the enclosure is open. It is always dangerous and unsafe practice to defeat or avoid the proper safety devices and safety procedures (as bypassing an interlock circuit) while operating or testing the equipment.

GROUNDS

Many microwave tubes are operated in a grounded electrode mode in which the envelope and output cables are operated at ground potential. Care must be taken to be certain that the tube envelope is properly grounded before the operating voltages are applied. The grounding should never be done through the output cables since a break in the cable will then result in the tube envelope being raised to high voltage.

X-RADIATION

X-radiation is produced by the impact of high energy electrons on electron tube surfaces. Such high-energy electrons are produced when accelerated by the applied electrode voltages. Depending on the construction of the electron tube and the materials involved, X-radiation may be produced at voltages as low as 5 kilovolts. The production of highly penetrating X-radiation and energy increases to relatively more dangerous proportions as the electrode voltages and currents are increased. All electron tubes operating in high-voltage ranges constitute potential hazards, and applications of such tubes should be carefully reviewed before operation.

When X-radiation shielding is required, it should be provided with proper interlocks to prevent accidental exposure of personnel to X-radiation. Where hazards are high, periodic X-radiation level surveys should be made. Furhter, when continuous operation is in effect, personnel-monitoring devices should be worn by the personnel and controlled access to the area implemented.

Most high-voltage and microwave electronic devices are not designed, nor intended, to be fully self-shielded to X-radiation under all possible conditions of their application and use. External radiation shielding will usually be necessary. This shielding should be designed by the equipment manufacturer as a part of the user's equipment to protect the user against possible personal injury. It is the responsibility of the manufacturer of the equipment using such tubes to provide any and all enclosures required, and to provide the instructions and maintenance procedures for the proper use of the equipment.

Generally, the spatial distribution of X -radiation from power tubes is complex and changes from tube to tube. The same tube does not radiate the same 360° around. Also, the surrounding metallic construction will tend to prevent, distort, or further filter the passage of X -radiation to regions external to the tube. Of major concern are the areas in which materials used in tube construction present the least attenuation of X -radiation.

The search for possible X -radiation is not to be confined to those directions in which emission may be expected; unintended emissions in high power tubes have sometimes caused X -radiation in unexpected directions. A thorough search in all directions around the tube is necessary to ensure that the regions of emissions is correctly determined.
Tubes presenting X-radiation hazards or other possible hazards will have radiation precaution labels or tags affixed to the device at the time of shipment. These should not be removed at any time. If these labels or tags are removed by the user, they should be prominently displayed in close visual proximity to the device.

MICROWAVE RADIATION

The radio-frequency output power of many electron tubes may exceed those power densities considered safe for human exposure. The design, operating instructions, and maintenance procedures of equipment utilizing such tubes must ensure that the radio-frequency energy is properly restricted to and contained in the circuits, transmission lines, waveguides, or cavity resonators and that these are frequently monitored to ensure that the radiation of radio-frequency energy from joints or connectors is below the hazardous limit. Antenna systems should also be frequently monitored for stray or indirect radiation. Operating and service personnel should be advised of exposure hazards and arrangements made to prevent accidental exposure.

MERCURY

Some devices contain mercury as a necessary constituent to their operation. Under certain circumstances, the presence of free mercury may generate air contamination or other pollution that is considered toxic. Disposal of tubes or handling of damaged tubes must be done with adequate precaution given to this possible hazard. If disposal presents questions, these questions should be directed in writing to the General Electric Company, Microwave Tube Operation, at the address shown on the front side of this sheet.

Air shipment regulations allow air transportation of devices containing mercury only under special packing and marking requirements. The current requirements should be obtained directly from the airline.

The packing containers of devices containing mercury will be marked accordingly when they are shipped from the tube manufacturer.

IMPLOSION

Most electronic tubes and devices operate with their internal volumes under high vacuum, and many gas-filled tubes also have their internal volumes considerably below atmospheric pressure. In the event that the envelope of some of these tubes is punctured or broken, the inrush of air can be violent under certain conditions. Tubes with large glass envelopes should be handled and stored with particular care, and implosion-proof shields should be installed in operating equipments. Particular care should also be given to shielding of the eyes and face.

MAGNETIC FORCES

The attractive force between magnetic and feromagnetic objects increases rapidly as separation between the objects is decreased and the objects will be accelerated toward one another, meeting with considerable impact. When handling or working near large permanent magnets, care must be taken to prevent injury which could result from this hazard.

Air shipment regulations allow air transportation of devices containing magnetized materials only under special packing and marking requirements. The current requirements should be obtained directly from the airline.

TUBE PRODUCTS DEPARTMENT

TUBES

This tabulation lists all tubes and devices in the current tube manuals and the manual in which each component may be located. Type numbers are arranged in alpha-numerical order.

There is duplication of type numbers in the four-digit series of designations. In this numbering sequence, particularly in the 6000 and higher series, the developmental type-number system employed by the Microwave Tube Business Section parallels the standardized Electron Industries Association (EIA) industry-wide numbering system for tubes other than home-entertainment and television picture types. Microwave Tube Business Section developmental numbers use the prefix "Z"' followed by another letter: e.g., ZG, ZM, ZP (EIA standardized MTBS designations have the prefix "GL", a few old thyratrons use the prefix "FG").

The receiving tube component of the Tube Products Department does not employ prefix letters except in the case of reed switches, and a few types transferred from other components where prefixes were used. For this reason designations in the four-digit series without prefixes represent standardized EIA designations, whereas those with prefixes (other than "GL") as mentioned in the foregoing paragraph are MTBS developmental types.

TYPE		MANUAL*	TYPE		MANUAL*	TYPE		MANUAL*
1AY2-A		R-2	3DJ3		R-2			
1BC2-A		R-2	3DT6		R-2	6AQ5-A 6AR11		R-2 $\mathrm{R}-1$
18H2-A		R-2	3GK5		R-2	6AS7-GS	FS	
1BY2-A		R-1	3HA5		R-2	6AU6-A		R-2
1DG-3		R-2	3HM5		R-2	6AU8-A		R-2
1G3-GTA		R-2	3HS8		R-2	6AV6		R-2
1K3A		R-2	3JC6A		R-2	$6 A V 11$		R-1
1V2		R-2	4AU6		R-2	6AW8-A		R-2
1X2-C		R-2	4BZ6		R-2	6AX3		R-1
2AS2-A		R-1	4CB6		R-2	6AY3-B		R-2
2 AV 2		R-2	4CS6		R-2	6B10		R-1
2B22	FS		4DE6		R-2	6BA6		R-1
$\begin{aligned} & \text { 2BU2 } \\ & 2 \mathrm{C} 39-\mathrm{B} \end{aligned}$	FS	R-1	4DK6		R-2	6BA10		R-1
$\begin{aligned} & \text { 2C39-B } \\ & 2 \mathrm{C} 40 \end{aligned}$	FS		4DT6 4GK5		R-2	6 BD 11 6 BE 3		R-1
2C40	FS		4GK5		R-2	6BE3		R-2
$2 \mathrm{C} 40-\mathrm{A}$	FS		4HS8		R-2	6BE6		R-2
2 C 43	FS		4JC6A		R-2	6BF11		R-1
$2 \mathrm{CN} 3-\mathrm{B}$		R-2	4JD6		R-2	6BH6		R-2
2CY5		R-2	$4 \mathrm{JH6}$		R-2			R-1
2D21	FS		4LU6		R-2	6BK7-B		R-2
2DF4	FS		5AQ5		R-2	6BN6		R-2
2GK5			5AR4		R-2	6BN11		R-2
3A3-C		R-2	5CG8		R-2	6BQ5		R-2
3AT2-B		R-1	5EW6		R-2	6BQ7-A		R-2
3AW2-A		R-1	5GH8		R-2	6BV10		R-1
3BN2-A					R-2	6BW3		R-1
3BW2		R-1	5R4-GYA	FS		6BW11		R-1
$\begin{aligned} & 3 \mathrm{BZ6} \\ & \text { 3C23 } \end{aligned}$	FS	R-2	5U4-GB		R-2	$6 \mathrm{BZ3}$		R-1
$\begin{aligned} & 3 \mathrm{C} 23 \\ & 3 \mathrm{CB} 6 \end{aligned}$	FS	R-2	5Y3-GT $6 \mathrm{AB4}$		R-2	6BZ6		R-2
3CB6		R-2	6 AB 4		R-2	6 C 4		R-2
3CN3-B		R-2	$6 \mathrm{AC10}$		R-1	6CA11		R-1
3CS6		R-2	6AD10		R-1	6CB6-A		R-1
3CU3-A		R-2	6AF11		R-1	6CG3		R-1
3CX100A5 3DK6	FS		6AG9		R-1	6CG8-A		R-2
3DK6		R-2	6AH9		R-1	$6 \mathrm{CJ3}$		R-2
3DA3		R-2		FS		6CL8-A		$\mathrm{R}-2$
3 DB 3		R-2	6AK9		R-1	6CS6		R-2
3 DC 3		R-2	6AK10		R-1	6CU5		R-2
3DF3 3DH3		R-2 $\mathrm{R}-2$	6AL5 6AM4		R-2	$6 \mathrm{CY5}$ 6 DJ 8		R-2
		R-2	6AM4		R-2	6DJ8	FS	

[^0] following tab divider "Industrial," "Military,"

TYPE	MANUAL*	TYPE	MANUAL*		TYPE	MANUAL*
6DK6	R-2	6SN7-GTA		R-2	12GE5	R-1
6DT6	R-2	6SN7-GTB		R-2	12GN7-A	R-2
6DT8	R-2	6T8-A		R-2	12HG7	R-2
6 EA 8	R-2	6 T 10		R-1	12 HL 7	R-2
6EF4	R-1	6 U 10		R-1	$12 \mathrm{JN6}$	R-1
6EH4-A	R-1	6V6-GTA		R-2	12 JN8	R-2
$6 \mathrm{EJ} 4 \mathrm{~A}$	R-1	6 X 4		R-2	12SL7-GT	R-2
6EL4-A	R-2	$6 \mathrm{Z10}$		R-1	12SN7-GTA	R-2
6EW6	R-2	$7 \mathrm{KY6}$		R-2	13 JZ 8 13 V 10	$\mathrm{R}-1$ $\mathrm{R}-1$
6EZ8	R-2	8AC10		R-1	13V10	R-1
6FM7	R-1	8AL9		R-1	$13 \mathrm{Z10}$	R-1
6FQ7	R-2	8AR11		R-1	14BL11	R-1
6 FY 7	R-1	8AW8-A		R-2	14BR11	R-1
6GE5	R-1	8 B 10 8 BA 11		$\mathrm{R}-1$ $\mathrm{R}-1$	15AF11	R-1 $\mathrm{R}-1$
6GK5	R-2	8BA11		R-1	15BD11	R-1
6GK6	R-2	8BM11		R-1	15FM7	R-1
6GM6	R-2	8 BN 11		R-1	15FY7	R-1
6GN8	R-2	$8 \mathrm{8BQ11}$		$\mathrm{R}-1$ $\mathrm{R}-1$	15MF8 16 AK 9	R-1
6GU7	R-2	8 BU 11 8 CB 11		R-1	16BQ11	R-1
6GV5	R-1					
6GX6	R-2	8FQ7		R-2	16BX11	R-1
6GY5	R-1	8GN8		R-2	16GY5	R-1
6GY6	R-2	8JU8-A		R-2	16LU8-A	R-1
6GY8	R-2	8JV8		R-2	17AB10	R-1
6HA5	R-2	8LT8		R-2	17AX3	R-1
6HB5	R-1	9AH9		R-1	17AY3-A	R-2
6HB6	R-2	9AK10		R-1	17BE3	R-1
6 HE 5	R-1	9MN8		R-1	17BF11	R-1
6HM5	R-2	10GK6		R-2	17BF11-A	R-1
6HS8	R-2	10GN8		R-2	17BW3	R-1
6HZ6	R-2	$10 \mathrm{JY8}$		R-2	17BZ3	R-1
6HV5-A	R-1	$10 \mathrm{KR8}$		R-2	$17 \mathrm{CU5}$	R-2
6J6-A	R-2	10LW8		R-2	$17 \mathrm{GE5}$	R-1
$6 \mathrm{JB5}$	R-1	10LZ81 10 T 10		R-2	$17 \mathrm{JM6}$	R-1
$6 \mathrm{JH6}$	R-2	10 T 10		R-1	17JM6	R-1
6JC6-A	R-2	$10 \mathrm{Z10}$		R-1	17 JN6	R-1
$6 \mathrm{JD5}$	R-1	11AR11		R-1	$17 \mathrm{JZ8}$	R-1
$6 \mathrm{JD6}$	R-2	11BQ11		R-1 $\mathrm{R}-1$	18AJ10	R-1
6JM6 6JN6	R-1 R-1	11CA11		R-1	19 DE 3	R-1
$6 \mathrm{JN6}$	R-1					
6 JN 8	R-2	11CF11		R-1	$19 \mathrm{JN8}$	R-2
$6 \mathrm{JU8}$-A	R-2	11 FY 7		R-1	19 T 8	R-2
$6 \mathrm{JV8}$	R-2	11LT8		R-2	21GY5	R-1
$6 \mathrm{JZ6}$	R-1	12 AE 10		R-1	$21 \mathrm{HB5}-\mathrm{A}$ 21 J 6	R-1
$6 \mathrm{JZ8}$	R-1	12AL5		R-2	21 J 6	R-1
6KD6	R-1	12AT7		R-2	21LU8	R-1
6KR8-A	R-2	$12 \mathrm{AU6}$		R-2	22BW3	R-1
6KS6	R-2	12AU7		R-2	$23 \mathrm{Z9} 111$	R-1
6KT8 ${ }^{\text {6L6-GC }}$	R-2	12AV6		R-2	$24 \mathrm{JZ8} 8$	R-1
6LB6	R-1	12 AV 7		R-2	25 C 5	R-2
6LE8	R-2	12 AX 3		R-1	25CG3	R-1
6LG6	R-1	12 AX 7		R-2	25 EH 5	R-2
6LJ6-A	R-2	12AX7-A		R-2	$25 \mathrm{JZ8}$	R-1
6LJ8	R-2	12 AY 7	FS	R-2	26LX6	R-1
6LT8	R-2	12BA6		R-2	31 AL10	R-1
6LU8	R-1	12 BE 3		R-1	$30 \mathrm{JZ6}$	R-1
$6 \mathrm{LY8}$	R-2	12BE6		R-2	32 HO 7	R-1
6M11	R-1	12BF11		R-1	33GY7A	R-1
6MD8	R-2	12BV11		R-1	34 CE 3	R-1
6 MJ 8	R-1	12BY7-A		R-2	35 C 5	R-2
$6 \mathrm{MK8A}$	R-2	12 C 5		R-2	35W4	R-2
$6 \mathrm{MN8}$	R-1	$12 \mathrm{CU5}$		R-2	36KD6	R-1
6MV8	$\mathrm{R}-2$ $\mathrm{R}-2$	12DQ7		R-2 $\mathrm{R}-2$	38 HE 7 38 HK 7	R-1
6SL7-GT	R-2	12FQ				

Page 4
12-70

PUBLICATION TITLE
DATE OF ISSUE
Registration Page, ET-T1725D 12-70
Safety Precautions, ET-T2004-1 9-70
GENERAL (Tabbed Divider)
ELECTRONIC TUBE MANUAL INDEX, ET-T1730G 12-70
TABLE OF CONTENTS, MET-1J 12-70
INTRODUCTION, MET-2B 11-66
ECSO PRODUCT LISTING
AND SALES OFFICES ET- F20B 12-69
TUBES
TYPES AND PUBLICATION NUMBER
DATE OF ISSUE
PULSE IGNITRONS (Tabbed Divider)
Selection Chart, MET-10C 12-69
GL-5630, ET-T1575B 12-70
GL-6228, ET-T1037B 12-70
GL-7171, ET-T1512A 4-63
GL-7703, ET-T1625 8-60
GL-37207, ET-T2011 -69
GL-37248, ET-T2012A 12-70
HYDROGEN THYRATRONS (Tabbed Divider)
Selection Chart, MET-9E 12-69
ZT-7004, OTI-85A 3-64
GL-7390, ET-T1526A 3-64
GL-7390A, ET-T1663 11-60
GL-7890, ET-T1642 5-61
GL-8326, ET-T1678A 2-65
TRIGGERED GAPS (Tabbed Divider)
The Triggered Spark Gap, MET-8 9-62
ZR-7512, OTI-99D 12-68
ZR-7513, OTI-201B 12-68
ZR-7516, OTI-101D 12-68
ZR-7517, OTI-102D 12-68
GL-7964, ET-T1655C 3-64
GL-7964-1, ET-T1672A 4-64
KLYSTRONS (Tabbed Divider)
Klystron Products, MET-11B 12-70
ZM-6802, OTI-78 11-62
VOLTAGE-TUNABLE MAGNETRONS (Tabbed Divider)
Selection Chart, MET-12J 12-70
ZM-6046, PTI-107B 10-65
ZM-6047, PTI-108B 10-65
ZM-6051, PTI-86B 11-65
TYPES AND PUBLICATION NUMBER
DATE OF ISSUE
ZM-6085, PTI-145B 2-65
ZM-6086, PTI-145B 2-65
ZM-6087, PTI-145B 2-65
Above three types combined on one publication.
ZM-6203, PTI-147A 12-68
ZM-6205, PTI-153 2-65
ZM-6211A, OTI-206 9-67
ZM-6220, PTI-160A 12-68
ZM-6222, OTI-107B 9-67
ZM-6231, OTI-205 9-67
ZM-6238, OTI-108B 9-67
ZM-6239, OTI-109B 12-68
ZM-6240, OTI-110B 12-68
ZM-6242, PTI-167 5-66
ZM-6243, PTI-168 5-66
ZM-6246, PTI-172 9-67
ZM-6257, OTI-207 9-67
ZM-6265A, OTI-214 12-68
ZM-6276, OTI-215 12-68
ZM-6277, OTI-216 12-68
COAXIAL TRANSMITTING TUBES (Tabbed Divider)
Selection Chart, MET-16F 12-70
ZP-1015, PTI-69B 9-67
ZP-1026, OTI-80 11-62
ZP-1034, OTI-88A 9-67
ZP-1039, PTI-163 10-65
ZP-1057, OTI-92 2-65
ZP-1079, PTI-169A 9-67
GL-6251, ET-T1165A 9-67
GL-6283, ET-T1050B 2-65
GL-6848, ET-T1658B 2-65
GL-6942, ET-T1384C 9-67
GL-7399, ET-T1598D 9-67
GL-7985, ET-T1657A 2-65
GL-8500, ET-T1713 3-64
GL-8513, ET-T1716 2-65
GL-8866, ET-T1734A 9-67
GL-51025, ET-T2015 8-70
GL-51038, ET-T2007 11-69
GL-51038R, ET-T2008 11-69
GL-51064, ET-T2009 11-69
GL-51065, ET-T2010 11-69
GL-51070, ET-T2016
GL-51070, ET-T2016 12-70 12-70
GL-51074, ET-T2017 12-70

MILITARY EQUIPMENT TYPES MANUAL

INTRODUCTION

CONTENTS

This manual contains data on tubes and allied devices of interest to manufacturers designing military systems. It is designed to give you information on products useful in equipment in the current design stage, as well as to keep you abreast of the latest trends now under development in order to assist you in advance equipment design. For that reason it includes data on Electronic Industries Association registered types as well as on types currently in development or currently being produced at less than full-scale quantities.

USE
Although this manual will be kept current with regular mailings, it does not attempt to bring you all advance tube programs since many are still so advanced that they are subject to general objectives. Consultation with your nearest General Electric Electronic Components Sales Operation Office is encouraged in order to put you in touch with such programs.

ARRANGEMENT

The technical information here is tabbed by tube class. Specific types within each class are arranged in numerical order.

KIND OF DATA

As a standard practice, information is given in two distinctly different forms: data sheets on commercial types identified by the prefix GL in the case of EIA-registered tube types and data sheets on developmental types. The latter can be identified by the prefix Z or Z followed by another letter; e.g., ZM, ZP. Data on the developmental types may appear in either of two classifications, "Objective Technical Information" (OTI) or "Preliminary Technical Information" (PTI). Both forms for some types may be included for your convenience.

OBJECTIVE TECHNICAL INFORMATION

The Objective Technical Information represents the design objective for the type. When significant ratings approaching the design objective are available, Preliminary Technical Information is issued. When only Objective Technical Information exists consult your nearest Electronic Components sales office for current status.

Preliminary Technical Information

Preliminary Technical Information describes the characteristics of products during the period progressing toward the achievement of design objectives. Preliminary ratings (PTI) reflect current performance. While delivery of types to Preliminary Technical Information specifications does not imply continued availability of types with identical characteristics or dimensions, arrangements can be made to do so depending on the nature of the requirement. Consult your General Electric Electronic Components sales office.

SUMMARY INFORMATION

In addition to the above, selection charts for each class are included directly following the divider for the class. These are furnished to provide you a quick selection listed by main characteristic.

Page 2
11-66

CONDITIONS OF SALE

The specifications in this manual applying to types in development are naturally subject to some change. Small-quantity lots are usually available. Such availability is subject to prior order. Standard Conditions of Sale apply to all developmental types in availability status. Your purchasing agent usually has information on availability. If he does not have it, he can readily obtain it from your General Electric Electronic Components sales representative.

PRICE AND WARRANTY

Specific prices and warranties have been established for most listings. Your Purchasing Agent or General Electric sales representative can readily provide this information.

Ordering
When ordering a product from developmental data be sure to include date of the OTI or PTI for best service, and so that your requirements are completely described.

ADDITIONAL INFORMATION

Your nearest Electronic Components Sales Operation representative can provide you additional information promptly. You are invited to consult him.

The General Electric Electronic Component Sales Operation offers a complete electronic components "market basket" of products. A listing follows:

TUBE PRODUCTS

1. Transmitter tubes

1A. Camera tubes
2. Klystrons
3. VTM's
4. Ignitrons

4A. Vacuum gaps
4B. Hydrogen thyratrons
5. Ceramic tubes
6. Photocells
7. Reed switches
8. Compactrons
9. Conventional receiving tubes

SEMICONDUCTOR PRODUCTS

10. Germanium rectifiers low current (0 to 1.4 amp)
11. Silicon rectifiers
low current (0 to 1.4 amp)
medium current (1.5 to 35.0 amp)
high current (over 35 amp)
12. SCR's
low current (0 to 7.5 amp) high current (over 35 amp)
light activated
13. Silicon controlled combination stacks
14. AC controlled switches
15. Rectifier stacks (Germanium, silicon, potted blocks)
16. Assemblies (thyratron replacements, specials)
17. Selenium and copper oxide rectifiers
18. Functional components
19. Silicon controlled switches
20. Unijunction transistors
21. Silicon grown-diffused passivated NPN transistor
22. Tunnel diodes and back diodes
23. Reference amplifiers
24. Silicon planar epitaxial passivated amplifiers and switches
25. Active discrete pellet functional devices
26. Signal diodes
27. Matched pairs and quads
28. Silicon mesa NPN passivated power transistors

CAPACITOR PRODUCTS

29. Film capacitors
30. Large D-c capacitors
31. Energy Storage capacitors
32. Network capacitors
33. D-c specialty capacitors
34. A-c specialty capacitors
35. Aluminum electrolytic capacitors
36. Tantalum electrolytic capacitors

VACUUM PROCUCTS

37. Vacuum system
38. Triode ion pumps
39. Trigger gages
40. Mercury diffusion pumps
41. Ion gages
42. Leak detectors
43. Partial pressure analyzers
44. Permeation leak-gảs purifiers
45. Sublimation pumps
46. Vacuum accessories

OTHER PRODUCTS
47. Adjustable speed drives
48. Appliance controls
49. Ballasts (fluorescent)
50. Circuit protective devices
51. General purpose control
52. Magnets
53. Nickel cadmium rechargeable batteries
54. Sealed relays
55. Soldering Irons
56. Thermistors
57. Varistor
58. Volt Pac^{\circledR} specialty transformers

INSTRUMENTS

59. Panel Meters
60. Time Meters
61. Meter Relays
62. Shunts
63. Switchboard Indicators
64. Recorders (Direct Acting)
65. Transducers

RECORDING INSTRUMENTS

66. Direct-operated, strip chart recorders (inking, inkless, hook-on)
67. Miniature (4-inch) servooperated recorders
68. Servo-operated (12-inch) strip and round chart recorders/recorder controllers (one, two or multipoint pen)

MOTORS

69. A.C Tri-Clad ' 55 '(B) induction 1-125 HP
70. A.c fractional
71. D-c integral
72. D-c fractional
73. Specialty motors
74. DCM\&G sets

ARIZONA

Phoenix 85012
Guaranty Bank Bldg., Suite 712
3550 N. Central Ave.
Phone A/C 602 264-1751

CALIFORNIA

*Los Angeles 90064
11840 W. Olympic Blvd.
Phone: A/C 213 479-7763 $\begin{array}{ll}A / C & 213 \\ \text { 272-8566 }\end{array}$ $\begin{array}{llll}A / C & 213 & 272-8566 \\ \text { A/C } 213 & 879-1350\end{array}$
Portola Valley 94025
3210 Alpine Road
Phone: A/C $415854-4010$
COLORADO
Denver 80206
201 University Blvd.
P.O. Box 2331

Phone: A/C 303 388-5771

CONNECTICUT

Bridgeport 06602
1285 Boston Ave
Phone: A/C 203 334-1012

DISTRICT OF COLUMBIA
Washingion 20005
777 - 14th St., N.W.
Phone: A/C 202 393-3600

FLORIDA

North Palm Beach 33403
321 North Lake Blvd., Room 201
Phone: A/C 305 844-5202
Tampa 33609
P.O. Box 10577

2104 S. Lcis Ave.
Phone: A/C $813877-8311$
Winter Park 32789
John Hancock Bldg., Suite 250
370 Wymore Rd.
Phone: A/C 305 425-8634
ILLINOIS
*Chicago 60641
3800 N. Milwaukee Ave.
Phone: A/C 312 777-1600

INDIANA
Fort Wayne 46806
6001 S. Anthony
Phone: A/C 219 447-1511
Indianapolis 46208
3750 N. Meridian St.
Phone: A/C $317923-7221$

IOWA

Cedar Rapids 52401
210 2nd St., S.E.
303 Dows Bldg.

ALABAMA

Huntsville 35801
3322 Memorial Parkway South, Suite 13
Phone: A/C 205 883-3131

KENTUCKY

Owensboro 42301
316 E. 9 th St
Phone: A/C 502 683-2401

$$
\text { Ext. } 482 \text { (Receiving Tubes) }
$$

Ext. 422 ($1 \& M$ Tubes)

MASSACHUSETTS

Wellesley 02181
1 Washington St
Phone: A/C 617 237-2050

MICHIGAN
*Detroit 48237
15160 W. Eight Mile Rd.
Phone: A/C 313 564-5228

MINNESOTA

Minneapolis 55424
4900 Viking Dr., Rm. 108
Phone: A/C 612 927-5458

MISSOURI

Kansas City 64199
911 Main St., Suite 518
P.O. Box 13566
phone: $A / C 816$ 221-4033

NEW JERSEY
*Clifton 07014
200 Main Ave.
Phone: A/C 201 472-8100

NEW YORK
Albany 12205
11 Computer Drive West
(518) 869-3576

New York City
(*Greaf Neck 11021)
425 Northern Blvd.
Phone: A/C 516 466-8800
*North Syracuse 13212
Northern Concourse Office Bldg.
Room
$315-456-3410$
102 ?
Rochester 14624
35 Deep Rock Rd.
(716) 436-3480

NORTH CAROLINA

Greensboro 27408
1828 Banking St.
Phone: A/C 919 273-6982

OHIO

*Cleveland 44117
25000 Euclid Ave.
Phone: A/C 216 266-2900
Dayton 45429
3430 S. Dixie Hwy.
P.O. Box 2143

Kettering Branch
Phone: A/C 513 298-0311

OKLAHOMA
Oklahoma City 73112
3022 N.W. Expressway
May-Ex Building, Room 412
Phone: A/C 405 943-9015

PENNSYLVANIA

Erie 16505
2318 W. 8th Street
Phone: A/C $814 \quad 455-8377$
*Philadelphia 19102
3 Penn Center Plaza
Phone: A/C 215 568-1800
Pittsburgh 15220
875 Greentree Rd. - Room 304
375 Greentree Rd.
Phone: A/C 412 921-4134

TEXAS

Dallas 75205
4447 N. Central Expressway,
Phone: A/C 214 521-1931
Housfon 77006
3110 S.W. Freeway
Room 220
Phone: A/C 713 524-3061
VIRGINIA
Charlotfesville 22902
2007 Earhart St.
P.O. Box 319

Phone: A/C 703 296-8118
Portsmouth 23707
3205 King St.
Phone: A/C $703393-6780$

WASHINGTON

Seattle 98188
225 Tukwila Pky.
Phone: A/C 206 244-7750

WISCONSIN

*Milwaukee 53202
615 East Michigan St
Phone: A/C 414 271-5000

INQUIRIES FROM OUTSIDE CONTINENTAL UNITED STATES, EXCLUDING HAWAII AND ALASKA, SHOULD BE SENT TO:

Electronic Sales
IGE Export Division
159 Madison Avenue
New York, N.Y. 10016
Phone: A/C 212 751-1311
IN CANADA, ADDRESS INQUIRIES TO:
Canadian General Electric Co.
189 Dufferin Street
Toronto, Ontario, Canada
Phone: A/C 416 537-4481

GOVERNMENT PROGRAMS OPERATION OFFICES

DISTRICT OF COLUMBIA
*Washington 20005
$777-14$ th St., N.W.
Phone: A/C 202 393-3600

OHIO

Dayton 45439
3430 S. Dixie Hwy
P.O. Bex 2143

Kettering Branch 45529
Phone: A/C 513 298-0311

CALIFORNIA
Los Angeles 90064
11840 W. Olympic Blvd.
Phone: A/C 213 479-7763
A/C 213 879-1350

TUBES

Selection Chart

CAPACITOR-DISCHARGE AND DC-SHORT-CIRCUITING-SWITCH SERVICE

Capacitor Discharge					DC Short-Circuiting Switch			
Maximum Peak Current in Amperes	Inductance in Nanohenrys Approx	Peak Inverse and Forward Anode Volts	Repetition Rate per Minute Max	Type	Current-Amperes Peak Inverse RMS Peak Volts			Type
					-	10,000	50,000	GL-37248
35,000	30	10,000	1	GL-7171	15	35,000	10,000	GL-7171
100,000	30	20,000	2	GL-7703	15	35,000	20,000	GL-7703
					175	20,000	30,000	GL-5630
300,000	90	25,000	500	GL-37207	500	30,000	45,000	GL-6228
					-	300,000	25,000	GL-37207

©
 -

o

-

IGNITRON

The GL-5630 ignitron is a sealed, stainless-steeljacketed, water-cooled, mercury-pool tube designed primarily for use in radio-transmitter power sup-
plies. In this service 6 tubes will rectify up to 2500 kilowatts at 17,000 volts. Use of the grid to prevent conduction gives one-cycle circuit-breaker action.

X-RAY WARNING NOTICE

This device may produce X-rays when energized. X-ray warning signs or labels should be permanently attached to the equipment.
Precautions must be exercised during the service and operation of equipment to assure that any shielding components are replaced to their intended position before the equipment is operated.

GENERAL

Electrical

Type Cathode Excitation-Cyclic
Type Cathode Spot Starting-Ignitor
Number of Electrodes

Main Cathodes. 1
Holding Anodes 1
Ignitors . 2
Control Grids..... 1
Gradient Grids. 1
Arc Drop at 150 Peak Amperes. 18 ± 1 Volts
Cathode Excitation Requirements
Ignitor Voltage Required to Fire . 450 Volts
Ignitor Current Required to Fire. 42 Amperes
Grid Requirements
Positive Current to Establish Conduction. 0.200 Amperes
Minimum Voltage to Establish Conduction. +100 Volts
Minimum Voltage to Prevent Conduction. 50 Volts

Mechanical
Envelope Material-Metal
Over-all Length, maximum . $22 \frac{3}{16}$ Inches
Over-all Width, maximum . $53 / 4$ Inches
Net Weight. 23 ± 2 Pounds
Type Cooling-water
Characteristics for Water Cooling
Water Temperature Rise, maximum... 2 C
Pressure Drop at 3 Gallons per Minute... 4 Pounds per Square
Inch
Thermal
Water Cooling
Maximum Outlet Water Temperature. 45 C
Minimum Inlet Water Temperature. 35 C
Minimum Water Flow at Continuous Rated Average Current. 3 Gallons per Minute
Minimum Water Flow at no Load . 3 Gallons per Minute

MAXIMUM RATINGS

AS POWER RECTIFIER TUBE
Ratings are for zero phase-control angle.
Maximum Peak Anode Voltage
Inverse. 20,000 Volts
Forward. 20,000 Volts

Main Anode Current
Peak. 200 Amperes

Average
Continuous . 50 Amperes
2 Hours . 50 Amperes
1 Minute. 50 Amperes
Surge . 2000 Amperes
Maximum Duration of Surge Current. 0.15 Seconds
Frequency Range . 25-60 Cycles per Second

IGNITOR		
Maximum Voltage		
Positive.	. 1000	Volts
Negative	. 5	Volts
Maximum Current		
Peak	. 100	Amperes
RMS	. 17.5	Amperes
Average	2.5	Amperes
Maximum Averaging Time	10.0	Seconds
Starting Time at Required Voltage or Current.	. 100	Microseconds
HOLDING ANODE		
Maximum Current		
Peak	. 20	Amperes
Average	. 5	Amperes
Maximum Averaging Time.	. 1	Second
RMS.	. 10	Amperes
Maximum Peak Forward Voltage.	. 200	Volts
Maximum Peak Inverse Voltage		
Main Anode Conducting .	. 25	Volts
Main Anode not Conducting	. 150	Volts
CONTROL GRID		
Maximum Peak Forward Voltage .	. 500	Volts
Maximum Peak Inverse Voltage.	. 200	Volts
Maximum Grid-Current		
Peak Positive.	. 5.0	Amperes
Peak Negative	. 0.1	Amperes
Average.	. 1.0	Amperes
RMS. .	. 2.0	Amperes

IGNITOR VOLT-AMPERE REQUIREMENTS

TUBE PRODUCTS DEPARTMENT GENERAL () ©LECTRIC

IGNITRON

PENTODE TYPE

The GL-6228 ignitron is a sealed, stainless-steel-jacketed, water-cooled mercury-pool tube designed primarily for use in electronic frequency changers. In this service, six tubes will rectify or

FREQUENCY-CHANGER SERVICE

invert up to 7500 kilowatts at 17,000 volts. The tube is also designed for use in intermittentrectifier service, capacitor-discharge service, and as a d-c short-circuiting switch.

GENERAL

Electrical

Type cathode excitation-Cyclic
Type cathode-spot starting-Ignitor
Number of electrodes
Main anodes . 1
Main cathode . 1
Ignitors . 3
Holding anodes . 2
Shield grids . 1
Control grids . 1
Gradient grids . 1
Arc drop
At 600 amperes peak . 20 ± 2 volts
At 2000 amperes peak. 30 ± 2 volts

GENERAL (CONT'D)

Electrical (Cont'd)

Cathode-excitation requirements
See specific class of service
Grid-excitation requirements
See specific class of service

Mechanical

Envelope material-metal
Net weight. 100 ± 10 pounds

Thermal

Type of cooling-water

MAXIMUM RATINGS
POWER-RECTIFIER SERVICE Minimum Maximum

ASA (See ASA Standards C34.1-1949)
Peak anode voltage

Inverse	-	20,000	volts
Forward.	-	20,000	volts
Anode current*			
Peak.	-	900	ampere
Average			
Continuous.	-	150	amperes
2 hours.	-	200	amperes
1 minute	-	300	amperes
Fault.	-	6000	amperes
Duration of fault current \ddagger :		0.15	second
Peak control-grid voltage			
Forward.	200	500	volts
Inverse.	100	200	volts
Peak shield-grid voltage			
Forward.	200	500	volts
Inverse. .	50	200	volts

Peak control-grid current
Forward. - 5 amperes
Inverse. \quad - 0.4 amperes

Peak shield-grid current
Forward. .
5 amperes
Inverse .
Peak gradient-grid voltage
Forward. $1 / 2$
1/2 anode-cathode voltage
Inverse. $1 / 2$
Peak gradient-grid current
Forward . 0.010
Inverse . 0.010
0.020 amperes
0.020 amperes

Ignitor ratings
Peak ignitor voltage
Forward, open-circuit voltage . 450
750 volts
Inverse. 0.0 volts

Width of current pulse, sinusoidal waveshape
\qquad
At 25 cycles . 500
Peak ignitor current, short-circuit current
1500 microseconds
4000 microseconds
75 amperes

MAXIMUM RATINGS (CONT'D)

POWER-RECTIFIER SERVICE (CONT'D)

	Minimum	Maximum	
Holding anode ratings			
Available instantaneous holding anode			
voltage during desired conduction period.	40	-	volts
Peak holding-anode voltage			
Forward	-	200	volts
Inverse	-	25	volts
Peak holding-anode current			
Forward	-	20	amperes
Inverse.	-	0.100	amperes
Average	-	5	amperes
RMS	-	10	amperes
Minimum			
Forward current during desired conduction period.	7	-	amperes
Continuous Duty, No Overloads			
Peak anode voltage			
Inverse.	-	20,000	volts
Forward	-	20,000	volts
Anode current*			
Peak.	-	600	amperes
Average.	-	200	amperes
Fault.	-	6000	amperes
Duration of fault current \ddagger.	-	0.15	second
Product of inverse or forward voltage and average current \qquad 3 megavolt-amperes			
Peak control-grid voltage			
Forward	. 200	500	volts
Inverse.	. 100	200	volts
Peak shield-grid voltage			
Forward.	. 200	500	volts
Inverse.	50	200	volts
Peak control-grid current			
Forward.	-	5	amperes
Inverse	-		amperes
Peak shield-grid current			
Forward.	-	5	amperes
Inverse	-	0.2	amperes
Peak gradient-grid voltage			
Forward.	. $1 / 2$		anode-cathode voltage
Inverse	. $1 / 2$	1/2	anode-cathode voltage
Peak gradient-grid current			
Forward.	. 0.010	0.020	amperes
Inverse.	. 0.010	0.020	amperes
Ignitor ratings			
Peak ignitor voltage			
Forward...... . .	. 450	750	volts
Inverse.	0	5	volts
Width of current pulse, sinusoidal waveshape .	500		microseconds
At 60 cycles.	-	1500	microseconds
At 25 cycles.	-	9000	microseconds
Peak ignitor current.	45	75	amperes
Holding anode ratings			
Available instantaneous holding anode			
Voltage during desired conduction period.	40	-	volts
Peak holding-anode voltage			
Forward.	. -		volts
Inverse.	-		volts
Peak holding-anode current			
Forward.	. -		amperes
Inverse .	. -	0.100	amperes

MAXIMUM RATINGS (CONT'D)

POWER-RECTIFIER SERVICE (CONT'D)

AC CONTROL OR CAPACITOR-DISCHARGE SERVICE—SINUSOIDAL CURRENT, PULSE DUTY \dagger

Peak
Inv
For
Anod
Pe
A

IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIERS

IHE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA

TUBE PRODUCTS DEPARTMENT GENERAL (\%) ELECTRIC

Schenectady, New York 12305

IGNITRON
 CAPACITOR-DISCHARGE SERVICE
 DC SHORT-CIRCUITING-SWITCH SERVICE
 35,000 AMPERES PEAK

The GL-7171 is a sealed, stainless-steel jacketed ignitron for use as a switch in capacitor-discharge circuits operating up to 10,000 volts. In this service
the tube will carry peak currents up to 35,000 amperes.

GENERAL

Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes

$\underset{\text { Manitors.. } 11}{1}$
Arc Drop
At 4000 Amperes... 20 Volts
At 30,000 Amperes. ... 55 Volts
Peak Inverse Voltage, maximum..10,000 Volts

Mechanical

Envelope Material-Stainless Steel
Mounting Position-Axis Vertical, Anode Lead Up
Net Weight
Pounds

Thermal

Type of Cooling-Convection
Ambient Temperature, minimum
C
Cathode Temperature, maximum
C
Anode-Header Temperature, maximum** . 55

GL-7 171

Et-tis12A
PAGE 2
4-63

MAXIMUM RATINGS AND TYPICAL OPERATION

Capacitor-Discharge Service, Pulse Duty, Sinusoidal Current		
Peak Anode Voltage		
Forward	10,000	Volts
Inverse.	10,000	Volts
Critical Anode Starting Voltage, minimum.	100	Volts
Anode Current (See Curve K-69087-72A858 for Details)		
Peak \dagger.	35,000	Amperes
Average.	. 0.1	Amperes
Maximum Averaging Time. 1	Cycle
Fault.	.35,000	Amperes
Maximum Duration.	. 0.002	Seconds
Rate of Rise of Current		
Maximum.	. 5600	Amperes per Micro. second
Minimum.	. 1400	Amperes per Microsecond
Frequency of Current Conduction Periods, maximum 1	Per Minute
Ionization Time......	. 0.5	Microseconds

DC Short-Circuiting-Switch Service
Peak Anode Voltage

Forward	. 10,000	Volts
Inverse	. 10,000	Volts
Critical Anode Starting Voltage, minimum	. 100	Volts
Anode Current (See Curve K-69087-72A858 for Details)		
Peak \ddagger	35,000	Amperes
Average	. 0.25	Amperes
Maximum Averaging Time	. 1	Cycle
Fault.	35,000	Amperes
Maximum Duration.	. 0.002	Seconds
Rate of Rise of Current		
Maximum.	. 5600	Amperes per Microsecond
Minimum.	. . 1400	Amperes per Microsecond
Frequency of Current Conduction Periods, maximum	. 1	Per Minute
Ionization Time. 0.5	Microseconds

Ignitor Ratings Minimum Maximum
Separate Excitation
Ignitor Voltage
Forward Open Circuit. $1500 \quad 3000$ Volts
Inverse, maximum .
5 Volts
Ignitor Current Short Circuit. 200
250 Amperes
Length of Firing Pulse, sine wave. 5
10 Microseconds
Anode Firing
Ignitor Voltage
Forward, maximum . 3000 Volts
Inverse, maximum
Volts
Peak Ignitor Current. 200 250 Amperes
*To prevent mercury condensation, the anode-header temperature should be higher than the cathode temperature at all times. Mercury must be kept away from the anode and anode seals. Before tube operation, the anode seals must be warmed, with respect to the cathode, long enough to vaporize all mercury from the seal area.
\dagger Dampened oscillations are permissible provided the dampening coefficient is less than the value shown on the currentwaveform curve. The peak of the oscillation must not exceed 48,000 amperes
\ddagger Tube must be operated within the area specified on the current-waveform curve.

MAXIMUM PERMISSIBLE CURRENT

COAXIAL MOUNTING

GENERAL (G) ELECTRIC

POWER TUBE DEPARTMENT
Schenectady 5, N. Y.

TUBE DEPARTMENT
 Schenectady 5, N. Y.

PRELIMINARY TECHNICAL INFORMATION

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

This technical information is proprietary and is furnished only as a service to customers.

IGNITRON

ZG-7219
The ZG-7219 is an ignitron for capacitor-discharge service. Features of the tube include a potential-dividing grid to improve reliability for high voltage hold-off.

GENERAL

Electrical

Cathode Excitation	Cyclic
Cathode Spot Starting	Ignitor
Number of Electrodes	
Main Anode	1
Main Cathode	1
Ignitors	1

Mechanical
Envelope . Encapsulated Glass and Fernico
Mounting Position . Axis Vertical, Anode Terminal Up
Net Weight . 14 Pounds
Thermal
Type of Cooling . Forced Air or Water
Cathode Temperature, Maximum . 35 C
Insulating Compound Temperature, Maximum . 70 C*
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Capacitor-Discharge Service, Intermittent Pulse Duty
Peak Anode Voltage . 50,000 Volts
Peak Anode Current
1/2 cycle of 75 usec . 30,000 Amperes
$1 / 2$ cycle of 5μ sec . 60,000 Amperes
Discharge Rate . 2 Per Minute
DC Short-Circuiting-Switch (Crowbar) Service
Peak Anode Voltage
50,000 Volts
Peak Anode Current
15,000 Amperes

IGNITOR CIRCUIT RATINGS

	Minimum	Maximum
Ignitor Voltage		
Forward Open-Circuit (Ignitor +)	1500	3000 Volts
Inverse (Ignitor -)	-	5 Volts
Ignitor Short-Circuit Current	100	250 Amperes
Length of Firing Pulse, sine wave	5	Microseconds

* The temperature of the anode end of the tube must be kept higher than that of the cathode end to prevent mercury condensation on the anode and anode seal, which in turn can cause failures to hold off voltage. Before operation the top of the tube must be heated while the bottom kept cool to vaporize all mercury which may have been condensed or splashed into the top during handling.

CAPACITOR-DISCHARGE SERVICE DC SHORT-CIRCUITING-SWITCH SERVICE

The GL-7703 is a sealed, stainless-steeljacketed ignitron for use as a switch in capacitor-discharge circuits operating up to 20,000 volts. In this service the tube
will carry peak currents up to 100,000 amperes. The anode seal is enclosed in an insulating compound to prevent external voltage flashover.

Mechanical

Envelope-Stainless Steel
Mounting Position-Axis Vertical, Anode Terminal Up Net Weight

2 Pounds

Thermal

Type of Cooling-Air or Liquid, by clamp around lower portion of tube
Clamp Temperature. 10 to 30 C
Cathode Temperature, maximum........ 35 C
Anode Insulating-Compound Temperature*, maximum............................... 70 C

Capacitor-Discharge Service, Intermittent Pulse Duty, Sinusoidal Current \dagger

Peak Anode Voltage \ddagger
Forward. 20,000 Volts

Inverse . 20,000 Volts
Critical Anode Starting Voltage, minimum 100 Volts

Anode Current ${ }^{\|}$
Peak, for $1 / 2$ cycle of 120 microseconds 60,000 Amperes
Peak, for $1 / 2$ cycle of 20 microseconds 100,000 Amperes
Maximum Discharge Rate. 2 Per Minute
Rate of Rise of Current§, tube inductance approx.
0.04 Microhenrys

Ionization Time
0.5 Microseconds

DC Short-Circuiting-Switch Service						
Peak Anode Voltage \ddagger Forward 20,000 Volts			Anode Current			
			Peak. 35,000			Amperes
Inverse . 20 ,	0,000	Volts	Average		0.25	Amperes
Critical Anode Starting Voltage, minimum	100	Volts	Maximum Averaging Time			Cycle
			Rate of Rise of Current $\%$, tube inductanceapprox......................0.04			Microhenrys
			Ionization Time.	. .	0.5	Microseconds
Ignitor Ratings						
Minimum	Maximum			Minimum	Maximum	
Separate Excitation			Anode Firing			
Ignitor Voltage			Ignitor Voltage			
Forward Open Circuit........ 1500	3000	Volts	Forward, maximum	.	3000	Volts
Inverse, maximum.......... -	5	Volts	Inverse, maximum.	. -	5	Volts
Ignitor Short-Circuit Current. ... 200	250	Amperes	Peak Ignitor Current.	. 200	250	Amperes
Length of Firing Pulse, sine wave. 5	10	Microsec				

[^1]

SUGGESTED METHOD FOR PROVIDING MOUNTING FOR COAXIAL CONNECTION

GENERAL ELECTRIC

POWER TUBE DEPARTMENT
Schenectady 5, N. Y.

The GL-37207 is a stainless-steel-water-jacketed ignitron for use as a switch in capacitor-discharge circuits, or for DC short-circuiting-switch (crowbar) protective service.

GENERAL

Electrical
Cathode Excitation Cyclic
Cathode Spot Starting Ignitor
Number of Electrodes
Main Anode 1
Main Cathode 1
Ignitors 3
Mechanical
Envelope Stainless Steel
Mounting Position Axis Vertical-Anode Terminal Up
20 Pounds
Length (excluding flexible anode cable) 18-3/4 Inches
Diameter (excluding water nipples) 5-1/2 Inches
Thermal
Type of Cooling - Water
Inlet Water Temperature, minimum ... 6 C
Inlet Water Temperature, maximum 30 C
Nominal Water Flow 1.5 Gallons Per Minute
MAXIMUM RATINGS (Not simultaneous conditions)

Peak Anode Voltage	25,000 Volts
Peak Anode Current	300,000 Amperes
Length of Conduction	10 Milliseconds
Repetition Rate	500 Per Minute
Maximum Coulombs per Discharge	200 Amp -Sec.
Maximum Coulombs per Minute	200 Amp -Sec/Min.
Maximum Voltage Reversal	10 Percent

IGNITOR-CIRCUIT RATINGS

Ignitor Voltage	Minimum	Maximum
Forward Open-Circuit (ignitor +)	1500	3000 Volts
Inverse (ignitor -)		5 Volts
Ignitor Short-Circuit Current	100	250 Amperes
Length of Firing Pulse, $1 / 2$ sine wa	5	10 Microseconds

Page 2

12-69

NOTE: ONE IGNITOR USED AT A TIME

The GL-37248 ignitron is designed primarily for DC short-circuiting-switch (crowbar) protective service. Features of the tube include a holding anode which provides a means for keeping the tube ionized should voltage reversals occur during the discharge.

GENERAL

Electrical

Cathode Excitation	Cyclic
Cathode Spot Starting.	Ignitor
Number of Electrodes	
Main Anode	1
Auxiliary Anode	1
Ignitors	1
Main Cathode	1
Approximate Inductance	30 Nanohenrys

Mechanical

Envelope . Stainless Steel
Mounting Position . Axis Vertical-Anode Terminal Up
Net Weight . 2 Pounds
Diameter . 2-1/8 Inches
Height . 7-1/2 Inches

Thermal
 Type of Cooling - Clamp around lower half of cylinder which also serves as cathode connection*

Clamp Temperature . 10-30 C
Cathode Temperature, Max. 35 C
Anode Insulating-Compound Temperature and anode-Lead
Temperature, maximum . 70 C*

MAXIMUM RATINGS

Peak Anode Voltage	50,000 Volts
Peak Anode Current	10,000 Amperes
Length of Conduction	20 Milliseconds
Repetition Rate	6 Per Hour*
Voltage Reversal	50 Percent

IGNITOR-CIRCUIT RATINGS

Ignitor Voltage	Minimum	Maximum
Forward Open Circuit	1500	3000 Volts
(ignitor +)		
Inverse (ignitor -)	-	5 Volts
Ignitor Short-Circuit Current	100	250 Amperes
Length of Firing Pulse, sine wave	5	10 Microseconds

HOLDING-ANODE CIRCUIT RATINGS \dagger

Holding-Anode Voltage (Positive d-c)	80	150 Volts
Holding-Anode Current	5	10 Amperes

* The temperature of the anode end of the tube must be kept higher than that of the cathode end to prevent mercury condensation on the anode and anode seal. Before operation the top of the tube must be heated sufficiently to vaporize all mercury from the anode area. The repetition rate may be increased by a factor of ten by water cooling the clamparound the lower half of the cylinder.
\dagger It is anticipated that a holding-anode rectifier will be provided to supply the required power and that its supply will drop to zero at the end of the crowbar operation so the ignitron will regain control. An alternate method is to discharge a large capacitor into the holding anode with a time constant longer than the crowbar time.

PRODUCT INFORMATION-

TYPES MANUAL

HYDROGEN THYRATRONS

Selection Chart

Peak Power in Megawatts	Anode Dissipation Factor	Peak Forward Anode Voltage in Volts	Current in Amperes		Type
			Average	Peak	
33.0	30×10^{9}	33,000	4.0	2000	GL-7390
Integral Temperature Indicator Design - GL-7390-A					
48.0	55×10^{9}	40,000	4.0	2400	GL-7890
40.0	55×10^{9}	33,000	7.0	4000	GL-8326
90.0	55×10^{9}	50,000	7.0	4000	ZT-7004

a

GENERAL (86) ELECTRIC
 TUBE DEPARTMENT
 Schenectady 5, N. Y.

OBJECTIVE
 TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

DEVELOPMENTAL
TYPE
ZT-7004
OTI-85A
Page 1
3-64

This technical information is proprietary and is furnished only as a service to customers.

HYDROGEN THYRA TRON
50 Kilovolts Peak
90 Megawatts at 55 Kilowatts
Anode Dissipation Factor -55×10^{9}
Ceramic Envelope
External Electrodes
Gradient Grid

The ZT-7004 is a hydrogen thyratron for radar modulating and other pulsing applications. It will switch a peak power of 90 megawatts at an average power of 55 kilowatts. At other peak levels average power in excess of 150 kilowatts is possible.

Mechanically the tube features a heavy-duty ceramic envelope, external electrodes to improve heat dissipation, and a design that permits cooling by forced air. In addition the ZT-7004 incorporates a gradient grid. This grid permits much more effective hold-off of the $d-c$ forward voltage near maximum voltage ratings than is possible with single-grid design.

The high peak power rating of this tube anditsmechanical design features assure reliable service under the stringent operating conditions encountered in high-power pulse equipment.

ELECTRICAL

MECHANICAL

Mounting Position - Vertical with Base Down
Altitude, maximum . 10,000
Net Weight, approximate .
Feet

THERMAL

Ambient Temperature Limits . -55 to +75 C
Type of Cooling - Forced Air
Air Flow Rate, at 40 C Inlet Temperature 160
Velocity, Minimum . 2000
Cubic Feet per Minute At higher inlet temperatures increased air flow may be required
The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please consult your local Tube Department Regional Sales Office, or current Preliminary Technical Information for the same catalog number.
ET-J37
$8-62$

MAXIMUM RATINGS - ABSOLUTE VALUES
 Maximum Peak Anode Voltage

Inverse	50,000	Volts
Forward, minimum supply voltage $=3500$ volts d-c	50,000	Volts
Maximum Cathode Current		
Peak	4000	Amperes
Average	7.0	Amperes
Maximum Averaging Time	1	Cycle
RMS \#	120	Amperes
node Dissipation Factor **.	55×10^{9}	
Maximum Negative Control-Grid		
Voltage before Conduction	650	Volts
Maximum Rate of Rise of Anode Current	10,000	Ampere

* The time interval between the point on the rising portion of the grid pulse which is 26 percent of the peak unloaded pulse amplitude and the start of the anode current pulse.
\dagger Driver pulse measured at tube socket with thyratron control grid disconnected; amplitude $=1300$ volts minimum, 2500 volts maximum, above 0 ; time of rise $=0.35$ microsecond maximum measured from 26 percent to 70 percent of peak value; grid pulse duration $=2$ microseconds minimum, measured between 70 percent of peak on rising side to 70 percent of peak on falling side; impedance of drive circuit $=10$ to 25 ohms .
\# The RMS current of hydrogen thyratrons is the square root of the product of the average and peak currents.
** The product of the peak forward anode voltage, pulse repetition rate, and peak anode current. Highest value tested not upper limit.

OPERATING NOTES

Thermal

The optimum reservoir voltage for operation at maximum tube voltage, maximum peak and average tube currents, and at a repetition corresponding to the rated anode dissipation factor is inscribed on the base of the tube and must be held within ± 5 percent. Applications involving operation at other conditions will necessitate a redetermination of the optimum reservoir range.

Electrical

For operation above 36 kilovolts, a compensating capacitor of approximately 60 uuf rated to 50 kilovolts should be connected between the gradient and control grids to equalize voltage distribution between the control grid and the anode. With this arrangement, the procedure for starting at low anode voltage is:

1. Preset anode power supply to a voltage exceeding 3500 volts
2. Apply trigger signal to control grid
3. Apply anode voltage instantaneously

An alternate arrangement is a resistance of approximately 20 megohms total connected from the anode to the control grid with its midpoint connected to the gradient grid. With this arrangement, starting at low anode voltage can be accomplished by applying any anode voltage and gradually increasing it while triggering the control grid.

X-RAY WARNING NOTICE

If the ZT-7004 is operated at anode voltages in excess of 16 kilovolts, X-ray radiation shielding may be necessary to protect the user against possible danger of per sonal injury from prolonged exposure at close range. For further information consult the following references or other standard texts on the subject:

X-RAY PROTECTION DESIGN, Handbook No. 50. National Bureau of Standards, Washington, D. C.
X-RAY PROTECTION, Handbook No. 60. National Bureau of Standards, Wa shington, D. C.
The above references are available from the Superintendent of Documents, Government Printing Office, Washington $25, \mathrm{D} . \mathrm{C}$.
SAFETY CODE FOR THE INDUSTRIAL USE OF X-RAYS, Bulletin No. Z54-1. American Standards Association, New York 17, N. Y.
Schneider, S. and Reich, B., 'X-Ray Emission from High-Voltage Hydrogen Thyratrons,' PROC. IRE, Vol. 43, No. 6, June, 1955.

HEATER-RESERVOIR LEAD, FLANGE MOUNTING HOLE, GRID TERMINAL, AND GRADIENT GRID TERMINAL ALIGNED WITHIN 20°

```
                                    BOTTOM VIEW
```

A-69087-72B97

TUBE DEPARTMENT

GENERAL (9\%) ELECTRIC

Owensboro, Kentucky

The GL-7390 is a hydrogen thyratron for radar modulating and other pulsing applications. It will carry high peak currents and withstands very high voltages.

Mechanically the tube features a heavy-duty ceramic envelope and exter-
nal electrodes to improve heat dissipation.
The high-peak-power ratings of this tube and its mechanical design features assure reliable service under the stringent operating conditions encountered in highpower pulse equipment.

Electrical

Electrical				
	Minimum	Bogey		ximum
Cathode-Indirectly Heated Cathode is Tied to Heater Midpoint				
Heater Voltage.	6.0	6.3	6.6	Volts
Heater Current,				
$\mathrm{Ef}=6.3$ volts.	27	32	35	Amperes
Reservoir				
Heater Voltage*.	3.5	4.5	5.5	Volts
Heater Current				
$\mathrm{E}_{\text {res }}=4.5$ volts.	8	9	10	Amperes
$\mathrm{E}_{\text {res }}=5.5$ volts.	-	-	12	Amperes
Cathode and Reservoir				
Heating Time**....	15	-	-	Minutes
Direct Interelectrode Capacitances				
Anode to Grid.........	.. -	40	-	$\mu \mu \mathrm{f}$
Grid to Cathode	-	30		
Anode Current Time Jitter - $\quad 0.01$ Microseconds				
Ionization Time \dagger, approximate Grid Drive \ddagger	. -	-	1	Microseconds

Mounting Position-Vertical, Base Down
Net Weight, approximate.
9 Pounds

Thermal

Type of Cooling-Convection ${ }^{\top}$
Ambient Temperature Limits...... -55 to +75 C

MAXIMUM RATINGS-ABSOLUTE VALUES

Maximum Peak Anode Voltage		
Inverse \mathbf{A}		
Forward, minimum supply voltage $=3500$ volts d-c.	33,000	Volts
Maximum Cathode Current		
Peak	2000	Amperes
Average	4.0	Amperes
Maximum Averaging Time	1	Cycle
RMS	75	Amperes

The above limits are interrelated and it does not necessarily follow that combinations of limits can be attained simultaneously. For further information consult the Tube Department, Schenectady 5, N. Y.

* The optimum reservoir voltage for operation at maximum tube voltage, maximum peak and average tube currents, and at a repetition corresponding to the rated operation factor is inscribed on the base of the tube and must be held within ± 2.5 percent. Applications involving operation at other conditions will necessitate a redetermination of the optimum reservoir voltage.
**Stand-by operation with heater and reservoir voltages is not recommended. Where necessary, the tube should be operated at full equipment conditions for a minimum of two hours during each twelve-hour period of stand-by.
\dagger The time interval between the point on the rising portion of the grid pulse which is 26 percent of the peak unloaded pulse amplitude, and the start of the anode-current pulse.
\ddagger Driver pulse measured at tube socket with thyratron-grid disconnected; amplitude $=1300$ volts minimum, 2500 volts maximum above 0 ; time of rise $=0.35$ microsecond maximum, measured from 26 percent to 70 percent of peak value; grid pulse duration $=2$ microseconds minimum, measured between 70 percent of peak on rising side to 70 percent of peak on falling side; impedance of drive circuit $=10$ to 25 ohms maximum.
- An air blast may be directed at the anode and upper portions of the tube envelope to extend performance under high-anode-dissipa-tion-factor operation, provided envelope and anode temperatures exceed 150 C .
©The minimum inverse anode voltage permissible is 5 percent of the peak forward voltage and the maximum is 5000 volts during the first 25 microseconds following the anode pulse exclusive of a spike of 0.05 microsecond maximum duration.
- Instantaneous starting is not recommended. However, in cases where it is necessary to apply anode voltage instantaneously, the maximum permissible forward starting voltage is 22,000 volts peak. The power-supply filter should be designed to limit the rate of application of this voltage to 550,000 volts per second.
The RMS current of hydrogen thyratrons is the square root of the product of the average and peak currents.
\checkmark Product of the peak forward anode voltage, pulse repetition rate, and peak anode current.

X-RAY WARNING NOTICE

If the GL-7390 is operated at anode voltages in excess of 16 kilovolts, X-ray radiation shielding may be necessary to protect the user against possible danger of personal injury from prolonged exposure at close range. For further information consult the following references or other standard texts on the subject:
(a) X-RAY PROTECTION DESIGN, Handbook No. 50. National Bureau of Standards, Washington, D. C.
(b) X-RAY PROTECTION, Handbook No. 60. National Bureau of Standards, Washington, D. C. The above references are available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.
(c) SAFETY CODE FOR THE INDUSTRIAL USE OF X-RAYS, Bulletin No. Z54-1. American Standards Association, New York 17, N. Y.
(d) Schneider, S. and Reich, B., "X-Ray Emission from High-Voltage Hydrogen Thyratrons," PROC. IRE, Vol. 43, No. 6, June, 1955.

TUBE DEPARTMENT
 GENERAL ELECTRIC
 Owensboro, Kentucky

GL-7390-A
 HYDROGEN THYRATRON

The GL-7390-A hydrogen thyratron is identical to the GL-7390 except for the addition of a temperature indicator at the top of the tube. An outline drawing showing this addition is on page 2 .

For technical data on Type GL-7390-A, please refer to the GL-7390 technical information sheet in the manual.

LEADS	LESIGNATION	"G"INCHES]	W INCHES	AINCHES	XINCHES	"T"INCHES
RESERVOIR	\# 10	.187T0.207	. 395 max .	. 200 max.	275 min .	O60max.
$\begin{aligned} & \text { HEATER - } \\ & \text { RESERVOIR } \end{aligned}$	$\frac{1}{4}$	260 то. 313	.605:1ax.	. 305 max.	. 380 min .	O60:axax.
heater	$\frac{1}{4}{ }^{\prime \prime}$. 260 то.313	. 605 MAX .	. 305 : $14 \times$.	. 380 mın.	. 060 tank.

NOTE: THERE SHALL 日E NO CBSTRUCTION WITAID THE DISTANGE OF " x " FROA THE center of the lug screvidole.

GENERAL (马6) ELECTRIC

POWER TUBE DEPARTMENT

Schenectady 5, N. Y.

GL-7890

HYDROGEN THYRATRON

40 KILOVOLTS PEAK 48 MEGAWATTS AT 44 KILOWATTS ANODE DISSIPATION FACTOR-55 $\times 10^{9}$

CERAMIC ENVELOPE EXTERNAL ELECTRODES GRADIENT GRID

The GL-7890 is a hydrogen thyratron for radar modulating and other pulsing applications. It is capable of switching a peak power of 48 megawatts at an average power of 44 kilowatts. At other peak levels average power in excess of 70 kilowatts is possible.

Mechanically the tube features a heavy-duty ceramic envelope, external electrodes to improve heat dissipation, and a design that permits cooling by
forced air, water, or other fluids. In addition the GL-7890 incorporates a gradient grid. This grid permits much more effective hold-off of the d-c forward voltage near maximum voltage ratings than is possible with single-grid design.

The high peak power rating of this tube and its mechanical design features assure reliable service under the stringent operating conditions encountered in highpower pulse equipment.

Electrical

Minimum

Cathode-Indirectly Heated
Cathode is Tied to Heater Midpoint
Heater Voltage. $6.0 \quad 6.3$

Heater Current, $\mathrm{Ef}=6.3$ volts...... 27
Heating Time. 15
Reservoir
Heater Voltage... . . . 2.5 3.5 5.5 Volts

Heater Current $\mathrm{E}_{\text {res }}=3.5$ volts 7.0
$\mathrm{E}_{\mathrm{res}}=5.5$ volts
$\overline{15}$
10.5

Heating Time...... 15
Direct Interelectrode Capacitances
Anode to Gradient Grid
90
Gradient Grid to Control Grid.

30
Control Grid to Cathode.
Anode Current Time Jitter
Anode Delay Time* - 0.00
Grid Drive \dagger

1 Microseconds
6.6 Volts

40 Amperes - Minutes
5.5 Volts
12.0 Amperes

16 Amperes

- Minutes
- $\mu \mu \mathrm{f}$
- $\mu \mu \mathrm{f}$
$-\mu \mu \mathrm{f}$
0.01 Microseconds

400 Volts

Mechanical

Mounting Position-Vertical with Base Down
Altitude, maximum 10,000 Feet
Net Weight, approximate 10 Pounds

Thermal

Ambient Temperature Limits -55 to +90 C
Type of Cooling -Forced Air or Fluid Water Cooling

Inlet Water Temperature, minimum . . . 5 C
Outlet Water Temperature, maximum . 95 C
Water Flow, minimum 1 Gallon per Minute
Water Temperature Rise, maximum..... 5
Pressure Drop at 1 Gallon Per Minute, approximate

Pound per Square Inch
Forced-Air Cooling
Inlet Temperature 40 C
Air Flow, minimum.

At higher inlet temperatures increased air flow may be required.
Natural Convection
The tube will operate satisfactorily without artificial cooling at anode dissipation factors up to 30×10^{9}.

MAXIMUM RATINGS-ABSOLUTE VALUES

Maximum Peak Anode Voltage			Anode Dissipation Factor§....... 55×10^{9}	
Inverse..................	40,000	Volts	Maximum Negative Control-Grid	
Forward, minimum supply			Voltage before Conduction 650	Volts
voltage $=3500$ volts d-c	40,000	Volts	Maximum Rate of Rise of	
Maximum Cathode Current			Anode Current. 10,000	Amperes per
Peak	2400	Amperes		Microsecond
Average	4.0	Amperes		
Maximum Averaging Time	. 11	Cycle		
RMS \ddagger.	. 75	Amperes		

* The time interval between the point on the rising portion of the grid pulse which is 26 per cent of the peak unloaded pulse amplitude and the start of the anode current pulse.
\dagger Driver pulse measured at tube socket with thyratron grid disconnected; amplitude $=1300$ volts minimum, 2500 volts maximum, above 0 ; time of rise $=0.35$ microsecond maximum, measured from 26 per cent to 70 per cent of peak value; grid pulse duration $=2$ microseconds minimum, measured between 70 per cent of peak on rising side to 70 per cent of peak on falling side; impedance of drive circuit $=10$ to 25 ohms .
\ddagger The RMS current of hydrogen thyratrons is the square root of the product of the average and peak currents.
§ The product of the peak forward anode voltage, pulse repetition rate, and peak anode current.

OPERATING NOTES

Thermal

If the anode is operated at a high potential above ground, the leakage current should be held to a low value by using water of low conductivity and a water path of sufficient length between anode and ground to assure a high-resistance leakage path. Otherwise excessive deterioration of target electrodes and anode cooling coil will occur. Replaceable flow-through target electrodes at anode potential are required in coolant lines approximately 6 inches from the anode cooling-coil terminals.

The product of water flow in gallons per minute and water temperature rise in degrees centigrade must not exceed 5. A higher value indicates that the reservoir voltage is set too low.

The optimum reservoir voltage for operation under artificial-cooling conditions at maximum tube voltage, maximum peak and average tube currents, and at a repetition corresponding to the rated anode dissipation factor is inscribed on the base of the tube and must be held within ± 5 per cent. Applications involving operation at other conditions will necessitate a redetermination of the optimum reservoir range.

Flow rates and pressure drops for fluids other than air or water will be provided on request.

Electrical

In operation, a compensating capacitor of approximately $60 \mu \mu \mathrm{f}$ rated to 40 kilovolts should be connected between gradient grid and control grid to equalize the voltage distribution between control grid and anode.

The minimum inverse anode voltage permissible is 5 per cent of the peak forward voltage, and the maximum is 30 per cent during the first 25 microseconds following the anode pulse, exclusive of a spike of 0.05 microsecond maximum duration.

If the forward anode voltage is applied instantaneously, it should be limited to a maximum of 30 kilovolts peak. For starting at low anode voltages the following procedure is recommended:

1. Preset anode power supply to a voltage exceeding 3500 volts.
2. Apply trigger signal to grid.
3. Apply anode voltage instantaneously.

X-RAY WARNING NOTICE

If the GL-7890 is operated at anode voltages in excess of 16 kilovolts, X-ray radiation shielding may be necessary to protect the user against possible danger of personal injury from prolonged exposure at close range. For further information consult the following references or other standard texts on the subject:
(a) X-RAY PROTECTION DESIGN, Handbook No. 50. National Bureau of Standards, Washington, D. C.
(b) X-RAY PROTECTION, Handbook No. 60. National Bureau of Standards, Washington, D. C. The above references are available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.
(c) SAFETY CODE FOR THE INDUSTRIAL USE OF X-RAYS, Bulletin No. Z54-1. American Standards Association, New York 17, N. Y.
(d) Schneider, S. and Reich, B., "X-Ray Emission from High-Voltage Hydrogen Thyratrons." PROC. IRE, Vol. 43, No. 6, June, 1955.

ANODE TERMINAL $1 / 4^{\prime \prime}-20 \times 1 / 2^{\prime \prime}$ LG RH
BRASS SCREW NI. PL. \& $1 / 4^{\prime \prime}$ BRASS WASHER 1/2" O.D. NI. PL.

GENERAL EGGECTRIC
 power tube department
 Schenectady 5, N. Y.

GL-8326

HYDROGEN THYRATRON

33 KILOVOLTS PEAK 100 KILOWATTS AVERAGE POWER

CERAMIC ENVELOPE EXTERNAL ELECTRODES

The GL-8326 is a hydrogen thyratron for radar-modulating and other pulsing applications. It is capable of switching an average power of 100 kilowatts.

Mechanically, the tube features a heavy-duty ceramic envelope and exter-
nal electrodes to improve heat dissipation.

The high peak power rating of this tube and its mechanical design features assure reliable service under the stringent operating conditions encountered in highpower pulse equipment.

* The time interval between the point on the rising portion of the grid pulse which is 26 percent of the peak unloaded pulse amplitude and the start of the anode current pulse.
\dagger Change in anode delay time relative to the delay time observed after five minutes of operation.
\ddagger Driver pulse measured at the tube socket with thyratron grid disconnected; amplitude $=1300$ volts minimum, 2500 volts maximum, above 0 ; time of rise $=0.35$ microsecond maximum, measured from 26 percent to 70 percent of peak value; grid pulse duration $=2$ microseconds minimum, measured between 70 percent of peak on rising side to 70 percent of peak on falling side; impedance of drive circuit $=10$ to 25 ohms.
If The RMS current of hydrogen thyratrons is the square root of the product of the average and peak currents.
§ Highest rating to which tube has been tested. This is not necessarily maximum tube capability.

OPERATING NOTES

Thermal

The optimum reservoir voltage for operation under artificial-cooling conditions at maximum tube voltage, maximum peak and average tube currents, and at a repetition corresponding to an anode dissipation factor of 50×10^{9} is inscribed on the base of the tube and must be held within ± 5 percent. Applications involving operation at other conditions may necessitate a redetermination of the optimum reservoir range.

Electrical

In switching and line-type modulator circuits the minimum inverse anode voltage permissible is 5 percent of the peak forward voltage, and the maximum is 5000 volts during the first 25 microseconds following the anode pulse, exclusive of a spike of 0.05 microsecond maximum duration.

If the forward anode voltage is applied instantaneously, it should be limited to a maximum of 22 kilovolts peak. The power-supply filter should be designed to limit the rate of application of this voltage to 550,000 volts per second.

X-RAY WARNING NOTICE

If the GL-8326 is operated at anode voltages in excess of 16 kilovolts, X-ray radiation shielding may be necessary to protect the user against possible danger of personal injury from prolonged exposure at close range. For further information consult the following references or other standard texts on the subject:
(a) X-RAY PROTECTION DESIGN, Handbook No. 50. National Bureau of Standards, Washington, D. C.
(b) X-RAY PROTECTION, Handbook No. 60. National Bureau of Standards, Washington, D. C. The above references are available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.
(c) SAFETY CODE FOR THE INDUSTRIAL USE OF X-RAYS, Bulletin No. Z54-1. American Standards Association, New York 17, N. Y.
(d) Schneider, S. and Reich, B., "X-Ray Emission from High-Voltage Hydrogen Thyratrons," PROC. IRE, Vol. 43, No. 6, June, 1955.

PRESSURE-TYPE LUGS WITH INSULATING SLEEVES

LEADS	$\begin{aligned} & \text { LUG } \\ & \text { DESIGNATION } \end{aligned}$	"G"Inches	"W"inches	A"INCH	S	HES
RESERVOIR	NO. 10	.187 TO. 207	. 395 MAX	. 200 MAX	. 275 MIN	. 060 MAX
HEATERRESERVOIR	1/4"	.260T0.313	. 605 MAX	. 305 MAX	. 380 MIN	. 060 MAX
HEATER	1/4"	.260 T0.313	. 605 MAX	. 305 MAX	.380MIN	. 060 MAX
NOTE: THERE SHALL BE NO OBSTRUCTION WITHIN THE DISTANCE OF "X"FROM THE CENTER OF THE LUG SCREWHOLE						

TUBE DEPARTMENT
 GENERAL ELECTRIC
 Schenectady 5, N. Y.

The Triggered Spark Gap

The gap currently available is a miniature switching device designed to deliver short pulses of high peak current with a minimum delay and jitter in applications involving high hold -off voltages and low leakage currents. Since minimum external energy is required to initiate the discharge, its use eliminates some components with consequent savings in space and cost reduction. Rugged ceramic-metal construction assures ability to withstand shock and vibration and permits reliable operation over temperatures from as low as -80 to as high as +300 F .

Applications include energy switching into low-impedance resistive or inductive loads for such missile functions as ignition, stage separation, thrust-reversal, and missile destruction.

The design presently available will pass 4000 amperes of unidirectional current, or 1500 amperes of ringing current, for pulses of approximately 10 microseconds. In the energy field it will switch 18 joules.

These ratings by no means cover all the possibilities inherent in a device of this nature. If interest warrants, similar gaps with different ratings will be made available.

OBJECTIVE TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

This technical information is proprietary and is furnished only as a service to customers
ZR-7512
TRIGGERED VACUUM GAP
45 Kilovolts
Fires at 300 Volts
50,000 Amperes
15,000 Joules
Ceramic Envelope

The ZR-7512 is a cold-cathode, vacuum, triggered spark gap capable of switching 15,000 joules at high voltage. Unique design combines the desirable features of vacuum and gas devices. These include extremely wide voltage range, ease of triggering, high voltage capability, rapid recovery time, stability of characteristics and reliability.

Although capable of withstanding a hold-off voltage of 55 kilovolts indefinitely, the ZR- 7512 will fire reliably at voltages as low as 300 volts. It will reliably switch non-repetitive high-current pulses with minimum delay and jitter in high-voltage circuits. Applications include "crowbars"* and switching stored electrical energy systems into low-impedance loads, or energy-storage capacitors into resistive or inductive loads.

ELECTRICAL

Heater Voltage . None Required
MECHANICAL
Mounting Position - Any
Net Weight . Approx. 4 lbs.

MAXIMUM RATINGS

 Information for the same catalog number.

OPERATING NOTES

When discharging or crowbaring energy-storage capacitors, repetitive firing for short periods may be necessary to maintain sufficiently low voltage to protect electrical equipment until circuit is cleared. Restoration of powersupply voltage to maintain service continuity without circuit-breaker action after a self-clearing fault is feasible in a typical circuit by blocking the trigger pulse. This is due to the rapid deionization time and excellent voltage recovery capability of the ZR-7512. For further information consult the Microwave Tube Business Section, Bldg. 269, Schenectady, New York, FRanklin 4-2211, Extension 5-2507.

GENERAL ELECTRIC
TUBE DEPARTMENT

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

DEVELOPMENTAL

ZR-7513

TRIGGERED VACUUM GAP

6 Kilovolts
4,000 Amperes
25 Joules

Fires at 150 Volts

Ceramic Envelope

The ZR-7513 is a cold-cathode, vacuum, triggered spark gap capable of switching 25 joules at high voltage. Unique design combines the desirable features of vacuum and gas devices. These include extremely wide voltage range, ease of triggering, high voltage capability, rapid recovery time, stability of characteristics and reliability.

Although capable of withstanding a hold-off voltage of 7.5 kilovolts indefinitely, the ZR- 7513 will fire reliably at voltages as low as 150 volts. It will reliably switch non-repetitive high-current pulses with minimum delay and jitter in high-voltage circuits. Applications include "crowbars"* and switching stored electrical energy systems into low-impedance loads, or energy-storage capacitors into resistive or inductive loads.

ELECTRICAL

\qquad
MECHANICAL
Mounting Position Any
Net Weight, approximate 0.5 Ounces
MAXIMUM RATINGS

Interelectrode Leakage Resistance	10,000	Megohms
Main Gap		
Operating Voltage	150 V to 6	Kilovolts
Hold-Off Voltage, Indefinite Time, minimum	7.5	Kilovolts
Peak Current		
Unidirectional Pulse, maximum	4,000	Amperes
Charge Conducted Through Gap per Oper	0.05	Coulombs
Discharge Rate, maximum	. 2	Per Minute
Delay Time \dagger, maximum	0.3	Microseconds
Jitter \dagger, maximum	0.1	Microseconds
Trigger Gap		
Typical Trigger Firing Circuit		
Peak Voltage \ddagger, typical	1.0	Kilovolts
Short-Circuit Current T, typical	12	Amperes
Pulse Width, typical	0.5	Microseconds

*In a "crowbar", application the gap acts as a short-circuiting switch to protect vulnerable high-voltage equipment by removing the direct-current supply voltage within tenths of a microsecond after initiation of the trigger-pulse. Unless the fault is self-clearing, the circuit must subsequently be opened in the usual manner.
** This rating refers to the charge originating from the capacitor bank. For further information concerning "follow-thru'" current from the power supply in a given application consult the General Electric Microwave Tube Business Section.
\dagger From trigger-gap breakdown to beginning of main-gap breakdown at 1 KV or more.
\ddagger The voltage rise time should be as fast as is consistent with the firing speed and accuracy required. The trigger will fire typically at about 500 volts on the leading edge of the julse but may fire at lower trigger voltages. Only pulse voltage shall be applied to the trigger.
TDelay time and jitter may be decreased and gap life increased by increasing trigger short-circuit current. Currents up to 25 amperes may be used.

[^2]
(TINNED)

TUBE DEPARTMENT
GENERAL ELECTRIC
Schenectady, N. Y. 12305

OBJECTIVE technical information

This technical information is proprietary and is furnished only as a service to customers ZR-7516

TRIGGERED VACUUM GAP

25 Kilovolts
40,000 Amperes 8,500 Joules

These ratings represent the design objective for thi. product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

The ZR-7516 is a cold-cathode, vacuum, triggered spark gap capable of switching 8,500 joules at high voltage. Unique design combines the desirable features of vacuum and gas devices. These include extremely wide voltage range, ease of triggering, high voltage capability, rapid recovery time, stability of characteristics and reliability.

Although capable of withstanding a hold-off voltage of 30 kilovolts indefinitely, the ZR- 7516 will fire reliably at voltages as low as 300 volts. It will reliably switch non-repetitive high-current pulses with minimum delay and jitter in high-voltage circuits. Applications include "crowbars"* and switching stored electrical energy systems into low-impedance loads, or energy-storage capacitors into resistive or inductive loads.

ELECTRICAL

Heater Voltage . None Required

MECHANICAL

Mounting Position - Any
Net Weight, approximate . 2 lbs.

MAXIMUM RATINGS

*In a "crowbar" application the gap acts as a short-circuiting switch to protect vulnerable high-voltage equipment by removing the direct-current supply voltage within tenths of a microsecond after initiation of the trigger-pulse. Unless the fault is self-clearing, the circuit must subsequently be opened in the usual manner.
** This rating refers to the charge originating from the capacitor bank. For further information concerning "followthru" current from the power supply in a given application consult the General Electric Microwave Tube Business Section.
\dagger From trigger-gap breakdown to main-gap breakdown.
\ddagger The voltage rise time should be as fast as is consistent with the firing speed and accuracy required. The trigger will fire typically at 1 to 3 kilovolts on the leading edge of the pulse but may fire at lower trigger voltages. Only pulse voltage shall be applied to the trigger.
\mathbb{T} Delay time and jitter may be decreased and gap life increased by increasing trigger short-circuit current. Currents up to 100 amperes may be used. The pulse width should preferably not exceed 2 microseconds.

[^3]
OPERATING NOTES

When discharging or crowbaring energy-storage capacitors, repetitive firing for short periods may be necessary to maintain sufficiently low voltage to protect electrical equipment until circuit is cleared. Restoration of powersupply voltage to maintain service continuity without circuit-breaker action after a self-clearing fault is feasible in a typical circuit by blocking the trigger pulse. This is due to the rapid deionization time and excellent voltage recovery capability of the ZR-7516. For further information consult the Microwave Tube Business Section, Bldg. 269, Schenectady, New York, FRanklin 4-2211, Extension 5-2507.

OBJECTIVE
 TECHNICAL INFORMATION

TUBES

This technical information is proprietary and is furnished only as a service to customers

ZR-7517

TRIGGERED VACUUM GAP

15 Kilovolts
20,000 Amperes
3,000 Joules

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

The ZR-7517 is a cold-cathode, vacuum, triggered spark gap capable of switching 3,000 joules at high voltage. Unique design combines the desirable features of vacuum and gas devices. These include extremely wide voltage range, ease of triggering, high voltage capability, rapid recovery time, stability of characteristics and reliability.

Although capable of withstanding a hold-off voltage of 20 kilovolts indefinitely, the ZR- 7517 will fire reliably at voltages as low as 300 volts. It will reliably switch non-repetitive high-current pulses with minimum delay and jitter in high-voltage circuits. Applications include "crowbars"* and switching stored electrical energy systems into low-impedance loads, or energy-storage capacitors into resistive or inductive loads.

ELECTRICAL

Heater Voltage . None Required

MECHANICAL
 MECHANICAL

Mounting Position - Any
Net Weight, approximate . 1 lb.

Fires at 300 Volts Ceramic Envelope
\qquadNet Weight, approximate . 1 lb.

MAXIMUM RATINGS

MAXIMUM RATINGS
Main Gap
Operating Voltage ,000 0.4
Per Minute
Microseconds
Typical Trigger Firing Circuit Peak Voltage \ddagger, typical Kilovolts*In a "crowbar"' application the gap acts as a short-circuiting switch to protect vulnerable high-voltage equipmentby removing the direct-current supply voltage within tenths of a microsecond after initiation of the trigger-pulse.Unless the fault is self-clearing, the circuit must subsequently be opened in the usual manner.
** This rating refers to the charge originating from the capacitor bank. For further information concerning "followthru' current from the power supply in a given application consult the General Electric Microwave Tube Business ection.
\ddagger The voltage rise time should be as fast as is consistent with the firing speed and accuracy required. The trigger will fire typically at 1 to 3 kilovolts on the leading edge of the pulse but may fire at lower trigger voltages. Only pulse voltage shall be applied to the trigger.
rents up to 50 amperes may be used. The pulse width should preferably not exceed 2 microseconds.

OPERATING NOTES

When discharging or crowbaring energy-storage capacitors, repetitive firing for short periods may be necessary to maintain sufficiently low voltage to protect electrical equipment until circuit is cleared. Restoration of powersupply voltage to maintain service continuity without circuit-breaker action after a self-clearing fault is feasible in a typical circuit by blocking the trigger pulse. This is due to the rapid deionization time and excellent voltagerecovery capability of the ZR-7517. For further information consult the Microwave Tube Business Section, Bldg. 269, Schenectady, New York, FRanklin 4-2211, Extension 5-2507.

GL-7964

TRIGGERED SPARK GAP

MINIATURE SWITCHING DEVICE

3 KILOVOLTS

18 JOULES

The GL-7964 is a small, cold cathode, gaseous, triggered spark gap capable of switching 18 joules of energy at high voltages. Since the device does not require external energy to initiate the discharge its use permits both equipment cost reduction and savings in space through component elimination.

Mechanical features include rugged metal-ceramic construction, ability to withstand high shock and vibration conditions, and reliable operation over tem-
peratures ranging from as low as -80 to as high as +300 F .

The GL-7964 is especially designed to deliver short rapid pulses of current with minimum delay and jitter in applications where high hold-off voltages and low leakage currents exist.

Applications include switching single stored electrical energy systems into low impedance loads, or energy storage capacitors into resistive or inductive loads.

MAXIMUM RATINGS

Trigger Gap
Hold-off Voltage, minimum-Terminal No. 2 Positive, Terminal No. 3 Negative
1.0 Minute................................ 1.2 Kilovolts

Static Breakdown Voltage
Minimum 1.5 Kilovolts
Maximum2.8 Kilovolts
Trigger Firing Voltage§, minimum3.0 Kilovolts
Trigger Firing Current......................5.5 Amperes
Duration of Trigger Firing Pulse-Sinusoidal Pulse, 5.0 Kilovolts Peak Voltage, 18 Microseconds to Peak

* 1500 amperes for the first half cycle of a $10-12 \mathrm{kc}$ ringing frequency. Circuit should be sufficiently damped to pass only 5 to 6 cycles.
\dagger From trigger-gap breakdown to main-gap breakdown.
\ddagger Main gap jitter is defined as the variation in main-gap delay time.
§ Breakdown to occur on leading edge of pulse having a rise time of 8 microseconds where rise time is defined as the interval of time between 10 percent and 90 percent of the trigger voltage pulse.

NOTE I - CAN BE ANY VALUE FROM $0.1 \mu \mathrm{f}$ TO $10.0 \mu \mathrm{~F}$

GL-7964-1
TRIGGERED SPARK GAP
Except for the position of the main dome and trigger dome terminals, this device is identical to the GL-7964. These terminals on the 7964-1 are perpendicular to the body of the gap instead of parallel.

VIEW "A"

* apply trigger voltage between these TWO TERMINALS.

TUBE DEPARTMENT GENERAL ELECTRIC
 Owensboro, Kentucky

HIGH-POWER KLYSTRONS

General Electric has been manufacturing high-power multiple-resonator amplifier klystrons for nearly two decades and as a result has developed a wide and versatile design and manufacturing capability. Check these features which characterize General Electric klystrons.

- Entirely metal-and-ceramic construction. General Electric pionecred in the design and application of highpower ceramic RF output windows.
- Tunable types are designed such that each cavity tunes at the same rate; thus, multiple-cavity tuners ganged together will provide full specification performance across tuning ranges of up to 15 percent without trimtuning individual resonators.
- Electron gun designs with non-intercepting shadow grids are now available to simplify modulator requirements, particularly where sophisticated pulse trains or very high pulse repetition rates are needed. These grids are capable of pulsing beam current with a grid voltage swing on the order of 5 percent of beam voltage.
- Ion pumps are an integral part of each klystron. This device provides continuous pumping action thus assuring the maintenance of excellent vacuum conditions conducive to long life and reliability. The current drawn by the pump, on the order of a few microamperes, is a direct indicator of the amount of gas present in the tube and can be a valuable aid in detecting adverse operating or environmental conditions and in forecasting end of life.
- Conservative design is the key word for long life and reliability. With respect to emission densities, electron beam densities, collector-dissipation capability, voltage gradients and $R F$ window designs, we strive for reserve capability. These factors of safety contribute to stability and to invulnerability to adverse operating parameter adjustments or fluctuations.
- Our broadband tubes exhibit outstanding performance as described below and are completely tunerless. The excellent broadband response is rigidly and permanently determined in the process of manufacture.
- Modular design facilitates the practical and economical repair of General Electric klystrons. Any major subassembly can be readily replaced. The need for costly new replacement tubes is virtually eliminated.

Types being produced are pulsed-amplifier klystrons for radar transmitters. Ratings on these types are presently U.S. classified and can be made available on request with the establishment of appropriate 'need to know.'

Tunable multi-megawatt products in both L and S frequency bands are available. Tunerless broadband klystrons in UHF, L and S Bands have been successfully produced to provide responses that are flat within 1 decibel over bandwidths ranging up to 8 percent under constant RF drive conditions. Minimum efficiencies are typically 35 percent.

Techniques for achieving broadband performance have been highly refined and computer-optimized. We are in a position to apply these techniques in deriving new types for bandwidths up to 10 percent, depending upon power level and frequency, with interest in the range from UHF to $X-B$ and.

In our research and development activities, too, various techniques are continually under investigation for improving klystron efficiency, with space and airborne applications in mind. One experimental computer-optimized klystron, for example, has demonstrated an efficiency in excess of 60 percent without collector voltage depression.

Additional information on how these techniques can be applied to your klystron needs may be obtained by contacting your local GE Electronic Components Sales Office.

GENERAL (3) ELECTRIC
 POWER TUBE DEPARTMENT Schenectady 5, N. Y.

OBJECTIVE TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Power Tube Department Regional Sales Office.

This technical information is proprietary and is furnished only as a service to customers.

ZM-6802
KLYSTRON
1250 - 1350 Megacycles Pulsed

The ZM-6802 is a broad-band pulsed amplifier designed to deliver 10 megawatts of peak power over a frequency range of 1250 to 1350 megacycles at a maximum radio-frequency duty cycle of 0.0015 . This tube features notably uniform performance over the frequency range. The variation in power output over the entire 100-megacycle bandwidth is 1 decibel or less with a constant amount of radio-frequency driving power.

GENERAL				
Electrical	Minimum	Bogey	Maximu	
Frequency	1250	--	1350	Megacycles
Heater				
Voltage	14.5	15.5	16.5	Volts
Current	--	16.0	--	Amperes
Surge Current	--	--	24	Amperes
Cathode Preheat Time	10	--	--	Minutes
Focusing				
Field.	--	1000	--	Gausses
Field Power	--	4.5	--	Kilowatts
Ion-Pump Voltage *	--	2.5	--	Kilovolts
Mechanical				
Mounting Position - Vertical, Cathode Down				
Cooling - Water or 60\% Ethylene Glycol and Water \dagger				
Flow Rate, minimum . 30 Gallons per Minute				
Pressure Drop, approximate			50	Pounds per Square Inch
Dimensions				
Overall Length, maximum . 72.675 Inches				
Weight, approximate. .			. 150	Pounds
Connections				
RF Input - To Fit Coaxial Connector UG-21B/U				
RF Output - To Fit Waveguide Flange UG-417A/U				
Cathode - For Plug-in Installation(See Outline)				
Coolant - To Fit Hanson No. 6S32 Socket or Equivalent				
Waveguide Pressure.		. .	. 15	Pounds per Square Inch
X-Ray Shielding \ddagger				
Cathode Insulation - The Cathode Insulator Must be I Electric No. 10C Insulating Oil	mersed in Equivalen	General		

ACCESSORIES

Collector Magnet Coil
Electrical
Voltage
Current

Typical
Operation Maximum
145
8
-- Volts
10 Amperes

Mechanical
Connection - Amphenol, MS-3102A-16-9P or Equivalent
Coolant Interconnections
Collector - Hanson No. 6S32 or Equivalent
Body - Hanson No. 2S16 or Equivalent
Weight, approximate.
90 Pounds

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

PULSED RADIO-FREQUENCY AMPLIFIER

Maximum Ratings, Absolute Values
Beam
Pulse Voltage 205
Pulse Current 170
Pulse Length 7
Duty Cycle 0.0017
Radio-Frequency Duty Cycle 0.0016
Power Input
Peak 35
Average 60
Body Power Dissipation $\mathbb{\pi}$ 7
Kilovolts
Amperes
Microseconds
MegawattsKilowattsKilowatts
Typical Operation
Beam
Pulse Voltage 190
Peak Current 158
Average Current 270
Peak Power Input 30
Pulse Repetition Rate 244
Radio-Frequency Output Pulse Length 6.2
Radio-Frequency Output Duty Cycle 0.0015
Radio-Frequency Output Power
Peak10
Average 15
Radio-Frequency Peak Driving Power 40
Power Gain §
Efficiency. 33
Bandwidth, 1-decibel point for constant drive 100
KilovoltsAmperesMilliamperes
Megawatts
Pulses per SecondMicroseconds
MegawattsKilowattsKilowatt
Decibels
Percent
Megacycles

* This tube features an integral ion pump capable of absorbing gas which may evolve from or diffuse through tube materials. Operation of the pump requires the indicated d-c voltage and a magnetic field. When installed in the socket it utilizes the magnetic field provided to focus the electron beam.
\dagger Liquid cooling of the collector and body of the tube and of the collector magnet coil is required. These coolant circuits are connected in parallel when the collector magnet coil is properly installed on the tube. The flow specified is for maximum ratings and includes all coolant circuits. A recirculating coolant system constructed of non-corrosive material should be used in conjunction with distilled or deionized water and pure ethylene glycol. Rust inhibiting additives must not be used.
\ddagger The ZM-6802 is a source of dangerous X-ray radiation whenever beam voltage is applied. Adequate shielding must be provided for the protection of personnel. In designing a shield for protection to a specific level and for a specific application the following sources should be consulted:

> X-RAY PROTECTION DESIGN, Handbook No. 50, National Bureau of Standards, Washington, D. C.
> X-RAY PROTECTION, Handbook No. 60, National Bureau of Standards, Washington, D. C.
> The above references are available from the Superintendent of Documents, Government Printing
> Office, Washington 25, D. C.
> SAFETY CODE FOR THE INDUSTRIAL USE OF X-RAYS, Bulletin No. Z54-1. American
> Standards Association, New York 17, N. Y.

II A thermopile unit mounted on the collector coil measures the rise in temperature in the coolant circuit which absorbs heat produced by interception of electron energy by the klystron tunnels. This temperature rise converted to kilowatts provides a means of detecting and protecting against excessive body dissipation which can damage or destroy the tube.
§ The indicated power gain is computed from the ratio of peak radio-frequency power output to peak radio-frequency power input. The typical-operation parameters are based on the use of a drive pulse which is somewhat longer than the beam-voltage pulse in order to convert the maximum amount of d-c beam power into radiofrequency power.

MILITARY EQUIPMENT TYPES MANUAL VOLTAGE-TUNABLE MAGNETRONS

LOW-POWER VOLTAGE-TUNABLE MAGNETRONS (up to 1 watt)

TUBE TYPE	FREQUENCY RANGE (MC)	MINIMUM POWER OUTPUT (WATTS)	NOISE (DB/MC)		TUNING SENSIT. MC/V	$\begin{aligned} & \text { SIZE } \\ & \text { CU. IN. } \end{aligned}$	WGT. LBS.	MAXIMUM VOLTAGES (VOLTS)			MAXIMUM CURRENTS		
				$\underset{\text { DB }}{\text { VARIATION }}$				ANODE	INJ.	FIL.	$\begin{gathered} \text { MA } \\ \text { ANODE } \end{gathered}$	$\begin{aligned} & \text { MA } \\ & \text { INJ. } \end{aligned}$	AIL.
ZM-6085	885-1485	$0.036{ }^{\text {d }}$	$-86^{\text {f }}$	5	1.00	130	4.00	1625	250	2.6	20	1.0	2.10
ZM-6051	1000-2000 ${ }^{\text {c }}$	0.100	-759	6j	1.50	64	3.00	2000	300	2.3	10	1.0	2.50
ZM-6238 ${ }^{\circ}$	1000-2000	1.000	-	3j	1.15	24	1.50	2000	300	3.0	25	1.0	2.1
ZM-6086	1420-2607	0.036 ${ }^{\text {d }}$	$-86{ }^{\text {f }}$	5	1.66	130	4.00	1740	250	2.6	20	1.0	2.1
ZM-6222 ${ }^{\circ}$	2000-4000	1.000	-	4)	2.30	24	1.50	2000	400	3.0	25	1.0	2.1
ZM-6087	2507-4310	0.036e	-864	$5{ }^{\text {i }}$	2.88	130	4.00	1700	250	2.6	20	1.0	2.10
ZM-6205 ${ }^{\text {b }}$	2750-3090	1.000	-95 ${ }^{\text {h }}$	1.2	3.35	60	2.75	1000	205	3.0	12	0.1	2.05

(a) These VTM's are magnetically and RFI shielded. Integral isolator optional.
(b) All characteristics for this VTM have been obtained with a $3: 1$ mismatch. This tube has integral isolator.
(c) Frequency range can be extended for this tube on special order to $1000-2500 \mathrm{mc}$.
(d) This power level is measured at the output of a 10 db integral attenuator; this VTM is available with 0.300 watts.
(e) This power level is measured at the output of a 13 db integral attenuator; this VTM is available with 0.55 watts.
(f) These noise levels are measured with respect to the carrier level over a noise band of $59-61 \mathrm{mc}$ from carrier.
(g) These noise levels are measured with respect to the carrier level over a noise band of $56-64 \mathrm{mc}$ from carrier.
(h) These noise levels are measured with respect to the carrier level at 30 mc away from carrier.
(i) This power variation is measured with the VTM operating into a $2: 1$ mismatch.
(j) This power variation is measured with the VTM operating into a matched load.

NOTE: Capability exists from 700 mc to 5600 mc and feasibility has been demonstrated in X-band and down to 100 mc . Tubes with specific center frequencies, power levels, bandwidths and pertinent parameters are available on special order. Consult your local GE Electronic Components Sales Office or the GE Microwave Tube Operation, Marketing Section, Bldg. 269, Schenectady, New York, 12305, telephone: (518) 374-2211, extensions 5-3433 or 5-2227.

INTERMEDIATE-POWER VOLTAGE-TUNABLE MAGNETRONS (1 to 10 watts)

TUBE TYPE	FREQUENCY RANGE (MC)	MINIMUM POWER OUTPUT (WATTS)	SWEPT EFF. \%	$\begin{aligned} & \text { POWER } \\ & \text { VARIATION } \\ & \text { DB } \end{aligned}$	TUNING SENSIT. MC/V	$\begin{gathered} \text { SIZE } \\ \text { CU. IN. } \end{gathered}$	WGT. LBS.	MAXIMUM VOLTAGES (VOLTS)			MAXIMUM CURRENTS		
											MA	MA	A
								ANODE	INJ.	FIL.	ANODE	INJ.	FIL.
ZM-6242 ${ }^{\text {ab }}$	1775-1925	3.00	30	$1{ }^{\text {c }}$	1.75	21	2.0	1500	500	2.2	20	1.0	2.54
ZM-6203	2475-2725	1.75	10	3.5 c	2.50	46	3.5	1200	315	2.8	22	1.0	2.00
ZM-6220	2475-2725	1.50	15	3 c	2.50	46	3.5	1200	315	2.8	22	1.0	2.00
ZM-6211A ${ }^{\text {a }}$	2500-3500	10.00	25	$3{ }^{\text {d }}$	1.80	22	1.5	2500	700	2.6	40	1.0	3.20
ZM-6265ab	2500-3500	10.00	25	$3{ }^{\text {d }}$	1.80	9	1.0	2500	700	2.7	40	1.0	3.00
ZM-6243 ${ }^{\text {ab }}$	2890-3110	3.00	15	1 c	3.00	21	2.0	1500	500	2.2	30	1.0	2.54
ZM-6257 ${ }^{\text {a }}$	3500-4500	10.00	45	3.0 c	2.20	24	1.5	2000	500	2.5	40	1.0	3.40

(a) This VTM is magnetically shielded.
(b) This VTM has integral isolator.
(c) Readings taken with matched load.
(d) Maximum rating into a matched load is 1.5 db .

NOTE: Capability exists from 700 mc to 5600 mc and feasibility has been demonstrated in X-band and down to 100 mc . Tubes with specific center frequencies, power levels, bandwidths and pertinent parameters are available on Tubes with specific center frequencies, power levels, bands be added to VTM's which do not have them, upon special order. RFI shielding and integral isolators can also be added to GE Microwave Tube Operation, Marrequest. Consuit, BIdg. 269, Schenectady, New York, 12305, telephone: (518) 374-2211, extensions 5-3433 or 5-2227.

HIGH-POWER VOLTAGE-TUNABLE MAGNETRONS (above 10 watts)

	FREQUENCYRANGE(MC) (MC)	MINIMUM POWER OUTPUT (WATTS)	SWEPT EFF. \%	$\begin{aligned} & \text { POWER } \\ & \text { VARIATION } \\ & \text { DB } \end{aligned}$	TUNING SENSIT. MC/V	$\begin{aligned} & \text { SIZE } \\ & \text { CU.IN. } \end{aligned}$	WGT. LBS.	MAXIMUM VOLTAGES (VOLTS)			MAXIMUM CURRENTS		
TUBE TYPE								ANODE	INJ.	FIL.	ANODE	$\begin{aligned} & \text { MA } \\ & \text { INJ. } \end{aligned}$	FIL.
ZM-6231ab	1220-1450	90	55	1.4 c	0.45	50	7.0	3400	1500	2.5	70	1.0	6.0
ZM-6239ab	2600-3050	90	60	1.4 c	0.90	45	4.5	3500	1500	2.5	70	1.0	6.0
ZM-6046b	2600-2900	90	60	1.0 c	1.00	100	7.5	3100	1300	2.5	70	± 0.5	5.7
ZM-6276ab	2600-3200	100	60	1.4 c	1.00	45	4.5	3400	1700	2.5	80	1.0	6.0
ZM-6240ab	2860-3310	90	55	1.4 c	1.00	45	4.5	3500	1500	2.5	70	1.0	6.0
ZM-6277ab	2860-3460	100	55	1.4 c	1.00	45	4.5	3400	1700 1300		80 70	1.0 ± 0.5	6.0 5.7
ZM-6047b	2900-3200	90	55 55	1.0 c	1.00	100	7.5 7.0	3100 3200	1300 1500	2.5 2.5	70 70	± 0.5 1.0	5.7 6.0
ZM-6246b	4800-5300	75	55	1.4 c	2.00	100	7.0	3200	1500	2.5	70	1.0	6.0

(a) This VTM is magnetically shielded.
(b) This VTM has integral isolator.
(c) Readings taken with matched load.

NOTE: Power levels in excess of 500 watts have been attained. Capability exists from 1000 mc to 5600 mc . Tubes with specific center frequencies, power levels, bandwidths and pertinent parameters are available on special order. RFI shielding and integral isolators can also be added to VTM's which do not have them, upon request. Consult your local GE Electronic Components Sales Office or the GE Microwave Tube Operation, Marketing Section, Bldg. 269, Schenectady, New York, 12305, telephone: (518) 374-2211, extensions 5-3433 or 5-2227.

GENERAL (3) ELECTRIG

TUBE DEPARTMENT Schenectady 5 , N. Y.

TECHNICAL INFORMATION

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

This technical information is proprietary and is furnished only as a service to customers.

PACKAGED VOLTAGE-TUNABLE MAGNETRON

Integral Magnet and Isolator

The ZM-6046 is a voltage-tuned magnetron designed for CW/FM transmitting-tube operation at low- or highmodulation frequencies. The tube has a minimum power output of 75 watts at any point in the band. The typical tube averages 90 watts across the band. The high efficiency allows air cooling to be used. The tube is protected against load mismatch by an integral isolator. The voltage-frequency relationship is approximately linear. The anode is integral with the tube body and is normally grounded, anode voltage being applied negatively to the cathode and filament.
GENERAL
Electrical
Cathode (filament) - Directly HeatedWarm-up Time, maximum. 10 SecondsCathode Input CapacitanceMaximum . 35 $\mu \mu \mathrm{f}$
Typical $32 \mu \mu \mathrm{f}$
Mechanical
Mounting Position - AnyNet Weight . 7.0 Pounds
ThermalCooling - Forced Air *Air Temperature, maximum110 C
Body Temperature, maximum \dagger 125 C
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Maximum Ratings, Absolute Values
Filament Voltage. 2.5 Volts
Filament Current \ddagger 6.0 Amperes
Anode Voltage. 3200
Volts
Sweep Voltage 500Anode Current, swept70
Power Input 225
Injection Electrode Voltage 1300
Voltage Standing Wave Ratio of Load 2.0
Frequency Range ** 2550-2950
MegacyclesVolts
MilliamperesWattsVolts
Typical Operating Conditions
Operation with 60 -cycle Sweep VoltageFilament Voltage, approximate2.1 VoltsFilament Current \ddagger4.4 to 5.
Swept Frequency Range 2600 to 2900
Sweep Voltage, Peak to Peak, typical 350
Anode Voltage at 2.75 Gigacycles 2800
Anoce Current 55
Injection Electrode Voltage, positive with respect to cathode 500 to 130
Injection Electrode Current, may be either polarity but less than 0.5
MilliamperesAmperesMegacycles
VoltsVoltsMilliamperesVolts π

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS (Cont'd.)

Typical Operating Conditions (Cont'd.)
Operation with 60 -cycle Sweep Voltage (Cont'd)

Power Output

Average, Swept Across Full Band . 90
Minimum, At Any Point Without Sweep Voltage . 75 Watts ***
Variation Across Band
Typical . 1.4 Decibels

Maximum . 2.0 Decibels
Efficiency, minimum
At Any Frequency . 50 Percent
Swept Across Full Band . 60 Percent

ENVIRONMENTAL

Altitude, maximum
Operating .
Non-operating .
70,000
Feet

* Hold temperature to 125 C or less at point shown on the outline drawing. At the maximum inlet temperature of $110 \mathrm{C}, 100$ cubic feet per minute is required but this drops rapidly for lower inlet temperatures.
\dagger Measured at point shown on the outline drawing.
\ddagger Set to value marked on tube within ± 0.1 ampere.
**VTM operable over this frequency range but at reduced power level.
I Set to give anode current marked on tube within ± 2 milliamperes.
*** Measured with load VSWR <1.2; for loads between 1.2 and 2.0 VSWR the power output is diminished by the amount reflected, plus a positive or negative change due to residual pulling. At 2.0 VSWR the theoretical reduction at the worst load phase is down to 85 percent, and the guaranteed performance is not less than 75 percent of rated power.

CAUTION: A CLEARANCE OF SIX INCHES BETWEEN FERROMAGNETIC MATERIALS AND THE TUBE WILL
PREVENT ANY SERIOUS CHANGE OF THE OPERATING CHARACTERISTICS.

NOTE:

O

PRELIMINARY
 TECHNICAL INFORMATION

TUBE DEPARTMENT Schenectady 5, N. Y.

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

This technical information is proprietary and is furnished only as a service to customers.

> ZM-6047

PACKAGED VOLTAGE-TUNABLE MAGNETRON

Integral Magnet and Isolator

The ZM-6047 is a voltage-tuned magnetron designed for CW/FM transmitting-tube operation at low- or highmodulation frequencies. The tube has a minimum power output of 75 watts at any point in the band. The typical tube averages 90 watts across the band. The high efficiency allows air cooling to be used. The tube is protected against load mismatch by an integral isolator. The voltage-frequency relationship is approximately linear. The anode is integral with the tube body and is normally grounded, anode voltage being applied negatively to the cathode and filament.
GENERAL
Electrical
Cathode (filament) - Directly Heated Warm-up Time, maximum . 10 Seconds Cathode Input Capacitance
Maximum $35 \mu \mu \mathrm{f}$
Typical $32 u \mu \mathrm{f}$
MechanicalMounting Position - AnyNet Weight . 7.0 Pounds
Thermal
Cooling - Forced Air *
Air Temperature, maximum 110 C
Body Temperature, maximum \dagger 125 C
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Maximum Ratings, Absolute Values
Filament Voltage 2.5 Volts
Filament Current \ddagger 6 Amperes
Anode Voltage 3200
Volts
Sweep Voltage 500
Anode Current, swept 70
Power Input 225
Injection Electrode Voltage 1300
Voltage Standing Wave Ratio of Load 2.0
Frequency Range ** 2850-325 2850-325
Megacycles
MegacyclesVolts
Milliamperes
WattsVolts
Typical Operating ConditionsOperation with 60 -cycle Sweep Voltage
Filament Voltage, approximate 2.1 Volts
Filament Current \ddagger 4.4 to 5.6 Amperes
Swept Frequency Range 2900 to 3200
Sweep Voltage, Peak to Peak, typical 350
Anode Voltage at 3.05 Gigacycles 2800
Anode Current 65
Injection Electrode Voltage, positive with respect to cathode 500 to 1300Injection Electrode Current, may be either polarity but less than
Volts
Volts
Milliamperes
Volts $\mathbb{1}$
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS (Cont'd.)
Typical Operating Conditions (Cont'd.)
Operation with 60 -cycle Sweep Voltage (Cont'd.)
Power Output
Average, Swept Across Full Band 90
Watts ***
Minimum, At Any Point Without Sweep Voltage Watts ***
Variation Across Band
Typical 1.4 Decibels
Maximum Decibels
Efficiency, minimum
At Any Frequency 50 Percent
Swept Across Full Band 55 Percent
ENVIRONMENTAL
Altitude, maximum
Operating 15,000 Feet
Non-operating 70,000
Feet

* Hold temperature to 125 C or less at point shown on the outline drawing. At the maximum inlet temperature of $110 \mathrm{C}, 100$ cubic feet per minute is required but this drops rapidly for lower inlet temperatures.
\dagger Measured at point shown on the outline drawing.
\ddagger Set to value marked on tube within ± 0.1 ampere.
** VTM operable over this frequency range but at reduced power level.
\llbracket Set to give anode current marked on tube within ± 2 milliamperes.
*** Measured with load VSWR <1.2; for loads between 1.2 and 2.0 VSWR the power output is diminished by the amount reflected, plus a positive or negative change due to residual pulling. At 2.0 VSWR the theoretical reduction at the worst load phase is down to 85 percent, and the guaranteed performance is not less than 75 percent of rated power.

CAUTION: A CLEARANCE OF SIX INCHES BETWEEN FERROMAGNETIC MATERIALS AND THE TUBE WILL PREVENT ANY SERIOUS CHANGE OF THE OPERATING CHARACTERISTICS.

A69087-72B140

O

GENERAL (3) ELECTRIC

TUBE DEPARTMENT Schenectady 5, N. Y.

PRELIMINARY
 TECHNICAL INFORMATION

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

TYPE
ZM-6085
ZM-6086
ZM-6087
PTI-145B
2-65

This technical information is proprietary and is furnished only as a service to customers.

ZM-6085, ZM-6086, ZM-6087
PACKAGED VOL TAGE-TUNABLE MAGNETRONS
885-1485, 1420-2607,
36 Milliwatts
2507-4310 Megacycles
CW Output
These tubes are a complete r-f power-source package requiring only input power connections and an r-f poweroutput connection. The minimum CW power output across the frequency range is 36 milliwatts. The tubes may be voltage-tuned over a portion or all of the frequency range for which they are designed. Power output variation into $2 / 1$ VSWR load is less than 6 decibels.

A built-in 10 decibel attenuator makes these tubes particularly suitable for use without a circulator or isolator.
GENERAL

	ZM-6085	ZM-6086	ZM-6087
Electrical			
Cathode - Directly Heated			
Filament Voltage* .		. . 2.3	Volts
Filament Current*. 2.0	Amperes
Mechanical			
Mounting Position - Any			
Net Weight		. . 4.0	Pounds
Altitude 100,000	Feet
Thermal			
Type of Cooling - Conduction or Convection			
Amoient Air Temperature, operating 85	C Max

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

	ZM-6085	ZM-6086	ZM-6087 (see page 2)
Maximum Ratings, Absolute Values			
Filament Current	2.1	2.1	Amperes
Anode Voltage	1625	1740	Volts
Anode Current	20	20	Milliamperes
Power Input, with forced-air cooling	25	25	Watts
Injection-Electrode Voltage	250	250	Volts
Power Output	150	150	Milliwatts
Typical Operating Conditions			
Operation with 60 -cycle Sweep Voltage			
Tunable Range \dagger.	885-1485	1420-2607	Megacycles
Filament Voltage	2.2-2.3	$2.4-2.6$	Volts
Filament Current*	2.0	2.0	Amperes
Tuning Sensitivity, average	1.0	1.66	Megacycles per volt
Anode Voltage . . .	980-1575	964-1664	Volts
Anode Current	$3-8$	$3-10$	Milliamperes
Voltage Standing Wave-Ratio of Load.	1.2/1	1.2/1	
Power Output . .	50-80	$50-70$	Milliwatts
AM Noise \# - Adjusted for Minimum			
FM Noise \# - Adjusted for Minimum			
Injection-Electrode Voltage .	170	160	Volts

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS (Cont.)

Maximum Ratings, Absolute Values
ZM-6087
Filament Current 2.1
Anode Voltage 1700
Anode Current 20
Power Input, with forced-air cooling 25
Injection-Electrode Voltage 250
Power Output. 150
Typical Operating Conditions
Tunable Range \dagger 2507-4310
Filament Voltage* $2.4-2.6$
Filament Current * 2.0
2.88Tuning Sensitivity, average
Anode Voltage955-1575
Anode Current - 11
Voltage Standing Wave-Ratio of Load 1.2/1
Power Output 50 - 60
AM Noise \# - Adjusted for MinimumInjection-Electrode Voltage110
Amperes
Volts
Milliamperes
Watts
Volts
Milliwatts
Megacycles
Volts
Amperes
Megacycles per Volt
Volts
Milliamperes
Milliwatts
FM Noise \# - Adjusted for Minimum
Volts

* Filament current should be adjusted to the value specified $\pm 1 \%$.
\dagger Frequency controlled by anode voltage.
\# Measured 60 megacycles from carrier using the tube as the local oscillator of a receiver with a bandwidth of 2megacycles around the carrier. The noise should be adjusted to be at least -86 decibels below the carrier.

Note: Since a change in anode voltage of one volt produces the frequency change noted below, the ripple voltage of the anode supply should be low enough not to cause an excess of undesirable frequency modulation.

ZM-6085 1.0 megacycle, approximate
ZM-6086 1.66 megacycles, approximate
ZM-6087 2.88 megacycles, approximate

[^4]

* NOTE: AN EXTERNAL CONNECTION IS REQUI最ED BETWEEN THE COLD CATH. LEAD F ONE OF THE HEATER LEADS.

CONNECTS TO NEGATIVE OF ANODE POWER SUPPLY. (RED)
CONNECTS TO FILAMENT SUPPLY. (BLUE)
CONNECTS TO POSITIVE OF INJECTION ELECTRODE SUPPLY (WHITE). CONNECTS TO FILAMENT SUPPLY (BLUE).

0
\qquad

0

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

This technical information is proprietary and is furnished only as a service to customers.

ZM-6203
 PACKAGED VOLTAGE-TUNABLE MAGNETRON

2475-2725 Megacycles

1.75 Watts - 4.0 Watts Maximum

The ZM-6203 is a voltage-tunable magnetron for operation in the 2475 to 2725 -megacycle frequency range. It is a complete r-f power-source package requiring only input power connections and an r - f power-output connection. The tube may be voltage tuned over a portion or all of the frequency range for which it is designed, or operated at a fixed frequency. The voltage frequency relationship is essentially linear.

GENERAL

Electral

Cathode - Directly Heated	.	Bog	Max.	
Filament Voltage*	2.2		2.8	Volts
Filament Current*	1.9	2.0	2.1	Amperes
chanical				Amperes
Mounting Position - Any				
Net Weight, maximum .			3.5	Pounds
rmal				
Type of Cooling - Conducti				
Ambient Temperature, ope			125 F	(Four Ho

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Maximum Ratings, Absolute Values
Filament Current. $\quad 2.1$ Amperes
Anode Voltage . 1200 Volts

Injection-Electrode Voltage**. 315 Volts
Injection-Electrode Current, maximum . 1.0
VSWR of Load maximum
VSWR of Load, maximum. 1.3:1
TYPICAL OPERATING CONDITIONS
Operation with 60-cycle Sweep Voltage
Tunable Range\#
2475-2725 Megacycles
Tuning Sensitivity, approximate .
Filament Voltage*, approximate . 2.50 Volts
Filament Current* . 2.0 Amperes
Anode Voltage at 2.6 gigacycles . 1145 Volts
Anode Current, average . $10 \quad$ Milliamperes
Injection-Electrode Voltage (Positive with Respect to Cathode)**

300 Volts
Injection-Electrode Current . $\quad 0.1 \quad$ Milliamperes
Voltage Standing Wave Ratio of Load . 1.1:1
Power Output . 1.75 Watts, minimum-4.0 Watts, maximum

* Filament current should be adjusted to 2.0 amperes.
** Injection Electrode voltage should be adjusted to 300 volts $\pm 5 \%$
\# Frequency controlled by anode voltage.

CAUTION: A clearance of 6 inches between ferromagnetic materials and the tube will prevent any serious change of the operating characteristics.

TUBE DEPARTMENT

TUBE DEPARTMENT Schenectady $5, \mathrm{~N} . \mathrm{Y}$.

PRELIMINARY
 TECHNICAL INFORMATION

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

DEVELOPMENTAL
TYPE

This technical information is proprietary and is furnished only as a service to customers.

PACKAGED VOLTAGE-TUNABLE MAGNETRON

2750-3090 MEGACYCLES

The ZM-6205 is a voltage-tunable magnetron with integral load isolator for voltage-tunable operation in the 2750-3090 megacycle frequency range. It is a complete r-f power source package requiring only input power connections and an r-f power-output connection and has a minimum CW power output of 1.00 watt across the entire frequency range. The tube may be voltage tuned over a portion or all of the frequency range for which it is designed.

The ZM- 6205 has a noise level of -95 decibels with respect to carrier, a power variation limited to 1.2 decibels over its entire frequency range and is environmentalized for airborne applications.

GENERAL

Electrical	Min.	Bogey	Max.	
Cathode - Directly Heated				
Filament Voltage*	2.0	2.5	3.0	Volts
Filament Current*	1.95	2.0	2.05	Amperes
Mechanical				
Mounting Position - Any				
Net Weight			2.75	Pounds
Thermal				
Type of Cooling - Conduction or Convection				
Ambient Air Temperature, operating	+85	C

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Maximum Ratings, Absolute Values
Anode Voltage . 1000
Anode Current . , . . 12
Power Input, with Forced Air Cooling . 18
Injection-Electrode Voltage . 205
Injection-Electrode Current . 0.1
Filament Current . 2.05
Voltage Standing Wave Ratio of Load, maximum 3:1
Typical Operating Conditions
Operation with 60-cycle Sweep Voltage
Filament Voltage*, approximate . 2.50
Filament Current* . 2.0
Tunable Range \# . 2750-3090
Tuning Sensitivity, approximate . 3.35
Anode Voltage at 2.945 gigacycles . 1850
Anode Current, average . 8
Injection-Electrode Voltage, Positive with Respect to Cathode 75-205
Injection-Electrode Current . 0.0
Power Output, minimum . 1.0
Noise \dagger. -95
Power Variation \ddagger. 1.2
Dynamic Tuning Rate Variation . ± 5
Volts
Milliamperes
Watts
Volts
Milliamperes
Amperes

Volts
Amperes
Megacycles per Volt
Megacycles per Volt
Volts
Milliamperes
Volts
Microamperes
Watts
Decibels/mc
Decibels
Percent

* Filament current should be adjusted to 2.0 amperes.
\# Frequency controlled by anode voltage.
\dagger This noise level is measured with respect to carrier level, 30 mc away from carrier.
\ddagger Measured across the entire frequency band and over a -55 C to +95 C magnet temperature range.
NOTE: Since a change in anode voltage of one volt produces a frequency change of approximately 3.35 megacycles, the anode supply should have sufficiently low ripple and high regulation to prevent an excess of frequency modulation.

CAUTION: A clearance of 6 inches between ferromagnetic materials and the tube will prevent serious change of the operating characteristics.

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information

TUBES

 sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.This technical information is proprietary and is furnished only as a service to customers.
ZM-6211A

PACKAGED VOLTAGE-TUNABLE MAGNETRON

The ZM-6211A is a magnetically shielded voltage-tunable oscillator which operates at a minimum power output of 10 watts over the 2500 to 3500 -megacycle frequency range. Unlike conventional electron devices employing magnetic fields, this shielded VTM is unaffected by passive magnetic materials. It does not require special tools, storage facilities or handling other than that normally given to a non-magnetic electron device. It is a complete radio-frequency power source which requires only d-c input power and generates radio-frequency power over, its electronically tuned octave frequency range. This voltage-tuned magnetron may be operated over a portion or all of the frequency range or operated at a fixed frequency. Its frequency versus voltage-tuning characteristic is essentially linear.

GENERAL

Electrical	Minimum	Bogey	Maxim	
Cathode - Directly Heated				
Filament Voltage*.	2.0	2.3	2.6	Volts
Filament Current	-	3.0	-	Amperes
Mechanical				
Mounting Position				Any
Net Weight, maximum .			1.5	Pounds
Thermal				
Type of Cooling - Forced Air				
Air Flow	30	Cubic Feet per Minute
Ambient Air Temperature, maximum		. .	50	C
Typical Operating Conditions				
Operation with 60-cycle Sweep Voltage				
Filament Voltage *, approximate .			2.30	Volts
Filament Current. . .		.	3.0	Amperes
Tunable Range \dagger.		2	-3500	Megacycles
Tuning Sensitivity, approximate			1.8	Megacycles per Volt
Anode Voltage at 3.0 Gigacycles			1700	Volts
Anode Current, average . .			20	Milliamperes
Injection Electrode Voltage, positive	hode		400	Volts
Injection Electrode Current .			0.01	Milliamperes
Voltage Standing Wave Ratio of Load			1.15	
Power Output, minimum	10	Watts
Variation over Band.	Less t	2.5:1	

[^5]

TUBE DEPARTMENT

GENERAL ELECTRIC

GENERAL ((\%) ELECTRIC

TUBE DEPARTMENT
Schenectady 5, N. Y.

OBJECTIVE
 TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

DEVELOPMENTAL TYPE

This technical information is proprietary and is furnished only as a service to customers

PACKAGED VOLTAGE-TUNABLE MAGNETRON

The ZM-6215 is a small, lightweight, magnetically shielded voltage-tunable oscillator which operates at a minimum power output of 10 watts over the 2500-3500 megacycle frequency range. Unlike conventional electron devices employing magnetic fields, this shielded VTM is unaffected by passive magnetic materials. When specified, the ZM- 6215 can be aligned for low-noise performance. Its noise power is at least 80 decibels per megacycle below the carrier at one megacycle away from the carrier. It is a complete radio-frequency power source requiring only d-c input power and generates radio-frequency power over its electronically tuned frequency range. This shielded VTM may be operated over a portion or all of the frequency range or operated at a fixed frequency. Its frequency versus voltage-tuning characteristic is essentially linear.

GE NERAL

Electrical Min. Bogey Max. Cathode - Directly Heated
Filament Voltage*, approximate 2.2 2. 2.5 2.7 Volts Filament Current*. - 2.0 - Amperes
Mechanical
Mounting Position - Any Net Weight . 1.0 Pounds
Thermal
Type of Cooling - Forced Air
Air Flow 30
Ambient Air Temperature 50 C
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Absolute Values
Anode Curren Volts
Power Input, with Forced Air Cooling 40
Injection Electrode Voltage 700
Injection Electrode Current 1.0
Filament Current 2.2
Operation with 60 -cycle Sweep Voltage in Wide-band Circuit
Filament Current 50
Tunable Range \# 2500-3500
Tuning Rate, approximate 1.8
Anode Voltage at 3 Kilomegacycles 1850
Anode Current, Average 20-30
Injection Electrode Voltage, Positive with Respect to Cathode 300-600
Voltage Standing Wave Ratio of Load 0.1
Power Output, Minimum 10.0
Noise \dagger -80
Volts
Amperes
Megacycles Volts
Milliamperes
Volts
Milliamperes
Watts
Decibels per Megacycle

* Filament voltage should be adjusted to provide a filament current of 2.0 amperes under broadband swept oscillating conditions.
\# Frequency controlled by anode voltage.

NOTE: Since a change in anode voltage of one volt produces a frequency change of approximately 1.8 megacycles, the anode supply should have sufficiently low ripple and high regulation to prevent an excess of frequency modulation.
\dagger Measured at 1.5 megacycles away from carrier with respect to carrier power level. This is an optional parameter which is included on special order only.

PRELIMINARY
 technical information

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

This technical information is proprietary and is furnished only as a service to customers.

ZM-6220

PACKAGED VOLTAGE-TUNABLE MAGNETRON

The ZM-6220 is a voltage-tunable magnetron for operation in the 2475 to 2725 -megacycle frequency range. It is a completer-f power-source package requiring only input power connections and an r - f power-output connection. The tube may be voltage tuned over a portion or all of the frequency range for which it is designed, or operated at a fixed frequency. The voltage frequency relationship is essentially linear.

GENERAL

Electrical	Min.	Bogey	Max.	
Cathode - Directly Heated				
Filament Voltage*	2.2	-	2.8	Volts
Filament Current*	1.9	2.0	2.1	Amperes
Mechanical				
Mounting Position - Any				
Net Weight, maximum			3.5	Pounds
Thermal				
Type of Cooling - Conduct				
Ambient Temperature, ope			125 F	(Four Hours)

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

Maximum Ratings, Absolute Values

Filament Current. 2.1
Anode Voltage . 1200
Anode Current . 14
Injection-Electrode Voltage** . 315
Injection-Electrode Current, maximum . 1.0
VSWR of Load, maximum . 1.3:1

Amperes Volts
Milliamperes
Volts
Milliamperes

TYPICAL OPERATING CONDITIONS
Operation with 60-cycle Sweep Voltage

Tunable Range\# . 2475-2725
Tuning Sensitivity, approximate . 2.5
Filament Voltage*, approximate . 2.50
Filament Current* . 2.0
Anode Voltage at 2.6 gigacycles . 1145
Anode Current, average . 10
Injection-Electrode Voltage (Positive with Respect to Cathode)** 300
Injection-Electrode Current. 0.1
Voltage Standing Wave Ratio of Load . 1.1:1
Power Output . 1.5 Watts, minimum-3.0 Watts, maximum

* Filament current should be adjusted to 2.0 amperes.
** Injection Electrode voltage should be adjusted to 300 volts $\pm 5 \%$
\# Frequency controlled by anode voltage.
CAUTION: A clearance of 6 inches between ferromagnetic materials and the tube will prevent any serious change of the operating characteristics.

TUBE DEPARTMENT

OBJECTIVE TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

This technical information is proprietary and is furnished only as a service to customers.

PACKAGED VOL'TAGE-TUNABLE MAGNETRON

1.0 Watt CW Output

The ZM-6222 is a magnetically shielded voltage-tunable oscillator which operates at a minimum power output of one watt over the 2000 to 4000 -megacycle frequency range. Unlike conventional electron devices employing magnetic fields, this shielded VTM is unaffected by passive magnetic materials. It does not require special tools, storage facilities or handling other than that normally given to a non-magnetic electron device. This shielded VTM also incorporates RFI shielding to attenuate stray radio-frequency on the d-c leads to levels below -40 dbc . It is a complete radio-frequency power source which requires only d-c input power and generates radio-frequency power over its electronically tuned octave frequency range. This voltage-tuned magnetron may be operated over a portion or all of the frequency range or operated at a fixed frequency. Its frequency versus voltage-tuning characteristic is essentially linear.

GENERAL

Electrical	Minimum	Bogey	Maximum	
Cathode - Directly Heated				
Filament Voltage*	2.0	2.5	3.0	Volts
Filament Current.	-	2.0	-	Amperes
Mechanical				
Mounting Position - Any				
Net Weight, maximum.			1.5	Pounds

Thermal

Type of Cooling - Forced Air

Air Flow . 5
Ambient Air Temperature, maximum . 50
Typical Operating Conditions
Operation with 60-cycle Sweep Voltage
Filament Voltage*, approximate . 2.5
Filament Current. 2.0
Tunable Range $\dagger . .$. 2000-4000
Tuning Sensitivity, approximate . 2.3
Anode Voltage at 3.0 Gigacycles . 1300
Anode Current, average . 10-15
Injection Electrode Voltage, positive with respect to cathode 100-400
Injection Electrode Current . 0.01
Voltage Standing Wave Ratio of Load . 1.15
Power Output, minimum . 1.0
Variation over Band . Less than 2.5:1

Volts
Amperes
Megacycles
Megacycles per Volt
Volts
Milliamperes
Volts
Milliamperes
Watts

* Filament voltage should be adjusted to provide 2.0 amperes of filament current under broadband swept oscillating conditions.
\dagger Frequency controlled by anode voltage.

TUBE DEPARTMENT
GENERAL (\%) ELECTRIC
Schenectady, New York 12305

TECHNICAL INFORMATION

OBJECTIVE

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

This technical information is proprietary and is furnished only as a service to customers.

ZM-6231
PACKAGED VOLTAGE TUNABLE MAGNETRON

1220-1450 Megacycles

Integral Magnet and Isolator
90 Watts Minimum CW Output
The ZM-6231 is a magnetically shielded voltage-tunable oscillator which operates at a minimum power output of 90 watts over the 1220 to 1450 -megacycle range. It is designed for CW/FM transmitting-tube operation at low- or highmodulation frequencies. The high efficiency allows air cooling to be used and in many applications heat-sink cooling is adequate. The integral isolator protects the tube against load mismatches thus minimizing interface problems between the VTM and its associated equipment.

This shielded VTM is unaffected by passive magnetic materials and does not require the special tools, storage and handling necessitated by conventional electron devices employing magnetic fields. It is a complete radio-frequency power source which requires only d-c input power and generates radio-frequency power over its electronically tuned frequency range. This voltage-tuned magnetron may be operated over a portion or all of the frequency range or operated at a fixed frequency. Its frequency versus voltage-tuning characteristic is essentially linear.

GENERAL

Electrical
Cathode (filament) - Directly Heated
Warm-up Time, maximum . 10 Seconds
Cathode Input Capacitance
Maximum . 40
Typical ... 35
$\mu \mu \mathrm{f}$
$\mu \mu \mathrm{f}$
Mechanical
Mounting Position . Any
Net Weight . 7.0 Pounds
Thermal
Cooling - Forced Air *
Air Temperature, maximum . 110 C
Body Temperature, maximum † . 125
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Maximum Ratings, Absolute Values
Filament Voltage . 2.5 Volts
Filament Current \ddagger. 6.0 Amperes
Anode Voltage . 3400 Volts
Sweep Voltage . 700 Volts
Anode Current, swept . 70 Millia
Power Input . 225 Watts
Injection Electrode Voltage . 1500 Volts
Voltage Standing Wave Ratio of Load ${ }^{* *}$. 20
Frequency Range ${ }^{* * *}$. 1220-1470
Megacycles
Typical Operating Conditions
Operation with 60-cycle Sweep Voltage
Filament Voltage, approximate . 2.1 Volts
Filament Current \ddagger. 4.4 to 5.6
Swept Frequency Range .1220-1450
Sweep Voltage, Peak to Peak, typical. 600
Anode Voltage at 1.45 Gigacycles . 3250
Anode Current. 65
Injection Electrode Voltage, positive with respect to cathode 700 to 1500
Injection Electrode Current, less than . 0.5
Amperes
Megacycles
Volts
Volts
Milliamperes
Volts $\mathbb{}$
Milliamperes

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS (Cont'd.)
Typical Operating Conditions (Cont'd.)
Operation with 60 -cycle Sweep Voltage (Cont'd.)
Power Output
Average, Swept Across Full Band . 90 Watts \&
Minimum, At Any Point Without Sweep Voltage . 75 Watts §
Variation Across Band
Typical . 1.4 Decibels
Maximum . 2.0 Decibels
Efficiency, minimum
At Any Frequency . 50 Percent
Swept Across Full Band 55 Percent

* Hold temperature to 125 C or less at point shown on the outline drawing. At the maximum inlet temperature of 110 C , 100 cubic feet per minute is required but this drops rapidly for lower inlet temperatures.
\dagger Measured at point shown on the outline drawing.
\ddagger Set to value marked on tube within ± 0.1 ampere.
** With integral isolator. Without isolator maximum allowable VSWR is 1.2 to 1.
*** VTM operable over this frequency range but at reduced power level.
II Set to give anode current marked on tube within ± 2 milliamperes.
\S Measured with load VSWR <1.2; for loads between 1.2 and 2.0 VSWR the power output is diminished by the amount reflected, plus a positive or negative change due to residual pulling. At 2.0 VSWR the theoretical reductionat the worst load phase is down to 85 percent, and the guaranteed performance is not less than 75 percent of rated power.

TUBE DEPARTMENT

ELECTRONIC

OBJECTIVE TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

This technical information is proprietary and is furnished only as a service to customers.
ZM-6238

PACKAGED VOLTAGE-TUNABLE MAGNETRON

1000-2000 Megacycles

1.0 Watt CW Output

The ZM-6238 is a magnetically shielded voltage-tunable oscillator which operates at a minimum power output of one watt over the 1000 to 2000 -megacycle frequency range. Unlike conventional electron devices employing magnetic fields, this shielded VTM is unaffected by passive magnetic materials. It does not require special tools, storage facilities or handling other than that normally given to a non-magnetic electron device. This shielded VTM also incorporates RFI shielding to attenuate stray radio-frequency on the d-c leads to levels below -40 dbc . It is a complete radio-frequency power source which requires only d-c input power and generates radio-frequency power over its electronically tuned octave frequency range. This voltage-tuned magnetron may be operated over a portion or all of the frequency range or operated at a fixed frequency. Its frequency versus voltage-tuning characteristics is essentially linear.

Electrical	Minimum	Bogey	Maximum	
Cathode - Directly Heated				
Filament Voltage*	2.0	2.5	3.0	Volts
Filament Current.	-	2.0	-	Amperes
Mechanical				
Mounting Position - Any				
Net Weight, maximum			1.5	Pounds
Thermal				
Type of Cooling - Forced Air 5 Cubic Feet per Minute				
			5	Cubic Feet per Minute
Ambient Air Temperature, maximum			50	C
Typical Operating Conditions				
Operation with 60-cycle Sweep Voltage				
Filament Voltage*, approximate .			2.5	Volts
Filament Current. . . .			2.0	Amperes
Tunable Range \dagger			00-2000	Megacycles
Tuning Sensitivity, approximate			1.15	Megacycles per Volt
Anode Voltage at 1.5 Gigacycles			1300	Volts
Anode Current, average . .			10-15	Milliamperes
Injection Electrode Voltage, positive	to cathode		100-300	Volts
Injection Electrode Current			0.01	Milliamperes
Voltage Standing Wave Ratio of Load			1.15	
Power Output, minimum .			1.0	Watts

* Filament voltage should be adjusted to provide 2 amperes of filament current under broadband swept oscillating conditions.
\dagger Frequency controlled by anode voltage.

TUBE DEPARTMENT
GENERAL (96) ELECTRIC
Schenectady, New York 12305

OBJECTIVE
 TECHNICAL INFORMATION

This technical information is proprietary and is furnished only as a service to customers.
These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

ZM-6239
 PACKAGED VOLTAGE TUNABLE MAGNETRON

The ZM-6239 is a magnetically shielded voltage-tunable oscillator which operates at a minimum power output of 90 watts over the 2600 to 3050 megacycle range. It is designed for CW/FM transmitting-tube operation at low- or highmodulation frequencies. The high efficiency allows air cooling to be used and in many applications heat-sink cooling is adequate. The integral isolator protects the tube against load mismatches thus minimizing interface problems between the VTM and its associated equipment.

This shielded VTM is unaffected by passive magnetic materials and does not require the special tools, storage and handling necessitated by conventional electron devices employing magnetic fields. It is a complete radio-frequency power source which requires only d-c input power and generates radio-frequency power over its electronically tuned frequency range. This voltage-tuned magnetron may be operated over a portion or all of the frequency range or operated at a fixed frequency. Its frequency versus voltage-tuning characteristic is essentially linear.

GENERAL

Electrical

> Cathode (filament) - Directly Heated
> Warm-up Time, maximum . 10 Seconds
> Cathode Input Capacitance
> Maximum . 40 40 f
> Typical . $35 ~ \mu \mu \mathrm{f}$

Mechanical
Mounting Position . Any
Net Weight . 4.5 Pounds

Thermal

Cooling - Forced Air *
Air Temperature, maximum . 110
Body Temperature, maximum \dagger. 125
C
C

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
 Maximum Ratings, Absolute Values

Filament Voltage . 2.5 Volts
Filament Current \ddagger. 6.0 Amperes
Anode Voltage . 3280 Volts
Sweep Voltage . 600 Volts
Anode Current, swept . 70
Power Input . 250
Injection Electrode Voltage . 1500
Voltage Standing Wave Ratio of Load . 2.0
Frequency Range ${ }^{* * *}$. 2550-3100
Milliamperes
Watts
Volts
Megacycles

Typical Operating Conditions

Operation with 60-cycle Sweep Voltage
Filament Voltage, approximate . 2.1 Volts
Filament Current \ddagger. 4.4 to 5.6
Swept Frequency Range . 2600 to 3050
Sweep Voltage, Peak to Peak, typical . 480
Anode Voltage at 2.75 Gigacycles . 2900
Anode Current
Injection Electrode Voltage, positive with respect to cathode 700 to 1500
Injection Electrode Current, may be either polarity but less than 0.5 Milliamperes

* Hold temperature to 125 C or less at point shown on the outline drawing. At the maximum inlet temperature of 110 C , 100 cubic feet per minute is required but this drops rapidly for lower inlet temperatures.
\dagger Measured at point shown on the outline drawing.
\ddagger Set to value marked on tube within ± 0.1 ampere.
***VTM operable over this frequency range but at reduced power level.
I Set to give anode current marked on tube within ± 2 milliamperes.
§ Measured with load VSWR <1.2; for loads between 1.2 and 2.0 VSWR the power output is diminished by the amount reflected, plus a positive or negative change due to residual pulling. At 2.0 VSWR the theoretical reduction at the worst load phase is down to 85 percent, and the guaranteed performance is not less than 75 percent of rated power.

TUBE DEPARTMENT

OBJECTIVE TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

DEVELOPMENTAL TYPE

This technical information is proprietary and is furnished only as a service to customers.

ZM-6240
PACKAGED VOLTAGE-TUNABLE MAGNETRON

The ZM-6240 is a magnetically shielded voltage-tunable oscillator which operates at a minimum power output of 100 watts over the 2900 to 3200 -megacycle range. It is designed for CW/FM transmitting-tube operation at low-or highmodulation frequencies. The high efficiency allows air cooling to be used and in many applications heat-sink cooling is adequate. The integral isolator protects the tube against load mismatches thus minimizing interface problems between the VTM and its associated equipment.

This shielded VTM is unaffected by passive magnetic materials and does not require the special tools, storage and handling necessitated by conventional electron devices employing magnetic fields. It is a complete radio-frequency power source which requires only d-c input power and generates radio-frequency power over its electronically tuned frequency range. This voltage-tuned magnetron may be operated over a portion or all of the frequency range or operated at a fixed frequency. Its frequency versus voltage-tuning characteristic is essentially linear.
GENERAL
Electrical
Cathode (filament) - Directly Heated
Warm-up Time, maximum 10 Seconds
Cathode Input Capacitance
Maximum$40 \quad \mu \mu \mathrm{f}$
Typical $35 \mu \mu \mathrm{f}$
Mechanical
Mounting Position Any
Net Weight 4.5 Pounds
Thermal
Cooling - Forced Air*
Air Temperature, maximum 110
C
Body Temperature, maximum \dagger C
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Maximum Ratings, Absolute Values
Filament Voltage . 2.5 Volts
Filament Current \ddagger Amperes
Anode Voltage 3280
Sweep Voltage 600
Anode Current, swept 70
Power Input 250
Injection Electrode Voltage 1500
Voltage Standing Wave Ratio of Load 2.0
Frequency Range § 2810-3360
Megacycles
Volts
Milliamperes
WattsVolts
Typical Operating Conditions
Operation with 60-cycle Sweep Voltage
Filament Voltage, approximate 2.1 Volts
Filament Current \ddagger. 4.4 to 5.6 Amperes
Swept Frequency Range 2860-3310
Sweep Voltage, Peak to Peak, typical 450
Anode Voltage at 3.05 Gigacycles 2900
Anode Current 65
Injection Electrode Voltage, positive with respect to cathode 700 to 1500
Megacycles
VoltsVoltsInjection Electrode Current, may be either polarity but less than0.5 Milliamperes

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS (Cont'd.)

Typical Operating Conditions (Cont'd.)
Operation with 60 -cycle Sweep Voltage (Cont'd.)
Power Output

$$
\begin{aligned}
& \text { Average, Swept Across Full Band . } 110 \text { Watts*** } \\
& \text { Minimum, At Any Point Without Sweep Voltage . } 90 \text { Watts*** } \\
& \text { Variation Across Band }
\end{aligned}
$$

* Hold temperature to 125 C or less at point shown on the outline drawing. At the maximum inlet temperature of 110 C , 100 cubic feet per minute is required but this drops rapidly for lower inlet temperatures.
\dagger Measured at point shown on the outline drawing.
\ddagger Set to value marked on tube within ± 0.1 ampere.
§VTM is operable over this frequency range but at reduced power levels.
I Set to give anode current marked on tube within ± 2 milliamperes.
*** Measured with load VSWR <1.2; for loads between 1.2 and 2.0 VSWR the power output is diminished by the amount reflected, plus a positive or negative change due to residual pulling. At 2.0 VSWR the theoretical reduction at the worst load phase is down to 85 percent, and the guaranteed performance is not less than 75 percent of rated power.

GENERAL (36) ELECTRIC

GENERAL

TUBE DEPARTMENT Schenectady 5, N. Y.

PRELIMINARY
 TECHNICAL INFORMATION

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

DEVELOPMENTAL TYPE

This technical information is proprietary and is furnished only as a service to customers.

PACKAGED VOLTAGE -TUNABLE MAGNETRON

1775-1925 MEGACYCLES

3.0-WATT OUTPUT

The ZM-6242 is a magnetically shielded, voltage-tunable oscillator incorporating an integral isolator. It operates at a minimum power output of three watts and is electronically tunable over its 1775 -to- 1925 megacycle frequency range. This shielded VTM is unaffected by passive magnetic materials and does not require special tools, storage facilities or handling other than that normally given to a non-magnetic electron device. The ZM- 6242 is a complete radio-frequency power source which requires only d-c input power and generates radio-frequency power over its electronically tuned frequency range. This voltage-tuned magnetron may be operated over a portion or all of the frequency range for which it is designed. Its power variation is limited to one decibel over the entire frequency range and its frequency-versus-voltage-tuning characteristic is essentially linear. This package is environmentalized.

GENERAL

Electrical Minimum Bogey Maximum

Cathode - Directly Heated Minimum Bogey Maximum				
Filament Voltage*	--	2.2	--	Volts
Filament Current*	2.26	2.4	2.54	Amperes
chanical				Amperes
Mounting Position - Any				
Net Weight . 2.0 Pounds				
rmal				
Type of Cooling - Conduction or Convection				
Ambient Air Temperature, operating			75	C Max.
Heat-Sink Temperature			. 75	C Max.

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Maximum Ratings, Absolute Values
Anode Voltage . 1500 Volts
Anode Current. 20
Power Input, with Forced Air Cooling . 25
Injection-Electrode Voltage . 500
Injection-Electrode Current . 1.0
Filament Current. 2.54
Temperature** . - 55 C to +75 C
Typical Operating Conditions
Operation with 60 -cycle Sweep Voltage
Filament Voltage* . 2.2 Volts
Filament Current*, approximate . 2.4 Amperes
Tunable Range \# . 1775-1925 Megacycles
Tuning Sensitivity, approximate . 1.75
Anode Voltage at 1.85 Kilomegacycles . 965
Anode Current at 1.85 Kilomegacycles . 12
Injection-Electrode Voltage, Positive with Respect to Cathode 200
Injection-Electrode Current. <20
Voltage Standing Wave Radio of Load \dagger. 1.15
Power Output, Minimum . 4.0
Noise \ddagger. - 80
Power Variation . 1
Linearity§, maximum . 110
Warm-up Timeף, maximum . 1.5
Milliamperes
Watts
Volts
Milliamperes
Amperes

Megacycles per Volt
Volts
Milliamperes
Volts
Microamperes
Watts
Decibels below carrier
Decibel
Percent
Seconds

* Filament voltage should be adjusted to 2.2 volts.
** Measured on surface opposite mounting plane.
\# Frequency controlled by anode voltage.
\dagger Integral isolator contains 15 -decibel isolation.
\ddagger This is background noise level measured from 200 kc to 8 mc away from carrier.
$\S \frac{\text { Maximum slope }(\mathrm{mc} / \mathrm{volt})}{\text { Minimum slope }(\mathrm{mc} / \mathrm{volt})} \times 100 \leq 110$ Percent (all temperatures -55 C to +75 C)
IT Warm-up time is the time required for the output power to reach 70 percent of the value measured after one minute of operation.

NOTE: Since a change in anode voltage of one volt produces a frequency change of approximately 1.8 megacycles, the anode supply should have sufficiently low ripple and high regulation to prevent an excess of frequency modulation.

CAUTION: A clearance of one inch between ferromagnetic materials and the tube will prevent serious change of the operating characteristics.

OUTLINE ZM-6242

* NOTE : AN EXTERNAL CONNECTION IS REQUIRED bETWEEN THE COLD-CATHODE LEAD AND one of the heater leads

DEVELOPMENTAL

 TYPEThese ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.
Schenectady 5 , N. Y.

This technical information is proprietary and is furnished only as a service to customers.

PACKAGED VOLTAGE-TUNABLE MAGNETRON

2890-3110 MEGACYCLES

3.0-WATT OUTPUT

The ZM-6243 is a magnetically shielded, voltage-tunable oscillator incorporating an integral isolator. It operates at a minimum power output of three watts and is electronically tunable over its 2890-to-3110 megacycle frequency range. This shielded VTM is unaffected by passive magnetic materials and does not require special tools, stor age facilities or handling other than that normally given to a non-magnetic electron device. The ZM-6243 is a complete radio-frequency power source which requires only d-c input power and generates radio-frequency power over its electronically tuned frequency range. This voltage-tuned magnetron may be operated over a portion or all of the frequency rangefor which it is designed. Its power variation is limited to one decibel over the entire frequency range and its frequency-versus-voltage-tuning characteristic is essentially linear. This package is environmentalized.

GENERAL				
Electrical	Minimum	Bogey	Maximum	
Cathode - Directly Heated				
Filament Voltage*	--	2.2	--	Volts
Filament Current*	2.26	2.4	2.54	Amperes
Mechanical				
Mounting Position - Any				
Net Weight .			2.0	Pounds
Thermal				
Type of Cooling - Conduction or Convection				
Ambient Air Temperature, operating.			75	C Max.
Heat-sink Temperature.			75	C Max.
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS				
Maximum Ratings, Absolute Values				
Anode Voltage			1500	Volts
Anode Current.			30	Milliamperes
Power Input, with Forced Air Cooling			35	Watts
Injection-Electrode Voltage .			500	Volts
Injection-Electrode Current.			1.0	Milliamperes
Filament Current.			2.54	Amperes
Temperature** . - 55 C to +75 C				
Typical Operating Conditions				
Operation with 60-cycle Sweep Voltage				
Filament Voltage*			2.2	Volts
Filament Current*, approximate.			2.4	Amperes
Tunable Range\#.			90-3110	Megacycles
Tuning Sensitivity, approximate			3.0	Megacycles per Volt
Anode Voltage at 3 Kilomegacycles			965	Volts
Anode Current at 3 Kilomegacycles.			22	Milliamperes
Injection-Electrode Voltage, Positive with R	Cathode		200	Volts
Injection-Electrode Current.			<20	Microamperes
Voltage Standing Wave Ratio of Load \ddagger			1.15	
Power Output, Minimum			4.0	Watts
Noise \dagger. . .			-80	Decibels below carrier
Power Variation			1	Decibel
Linearitys, maximum			110	Percent
Warm-up TimeT, maximum		1.5	Seconds

* Filament voltage should be adjusted to 2.2 volts.
** Measured on surface opposite mounting plane.
\# Frequency controlled by anode voltage.
\dagger This is background noise level measured from 200 kc to 8 mc away from carrier.
\ddagger Integral isolator contains 15 -decibel isolation.
$\S \frac{\text { Maximum slope }(\mathrm{mc} / \text { volt })}{\text { Minimum slope }(\mathrm{mc} / \text { volt })} \times 100 \leq 110$ Percent (all temperatures -55 C to +75 C)
π Warm-up time is the time required for the output power to reach 70 percent of the value measured after one minute of operation.

NOTE: Since a change in anode voltage of one volt produces a frequency change of approximately 3.0 megacycles, the anode supply should have sufficiently low ripple and high regulation to prevent an excess of frequency modulation.

CAUTION: A clearance of one inch between ferromagnetic materials and the tube will prevent serious change of the operating characteristics.

OUTLINE ZM-6243

* NOTE : AN EXTERNAL CONNECTION IS REQUIRED BETWEEN THE COLD-CATHODE LEAD AND one of the heater leads

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

This technical information is proprietary and is furnished only as a service to customers.
ZM-6246
PACKAGED VOLTAGE-TUNABLE MAGNETRON

Integral Magnet and Isolator

The ZM-6246 is a voltage-tuned magnetron designed for CW/FM transmitting-tube operation at low- or high-modulation frequencies. The tube has a minimum power output of 75 watts at any point in the band. The typical tube averages 90 watts across the band. The high efficiency allows air cooling to be used. The tube is protected against load mismatch by an integral isolator. The voltage-frequency relationship is approximately linear. The anode is integral with the tube body and is normally grounded, anode voltage being applied negatively to the cathode and filament.

GENERAL

Electrical
Cathode (filament) - Directly HeatedWarm-up Time, maximum . 10Cathode Input CapacitanceMaximum35$\mu \mu \mathrm{f}$
 $\mu \mu \mathrm{f}$
Mechanical
Mounting Position Any
Net Weight 7.0
Thermal
Cooling - Forced Air*
Air Temperature, maximum 110 C
Body Temperature, maximum \dagger. C
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Maximum Ratings, Absolute ValuesFilament Voltage2.5 Volts
Filament Current Amperes
Anode Voltage 3200
Volts
Sweep Voltage 500
Anode Current, swept 70
Power Input 225
Injection Electrode Voltage 1500
Voltage Standing Wave Ratio of Load 2.0
Frequency Range** 4750-5350
MilliamperesWattsVoltsMegacycles
Typical Operating Conditions
Operation with 60-cycle Sweep Voltage
Filament Voltage, approximate 2.1
Volts
Filament Current \ddagger 4.4 to 5.6
Swept Frequency Range 4800-5300
Sweep Voltage, Peak to Peak, typical 350
Anode Voltage at 5.05 Gigacycles 2800
Anode Current 65
Injection Electrode Voltage, positive with respect to cathode 850-1500
Injection Electrode Current, less than 0.5AmperesMegacycles
Volts
Volts
Milliamperes
Volts $\|$
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS (Cont'd.)Typical Operating Conditions (Cont'd.)Operation with 60 -cycle Sweep Voltage (Cont'd.)
Power Output
Average, Swept Across Full Band Watts***
Minimum, At Any Point Without Sweep Voltage Watts***
Variation Across Band
Typical 1.4 Decibels
Maximum 2 Decibels
Efficiency, minimum
At Any Frequency50 Percent
Swept Across Full Band 55
Percent
ENVIRONMENTAL
Altitude, maximum
Operating 15,000
Feet
Non-operating 70,000 Feet

* Hold temperature to 125 C or less at point shown on the outline drawing. At the maximum inlet temperature of 110 C , 100 cubic feet per minute is required but this drops rapidly for lower inlet temperatures.
\dagger Measured at point shown on the outline drawing.
$\$$ Set to value marked on tube within ± 0.1 ampere.
** VTM operable over this frequency range but at reduced power level.
TI Set to give anode current marked on tube within ± 2 milliamperes.
${ }^{* * *}$ Measured with load VSWR <1.2; for loads between 1.2 and 2.0 VSWR the power output is diminished by the amount reflected, plus a positive or negative change due to residual pulling. At 2.0 VSWR the theoretical reduction at the worst load phase is down to 85 percent, and the guaranteed performance is not less than 75 percent of rated power.

CAUTION: A CLEARANCE OF SIX INCHES BETWEEN FERROMAGNETIC MATERIALS AND THE TUBE WILL PREVENT ANY SERIOUS CHANGE OF THE OPERATING CHARACTERISTICS.

*NOTE:
AN EXTERNAL CONNECTION IS REQUIRED BETWEEN THE COLD CATHODE LEAD \& ONE OF THE HEATER LEADS.

TUBE DEPARTMENT

OBJECTIVE TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

DEVELOPMENTAL TYPE

This technical information is proprietary and is furnished only as a service to customers
ZM-6257
PACKAGED VOLTAGE-TUNABLE MAGNETRON

3500-4500 Megacycles

10 Watt CW Output
The ZM-6257 is a magnetically shielded voltage-tunable oscillator which operates at a minimum power output of 10 watts over the 3500 to 4500 -megacycle frequency range. Unlike conventional electron devices employing magnetic fields, this shielded VTM is unaffected by passive magnetic materials. It does notrequire special tools, storage facilities or handling other than that normally given to a non-magnetic electron device. It is a complete radio-frequency power source which requires only d-c input power and generates radio-frequency power over its electronically tuned frequency range. This voltage-tuned magnetron may be operated over a portion or all of the frequency range or operated at a fixed frequency. Its frequency versus voltage-tuning characteristic is essentially linear.

GENERAL

Electrical	Minimum	Bogey	Maximum	
Cathode - Directly Heated				
Filament Voltage*	2.0	2.3	2.6	Volts
Filament Current	-	3.0	-	Amperes
Mechanical				
Mounting Position.				Any
Net Weight, maximum .			1.5	Pounds
Thermal				
Type of Cooling - Forced Air				
Air Flow	30	Cubic Feet per Minute
Ambient Air Temperature, maximum		.	50	C
Typical Operating Conditions				
Operation with 60-cycle Sweep Voltage				
Filament Voltage *, approximate			2.3	Volts
Filament Current.			3.0	Amperes
Tunable Range \dagger.			-4500	Megacycles
Tuning Sensitivity, approximate			2.2	Megacycles per Volt
Anode Voltage at 4.0 Gigacycles			1700	Volts
Anode Current, average			20	Milliamperes
Injection Electrode Voltage, positive w	hode		400	Volts
Injection Electrode Current			0.01	Milliamperes
Voltage Standing Wave Ratio of Load		. \cdot	. 1.15	
Power Output, minimum .			. 10	Watts
Variation over Band		Less t	2.5:1	

Filament voltage should be adjusted to provide 3.0 amper es filament current under broadband swept oscillating conditions.
Frequency controlled by anode voltage.

TUBE DEPARTMENT

GENERAL (8) ELECTRIC

Schenectady, N. Y. 12305

OBJECTIVE technical information

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

DEVELOPMENTAL
TYPE
ZM-6265A
OTI- 214
Page 1
12-68

This technical information is proprietary and is furnished only as a service to customers

ZM-6265A
 PACKAGED VOLTAGE-TUNABLE MAGNETRON

2500-3500 MEGACYCLES

10 WATT OUTPUT

The ZM-6265A is a small, lightweight, magnetically shielded voltage-tunable oscillator with an integral isolator which operates at a minimum power output of 10 watts over the 2500-3500 megacycle frequency range. Unlike conventional electron devices employing magnetic fields, this shielded VTM is unaffected by passive magnetic materials. When specified, the ZM-6265A can be aligned for low-noise performance. Its noise power is at least 80 decibels per megacycle below the carrier at one megacycle away from the carrier. It is a complete radio-frequency power source requiring only d-c input power and generates radio-frequency power over its electronically tuned frequency range. This shielded VTM may be operated over a portion or all of the frequency range or operated at a fixed frequency. Its frequency versus voltage-tuning characteristic is essentially linear.

GENERAL

* Filament voltage shouldbe adjusted to provide a filament current of 3.0 amperes under broadband swept oscillating conditions.
\# Frequency controlled by anode voltage.

NOTE: Since a change in anode voltage of one volt produces a frequency change of approximately 1.8 megacycles, the anode supply should have sufficiently low ripple and high regulation to prevent an excess of frequency modulation.
\dagger Measured at 1.5 megacycles away from carrier with respect to carrier power level. This is an optional parameter which is included on special order only.

CONTROL (GREEN)
\# 20 OR \# 22 AWG $\times 12$ LG MIN.
FILAMENT (BROWN)
\# 20 AWG x I2 LG MIN.
FILAMENT \& CATHODE (YELLOW)
\# 20 AWG I I2 LG MIN.

TUBE DEPARTMENT

Schenectady, N. Y. 12305

OBJECTIVE TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

This technical information is proprietary and is furnished only as a service to customers

ZM-6276

PACKAGED VOLTAGE-TUNABLE MAGNETRON

Integral Magnet and Isolator

The ZM-6276 is a magnetically shielded voltage-tunable oscillator which operates at a minimum power output of 100 watts over the 2600 to 3200 -megacycle range. It is designed for CW/FM transmitting-tube operation at low- or highmodulation frequencies. The high efficiency allows air cooling to be used and in many applications heat-sink cooling is adequate. The integral isolator protects the tube against load mismatches thus minimizing interface problems between the VTM and its associated equipment.

This shielded tube is unaffected by passive magnetic materials and does not require the special tools, storage and handling necessitated by conventional electron devices employing magnetic fields. It is a complete radio-frequency power source which requires only d-c input power and generates radio-frequency power over its electronically tuned frequency range. This voltage-tuned magnetron may be operated over a portion or $£ l l$ of the frequency range or operated at a fixed frequency. Its frequency versus voltage-tuning characteristic is essentially linear.

GENERAL

Electrical

Cathode (filament) - Directly Heated
Warm-up Time, maximum. 10
Cathode Input Capacitance
10 Seconds
Maximum
Typical . 45
$35 \mu \mu \mathrm{f}$
Mechanical
Mounting Position
Net Weight
Any

Thermal
Cooling - Forced Air *
Air Temperature, maximum. 110
Body Temperature, maximum \dagger. 125
C
C
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Maximum Ratings, Absolute Values
Filament Voltage . 2.5 Volts

Anode Voltage . 3400 Volts
Sweep Voltage . 700
Anode Current, swept . 80
Power Input . 250
Volts

Injection Electrode Voltage . 1700
Voltage Standing Wave Ratio of Load
Milliamperes

Voltage Standing Wave Ratio of Load . 2.0
Typical Operating Conditions
Operation with 60 -cycle Sweep Voltage
Filament Voltage, approximate . 2.3 Volts
Filament Current \ddagger. 5 .3.3 Amperes
Swept Frequency Range . 2600 to 3200 Megacycles
Sweep Voltage, Peak to Peak, typical . 600 Volts
Anode Voltage at 2.9 Gigacycles . 3000 Volts
Anode Current . 65 Milliamperes
Injection Electrode Voltage, positive with respect to cathode 700 to 1700 VoltsT
Injection Electrode Current, may be either polarity but less than 0.5 Milliamperes

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS (Cont'd.)

Typical Operating Conditions (Cont'd.)
Operation with 60 -cycle Sweep Voltage (Cont'd.)

Power Output		
Average, Swept Across Full Band		Watts ***
Minimum, At Any Point Without Sweep Voltage		
Variation Across Band		
Typical		Decibels
Maximum		
Efficiency, minimum 55 Percent		
At Any Frequency		Percent
Swept Across Full Band		

* Hold temperature to 125 C or less at point shown on the outline drawing. At the maximum inlet temperature of 110 C , 100 cubic feet per minute is required but this drops rapidly for lower inlet temperatures.
\dagger Measured at point shown on the outline drawing.
\ddagger Set to value marked on tube within ± 0.1 ampere.
T Set to give anode current marked on tube within ± 2 milliamperes.
*** Measured with load VSWR <1.2; for loads between 1.2 and 2.0 VSWR the power output is diminished by the amount reflected, plus a positive or negative change due to residual pulling. At 2.0 VSWR the theoretical reduction at the worst load phase is down to 85 percent, and the guaranteed performance is not less than 75 percent of rated power.

TUBE DEPARTMENT

OBJECTIVE TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

This technical information is proprietary and is furnished only as a service to customers

ZM-6277

PACKAGED VOLTAGE-TUNABLE MAGNETRON

2860-3460 Megacycles

Integral Magnet and Isolator

100 Watts Minimum CW Output

The ZM-6277 is a magnetically shieldedvoltage-tunable oscillator which operates at a minimum power output of 100 watts over the 2860-3460-megacycle range. It is designed for CW/FM transmitting-tube operation at low- or highmodulation frequencies. The high efficiency allows air cooling to be used and in many applications heat-sink cooling is adequate. The integral isolator protects the tube against load mismatches thus minimizing interface problems between the VTM and its associated equipment.

This shielded tube is unaffected by passive magnetic materials and does not require the special tools, storage and handling necessitated by conventional electron devices employing magnetic fields. It is a complete radio-frequency power source which requires only d-c input power and generates radio-frequency power over its electronically tuned frequency range. This voltage-tuned magnetron may be operated over a portion or all of the frequency range or operated at a fixed frequency. Its frequency versus voltage-tuning characteristic is essentially linear.
GENERAL
Electrical
Cathode (filament) - Directly Heated
Warm-up Time, maximum
Warm-up Time, maximum 10 10
Cathode Input Capacitance Maximput
Typical 40 μ_{μ} $\mu \mu \mathrm{f}$
Mechanical
Mounting PositionNet WeightAny
Thermal
Cooling - Forced Air*
Air Temperature, maximum. 110
Body Temperature, maximum \dagger C
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Maximum Ratings, Absolute ValuesFilament Voltage
2.5 Volts
Filament Current \ddagger 6.0
Anode Voltage 3400
Amperes
Volts
Volts
Sweep Voltage 700
Anode Current, swept
80
80
Power Input 250
Injection Electrode Voltage
1700
1700
Voltage Standing Wave Ratio of Load 2.0
Volts
Milliamperes
Watts
Volts
Typical Operating Conditions
Operation with 60-cycle Sweep Voltage
Filament Voltage, approximate Volts
Filament Current \ddagger
Filament Current \ddagger
Swept Frequency Range 5.3
Amperes
Sweep Voltage, Peak to Peak, typical
2860 to 3460
Anode Voltage at 3.16 Gigacycles 550 550 VoltsMegacycles
Volts
Anode Current
Anode Current
Anode Current 65
Injection Electrode Voltage, positive with respect to cathode 700 to 1700
Injection Electrode Current, may be either polarity but less than
Milliamperes
Volts ${ }^{\|}$
Milliamperes

OTI-216

Page 2
12-68
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS (Cont'd.)

Typical Operating Conditions (Cont'd.)

Operation with 60 -cycle Sweep Voltage (Cont'd.)

Power Output		
Average, Swept Across Full Band		Watts ***
Minimum, At Any Point Without Sweep Voltage		
Variation Across Band		
Typical		Decibels
Maximum		
Efficiency, minimum 55 Perent		
At Any Frequency		Percent
Swept Across Full Band		

* Hold temperature to 125 C or less at point shown on the outline drawing. At the maximum inlet temperature of 110 C , 100 cubic feet per minute is required but this drops rapidly for lower inlet temperatures.
\dagger Measured at point shown on the outline drawing.
\ddagger Set to value marked on tube within ± 0.1 ampere.
I Set to give anode current marked on tube within ± 2 milliamperes.
*** Measured with load VSWR < 1.2; for loads between 1.2 and 2.0 VSWR the power output is diminished by the amount reflected, plus a positive or negative change due to residual pulling. At 2.0 VSWR the theoretical reduction at the worst load phase is down to 85 percent, and the guaranteed performance is not less than 75 percent of rated power.

TUBE DEPARTMENT

Schenectady, N. Y. 12305

CAPABILITIES OF GENERAL ELECTRIC

VHF-UHF Metal-Ceramic Triodes and Tetrodes
The listing below includes power triodes and tetrodes of recent design, and types now in development, that are particularly applicable to systems being planned and built today.

Application	Tube Type	Service	Typical Capabilities	Cooling
Phased Array and Conventional Radar (200-1300 mcs, approx)	$\begin{aligned} & \text { GL-7399 } \\ & \text { GL-51038 } \end{aligned}$	RF-Pulsed Amplifier	500 mcs ; 10% Bandwidth $250 \mu \mathrm{sec} ; 0.005$ Duty 30 KW , Peak; 10 db Gain	Forced-air
	$\begin{aligned} & \text { GL-7399 } \\ & \text { GL-51038* } \end{aligned}$	RF-Pulsed Amplifier	$425 \mathrm{mcs} ; 11 \%$ Bandwidth $50 \mu \mathrm{sec} ; 0.010$ Duty 10 KW , Peak; 9 db Gain	Forced-air
	$\begin{aligned} & \text { GL-7399 } \\ & \text { GL-51038 } \end{aligned}$	RF-Pulsed Amplifier	$425 \mathrm{mcs} ; 5 \%$ Bandwidth $20 \mu \mathrm{sec}$; 0.001 Duty 60 KW , Peak; 10 db Gain	Forced-air
	ZP-1034	RF-Pulsed Amplifier	1300 mcs ; 10\% Bandwidth $500 \mu \mathrm{sec} ; 0.060$ Duty 5 KW , Peak; 10 db Gain	Liquid
	GL-51065	RF-Pulsed Amplifier	425 mcs ; 20\% Bandwidth $3.5 \mu \mathrm{sec}$; 0.005 Duty 10 KW, Peak; 7 db Gain	Forced-air
	GL-51025	RF-Pulsed Oscillator	$1300 \mathrm{mcs} ; 25 \mathrm{KW}$, Peak $10 \mu \mathrm{sec} ; 0.001$ Duty	Conduction
	GL-51074	RF-Pulsed Oscillator	$425 \mathrm{mcs} ; 40 \mathrm{KW}$, Peak $10 \mu \mathrm{sec} ; 0.002$ Duty	Conduction
AM and FM Transmitters (50-1250 mcs, approx)	$\begin{aligned} & \text { GL-6283 } \\ & \text { GL-8500 } \\ & \text { GL-51070 } \end{aligned}$	RF Amplifier	225-440 mcs 440 Watts PEP; 13 db Gain 300 Watts CW; 13 db Gain	Forced-air
	GL-6942	RF Amplifier	$\begin{aligned} & 1000 \mathrm{mcs} \\ & 1 \mathrm{KW} \text { CW; } 11 \mathrm{db} \text { Gain } \end{aligned}$	Forced-air
	GL-6848	R F Amplifier	225-400 mcs 3.2 KW CW; 15 db Gain	Forced-air
	GL-7985	RF Amplifier	$\begin{aligned} & 225-400 \mathrm{mcs} \\ & 4.4 \mathrm{KW} \text { PEP; } 17 \mathrm{db} \text { Gain } \end{aligned}$	Liquid
	$\begin{aligned} & \text { GL- } 8513 \\ & \text { ZP-1039 } \end{aligned}$	RF Amplifier	$\begin{aligned} & 225-400 \mathrm{mcs} \\ & 6 \mathrm{KW} \text { PEP; } 15 \mathrm{db} \text { Gain } \\ & <5 \% \text { Distortion } \end{aligned}$	Forced-air
	GL-51064	RF Amplifier	$225-400 \mathrm{mcs}$ 3 KW PEP; 16 db Gain 4 KW CW; 14 db Gain	Forced-air

[^6]| Application | Tube Type | Service | Typical Capabilities | Cooling |
| :---: | :---: | :---: | :---: | :---: |
| IFF Radar
 (1030 \& 1090 mcs) | $\begin{aligned} & \text { GL-7399 } \\ & \text { ZP-1015 } \\ & \text { GL-51065 } \end{aligned}$ | RF-Pulsed Amplifier (Grid-Pulsed) | $\begin{aligned} & 1030 \mathrm{mcs} \\ & 10 \mu \mathrm{sec} ; 0.010 \text { Duty } \\ & 10 \mathrm{KW}, \text { Peak; } 8.5 \mathrm{db} \text { Gain } \end{aligned}$ | Forced-air
 or Conduction |
| | GL-8866 | RF-Pulsed Amplifier (Grid-Pulsed) | $\begin{aligned} & 1030 \mathrm{mcs} \\ & 10 \mu \text { sec; } 0.020 \text { Duty } \\ & 2 \mathrm{KW} \text {, Peak; } 10 \mathrm{db} \text { Gain } \end{aligned}$ | Conduction |
| CW or Pulsed Signal Generators (200-2000 mcs, approx) | $\begin{aligned} & \text { GL-51025 } \\ & \text { GL-51074 } \end{aligned}$ | RF-Pulsed Oscillator | $\begin{aligned} & 200-1300 \mathrm{mcs} \\ & 5 \mu \mathrm{sec} ; 0.005 \text { Duty } \\ & 5 \mathrm{KW}, \text { Peak } \end{aligned}$ | Conduction |
| | | | $\begin{aligned} & 200-1300 \mathrm{mcs} \\ & 5 \mu \mathrm{sec} ; 0.001 \text { Duty } \\ & 20 \mathrm{KW}, \text { Peak } \end{aligned}$ | |
| | ZP-1057 | RF CW Oscillator | $\begin{aligned} & 200-1300 \mathrm{mcs} \\ & 200 \text { Watts } \end{aligned}$ | Forced-air |
| Electronic Voltage Regulators | GL-51038R | High-Voltage Series Regulator | 10 KV DC Hold-Off
 1000 Watts Dissipation | Circulating Oil |
| VHF-UHF Television | $\begin{aligned} & \text { GL-6283 } \\ & \text { GL-8500 } \\ & \text { GL-51070 } \end{aligned}$ | RF Amplifier | 900 mcs
 260 Watts, Synch Peak | Forced-air |
| | GL-6942 | RF Amplifier | 900 mcs
 1000 Watts, Synch Peak | Forced-air |
| | GL-6251 | RF Amplifier | 216 mcs
 25 KW, Synch Peak | Liquid |

TUBE PRODUCTS DEPARTMENT GENERAL (ELECTRIC

Schenectady, N. Y. 12305

PRELIMINARY TECHNICAL INFORMATION

These ratings represent those of current samples of DEVELOPMENTAL TYPE this type. Refer to the Objective Technical Information sheet for design-objective ratings.

This technical information is proprietary and is furnished only as a service to customers.

Grid-Pulsed Service
Grounded-Grid Operation

Heat-Sink and Forced-Air Cooled Metal and Ceramic

The ZP-1015 is a heat-sink-cooledversion of the GL-7399 especially designed for pulsed-amplifier or oscillator service at L-band frequencies. This tetrode is particularly well suited for use in airborneIFF radar equipment.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.
Features of the ZP-1015 include long life and reliability, long pulse width and high gain.

ELECTRICAL

Heater Voltage	6.0	6.3	6.8	Volts
Heater Current	-	5.6	-	Amperes
Amplification				
Factor, G_{2} to G_{1}	-	10.5	-	
$\mathrm{Eg} 2^{2}=275$ Volts DC, $\mathrm{E}_{\mathrm{b}}=1000$ Volts DC, $\mathrm{I}_{\mathrm{b}}=$ 200 Milliamperes DC				
Cathode Heating Time. .	1	-	-	Minute
Direct Interelectrode Capacitan ces*				
Cathode to Plate \dagger	-	0.012	-	$\mu \mu \mathrm{f}$
Input	-	24	-	$\mu \mu \mathrm{f}$
Output	-	9.3	-	$\mu \mu \mathrm{f}$

MECHANICAL

Mounting Position - Any
Net Weight, approximately

11 Ounces

THERMAL

Cooling - Heat -sink and Forced-Air \ddagger Anode Temperature §, maximum 250 C
Seals
Screen and Control Grid, approximate
1 Cubic Foot per Minute Heater and Cathode, approxi mate . 1 Cubic Foot per Minute
Ceramic Temperature at Any Point, maximum .200 C

RADIO-FREQUENCY POWER AMPLIFIER - CLASS C (CONT'D)

Maximum Ratings (Cont'd)

Pulsed Drive, 1250 Megacycles (Cont'd)

Duty Factor ϕ. 0.01
Typical Operation
Grounded-grid Service at 1100 Megacycles, $3 / 4 \lambda$ Output Circuit
DC Plate Voltage . 4.8 Kilovolts
DC Plate Cürrent, during pulse . 4.2 Amperes
DC Grid-No. 2 Voltage . 1 Kilovolt
DC Grid-No. 2 Current, during pulse . 100 Milliamperes
DC Grid-No. 1 Voltage . - 200 Volts
DC Grid-No. 1 Current, during pulse . 200 Milliamperes
Driving Power at Tube, during pulse . 1.5 Kilowatts
Power Output, during pulse (useful) . 11 Kilowatts
Pulse Width 0 . 15 Microseconds
Duty Factor ϕ. 0.01

* Control grid connected directly to screen grid.
\dagger Complete external shielding between cathode and plate.
\ddagger Forced-air cooling should be applied during the application of any voltages.
§ A suitable heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified; the temperature is measured at the point indicated on the outline drawing.
** A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B+ power supply at steady-state voltages greater than 3.5 kilovolts.
- For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
\diamond Pulse duration measured between points at 70 percent of peak value. The peakvalue is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
ϕ Maximum ratio of on-time to elapsed time during any 15 millisecond period.

```
                            CONSTANT CURRENT CHARACTERISTIC
                            SCREEN VOLTAGE = 1000 VOLTS
ALL VOLTAGES REFERENCED TO CONTROL GRID
```


NOTES:

1. Bottom of cup must not be used as a socket stop.
2. Max. eccentricity $0.015^{\prime \prime}$
3. Max. eccentricity $0.008^{\prime \prime}$
4. Max. eccentricity $0.018^{\prime \prime}$
5. Max. eccentricity $0.021^{\prime \prime}$ with respect to centerline determined by centers of anode and control-grid terminals.
6. Max. eccentricity $0.008^{\prime \prime}$ with respect to cathode terminal.

TUBE DEPARTMENT

GENERAL ELECTRIC

POWER TUBE DEPARTMENT Schenectady 5, N. Y.

OBJECTIVE TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Power Tube Department Regional Sales Office.

DEVELOPMENTAL TYPE

This technical information is proprietary and is furnished only as a service to customers.

The ZP-1026 is a heat-sink-cooled triode especially designed for grid-pulsed amplifier service in L-band. This tube is particularly well suited for use in navigational aid beacons (TACAN). Features include small size, high gain, long pulse width and high duty capability, long life and reliability.

ELECTRICAL

Heater Voltage*.	6.3	Volts
Heater Current	3.8	Amperes
Cathode Heating Time, minimum	1	Minute
Direct Interelectrode Capacitances		
Input	15.5	$\mu \mu \mathrm{f}$
Output	5.9	$\mu \mu \mathrm{f}$
Plate-Cathode .	0.13	$\mu \mu \mathrm{f}$
MECHANICAL		
Mounting Position - Any		
Net Weight, approximately	$31 / 4$	Ounces
THERMAL		
Cooling - Heat-sink and Forced-air		
Anode Temperature §	250	C
Ceramic Temperature at Any Point	200	C
GRID-PULSED AMPLIFIER - CLASS AB2		
Maximum Ratings		
DC Plate Voltage	2.5	Kilovolts
DC Plate Current, during pulse	2.0	Amperes
DC Grid Voltage	-200	Volts
Plate Dissipation	110	Watts
Pulse Width	10	Microseconds
Duty Factor \varnothing	. 04	
Typical Operation		
Grounded-Grid Circuit at $1215 \mathrm{mcs}, 3 / 4 \lambda$ Output		
DC Plate Voltage	2000	Volts
DC Plate Current, during pulse	1.6	Amperes
DC Grid Voltage	-75	Volts
DC Grid Voltage, during pulse	0	Volts
DC Grid Current, during pulse	. 5	Amperes
Power Output, during pulse (useful)	750	Watts
Drive Power, during pulse . .	95	Watts
Pulse Width \diamond	8	Microseconds
Duty Factor . .	. 03	

* Because of back-heating due to transit time effects, it may be necessary to reduce the heater voltage.
\S A suitable heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified.
\varnothing Maximum ratio of on-time to elapsed time during any 250 microsecond period.
\diamond Pulse duration is measured between points at 70 percent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.

Page 2
11-1-62

Total indicator reading of filament cup terminal diameter (C) measured with respect to center of cathode and filament terminal diameter (B) -0.016 inches.

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

This technical information is proprietary and is furnished only as a service to customers.
ZP-1034
TETRODE
Pulsed Service
Water Cooled
Grounded-Grid Operation
Metal and Ceramic

Integral Water Jacket

The ZP-1034 is a small-size, four-electrode transmitting tube especially designed for pulsed-amplifier service at L-band frequencies. This tetrode is particularly well suited for use in ground-based equipment such as steerable array radar.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.
Features of the ZP-1034 include long life and reliability, long pulse width, high gain and broad-banding capability.
These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where performance and reliability are important.

ELECTRICAL

MECHANICAL

Mounting Position - Any
Net Weight, approximate
Ounces
THERMAL
Cooling - Water and Forced Air \varnothing
Water Flow
Anode . 0.5

Outlet Temperature . 70
Minimum Gallons per Minute Maximum C

RADIO-FREQUENCY POWER AMPLIFIER - CLASS C

Maximum Ratings

Pulsed Drive, 1300 Megacycles
DC Plate Voltage
4

DC Plate Current, during pulse . 6
DC Grid-No. 2 Voltage . 1.1
DC Grid-No. 2 Input \# .
DC Grid-No. 1 Voltage
DC Grid-No. 1 Current -225

Plate Dissipation \#
1.5 Amperes

Plate Dissipation \# .
Duty Factor ${ }^{* *} \phi \phi$. 0.01

Watts
Kilovolts
Amperes
Kilovolts
Volts
Watts
Microseconds

Typical Operation

Grounded-grid Circuit at 1300 Megacycles, $\lambda / 4$ Output Circuit
DC Plate Voltage \#\# . 4.0
DC Plate Current during pulse . 3.5
DC Grid-No. 2 Voltage . 750
DC Grid-No. 2 Current, during pulse . 75
DC Grid-No. 1 Voltage . -150
DC Grid-No. 1 Current, during pulse . 150
Driving Power at Tube, during pulse
Power Output, during pulse (useful) . 7.5
Pulse Width $\dagger \dagger$. 15
Duty Factor . 0.01
Kilovolts
Amperes
Volts
Milliamperes
Volts
Milliamperes
Watts
Kilowatts
Microseconds

* Control grid connected directly to screen grid.
\dagger Complete external shielding between cathode and plate.
ϕ Water and forced air cooling to be applied during the application of any voltages.
\# Maximum average value.
** For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
$\dagger \dagger$ Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
$\phi \phi$ Maximum ratio of on-time to elapsed time during any 1.5 -millisecond period.
\#\# A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B+ power supply at steady-state voltages greater than 3.5 kilovolts.

CONCENTRICITIES: The following total indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and control grid terminal.

> Diameter A -0.016 inches
> Diameter B -0.036 inches
> Diameter C -0.042 inches

Total indicator reading of filament cup terminal diameter (C) measured with respect to center of cathode and filament terminal diameter $(B)-0.016$ inches.

TUBE DEPARTMENT

ELECTRIC

PRELIMINARY
 TECHNICAL INFORMATION

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

This technical information is proprietary and is furnished only as a service to customers.

VHF-UHF
Ring-Seal Construction

TETRODE
Grounded-Grid Circuit

Forced-Air Cooled Metal and Ceramic

The ZP-1039 is a high-performance four-electrode tube for use as an RF power amplifier in grounded-grid circuits with both grids maintained at RF ground potential. This tube features a high-efficiency, axial-flow radiator for minimum forced-air-cooling requirements. The anode is capable of dissipating 5000 watts. The cathode is a unipotential thoriated-tungsten cylinder, heated by electron bombardment. Maximum ratings apply to 800 megacycles, although higher-frequency operation is possible.

As a Class B linear power amplifier the tube will deliver 1500 watts at the carrier level with high power gain and high linearity.

In narrow band, plate-modulated Class C telephony service, the ZP-1039 has a useful carrier power output in excess of 1000 watts. In Class C telegraphy service, it has a useful power output in excess of 3000 watts of continuous power as an RF power amplifier or oscillator.

ELECTRICAL

Cathode
Heater Voltage
Heater Current at 7.0 Volts
Without Cathode Bombarding
With 150 Watts Cathode Bombarding
Heater Starting Current
Heater Cold Resistance. .
Cathode Bombarding Power*

*

Cathode Bombarding Voltage, DC
For 170 Watts Bombarding Power
For 195 Watts Bombarding Power
Cathode Heating Time
Amplification Factor, G_{2} to G_{1};
$\mathrm{E}_{\mathrm{b}}=4000$ Volts; $\mathrm{I}_{\mathrm{b}}=0.5$ ampere
Direct Interelectrode Capacitances
Cathode to Plate §
Input, G_{2} tied to G_{1}
Output, G_{2} tied to G_{1} ा

Minimum Bogey Maximum

-	6.7	7.0	Volts
-	14.5	-	Amperes
-	13.5	-	Amperes
-	-	25	Amperes
-	0.041	-	Ohms
-	170	195	Watts
-	650	-	Volts
-	700	-	Volts
1	-	-	Minute
-	20	-	
-	0.01	-	$\mu \mu \mathrm{f}$
-	27.8	-	$\mu \mu \mathrm{f}$
-	6.7	-	$\mu \mu \mathrm{f}$

MECHANICAL

Mounting Position - Vertical, Anode-end Up
Net Weight, approximate
9.5 Pounds

THERMAL
Type of Cooling - Forced Air
Air Flow Through Radiator, at Sea Level
Plate Dissipation Air Flow Static Pressure

4.0 Kw	80 CFM	0.9 In.
5.0 Kw	150 CFM	2.5 In.

Seals
Screen-grid to Control-grid, minimum . 15
Heater-to-cathode, minimum . 7.5
Anode Ceramic, minimum . 10
Cubic Feet per Minute
Cubic Feet per Minute Cubic Feet per Minute

[^7]
THERMAL (CONT'D)

$$
\begin{aligned}
& \text { Incoming Air Temperature, maximum . } \\
& \text { Anode Hub Temperature, maximum . } \\
& \text { And } \\
& \text { Cemperature of Anode Ceramic and Seals, maximum } \\
& \text { Te } \\
& \text { Temperature at Any Other Point, maximum } \\
& \text { Te } \\
& \text { Torced -air cooling to be applied before and during the application of any voltages. Air flow on heater -to-cathode seals } \\
& \text { C } \\
& \text { must be maintained for one minute after removal of heater voltage. The radiator air ducting can be constructed so that } \\
& \text { air is forced along the anode seal and ceramic through the anode contact fingers and additional holes in the plate con- } \\
& \text { tact ring to accomplish the anode ceramic and anode seal cooling. The volume of cooling air indicated for the various } \\
& \text { seals is approximate only. Distribution of cooling air will vary with configuration of the cavity about the tube. }
\end{aligned}
$$

RADIO-FREQUENCY POWER AMPLIFIER - CLASS B

Carrier Conditions per Tube for Use with a Maximum Modulation Factor of 1.0

Maximum Ratings, Absolute Values

Typical Operation

Grounded-grid Circuit, 225-400 Megacycles

DC Plate Volta	8000	Volts
DC Grid-No. 2 Voltage	750	Volts
DC Grid-No. 1 Voltage, appr	-50	Volts
DC Plate Current	0.600	Ampere
DC Grid-No. 2 Current	0.010	Ampere
DC Grid-No. 1 Current	0.060	Ampere
Driving Power, approximate	160	Watts
Measured at crest of audio		
Power Output \#	1500	Watts
Circuit Efficiency	90	Percent
Plate Dissipation .	2500	Watts
Cathode Bombarding Power*	170	Watts
Cathode Bombarding Voltage	650	Volts
Cathode Bombarding Current	0.260	Ampere

PLATE MODULATED RADIO-FREQUENCY AMPLIFIER - CLASS C TELEPHONY

Carrier Conditions with a Maximum Modulation Factor of 1.0, Screen Modulation Required
Maximum Ratings, Absolute Values

PLATE MODULATED RADIO-FREQUENCY AMPLIFIER - CLASS C TELEPHONY (CONT'D)Carrier Conditions with a Maximum Modulation Factor of 1.0, Screen Modulation Required
Typical Operation
Grounded-grid Circuit at 400 Megacycles

DC Plate Voltage	4000	Volts
DC Grid-No. 2 Voltage	400	Volts
DC Grid-No. 1 Voltage	-100	Volts
Peak RF Plate Voltage	2500	Volts
Peak RF Driving Voltage	120	Volts
DC Plate Current	0.570	Ampere
DC Grid-No. 2 Current	0.020	Ampere
DC Grid-No. 1 Current, approximate	0.100	Ampere
Driving Power, approximate	100	Watts
Power Output \#	1250	Watts
Output Circuit Efficiency	90	Percent
Cathode Bombarding Power*	165	Watts
Cathode Bombarding Voltage, approximate	630	Volts
Cathode Bombarding Current, approximate	0.260	Ampere

RADIO-FREQUENCY AMPLIFIER AND OSCILLATOR - CLASS C TELEGRAPHY
Key Down Conditions per Tube Without Amplitude Modulation
Maximum Ratings, Absolute Values

DC Plate Voltage	7000	Volts
DC Grid-No. 2 Voltage	750	Volts
DC Plate Current	1.0	Amperes
Plate Input	6.0	Kilowatts
Grid-No. 2 Input	40	Watts
Plate Dissipation.	5.0	Kilowatts
DC Grid-No. 1 Voltage	120	Volts
DC Grid-No. 1 Current	0.150	Ampere

Typical Operation
Grounded-grid Circuit at 400 Megacycles

DC Plate Voltage	4500	6500	Volts
DC Grid-No. 2 Voltage	600	700	Volts
DC Grid-No. 1 Voltage	-120	-100	Volts
Peak RF Plate Voltage, approximate	3000	-	Volts
Peak RF Grid-No. 1 Voltage	140	140	Volts
DC Plate Current	0.6	0.8	Ampere
DC Grid-No. 2 Current	0.018	0.025	Ampere
DC Grid-No. 1 Current	0.080	0.100	Ampere
Driving Power, approximate	100	100	Watts
Power Output, approximate \#	1800	3200	Watts
Output Circuit Efficiency	90	90	Percent
Cathode Bombarding Power*	160	165	Watts
Cathode Bombarding Voltage, approximate	610	630	Volts
Cathode Bombarding Current, approximate	0.260	0.260	Ampere

Key Down Conditions per Tube Without Amplitude Modulation

Grounded-grid Circuit at 800 Megacycles

* The cathode of the ZP-1039, because of transit-time effects which raise the temperature of the cathode, is subjected to considerable back bombardment in ultra-high-frequency service. The amount of heating due to bombardment is a function of the operating conditions and frequency, and must be compensated for by a reduction of the cathode power input to prevent overheating of the cathode with resulting short life. In any case it is important from a tube life standpoint to keep the cathode power at as low a level as possible consistent with required performance. Bombarder power should be monitored by a suitable wattmeter or DC voltmeter and milliammeter arrangement. For long life, the tube should be put in operation with about 180 watts bombarding power. After the circuit has been adjusted for proper tube operation, bombarding voltage should be reduced to a value slightly above that at which circuit performance is affected. Minor circuit readjustment may be necessary after the above adjustment. The procedure for determining proper bombarding power should be repeated periodically.
§ Measured with complete isolation between cathode and plate.
π Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.
\# Useful power output including power transferred from driver stage.

TYPICAL CHARACTERISTICS

Ef $=7$ Volts AC
Eg2 $=750$ Volts
Bombarding Power $=180$ Watts All Voltages Referenced to Grid

GENERAL (96) ELECTRIC

TUBE DEPARTMENT Schenectady $5, \mathrm{~N} . \mathrm{Y}$.

OBJECTIVE
 TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

DEVELOPMENTAL TYPE

This technical information is proprietary and is furnished only as a service to customers.

$$
\begin{aligned}
& \mathrm{ZP}-1057 \\
& \mathrm{TRIODE}
\end{aligned}
$$

Internal Feedback for CW Oscillator Service Grounded-Grid Operation

Forced-Air Cooled
Metal and Ceramic

The ZP-1057 is a forced-air cooled triode especially designed for CW oscillator service through approximately 2000 megacycles. This tube is particularly well suitea for use in special applications such as high level microwave signal generators operating over an extremely wide frequency range.

The tube features internal feedback which eliminates the need for the complicated external circuit arrangements normally required in oscillator service. This special feature greatly simplifies cavity design, construction and operation, particularly where very broad frequency coverage is required.

Other features include small size metal and ceramic construction, a high efficiency radiator, and an oxide-coated cathode with inherent long life..

ELECTRICAL

Heater Voltage*	-	6.3	-	Volts
Heater Current	3.5	3.8	4.0	Amperes
Cathode Heating Time	1	-	-	Minute
Direct Interelectrode Capacitances				
Input	-	15.5	-	$\mu \mu \mathrm{f}$
Output	-	6.5	-	从uf

MECHANICAL

Mounting Position - Any

Net Weight, approximately
$53 / 4$ Ounces

THERMAT,

Cooling - Forced Air
Through Radiator, at Sea Leve」
Plate Dissipation
Air Flow, 45 C Incoming Air Temperature, minimum

Static Pressure, approximate \qquad
Radiator Hub Temperature, at Point
Adjacent to Anode Seal \downarrow...........
Ceramic Temperature at Any Point, maximum

300 Watts
7 Cubic Feet per Minute
0.7 Inches-Water

250 C
200 C

Maximum Ratings

DC Plate Voltage	1750	Volts
DC Plate Current	0.300	Amperes
DC Grid Voltage	-150	Volts
DC Grid Current	0.050	Amperes
Plate Dissipation	300	Watts

Typical Operation

Grounded-Grid Circuit at 1200 Megacycles, $3 / 4 \lambda$ Output

DC Plate Voltage	1500	Volts
DC Plate Current	0.275	Amperes
DC Grid Voltage	-125	Volts
DC Grid Current	0.045	Amperes
	200	Watts

* Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.

ใ Forced-air cooling to be provided before and during the application of any voltages to limit the anode hub temperature to the value specified.

ELECTRONIC
$\xrightarrow[\text { IN ACTION }]{\text { IND }}$
TUBES

PRELIMINARY
 technical information

 this type. Refer to the Objective Technical Information sheet for design-objective ratings.This technical information is proprietary and is furnished only as a service to customers.

ZP-1079
TETRODE
Pulsed Service
Grounded-Grid Operation
Water Cooled
Metal and Ceramic

Integral Water Jacket

The ZP-1079 is a small-size, four-electrode transmitting tube especially designed for RF grid-pulsed or plate-andscreen pulsed amplifier service at VHF-UHF frequencies. This tetrode is particularly well suited for use in groundbased radar equipment such as steerable array radar.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.
The features of the ZP-1079 include long life and reliability, long pulse width, high peak power, high gain and broadbanding capability.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where high performance and reliability are important.

ELECTRICAL

Minimum

Bogey

Maximum

Heater Voltage § . -
6.3
6.8 Volts

Heater Current . -
5.6

- Amperes

Cathode Heating Time . 1

- Minute

Direct Interelectrode Capacitances*
Input . - 24

- $\quad \mu \mathrm{uf}$

Output
9

- uuf

MECHANICAL

Mounting Position - Any

Net Weight . 14 Ounces

THERMAL

Cooling - Water and Forced Air \ddagger
Water Flow

Anode . 0.5
Pressure Drop at Rated Flow, approx
.

Outlet Temperature
Anode Hub Temperature Δ
Ans Hub Temperature Δ. 250
Air Flow
Anode Ceramic, approximate . 1
Screen and Control Grid, approximate . 1
Heater and Cathode, approximate . 1
Ceramic Temperature at any Point 200

Minimum Gallons per Minute Pound per Square Inch Maximum C Maximum C

Cubic Foot per Minute Cubic Foot per Minute Cubic Foot per Minute Maximum C

RADIO-FREQUENCY POWER AMPLIFIER - Class B

Maximum Ratings
Plate-and Screen-Grid Pulsed, 500 Megacycles

DC Plate Voltage, during pulse . 10
DC Plate Current, during pulse . 10
DC Grid-No. 2 Voltage, during pulse
DC Grid-No. 2 Input

10 Amperes
2000 Volts
15 Watts

RADIO-FREQUENCY POWER AMPLIFIER - Class B (Continued)

n ${ }^{\text {c }}$	750	Watts
DC Grid-No. 1 Voltage, not pulsed	-175	Volts
DC Grid-No. 1 Current, during pulse	2.5	Amperes
Pulse Width $\bigcirc \diamond$	15	Microseconds
Duty Factor $\bigcirc \varnothing$. 0012	

Typical Operation

Grounded-grid Circuit, 500 Megacycles, $1 / 4 \lambda$ Output Circuit
DC Plate Voltage, during pulse . 9 Kilovolts
DC Grid-No. 2 Voltage, during pulse . 1400 Volts
DC Grid-No. 1 Voltage, not pulsed . -125 Volts
Peak RF Plate Voltage . 7000 Volts
Peak RF Grid Voltage . 300 Volts
DC Plate Current, during pulse . 9.2 Amperes
DC Grid-No. 1 Current, during pulse . 1.1 Amperes
DC Grid-No. 2 Current, during pulse . 0.47 Amperes
Driving Power at Tube, during pulse . 2.6 Kilowatts
Power Output, during pulse (useful) . 52 Kilowatts
Pulse Width々 . 15
Duty Factor . 0.001
RADIO-FREQUENCY POWER AMPLIFIER - Class C
Maximum Ratings
Pulsed Drive, 1250 Megacycles

§ Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.

* Control grid connected directly to screen grid.
\ddagger Water and forced air cooling should be applied during the application of any voltages.
Δ Measured at the base of the water jacket and adjacent to the plate terminal.
4 Maximum average value.
\bigcirc For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
\diamond Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
ϕ Maximum ratio of on-time to elapsed time during any 12.5 millisecond period.
$\phi \phi$ Maximum ratio of on-time to elapsed time during any 1.5 -millisecond period.
** A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B^{+}power supply at steady-state voltages greater than 3.5 kilovolts.

CONSTANT CURRENT CHARACTERISTIC
SCREEN VOLTAGE $=2000$ VOLTS
SCREEN VOLTAGE $=2000$ VOLTS
ALL VOLTAGES REFERENCED TO CONTROL GRID

NOT BE USED AS A
SOCKET STOP

CONCENTRICITIES:
THE FOLLOWING TOTAL INDICATOR READINGS ARE MEASURED WITH RESPECT TO A CENTERLINE DETERMINED BY THE CENTERS OF THE ANODE TERMINAL AND CONTROL-GRID TERMINAL.

> DIAMETER DIAMETER B- 0.016 INCHES DIAMETER $C-0.046$ INCHES

TOTAL INDICATOR READING OF FILAMENT-CUP-TERMINAL DIAMETER (C) MEASURED WITH RESPECT TO CENTER OF CATHODE AND FILAMENTTERMINAL DIAMETER $(B)=0.016$ INCHES.

TUBE DEPARTMENT

25-KILOWATTS VHF TELEVISION OUTPUT VHF TETRODE GROUNDED-GRID CIRCUITS

WATER COOLED METAL AND CERAMIC GAIN IN EXCESS OF 10

The GL-6251 is a four-electrode, water-and-forced-air-cooled transmitting tube for use as a power amplifier or oscillator in grounded-grid circuits with both grids maintained at radio-frequency ground potential. The output circuit is connected between the anode and the screen grid. The anode is capable of dissipating twenty-five kilowatts. The cathode is a thoriated-tungsten filament. Maximum ratings apply up to 220 megacycles.

In Class B grounded-grid broadband television amplifier service this tube has a useful synchronizing peak-power out-
put of twenty-five kilowatts at 220 meg acycles. Because of its ratings, the tube is also well adapted to use in dielectricheating equipment.

High operating efficiency is assured because of the close spacing of the tube electrodes, the ring-seal construction, and the low-loss factor due to the silverplated external parts and the ceramic insulator. The ring-seal design permits quick plug-in installation. In addition, the grounded-grid construction eliminates the necessity for neutralization in a properly designed circuit.

Electrical

Minimum	Bogey	Max	imum
\oplus Filament Voltage 5.1	5.5	5.75	Volts
Filament Current at 5.5 Volts	190		Amperes
Filament Starting Current		360	Amperes
Filament Cold Resistance.	0.004		Ohms
Filament Heating Time......... 30			Seconds
Amplification Factor, G_{2} to G_{1}			
Peak Cathode Current*........		30	Amperes
Direct Interelectrode Capacitances §			
Cathode-Plate \dagger.	0.06	. .	$\mu \mu \mathrm{f}$
Input	75	-.	$\mu \mu \mathrm{f}$
Output.	27		$\mu \mu \mathrm{f}$
Mechanical -			
Mounting Position.	Vertical, anode down 15 Pounds		
Net Weight, approximate			

Thermal

RADIO-FREQUENCY AMPLIFIER—CLASS B TELEVISION SERVICE
 Synchronizing-Level Conditions Per Tube Unless Otherwise Specified

* Maximum usable cathode current (plate current plus current to each grid) for any condition of operation.
§ Control grid and screened grid are connected together.
\dagger Measured with 12 -inch diameter flat metal disk attached to the screen-grid terminal and grounded.
\ddagger Calculated from characteristic curve only. This value includes dissipation transferred from driving power. Maximum allowable screen input as indicated by measured d-c current and voltage is much lower because of secondary screen emission.
//DC Grid-No. 2 voltage and current should be held at the minimum values consistent with proper circuit operation. Negative values of screen current are frequently encountered but are not detrimental.
- Useful power output including power transferred from driver stage.
\oplus Denotes a change.
\square Denotes an addition.

CONSTANT CURRENT CHARACTERISTICS
SCREEN VOLTAGE $=700$ VOLTS, CONTROL-GRID GROUNDED
ELECTRODE VOLTAGES MEASURED TO GROUND

(A) MAX. ECCENTRICITY . 040 "

有
WITH RESPECT TO CENTERLINE DETERMINED BY CENTERS OF ANODE TERMINAL \& CONTROL-GRID TERMINAL.

NOTE 1: MATES WITH WIGGINS SOCKET NO. BC-323B OR EQUIVALENT.
E. B. WIGGINS OIL TOOL COMPANY, INC., LOS ANGELES, CALIFORNIA

RADIO-FREQUENCY AMPLIFIER CW SERVICE GROUNDED-GRID OPERATION

FORCED-AIR COOLED METAL AND CERAMIC INTEGRAL RADIATOR

The GL-6283 is a reliable power tetrode that delivers useful output to 1250 megacycles or higher. This tube is particularly suitable for application in the final output or driver stage of military-communications systems.

As a Class B linear amplifier in the $225-400$-megacycle range, the tube will deliver 110 watts of carrier power modulated up to 100 percent. Since a power gain of 20 may be realized, drive requirements are low-approximately 5 watts at carrier level.

Operating as a Class C CW amplifier at 900 megacycles, the gain is approximately 15 at the 200 -watt level.

Features of the GL-6283 include long life and reliability, high gain, high linearity, and resistance to shock and vibration.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where performance and reliability are important.

TETRODE

Electrical

Mechanical

Mounting Position-Any
Net Weight, approximate

RADIO-FREQUENCY POWER AMPLIFIER—CLASS B LINEAR
Carrier conditions per fube for use with a maximum modulation factor of 1.0

Maximum Ratings			Typical Operation		
DC Plate Voltage.	2000	Volts	Grounded-Grid Circuit at 225-400 Megacycles		
DC Grid-No. 2 Voltage	320	Volts	DC Plate Voltage. .	1750	Volts
DC Plate Current.	0.250	Amperes	DC Grid-No. 2 Voltage .	250	Volts
Plate Input	500	Watts	DC Grid-No. 1 Voltage, approximate.	-20	Volts
Grid-No. 2 Input	5	Watts	Peak RF Plate Voltage \#, approximate	1250	Volts
Plate Dissipation	500	Watts	Peak RF Grid-No. 1 Voltage \#, approximate	40	Volts
			DC Plate Current.	0.200	Amperes
			Zero Signal DC Plate Current ($\mathrm{E}_{\mathrm{cl} 1}$ adjusted)	0.020	Amperes ${ }^{\text {a }}$
			DC Grid-No. 2 Current	0.005	Amperes
			DC Grid-No. 1 Current	0.010	Amperes
			Driving Power, approximate	5	Watts
			Power Output ${ }^{\text {P }}$	110	Watts

RADIO-FREQUENCY AMPLIFIER—CLASS B TELEVISION SERVICE
 Synchronizing-Level Conditions Per Tube Unless Otherwise Specified

Maximum Ratings, Absolute Values	DC Plate Current Synchronizing Level. 0.400	Amperes
DC Plate Voltage.... 1600 Max Volts	Pedestal Level 0.295	Amperes
DC Grid-No. 2 Voltage.................. 320 Max Volts	DC Grid-No. 2 Current (Pedesta 1Level) 0.007	Amperes
DC Plate Current. 0.400 Max Amperes Plate Input. 600 Max Watts	DC Grid-No. 1 Current	
Plate Input . 15 Max Watts	Synchronizing Level 0.036	Amperes
Plate Dissipation 500 Max Watts	Pedestal Level. 0.016	Amperes
Grid-No. 1 Dissipation 2 Max Watts	Driving Power at Tube, approximate Synchronizing Level................... 25	Watts
Typical Operation-Grounded-Grid Circuit up to $\mathbf{9 0 0}$ Megacyeles	Pedestal Level. 15	Watts
Bandwidth 6 Megacycles	Power Output, approximate Synchronizing Level『 260	Watts
DC Plate Voltage. 1500 Volts		Watts
DC Grid-No. 2 Voltage 250 Volts	Pedestal Level\| 145	
DC Grid-No. 1 Voltage. -25 Volts		
Peak RF Plate Voltage Volt		
Synchronizing Level. 1100 Volts		
Pedestal Level.................... 825 Volts		
Peak RF Driving Voltage		
Synchronizing Level.......... 35 Volts		
Pedestal Level.............. 27 Volts		

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR—CLASS C TELEGRAPHY

Maximum Ratings	$\begin{gathered} 900 \\ \text { Megacycles } \end{gathered}$	400 Megacycles		Typical Operation Grounded-Grid Circuit at 900 Megacycles			
DC Plate Voltage	1600	2000	Volts	DC Plate Voltage.	1500	2000	Volts
DC Grid-No. 2 Voltage	320	320	Volts	DC Grid-No. 2 Voltage	210	225	Volts
DC Grid-No. 1 Voltage.	-100	-100	Volts	DC Grid-No. 1 Voltage	-40	-40	Volts
DC Plate Current	0.300	0.300	Ampere	DC Plate Current	0.300	0.250	Ampere
DC Grid-No. 1 Current	0.050	0.050	Ampere	DC Grid-No. 2 Current,			
Plate Input	480	600	Watts	approximate	0.010	0.010	Ampere
Grid-No. 2 Input	15	15	Watts	DC Grid-No. 1 Current,			
Plate Dissipation	500	500	Watts	approximate............	0.020	0.020	Ampere
Grid-No. 1 Dissipation	2	2	Watts	Driving Power, approximate Power Output, approximate	14 205	15 300	Watts Watts

* Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.
Represents maximum usable cathode current (plate current plus current to each grid) for any condition of operation.
\ddagger Measured with a 6 -inch minimum diameter flat metal disk attached to the screen-grid ring. Control grid connected to the screen grid.
- Output capacitances measured between anode and screen grid. Control grid connected directly to screen grid.
§ Forced-air cooling to be applied before and during the application of any voltages.
**Provision must be made for unobstructed passage of cooling air between radiator fins and between the anode terminal and adjacent radiator fin.
Useful power output as measured in output-circuit load.
ब| Useful power output including power transferred from driver stage. Output circuit efficiency approximately 80 percent.
\triangle Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 percent of the carrier conditions.

CONSTANT CURRENT CHARACTERISTIC

SCREEN VOLTAGE $=250$ VOLTS
ALL VOLTAGES REFERENCED TO CONTROL GRID

CONCENTRICITIES
THE FOLLOWING TOTAL INDICATOR READINGS ARE MEASURED WITH RESPECT TO A CENTERLINE DETERMINED BY THE CENTERS OF THE ANODE TERMINAL AND CONTROL GRID TERMINAL

$$
\begin{aligned}
& \text { DIAMETER A }-0.030 \text { INCHES } \\
& \text { DIAMETER B }-0.016 \text { INCHES } \\
& \text { DIAMETER } C-0.036 \text { INCHES } \\
& \text { DIAMETER D }-0.042 \text { INCHES }
\end{aligned}
$$

TOTAL INDICATOR READING OF FILAMENT CUP TERMINAL DIAMETER (D) MEASURED WITH RESPECT TO CENTER OF CATHODE AND FILAMENT TERMINAL DIAMETER (C) - 0.016 INCHES

VHF-UHF
 FORCED-AIR COOLED
 RING-SEAL CONSTRUCTION METAL AND CERAMIC GROUNDED-GRID CIRCUIT

The GL-6848 is a four-electrode transmitting tube featuring a metal-andceramic envelope for use as a power amplifier or oscillator in grounded-grid circuits with both grids maintained at radio-frequency ground potential. The output circuit is connected between the anode and the screen grid. The anode is capable of dissipating 2 kilowatts. Cooling is accomplished by forced air with the radiator an integral part of the anode. The cathode is a unipotential thoriated-
tungsten cylinder, heated by electron bombardment. Maximum ratings apply up to 800 megacycles, although higher frequency operation is possible.

In narrow band, Class C, groundedgrid, amplitude-modulated service, the GL-6848 has a useful carrier-power output in excess of one kilowatt. In Class C Telegraphy, it has a useful power output of 3.0 kilowatts of continuous power as an amplifier or oscillator.

Electrical			
Minimum	Bogey	Maximu	
Cathode			
Heater Voltage	6.7	7.0	Volts
Heater Current at 7.0 Volts			
Without Cathode Bom-			
With 150 Watts Cathode			
Heater Starting Current		25	Amperes
Heater Cold Resistance.	0.041	-	Ohms
Cathode Bombarding Power*	170	195	Watts
Cathode Bombarding Vcltage, DC			
For 170 Watts Bombarding Power - 650 - Volts			
For 195 Watts Bombard- ing Power.......... - 700 - Volts			
Cathode Heating Time . . . 1	-	-	Minutes
Amplification Factor, G_{2} to $\mathrm{G}_{1}, \mathrm{E}_{\mathrm{b}}=4000$ volts, $\mathrm{I}_{\mathrm{b}}=0.5$			
Peak Cathode Current \ddagger	-	6	Amperes
Direct Interelectrode Capacitances			
Cathode to Plate§ -	0.01	-	$\mu \mu \mathrm{f}$
Input, G_{2} tied to $\mathrm{G}_{1} \ldots \ldots .$.	27.8	-	$\mu \mu \mathrm{f}$
Output, G_{2} tied to $\mathrm{G}_{1} \uparrow \ldots .$.	6.4	-	$\mu \mu \mathrm{f}$

PLATE MODULATED RADIO-FREQUENCY AMPLIFIER—CLASS C TELEPHONY

Carrier Conditions With a Maximum Modulation Factor of 1.0, Screen Modulation Required

Maximum Ratings, Absolute Values			Typical Operation		
DC Plate Voltage	4500	Volts	Grounded-grid Circuit at 400 Megacycles		
DC Grid-No. 2 Voltage.	500	Volts	DC Plate Voltage.	4000	Volts
DC Grid-No. 1 Voltage.	-120	Volts	DC Grid-No. 2 Voltage.	400	Volts
DC Plate Current	0.80	Ampere	DC Grid-No. 1 Voltage.	-100	Volts
DC Grid-No. 1 Current	0.120	Ampere	Peak RF Plate Voltage.	2500	Volts
Plate Input	3.60	Kilowatts	Peak RF Driving Voltage.	120	Volts
Grid-No. 2 Input	25	Watts	DC Plate Current	0.570	Ampere
Plate Dissipation	2.0	Kilowatts	DC Grid-No. 2 Current.	0.020	Ampere
			DC Grid-No. 1 Current, approximate	0.100	Ampere
			Driving Power, approximate.	100	Watts
			Power Output\#.	1250	Watts
			Output Circuit Efficiency .	90	Percent
			Cathode Bombarding Power*	165	Watts
			Cathode Bombarding Voltage, approx. .	630	Volts
			Cathode Bombarding Current, approx. .	0.260	Ampere

RADIO-FREQUENCY AMPLIFIER AND OSCILLATOR—CLASS C TELEGRAPHY

Key Down Conditions per Tube Without Amplitude Modulation

Maximum Ratings, Absolute Values			Plate Dissipation	2.0	Kilowatts
DC Plate Voltage	7000	Volts	DC Grid-No. 1 Voltage	120	Volts
DC Grid-No. 2 Voltage.	750	Volts	DC Grid-No. 1 Current	0.150	Ampere
DC Plate Current	1.0	Amperes			
Plate Input	6.0	Kilowatts			
Grid-No. 2 Input	40	Watts			

Typical Operation				
Grounded-grid Circuit at 400 Megacycles			Grounded-grid Circuit at 800 Megacycles	
DC Plate Voltage.............. 4500	6500	Volts	DC Plate Voltage. 4500	Volts
DC Grid-No. 2 Voltage 600	700	Volts	DC Grid-No. 2 Voltage. 600	Volts
DC Grid-No. 1 Voltage. -120	-100	Volts	DC Grid-No. 1 Voltage. -120	Volts
Peak RF Plate Voltage, approxi- mate 3000	-	Volts	Peak RF Plate Voltage, approximate 3000 Peak RF Grid-No. 1 Voltage 140	Volts
Peak RF Grid-No. 1 Voltage . . . 140	140	Volts	DC Plate Current . 0.6	Ampere
DC Plate Current. 0.6	0.8	Ampere	DC Grid-No. 2 Current 0.018	Ampere
DC Grid-No. 2 Current 0.018	0.025	Ampere	DC Grid-No. 1 Current 0.080	Ampere
DC Grid-No. 1 Current 0.080	0.100	Ampere	Driving Power, approximate. 90	Watts
Driving Power, approximate . . . 100	100	Watts	Power Output, approximate\# 1250	Watts
Power Output, approximate\#. . . . 1800	3200	Watts	Output Circuit Efficiency 83	Percent
Output Circuit Efficiency 90	90	Percent	Cathode Bombarding Power*. 150	Watts
Cathode Bombarding Power*.... 160	165	Watts	Cathode Bombarding Voltage, approximate 600	Volts
Cathode Bombarding Voltage, approximate. 610	630	Volts	Cathode Bombarding Current, approximate 0.250	Ampere
Cathode Bombarding Current, approximate 0.260	0.260	Ampere		

[^8]

TUBE DEPARTMENT

ONE KILOWATT UHF TELEVISION OUTPUT UHF TETRODE GROUNDED-GRID CIRCUITS
 FORCED-AIR COOLED METAL AND CERAMIC INTEGRAL RADIATOR thoriated-tungsten cathode

The GL-6942 is a four-electrode transmitting tube featuring a metal-andceramic envelope designed for use as a power amplifier or oscillator in groundedgrid circuits with both grids maintained at radio-frequency ground potential. The output circuit is connected between the anode and the screen grid. The anode is capable of dissipating one and one half kilowatts. Cooling is accomplished by forced air with the radiator an integral part of the anode. The cathode is indirectly heated thoriated tungsten. Maximum ratings apply up to 1000 megacycles.

When used as a Class B grounded-grid broadband television amplifier this tube has a useful synchronizing peak-power output of one kilowatt at 900 mega-
cycles; in narrow band Class C service the output is one kilowatt of continuous power as an amplifier or oscillator. Because of its ratings, the tube is also well adapted to use in dielectric-heating equipment.

High operating efficiency is assured because of the small size and close spacing of the tube electrodes, the ring-seal construction, and the low-loss factor due to the silver-plated external parts and the ceramic insulators. In addition, the grounded-grid construction eliminates the necessity for neutralization in a properly designed circuit. The small size of the GL-6942 permits compact mounting, and the ring-seal construction allows quick plug-in installation.

Electrical				
	Minimum	Bogey	Maximum	
Heater Voltage*.	-	5.7	6.0	Volts
Heater Current at 5.7 Volts	22	24	26	Amperes
Heater Starting Current. .	-	-	36	Amperes
Heater Cold Resistance...	-	0.02	-	Ohms
Cathode Heating Time. .	1	-	-	Minutes
```Amplification Factor, GG to G1, Eb =2000 Volts, I 475 Volts............. 12 17```				
Peak Cathode Current $\dagger$	-	-	3.0	Amperes
Direct Interelectrode Capacitances				
Cathode to Plate $\ddagger$. . . .	-	-	0.006	$\mu \mu \mathrm{f}$
Input, $\mathrm{G}_{2}$ tied to $\mathrm{G}_{1} \ldots$	15.5	17.0	18.5	$\mu \mu \mathrm{f}$
Output, $\mathrm{G}_{2}$ tied to $\mathrm{G}_{1}$ §	5.0	5.5	6.0	${ }_{\mu \mu \mathrm{f}}$

## Mechanical

Mounting Position........................................... . . Any
Net Weight, approximate. . . . . . . . . . . . . . . . . . . . . . 3.6 Pounds

## Thermal

Air Flow $\mathbb{T}$
Through
Radiator-See
drawing for air duct
form on page 3.
Plate Dissipation...... 1.5 Kilowatts
Air Flow. ............. 60 Min
Static Pressure ........ 1.5
Cubic Feet per Minute
Heater-to-Cathode Seals 8 Min Cubic Feet per Minute
Screen-Grid to ControlGrid Seals
Anode to Screen-Grid Ceramic Insulator.
Incoming Air Temperature.
4 Min Cubic Feet per Minute
6 Min Cubic Feet per Minute
Radiator Hub Temperature
at Fin Adjacent to Anode
Seal. ..................... 180 Max C
Ceramic Temperature at
Any Point............. 200 Max C
Forced-air cooling to be applied before and during the application of any voltages. Forced-air cooling must be maintained for one minute after the removal of all voltages.

# RADIO-FREQUENCY AMPLIFIER—CLASS B TELEVISION SERVICE 

Synchronizing-Level Conditions per Tube Unless Otherwise Specified


## PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER—CLASS C TELEPHONY <br> Carrier Conditions with a Maximum Madulation Factor of 1.0

Maximum Ratings, Absolute Values		
DC Plate Voltage	3200 Max	Volts
DC Grid-No. 2 Voltage	600 Max	Volts
DC Grid-No. 1 Voltage	-120 Max	Volts
DC Plate Current	0.35 Max	Amperes
Dc Grid-No. 1 Current	0.10 Max	Amperes
Plate Input	1.12 Max	Kilowatts
Grid-No. 2 Input	10 Max	Watts
Plate Dissipation	. 1200 Max	Watts



## RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR—CLASS C TELEGRAPHY

Key-Down Conditions per Tube without Amplitude Modulation A

Maximum Ratings, Absolute Values			Typical Operation-Grounded-Grid	Circuit at 1000	Megacycles,
DC Plate Voltage	4000 Max	Volts	$1 / 4 \lambda$ Output		
DC Grid-No. 2 Voltage	600 Max	Volts	DC Plate Voltage	4000	Volts
DC Grid-No. 1 Voltage	-150 Max	Volts	DC Grid-No. 2 Voltage	500	Volts
DC Plate Current. . .	.0.7 Max	Amperes	DC Grid-No. 1 Voltage DC Plate Current	-110 0.42	Volts
DC Grid-No. 1 Current	0.10 Max	Amperes	DC Prate Current.....	0.42 0.011	Amperes
Plate Input	2.5 Max	Kilowatts	DC Grid-No. 1 Current, appro	mate . 0.055	Amperes
Grid-No. 2 Input	25 Max	Watts	Driving Power, approximate	65	Watts
Plate Dissipation.	.1.5 Max	Kilowatts	Power Output, useful $\phi$.	. 1000	Watts

* The cathode of the GL-6942 because of transit-time effects which raise the temperature of the cathode, is subjected to considerable back bombardment in ultra-high-frequency service. The amount of heating due to bombardment is a function of the operating conditions and frequency, and must be compensated for by a reduction of the heater input to prevent overheating of the cathode with resulting short life. For long life, the GL- 6942 should be put in operation with rated heater voltage. After the circuit has been adjusted for proper tube operation the heater voltage should be reduced to a value slightly above that at which circuit performance is affected. At a frequency of 900 megacycles and with typical operating conditions the heater voltage can be reduced to approximately 5.3 volts. At lower frequencies, the reduction will be less. Minor curcuit readjustment may be necessary after this adjustment.
$\dagger$ Represents maximum useable cathode current (plate current plus current to each grid) for any condition of operation.
$\ddagger$ Measured with complete external shielding between cathode and anode.
§ Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.
IT The volume of cooling air indicated for the various seals is for sea-level conditions and approximate only. Distribution of cooling air will vary with the cavity configuration about the tube. For most staisfactory operation the maximum temperature of any point on the tube should be below 200 C .
$\phi$ Useful power output including power transferred from driver stage.
The carrier of the driver modulated 100 percent.
$\mathbf{M}$ Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 percent of the carrier conditions.


K-69087-72A592
8-29-56



TOTAL INDICATOR READINGS
NOTE 1: $0.020^{\prime \prime}$
NOTE 2: $0.030^{\prime \prime}$
NOTE 3: $0.060^{\prime \prime}$

The above readings are measured with respect to a centerline determined by the centers of the anode terminal and control-grid terminal.

TUBE DEPARTMENT


## PULSED SERVICE GROUNDED-GRID OPERATION

## FORCED-AIR COOLED METAL AND CERAMIC

## INTEGRAL RADIATOR

The GL-7399 is a small-size, fourelectrode transmitting tube especially designed for pulsed-amplifier or -oscillator service at L-band frequencies. This tetrode is particularly well suited for use in airborne or ground-based radar equipment.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.

Features of the GL-7399 include long
life and reliability, long pulse width, high peak power and high gain, broad-banding capability, and resistance to shock and vibration.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where performance and reliability are important.


## RADIO-FREQUENCY POWER AMPLIFIER-CLASS B

## Maximum Ratings

Plate- and Screen-Grid Pulsed, 500 Megacycles

DC Plate Voltage, during pulse . . . . . . . 10	Kilovolts
DC Plate Current, during pulse. . . . . . . . 10	Amperes
DC Grid-No. 2 Voltage, during pulse. . . 2000	Volts
DC Grid-No. 2 Input ${ }_{\text {¢ }}$. . . . . . . . . . . . . . . 15	Watts
Plate Dissipation \& . . . . . . . . . . . . . . . . . 500	Watts
DC Grid-No. 1 Voltage, not pulsed.... - 175	Volts,
DC Grid-No. 1 Current, during pulse . . . 2.5	Amperes
Pulse Width ${ }^{\text {¢ }}$. . . . . . . . . . . . . . . . . . . . 15	Microseconds
Duty Factor $\phi$. . . . . . . . . . . . . . . . . 0.0012	

Typical Operation
Grounded-grid Circuit, 500 Megacycles

DC Plate Voltage, during pulse.......... . 9	Kilovolts
DC Grid-No. 2 Voltage, during pulse... 1400	Volts
DC Grid-No. 1 Voltage, not pulsed. . . . - 125	Volts
Peak RF Plate Voltage . . . . . . . . . . . . . 7000	Volts
Peak RF Grid Voltage . . . . . . . . . . . . . . . 300	Volts
DC Plate Current, during pulse. . . . . . . . 9.2	Amperes
DC Grid-No. 1 Current, during pulse. . . . 1.1	Amperes
DC Grid-No. 2 Current, during pulse. . 0.47	Amperes
Driving Power at Tube, during pulse . . . 2.6	Kilowatts
Power Output, during pulse (useful)..... . 52	Kilowatts
Pulse Width . . . . . . . . . . . . . . . . . . . . 1.	Microseconds
Duty Factor. . . . . . . . . . . . . . . . . . . . . 0.001	

[^9] optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.

## RADIO-FREQUENCY POWER AMPLIFIER-CLASS C

Maximum Ratings			Typical Operation	
Pulsed Drive, 1250 Megacycles			Grounded-grid Circuit at 1100 Megacycles, 3/4 $\lambda$	Output Circuit
DC Plate Voltage.		Kilovolts	DC Plate Voltage ${ }^{* *}$. . . . . . . . . . . . . . . . . 4.8	Kilovolts
DC Plate Current, during pulse	6	Amperes	DC Plate Current, during pulse. . . . . . . . 4.2	Amperes
DC Grid-No. 2 Voltage. . . . .	1.1	Kilovolts	DC Grid-No. 2 Voltage. . . . . . . . . . . . . . . . . 1	Kilovolt
DC Grid-No. 2 Input. .	. 5	Watts	DC Grid-No. 2 Current, during pulse.... 100	Milliamperes
DC Grid-No. 1 Voltage	-225	Volts	DC Grid-No. 1 Voltage.............. - 200	Volts
DC Grid-No. 1 Current	1.5	Amperes	DC Grid-No. 1 Current, during pulse.... 200	Milliamperes
Plate Dissipation	500	Watts	Driving Power at Tube, during pulse . . . . 1.5	Kilowatts
Pulse Width ${ }^{\text {a }}$.	15	Microseconds	Power Output, during pulse (useful)..... . 11	Kilowatts
Duty Factor $\phi \phi$.	0.01			Microseconds
			Duty Factor. . . . . . . . . . . . . . . . . . . . . 0.01	

* Control grid connected directly to screen grid.
$\dagger$ Complete external shielding between cathode and plate.
$\ddagger$ Forced air cooling should be applied during the application of any voltages.
§ Provision must be made for unobstructed passage of cooling air between radiator fins, and between the anode terminal and adjacent fins.
Measured at the base of the fin adjacent to the plate terminal. See outline drawing on page 4.
Maximum average value.
- For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
- Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
$\phi$ Maximum ratio of on-time to elapsed time during any 12.5 -millisecond period.
$\phi \phi$ Maximum ratio of on-time to elapsed time during any 1.5 -millisecond period.
${ }^{* *}$ A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B + power supply at steadystate voltages greater than 3.5 kilovolts.




> CONCENTRICITIES

THE FOLLOWING TOTAL INDICATOR READINGS ARE MEASURED WITH RESPECT TO A CENTERLINE DETERMINED BY THE CENTERS OF THE ANODE TERMINAL AND CONTROL GRID TERMINAL

$$
\begin{aligned}
& \text { DIAMETER A-0.030 INCHES } \\
& \text { DIAMETER B-0.0I6 INCHES } \\
& \text { DIAMETER C-0.036 INCHES } \\
& \text { DIAMETER D-0.042 INCHES }
\end{aligned}
$$

TOTAL INDICATOR READING OF FILAMENT CUP TERMINAL DIAMETER (D) MEASURED WITH RESPECT TO CENTER OF CATHODE AND FILAMENT TERMINAL DIAMETER (C) - 0.016 INCHES

## GL-7985

# TETRODE 

## Electrical

Minimum	Bogey	Maximum		
Cathode				
Heater Voltage	6.7	7.0	Volts	
Heater Current at 7.0 Volts				
Without Cathode Bombarding	14.5	-	Amperes	
With 150 Watts Cathode Bombarding	13.5	-	Amperes	
Heater Starting Current		25	Amperes	
Heater Cold Resistance.	0.041	-	Ohms	
Cathode Bombarding Power*.	170	195	Watts	
Cathode Bombarding Voltage, DC				
For 170 Watts Bombarding Power.	650	-	Volts	
For 195 Watts Bombarding Power	700	-	Volts	
Cathode Heating Time	-	-	Minutes	
Amplification Factor, $\mathrm{G}_{2}$ to $\mathrm{G}_{1}, \mathrm{E}_{\mathrm{b}}=4000$ volts, $\mathrm{I}_{\mathrm{b}}=0.5$ Ampere	20	-		
Peak Cathode Current $\ddagger$	-	6	Amperes	
Direct Interelectrode Capacitances				
Cathode to Plate§.	0.01	-	$\mu \mu \mathrm{f}$	
Input, $\mathrm{G}_{2}$ tied to $\mathrm{G}_{1}$	27.8	-	$\mu \mu \mathrm{f}$	
Output, $\mathrm{G}_{2}$ tied to $\mathrm{G}_{1} \mathrm{\\|}$	6.4	-	$\mu \mu \mathrm{f}$	

## VHF-UHF

## RING-SEAL CONSTRUCTION GROUNDED-GRID CIRCUIT

The GL-7985 is a four-electrode transmitting tube featuring a metal-andceramic envelope for use as a power amplifier or oscillator in grounded-grid circuits with both grids maintained at radio-frequency ground potential. The output circuit is connected between the anode and the screen grid. The anode is capable of dissipating $31 / 2$ kilowatts. Cooling is accomplished by water and forced air with the water jacket an integral part of the anode. The cathode is a unipotential thoriated-tungsten cylinder, heated by electron bombardment. Maxi-

## WATER COOLED <br> METAL AND CERAMIC INTEGRAL WATER JACKET

mum ratings apply up to 800 megaycles, although higher frequency operation is possible.

In narrow band, Class C , groundedgrid, amplitude-modulated service, the GL-7985 has a useful carrier-power output in excess of one kilowatt. In Class C Telegraphy, it has a useful power output of 3.0 kilowatts of continuous power as an amplifier or oscillator.

As a Class $B$ radio-frequency power amplifier, the tube is capable of delivering 1100 watts of power with 20 watts of drive at carrier level.

Mounting Position-Vertical, Anode-end Up Net Weight, approximate
2.0 Pounds

## Thermal

Type of Cooling-Water and Forced Air
Water Flow
Anode................3.0 Min Gallons per Minute

Pressure Drop at
Rated Flow . . . . . . . . . 20 Max Pounds per Square Inch
Water Pressure .......... 80 Max Pounds per Square Inch
Outlet Water Temperature 70 Max C
Air Flow
Screen-grid to Control-grid
Seals......... 15 Min Cubic Feet per Minute
Heater-to-Cathode Seals. . 7.5 Min Cubic Feet per Minute
Anode Ceramic.......... 10 Min Cubic Feet per Minute
Temperature at Any Point. . 200 Max C

Water and forced-air cooling to be applied before and during the application of any voltages. Water cooling may be discontinued with removal of all voltages. Air flow on heater-to-cathode seals must be maintained for one minute after removal of heater voltage.

## RADIO-FREQUENCY POWER AMPLIFIER-CLASS B

Carrier Conditions per Tube for use with a Maximum Modulation Factor of 1.0


## PLATE MODULATED RADIO-FREQUENCY AMPLIFIER—CLASS C TELEPHONY

Carrier Conditions With a Maximum Modulation Factor of 1.0, Sereen Modulation Required

Maximum Ratings, Absolute Values			DC Grid-No. 2 Voltage	400	Volts
DC Plate Voltage	4500	Volts	DC Grid-No. 1 Voltage	-100	Volts,
DC Grid-No. 2 Voltage	500	Volts	Peak RF Plate Voltage.	2500	Volts
DC Grid-No. 1 Voltage	-120	Volts	Peak RF Driving Voltage	120	Volts
DC Plate Current.	0.80	Ampere	DC Plate Current	0.570	Ampere
DC Grid-No. 1 Current	0.120	Ampere	DC Grid-No. 2 Current	0.020	Ampere
Plate Input	3.60	Kilowatts	DC Grid-No. 1 Current, approximate.	0.100	Ampere
Grid-No. 2 Input	25	Watts	Driving Power, approximate	100	Watts
Plate Dissipation	3.5	Kilowatts	Power Output\#	1250	Watts
Typical Operation			Output Circuit Efficiency .	90 165	Percent
Grounded-grid Circuit at 400 Megacycles			Cathode Bombarding Voltage, approx.	630	Volts
DC Plate Voltage. . . . . . . . . . . . .	4000	Volts	Cathode Bombarding Current, approx.	0.260	Ampere

## RADIO-FREQUENCY AMPLIFIER AND OSCILLATOR—CLASS C TELEGRAPHY

## Key Down Conditions per Tube Without Amplitude Modulation



Plate Dissipation	3.5	Kilowa
DC Grid-No. 1 Voltage	120	Volts
DC Grid-No. 1 Current	0.15	Ampere


Grounded-grid Circuit at 800 Megacycles		
DC Plate Voltage	4500	Volts
DC Grid-No. 2 Voltage	600	Volts
DC Grid-No. 1 Voltage	-120	Volts
Peak RF Plate Voltage, approximate.	3000	Volts
Peak RF Grid-No. 1 Voltage	140	Volts
DC Plate Current	0.6	Ampere
DC Grid-No. 2 Current	0.018	Ampere
DC Grid-No. 1 Current	0.080	Ampere
Driving Power, approximate	90	Watts
Power Output, approximate\#	1250	Watts
Output Circuit Efficiency	83	Percent
Cathode Bombarding Power*	150	Watts
Cathode Bombarding Voltage, app	600	Volts
Cathode Bombarding Current, approxi	0.250	Ampere

* The cathode of the GL-7985, because of transit-time effects which raise the temperature of the cathode, is subjected to considerable back bombardment in ultra-high-frequency service. The amount of heating due to bombardment is a function of the operating conditions and frequency, and must be compensated for by a reduction of the cathode power input to prevent overheating of the cathode with resulting short life. In any case it is important from a tube life standpoint to keep the cathode power at as low a level as possible consistent with required performance. Bombarder power should be monitored by a suitable wattmeter or DC voltmeter and milliammeter arrangement. For long life, the tube should be put in operation with about 180 watts bombarding power. After the circuit has been adjusted for proper tube operation, bombarding voltage should be reduced to a value slightly above that at which circuit performance is affected. Minor circuit readjustment may be necessary after the above adjustment. The procedure for determining proper bombarding power should be repeated periodically.
$\ddagger$ Represents maximum usable cathode current (plate current plus current to each grid) for any condition of operation.
§ Measured with complete isolation between cathode and plate.
\| Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.
- \# Useful power output including power transferred from driver stage.

NOTE 1: Top portion same as top portion of Hansen B2T16 Mates with Hansen 2-S17 Socket or equiv.

WATER
CONNECTIONS


The following indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and control grid terminal.

Total Indicator Readings -
Diameter A - 0.024 inches
Diameter B - 0.024 "
Diameter C - 0.030 "
Diameter D - 0.050 "

## TUBE DEPARTMENT GENERAL (\%) ELECTRIC

Owensboro, Kentucky


GL-8500

## RADIO-FREQUENCY AMPLIFIER CW SERVICE GROUNDED-GRID OPERATION

FORCED-AIR COOLED METAL AND CERAMIC INTEGRAL RADIATOR

The GL-8500 is a reliable power tetrode that delivers useful output to 1250 megacycles or higher. This tube is particularly suitable for application in the final output or driver stage of military-communications systems.
As a Class B linear amplifier in the $225-400$-megacycle range, the tube will deliver 110 watts of carrier power modulated up to 100 percent. Since a power gain of 20 may be realized, drive requirements are low-approximately 5 watts at carrier level.

Operating as a Class C CW amplifier at 900 megacycles, the gain is approximately 15 at the 200 -watt level.

Features of the GL-8500 include long life and reliability, high gain, high linearity, and resistance to shock and vibration.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where performance and reliability are important.

Electrical						Thermal			
	Minimum	Bogey	Maximum		Cooling-Forced Air§				
Heater Voltage*...	-	6.3	6.8	Volts	Through Radiator, at				
Heater Current.		3.8		Amperes	Sea Level**				
Cathode Heating Time	1	-	-	Minutes	Plate Dissipation.	500	400	300	Watts
Amplification Factor,					Air Flow, 45 C Incoming Air Tem-				
$\mathrm{DC} ; \mathrm{E}_{8} 2=275 \mathrm{~V} \mathrm{DC}$;					perature, mini-				
$\mathrm{I}_{\mathrm{b}}=0.2 \mathrm{~A} \mathrm{DC.....}$.	-	14	-		mum.	17.0	12.0	6.5	Cubic Feet
Peak Cathode Current $\dagger$	-	-	1.75	Amperes					per Minute
Direct Interelectrode					Static Pressure, approximate.	0.9	0.5	0.2	Inches-
Cathode to Plate $\ddagger$. .	-	0.006	-	$\mu \mu \mathrm{f}$					Water
Input, $\mathrm{G}_{2}$ tied to $\mathrm{G}_{1}$. Output, $\mathrm{G}_{2}$ tied to $\mathrm{G}_{1}$	-	19.5	-	$\mu \mu \mathrm{f}$	Radiator Hub Tem-				
	-	6.4	-	$\mu \mu \mathrm{f}$	perature, at Point				
					Adjacent to Anode Seal.	-	-	250	C
Mechanical					Seals				
Mounting Position-Any Net Weight, approximate			1.0	Pounds	Screen-Grid to Con-trol-Grid, approxi-				
					mate............	-	-	1	Cubic Feet per Minute
					Heater to Cathode, approximate.	-	-	1	Cubic Feet per Minute
					Ceramic Temperature at Any Point, maximum.	-	-	200	C

## RADIO-FREQUENCY POWER AMPLIFIER-CLASS B LINEAR

Carrier conditions per tube for use with a maximum modulation factor of 1.0

Maximum Ratings			Typical Operation		
DC Plate Voltage.	2000	Volts	Grounded-Grid Circuit at 225-400 Megacycles		
DC Grid-No. 2 Voltage.	320	Volts	DC Plate Voltage.	1750	Volts
DC Plate Current.	0.250	Amperes	DC Grid-No. 2 Voltage	250	Volts
Plate Input	500	Watts	DC Grid-No. 1 Voltage, approximate.	-20	Volts
Grid-No. 2 Input	5	Watts	Peak RF Plate Voltage \#, approximate.	1250	Volts
Plate Dissipation.	500	Watts	Peak RF Grid-No. 1 Voltage \#, approximate	40	Volts
			DC Plate Current. . . . . . . . . . . . . . . .	0.200	Amperes
			Zero Signal DC Plate Current ( $\mathrm{E}_{\mathrm{cl} 1}$ adjusted)	0.020	Amperes
			DC Grid-No. 2 Current	0.005	Amperes
			DC Grid-No. 1 Current.	0.010	Amperes
			Driving Power, approximate	5	Watts
			Power Output	110	Watts

## RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR—CLASS C TELEGRAPHY

Key-down conditions per tube without amplitude modulation $\triangle$

Max	$900$   Megacycles	$400$   Megacycles		Typical Operation   Grounded-Grid Circuit at 900 Megacycles			
DC Plate Voltage	1600	2000	Volts	DC Plate Voltage.........	1500	2000	Volts
DC Grid-No. 2 Voltage.	320	320	Volts	DC Grid-No. 2 Voltage	210	225	Volts
DC Grid-No. 1 Voltage.	-100	-100	Volts	DC Grid-No. 1 Voltage	-40	-40	Volts
DC Plate Current.	0.300	0.300	Ampere	DC Plate Current	0.300	0.250	Ampere
DC Grid-No. 1 Current	0.050	0.050	Ampere	DC Grid-No. 2 Current,			
Plate Input	480	600	Watts	approximate	0.010	0.010	Ampere
Grid-No. 2 Input	15	15	Watts	DC Grid-No. 1 Current,			
Plate Dissipation	500	500	Watts	approximate	0.020	0.020	Ampere
Grid-No. 1 Dissipation	2	2	Watts	Driving Power, approximate	14	15	Watts
				Power Output, approximate ${ }^{\text {d }}$	205	300	Watts

* Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.
$\dagger$ Represents maximum usable cathode current (plate current plus current to each grid) for any condition of operation.
$\ddagger$ Measured with a 6 -inch minimum diameter flat metal disk attached to the screen-grid ring. Control grid connected to the screen grid.
Output capacitances measured between anode and screen grid. Control grid connected directly to screen grid.
§ Forced-air cooling to be applied before and during the application of any voltages.
**Provision must be made for unobstructed passage of cooling air between radiator fins and between the anode terminal and adjacent radiator fin.
YUseful power output as measured in output-circuit load.
ๆ Useful power output including power transferred from driver stage. Output circuit efficiency approximately 80 percent.
$\triangle$ Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 percent of the carrier conditions.


## CONSTANT CURRENT CHARACTERISTIC

ALL VOLTAGES REFERENCED TO CONTROL GRID



CATHODE AND FILAMENT TERMINAL GAGES

The following total indicator readings are measured with respect to a centerline determined by the centers of the anode tarminal and control grid terminal.

> Diameter A - 0.030 inches
> Diameter B -0.016 inches Diameter C -0.036 inches Diameter D - 0.042 inches

Total indicator reading of filament cup terminal diameter (D) measured with respect to center of cathode and filament terminal diameter (C) - 0.016 inches.

When inserted over the cathode and filament terminal, gage \#l shall not contact the tube REFERENCE SURFACE at gage SURFACE "A".

When inserted over the cathode and filament terminal, gage \#2 shall contact the tube REFERENCE SURFACE at gage SURFACE "A".

## GL-8513

## TETRODE

## VHF-UHF RING-SEAL CONSTRUCTION

GROUNDED-GRID CIRCUIT

## FORCED-AIR COOLED METAL AND CERAMIC

The GL-8513 is a four-electrode transmitting tube featuring a metal-and-ceramic envelope for use as a power amplifier or oscillator in grounded-grid circuits with both grids maintained at radio-frequency ground potential. The output circuit is connected between the anode and the screen grid. The anode is capable of dissipating 4 kilowatts. Cooling is accomplished by forced air with the radiator an integral part of the anode. The cathode is a unipotential thoriated-tungsten cylinder, heated by electron bombardment. Maximum ratings apply up to 800 megacycles, although higher frequency operation is possible.

As a Class B linear power amplifier the tube will deliver 1500 watts at carrier level.
In narrow band, Class C, grounded-grid, amplitude-modulated service, the GL-8513 has a useful carrier-power output in excess of one kilowatt. In Class C Telegraphy, it has a useful power output of 3 kilowatts of continuous power as an amplifier or oscillator.

Electrical			
Minimum	Bogey	Maxi mum	
Cathode mum			
Heater Voltage	6.7	7.0	Volts
Heater Current at 7.0 Volts			
Without Cathode Bombarding -	14.5	-	Amperes
With 150 Watts Cathode			
Bombarding	13.5		Amperes
Heater Starting Current		25	Amperes
Heater Cold Resistance	0.041		Ohms
Cathode Bombarding Power*	170	195	Watts
Cathode Bombarding Voltage, DC			
For 170 Watts Bombarding			
For 195 Watts Bombarding			
Power. . . . . . . . . . . . . . . -	700	-	Volts
Cathode Heating Time. . . . . . . 1	-	-	Minute
Amplification Factor, $\mathrm{G}_{2}$ to $\mathrm{G}_{1}$;			
$\mathrm{E}_{\mathrm{b}}=4000$ volts; $\mathrm{I}_{\mathrm{b}}=0.5$ ampere. - Peak Cathode Current $\dagger$	20	6	Amperes
Direct Interelectrode Capacitances			
Cathode to Plate§.	0.01	-	$\mu \mu \mathrm{f}$
Input, $\mathrm{G}_{2}$ tied to $\mathrm{G}_{1}$.	27.8	-	$\mu \mu \mathrm{f}$
Output, $\mathrm{G}_{2}$ tied to $\mathrm{G}_{1}$ ब	6.7	-	$\mu \mu \mathrm{f}$
Mechanical			
Mounting Position-Vertical, Anode-end Up			
Net Weight, approximate.		12.5	Pounds



Forced-air cooling to be applied before and during the application of any voltages. Air flow on heater-to-cathode seals must be maintained for one minute after removal of heater voltage. The radiator air ducting can be constructed so that air is forced along the anode seal and ceramic through the anode contact fingers and additional holes in the plate contact ring to accomplish the anode ceramic and anode seal cooling. The volume of cooling air indicated for the various seals is approximate only. Distribution of cooling air will vary with configuration of the cavity about the tube.

## RADIO-FREQUENCY POWER AMPLIFIER-CLASS B

Carrier Conditions per Tube for Use with a Maximum Modulation Factor of 1.0


# PLATE MODULATED RADIO-FREQUENCY AMPLIFIER-CLASS C TELEPHONY 

Carrier Conditions with a Maximum Modulation Factor of 1.0, Screen Modulation Required


## RADIO-FREQUENCY AMPLIFIER AND OSCILLATOR—CLASS C TELEGRAPHY

Key Down Conditions per Tube Without Amplitude Modulation

Maximum Ratings, Absolute Values			Power Output, approximate\#. . . . . 1800 Output Circuit Efficiency	3200 90	Watts   Percent
DC Plate Voltage .....	7000	Volts	Cathode Bombarding Power* ..... 160	165	Wercent
DC Grid-No. 2 Voltage DC Plate Current.	750 1.0	Volts	Cathode Bombarding Voltage,		
Plate Input....	6.0	Kilowatts	approximate.............. 610	630	Volts
Grid-No. 2 Input	40	Watts	Cathode Bombarding Current,		
Plate Dissipation	4.0	Kilowatts	approximate . . . . . . . . ....... 0.260	0.260	Ampere
DC Grid-No. 1 Voltage	120	Volts	Grounded-grid Circuit at $\mathbf{8 0 0}$ Megacycles		
DC Grid-No. 1 Current	0.150	Ampere	DC Plate Voltage	4500	Volts
Typical Operation			DC Grid-No. 2 Voltage.	600	Volts
Grounded-grid Circuit at 400 Megacycles			DC Grid-No. 1 Voltage'. . . . . . . . . .	-120 3000	Volts
DC Plate Voltage . . . . . . . . . . . . . . 4500	6500	Volts	Peak RF Grid-No. 1 Voltage......	140	Volts
DC Grid-No. 2 Voltage.......... 600	700	Volts	DC Plate Current.......	0.6	Ampere
DC Grid-No. 1 Voltage .......... - 120	$-100$	Volts	DC Grid-No. 2 Current	0.018	Ampere
Peak RF Plate Voltage,			DC Grid-No. 1 Current	0.080	Ampere
approximate ............... 3000	-	Volts	Driving Power, approximate	90	Watts
Peak RF Grid-No. 1 Voltage. . . . . 140	140	Volts	Power Output, approximate\#	1250	Watts
DC Plate Current. . . . . . . . . . . . 0.6	0.8	Ampere	Output Circuit Efficiency....	83	Percent
DC Grid-No. 2 Current . . . . . . . 0.018	0.025	Ampere	Cathode Bombarding Power*	150	Watts
DC Grid-No. 1 Current. . . . . . . . 0.080	0.100	Ampere	Cathode Bombarding Voltage, approximate	600	Volts
Driving Power, approximate . . . . . . 100	100	Watts	Cathode Bombarding Current, approximate .	0.250	Ampere

* The cathode of the GL-8513, because of transit-time effects which raise the temperature of the cathode, is subjected to considerable back bombardment in ultra-high-frequency service. The amount of heating due to bombardment is a function of the operating conditions and frequency, and must be compensated for by a reduction of the cathode power input to prevent overheating of the cathode with resulting short life. In any case it is important from a tube life standpoint to keep the cathode power at as low a level as possible consistent with required performance. Bombarder power should be monitored by a suitable wattmeter or DC voltmeter and milliammeter arrangement. For long life, the tube should be put in operation with about 180 watts bombarding power. After the circuit has been adjusted for proper tube operation, bombarding voltage should be reduced to a value slightly above that at which circuit performance is affected. Minor circuit readjustment may be necessary after the above adjustment. The procedure for determining proper bombarding power should be repeated periodically.
$\dagger$ Represents maximum usable cathode current (plate current plus current to each grid) for any condition of operation.
8 Measured with complete isolation between cathode and plate.
- Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.
\# Useful power output including power transferred from driver stage.

TYPICAL CHARACTERISTICS
$\mathrm{Eg} 2=750$ Volts, Ef $=7$ Volts AC
Bombarding Power $=180$ Watts
All Voltages Referenced to Grid


## GL-8513

ET-T1716
Page 4
2.65



## GRID-PULSED SERVICE GROUNDED-GRID OPERATION

## HEAT-SINK AND FORCED-AIR COOLED METAL AND CERAMIC



## RADIO-FREQUENCY POWER AMPLIFIER-CLASS C

Maximum Ratings
Pulsed Drive, 1250 Megacycles

DC Plate Voltage	3.5	Kilovolts
DC Plate Current, during pulse		Amperes
DC Grid-No. 2 Voltage.	. 750	Volts
DC Grid-No. 2 Input		Watts
DC Grid-No. 1 Voltage	-200	Volts
Plate Dissipation	150	Watts
Pulse Width	15	Microseconds
Duty Factor ${ }^{\text {d }} \phi$	. 02	

## Typical Operation

Grounded-Grid Service at 1100 Megacycles,	, $1 / 4$	Output Circuit
DC Plate Voltage . . . . . . . . . . . . . . 2.5	2.5	Kilovolts
DC Plate Current, during pulse . . . 1.4	1.0	Amperes
DC Grid-No. 2 Voltage.......... 600	600	Volts
DC Grid-No. 2 Current, during pulse	0	Milliamperes
DC Grid-No. 1 Voltage. . . . . . . . -70	$-70$	Volts
DC Grid-No. 1 Current, during pulse	80	Milliamperes
Driving Power at the Tube, during pulse	95	Watts
Power Output, during pulse (useful) $.1 .6$	1.0	Kilowatts
Pulse Width . . . . . . . . . . . . . . . . . . 6	6	Microseconds
Duty Factor . . . . . . . . . . . . . . . . . . . 02	. 02	

[^10]

TOTAL INDICATOR READING OF FILAMENT CUP - TERMINAL DIAMETER (D) MEASURED WITH RESPECT TO CENTER OF CATHODE AND FILAMENT TERMINAL DIAMETER (C) 0.016 INCH

TUBE DEPARTMENT


## INTERNAL FEEDBACK FOR OSCILLATOR SERVICE GROUNDED-GRID OPERATION <br> METAL AND CERAMIC HEAT-SINK AND FORCED-AIR COOLED

The GL-51025 is a heat-sink-cooled triode especially designed for pulsed oscillator service in L-band. This type is particularly well suited for use in airborne or ground-based radar equipment.

The tube features internal feedback which eliminates the need for the complicated external circuit arrangements normally required in oscillator service.

Other features include small size, high peak power, long-pulse-width capability, long life and reliability.

Minimum Bogey Maximum

## Electrical

Heater Voltage*		6.3	-	Volts
Heater Current	3.5	3.8	4.0	Amperes
Cathode Heating Time	1	-	-	Minute
Direct Interelectrode				
Cathode to Plate	-	0.45	-	$\mu u f$
Input	-	15.5	-	u 4 f
Output	-	5.9	-	$\mu \mu \mathrm{f}$

## Mechanical

Mounting Position - Any
Net Weight, approximate
$31 / 4$
Ounces

## Thermal

Cooling - Heat-Sink and Forced Air
Anode Temperature§ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Ceramic Temperature at Any Point, maximum . . . . . . . . . . . . . . . . . . . . . 200
C

PLATE-PULSED OSCILLATOR - CLASS C

## Maximum Ratings

DC Plate Voltage, During Pulse	8.0	Kilovolts
DC Plate Current, During Pulse	10.0	Amperes
DC Grid Voltage, During Pulse.	-400	Volts
DC Grid Current, During Pulse	5.0	Amperes
Plate Dissipation §	110	Watts
Grid Dissipation	3.5	Watts
Pulse Width $\diamond$	10	Microseconds

## Typical Operation

## Grounded-Grid Service at 1300 Megacycles, $3 / 4 \lambda$ Output Circuit

DC Plate Voltage, During Pulse	8.0	6.0	Kilovolts
DC Plate Current, During Pulse	9.0	7.0	Amperes
DC Grid Current, During Pulse (Grid Resistor $=50$ Ohms)	4.0	4.3	Amperes
Power Output, During Pulse (useful)	40.0	24.0	Kilowatts
Pulse Width	10	10	Microseconds
Duty Factor	0.003	0.001	

## GRID-PULSED OSCILLATOR - CLASS C

## Maximum Ratings

| DC Plate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 2.5 |
| :--- | :--- | Kilovolts

Pulse Width $\diamond$15
Duty Factor $\phi \phi$ ..... 0.02

## Typical Operation

Grounded-Grid Circuit at 1100 Megacycles, $1 / 4 \lambda$ Output

DC Plate Voltage	1750	1950	2200	Volts
DC Plate Current, During Pulse	2.2	2.6	2.7	Amperes
DC Grid Voltage Supply**	97	-104	-104	Volts
DC Grid Current, During Pulse	1.05	1.2	1.25	Amperes
Power Output, During Pulse (useful)	1.5	2.0	2.4	Kilowatts
Pulse Width .		10	10	Microseconds
Duty Factor .	0.02	0.02	0.02	

* Because of back-heating due to transit time effects, it may be necessary to reduce the heater voltage. For the $1100 \mathrm{mcs}, 2 \mathrm{kw}, 0.02$ duty condition, the typical heater voltage is 5.5 volts. The optimum heater voltage for any application should be determined by RF performance testing.
§ A suitable clamp-on radiator or heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified. Higher plate dissipation is allowable with provision for proper cooling.
$\diamond$ Pulse duration is measured between points at 70 percent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse. For applications requiring longer pulses, refer to the tube manufacturer.
$\phi$ Maximum ratio of on-time to elapsed time during any $3.3-$ millisecond period.
$\phi \phi$ Maximum ratio of on-time to elapsed time during any 75 -millisecond period.
** With a series grid resistance of 50 ohms.




CONCENTRICITIES:
THE FOLLOWING TOTAL INDICATOR READINGS ARE MEASURED WITH RESPECT TO A CENTERLINE DETERMINED BY THE CENTERS OF THE ANODE TERMINAL AND CONTROL-GRID TERMINAL.

DIAMETER A-0.030 INCHES
DIAMETER B-0.036 INCHES
DIAMETER C- 0.042 INCHES
TOTAL INDICATOR READING OF FILAMENT-CUP TERMINAL DIAMETER (C) MEASURED WITH RESPECT TO CENTER OF CATHODE AND FILAMENT-TERMINAL DIAMETER (B)-0.016 INCHES.

TUBE DEPARTMENT

## GL-51038



## PULSED SERVICE GROUNDED-GRID OPERATION

FORCED.AIR COOLED INTEGRAL RADIATOR

The GL-51038 is a small-size, four-electrode transmitting tube especially designed for RF gridpulsed or plate-and-screen pulsed amplifier service at L-band frequencies. This tetrode is particularly well suited for use in airborne or ground - based radar equipment.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.

Features of the GL-51038 include
long life and reliability, long pulse width, high peak power and high gain, broad-banding capability, and resistance to shock and vibration.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where high performance and reliability are important.

Electrical	Minimum	Bogey	Maximum	
Heater Voltage (See Note 1)	-	6.3	6.8	Volts
Heater Current . . . . . . .	-	5.6	-	Amperes
Cathode Heating Time.	1	-	-	Minute
Direct Interelectrode Capacitances*				
Input . .	-	24	-	$\mu \mu \mathrm{f}$
Output.	-	9	-	$\mu \mu \mathrm{f}$
Mechanical				
Mounting Position - Any				
Net Weight			0.8	Pounds
Thermal				
Cooling - Forced Air $\ddagger$				
Radiator§				
Plate Dissipation.	600	400	-	Watts
Air Flow, 45 C incoming air temperature, at sea level	9	4.5	_	Min Cubic Feet per Minute
Static Pressure, approximate. . .	0.5	0.2	-	Inches-Water
Anode Hub Temperature $\triangle$. .			250	Max C
Seals				
Screen and Control Grid, approximate .			1	Cubic Foot per Minute
Heater and Cathode, approximate . . .			1	Cubic Foot per Minute
Ceramic Temperature at any Point .			200	Max C

Note 1: Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.

Maximum Ratings
Plate- and Screen-Grid Pulsed, 500 Megacycles
DC Plate Voltage, during pulse ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
DC Plate Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
DC Grid-No. 2 Voltage, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . 2000
DC Grid-No. 2 Input 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Plate Dissipation \& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
DC Grid-No. 1 Voltage, not pulsed -175
DC Grid-No. 1 Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . 2.5
Pulse Width $\diamond$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Duty Factor $\varnothing$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0012
Kilovolts
Amperes
Volts
Watts
Watts
Volts
Amperes
Microseconds

## Typical Operation

Grounded-grid Circuit, 500 Megacycles, $1 / 4 \lambda$ Output Circuit
DC Plate Voltage, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DC Grid-No. 2 Voltage, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . 1400
DC Grid-No. 1 Voltage, not pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . -125
Peak RF Plate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7000
Peak RF Grid Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
DC Plate Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2
DC Grid-No. 1 Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . 1.1
DC Grid-No. 2 Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . 0.47
Driving Power at Tube, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6
Power Output, during pulse (useful) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Pulse Width> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Duty Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.001

## Kilovolts

Volts
Volts
Volts
Volts

## Amperes

Amperes
Amperes
Kilowatts
Kilowatts
Microseconds

## RADIO-FREQUENCY POWER AMPLIFIER - CLASS C

## Maximum Ratings

Pulsed Drive, 1250 Megacycles
DC Plate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Kilovolts
DC Plate Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Amperes
DC Grid-No. 2 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Kilovolts
DC Grid-No. 2 Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Watts
DC Grid-No. 1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -225 Volts
DC Grid-No. 1 Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Amperes
Plate Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 Watts
Pulse Width $\diamond$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Duty Factor $\phi \phi$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.01

## Typical Operation

Grounded-grid Circuit at 1100 Megacycles, $3 / 4 \lambda$ Output Circuit
DC Plate Voltage ${ }^{* *}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 Kilovolts
DC Plate Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Amperes
DC Grid-No. 2 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
DC Grid-No. 2 Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . 100
DC Grid-No. 1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -200
DC Grid-No. 1 Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . 20
Driving Power at Tube, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . 1.
Power Output, during pulse (useful) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pulse Width» . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Duty Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.01

* Control grid connected directly to screen grid.
$\ddagger$ Forced air cooling should be applied during the application of any voltages.
§ Provision must be made for unobstructed passage of cooling air through the radiator fins, and between the anode terminal and adjacent portion of the radiator.
$\Delta$ Measured at the base of the radiator and adjacent to the plate terminal.
\& Maximum average value.
- For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
$\checkmark$ Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
$\phi$ Maximum ratio of on-time to elapsed time during any 12.5 -millisecond period.
$\phi \varnothing$ Maximum ratio of on-time to elapsed time during any 1.5 -millisecond period.
** A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B+ power supply at steady-state voltages greater than 3.5 kilovolts.





## CONCENTRICITIES:

The following total indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and control grid terminal.

Diameter $A-0.030$ inches
Diameter $B=0.016$ inches
Diameter $C-0.036$ inches
Diameter $D-0.042$ inches
Total indicator reading of filament cup terminal diameter ( $D$ ) measured with respect to center of cathode and filament rerminal diameter (C) -0.016 inches.

## TUBES



## PULSED SERVICE GROUNDED-GRID OPERATION

## FORCED-AIR COOLED METAL AND CERAMIC

 INTEGRAL RADIATORThe GL-51038R is a small-size, four-electrode transmitting tube especially designed for $R F$ gridpulsed or plate-and-screen pulsed amplifier service at $L$-band frequencies. This tetrode is particularly well suited for use in airborne or ground - based radar equipment.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.

Features of the GL-51038R in-
clude long life and reliability, long pulse width, high peak power and high gain, broad-banding capability, and resistance to shock and vibration.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where high performance and reliability are important.

Electrical
Heater Voltage (See Note 1)
Minimum Bogey Maximum

Heater Current . . . . . . . . . . . . . . . . . . . . . -
Cathode Heating Time . . . . . . . . . . . . . . . . . . . .
Direct Interelectrode Capacitances*
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 24
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 9

Mechanical
Mounting Position - Any
Net Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8 Pounds

Thermal
Cooling - Forced Air $\ddagger$
Radiator§
Plate Dissipation . . . . . . . . . . . . . . . . . . . . $600 \quad 400$ - Watts
Air Flow, 45 C incoming air temperature,
at sea level ..................... 9
Static Pressure, approximate . . . . . . . . . . . . . 0.5
Anode Hub Temperature $\triangle$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Seals
Screen and Control Grid, approximate . . . . . . . . . . . . . . . . . . . . . . . 1
Heater and Cathode, approximate
Ceramic Temperature at any Point200

Note 1: Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.

## RADIO-FREQUENCY POWER AMPLIFIER - CLASS B

## Maximum Ratings

Plate- and Screen-Grid Pulsed, 500 Megacycles
DC Plate Voltage, during pulse ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Kilovolts
DC Plate Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Amperes
DC Grid-No. 2 Voltage, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . 2000 Volts
DC Grid-No. 2 Input 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Plate Dissipation \& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
DC Grid-No. 1 Voltage, not pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
DC Grid-No. 1 Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . 2.5
Pulse Width 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Duty Factor $\varnothing$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0012
Typical Operation
Grounded-grid Circuit, 500 Megacycles, $1 / 4 \lambda$ Output Circuit
DC Plate Voltage, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DC Grid-No. 2 Voltage, during pulse. . . . . . . . . . . . . . . . . . . . . . . . . 1400
DC Grid-No. 1 Voltage, not pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . -125
Peak RF Plate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7000
Peak RF Grid Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
DC Plate Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2
DC Grid-No. 1 Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . 1.1
DC Grid-No. 2 Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . 0.47
Driving Power at Tube, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6
Power Output, during pulse (useful) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Pulse Width久 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Kilovolts
Volts
Volts
Volts
Volts
Amperes
Amperes
Amperes
Kilowatts
Kilowatts
Microseconds

Watts
Watts
Volts
Amperes
Microseconds

## RADIO-FREQUENCY POWER AMPLIFIER - CLASS C

## Maximum Ratings

Pulsed Drive, 1250 Megacycles
DC Plate Voltage
Kilovolts
DC Plate Current, during pulse
Amperes
DC Grid-No. 2 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1
DC Grid-No. 2 Input
Kilovolts
DC Grid-No. 1 Voltage
Watts

DC Grid-No. 1 Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5
Plate Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Pulse Width $\diamond$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Duty Factor $\phi \phi$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.01

## Typical Operation

Grounded-grid Circuit at 1100 Megacycles, $3 / 4 \lambda$ Output Circuit
Amperes
Watts
Microseconds

DC Plate Voltage **
DC Plate Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8
DC Grid-No. 2 Voltage
4.2

DC Grid-No. 2 Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . 100
DC Grid-No. 1 Voltage
-200
DC Grid-No. 1 Current, during pulse
200
Driving Power at Tube, during pulse
1.5

Power Output, during pulse (useful)
11
Pulse Width $\diamond$
15
Duty Factor 0.01

Kilovolts
Amperes
Kilovolt
Milliamperes
Volts
Milliamperes
Kilowatts
Kilowatts
Microseconds

* Control grid connected directly to screen grid.
$\ddagger$ Forced air cooling should be applied during the application of any voltages.
§ Provision must be made for unobstructed passage of cooling air through the radiator fins, and between the anode terminal and adjacent portion of the radiator.
$\Delta$ Measured at the base of the radiator and adjacent to the plate terminal.
\& Maximum average value.
For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
$\diamond$ Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
$\varnothing$ Maximum ratio of on-time to elapsed time during any 12.5 -millisecond period.
фф Maximum ratio of on-time to elapsed time during any 1.5 -millisecond period.
** A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B+ power supply at steady-state voltages greater than 3.5 kilovolts.


CONSTANT CURRENT CHARACTERISTIC
ALL VOLTAGES REFERENCED TO CONTROL GRID



## CONCENTRICITIES:

The following total indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and control grid terminal.

> Diameter A -0.030 inches
> Diameter B -0.016 inches
> Diameter C -0.036 inches
> Diameter D -0.042 inches

Total indicator reading of filament cup terminal diameter (D) measured with respect to center of cathode and filament terminal diameter (C) -0.016 inches.


## VHF-UHFMETAL CERAMIC TETRODE 4 KILOWATTS USEFUL CW OUTPUT 750 WATTS CLASS B LINEAR OUTPUT <br> FORCED AIR COOLED INTEGRAL RADIATOR THORIATED-TUNGSTEN CATHODE

The GL-51064 is a forced-air cooled power tetrode that delivers useful output to approximately 1250 megacycles. This tube is particularly suitable for application as an AM or FM power amplifier in the final output or driver stage of VHF UHF military communications systems.

The tube features high power gain, as much as 14 db , while delivering up to 4000 watts of useful CW power as a grounded-grid Class C amplifier at 400 mega-
cycles. An output capacitance of only $6.0 \mu \mu \mathrm{f}$, which is significantly low for a tube of its power handling capability, makes the GL-51064 well suited for application in equip ments requiring broad electronic bandwidth.

Other features include metalceramic construction, a high efficiency axial flow radiator capable of dissipating 2750 watts, and an indirectly heated thoriated tungsten cathode.

Electrical	Minimum	Bogey	Maximum	
Heater Voltage *		5.7		Volts
Heater Current at 5.7 Volts	22	24	26	Amperes
Heater Starting Current			36	Amperes
Heater Cold Resistance		0.02		Ohms
Cathode Heating Time.	1	. . .	. . .	Minute
Amplification Factor, $\mathrm{G}_{2}$ to $\mathrm{G}_{1}$				
$\mathrm{Eb}=2000$ Volts, $\mathrm{I}_{\mathrm{b}}=0.200$ Ampere, $\mathrm{E}_{\mathrm{c}} 2=475$ Volts	12	17	22	
Direct Interelectrode Capacitances				
Cathode to Plate $\ddagger$			0.006	uиf
Input, $G_{2}$ tied to $G_{1}$	15.5	17.0	18.5	ци ${ }_{\text {f }}$
Output, $\mathrm{G}_{2}$ tied to $\mathrm{G}_{1}$ §	. .	6.0	...	uuf

## Mechanical

Mounting Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Netical
Neight, approximate

## Thermal

Cooling-Forced Air $\mathbb{I}$
Through Radiator, at Sea Level

Plate Dissipation
2.75 Kilowatts
2.0 Kilowatts
1.5 Kilowatts

Air Flow
140 Min CFM
90 Min CFM
55 Min CFM

Static Pressure
1.9 Inches Water 0.8 Inches Water
0.4 Inches Water

Seals
Screen-Grid to Control-Grid
4 Min CFM
Heater-to-Cathode 8 Min CFM
Anode to Screen-Grid Ceramic Insulator 6 Min CFM
Incoming Air Temperature 25 Max C
Radiator Hub Temperature (Adjacent to Anode Seal).
180 Max C
Temperature at Any Other Point
200 Max C
Forced-air cooling to be applied before and during the application of any voltages. Forced-air cooling must be maintained for one minute after the removal of all voltages.

Maximum Ratings, Absolute Values	420 mcs	1000 m	
DC Plate Voltage	8000	6000	Max Volts
DC Grid-No. 2 Voltage	650	650	Max Volts
DC Grid-No. 1 Voltage	-175	-175	Max Volts
DC Plate Current. . . .	0.700	0.700	Max Amperes
DC Grid-No. 1 Current	0.175	0.175	Max Amperes
Plate Input.	5.6	4.2	Max Kilowatts
Grid-No. 2 Input	25	25	Max Watts
Plate Dissipation.	2.75	2.75	Max Kilowatts
Typical Operation - Grounded-Grid Circuit @ 400 mcs			
DC Plate Voltage	5500	7500	Volts
DC Grid-No. 2 Voltage	600	600	Volts
DC Grid-No. 1 Voltage	-100	-100	Volts
DC Plate Current.	0.450	0.650	Amperes
DC Grid-No. 2 Current	0.012	0.016	Amperes
DC Grid-No. 1 Current	0.085	0.155	Amperes
Driving Power, approx	90	150	Watts
Power Output, useful $\varnothing$	2000	4000	Watts
Power Gain, approx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5 14.3 db			
RADIO-FREQUENCY POWER AMPLIFIER - CLASS B LINEAR SERVICE			
Maximum Ratings at 420 Megacycles, Absolute Values			
DC Plate Voltage		8000	Max Volts
DC Grid-No. 2 Voltage		650	Max Volts
DC Plate Current. .		585	Max Milliamperes
Plate Input		4150	Max Watts
Grid-No. 2 Input		16	Max Watts
Plate Dissipation.		2750	Max Watts
Typical Operation at 400 Mcs , Carrier Conditions for Maximum Modulation Factor of 1.0			
DC Plate Voltage .		7500	Volts
DC Grid-No. 2 Voltage		600	Volts
DC Grid-No. 1 Voltage, approx		-50	Volts
DC Plate Current. . . . . . .		330	Milliamperes
DC Grid-No. 2 Current		5	Milliamperes
DC Grid-No. 1 Current		30	Milliamperes
Driving Power, approx.		17.5	Watts
Power Output, useful $\varnothing$.		750	Watts
Power Gain, approx . .		16	db

* Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater voltage reduction is dependent on operating conditions.
$\ddagger$ Measured with complete external shielding between cathode and anode.
§ Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid. $\pi$ The volume of cooling air indicated for the various seals is for sea-level conditions and approximate only. Distribution of cooling air will vary with the cavity configuration about the tube. For most satisfactory operation the maximum temperature of any point on the tube should be below specified limits.
$\phi$ Useful power output including power transferred from driver stage.


PLATE VOLTAGE IN VOLTS



TUBE DEPARTMENT

Schenectady, N. Y. 12305

ELECTRONIC


## GRID-PULSED SERVICE GROUNDED-GRID OPERATION

The GL-51065 is a high-performance, forced-air cooled, metalceramic tetrode especially designed for grid-pulsed amplifier service (pulsed RF drive only) at L-band frequencies. This tetrode is particularly well suited for use in radar equipment such as advanced ground-

## FORCED - AIR COOLED METAL AND CERAMIC

based, ship-board or airborne IFF interrogators. It is capable of providing useful output at frequencies up to approximately 1500 megacycles.

Features of the GL-51065 include long life and reliability, high gain with pulsed RF drive only, long pulse width, and high-duty capability.

## Minimum Bogey Maximum

Electrical Minin	Minimum	Bogey	Maximum	
Heater Voltage*.	-	6.3	-	Volts
Heater Current	-	3.8	-	Amperes
Cathode Heating Time.	1	-	-	Minute
Direct Interelectrode Capacitances**				
Cathode to Plate $\dagger$	-	0.006	-	$u \mu \mathrm{f}$
Input	-	20	-	uuf
Output	-	7.5	-	$u \mu \mathrm{f}$
Mechanical				
Mounting Position				Any
Net Weight, approximate			.	Ounces
Thermal				
Cooling - Forced-Air $\ddagger$				
Through Radiator, at Sea Level				
Plate Dissipation .		600	400	Watts
Air Flow, 45 C Incoming Air Temperature, minimum	um	9	4.5	Cubic Feet per Minute
Static Pressure, approximate . . . . . . . . . . . . . .		0.5	0.2	Inches Water
Radiator Hub Temperature at Point Adjacent to Anode Seal, maximum§				
Seals				
Screen and Control Grid, approximate			1	Cubic Feet per Minute
Heater and Cathode, approximate			1	Cubic Feet per Minute
Ceramic Temperature at Any Point, maximum			200	

RADIO-FREQUENCY POWER AMPLIFIER

## Maximum Ratings

Pulsed Drive, 1250 Megacycles
DC Plate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DC Plate Current, during pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
DC Grid-No. 2 Voltage
DC Grid-No. 2 Input
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Grid-No. 1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -200
Plate Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
Pulse Width $\diamond$
600
Duty Factor $\varnothing$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.01

Kilovolt
Kilovolts
Amperes
Watts
Volts
Watts
Microseconds

## Typical Operation

Grounded-Grid Service at 1030 Megacycles,			
DC Plate Voltage $\phi$ ¢	4.5	3.5	Kilovolts
DC Plate Current, during pulse	5.3	3.0	Amperes
DC Grid-No. 2 Voltage	750	750	Volts
DC Grid-No. 2 Current, during pulse	0.110	0.065	Amperes
DC Grid-No. 1 Voltage, approximate	-115	-75	Volts
DC Grid-No. 1 Current, during pulse	0.850	0.400	Amperes
Driving Power at the Tube, during pulse	1.5	0.5	Kilowatts
Power Output, during pulse (useful)	11.0	4.5	Kilowatts
Pulse Width	10	10	Microseconds
Duty Factor	0.01	0.03	

* Under the typical operating conditions shown the filament voltage should be reduced to approximately 6.0 volts because of back-heating resulting from transit time effects.
** Control grid connected directly to screen grid.
$\dagger$ Complete external shielding between cathode and plate.
$\ddagger$ Forced-air cooling should be applied during the application of any voltages.
§ Provision must be made for unobstructed passage of cooling air to limit the anode hub temperature to the value specified.
$\diamond$ Pulse duration is measured between pointsat 70 percent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
$\emptyset$ Maximum ratio of on-time to elapsed time during any 1 -millisecond period. Higher duty may be allowed with lower tube input as indicated under typical operation at 0.03 duty. For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
$\phi \varnothing$ A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B+ power supply at steady-state voltaces greater than 3.5 kilovolts.




## CONCENTRICITIES:

The following total indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and control grid terminal.

Diameter A - 0.030 inches
Diameter B - 0.016 inches
Diameter C - 0.036 inches
Diameter D - 0.042 inches
Total indicator reading of filament cup terminal diameter (D) measured with respect to center of cathode and filament terminal diameter (C) - 0.016 inches.

TUBE DEPARTMENT

RADIO-FREQUENCY AMPLIFIER CW SERVICE GROUNDED-GRID OPERATION FORCED-AIR COOLED METAL AND CERAMIC INTEGRAL RADIATOR

The GL-51070 is a reliable power tetrode that delivers useful output to 1250 megacycles or higher. This tube is particularly suitable for application in the final output or driver stage of military-communications systems.

As a Class B linear amplifier in the 225-400 megacycle range, the tube will deliver 110 watts of carrier power modulated up to 100 percent. Since a power gain of 20 may be realized, drive requirements are low - approximately 5 watts at carrier level.

Operating as a Class C CW amplifier at 900 megacycles, the gain is approximately 15 at the 200 -watt level.

Features of the GL-51070 include long life and reliability, high gain, high linearity, and resistance to shock and vibration.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where performance and reliability are important.

Electrical	Minimum	Bogey	Maximum	
Heater Voltage*	-	6.3	6.8	Volts
Heater Current	-	3.8	-	Amperes
Cathode Heating Time.	1	-	-	Minutes
Amplification Factor, $\mathrm{G}_{2}$ to $\mathrm{G}_{1}, \mathrm{E}_{\mathrm{b}}=1000$ Volts DC;				
$\mathrm{Eg} 2=275^{2}$ Volts DC; $\mathrm{I}_{\mathrm{b}}=0.2 \mathrm{~A}$ DC. . . . . . . . . . .	-	14	-	
Direct Interelectrode Capacitances				
Cathode to Plate $\ddagger$. . . . . . . .	-	0.006	-	$\mu \mu \mathrm{f}$
Input, $\mathrm{G}_{2}$ tied to $\mathrm{G}_{1}$	-	20	-	$\mu \mu \mathrm{f}$
Output, $\mathrm{G}_{2}$ tied to $\mathrm{G}_{1} \diamond$	-	7.5	-	$\mu \mu \mathrm{f}$
Mechanical				
Mounting Position - Any				
Net Weight, approximate	. . .	. .	- 13	Ounces
Thermal				
Cooling - Forced Air §				
Through Radiator, at Sea Level **				
Plate Dissipation . . . .	600	400		Watts
Air Flow, 45 C Incoming Air Temperature, minimum	9	4.5		Cubic Feet per Minute
Static Pressure, approximate . . . . . . . . . . . . .	0.5	0.2		Inches-Water
Radiator Hub Temperature at Point Adjacent to Anode Seal	-	-	250	C

## Thermal(cont'd)

Seals				
Screen-Grid to Control-Grid, approximate	-	-	1	Cubic Fo
Heater to Cathode, approximate	-	-	1	Cubic Fo
Ceramic Temperature at Any Point, maximum	-	-	200	C
RADIO-FREQUENCY POWER AMPLIFIER - CLASS B LINEAR				
Carrier conditions per tube for use with a maximum modulation factor of 1.0				
Maximum Ratings				
DC Plate Voltage			2000	Volts
DC Grid-No. 2 Voltage			320	Volts
DC Plate Current.			0.250	Ampere
Plate Input			500	Watts
Grid-No. 2 Input.			5	Watts
Plate Dissipation			600	Watts
Typical Operation				
Grounded-Grid Circuit at 225-400 Megacycles				
DC Plate Voltage.			1750	Volts
DC Grid-No. 2 Voltage			250	Volts
DC Grid-No. 1 Voltage, approximate			-20	Volts
Peak RF Plate Voltage \#, approximate			1250	Volts
Peak RF Grid-No. 1 Voltage \#, approximate			40	Volts
DC Plate Current			0.200	Ampere
Zero Signal DC Plate Current ( $\mathrm{E}_{\mathrm{cl}}$ adjusted).			0.020	Ampere
DC Grid-No. 2 Current.			0.005	Ampere
DC Grid-No. 1 Current.			0.010	Ampere
Driving Power, approximate			5	Watts
Power Output . . . . . . . . . . . . . . .			110	Watts

## RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR - CLASS C TELEGRAPHY

Key-down conditions per tube without amplitude modulation $\Delta$

Maximum Ratings	900	400	
	Megacycles	Megacycles	
DC Plate Voltage	1600	2000	Volts
DC Grid-No. 2 Voltage	320	320	Volts
DC Grid-No. 1 Voltage	-100	-100	Volts
DC Plate Current. .	0.300	0.300	Ampere
DC Grid-No. 1 Current	0.050	0.050	Ampere
Plate Input	480	600	Watts
Grid-No. 2 Input	15	15	Watts
Plate Dissipation	600	600	Watts
Grid-No. 1 Dissipation	2	2	Watts

## Typical Operation



* Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.
$\ddagger$ Measured with a 6 -inch minimum diameter flat metal disk attached to the screen-grid ring. Control grid connected to the screen grid.
$\diamond$ Output capacitances measured between anode and screen grid. Control grid connected directly to screen grid.
§ Forced-air cooling to be applied before and during the application of any voltages.
** Provision must be made for unobstructed passage of cooling air between radiator fins and between the anode terminal and adjacent radiator fin.
- Useful power output as measured in output-circuit load.
$\uparrow$ Useful power output including power transferred from driver stage. Output circuit efficiency approximately 80 percent.
$\Delta$ Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 percent of the carrier conditions.
\# Measured at the crest of the audio-frequency cycle with a modulation factor of 1.0.


A69087 - 72B67 (1-30-62)

CONSTANT CURRENT CHARACTERISTIC
SCREEN VOLTAGE $=350$ VOLTS
ALL VOLTAGES REFERENCED TO CONTROL GRID


PLATE VOLTAGE IN VOLTS


## CONCENTRICITIES:

The following total indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and control grid terminal.

$$
\begin{aligned}
& \text { Diameter A - } 0.030 \text { inches } \\
& \text { Diameter B - } 0.016 \text { inches } \\
& \text { Diameter C - } 0.036 \text { inches } \\
& \text { Diameter D - } 0.042 \text { inches }
\end{aligned}
$$

Total indicator reading of filament cup terminal diameter ( $D$ ) measured with respect to center of cathode and filament terminal diameter (C) - 0.016 inches.

TUBE DEPARTMENT


## o

- 

$-8$.

# INTERNAL FEEDBACK FOR OSCILLATOR SERVICE GROUNDED-GRID OPERATION HEAT-SINK AND FORCED-AIR COOLED METAL AND CERAMIC 

The GL-51074 is a higher-voltage version of the GL-51025. Ratings include a DC plate voltage of 3500 volts under grid-pulsed-oscillator service for 5 kilowatts of peak power output at 0.005 duty.

Other features include small size, high peak power as a plate-pulsed oscillator, long-pulse-width capability, long life and reliability.

Minimum Bogey Maximum

## Electrical

Heater Voltage*	-	6.3	-	Volts
Heater Current	3.5	3.8	4.0	Amperes
Cathode Heating Time	1	-	-	Minute
Direct Interelectrode				
Cathode to Plate	-	0.5	-	$\mu \mathrm{m}$
Input	-	15.5	-	$\mu \mu \mathrm{f}$
Output	-	5.9	-	$\mu \mu_{\mathrm{f}}$

## Mechanical

Mounting Position - Any
Net Weight, approximate $31 / 4$

Ounces

## Thermal

Cooling - Heat-Sink and Forced Air
Anode Temperature§ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Ceramic Temperature at Any Point, maximum . . . . . . . . . . . . . . . . . . . . 200
C

PLATE-PULSED OSCILLATOR - CLASS C
Maximum Ratings

DC Plate Voltage, During Pulse	8.0	Kilovolts
DC Plate Current, During Pulse	10.0	Amperes
DC Grid Voltage, During Pulse.	-400	Volts
DC Grid Current, During Pulse	5.0	Amperes
Plate Dissipation§	110	Watts
Grid Dissipation	3.5	Watts
Pulse Width	10	Microseconds

## Typical Operation

## Grounded-Grid Service at 1300 Megacycles, $3 / 4 \lambda$ Output Circuit

DC Plate Voltage, During Pulse . . . . . . . . . . . . . . . . . . . . . . . . . 8.0 6.0 Kilovolts
9.0
DC Plate Current, During Pulse7.0
Amperes
4.0
DC Grid Current, During Pulse4.3Amperes
(Grid Resistor $=50 \mathrm{Ohms}$ )
Power Output, During Pulse (useful) ..... 40.0
Pulse Width ..... 1024.0 Kilowatts10 Microseconds
Duty Factor ..... 0 .0030.001
GRID-PULSED OSCILLATOR - CLASS C
Maximum Ratings
DC Plate Voltage ..... 3.75
DC Plate Current, During Pulse ..... 3.7
DC Grid Voltage ..... -200
Plate Dissipation ..... 15
Duty Factor $\phi \phi$ ..... 0.02
Kilovolts
Amperes
Volts
Watts Microseconds
Typical Operation
Grounded-Grid Circuit at 1100 Megacycles, $1 / 4 \lambda$ Output
DC Plate Voltage ..... 3500
DC Plate Current, During Pulse ..... 3.5
DC Grid Voltage Supply** ..... 110
DC Grid Current, During Pulse ..... 1.7
Power Output, During Putse (useful) ..... 5.0 ..... 10
2200 ..... 2.7 ..... -104 ..... 1.25
Pulse Width ..... 0 .005 ..... 2.4
Duty Factor ..... 0.02

Volts Amperes Volts Amperes Kilowatts Microseconds

[^11]



## CONCENTRICITIES:

THE FOLLOWING TOTAL INDICATOR READINGS ARE MEASURED WITH RESPECT TO A CENTERLINE DETERMINED BY THE CENTERS OF THE ANODE TERMINAL AND CONTROL-GRID TERMINAL.

DIAMETER A-0.030 INCHES
DIAMETER B-0.036 INCHES DIAMETER C- 0.042 INCHES
TOTAL INDICATOR READING OF FILAMENT-CUP TERMINAL DIAMETER (C) MEASURED WITH RESPECT TO CENTER OF CATHODE AND FILAMENT-TERMINAL DIAMETER (B)-0.0I6 INCHES.

TUBE DEPARTMENT
GENERAL ELECTRIC
Schenectady, N. Y. 12305

EMHCTMOMIt
INWOVATIONS
\% \% \&
TUBES

## INDUSTRIAL EQUIPMENT TYPES TUBE MANUAL

## REGISTRATION PAGE

This tube manual is recorded in the name and at the address shown above. To assure prompt receipt of the revised and new data that are issued in regular supplemental mailings, will you please notify us immediately of any changes of address or transfer of the manual to another person. If you should move, or if you transfer this manual to another person, RETURN THIS PAGE TO US WITH YOUR NEW ADDRESS OR WITH THE NEW OWNER (AND ADDRESS) OF THE MANUAL INDICATED IN THE ABOVE SQUARE.

WE CANNOT CHANGE YOUR ADDRESS OR TRANSFER ANY MANUAL UNLESS YOU RETURN THIS PAGE WITH THE NECESSARY CHANGES INDICATED TO:

GENERAL ELECTRIC COMPANY
Tube Products Department, A. \& S. P.
316 East Ninth Street
Owensboro, Kentucky 42301
We will apply this change, if you have more than one manual, to all those recorded in your name.

Date change requested $\qquad$

TUBES

## PUBLICATION TITLE

DATE OF ISSUE
Registration Page, ET-T1726C ..... 12-70
Safety Precautions. ET-T2004-1 ..... 9-70
GENERAL (Tabbed Divider)
Electronic Tube Manual Index ET-T1730G ..... 12-70
Table of Contents, IET-1E ..... 12-70
Introduction, IET-2B ..... 7-66
ECSO Product Listing and Sales Offices, ET-F20B ..... 12-69
Numerical Listing of Types, IET-3D. ..... 12-70
TUBESTYPES AND PUBLICATION NUMBERDATE OF ISSUE
IGNITRONS (Tabbed Divider)
Selection Chart, ET-T1507D ..... 9-66
Ignitron Accessories, ET-T1379B ..... 4-63
Service Notes, ET-T1470B ..... 7-66
Data Arrangement, IET-16A ..... 12-70
PULSE IGNITRONS(Tabbed Divider)GL-5630, IET-6A12-70
GL-6228, IET-7A ..... 12-70
GL-7171, ET-T1512A ..... 4-63
GL-7703, ET-T1625 ..... 8-60
GL-37207, ET-T2011 ..... 12-69
GL-37248, ET-T2012A ..... 12-70
RECTIFIER IGNITRONS(Tabbed Divider)
GL-5554, ET-T1129A ..... 4-63
GL-5555, ET-T1573A Pages 1 thru 6 ..... 4-63
GL-5555, ET-T1573A Page 7 ..... 12-67
GL-5564, ET-T1130A ..... 4-63
GL-5630, ET-T1575B ..... 12-70
GL-5779, ET-T1376A ..... 4-63
GL-5788, ET-T1184B ..... 10-66
GL-6228, ET-T1037B ..... 12-70
GL-6504, ET-T1131B ..... 4-63
GL-6509, ET-T1132A ..... 4-63
GL-6512, ET-T1133A ..... 4-63
GL-6513, ET-T1134A ..... 4-63
GL-6514, ET-T1185B ..... 10-66
GL-6515, ET-T1135A ..... 4-63
GL-6878, ET-T1284B ..... 4-63
GL-6958, ET-T1479A ..... 4-63
GL-7042, ET-T1510A ..... 4-63
GL-7681, ET-T1626C ..... 11-65
GL-7736, ET-T1681 ..... 4-63
GL-8420, ET-T1680A ..... 10-66
GL-8465, ET-T1731A ..... 10-66
GL-8466, ET-T1731A ..... 10-66
TYPES AND PUBLICATION NUMBER
DATE OF ISSUE
WELDING CONTROL IGNITRONS(Tabbed Divider)
GL-5550, ET-T1574A page 1 and 2 ..... 4-63
GL-5550, ET-T1574A page 3 ..... 12-67
GL-5551A, ET-T1219B ..... 4-63
GL-5552A, ET-T1220B ..... 4-63
GL-5553B, ET-T1221B page 1-4 ..... 4-63
GL-5553B, ET-T1221B page 5 ..... 12-67
GL-5554, IET-8A ..... 12-70
GL-5555, IET-9A ..... 12-70
GL-5564, IET-10A ..... 12-70
GL-5788, IET-11A ..... 12-70
GL-5822A, ET-T1351A ..... 4-63
GL-6512, IET-12A ..... 12-70
GL-6513, IET-13A ..... 12-70
GL-6514, IET-14A ..... 12-70
GL-6515, IET-15A ..... 12-70
GL-7151, ET-T1511B ..... 4-63
GL-7669, ET-T1639B ..... 12-67
GL-7670, ET-T1628A page 1-2 ..... 4-63
GL-7670, ET-T1628A page 3 ..... 10-66
GL-7671, ET-T1640A page 1-4 ..... 4-63
GL-7671, ET-T1640A page 5 ..... 10-66
GL-7672, ET-T1643A ..... 4-63
GL-7673, ET-T1649A ..... 4-63
GL-7681, ET-T1626B ..... 4-63
GL-7998, ET-T1674A ..... 4-63
GL-8205, ET-T1675A ..... 4-63
GL-8360, ET-T1685 page 1 and 2 ..... 4-63
GL-8360, ET-T1685 page 3 ..... 10-66
GL-8465, IET-17A. ..... 12-70
GL-8466, IET-17A . ..... 12-70
SPECIAL PURPOSE RECTIFIERS
AND THYRATRONS (Tabbed Divider)10-61
GL-857B, ET-T1503A ..... 9-70
GL-869B, ET-T1504A ..... 9-70
GL-870A, ET-T1541B ..... 9-70
Thyratron Selection Chart, ET-T1469 ..... 4-63
FG-172, ET-T1513A ..... 4-63
GL-414, ET-T1509A ..... 4-63
2050A, ET-1686 ..... 4-63
GL-5830, ET-T1584A ..... 4-63
6011/710, 7518/710L, 7725, 7726 (ET-T1615B) ..... 11-65
INDUSTRIAL HEATING MAGNETRONS(Tabbed Divider)
ZM-6287, OTI-218 ..... 12-70

## (

$\square$

## ECSO PRODUCT LISTING AND SALES OFFICES

The General Electric Electronic Component Sales Operation offers a complete electronic components "market basket" of products. A listing follows:

## TUBE PRODUCTS

1. Transmitter tubes

1A. Camera tubes
2. Klystrons
3. VTM's
4. Ignitrons

4A. Vacuum gaps
4B. Hydrogen thyratrons
5. Ceramic tubes
6. Photocells
7. Reed switches
8. Compactrons
9. Conventional receiving tubes

## SEMICONDUCTOR PRODUCTS

10. Germanium rectifiers low current ( 0 to 1.4 amp )
11. Silicon rectifiers low current ( 0 to 1.4 amp ) medium current ( 1.5 to 35.0 amp )
high current (over 35 amp)
12. SCR's
low current ( 0 to 7.5 amp ) high current (over 35 amp)
light activated
13. Silicon controlled combination stacks
14. AC controlled switches
15. Rectifier stacks (Germanium, silicon, potted blocks)
16. Assemblies (thyratron replacements, specials)
17. Selenium and copper oxide rectifiers
18. Functional components
19. Silicon controlled switches
20. Unijunction transistors
21. Silicon grown-diffused passivated NPN transistor
22. Tunnel diodes and back diodes
23. Reference amplifiers
24. Silicon planar epitaxial passivated amplifiers and switches
25. Active discrete pellet functional devices
26. Signal diodes
27. Matched pairs and quads
28. Silicon mesa NPN passivated power transistors

## CAPACITOR PRODUCTS

29. Film capacitors
30. Large D-c capacitors
31. Energy Storage capacitors
32. Network capacitors
33. D-c specialty capacitors
34. A-c specialty capacitors
35. Aluminum electrolytic capacitors
36. Tantalum electrolytic capacitors

## VACUUM PROCUCTS

37. Vacuum system
38. Triode ion pumps
39. Trigger gages
40. Mercury diffusion pumps
41. Ion gages
42. Leak detectors
43. Partial pressure analyzers
44. Permeation leak-gàs purifiers
45. Sublimation pumps
46. Vacuum accessories

OTHER PRODUCTS
47. Adjustable speed drives
48. Appliance controls
49. Ballasts (fluorescent)
50. Circuit protective devices
51. General purpose control
52. Magnets
53. Nickel cadmium rechargeable batteries
54. Sealed relays
55. Soldering Irons
56. Thermistors
57. Varistor
58. Volt $\mathrm{PaC}^{\circledR}$ specialty transformers

## INSTRUMENTS

59. Panel Meters
60. Time Meters
61. Meter Relays
62. Shunts
63. Switchboard Indicators
64. Recorders (Direct Acting)
65. Transducers

## RECORDING INSTRUMENTS

66. Direct-operated, stripchart recorders (inking, inkless, hook-on)
67. Miniature (4-inch) servooperated recorders
68. Servo-operated (12-inch) strip and round chart recorders/recorder controllers (one, two or multipoint pen)

## MOTORS

69. A-C Tri-Clad '55'(®) induction 1-125 HP
70. A-c fractional
71. D-c integral
72. D-c fractional
73. Specialty motors
74. DCM\&G sets

# ELECTRONIC COMPONENT SALES OPERATION OFFICES 

## ARIZONA

Phoenix 85012
Guaranty Bank Bldg., Suite 712
3550 N. Central Ave.
Phone A/C 602 264-1751

## CALIFORNIA

*Los Angeles 90064
11840 W. Olympic Blvd.
Phone: A/C 213 479-7763 $\begin{array}{llll}\text { A/C } & 213 & 272-8566\end{array}$ A/C 213 879-1350
Portola Valley 94025
3210 Alpine Road
Phone: A/C 415 854-4010
COLORADO
Denver 80206
201 University Blvd.
P.O. Box 2331

Phone: A/C 303 388-5771

## CONNECTICUT

Bridgeport 06602
1285 Boston Ave.
Phone: A/C 203 334-1012

## DISTRICT OF COLUMBIA

Washington 20005
777-14th St., N.W.
Phone: A/C 202 393-3600

## FLORIDA

North Palm Beach 33403
321 North Lake Blvd., Room 201
321 North Lake Blvd., R
Phone: A/C 305 844-5202
Tampa 33609
P.O. Box 10577

2104 S. Lcis Ave.
Phone: A/C 813 877-8311
Winter Park 32789
John Hancock Bldg., Suite 250
370 Wymore Rd.
Phone: A/C 305 425-8634

## ILIINOIS

*Chicago 60641
3800 N. Milwaukee Ave.
Phone: A/C 312 777-1600

## INDIANA

Fort Wayne 46806
6001 S. Anthony
Phone: A/C 219 447-1511
Indianapolis 46208
3750 N. Meridian St.
Phone: A/C 317 923-7221

## IOWA

Cedar Rapids 52401
210 2nd St., S.E.
303 Dows Bldg.
Phone: A/C 319 364-9149

## ALABAMA

Huntsville 35801
3322 Memorial Parkway South,
3322 Memo
Suite 13
Phone: A/C 205 883-3131
*Region Office

KENTUCKY
Owensboro 42301
316 E. 9 th St.
Phone: A/C 502 683-2401 Ext. 482 (Receiving Tubes) Ext. 422 (1\&M Tubes)

MASSACHUSETTS
Wellesley 02181
1 Washington St.
Phone: A/C 617 237-2050

MICHIGAN
*Detroit 48237
15160 W . Eight Mile Rd.
Phone: A/C 313 564-5228

## MINNESOTA

Minneapolis 55424 4900 Viking Dr., Rm. 108
Phone: A/C 612 927-5458

## MISSOURI

Kansas City 64199 911 Main St., Suite 518 P.O. Box 13566

Phone: A/C 816 221-4033

## NEW JERSEY

*Clifton 07014
200 Main Ave.
Phone: A/C 201 472-8100

NEW YORK
Albany 12205
11 Computer Drive West
(518) 869-3576

New York City
(*Great Neck 11021)
425 Northern Blvd.
Phone: A/C 516 466-8800
*North Syracuse 13212
Northern Concourse Office Bidg
$\operatorname{Room}_{315-456-3412} 102$
Rochester 14624
35 Deep Rock Rd.
(716) 436-3480

NORTH CAROLINA
Greensboro 27408
1828 Banking St.
Phone: A/C 919 273-6982

## OHIO

*Cleveland 44117
25000 Euclid Ave.
Phone: A/C 216 266-2900
Dayfon 45429
3430 S. Dixie Hwy.
P.O. Box 2143
P.O. Box 2143

Keftering Branch
Phone: A/C 513 298-0311

## OKLAHOMA

Oklahoma Cify 73112
3022 N.W. Expressway
May-Ex Building, Room 412
Phone: A/C $405943-9015$

## PENNSYLVANIA

Erie 16505
2318 W. 8th Street
Phone: A/C 814 455-8377
*Philadelphia 19102
3 Penn Center Plaza
Phone: A/C 215 568-1800
Pittsburgh 15220
875 Greentree Rd. - Room 304
375 Greentree Rd.
Phone: A/C 412 921-4134

## TEXAS

Dallas 75205
4447 N. Central Expressway,
Phone: A/C 214 521-1931
Houston 77006
3110 S.W. Freeway
Room 220
Phone: A/C 713 524-3061

## VIRGINIA

Charlottesville 22902
2007 Earhart St.
P.O. Box 319

Phone: A/C 703 296-8118
Portsmouth 23707
3205 King St.
P.O. Box 7175

Phone: A/C $703393-6780$

## WASHINGTON

Seatfle 98188
225 Tukwila Pky.
Phone: A/C 206 244-7750

## WISCONSIN

*Milwaukee 53202
615 East Michigan St.
Phone: A/C 414 271-5000

INQUIRIES FROM OUTSIDE CONTINENTAL UNITED STATES, EXCLUDING HAWAII AND ALASKA, SHOULD BE SENT TO:

Electronic Sales
IGE Export Division
159 Madison Avenue
New York, N.Y. 10016
Phone: A/C 212 751-1311
IN CANADA, ADDRESS INQUIRIES TO:
Canadian General Electric Co.
189 Duffer in Street
Toronto, Ontario, Canada
Phone: A/C 416 537-4481

GOVERNMENT PROGRAMS OPERATION OFFICES
dISTRICT OF COLUMBIA
*Washington 20005
777-14th St. N.W
Phone: A/C 202 393-3600

## OHIO

Dayton 45439
3430 S. Dixie Hwy.
P.O. BCX 2143

Kettering Branch 45529
Phone: A/C 513 298-0311

CALIFORNIA
Los Angeles 90064
11840 W. Olympic Blvd.
Phone: A/C 213 479-7763
A/C 213 272-8566
A/C 213 879-1350

## NUMERICAL LISTING OF TYPES

This lists the types included in this manual and the family to which each belongs. For detailed technical information refer to the section indicated.

## TYPE

FG-172
FG-280
GL-4 14
GL-857-B
GL-869-B
GL-870-A
2050A
GL-5550
GL-5551-A
GL-5552-A
GL-5553-B
GL-5554
GL-5555
GL-5564
GL-5630
GL-5779
GL-5788
GL-5822-A
Welding Control Ignitrons
Special Purpose Rectifiers and Thyratrons
6011/710, 7518/710L,
7725, 7726 Special Purpose Rectifiers and Thyratrons
GL-6228 Rectifier Ignitrons
ZM-6287 Industrial Heating Magnetron
GL-6504 Rectifier Ignitrons
GL-6509 Rectifier Ignitrons
GL-6512 Rectifier Ignitrons
GL-6513 Rectifier Ignitrons
GL-6514 Rectifier Ignitrons
GL-6515 Rectifier Ignitrons
GL-6878 Rectifier Ignitrons
GL-6958 Rectifier Ignitrons
GL-7042 Rectifier Ignitrons
GL-7151 Rectifier Ignitrons
GL-7171 Pulse Ignitrons
GL-7669 Welding Control Ignitrons
GL-7670 Welding Control Ignitrons
GL-7671 Welding Control Ignitrons
GL-7672 Welding Control Ignitrons
GL-7673 Welding Control Ignitrons
GL-7681 Welding Control Ignitrons
GL-7703 Pulse Ignitrons
GL-7736 Rectifier Ignitrons
GL-7998 Welding Control Ignitrons
GL-8205 Welding Control Ignitrons
GL-8360 Welding Control Ignitrons
GL-8420 Rectifier Ignitrons
GL-8465 Rectifier Ignitrons
GL-8466 Rectifier Ignitrons
GL-37207 Pulse Ignitrons
GL-37248 Pulse Ignitrons

## a

O

## MANUAL INDEX

This tabulation lists all tubes and devices in the current tube manuals and the manual in which each component may be located. Type numbers are arranged in alpha-numerical order.

There is duplication of type numbers in the four-digit series of designations. In this numbering sequence, particularly in the 6000 and higher series, the developmental type-number system employed by the Microwave Tube Business Section parallels the standardized Electron Industries Association (EIA) industry-wide numbering system for tubes other than home-entertainment and television picture types. Microwave Tube Business Section developmental numbers use the prefix " $Z$ " followed by another letter: e.g., $Z \mathrm{G}, Z \mathrm{M}, Z \mathrm{P}$ (EIA standardized MTBS designations have the prefix "GL", a few old thyratrons use the prefix "FG").

The receiving tube component of the Tube Products Department does not employ prefix letters except in the case of reed switches, and a few types transferred from other components where prefixes were used. For this reason designations in the four-digit series without prefixes represent standardized EIA designations, whereas those with prefixes (other than "GL") as mentioned in the foregoing paragraph are MTBS developmental types.

*FS = Special Products and Microwave Devices for Industry Manual.
I = Industrial Equipment Types Manual.
RS $=$ Reed Switches and Photoconductive Cells Manual.
$\mathbf{M}=$ Military Equipment Types Manual
$\mathrm{R}-1=$ Receiving Types Manual, Vol 1, Compactrons.
$\mathbf{R - 2}=$ Receiving Types Manual, Vol. 2, Conventional Types.
 following tab divider "Industrial," "Military."




## TUBE PRODUCTS DEPARTMENT GENERAL ELECTRIC

Owensboro, Kentucky 42301

CAPACITOR-DISCHARGE AND DC-SHORT-CIRCUITING-SWITCH SERVICE

Capacitor Discharge			DC Short-Circuiting Switch			
Maximum Peak Current in Amperes	Peak Inverse and Forward Anode Volts	Type	Curr   RMS	-Amperes Peak	Peak Inverse Volts	Type
35,000	10,000	GL-7171	-	10,000	50,000	ZG-7248
60,000 *	50,000	ZG-7219	15	35,000	10,000	GL-7171
100,000	20,000	GL-7703	15	35,000	20,000	GL-7703
300,000	25,000	ZG-7207	175	20,000	30,000	GL-5630
			500	30,000	45,000	GL-6228
			-	300,000	25,000	ZG-7207

* $1 / 2$ cycle of 5 microseconds.

WARNING: WITHOUT PROPER AND ADEQUATE PRECAUTIONS, THE OPERATION, HANDLING, OR SHIPMENT OF MICROWAVE AND HIGH-VOLTAGE ELECTRONIC TUBES CAN BE HAZARDOUS TO PERSONNEL AND PROPERTY. READ THE FOLLOWING INFORMATION. TAKE ALL REQUIRED PRECAUTIONS.

## GENERAL

This information is provided to alert the purchaser of high-voltage tubes and microwave tubes to the potential hazards which may be created by improper operation, handling or shipment of these devices: All persons responsible for the operation, handling and shipping of these tubes should familiarize themselves with the potential hazards, and suitable safety precautions should be established and followed for the protection of personnel and equipment.

Do not operate high-voltage and microwave tubes except in accordance with adequate understanding of the potential hazards and with proper equipment-operating instructions and safety precautions.

Questions regarding proper and safe use of such tubes should be addressed to:

General Electric Company<br>Microwave Tube Operation<br>Building 269 - Application Engineering<br>1 River Road<br>Schenectady, New York 12305

Several of the potential hazards are defined and regulated by state or federal governmental agencies and bureaus. Since the documentation and specifications of such agencies and bureaus are frequently revised, it is not feasible to make full or precise reference to their content in this publication. If current governmental information is desired or if there are questions, the appropriate agency should be consulted.

## HIGH VOLTAGE

The voltages used to operate microwave and high-voltage electronic tubes can cause death or serious injury due to electric shock and burns. Depending on the device and equipment designs, and considering the possibility of malfunctions in either, part or all of the exterior tube surfaces may be at, or may quickly reach, dangerous voltages. Equipment design and laboratory testing must take this into account by following design and operating precautions so that contact with, and proximity to, high-voltage circuits is not possible under operating conditions. High-voltage circuits should be enclosed in protective housings, and interlock circuits should be provided so that primary power is removed, and high-voltage terminals and capacitors are quickly grounded, whenever the enclosure is open. It is always dangerous and unsafe practice to defeat or avoid the proper safety devices and safety procedures (as bypassing an interlock circuit) while operating or testing the equipment.

## GROUNDS

Many microwave tubes are operated in a grounded electrode mode in which the envelope and output cables are operated at ground potential. Care must be taken to be certain that the tube envelope is properly grounded before the operating voltages are applied. The grounding should never be done through the output cables since a break in the cable will then result in the tube envelope being raised to high voltage.

## X-RADIATION

X-radiation is produced by the impact of high energy electrons on electron tube surfaces. Such high-energy electrons are produced when accelerated by the applied electrode voltages. Depending on the construction of the electron tube and the materials involved, X-radiation may be produced at voltages as low as 5 kilovolts. The production of highly penetrating X-radiation and energy increases to relatively more dangerous proportions as the electrode voltages and currents are increased. All electron tubes operating in high-voltage ranges constitute potential hazards, and applications of such tubes should be carefully reviewed before operation.

When X-radiation shielding is required, it should be provided with proper interlocks to prevent accidental exposure of personnel to X-radiation. Where hazards are high, periodic X-radiation level surveys should be made. Furhter, when continuous operation is in effect, personnel-monitoring devices should be worn by the personnel and controlled access to the area implemented.

Most high-voltage and microwave electronic devices are not designed, nor intended, to be fully self-shielded to X -radiation under all possible conditions of their application and use. External radiation shielding will usually be necessary. This shielding should be designed by the equipment manufacturer as a part of the user's equipment to protect the user against possible personal injury. It is the responsibility of the manufacturer of the equipment using such tubes to provide any and all enclosures required, and to provide the instructions and maintenance procedures for the proper use of the equipment.

Generally, the spatial distribution of X-radiation from power tubes is complex and changes from tube to tube. The same tube does not radiate the same $360^{\circ}$ around. Also, the surrounding metallic construction will tend to prevent, distort, or further filter the passage of X -radiation to regions external to the tube. Of major concern are the areas in which materials used in tube construction present the least attenuation of X -radiation.
The search for possible X -radiation is not to be confined to those directions in which emission may be expected; unintended emissions in high power tubes have sometimes caused X -radiation in unexpected directions. A thorough search in all directions around the tube is necessary to ensure that the regions of emissions is correctly determined.
Tubes presenting X-radiation hazards or other possible hazards will have radiation precaution labels or tags affixed to the device at the time of shipment. These should not be removed at any time. If these labels or tags are removed by the user, they should be prominently displayed in close visual proximity to the device.

## MICROWAVE RADIATION

The radio-frequency output power of many electron tubes may exceed those power densities considered safe for human exposure. The design, operating instructions, and maintenance procedures of equipment utilizing such tubes must ensure that the radio-frequency energy is properly restricted to and contained in the circuits, transmission lines, waveguides, or cavity resonators and that these are frequently monitored to ensure that the radiation of radio-frequency energy from joints or connectors is below the hazardous limit. Antenna systems should also be frequently monitored for stray or indirect radiation. Operating and service personnel should be advised of exposure hazards and arrangements made to prevent accidental exposure.

## MERCURY

Some devices contain mercury as a necessary constituent to their operation. Under certain circumstances, the presence of free mercury may generate air contamination or other pollution that is considered toxic. Disposal of tubes or handling of damaged tubes must be done with adequate precaution given to this possible hazard. If disposal presents questions, these questions should be directed in writing to the General Electric Company, Microwave Tube Operation, at the address shown on the front side of this sheet.

Air shipment regulations allow air transportation of devices containing mercury only under special packing and marking requirements. The current requirements should be obtained directly from the airline.

The packing containers of devices containing mercury will be marked accordingly when they are shipped from the tube manufacturer.

## IMPLOSION

Most electronic tubes and devices operate with their internal volumes under high vacuum, and many gas-filled tubes also have their internal volumes considerably below atmospheric pressure. In the event that the envelope of some of these tubes is punctured or broken, the inrush of air can be violent under certain conditions. Tubes with large glass envelopes should be handled and stored with particular care, and implosion-proof shields should be installed in operating equipments. Particular care should also be given to shielding of the eyes and face.

## MAGNETIC FORCES

The attractive force between magnetic and feromagnetic objects increases rapidly as separation between the objects is decreased and the objects will be accelerated toward one another, meeting with considerable impact. When handling or working near large permanent magnets, care must be taken to prevent injury which could result from this hazard.

Air shipment regulations allow air transportation of devices containing magnetized materials only under special packing and marking requirements. The current requirements should be obtained directly from the airline.

## TUBE PRODUCTS DEPARTMENT <br> 

Page 1 9-66

RESISTANCE-WELDING-CONTROL
Standard Welding-control Service

Size	Type	Maximum Dimensions in Inches													Corre-	Maximum Fault Current (Peak Amp)		Maximum Averaging Time (Sec)		
		Length	Diamefer												mand KVA	${ }_{\mathbf{V}}^{(@ 250}$	$\text { @ } 600$	$\underbrace{\infty}_{\mathbf{V}}$	$\underset{\mathbf{V}}{600}$	
A	GL-5550	91/16	29/64	Two tubes in inverse-parallel control					(1)	10	75	250-600	150	4.86	9.0	50	1680	700	27.8	11.6
				tube.	200	30	100	( ${ }^{\text {A }}$ )	10	50	250-600	300	12.1	22.4	100	3360	1400	22	9.2	
B	GL-5551-A	13	$23 / 4$	Two tubes in inverse-parallel control 600 kva at $250-600$ volts; ratings per tube.	200	30	100	1.0	0	40	250-600	600	30.2	56.0	200	6720	2800	18	7.5	
B	GL-7669	13	$31 / 4$	Coaxial version of GL-5551-A.																
C	GL-5552-A	14	$411 / 4$	Two tubes in inverse-parallel control 1200 kva at 250-600 volts; ratings per tube.	200	30	100	1.5	0	40	250-600	1200	75.6	140	400	13,450	5600	14	5.8	
C	GL-7671	$14^{1 / 4}$	$45 / 8$	Coaxial version of GL-5552-A.																
$\mathrm{J}-\mathrm{C}\left({ }^{2}\right)$	GL-7681	$17^{1 / 2}$	$41 / 4$	Two tubes in inverse-parallel control 1800 kva at $250-600$ volts; ratings per tube.	200	30	100	2.0	6	45	250-600	1800	1135	210	600	20,040	8400	9.5	7.1	
J-C(2)	GL-7998	16	4	Coaxial version of GL-7681.																
D	GL-5553-B	191/2	5 5/8	Two tubes in inverse-parallel control 2400 kva at $250-600$ volts; ratings per tube.	200	30	100	3.0	0	40	250-600	2400	192	355	800	27,000	11,200	11.0	4.6	
D	GL-7673	$12^{13 / 16}$	5 5/8	Coaxial version of GL-5553-B.																
E	GL-7151	$193 / 4$	$91 / 8$	Two tubes in inverse-parallel control 4800 kva at $250-600$ volts; ratings per tube.	200	30	100	10	0	40	250-600	4800(3)	486	900	1600	54,000	22,400	8.9	3.8	
E	GL-8205	$201 / 2$	$91 / 2$	Coaxial version of GL-7151.																
-	GL-5554	17	$41 / 8$	Two tubes in inverse-parallel control 1200 kva at 2400 volts; ratings per tube.	450	45	100	1.5	6	30	2400	1200	75	113	600	3000@	400V	1.50@	400V	
-	GL-5555	1715/16	$51 / 2$	Two tubes in inverse-parallel control 2400 kva at 2400 volts; ratings per tube.	150	40	100	3	6	30	2400	2400	135	207	1105	6000@	400V	1.66@	400V	
-	GL-5564	$27^{11 / 16}$	91/8	Two tubes in inverse-parallel control 3600 kva at 600 volts and 4800 kva at 2400 volts; ratings per tube.	450	45	100	6	0	45	600	3600	530	850	1600	34,000	600 V	3.4@	00V	
											2400	4800	270	414	2210	12,000	2400 V	1.66@	400V	
-	GL-6512	Integral thermostat control arrangement version of GL-5554. Same ratings apply.																		
-	GL-6513	Integral thermostat control arrangement version of GL-5555. Same ratings apply.																		
-	GL-6515	Integral thermostat control arrangement version of GL-5564. Same ratings apply.																		

(1)-Air-cooled ratings.
(1) A$)$ - Water-cooled ratin
(2)-J-C indicates Jumbo
(3)-Maximum demand cur
(2)- -Maximum demand current below 500 volts should not exceed 9600 amperes RMS.

				CNTTPONS SELECTION CHATT ET-TI507D												
				Frequency-Changer Welding-Confrol Service												$\begin{array}{r} \text { Page } 2 \\ 9-66 \end{array}$
Size	Type	Maximum Dimensions in Inches		Description	Minimum Ignitor Firing Requirements			Water Flow Normal Gal per Min	Water Temp $\left({ }^{\circ} \mathrm{C}\right)$		Peak Inverse Voltage Volts		Corre-   sponding   Average   Anode   Current   Amp	Max Average Anode Current Amp		Max Fault ${ }^{(1)}$ Peak Current Amp
		Length	Diameter		Pk. Volts	Pk. Amp	Starting Time ( $\mu \mathrm{s}$ )		Inlet Min	Outlet Max						
B	GL-5551-A	13	$23 / 4$		200	30	100	1.0	0	40	1200	600	5	22.5	135	7500
B	GL-7669	13	$31 / 4$	Coaxial version of GL-5551-A.							1500	480	4	18	108	6000
C	GL-5822-A	14	$41 / 4$		200	30	100	1.5	10	35	1200	1500	20	70	420	18,750
C	GL-7672	$141 / 4$	$45 / 8$	Coaxial version of GL-5822-A.							1500	1200	16	56	336	15,000
J-C( ${ }^{2}$ )	GL-7681	171/2	$41 / 4$		200	30	100	2.0	6	45	1200	2250	30	105	630	28,000
J-C( ${ }^{2}$ )	GL-7998	16	4	Coaxial version of GL-7681.							1500	1800	24	84	502	22,500
D	GL-5553-B	191/2	5 5/8		200	30	100	3.0	0	40	1200	3000	40	140	840	37,500
D	GL-7673	$12^{13 / 16}$	5 5/8	Coaxial version of GL-5553-B.							1500	, 2400	32	112	672	30,000

Pulse-Welding-Control Service

Size	Type	Maximum Dimensions in Inches		Description	Minimum Ignifor Firing Requirements			Water Flow Gal/min	Water Temp ${ }^{\circ} \mathrm{C}$		Peak   Inverse Voltage Volts	$\begin{gathered} \text { Initial } \\ \text { Peak } \\ \text { Inverse } \\ \text { Volts } \end{gathered}$	Peak Anode CurrentAmp	Average Anode Current Amp	Averaging Time Sec.	Anode Current Repetifion Rate (pps)	Anode Current Pulse Width ( $\mu \mathrm{s}$ )
		Length	Diameter		Pk. Volts	Pk. Amp	Starting Time ( $\mu \mathrm{s}$ )		Inlet Min	Outlet Max							
B	GL-7670	13	23/4	Coaxial type. Two tubes in inverseparallel control 2000 peak amperes at 2500 volts peak.	200	30	100	1.0	10	35	2500	1250	2000	10	2	60	1000
B	GL-8360	13	23/4	Same as GL-7670 except larger coaxial mounting plate.													

Capacitor-Discharge and DC-Short-Circuiting-Switch Service

Capacitor Discharge					DC Short-Circuiting Switch			
Maximum	Inducłance in Nanohenrys Approx	Peak Inverse and Forward Anode Volts	RepetitionRate per MinuteMax	Type	Current-Amperes		Peak Inverse Volts	Type
in Amperes					RMS	Peak		
35,000	30	10,000	1	GL-7171	--	10,000	50,000	ZG-7248
60,000*	-	50,000	2	ZG-7219	15	35,000	10,000	GL-7171
100,000	30	20,000	2	GL-7703	15	35,000	20,000	GL-7703
300,000	90	25,000	500	ZG-7207	175	20,000	30,000	GL-5630
300,000	15	15,000	500	$\left\{\begin{array}{l} \text { ZG-7247 } \\ \text { ZG-7247A } \psi \end{array}\right.$	500	$\begin{array}{r} 30,000 \\ 300,000 \end{array}$	$\begin{array}{r} 45,000 \\ 25,000 \end{array}$	$\begin{aligned} & \text { GL-6228 } \\ & \text { ZG-7207 } \end{aligned}$

$* 1 / 2$ cycle of 5 microseconds
$\psi Z G-7247$ requires a clamp for cathode connection and coaling. The A version includes a water iacket and coaxial cathode connection.
IGNITRONS-SELECTION CHART
POWER-RECTIFIER SERVICE

Average Current Amperes	Type	Maximum Dimensions in inches		Description	Minimum $\underset{\substack{\text { Ignitor Firing } \\ \text { Requirements }}}{\text { M }}$ Requirements			WaterFalFal $/$ min	${ }_{\text {Water }}^{\text {O }}$ C ${ }^{\text {Temp }}$		Peak Anode   Voltage in Volts		Anode Current in Amperes				
		Length	Diameter		$\begin{gathered} \text { Pk. } \\ \text { Volts } \end{gathered}$	$\begin{aligned} & \text { Peak } \\ & \text { Amp } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { Time } \\ (\mu s e} \end{array}$		$\begin{aligned} & \text { Inlet } \\ & \text { Min } \end{aligned}$	$\begin{aligned} & \text { Outlef } \\ & \text { Max } \end{aligned}$	Forward	Inverse	Peak	Average	2-hour(1)	$\begin{aligned} & 11 \\ & \text { minute }{ }^{2} \text { ) } \end{aligned}$	Fault ${ }^{(3)}$
10	GL-5779	$81 / 4$	$21 / 2$	Small glass air-cooled type for demonstrating the operating principles of ignitors and ignitrons.	150	40	100	$\ldots$	$\ldots$	$\ldots$	350	350	30	10	$\ldots$	$\ldots$	300
50	GL-5630	223/16	53/4	For high voltage power-rectifier and inverter service. Also used as capacitor discharge or DC short-circuiting switch.	450	45	100	3	35	45	20,000	20,000	200	50	50	50	2000
100	GL-5554	17	41/8	For continuous-duty power rectifier service at 100 amperes at 900 volts peak forward and inverse. Has holding anode and two ignitors.	450	45	100	1.5	6	60	900	900	900	100	150	200	6000
100	GL-6512			Same as GL-5554. Contains integral thermostat control arrangement.						45	2100	2100	600	75	112.5	150	4500
150	GL-6228	42	9	For high voltage power-rectifier and inverter service. Also used in capacitor service.	450	45	$\ldots$	5	35	45	20,000	20,000	900	150	200	300	6000
150	GL-5788	191/4	53/4	Similar to GL-5555. Features reliable operation at higher water temperafures and phase-retard operation; has larger diameter ignitor terminals.	450	45	150	3		60	900	900	1800	150	225	300	12,000
150	GL-6514			Same as GL-5788. Contains integral thermostat control arrangement.						55	2100	2100	1200	150	225	300	9000
200	GL-5555	1715/16	53/4	For continuous-duty power rectifier service at 200 amperes at 900 volts peak forward and inverse. Has holding anode and two ignitors.	450	45	100	3	6.	60	900	900	1800	200	300	400	12,000
200	GL-6513			Same as GL-5555. Contains integral thermostat control arrangement.						45	2100	2100	1200	150	225	300	9000
200	GL-6509	1715/6	$53 / 4$	Similar to GL-5555. For auxiliary power in rectifier locomotives. Has three ignitors.	450	45	100	3	$30\{$	60	900	900	1800	200	300	400	12,000
										45	2100	2100	1200	150	225	300	9000
200	GL-8465	1715/16	5\%/4	For continuous-duty power rectifier service at 200 amperes at 900 volts peak forward and inverse. Has holding anode and two ignitors.	450	45	100	3	6	40	2100	2100	1200	150	225	300	9000
200	Gl-8466			Same as GL-8465. Contains integral thermostat control arrangement.													

POWER-RECTIFIER SERVICE (Cont'd)


[^12]
## IGNITRON ACCESSORIES

## THERMOSTATIC SWITCHES

Welding-control ignitrons are provided with brackets for demountable thermostats to control the tube temperature and the cooling-water flow. The data sheets for these types carry a reference to the General Electric catalog numbers of


SIDE VIEW


## Contact Ratings

Voltage	125	250	440	600	Volts AC
Current	3	1.5	0.75	0.50	Amperes AC

The voltage between the switch contacts and the tube envelope should not exceed 600 volts a-c.
these control thermostats, which are illustrated below. They are available in either flying-lead or terminal-block versions.

Kit includes thermostat and spring-loaded fastener in a captive assembly for connection to mounting pad located on ignitron water jacket. Single-pole contacts perform control functions as shown.

## FLYING LEAD TYPE

( 36 -inch leads with spade terminals)
G-E Cat. No. N15272AA
Water-Control-Contacts normally open
Temperature

Open.
Closed

G-E Cat. No. N15273AA
Over-Temperature Control-Contacts normally closed
Temperature


TERMINAL-BLOCK TYPE
G-E Cat. No. N15286AA
Water-Control-Contacts normally open
Temperature
Open.......................................... . . 86 F

G-E Cat. No. N15287AA
Over-Temperature Control-Contacts normally closed Temperature
Open................................................. 125 F

Closed....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 F

## SOLENOID VALVES

The following solenoid valves are recommended for supplying the cooling water required by welding ignitrons.
$1 / 2$-inch Pipe Size-Cat. No. 8210A2
Automatic Switch Company
391 Lakeside Avenue
Orange, New Jersey
Specify coil voltage when ordering this valve.
$1 / 2$-inch Pipe Size - Type A or B. Alike except Type B has manual controls.
J. D. Gould Company

730 East Washington Street
Indianapolis 2, Indiana
Specify coil voltage when ordering this valve.
$3 / 8$-inch Pipe Size-Type K-25EW
General Controls Company
31 Thomson Avenue
Long Island City 1, New York
Specify coil voltage when ordering this valve.
$3 / 8$-inch Pipe Size-Hays Electroflow
Cat. No. 2100-1011; $115 \mathrm{v}, 60$ CPS
Cat. No. 2100-1111; 230 v, 60 CPS
Cat. No. 2100-1211; $440 \mathrm{v}, 60$ CPS
Hays Manufacturing Company
Erie, Pennsylvania
$3 / 8$-inch Pipe Size-Type M2-200
Skinner Electric Valve Division
Skinner Chuck Company
New Britain, Connecticut
Specify coil voltage when ordering this valve.
To insure reliable valve operation a 40 by 36 mesh screen strainer should be installed ahead of the valve in the watersupply line.
ORDERING INSTRUCTIONS-Order by catalog or type number from the manufacturers listed.

## IGNITOR-TERMINAL CONNECTING LEADS

Insulated leads for connecting to 0.250 -inch diameter ignitor terminals:
Cat. No. N22006LC-73/4 inches long
Cat. No. N22007LC-131/2 inches long
ORDERING INSTRUCTIONS - Order by catalog number from regular tube supply source.

## COOLING CLAMPS

A removable clamp, listed below, is required to accomplish cathode connection and liquid cooling of the GL-5550, GL7171 and GL-7703 ignitrons. The water circulates through this clamp, which surrounds the tube.

Cat. No. L6922259-G5, right-hand position.
ORDERING INSTRUCTIONS-Order by catalog number from District Industrial Sales Operation office.

## QUICK-CHANGE WATER CONNECTORS

Quick-change, brass, water-hose connectors are available for joining water lines to welding-control ignitrons. Two sets are required for each tube, one set for connecting to the inlet water terminal and one set for connecting to the outlet terminal. Each set consists of a socket and a plug. These connectors and the tubes with which they are used are listed below.

Ignifron Type	Connector Cat. No.
$\left.\begin{array}{l}\text { GL-5551-A } \\ \text { GL-5552-A } \\ \text { GL-5822-A } \\ \text { GL-7669 } \\ \text { GL-7670 } \\ \text { GL-7671 } \\ \text { GL-7672 } \\ \text { GL-7681 } \\ \text { GL-7998 } \\ \text { GL-8360 }\end{array}\right\}$	B1HII—Socket   B1K11-Plug
$\left.\begin{array}{l}\text { GL-5553-B } \\ \text { GL-5554 } \\ \text { GL-5555 } \\ \text { GL-6512 } \\ \text { GL-6513 } \\ \text { GL-7673 }\end{array}\right\}$	B2H16-Socket B2K16-Plug

ORDERING INSTRUCTIONS-Order by catalog number from regular tube supply source.

## TUBES

The anode of an ignitron operates at red heat under normal loads. To prevent overheating of the inner-envelope walls at shutdown periods, cooling-water flow should be continued after anode power is removed.

For some types this information appears on the tube data sheets. It does not now appear on the sheets for the types below.

Ignitron Type	After Removal of Anode Voltage Continue Water Flow for	Ignitron Type	After Removal of Anode Voltage Continue Water Flow for
GL-5551-A.	15 Minutes	GL-6513.	30 Minutes
GL-5552-A.	15 Minutes	GL-6514	30 Minutes
GL-5553-B.	30 Minutes	GL-6515.	1 Hour
GL-5554	15 Minutes	GL-6878	1 Hour
GL-5555	30 Minutes	GL-7669.	15 Minutes
GL-5564.	1 Hour	GL-7670.	15 Minutes
GL-5630	30 Minutes	GL-7671	15 Minutes
GL-5822-A.	15 Minutes	GL-7672 .	15 Minutes
GL-6228. . .	1 Hour	GL-7673.	30 Minutes
GL-6509	30 Minutes	GL-7736	1 Hour
GL-6512	15 Minutes	GL-8360 .	15 Minutes

## INDUSTRIAL EQUIPMENT TYPES MANUAL

## IGNITRONS

## Data Arrangement

> Technical data on ignitrons is arranged by class of service, "Pulse Ignitrons," "Rectifier Ignitrons," and "Welding Control Ignitrons."

When a tube can be used in more than one application, complete, detailed technical data is included in the section covering the major use to which the tube is usually applied. Cross-reference sheets to guide the reader to complete data are provided in the other sections.

## -

0

## $\square$

## INDUSTRIAL EQUIPMENT TYPES MANUAL

GL-5630

Technical data on tube type GL-5630 is filed in the "Rectifier Ignitrons" section of this manual.

## a

## 

0

## INDUSTRIAL EQUIPMENT TYPES MANUAL

## GL-5630

Technical data on tube type GL-5630 is filed in the "Rectifier Ignitrons" section of this manual.
-

б

## INDUSTRIAL EQUIPMENT TYPES MANUAL

GL-6228

Technical data on tube type GL-6228 is filed in the "Rectifier Ignitrons" section of this manual.

$\qquad$


# IGNITRON <br> CAPACITOR-DISCHARGE SERVICE <br> DC SHORT-CIRCUITING-SWITCH SERVICE 35,000 AMPERES PEAK 

The GL-7171 is a sealed, stainless-steel jacketed ignitron for use as a switch in capacitor-discharge circuits operating up to 10,000 volts. In this service
the tube will carry peak currents up to 35,000 amperes.

## GENERAL

## Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Arc Drop 1 Amperes. . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... 2000 . 20
At 4000 Amperes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Volts
At 30,000 Amperes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Volts
Peak Inverse Voltage, maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10,000 Volts
Mechanical
Envelope Material-Stainless Steel
Mounting Position-Axis Vertical, Anode Lead Up
Net Weight
Pounds

## Thermal

Type of Cooling-Convection
Ambient Temperature, minimum
Cathode Temperature, maximum
Anode-Header Temperature, maximum* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
C
C
C

## MAXIMUM RATINGS AND TYPICAL OPERATION

Capacitor-Discharge Service, Pulse Duty, Sinusoidal Current		
Peak Anode Voltage		
Forward.	.10,000	Volts
Inverse.	10,000	Volts
Critical Anode Starting Voltage, minimum	. 100	Volts
Anode Current (See Curve K-69087-72A858 for Details)		
Peak $\dagger$.	35,000	Amperes
Average.	.. 0.1	Amperes
Maximum Averaging Time	..... 1	Cycle
Fault.	35,000	Amperes
Maximum Duration.	0.002	Seconds
Rate of Rise of Current		
Maximum.	. 5600	Amperes per Micro. second
Minimum.	. 1400	Amperes per Microsecond
Frequency of Current Conduction Periods, maximum	. 1	Per Minute
Ionization Time. . . . . . . . . . . . . . . . . . . . . . . . . . . .	. . . 0.5	Microseconds

DC Short-Circuiting-Switch Service
Peak Anode Voltage
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10,000 Volts

Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10,000 Volts
Critical Anode Starting Voltage, minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Volts
Anode Current (See Curve K-69087-72A858 for Details)
Peak $\ddagger$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35,000 Amperes

Average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25 Amperes
Maximum Averaging Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Cycle
Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35,000 Amperes
Maximum Duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.002 Seconds
Rate of Rise of Current
$\qquad$ Amperes per Microsecond
Minimum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1400
Amperes per Microsecond
Frequency of Current Conduction Periods, maximum . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Per Minute
Ionization Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 Microseconds

## Ignitor Ratings Minimum Maximum

Separate Excitation
Ignitor Voltage
Forward Open Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500
Inverse, maximum
3000 Volts

Length of Firing Pulse, sine wave Anode Firing
Ignitor Voltage
Forward, maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3000 Volts
Inverse, maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Volts
Peak Ignitor Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 250 Amperes
*To prevent mercury condensation, the anode-header temperature should be higher than the cathode temperature at all times. Mercury must be kept away from the anode and anode seals. Before tube operation, the anode seals must be warmed, with respect to the cathode, long enough to vaporize all mercury from the seal area.
$\dagger$ Dampened oscillations are permissible provided the dampening coefficient is less than the value shown on the currentwaveform curve. The peak of the oscillation must not exceed 48,000 amperes.
$\ddagger$ Tube must be operated within the area specified on the current-waveform curve.


## GL-7 171



COAXIAL MOUNTING


TUBE DEPARTMENT
Schenectady $5, \mathrm{~N} . \mathrm{Y}$.

## OBJECTIVE <br> TECHNICAL INFORMATION

These ratings represent the design objective for this DEVELOPMENTAL product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

## IGNITRON

ZG-7219

The ZG-7219 is an ignitron for capacitor-discharge service. Features of the tube include a potential-dividing grid to improve reliability for high voltage hold-off.

## GENERAL

Electrical
Cathode Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cyclic
Cathode Spot Starting Ignitor
Number of Electrodes
Main Anode ..... 1
Main Cathode ..... 1
Ignitors ..... 1
Mechanical
Envelope Encapsulated Glass and Fernico
Mounting Position Axis Vertical, Anode Terminal UpNet Weight14 Pounds
Thermal
Type of Cooling Forced Air or Water
Cathode Temperature, Maximum ..... 35 C
Insulating Compound Temperature, Maximum ..... $70 C^{*}$
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Capacitor-Discharge Service, Intermittent Pulse Duty
Peak Anode VoltagePeak Anode Current
$1 / 2$ cycle of 75 usec 30,000 Amperes
$1 / 2$ cycle of $5 \mu \mathrm{sec}$ 60,000 Amperes
Discharge Rate ..... 2 Per Minute
DC Short-Circuiting-Switch (Crowbar) Service
Peak Anode Voltage 50,000 Volts
Peak Anode Current 15,000 Amperes
IGNITOR CIRCUIT RATINGS

	Minimum	Maximum
Forward Open-Circuit (Ignitor +)	1500	3000 Volts
Inverse (Ignitor - )	-	5 Volts
Ignitor Short-Circuit Current	100	250 Amperes
Length of Firing Pulse, sine wave	5	Microseconds

* The temperature of the anode end of the tube must be kept higher than that of the cathode end to prevent mercury condensation on the anode and anode seal, which in turn can cause failures to hold off voltage. Before operation the top of the tube must be heated while the bottom kept cool to vaporize all mercury which may have been condensed or splashed into the top during handling.



## CAPACITOR-DISCHARGE SERVICE DC SHORT-CIRCUITING-SWITCH SERVICE

## 20,000 VOLTS PEAK 100,000 AMPERES PEAK

The GL-7703 is a sealed, stainless-steeljacketed ignitron for use as a switch in capacitor-discharge circuits operating up to 20,000 volts. In this service the tube
will carry peak currents up to 100,000 amperes. The anode seal is enclosed in an insulating compound to prevent external voltage flashover.
Mechanical
Envelope-Stainless Steel
Mounting Position-Axis Vertical, Anode Terminal Up
Net Weight................................. Pounds

Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes . . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes. . . . . . . . . . . . . . . . . . . . . . . . . 1
Ignitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Thermal
Type of Cooling-Air or Liquid, by clamp around lower portion of tube
Clamp Temperature.................... 10 to 30 C
Cathode Temperature, maximum......
Anode Insulating-Compound Temperature*,

Anode Insulating-Compound Temperature*, maximum................................ 70 C

## Capacitor-Discharge Service, Intermittent Pulse Duły, Sinusoidal Current $\dagger$

Peak Anode Voltage $\ddagger$
Forward. ....................20,000
Volts
Inverse.....................20,000
Volts
Critical Anode Starting Voltage, minimum 100

Anode Current ${ }^{\top}$

60,000	Amperes
Peak, for $1 / 2$ cycle of 20 microseconds 100,000	Amperes
Maximum Discharge Ra	Per
Rate of Rise of Current $\S$, tube inductance approx.	
Ionization Tim	M

Peak, for $1 / 2$ cycle of 20 microseconds 100,000 Amperes
Maximum Discharge Rate................... 2 Per Minute
Rate of Rise of Current§, tube inductance
Ionization Time

Microhenrys
Microseconds

## DC Short-Circuiting-Switch Service

Peak Anode Voltage $\ddagger$
Forward......................20,000
Inverse....................20,000
Volts
Critical Anode Starting Voltage, minimum 100

Anode Current


Rate of Rise of Current $\S$, tube inductance
approx.................................... 0.04 Microhenrys


Ignitor Ratings

Minimum	Maximum		Anode Firing	Minimum	Maximum	
Separate Excitation						
Ignitor Voltage			Ignitor Voltage			
Forward Open Circuit. . . . . . . 1500	3000	Volts	Forward, maximum .	-	3000	Volts
Inverse, maximum .	5	Volts	Inverse, maximum.	. -	5	Volts
Ignitor Short-Circuit Current. . . . 200	250	Amperes	Peak Ignitor Current	. 200	250	Amperes
Length of Firing Pulse, sine wave. 5	10	Microseconds				

* Anode-seal, insulating-compound temperature must always be higher than the cathode temperature to prevent mercury condensation on the anode and anode seal. Before tube operation, the anode seals must be heated long enough to vaporize all mercury from the seal area.
$\dagger$ The tube may become a closed switch (does not open) carrying current in both directions until the current dampens out.
$\ddagger$ The tube cannot hold off this voltage immediately after conduction. A 1-to-10-second delay may be required before reapplication of voltage.
- Dampened oscillations are permissible provided the oscillating cycles do not exceed 20. The peak current value for one-half cycle must not be exceeded.
§ Rate of rise depends on circuit.


SUGGESTED METHOD FOR PROVIDING MOUNTING FOR COAXIAL CONNECTION

# GENERAL ELECTRIC 

POWER TUBE DEPARTMENT
Schenectady 5, N. Y.

INDUSTRIAL EQUIPMENT TYPES MANUAL

$$
\text { GL-8465, - } 8466
$$

Technical data on these types is filed in the "Power Rectification" section of this manual.
The GL-37207 is a stainless-steel-water-jacketed ignitron for use as a switch in capacitor-discharge circuits, or for DC short-circuiting-switch (crowbar) protective service.

## GENERAL

Electrical
Cathode Excitation Cyclic
Cathode Spot Starting ..... Ignitor
Number of Electrodes
Main Anode1
Main Cathode ..... 1
Ignitors ..... 3
Mechanical
Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stainless Steel
Mounting Position ..... Axis Vertical-Anode Terminal Up
Net Weight ..... 20 Pounds
Length (excluding flexible anode cable) ..... 18-3/4 Inches
Diameter (excluding water nipples) ..... 5-1/2 Inches
Thermal
Type of Cooling - Water
Inlet Water Temperature, minimum ..... 6 C
Inlet Water Temperature, maximum ..... 30 C
Nominal Water Flow1.5 Gallons Per Minute
MAXIMUM RATINGS (Not simultaneous conditions)
Peak Anode Voltage 25,000 Volts
Peak Anode Current 300,000 Amperes Length of Conduction 10 Milliseconds Repetition Rate 500 Per Minute
Maximum Coulombs per Discharge $200 \mathrm{Amp}-$ Sec.
Maximum Coulombs per Minute ..... 200 Amp-Sec/Min.
Maximum Voltage Reversal ..... 10 Percent
IGNITOR-CIRCUIT RATINGS
Ignitor Voltage ..... Minimum
Forward Open-Circuit (ignitor + ) ..... 1500
Inverse (ignitor -) ..... 100
Length of Firing Pulse, $1 / 2$ sine wave ..... 5
Maximum
3000 Volts
5 Volts
250 Amperes

10 Microseconds


NOTE: ONE IGNITOR USED AT A TIME

The GL-37248 ignitron is designed primarily for DC short-circuiting-switch (crowbar) protective service. Features of the tube include a holding anode which provides a means for keeping the tube ionized should voltage reversals occur during the discharge.

## GENERAL

Electrical
Cathode Excitation Cyclic
Cathode Spot Starting Ignitor
Number of Electrodes
Main Anode ..... 1
Auxiliary Anode ..... 1
Ignitors ..... 1
Main Cathode30 Nanohenrys
Mechanical
Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stainless Steel
Mounting Position Axis Vertical-Anode Terminal Up
Net Weight ..... 2 Pounds
Diameter 2-1/8 Inches
Height ..... 7-1/2 Inches
Thermal
Type of Cooling - Clamp around lower half of cylinder which also serves ascathode connection*
Clamp Temperature ..... 10-30 C
Cathode Temperature, Max. ..... 35 C
Anode Insulating-Compound Temperature and anode-LeadTemperature, maximum70 C*
MAXIMUM RATINGS
Peak Anode Voltage 50,000 Volts
Peak Anode Current ..... 10,000 Amperes
Length of Conduction ..... 20 Milliseconds
Repetition Rate 6 Per Hour*Voltage Reversal50 Percent
IGNITOR-CIRCUIT RATINGS
Ignitor Voltage ..... Minimum
Forward Open Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500 (ignitor +)
Inverse (ignitor -) ..... - 5 Volts
Ignitor Short-Circuit Current ..... 5
10 Microseconds
HOLDING-ANODE CIRCUIT RATINGS $\dagger$

Holding-Anode Voltage (Positive d-c)	80	150 Volts
Holding-Anode Current	5	10 Amperes

* The temperature of the anode end of the tube must be kept higher than that of the cathode end to prevent mercury condensation on the anode and anode seal. Before operation the top of the tube must be heated sufficiently to vaporize all mercury from the anode area. The repetition rate may be increased by a factor of ten by water cooling the clamparound the lower half of the cylinder.
$\dagger$ It is anticipated that a holding-anode rectifier will be provided to supply the required power and that its supply will drop to zero at the end of the crowbar operation so the ignitron will regain control. An alternate method is to discharge a large capacitor into the holding anode with a time constant longer than the crowbar time.


TUBE PRODUCTS DEPARTMENT


## IGNITRON

## RECTIFIER SERVICE-100 AMPERES AC CONTROL SERVICE-1200 KILOVOLT-AMPERES

## HOLDING ANODE <br> TWO IGNITORS

The GL-5554 ignitron is a sealed, steel-jacketed, water-cooled, mercury-pool tube designed for rectifier service in the $125-$, $250-$, 600 -, and 900 -volt d-c power fields. It is suitable for use in rectifiers rated up to 200 kilowatts output, depending on the number of ignitrons used, the output voltage, and the circuit. It has a continuous average current rating of 100 amperes per tube in rectifiers rated up to 300 volts d-c. The tube is also designed for 2400 -volt a-c control service where it has a capacity of 1200 kilovolt-amperes.

The GL-5554 has a holding anode and two ignitors. Excitation of the holding anode permits stabilizing the cathode spot for very small anode currents. The two ignitors assure long life since only one is used at a time. Phase control of the ignitor impulses permits voltage control of the rectified output. In common with other ignitrons arc losses in the GL-5554 are low, and design and construction features such as a complete stainless-steel-water jacket assure ease of installation, economical use of space, and reliability of operation.
GENERAL
Electrical
Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes ..... 1
Holding Anodes ..... 1
Ignitors. ..... 2
Arc Drop at 100 Peak Amperes ..... $12.6 \pm 0.5$
Arc Drop at 300 Peak Amperes ..... $14.4 \pm 0.5$ Volts
Arc Drop at 600 Peak Amperes. ..... $.17 .3 \pm 0.5$ Volts
Cathode Excitation Requirements
Ignitor Voltage Required to Fire . ..... 450(See curve K-9033883 for details)
Ignitor Current Required to Fire . ..... 45
(See curve K-9033883 for details)
Starting Time at Required Voltage or Current100Microseconds
MechanicalEnvelope Material-Stainless Steel
Over-all Length.17 Inches
Over-all Width. . 4 Inches
Net Weight, approximate ..... 13.5 Pounds
ThermalType of Cooling-Water
Inlet Water Temperature, minimum ..... 6 C
Outlet Water Temperature, maximum
Power-Rectifier Service
Peak Inverse Anode Voltage $=900$ Volts. ..... 60
Peak Inverse Anode Voltage $=2100$ Volts . ..... 45
AC Control Service Voltage $=2400$ Volts RMS ..... 30 C
Water Flow, minimum
At No Load. ..... 0.5
At Continuous Rated Average Current.
Characteristics for Water Cooling at Rated Minimum Flow1.5 Gallons per Minute
Water Temperature Rise, maximum ..... C
Pressure Drop at 3 Gallons per Minute 5 Pounds per Square Inch

## MAXIMUM RATINGS AND TYPICAL OPERATION

AC Control Service*   Two Tubes in Inverse Parallel, Ratings per Tube		
Voltage	2400	Volts RMS
Maximum Demand	1200	Kilovolt-Amperes
Average Current at Maximum Demand	. 75	Amperes
Maximum Average Current	. 113	Amperes
Demand at Maximum Average Current	. 600	Kilovolt-Amperes
Maximum Averaging Time at 2400 Volts RMS	1.50	Seconds
Maximum Peak Fault Current	3000	Amperes
Frequency Range	25-60	Cycles per Second
Power-Rectifier Service, Continuous Duty   Ratings are for Zero-Phase-Control-See Curves K-69087-72A182 and K-69087-72A183 for details.		
Maximum Peak Anode Voltage		
Inverse	2100	Volts
Forward	2100	Volts
Maximum Anode Current		
Peak	600	Amperes
Average		
Continuous.	75	Amperes
Two-Hours - Averaged Over Any Two-Minute Interval.	112.5	Amperes
One-Minute-Averaged Over Any One-Minute Interval.	150	Amperes
Fault	4500	Amperes
Maximum Duration of Fault Current.	0.15	Seconds
Frequency Range.	25-60	Cycles per Second


Ignitor		
Maximum Voltage		
Positive-Anode Voltage		
Negative	5	Volts
Maximum Current		
Peak	100	Amperes
Root Mean Square	. 15	Amperes
Average	2	Amperes
Maximum Averaging Time	. 10	Seconds
Typical Resistance Added to Ignitor Circuit for Anode Firing		
At Anode Voltage of 600 Volts or Less.	. 4	Ohms
At Anode Voltage of 601 Volts to 1000 Volts .	. 10	Ohms
At Anode Voltage of 1001 Volts to 1500 Volts	. 20	Ohms
At Anode Voltage of 1501 Volts to 2000 Volts .	. 35	Ohms
At Anode Voltage of 2001 Volts to 2400 Volts .	. 50	Ohms
Holding Anode		
Maximum Peak Forward Voltage	160	Volts
Maximum Peak Inverse Voltage		
Main Anode Conducting	. 25	Volts
Main Anode Not Conducting	160	Volts
Maximum Current		
Peak	. 30	Amperes
Root Mean Square	. 15	Amperes
Average..	. 9	Amperes
Maximum Averaging Time.	. 10	Seconds

* RMS demand voltage, current, and kilovolt-ampere demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used.


## IGNITOR VOLT-AMPERE REQUIREMENTS

 SEALED-IGNITRON RECTIFIERSthe ignitor firing circuit should be designed to operate within the shaded area.


K-9033525
5-25-54



DEMAND CURRENT VS PERCENTAGE DUTY
AT 2400 VOLTS RMS




[^13]


Schenectady 5, N. Y.

## IGNITRON

## RECTIFIER SERVICE-200 AMPERES AC CONTROL SERVICE-2400 KILOVOLT-AMPERES

## HOLDING ANODE TWO IGNITORS

The GL-5555 is a steel-jacketed ignitron designed for rectifier service in the $125-, 250-, 600$-, and $900-$ volt d-c power fields. It is used for rectifiers rated up to 1000 kilowatts depending on the number of ignitrons used, the output voltage, and the circuit.

This tube is also rated for 2400 -volt resistance-welder-control service and has a capacity of 2400 kilovolt-amperes in this service. Continuous aver-
age current rating is 200 amperes per tube in rectifiers rated up to 1000 kilowatts.

Arc losses are low. Phase control of the ignitron impulses permits voltage control of the rectified output. Excitation of the small holding anode stabilizes the cathode spot for very low anode currents. Two ignitors, only one of which is used at a time, assure long life.

## GL-5555

## GENERAL

Electrical
Cathode Excitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cyclic
Cathode Spot Starting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ignitor
Number of Electrodes
Main Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Holding Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ignitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Arc Drop at 600 Peak Amperes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2 $\pm 0.5$ Volts
Cathode Excitation Requirements
Ignitor Voltage Required to Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Volts
Ignitor Current Required to Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Amperes
(See curve K-9033883 for details)
Excitation Arc Current Required, minimum......................................... 8 Amperes
Excitation Arc-Drop Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $9 \pm 0.5$ Volts
Excitation Arc Open-Circuit Voltage, minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Volts AC

## Mechanical




Net Weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Pounds

## Thermal

Type of Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Water
Characteristics for Water Cooling
Water Temperature Rise, maximum . . . . . . . . . . . . .................................. 4.5 C
Pressure Drop at 3 Gallons per Minute, maximum .............................. . . . 6 Pounds per Square Inch
Maximum Outlet Water Temperature
Peak Inverse Anode Voltage $=900$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 C

Minimum Inlet Water Temperature $\dagger$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 C
Minimum Water Flow at Continuous Rated Average Current . . . . . . . . . . . . . . . . . . 3 Gallons per Minute
Minimum Water Flow at no Load
1 Gallons per Minute
$\dagger$ Dependent upon load conditions. For substantially constant loads 6 C is satisfactory. For widely fluctuating loads, 25 C is required.

## MAXIMUM RATINGS

## As AC Control Tube

Two Tubes in Inverse Parallel


As Power Rectifier Tube
Ratings are for zero phase-control angle.
Maximum Peak Anode Voltage
Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $900 \quad 2100$ Volts

Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $900 \quad 2100$ Volts
Maximum Anode Current
Peak.
18001200 Amperes
Average
Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 150 Amperes
2 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 . 225 Amperes
1 minute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $400 \quad 300$ Amperes
Surge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12000 9000 Amperes
Maximum Duration of Surge Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.15 Seconds
Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 to 60 Cycles per Second

## IGNITOR VOLT-AMPERE REQUIREMENTS SEALED-IGNITRON RECTIFIERS

THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA.


ELEMENTARY CIRCUIT FOR CAPACITOR FIRING


ELEMENTARY CIRCUIT FOR ANODE FIRING


K-9033528

ARC DROP
OUTLET WATER TEMPERATURE- 40 C TO 60 C , WATER FLOW- 3 GPM

demand Current vs percentage duty at 2400 VOLTS RMS


AVERAGING TIME $=1.66$ SECONDS

COMMUTATION LIMITS-1-MINUTE LOADS


K-69087-72A1 80


HOLDING ANODE REQUIREMENTS



TUBE DEPARTMENT
GENERAL (86) ELECTRIC
SCHENECTADY, N. Y. 12305


## IGNITRON

## RECTIFIER SERVICE-400 AMPERES AC CONTROL SERVICE-4800 KILOVOLT-AMPERES

HOLDING ANODE
TWO IGNITORS

The GL-5564 ignitron is a sealed, stainless-steeljacketed, water-cooled, mercury-pool tube designed for rectifier service in the 125-, 250-, 600-, and $900-$ volt d-c power fields. It is suitable for use in rectifiers rated up to 1000 kilowatts output, depending upon the number of ignitrons used, the output voltage, and the circuit. Continuous average current rating is 400 amperes per tube in rectifiers rated up to 300 volts d-c. The tube is also designed for 2400 -volt a-c control service where it has a rating of 4800 kilovolt-amperes.

The GL-5564 has a holding anode and two ignitors. Excitation of the holding anode permits stabilizing the cathode spot for very small anode currents. The two ignitors assure long life since only one is used at a time. Phase control of the ignitor impulses permits voltage control of the rectified output. In common with other ignitrons arc losses in the GL-5564 are low, and design and construction features, such as a complete stainless-steel-water jacket, assure ease of installation, economical use of space, and reliability of operation.

## GENERAL

## Electrical

Cathode-Excitation-Cyclic

## Cathode Spot Starting-Ignitor

Number of Electrodes

Main Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Holding Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ignitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Control Grids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Arc Drop at 1200 Peak Amperes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $18.2 \pm 0.1$ Volts
Arc Drop at 8000 Peak Amperes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $35 \pm 0.1$
Cathode Excitation Requirements
Ignitor Voltage Required to Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
(See curve K-69087-72A982 for details)
Ignitor Current Required to Fire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
(See curve K-69087-72A982 for details)
Starting Time at Required Voltage or Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Peak Excitation Arc Current Required, minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
(See curve K-69087-72A387 for details)
Excitation Arc-Drop Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Grid Requirements*
Minimum Voltage To Establish Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Minimum Voltage to Prevent Conduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Positive Current to Establish Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1
Mechanical
Envelope Material-Stainless Steel
Over-all Length . . . . . . ............................................................27176

Over-all Width..................................................................................... $91 / 8$
Net Weight, approximate
.90

Thermal
Type of Cooling-Water
Inlet Water Temperature $\dagger$, minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Outlet Water Temperature, maximum
Power-Rectifier Service
Peak Inverse Anode Voltage $=750$ Volts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
AC Control Service
$\qquad$
Voltage $=600$ Volts RMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Voltage $=2400$ Volts RMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Water Flow, minimum
At No Load ${ }^{* *}$.
At Continuous Rated Average Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Characteristics for Water Cooling at Rated Minimum Flow
Water Temperature Rise, maximum .19
Pressure Drop at 6 Gallons per Minute, maximum .

## MAXIMUM RATINGS AND TYPICAL OPERATION

## AC Control Service $\ddagger$

Two Tubes in Inverse Parallel, Ratings per Tube
Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2400
Maximum Demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4800
Average Current at Maximum Demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Maximum Average Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
Demand at Maximum Average Current.
.2210
Maximum Averaging Time.
Maximum Peak Fault Current 1.66

Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-60

## Power-Rectifier Service, Continuous Duty

Ratings are for Zero-Phase-Control Angle-See Curves K-69087-72A178 and K-69087-72A179 for details.
Maximum Peak Anode Voltage

Inverse	750	Volts
Forward	750	Volts
Maximum Anode Current		
Peak	3600	Amperes
Average		
Continuous.	400	Amperes
Two-Hours-Averaged Over Any Two-Minute Interval	600	Amperes
One-Minute-Averaged Over Any One-Minute Interval	800	Amperes

Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15,000 Amperes
Maximum Duration of Fault Current ..... 0.15 Seconds
Frequency Range 25-60 Cycles per Second
Ignitor
Maximum Voltage
Positive-Anode Voltage
Negative ..... 5 Volts
Maximum Current
Peak ..... 100
Amperes
Root Mean Square ..... 15 Amperes
Average. .....  2 Amperes
Maximum Averaging Time. ..... 10 Seconds
Typical Resistance Added to Ignitor Circuit for Anode Firing
At Anode Voltage of 600 Volts or Less Ohms
At Anode Voltage of 601 Volts to 1000 Volts ..... 10 Ohms
At Anode Voltage of 1001 Volts to 1500 Volts ..... 20 Ohms
At Anode Voltage of 1501 Volts to 2000 Volts ..... 35 Ohms
At Anode Voltage of 2001 Volts to 2400 Volts ..... 50 Ohms
Holding Anode
Maximum Peak Forward Voltage ..... 160 Volts
Maximum Peak Inverse Voltage
Main Anode Conducting ..... 25 Volts
Main Anode Not Conducting ..... 160 Volts
Maximum Current
Peak ..... 30 Amperes
Average .....  9 Amperes
Maximum Averaging Time. ..... 10 Seconds
Root Mean Square 15 Amperes
Grid*
Maximum Peak Forward Voltage ..... 250 Volts
Maximum Peak Inverse Voltage. ..... 300 Volts
Maximum Grid-Current
Peak Positive ..... 1.5 Amperes
Peak Negative ..... 0.5 Amperes
Average 0.5 Amperes
Root Mean Square ..... 1.0 Amperes

* At main anode voltages of 500 volts and over, the grid circuit should provide a negative d-c bias of 100 volts and a suitable turn-on voltage to swing the grid positive at the time the ignitor is fired. At lower anode voltages, it is sufficient to connect the grid to the main anode through a resistor. In either case, the grid circuit resistance should be 500 to 1000 ohms.
$\dagger$ Dependent upon load conditions. For substantially constant load 0 C is satisfactory. For widely fluctuating loads 25 C is required.
$\ddagger$ RMS demand voltage, current, and kilovolt-ampere demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used. For voltages below the minimum, the minimum-voltage current rating applies. With the use of log-log paper straight-line interpolation between tabulated points may be used for other detailed ratings of: Demand kva vs average anode current, and maximum averaging time vs anode voltage.
${ }^{* *}$ Water flow should be continued for one hour after removal of anode power.


## PAGE 4

4-63
ELEMENTARY CIRCUIT FOR CAPACITOR FIRING


K-69087-72A672
10-22-54

TYPICAL VALUES

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{B}}=8 \mathrm{MFD} \\
& \mathrm{C}_{\mathrm{G}}=0.1 \mathrm{MFD} \\
& \mathrm{C}_{\mathrm{I}}=15-20 \mathrm{MFD} \\
& \mathrm{~L}_{1}=1-1.5 \mathrm{mh} \\
& \mathrm{R}_{\mathrm{c}}=10 \mathrm{OHMS}
\end{aligned}
$$

ELEMENTARY CIRCUIT FOR ANODE FIRING


## TYPICAL VALUES

[^14]
## IGNITOR VOLT-AMPERE REQUIREMENTS <br> SEALED-IGNITRON RECTIFIERS

the ignitor firing circuit should be designed to operate within the shaded area


PEAK IGNITOR CURRENT $\mathbb{N}$ AMPERES





aVErage anode current amperes per tube
$\mathrm{E}_{\mathrm{DO}}$ - NO LOAD DC Voltage OR 1 PEAK Inverse voltage


AVERAGE ANODE CURRENT IN AMPERES PER TUBE



## IGNITRON

The GL-5630 ignitron is a sealed, stainless-steeljacketed, water-cooled, mercury-pool tube designed primarily for use in radio-transmitter power sup-
plies. In this service 6 tubes will rectify up to 2500 kilowatts at 17,000 volts. Use of the grid to prevent conduction gives one-cycle circuit-breaker action.

## X-RAY WARNING NOTICE

This device may produce X-rays when energized. X-ray warning signs or labels should be permanently attached to the equipment.
Precautions must be exercised during the service and operation of equipment to assure that any shielding components are replaced to their intended position before the equipment is operated.

## GENERAL

## Electrical

Type Cathode Excitation-Cyclic
Type Cathode Spot Starting-Ignitor
Number of Electrodes

Main Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Holding Anodes ....................................................................... 1
Ignitors. .......................................................................................... . . . 2
Control Grids........................................................................................ 1
Gradient Grids................................................................................... 1
Arc Drop at 150 Peak Amperes............................................................ $18 \pm 1$ Volts
Cathode Excitation Requirements
Ignitor Voltage Required to Fire............................................................... . . 450 Volts
Ignitor Current Required to Fire. ............................................................. 42 Amperes
Grid Requirements


Mechanical
Envelope Material-Metal
Over-all Length, maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............... $22 \frac{3}{16}$ Inches
Over-all Width, maximum................................................................. $53 / 4$ Inches
Net Weight................................................................................ $23 \pm 2$ Pounds
Type Cooling-water
Characteristics for Water Cooling
Water Temperature Rise, maximum................................................................... 2 C
Pressure Drop at 3 Gallons per Minute.......................................................... 4 Pounds per Square Inch

Thermal
Water Cooling
Maximum Outlet Water Temperature................................................................... 45 C
Minimum Inlet Water Temperature............................................................ 35 C
Minimum Water Flow at Continuous Rated Average Current.............................. 3 Gallons per Minute
Minimum Water Flow at no
3 Gallons per Minute

## MAXIMUM RATINGS

## AS POWER RECTIFIER TUBE

Ratings are for zero phase-control angle.
Maximum Peak Anode Voltage
Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20,000 Volts
Forward.
20,000 Volts
Main Anode Current
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Amperes
Average
Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Amperes
2 Hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Amperes
1 Minute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Amperes
Surge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000 Amperes
Maximum Duration of Surge Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.15 Seconds
Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-60 Cycles per Second
IGNITOR
Maximum Voltage
Positive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 Volts 5 Volts
Negative . .Maximum Current
Peak.
100 Amperes
RMS ..... 17.5 Amperes
Average 2.5 Amperes
Maximum Averaging Time. ..... 0.0 Seconds
Starting Time at Required Voltage or Current ..... 100 Microseconds
HOLDING ANODE
Maximum Current
Peak. ..... 20 Amperes
Average 5 Amperes
Maximum Averaging Time ..... 1 Second
RMS 10 Amperes
Maximum Peak Forward Voltage ..... 200 Volts
Maximum Peak Inverse Voltage
Main Anode Conducting .....  25 Volts
Main Anode not Conducting ..... 150 Volts
CONTROL GRIDMaximum Peak Forward Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 Volts
Maximum Peak Inverse Voltage ..... 200 Volts
aximum Grid-Current
Peak Positive. 5.0 Amperes
Peak Negative 0.1 Amperes
Average. ..... 1.0 Amperes
RMS 2.0 Amperes
IGNITOR VOLT-AMPERE REQUIREMENTSSEALED-IGNITRON RECTIFIERS

PEAK IGNITOR CURRENT IN AMPERES


TUBE PRODUCTS DEPARTMENT
GENERAL ELECTRIC
Schenectady, New York 12305


## IGNITRON

DEMONSTRATION TYPE
10 AMPERES
The GL-5779 is a small glass, air-cooled ignitron operating principles of ignitors and ignitron tubes. tube designed primarily for demonstrating the

## GENERAL

## Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes. ................................................................................. 1
Main Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Auxiliary Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ignitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Control Grids. .................................................................................. . 0
Auxiliary Grids......................................................................................... . . 0
Arc Drop at 15 Peak Amperes. ............................................................... $13 \pm 2$ Volts
Cathode Excitation Requirements
Ignitor Voltage Required to Fire
Ignitor Current Required to Fire
150 Volts
(See Curve 9033883 for Ignitor Circuit Requirements)
Starting Time at Required Voltage or Current.
Mechanical
Envelope Material-Glass
Over-all Length ..... $21 / 2$ Inches
Over-all Width.
11/2 Pounds
Thermal
Type of Cooling-Air*
Maximum Average Tube Temperature ..... 100 C
$\mathrm{M}_{1}$ nimum Average Tube Temperature ..... 10 C
MAXIMUM RATINGS AND TYPICAL OPERATION
Power-Rectifier Service
Ratings are for Zero-Phase-Control Angle
Maximum Peak Anode Voltage
Inverse. ..... 350 Volts
Forward ..... 350 Volts
Maximum Anode Current
Peak.Average
Continuous10 Amperes
Fault. ..... 300 Amperes
Maximum Duration of Fault Current ..... 0.03 Seconds
Frequency Range ..... 25-60
Cycles per Second
IgniforMaximum Voltage
Positive-Anode Voltage
Negative . ..... 5 Volts
Maximum Current
Peak100 Amperes
Root Mean Square ..... 15 ..... Amperes
Average .....  2 Amperes
Maximum Averaging Time. ..... 10Holding AnodeMaximum Current
Peak. .....  20Amperes
Average Amperes
Maximum Averaging Time ..... 1.0
Root Mean Square. ..... 10 ..... Amperes
Maximum Peak Forward Voltage ..... 150 Volts
Maximum Peak Inverse Voltage
Main Anode Conducting25 Volts
Main Anode Not Conducting . ..... 150 ..... Volts
CathodeMaximum Average Current10 Amperes

* An ordinary desk fan will provide sufficient cooling for most purposes.


## IGNITOR VOLT-AMPERE REQUIREMENTS

SEALED-IGNITRON RECTIFIERS
THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO
OPERATE WITHIN THE SHADED AREA



GENERAL ELECTRIC
POWER TUBE DEPARTMENT
Schenectady 5, N. Y.

## RECTIFIER SERVICE-150 AMPERES



The GL-5788 is a permanently sealed, water-cooled, rectifier ignitron similar in construction and rating to the GL-5555. Special features are reliable operation at higher water temperature and lower water-pressure drop than are possible with that tube, and distinctive (larger diameter) ignitor terminals. These features make possible the use of economical water-to-air heat exchangers at higher
ambient temperatures than are possible with the other tube and assure the user against premature ignitor failures caused by connecting the holding-anode lead to an ignitor terminal. The tube is designed for operation in $300-, 600-$, and 900 -volt d-c industrial-rectifier circuits. The continuous average anode current rating is 150 amperes per tube.

## ELECTRICAL

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes. . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes.................................. 1
Holding Anodes. ............................. . 1
Ignitors. . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Arc Drop at 600 Amperes Peak ...... $16.2 \pm 0.5$ Volts
See Curve "Arc Drop"

## MECHANICAL

Envelope Material-Stainless Steel
Net Weight, approximate................... 25 Pounds

## THERMAL

Type of Cooling-Water
Operating Range*. . . . . . . . . . . . . . . . . . . 40-60 C
Outlet Water Temperature, maximum Power-Rectifier Service

Peak Inverse Anode Voltage $=$ 900 Volts and Below. . ....
Peak Inverse Anode Voltage $=$ 2100 Volts and Below

AC Control Service
Voltage $=2400$ Volts RMS . . . . . . ..... . 45 C
Water Flow, minimum, solenoid water valve open At No Load $\dagger$.

1 Gallon per Minute 3 Gallons per
$\begin{array}{ll}\text { At Continuous Rated Average Current . . . . . . } 3 & \begin{array}{c}\text { Gallons } \\ \text { Minute }\end{array} \\ & \\ \text { Characteristics for Water Cooling at Rated Minimum Flow }\end{array}$
Characteristics for Water Cooling at Rated Minimum Flow Water Temperature Rise, maximum 4.5 C

Pressure Drop at 3 Gallons per Minute, maximum

3 Pounds per Square Inch

* With heat-exchanger systems the tube may be started at the usual ambient temperatures, 20 to 30 C , minimum 6 C ; and the losses in the tube allowed to bring the heat exchanger to the controlled temperature setting. With direct (once through) water cooling and the companion GL- 6514 tempera-ture-controlled ignitron, automatic control of the wateroutlet temperature is practicable for operation with provision for the recommended cooling period after shut-down, provided that not more than three tubes are connected in series.
$\dagger$ Water flow should be continued for at least thirty minutes after removal of anode power.


## MAXIMUM RATINGS

Power-Rectifier Service, Continuous Duły	
Ratings are for Zero-Phase-Control Angle - See Curves   "Commutation Limits"	
Maximum Peak Anode Voltage	
Inverse . . . . . . . . . . . . . . . . . . . . . . . 900-2100	Volts
Forward. . . . . . . . . . . . . . . . . . . . . . . . . 2100	Volts
Maximum Anode Current	
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200	Amperes
Average	
Continuous . . . . . . . . . . . . . . . . . . . . . 150	Amperes
Two-Hours-Averaged Over Any TwoMinute Interval.	Amperes
One-Minute-Averaged Over Any One-	
Minute Interval. . . . . . . . . . . . . . . . 300	Amperes
Fault . . . . . . . . . . . . . . . . . . . . . . . . . 9000	Amperes
Maximum Duration of Fault Current. 0.15	Seconds
Frequency Range. . . . . . . . . . . . . . . . . . . 25-60	Cycles per Second


AC Control Service	
Two Tubes in Inverse Parallel, Ratings per Tube	
Voltage................................ 2400	Volts RMS
Maximum Demand . . . . . . . . . . . . . . . . . 2400	Kilovolt-   Amperes
Average Current at Maximum Demand. . . 135	Amperes
Maximum Average Current. . . . . . . . . . . 207	Amperes
Demand at Maximum Average Current. . 1105	Kilovolt-   Amperes
Maximum Averaging Time at 2400 Volts RMS. .................................... 1.66	Seconds
Maximum Peak Fault Current. . . . . . . . . 6000	Amperes
Frequency Range....................... . 25-60	Cycles per Second

## MAXIMUM RATINGS (Cont'd)

Holding Anode   See Curve "Holding Anode Requirements"		See Curve "Holding Anode Requirements" Excitation Arc-Drop Voltage . . . . . . . . . . $9 \pm 0.5$	Volts
Maximum Peak Voltage   Forward	Volts	Excitation Arc Open-Circuit Voltage,	olts
Inverse			
Main Anode Conducting . . . . . . . . . . . . . 25	Volts		
Main Anode Non-Conducting . . . . . . . . 160	Volts	Maximum Inverse Voltage.	Volts
Maximum Current		Maximum Inverse Voltage . . . . . . . . . . . . . . . 5	Volts
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30	Amperes	Recommended Pulse Length . . . . . . . . . . . . 800	Microseconds
Average . . . . . . . . . . . . . . . . . . . . . . . . . . . 9	Amperes	Minimum Pulse Length, for average anode	
Maximum Averaging Time . . . . . . . . . . . 10	Seconds	currents greater than 5 amperes . . . . . . . . 150	Microseconds
Root Mean Square . . . . . . . . . . . . . . . . . . . 15	Amperes		Microseconds
Cathode Excitation Requirements		Maximum Pulse Length . . . . . . . . . . . . . . . . 4000	Microseconds
Peak Excitation Arc Current Required, minimum $\qquad$	Amperes	Volt-Ampere Characteristics-See Curve "Ignitor Volt-Ampere Characteristics"	

IGNITRONS
ELEMENTARY CIRCUIT FOR CAPACITOR FIRING


OUTLET WATER TEMPERATURE - 40 TO 60 C WATER FLOW-3 GPM


IGNITOR VOLT-AMPERE REQUIREMENTS


## COMMUTATION LIMITS <br> I-MINUTE LOADS



COMMUTATION LIMITS
2 - HOUR LOADS


AVERAGE ANODE CURRENT IN AMPERES PER TUBE



## GENERAL ELECTRIC

TUBE DEPARTMENT
Schenectady, N. Y. 12025


## IGNITRON <br> PENTODE TYPE <br> FREQUENCY-CHANGER SERVICE

The GL-6228 ignitron is a sealed, stainless-steel-jacketed, water-cooled mercury-pool tube designed primarily for use in electronic frequency changers. In this service, six tubes will rectify or
invert up to 7500 kilowatts at 17,000 volts. The tube is also designed for use in intermittentrectifier service, capacitor-discharge service, and as a d-c short-circuiting switch.

## GENERAL

## Electrical

Type cathode excitation-Cyclic
Type cathode-spot starting-Ignitor
Number of electrodes
Main anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Main cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ignitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Holding anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Shield grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Control grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gradient grids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Arc drop
At 600 amperes peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $20 \pm 2$ volts
At 2000 amperes peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $30 \pm 2$ volts

## GENERAL (CONT'D)

## Electrical (Cont'd)

Cathode-excitation requirements See specific class of service
Grid-excitation requirements See specific class of service

## Mechanical

Envelope material-metal
Net weight. ........................................................ $100 \pm 10$ pounds

## Thermal

Type of cooling-water
Characteristics for water cooling
Water temperature rise........................................ 4 C
Pressure drop at 5 gallons per minute, maximum.......... 4 pounds per square inch
Inlet water temperature, minimum . .......................... 35 C
Outlet water temperature, maximum ......................... 45 C
Water flow, minimum...................................... 5 g
Recommended temperature range . . . . . . . . . . . . . . . . . . . . 40 to 45 C

## MAXIMUM RATINGS

POWER-RECTIFIER SERVICE Maximum
ASA (See ASA Standards C34.1-1949)
Peak anode voltage
Anode current*
Peak.................................................................... 900 amperes
Average
Continuous............................................................ $-\quad 150$ amperes
2 hours. ..... -
200 amperes1 minute-300 amperes
Fault 6000 amperes
Duration of fault current $\ddagger$ ..... 0.15 second
Peak control-grid voltage
Forward500 volts
Inverse. ..... 200 volts
Peak shield-grid voltage
Forward500 volts
Inverse. ..... 200 volts
Peak control-grid current0.4 amperes
Peak shield-grid current
Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Inverse.0.2 amperes
Peak gradient-grid voltage
Forward ..... $1 / 2$
Inverse. ..... 1/2
Peak gradient-grid current
Forward ..... 0.010
0.020 amperes
Inverse. ..... 0.010
Ignitor ratings
Peak ignitor voltage
Forward, open-circuit voltage ..... 450
Inverse ..... 0
750 volts
5 volts
Width of current pulse, sinusoidal waveshape
At 60 cycles ..... 500
At 25 cycles ..... 500
Peak ignitor current, short-circuit current ..... 45
1500 microseconds
4000 microseconds
75 amperes

## MAXIMUM RATINGS (CONT'D)

## POWER-RECTIFIER SERVICE (CONT'D)

Holding anode ratings	
Available instantaneous holding anode voltage during desired conduction period.	40
Peak holding-anode voltage	
Forward	-
Inverse	-
Peak holding-anode current	
Forward	-
Inverse	-
Average	-
RMS	-
Minimum	
Forward current during desired conduction period	7

Maximum

- volts

200 volts
25 volts
20 amperes
0.100 amperes

5 amperes
10 amperes

- amperes

Continuous Duty, No Overloads
Peak anode voltage
Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 20,000 volts
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 20,000 volts
Anode current*
Peak.
600 amperes
Average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault
200 amperes
6000 amperes
0.15 second

3 megavolt-amperes
Peak control-grid voltage
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Peak shield-grid voltage
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Peak control-grid current
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peak shield-grid current
Forward.
-
Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peak gradient-grid voltage
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $1 / 2$
Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $1 / 2$
Peak gradient-grid current
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.010
Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.010
Ignitor ratings
Peak ignitor voltage
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
Width of current pulse, sinusoidal waveshape . . . . . . . . . . . . . . . . . . . . . . 500
At 60 cycles
At 25 cycles
-
Peak ignitor current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Holding anode ratings
Available instantaneous holding anode
Voltage during desired conduction period. . . . . . . . . . . . . . . . . . . . . . 40
Peak holding-anode voltage
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peak holding-anode current
Forward
Inverse

500 volts
200 volts

500 volts
200 volts

5 amperes
0.4 amperes

5 amperes
0.2 amperes

1/2 anode-cathode voltage
$1 / 2$ anode-cathode voltage
0.020 amperes
0.020 amperes

750 volts
5 volts

- microseconds

1500 microseconds
9000 microseconds
75 amperes

- volts

200 volts
25 volts

20 amperes
0.100 amperes

## MAXIMUM RATINGS (CONT'D)

POWER-RECTIFIER SERVICE (CONT'D)


5 amperes
10 amperes

- amperes

20,000 volts

1500 amperes
150 amperes
0.15 second
0.15 amperes

6000 amperes
0.15 second
22.5 megavolt-amperes

500 volts
200 volts

500 volts
200 volts

5 amperes
0.4 amperes

5 ampere
$1 / 2$ anode-cathode voltage
1/2 anode-cathode voltage
0.020 amperes 0.020 amperes

750 volts
5 volts

- microseconds

1500 microseconds
9000 microseconds
75 amperes

- volts

200 volts
25 volts

20 amperes
100 amperes
5 amperes

- amperes

AC CONTROL OR CAPACITOR-DISCHARGE SERVICE—SINUSOIDAL CURRENT, PULSE DUTY $\dagger$

	Minimum	Maximum
Peak anode voltage		
Inverse	-	20,000 volts
Forward	-	20,000 volts
Anode current		
Peak.	-	2000 amperes
Average	-	

Maximum averaging time - one conduction pulse plus one nonconducting period
Rms.................................................................... - 500 amperes

Maximum averaging time-one conduction pulse plus one nonconducting period

Product of inverse or forward voltage and average current.......... - $\quad 3$ megavolt-amperes

Equivalent frequency- 25 to 60 cycles
Above 60 cycles use commutating reactors

Current at start of commutation period	-	60 amperes
Current at end of commutation period.	-	0 amperes
Length of commutation period	200	- microseconds

DC SHORT-CIRCUITING SWITCH $\dagger$
Anode voltage
$\quad$ Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 20,000 volts

Anode current
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 6000 amperes

Average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - $\quad 90$ amperes
Averaging time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 10 seconds
Frequency of current-conduction periods . . . . . . . . . . . . . . . . . . . . . . . . . . . - $\quad 100$ per hour
Ionization time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 microseconds
Control-grid open-circuit voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $1500 \quad 2500$ volts
Control-grid short-circuit current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 10 amperes
Shield-grid open-circuit voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $1500 \quad 2500$ volts
Shield-grid short-circuit current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5
Time constant of shield- and control-grid circuits. . . . . . . . . . . . . . . . . $50 \quad 100$ microseconds

Peak gradient-grid voltage
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $1 / 2$. $1 / 2$ anode-cathode voltage
Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $1 / 2 \quad 1 / 2$ anode-cathode voltage
Peak gradient-grid current
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.010 . 0.020 amperes
Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0.010 \quad 0.020$ amperes
Ignitor ratings
Ignitor voltage
Forward open-circuit voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500
2500 volts
Negative voltage
5 volts
Ignitor current
Short-circuit current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
250 amperes
Time constant of ignitor circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
100 microseconds

[^15]
## X-RAY WARNING NOTICE

This device may produce X-rays when energized. X-ray warning signs or labels should be permanently attached to the equipment.

Precautions must be exercised during the service and operation of equipment to assure that any shielding components are replaced to their intended position before the equipment is operated.



IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIERS
rhe ignitor firing circuit should be designed to operate within the shaded area



## TUBE PRODUCTS DEPARTMENT GENERAL (86) ELECTRIC



## IGNITRON

## LOCOMOTIVE RECTIFIER SERVICE-350 AMPERES

## THREE IGNITORS

The GL-6504 is a double-grid ignitron designed for railroad locomotive rectifier service. In this service twelve tubes will supply d-c power for a 4000-horsepower locomotive.

A coaxial cathode-current return reduces magnetic fields due to tube currents. The tube also features baffles in the mercury pool to assure con-
tact between the mercury and the ignitor points during swaying of the equipment.

A companion tube, the GL-6509 ignitron, is available to supply the auxiliary power requirements of applications which use the GL-6504 as the main power source.

## GENERAL

## Electrical

## Cathode Excitation-Cyclic

Cathode Spot Starting - Ignitor
Number of Electrodes
$\qquad$
$\qquad$
Ignitors1
Shield Grids ..... 1
Control Grids.
$20.5=2$ Volts
Arc Drop at 1000 Amperes, peak
$.24 \pm 2$ Volts
Arc Drop at 2000 Amperes, peak .. $24=2$ ..... Volts
(See Curve K-69087-72A709 for details)

## GENERAL (Cont'd)

## Mechanical

Envelope Material-Stainless Steel


## Thermal

Type of Cooling-Water
Inlet Water Temperature, minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 C
Outlet Water Temperature, maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C
Water Flow, minimum
At Continuous Rated Average Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
At No Load§ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 to 45 C
Characteristics for Water Cooling at Rated Minimum Flow
Water Temperature Rise, maximum
. 6.5 C
Pressure Drop at 10 Gallons per Minute, maximum. . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Pounds per Square Inch
Maximum Working Water Pressure - Non Shock
100 Pounds per Square Inch

## MAXIMUM RATINGS AND TYPICAL OPERATION

Power-Rectifier Service, Continuous Duty
Ratings are for Zero-Phase-Control Angle
Maximum Peak Anode Voltage


Maximum Anode Current*

Peak.		2000	Amperes
Average	Passenger $\dagger$	Freight $\ddagger$	
Continuous.	. . 350	300	Amperes
Two Hours	. 440	380	Amperes
Fifty Minutes.	. 490	420	Amperes
Twelve Minutes	. 560	490	Amperes
Six Minutes.	. 660	520	Amperes
Four Minutes.	. 720	540	Amperes

Fault
Forward Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15,000 Amperes
Reverse Direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30,000 Amperes
Maximum Duration of Fault Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.15 Seconds
Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-60 Cycles per Second
Ignitor Characteristics
Maximum Inverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Volts
Recommended Pulse Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 Microseconds
Minimum Pulse Length, for average anode currents greater than 8 amperes.......... . 150 Microseconds
Maximum Pulse Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4000 Microseconds
Volt-Ampere Characteristics - See Curve K69087-72A803 for details.

Shield-Grid Voltage	Minimum	Maximum	
Peak Forward.	. . 200	500	Volts
Peak Inverse.	. . -	200	Volts
Shield-Grid Current			
Peak Forward.	. 0.2	5	Amperes
Peak Inverse		0.2	Amperes
Control-Grid Voltage			
Peak Forward.	. 200	500	Volts
Peak Inverse	. 100	200	Volts
Control-Grid Current			
Peak Forward.	. . . 0.4	5	Amperes
Peak Inverse.	. 0.4	1	Amperes

* Service Factors Energized-50 percent of annual hours

Passenger Service - 80 percent
Freight Service - 80 percent
$\dagger$ Short time loads applied following light load.
$\ddagger$ Short time loads applied following continuous operation at full load.
§ Water flow should be continued for at least one hour after removal of anode power.

IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIER the ignitor firing circuit should be designed to operate within the shaded area


ARC DROP



## GENERAL ELECTRIC

POWER TUBE DEPARTMENT
Schenectady 5, N. Y.

## IGNITRON

## LOCOMOTIVE RECTIFIER SERVICE-200 AMPERES

## THREE IGNITORS

The GL-6509 is an ignitron for railroad locomotive rectifier service. This tube is designed to supply the auxiliary power requirements in those locomotives that utilize the GL-6504 ignitron as the main power supply. In addition to this service the GL-6509 ratings also make the tube particularly suitable for use as the main power source in
multiple-unit car installations.
The tube is similar in construction to the GL5555 ignitron but has the additional feature of baffles in the mercury pool to assure contact between the mercury and the ignitor points during swaying of the equipment.

## GENERAL

## Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
$\qquad$ 1

Main Cathodes ..... 1Ignitors
Arc Drop at 600 Peak Amperes .

## GENERAL (Cont'd)

## Mechanical

Envelope Material-Stainless Steel


## Thermal

Type of Cooling-Water
Inlet Water Temperature, minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 C
Outlet Water Temperature, maximum
Peak Inverse Anode Voltage $=900$ Volts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 C
Peak Inverse Anode Voltage $=2100$ Volts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 C
Water Flow, minimum
At No Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Gallons per Minute
At Continuous Rated Average Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Gallons per Minute
Characteristics for Water Cooling at Rated Minimum Flow
Water Temperature Rise, maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 C
Pressure Drop at 3 Gallons per Minute, maximum................................ 2 Pounds per Square Inch

## MAXIMUM RATINGS AND TYPICAL OPERATION

Power-Rectifier Service, Continuous Duty
Ratings are for Zero-Phase-Control Angle—See Curves K-69087-72A654 and K-69087-72A653 for details.
Maximum Peak Anode Voltage

Inverse	. 900	2100	Volts
Forward	. 900	2100	Volts
Maximum Anode Current			
Peak	. 1800	1200	Amperes
Average			
Continuous .	. 200	150	Amperes
Two-Hours-Averaged Over Any Two-Minute Interval.	. 300	225	Amperes
One-Minute-Averaged Over Any One-Minute Interval.	. . 400	300	Amperes
Fault.	.12,000	9000	Amperes
Maximum Duration of Fault Current	. 0.15	0.15	Seconds
Frequency Range. .	25-60	25-60	Cycles pe

## Ignitor

Volt-Ampere-Time Requirements-See Curve K-69087-72A741 for Ignitor Circuit Requirements.
Maximum Inverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Volts
Maximum Current
Root Mean Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Amperes
Average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Amperes
Maximum Averaging Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Seconds

IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION
SEALED-IGNITRON RECTIFIERS
THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA


ELEMENTARY CIRCUIT FOR CAPACITOR FIRING


ARC DROP
Outlet Water Temperature - 40 to 60 C
Water Flow 3 Gallons per minute

COMMUTATION LIMITS
DELTA, SIX-PHASE, DOUBLE-WYE CIRCUIT OR EQUIVALENT
RATIO OF PEAK-TO-AVERAGE ANODE CURRENT $=3: 1$
REACTANCE FACTOR, $\frac{I_{c} X_{c}}{E_{c}}=.075$ AT $I_{c}=600$ AMPERES


TTII32A
PAGE 5
PAGE 5
4.63
COMMUTATION LIMITS

average anode current in amperes per tube


## GENERAL ELECTRIC <br> POWER TUBE DEPARTMENT

Schenectady 5, N. Y.

# IGNITRON 

# RECTIFIER SERVICE- 100 AMPERES <br> AC CONTROL SERVICE- 1200 KILOVOLT-AMPERES <br> TEMPERATURE CONTROLLED 

HOLDING ANODE
TWO IGNITORS

The GL-6512 ignitron is a sealed, steel-jacketed, water-cooled, mercury-pool tube designed for rectifier service in the $125-$ - $250-$, 600 -, and 900 -volt d-c power fields. It is suitable for use in rectifiers rated up to 200 kilowatts output, depending on the number of ignitrons used, the output voltage, and the circuit. It has a continuous average current rating of 100 amperes per tube in rectifiers rated up to 300 volts $\mathrm{d}-\mathrm{c}$. The tube is also designed for 2400 -volt a-c control service where it has a rating of 1200 kilovolt-amperes.

This tube is identical in ratings and characteristics to the GL-5554. Mechanically, it has the additional feature of an integral thermostatic arrangement with protective features. The arrangement includes a switch which controls a solenoid valve in the water-supply line to the tube in response to increasing and decreasing tube temperature, thus maintaining the amount of cooling water to the minimum required by the operating conditions. It also includes an over-temperature switch which may be used to remove power from the ignitron when its temperature exceeds a safe value.

This new design has several advantages. It eliminates the need for heat exchangers and recirculating
water systems where they have been required to ensure safe operation of the older non-temperaturecontrolled ignitrons when the available cooling water temperature is too low to provide the minimum reliable mercury vapor pressure in the tubes. It eliminates the usual safety devices required with the older design tubes, such as water-flow relays, water over-temperature relays and water-pressure interlocks which have required considerable maintenance in the past. Another advantage is the prevention of excessive moisture condensation over the external parts of the tube under conditions of high humidity.

Like its prototype, the GL-6512 has a holding anode and two ignitors. Excitation of this anode permits stabilizing the cathode spot for very small anode currents. The two ignitors assure long life since only one is used at a time. Phase control of the ignitor impulses permits voltage control of the rectified output. In common with other ignitrons arc losses in the GL-6512 are low, and design and construction features, such as a complete stainless-steel-water jacket, assure ease of installation, economical use of space, and reliability of operation.

## GL-65 12

## ET-TIl33A

## GENERAL

## Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Main Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Holding Anodes . . . . . . . . . . . . . ......................................................... 1
Ignitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Arc Drop at 100 Peak Amperes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 $\pm 0.5$ Volts
Arc Drop at 300 Peak Amperes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5 Volts
Arc Drop at 600 Peak Amperes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.3 $\pm 0.5$ Volts
Cathode Excitation Requirements
Ignitor Voltage Required to Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 Volts
(See Curve K-9033883 for details)
Ignitor Current Required to Fire. .
. 45 Amperes
(See Curve K-9033883 for details)
Starting Time at Required Voltage or Current. .100 Microseconds

## Mechanical

Envelope Material-Stainless Steel		
Over-all Length		Inches
Over-all Width	41/8	Inches
Net Weight, approx	13.5	Pounds

## Thermal

Type of Cooling-Water
Inlet Water Temperature, minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 C
Inlet Water Temperature*, maximum
Power-Rectifier Service
Peak Inverse Anode Voltage $=900$ Volts. ......................................... . . . . . . . . . . . .
Peak Inverse Anode Voltage $=2100$ Volts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 C
AC Control Service
Voltage $=2400$ Volts RMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 C
Water Flow, minimum
At Continuous Rated Average Current
1.5 Gallons per Minute

Characteristics for Water Cooling at Rated Minimum Flow
Water Temperature Rise, maximum
.6 C
Pressure Drop at 3 Gallons per Minute, maximum
5 Pounds per Square Inch

## MAXIMUM RATINGS AND TYPICAL OPERATION

Power-Rectifier Service, Continuous Duty
Ratings are for Zero-Phase-Control-See Curves K-69087-72A182 and K-69087-72A183 for details.
Maximum Peak Anode Voltage
Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $900 \quad 2100$ Volts

Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900
2100 Volts
Maximum Anode Current
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900
600 Amperes
Average
Continuous
75 Amperes
Two-Hours-Averaged Over Any Two-Minute Interval. . . . . . . . . . . . . . . . 150
One-Minute—Averaged Over Any One-Minute Interval. . . . . . . . . . . . . . . . 200
Fault. ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6000
12.5 Amperes

150 Amperes

Maximum Duration of Fault Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.15
4500 Amperes
requency Range
0.15 Seconds

25-60 Cycles per Second

## AC Control Service $\dagger$

Two Tubes in Inverse Parallel, Ratings per Tube		
Voltage.	2400	Volts RMS
Maximum Demand	1200	Kilovolt-Amperes
Average Current at Maximum Demand	75	Amperes
Maximum Average Current.	113	Amperes
Demand at Maximum Average Current.	600	Kilovolt-Amperes
Maximum Averaging Time at 2400 Volts RMS	50	Seconds
Maximum Peak Fault Current. .	3000	Amperes
Frequency Range	25-60	Cycles per Second

## MAXIMUM RATINGS (CONT'D)

Ignitor
Maximum Voltage
Positive-Anode Voltage
Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Volts
Maximum Current
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Amperes

Root Mean Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Amperes
Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Amperes
Maximum Averaging Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Seconds
Typical Resistance Added to Ignitor Circuit for Anode Firing
At Anode Voltage of 600 Volts or Less . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ohms
At Anode Voltage of 601 Volts to 1000 Volts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Ohms
At Anode Voltage of 1001 Volts to 1500 Volts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Ohms
At Anode Voltage of 1501 Volts to 2000 Volts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Ohms
At Anode Voltage of 2001 Volts to 2400 Volts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Ohms

Holding Anode
Maximum Peak Forward Voltage
Volts
Maximum Peak Inverse Voltage
Main Anode Conducting. .
Volts
Main Anode Not Conducting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Volts
Maximum Current
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Average... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Maximum Averaging Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Root Mean Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Temperature-Control-Switch Ratings $\ddagger$
Maximum Voltage.
Maximum Current
Over-Temperature Switch .
Amperes
Water-Control Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5
Maximum Peak Potential Difference Between Switch Circuit and Tube Water Cylinder. . . 1500
Amperes
Switch Contact Arrangement
Over-Temperature Switch-Normally Closed
(Contacts Open on Temperature Rise)
Water-Control Switch-Normally Open
(Contacts Close on Temperature Rise)

* When two or more tubes are connected in series for water flow, the temperature of the incoming water to the warmest tube in the series must be within the rated limit.
$\dagger$ RMS demand voltage, current, and kilovolt-ampere demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used.

The switching circuit must be insulated to prevent excessive voltage between the tube cylinder and the switches.
$\ddagger$ Suitable fuses should be provided in the switch circuits to prevent a power arc should a ground occur in the switch or wiring.

## INSTALLATION AND OPERATION NOTES

In order to realize the advantage of safe tube operation on low-temperature cooling water, water must be supplied to the tube through a rapid-closing solenoid valve controlled by the water-control switch on the tube. The valve must completely stop the water flow to the tube except when the water-control switch is closed. The number of tubes connected in series for water from a single valve must be restricted for the lower temperatures. Placing fewer tubes in series with a solenoid valve will allow the use of lower incoming water temperatures without resulting in arcbacks caused by low tube temperatures.

If the water-supply temperature will never be below +10 C , six tubes may be connected in series for water flow, providing the temperature is not high enough to cause over-temperature on the last tube for the flow available and the load expected on the rectifier. If six tubes are connected in series, only one solenoid valve is required for a six-tube
rectifier. It is possible to operate with only one temperature-controlled tube (installed in the outgoing end of the series group). For more complete protection, two temperature-controlled ignitrons are usually installed in the last two positions on the outgoing water end with their water-control switches in parallel and their over-temperature switches in series.

If the water-supply temperature will be less than +10 C , but never less than 0 C , a series-parallel system should be used connecting three tubes in series for water flow. Water to each series group should be supplied through a solenoid water valve controlled by the water-control switch on the last tube receiving water in that group. In this arrangement, one temperature-controlled tube in the outgoing end of each series group may be used to protect two non-temperature-controlled ignitrons in the remaining positions of the group.

If the water-supply temperature is expected to

## INSTALLATION AND OPERATION NOTES (CONT'D)

drop below 0 C , all tubes in the rectifier must be temperature-controlled, be connected in parallel for water flow and have individual solenoid water valves which prevent water from circulating through any tube until its water-control switch closes. If the tubes themselves are at this low temperature initially, a low load (such as $1 / 4$ load) should be applied to the rectifier long enough to cause one operation of the solenoid valves. After this initial warming, the rectifier should be in condition to handle safely normal loads unless it is idle in a cold atmosphere long enough for the tube again to become cold.

The minimum allowable temperature for the series and series-parallel connections is based on normal industrial loads on the rectifier. For some special conditions of loading it is possible to lower
these temperatures.
In some applications, for example, where the rectifier has only intermittent low loads which are not sufficient to heat the anode end of the tubes to normal temperature, there may be a tendency for mercury to accumulate on the inside of the anode glass insulating bushing. Small amounts of mercury here are not serious. If the entire surface becomes covered, however, it will cause an arc over the inside of the glass which may permanently damage the tube. If this type of service is anticipated, large accumulations of mercury over the glass can easily be prevented by applying external heat to the glass with small radiant heaters or heat lamps. The glass temperature should be raised to approximately 50 C , but may go to 200 C without damage when the tubes are loaded.

IGNITOR VOLT-AMPERE REQUIREMENTS SEALED-IGNITRON RECTIFIERS

THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA



ELEMENTARY CIRCUIT FOR CAPACITOR FIRING K-9033525


ELEMENTARY CIRCUIT FOR ANODE FIRING

[^16]
## GL-65 12

## ET-T1133A

PAGE 6
4-63

ARC DROP


DEMAND CURRENT VS PERCENTAGE DUTY
AT 2400 VOLTS RMS


AVERAGING TIME $=1.5$ SECONDS


AVERAGE ANODE CURRENT IN AMPERES PER TUBE

K-69087-72A1 82
COMMUTATION LIMITS
2-HOUR LOADS
DELTA, SIX-PHASE, DOUBLE-WYE CIRCUIT OR EQUIVALENT
RATIO OF PEAK-TO-AVERAGE ANODE CURRENT $=3: 1$ $\frac{\mathrm{C}_{\mathrm{C}} \mathrm{X}_{\mathrm{C}}}{\mathrm{E}_{\mathrm{S}}}$

average anode current in amperes per tube


HOLDING ANODE REQUIREMENTS


$$
I_{\max }=\frac{\sqrt{2} \text { Erms-arc drop }}{R}=\frac{I_{1}}{\sin (a+\theta)}
$$

WHERE $I_{\max }=$ MAXIMUM VALUE OF AUXILIARY ANODE CURRENT TO PREVENT ARC FROM BEING EXTINGUISHED AT END OF IGNITOR PULSE MORE THAN ONCE PER MINUTE WITH MAIN ANODE NOT CONDUCTING. INCREASE APPROXIMATELY 40 PERCENT TO MAINTAIN ARC EVERY CYCLE.
$\mathrm{I}_{1}=$ INSTANTANEOUS VALUE OF AUXILIARY ANODE CURRENT AT TIME IGNITOR CURRENT DECAYS (FROM CURVES Shown for two values of a and two values of supply voltage).
$\mathrm{a}=\mathrm{IGNITOR}$ RETARD ANGLE WITH RESPECT TO AUXILIARY ANODE VOLTAGE.
$\theta=$ WIDTH OF IGNITOR PULSE (DEGREES).
$\mathrm{E}_{\text {rms }}=$ SUPPLY VOLTAGE.
R $=$ TOTAL CIRCUIT RESISTANCE.

4-63


# GENERAL ELECTRIC 

POWER TUBE DEPARTMENT
Schenectady 5, N. Y.


## IGNITRON

## RECTIFIER SERVICE-200 AMPERES AC CONTROL SERVICE-2400 KILOVOLT-AMPERES <br> TEMPERATURE CONTROLLED

HOLDING ANODE TWO IGNITORS

The GL-6513 ignitron is a sealed, stainless-steeljacketed, water-cooled, mercury-pool tube designed for rectifier service in the $125-, 250-, 600-$, and $900-$ volt d-c power fields. It is suitable for use in rectifiers rated up to 500 kilowatts output, depending on the number of ignitrons used, the output voltage, and the circuit. Continuous average current rating is 200 amperes per tube in rectifiers rated up to 300 volts d-c. The tube is also designed for 2400 -volt a-c control service where it has a rating of 2400 kilovolt-amperes.

This tube is identical in ratings and characteristics to the GL-5555. Mechanically, it has the additional feature of an integral thermostatic arrangement with protective features. The arrangement includes a switch which controls a solenoid valve in the water-supply line to the tube in response to increasing and decreasing tube temperature, thus
maintaining the amount of cooling water to the minimum required by the operating conditions. It also includes an over-temperature switch which may be used to remove power from the ignitron when its temperature exceeds a safe value.

This new design has several advantages. It eliminates the need for heat exchangers and recirculating water systems where they have been required to ensure safe operation of the older non-temperaturecontrolled ignitrons when the available cooling water temperature is too low to provide the minimum reliable mercury vapor pressure in the tubes. It eliminates the usual safety devices required with the older design tubes, such as water-flow relays, water over-temperature relays and water-pressure interlocks which have required considerable maintenance in the past. Another advantage is the pre-
vention of excessive moisture condensation over the external parts of the tube under conditions of high humidity.

Like its prototype, the GL-6513 has a holding anode and two ignitors. Excitation of this anode permits stabilizing the cathode spot for very small anode currents. The two ignitors assure long life
since only one is used at a time. Phase control of the ignitor impulses permits voltage control of the rectified output. In common with other ignitrons arc losses in the GL-6513 are low, and design and construction features, such as a complete stainless-steel-water jacket, assure ease of installation, economical use of space, and reliability of operation.

## GENERAL

Electrical
Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes ..... 1
Auxiliary Anodes .....  1
Ignitors
$16.2=0.5$ Volts
Arc Drop at 600 Peak Amperes
Cathode Excitation Requirements
450 Volts
Ignitor Voltage Required to Fire 45 Amperes
Ignitor Current Required to Fire
(See Curve K-9033883 for details)
Starting Time at Required Voltage or Current ..... 100
Mechanical
Envelope Material-Stainless Steel

Over-all Width . ..... 53/4 Inches
Net Weight, approximate ..... 25 Pounds
Thermal
Type of Cooling-Water
Inlet Water Temperature, minimum . ..... $-15 \mathrm{C}$
Inlet Water Temperature, * maximum
Power-Rectifier Service
Peak Inverse Anode Voltage $=900$ Volts ..... 50 C
Peak Inverse Anode Voltage $=2100$ Volts. ..... 35 C
AC Control Service
Voltage $=2400$ Volts RMS ..... 25 C
Water Flow, minimum
At Continuous Rated Average Current.Gallons per Minute
Characteristics for Water Cooling at Rated Minimum FlowWater Temperature Rise, maximum .C
Pressure Drop at 3 Gallons per Minute, maximum . Inch
MAXIMUM RATINGS AND TYPICAL OPERATION
Power-Rectifier Service, Continuous Duty
Ratings are for Zero-Phase-Control-See Curves K-69087-72A180 and K-69087-72A181 for details.
Maximum Peak Anode Voltage
Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900
Forward ..... 900
Maximum Anode Current
Peak ..... 1800
Average
Continuous. ..... 200
Two-Hours - Averaged Over Any Two-Minute Interval ..... 300
One-Minute-Averaged Over Any One-Minute Interval. ..... 400
Fault ..... 12,000
Maximum Duration of Fault Current ..... 0.15
Frequency Range ..... 25-60

## MAXIMUM RATINGS (CONT'D)

AC Control Service $\dagger$	
Two Tubes in Inverse Parallel, Ratings per Tube	
Voltage	2400
Maximum Demand.	2400
Average Current at Maximum Demand	. 135
Maximum Average Current	. 207
Demand at Maximum Average Current	. 1105
Maximum Averaging Time at 2400 Volts RMS	1.66
Maximum Peak Fault Current.	. 6000
Frequency Range.	. 25-60

Ignitor
Maximum Voltage
Positive-Anode Voltage
Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Volts
Maximum Current
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Root Mean Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Maximum Averaging Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Typical Resistance Added to Ignitor Circuit for Anode Firing
At Anode Voltage of 600 Volts or Less
At Anode Voltage of 601 Volts to 1000 Volts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Ohms
At Anode Voltage of 1001 Volts to 1500 Volts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
At Anode Voltage of 1501 Volts to 2000 Volts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
At Anode Voltage of 2001 Volts to 2400 Volts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Holding Anode
Maximum Peak Forward Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Maximum Peak Inverse Voltage
Main Anode Conducting.
$\qquad$
Main Anode Not Conducting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Maximum Current
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Average... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Averaging Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Root Mean Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Temperafure-Control-Switch Ratings $\ddagger$
Maximum Voltage.
Maximum Current
Over-Temperature Switch
Volts

Water-Control Switch
Amperes
Amperes
Maximum Peak Potential Difference Between Switch Circuit and Tube Water Cylinder. . 1500 Volts
Switch-Contact Arrangement
Over-Temperature Switch-Normally Closed
(Contacts Open on Temperature Rise)
Water-Control Switch-Normally Open
(Contacts Close on Temperature Rise)

[^17]
## INSTALLATION AND OPERATION NOTES

In order to realize the advantage of safe tube operation on low-temperature cooling water, water must be supplied to the tube through a rapid-closing solenoid valve controlled by the water-control switch on the tube. The valve must completely
stop the water flow to the tube except when the water-control switch is closed. The number of tubes connected in series for water from a single valve must be restricted for the lower temperatures. Placing fewer tubes in series with a solenoid valve

## INSTALLATION AND OPERATION NOTES (CONT'D)

will allow the use of lower incoming water temperatures without resulting in arcbacks caused by low tube temperatures.

If the water-supply temperature will never be below +10 C , six tubes may be connected in series for water flow, providing the temperature is not high enough to cause over-temperature on the last tube for the flow available and the load expected on the rectifier. If six tubes are connected in series, only one solenoid valve is required for a six-tube rectifier. It is possible to operate with only one temperature-controlled tube (installed in the outgoing end of the series group). For more complete protection, two temperature-controlled ignitrons are usually installed in the last two positions on the outgoing water end with their water-control switches in parallel and their over-temperature switches in series.

If the water-supply temperature will be less than +10 C , but never less than 0 C , a series-parallel system should be used connecting three tubes in series for water flow. Water to each series group should be supplied through a solenoid water valve controlled by the water-control switch on the last tube receiving water in that group. In this arrangement, one temperature-controlled tube in the outgoing end of each series group may be used to protect two non-temperature-controlled ignitrons in the remaining positions of the group.

If the water-supply temperature is expected to drop below 0 C , all tubes in the rectifier must be temperature-controlled, be connected in parallel
for water flow, and have individual solenoid water valves which prevent water from circulating through any tube until its water-control switch closes. If the tubes themselves are at this low temperature initially, a low load (such as $1 / 4$ load) should be applied to the rectifier long enough to cause one operation of the solenoid valves. After this initial warming, the rectifier should be in condition to handle safely normal loads unless it is idle in a cold atmosphere long enough for the tubes again to become cold.

The minimum allowable temperature for the series and series-parallel connections is based on normal industrial loads on the rectifier. For some special conditions of loading it is possible to lower these temperatures.

In some applications, for example, where the rectifier has only intermittent low loads which are not sufficient to heat the anode end of the tubes to normal temperature, there may be a tendency for mercury to accumulate on the inside of the anode glass insulating bushing. Small amounts of mercury here are not serious. If the entire surface becomes covered, however, it will cause an arc over the inside of the glass which may permanently damage the tube. If this type of service is anticipated, large accumulations of mercury over the glass can easily be prevented by applying external heat to the glass with small radiant heaters or heat lamps. The glass temperature should be raised to approximately 50 C , but may go to 200 C without damage when the tubes are loaded.

## IGNITOR VOLT-AMPERE REQUIREMENTS

 SEALED-IGNITRON RECTIFIERSTHE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA



ELEMENTARY CIRCUIT FOR CAPACITOR FIRING K-9033525

5-25-54


ELEMENTARY CIRCUIT FOR ANODE FIRING
K-9033528
5-25-54

## GL-65 13

ARC DROP
OUTLET WATER TEMPERATURE-40 TO 60 C WATER FLOW - 3 GPM


DEMAND CURRENT VS PERCENTAGE DUTY
AT 2400 VOLTS RMS



COMMUTATION LIMITS
2-HOUR LOADS
DELTA, SIX-PHASE, DOUBLE-WYE CIRCUI
RATIO OF PEAK-TO-AVERAGE ANODE C
REACTANCE FACTOR, $\frac{I_{\mathrm{e}} \mathrm{x}_{\mathrm{c}}}{\mathrm{E}_{\mathrm{s}}}=.075$ AT $\mathrm{I}_{\mathrm{c}}$

aVErage anode current in amperes per tube

K-69087-72A181
AUXILIARY-ANODE ARC-DROP VOLTAGE IN VOLTS


## GL-65 13



# GENERAL ELECTRIC <br> POWER TUBE DEPARTMENT <br> Schenectady 5, N. Y. 



The GL－6514 is a permanently sealed water－cooled rectifier ignitron similar in construction and rating to the GL－5788． Special features are the addition of an in－ tegral temperature－control device with protective features，and low water－pressure drop．The tube is designed for operation in $300-, 600-$ ，and 900 －volt d－c industrial rectifier circuits．The continuous average anode current rating is 150 amperes per tube in rectifiers rated up to 400 volts d－c． The control includes a switch which oper－ ates a solenoid valve in the water－supply line to the tube in response to increasing and decreasing tube temperature，thus maintaining the amount of cooling water to the minimum required by the operating conditions．It also includes an over－tempera－
ture switch which may be used to remove power from the ignitron when its tempera－ ture exceeds a safe value．

This design eliminates the need for heat exchangers and recirculating water systems required to ensure safe operation of the non－temperature－controlled tube when the available cooling water temperature is too low to provide the minimum reliable mer－ cury－vapor pressure in the tubes．Another advantage is that temperature－controlled tubes replace the usual safety devices，such as，water－flow relays，water over－tempera－ ture relays，and water－pressure interlocks， which require considerable maintenance． These tubes prevent excessive moisture condensation over their external parts under conditions of high humidity．

## ELECTRICAL

Cathode Excitation－Cyclic
Cathode Spot Starting－Ignitor
Number of Electrodes
Main Anodes．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1
Main Cathodes．．．．．．．．．．．．．．．．．．．．．．．． 1
Holding Anodes．．．．．．．．．．．．．．．．．．．．．．． 1
Ignitors．．． 0. ．．．．．．．．．．．．．．．．．．．．．．．．．． 2
Arc Drop at 600 Amperes Peak．．．．．． $16.2 \pm 0.5$ Volts
See Curve＂Arc Drop＂

## MECHANICAL

Envelope Material－Stainless Steel
Net Weight，approximate．

## THERMAL

Type of Cooling－Water
Inlet Water Temperature＊，minimum ．．．．．．．．．－10C

Inlet Water Temperature，maximum
Power－Rectifier Service
Peak Inverse Anode Voltage $=$ 900 Volts and Below．．．．．．．．．．．．．．． 55 C Peak Inverse Anode Voltage＝ 2100 Volts and Below ．．．．．．．．．．．．．． 50 C
AC Control Service Voltage $=2400$ Volts RMS ．．．．．．．．．．．．． 45 C

Water Flow，minimum，solenoid water valve open $\dagger$
At Continuous Rated Average Current．．．．3 Gallons per
Characteristics for Water Cooling at Rated Miniminute
Water Temperature Rise，maximum．．．．．4．5 C
Pressure Drop at 3 Gallons per Minute，
maximum
Pounds per Square Inch
＊See＂Installation and Operation Notes＂
$\dagger$ Water flow should be continued for at least thirty minutes after removal of anode power．

## MAXIMUM RATINGS

## Power－Rectifier Service，Continuous Duty

Ratings are for Zero－Phase－Control Angle－See Curves ＂Commutation Limits＂
Maximum Peak Anode Voltage


AC Control Service
Two Tubes in Inverse Parallel，Ratings per Tube
Voltage．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2400

Maximum Demand ．．．．．．．．．．．．．．．．．．．．． 2400
Average Current at Maximum Demand ．．． 135
Maximum Average Current．．．．．．．．．．．．．．． 207
Demand at Maximum Average Current．． 1105
Maximum Averaging Time at 2400 Volts
RMS．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1.66
Maximum Peak Fault Current．．．．．．．．．．． 6000
Frequency Range ．．．．．．．．．．．．．．．．．．．．．25－60

Volts RMS
Kilovolt－ Amperes Amperes Amperes Kilovolt－ Amperes

Seconds
Amperes Cycles per Second

## MAXIMUM RATINGS (Cont'd)

Holding Anode	
See Curve "Holding Anode Requirements" Maximum Peak Voltage	
Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . 160	Volts
Inverse	
Main Anode Conducting . . . . . . . . . . . . . 25	Volts
Main Anode Non-Conducting . . . . . . . . 160	Volts
Maximum Current	
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30	Amperes
Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9	Amperes
Maximum Averaging Time . . . . . . . . . . 10	Seconds
Root Mean Square . . . . . . . . . . . . . . . . . . . 15	Amperes
Cathode Excitation Requirements	
Ignitor Voltage Required to Fire........... . 450 See Curve "Ignitor Volt-Ampere Requirements"	Volts
Ignitor Current Required to Fire . . . . . . . . . . 45 See Curve "Ignitor Volt-Ampere Requirement	Amperes
Starting Time at Required Voltage or Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100	Microseconds
Peak Excitation Arc Current Required, minimum.	Amperes
See Curve "Holding Anode Requirements"	
Excitation Arc-Drop Voltage. . . . . . . . . $9 \pm 0.5$	Volts
Excitation Arc Open-Circuit Voltage, minimum .	Volts Ac


Ignitor	
Maximum Voltage	
Positive-Anode Voltage	
Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5	Volts
Maximum Current	
Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100	Amperes
Average . . . . . . . . . . . . . . . . . . . . . . . . . 2	Amperes
Maximum Averaging Time . . . . . . . . . . 10	Seconds
Root Mean Square.... . . . . . . . . . . . . . . . . 15	Amperes
Temperature-Control-Switch Ratings $\ddagger$	
Maximum Voltage . . . . . . . . . . . . . . . . . . . . 575	Volts
Maximum Current	
Over-Temperature Switch . . . . . . . . . . . . . 6	Amperes
Water-Control Switch . . . . . . . . . . . . . . . 1.5	Amperes
Maximum Peak Potential Difference Between	
Tube Water Cylinder and Switch Circuit. 1500	Volts
Switch-Contact Arrangement	
Over-Temperature Switch-Normally Closed (Contacts Open on Temperature Rise)	
Water-Control Switch-Normally Open (Contacts Close on Temperature Rise)	

Maximum Voltage
Positive-Anode Voltage
Maximum Current
Peak ................................... . . . 100 Amperes
verage . . . . . . . . . . . . . . . . . . . . . . . . 10 Seconing Time
Root Mean Square.......................... . . . 15 Amperes

Temperature-Control-Switch Ratings $\ddagger$
Maximum Voltage . . . . . . . . . . . . . . . . . . . . . . 575 Volts
Maximum Current
. 6 Amperes
Water-Control Switch . . . . . . . . . . . . . . . 1.5 Amperes
Maximum Peak Potential Difference Between
Tube Water Cylinder and Switch Circuit. 1500 Volts Switch-Contact Arrangement
ver-Temperature Switch-Normally Closed
Water-Control Switch-Normally Open
(Contacts Close on Temperature Rise)
$\ddagger$ Suitable fuses should be provided in the switch circuits to prevent a power arc should a ground occur in the switch or wiring.

## INSTALLATION AND OPERATION NOTES

In order to realize the advantage of safe tube operation on low-temperature cooling water, water must be supplied to the tube through a rapid-closing solenoid valve controlled by the water-control switch on the tube. The valve must completely stop the water flow to the tube except when the water-control switch is closed. The number of tubes connected in series for water from a single valve must be restricted for the lower temperatures. Placing fewer tubes in series with a solenoid valve will allow the use of lower incoming water temperatures without resulting in arcbacks caused by low tube temperatures.
If the water-supply temperatures will never be below +5 C , three tubes may be connected in series for water flow, provided the temperature is not high enough to cause over-temperature on the last tube for the flow available and the load expected on the rectifier. If three tubes are connected in series, only one solenoid valve is required for the series group, and only the last tube in the group requires the temperature-control switches.

If the water-supply temperature may sometimes drop below +5 C , all tubes in the rectifier must be temperaturecontrolled, be connected in parallel for water flow, and have individual solenoid water valves which prevent water from circulating through any tube until its water-control switch closes.

If the tubes themselves are at this low temperature initially, a low load (such as $1 / 4$ load) should be applied to the rectifier long enough to cause one operation of the solenoid valves. After this initial warming, the rectifier should be in condition to handle safely normal loads unless it is idle in a cold atmosphere long enough for the tube again to become cold.

The minimum allowable temperature for the series-parallel connection is based on normal industrial loads on the rectifier. For some special conditions of loading it is possible to lower these temperatures.

In some applications, for example, where the rectifier has only intermittent low loads which are not sufficient to heat the anode end of the tubes to normal temperature, there may be a tendency for mercury to accumulate on the inside of the anode glass insulating bushing. Small amounts of mercury here are not serious. If the entire surface becomes covered, however, it will cause an arc over the inside of the glass which may permanently damage the tube. If this type of service is anticipated, large accumulations of mercury over the glass can easily be prevented by applying external heat to the glass with small radiant heaters or heat lamps. The glass temperature should be raised to approximately 50 C , but may go to 200 C without damage when the tubes are loaded.


ARC DROP
OUTLET WATER TEMPERATURE - 40 TO 60C WATER FLOW-3 GPM


IGNITOR VOLT-AMPERE REQUIREMENTS


COMMUTATION LIMITS
I-MINUTE LOADS


COMMUTATION LIMITS
2 - HOUR LOADS




TUBE DEPARTMENT
Schenectady, N. Y. 12025


IGNITRON

RECTIFIER SERVICE-400 AMPERES
HOLDING ANODE
AC CONTROL SERVICE- 4800 KILOVOLT-AMPERES
TWO IGNITORS
TEMPERATURE CONTROLLED

The GL-6515 ignitron is a sealed, stainless-steel jacketed, water-cooled mercury-pool tube for rectifier service in the $125-, 250-, 600-$, and 900 -volt d-c power fields. It is suitable for use in rectifiers rated up to 1000 kilowatts output, depending on the number of ignitrons used, the output voltage, and the circuit. Continuous average current rating is 400 amperes per tube in rectifiers rated up to 300 volts d-c. The tube is also designed for 2400 -volt a-c control service where it has a rating of 4800 kilo-volt-amperes.

This tube is identical in ratings and characteristics to the GL-5564. Mechanically, it has the additional feature of an integral thermostatic arrangement with protective features. The arrangement includes a switch which controls a solenoid valve in the water-supply line to the tube in response to increasing and decreasing tube temperature, thus maintaining the amount of cooling
water to the minimum required by the operating conditions. It also includes an over-temperature switch which may be used to remove power from the ignitron when its temperature exceeds a safe value.

This new design has several advantages. It eliminates the need for heat exchangers and recirculating water systems where they have been required to ensure safe operation of the older non-temperature-controlled ignitrons when the available cooling water temperature is too low to provide the minimum reliable mercury vapor pressure in the tubes. It eliminates the usual safety devices required with the older design tubes, such as waterflow relays, water over-temperature relays and water-pressure interlocks which have required considerable maintenance in the past. Another advantage is the prevention of excessive moisture condensation over the external parts of the tube
under conditions of high humidity.
Like its prototype, the GL-6515 has a holding anode and two ignitors. Excitation of this anode permits stabilizing the cathode spot for very small anode currents. The two ignitors assure long life since only one is used at a time. Phase control of the ignitor impulses permits voltage control of the
rectified output. In common with other ignitrons arc losses in the GL-6515 are low, and design and construction features, such as a complete stainless-steel-water jacket, assure ease of installation, economical use of space, and reliability of operation.

## GENERAL

## Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Holding Anodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ignitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Control Grids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Arc Drop at 1200 Peak Amperes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $18.2 \pm 0.1$ Volts
Arc Drop at 8000 Peak Amperes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $35 \pm 0.1$ Volts
Cathode Excitation Requirements
Ignitor Voltage Required to Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 Volts
(See curve K-9033883 for details)
Ignitor Current Required to Fire
45 Amperes
(See curve K-9033883 for details)
Starting Time at Required Voltage or Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Microseconds
Peak Excitation Arc Current Required, minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Amperes
(See curve K-69087-72A387 for details)
Excitation Arc-Drop Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Volts
Grid Requirements*
Minimum Voltage to Establish Conduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Volts
Minimum Voltage to Prevent Conduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Volts
Positive Current to Establish Conduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1 Amperes

## Mechanical

Envelope Material-Stainless Steel
Over-all Length . . . . . .........................................................2711 216 Inches
Over-all Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $91 / 8$ Inches
Net Weight, approximate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Pounds

## Thermal

Type of Cooling-Water
Inlet Water Temperature $\dagger$, minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 C
Inlet Water Temperature $\ddagger$, maximum
Power-Rectifier Service
Peak Inverse Anode Voltage $=900$ Volts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 C
Peak Inverse Anode Voltage $=2100$ Volts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 C
AC Control Service
Voltage $=250$ Volts RMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 C
Voltage $=600$ Volts RMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 C
Voltage $=2400$ Volts RMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 C
Water Flow, minimum
At Continuous Rated Average Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Gallons per Minute
Characteristics for Water Cooling at Rated Minimum Flow
Water Temperature Rise, maximum
.19 C
Pressure Drop at 6 Gallons per Minute, maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pound per Square Inch

## MAXIMUM RATINGS AND TYPICAL OPERATION

Power-Rectifier Service, Continuous Duty
Ratings are for Zero Phase-Control Angle-See curves K-69087-72A178 and K-69087-72A179 for details.
Maximum Peak Anode Voltage


## MAXIMUM RATINGS (CONT'D)

Power Rectifier Service (Cont'd)Maximum Anode Current
Peak. ....................................................................................3600 AmperesAverage
Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Two-Hours - Averaged Over Any Two-Minute Interval ..... 400
One-Minute-Averaged Over Any One-Minute Interval ..... 600 Fault ..... 15,000
Frequency Range ..... 25-60

Amperes
Amperes
Amperes
Amperes
Seconds Cycles per Second
AC Control Service§
Two Tubes in Inverse Parallel, Ratings per Tube
Voltage ..... 2400
Maximum Demand. ..... 4800
Average Current at Maximum Demand ..... 270
Maximum Average Current ..... 414
Demand at Maximum Average Current ..... 2210
Maximum Averaging Time ..... 1.66
Frequency Range ..... 12,000 ..... 25-60
Ignitor
Maximum Voltage
Positive-Anode VoltageNegative 5 Volts
Maximum Current
Peak ..... 100
Root Mean Square ..... 15Average
AmperesMaximum Averaging Time10
Typical Resistance Added to Ignitor Circuit for Anode Firing
At Anode Voltage of 600 Volts or Less
Ohms
At Anode Voltage of 601 Volts to 1000 Volts ..... 10
At Anode Voltage of 1001 Volts to 1500 Volts ..... 20 Ohms
At Anode Voltage of 1501 to 2000 Volts Ohms
At Anode Voltage of 2001 to 2400 Volts. ..... 50 Ohms
Holding Anode
Maximum Peak Forward Voltage ..... 160
Maximum Peak Inverse Voltage
Main Anode Conducting ..... 25 Volts
Main Anode Not Conducting ..... 160 Volts
Maximum Current
Peak.Amperes
Average ..... 9Amperes
Maximum Averaging Time10 Seconds
Root Mean Square ..... Amperes
Grid*
Maximum Peak Forward Voltage ..... 250
Maximum Peak Inverse Voltage ..... 300 Volts
Maximum Grid-Current
Peak Positive1.5 Amperes
Peak Negative. ..... 0.5 Amperes
Average ..... 0.5 Amperes
Root Mean Square. ..... 1.0 Amperes
Temperature-Control-Switch Ratings $\pi$
Maximum Voltage ..... 575 Volts
Maximum Current
Over-Temperature Switch Amperes
Water-Control Switch ..... 1.5 Amperes
Maximum Peak Potential Difference Between Switch Circuit and Tube Water Cylinder . . . 1500 ..... VoltsVolts RMSKilovolt-AmperesAmperesAmperesKilovolt-AmperesSeconds
AmperesCycles per Second

* At main anode voltages of 500 volts and over, the grid circuits should provide a negative d-c bias of 100 volts and a suitable turn-on voltage to swing the grid positive at the time the ignitor is fired. At lower anode voltages, it is sufficient to connect the grid to the main anode through a resistor. In either case, the grid-circuit resistance should be 500 to 1000 ohms.
$\dagger$ Dependent upon load conditions. For substantially constant load 0 C is satisfactory. For widely fluctuating loads 25 C is required.
$\ddagger$ When two or more tubes are connected in series for water flow the temperature of the incoming water to the warmest tube in the series must be within the rated limit.
§ RMS demand voltage, current, and kilovolt-ampere demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used. For voltages below the minimum, the minimum-voltage current rating applies. With the use of log-log paper straight-line interpolation between tabulated points may be used for other detailed ratings of: Demand kva vs average anode current, and maximum averaging time vs anode voltage.

At higher voltage ratings, the switching circuit must be insulated to prevent excessive voltage between the tube cylinder and switches.
$\pi$ Suitable fuses should be provided in the switch circuits to prevent a power arc should a ground occur in the switch or wiring.

NOTE: This tube is not recommended for applications requiring continuous voltage control greater than 15 percent voltage reduction.

## INSTALLATION AND OPERATION NOTES

In order to realize the advantage of safe tube operation on low-temperature cooling water, water must be supplied to the tube through a rapid-closing solenoid valve controlled by the water-control switch on the tube. The valve must completely stop the water flow to the tube except when the water-control switch is closed.

All tubes in the rectifier must be temperature controlled, be connected in parallel for water flow with an individual solenoid water valve for each tube. If the tubes themselves are at temperatures below 3 C before a period of operation, a low load (such as $1 / 4$ load) should be applied to the rectifier long enough to cause one operation of the valves. After this initial warming, the rectifier should be in condition to handle safely normal loads unless it is idle in a cold atmosphere long enough for the tubes
again to become cold.
In some applications, for example, where the rectifier has only intermittent low loads which are not sufficient to heat the anode end of the tubes to normal temperature, there may be a tendency for mercury to accumulate on the inside of the anode glass insulating bushing. Small amounts of mercury here are not serious. If the entire surface becomes covered, however, it will cause an arc over the inside of the glass which may permanently damage the tube. If this type of service is anticipated, large accumulations of mercury over the glass can easily be prevented by applying external heat to the glass with small radiant heaters or heat lamps. The glass temperature should be raised to approximately 100 C , but may go to 200 C without damage when the tubes are loaded.


## ELEMENTARY CIRCUIT FOR ANODE FIRING

 TYPICAL VALUES$\left\{\begin{array}{llr}\text { ANODE VOLTAGE }=600 \text { VOLTS OR LESS- } 4 \text { OHMS } & \mathrm{R}_{\mathrm{g}}=500 \text { OHMS } \\ \text { ANODE VOLTAGE }=601 \text { VOLTS TO } 1000 \text { VOLTS } 10 \text { OHMS } & \mathrm{C}_{\mathrm{B}}=8 \mathrm{MFD} \\ \text { ANODE VOLTAGE }=1001 \text { VOLTS TO } 1500 \text { VOLTS- } 20 \text { OHMS } & \mathrm{C}_{\mathrm{G}}=0.1 \mathrm{MFD} \\ \text { ANODE VOLTAGE }=1501 \text { VOLTS TO } 2000 \text { VOLTS- } 35 \text { OHMS } & \text { FUSE }=6 \text { AMPERES }\end{array}\right.$

ANODE VOLTAGE $=1501$ VOLTS TO 2000 VOLTS- 35 OHMS
FUSE $=6$ AMPERES
ANODE VOLTAGE $=2001$ VOLTS TO 2400 VOLTS- 50 OHMS
$\mathrm{R}_{\mathrm{HA}}=$ PROPER RESISTANCE TO PROVIDE NECESSARY STABILIZING
CURRENT CALLED FOR ON K-69087-72A387


## ELEMENTARY CIRCUIT FOR CAPACITOR FIRING TYPICAL VALUES

[^18]$\mathrm{R}_{\mathrm{g}}=500$ OHMS
$R_{H A}=$ PROPER RESISTANCE TO PROVIDE NECESSARY STABILIZING CURRENT CALLED FOR ON K-69087-72A387
FUSE $=5$ AMPERES




DUTY $\operatorname{IN}$ PERCENTAGE
2 tUBES CONNECTED IN INVERSE PARALLEL


ARC-DROP CHARACTERISTIC


average anode current amperes per tube

aVERAGE ANODE CURRENT IN AMPERES PER TUBE



## GL-65 15



## GENERAL ELECTRIC <br> POWER TUBE DEPARTMENT

Schenectady 5, N. Y.


## IGNITRON

## LOCOMOTIVE RECTIFIER SERVICE-675 AMPERES

## TWO IGNITORS

The GL-6878 is a double-grid ignitron designed for railroad locomotive rectifier service.

A coaxial cathode-current return reduces magnetic fields due to tube currents. The tube also features baffles in the mercury pool to assure contact between the mercury and the ignitor points
during swaying of the equipment.
A companion tube, the GL-6509 ignitron, is available to supply the auxiliary power requirements of applications which use the GL-6878 as the main power source.

## GENERAL

Electrical
Cathode Excitation-Cyclic
Cathode-Spot Starting-Ignitor
Number of Electrodes
Main Anodes .....  1
Main Cathodes .....  1
Holding Anode .....  1
Ignitors. .....  2
Shield Grids ..... 1
Control Grids ..... 1
Arc Drop at 2000 Peak Amperes ..... $21 \pm 1$ Volts
Arc Drop at 4000 Peak Amperes ..... $26 \pm 1$ Volts(See Curve K-69087-72A764 for Details)

Mechanical		
Envelope Material Stainless Steel		
Over-all Length	$30^{1 / 2}$	Inches
Over-all Width	131/8	Inches
Net Weight	190	Pounds
Thermal		
Type of Cooling-Water		
Inlet Water Temperature, minimum	30	C
Outlet Water Temperature, maximum .	55	C
Water Flow, minimum		
At Continuous Rated Average Current	10	Gallons per Minute
At No Load	1	Gallons per Minute
Recommended Outlet Water Temperature Range.	to 45	C
Characteristics for Water Cooling at Rated Minimum Flow		
Water Temperature Rise, maximum	10	C
Pressure Drop at 10 Gallons per Minute, maximum.	2.5	Pounds per Square Inch

MAXIMUM RATINGS AND TYPICAL OPERATION
Power-Rectifier Service, Continuous Duty, Single Phase
Ratings are for Zero-Phase-Control Angle
Maximum Peak Anode Voltage
Inverse. . . . . . . . . .......................................................... . . . . . . . 4000 Volts

Forward........................................................... . . . . . . 100 Volts
Maximum Anode Current
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2500 Amperes

Average*

Continuous	675	Amperes
Fifty Minutes.	675	Amperes
Twelve Minutes	750	Amperes
Six Minutes	810	Amperes
Four Minutes	875	Amperes

Fault

Peak, Forward Direction	20,000	Amperes
Peak, Reverse Direction.	40,000	Amperes

Maximum Duration of Fault Current . . . . . . . . . ............................. 0.15 Seconds
Frequency
25 Cycles per Second
Ignitor
Volt-Ampere-Time Requirements - See Curve K-69087-72A741 for Details
Maximum Inverse Voltage
5 Volts
Maximum Current
Root Mean Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Amperes
Average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................... 2 . Amperes
Maximum Averaging Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Seconds
Holding Anode
Maximum Peak Forward Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Volts
Maximum Peak Inverse Voltage
Main Anode Conducting . . . . . . . . . . . . . ........................................ 25 Volts
Main Anode Not Conducting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Volts
Maximum Current
Peak. . . ........................................................................... 30 Amperes
Average . . . . ............................................................... . . . . . . . . . Amperes
Maximum Averaging Time............................................................ 10 Seconds
Root Mean Square
15 Amperes

## Shield Grid

Shield-Grid Voltage	Minimum	Maximum
Peak Forward.	200	500 Volts
Peak Inverse.	$\ldots$	200 Volts

## Control Grid

Shield-Grid Current
Peak Forward. . . . . . . . . . . . ..................................... 0.2 . 5 Amperes
Peak Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . .
0.2 Amperes

Control-Grid Voltage
Peak Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
500 Volts
Peak Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Control-Grid Current
Peak Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4
200 Volts

Peak Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4
5 Amperes

* Short time loads applied following light load.

IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION
SEALED-IGNITRON RECTIFIERS
the IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA


ARC DROP



# GENERAL ELECTRIC <br> POWER TUBE DEPARTMENT <br> Schenectady 5, N. Y. 

## IGNITRON

POWER-RECTIFIER SERVICE

## INVERTER SERVICE

## TWO IGNITORS

The GL-6958 is a double-grid ignitron designed for industrial rectifier or inverter applications where it will operate at peak inverse voltages as high as 4000 volts. In such applications six tubes will supply 3000 kilowatts at voltages of 1800 or 3600 volts d-c, depending upon the circuit used.

## GENERAL

## Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting - Ignitor
Number of Electrodes
Main Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Holding Anode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...................... . . 1
Ignitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Shield Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Control Grids. . . . . . . ........................................................ 1
Arc Drop
At 1000 Peak Amperes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $20.5 \pm 2$ Volts
At 2000 Peak Amperes
$24.0 \pm 2$ Volts
(See curve K-69087-72A709 for details)

## GENERAL (CONT'D)

## Mechanical

Envelope Material-Stainless Steel


## Thermal

Type of Cooling-Water
Inlet Water Temperature, minimum . . . . . . . . . . . ................................. 30 C
Outlet Water Temperature, maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C
Water Flow
At Continuous Rated Average Current, minimum . . . . . . . . . . . . . . . . . . . . . . . . 10 Gallons per Minute
At No Load, ${ }^{*}$ minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Gallons per Minute
Temperature Range.
40 to 45 C
Characteristics for Water Cooling at 10 Gallons per Minute
Water Temperature Rise, maximum
6.5 C

Pressure Drop, maximum . . . . . . . . . . . . . . . . . . . . . ........................... . . .
1.5 Pounds per Square Inch

Working Water Pressure - Non Shock, maximum .
100 Pounds per Square Inch

## MAXIMUM RATINGS AND TYPICAL OPERATION

Power-Rectifier or Inverter Service, Continuous Duty
Ratings Are for Zero-Phase-Control Angle
Maximum Peak Anode Voltage

Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4000 Volts

Maximum Anode Current
Peak. . . . . . . . . . . ........................................................ . . . . 2000 Amperes

Average
Continuous .................................................................... 275 Amperes
Two Hours . . . . . . . . . . . . . . . .................................................... 350 Amperes

One Minute. . . . . ......................................................... 570 Amperes

## Fault

Forward Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15,000 Amperes

Reverse Direction . . . . . . . . . ................................................... . . . 30,000 Amperes
Maximum Duration of Fault Current. . . . . . . . ................................. 0.15 Seconds
Frequency Range
.25 to 60 Cycles per Second

## Ignitor Characteristics

Maximum Inverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Volts

Recommended Pulse Length
800 Microseconds
Minimum Pulse Length, average anode current greater than 8 amperes
150 Microseconds
Maximum Pulse Length . 4000 Microseconds
Volt-Ampere Characteristics-See curve K-69087-72A803 for details.

## Holding Anode

Maximum Peak Forward Voltage ............................................... . . . . . 160 Volts
Maximum Peak Inverse Voltage
Main Anode Conducting . . . . . . . . . . .......................................... . . . . 25 Volts
Main Anode Not Conducting . . . . . . . . . . . . . . . . . . . . . . ................ . . 160 Volts
Maximum Current


Maximum Averaging Time
10 Seconds
Root Mean Square
15 Amperes

## Shield-Grid Characteristics

## Voltage



## Current

Peak Forward ..... 0.2
5.0 Amperes

Peak Inverse. . . . . ..................................................... . . . . . . . Amperes
Control-Grid Characteristics

## Voltage

Peak Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
500 Volts
Peak Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Current
Peak Forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4
Peak Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4
0.4
-90

200 Volts

DC Bias. . . . . . . . . . . . .................................................... -90
5.0 Amperes
1.0 Amperes
-110 Volts

* Water flow should be continued for one hour after removal of anode power.

ARC DROP


IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIER
the ignitor firing circuit should be designed to operate within the shaded area


## SHORT PERIOD OPERATION RATINGS

PEAK INVERSE VOLTAGE $=4000$ VOLTS
INLET WATER TEMPERATURE $=45 \mathrm{C}$

A-PHASE RETARD $=$ ZERO
B—PHASE RETARD $=15 \%$ (ESTIMATED)
C-PHASE RETARD $=50 \%$ (ESTIMATED)


## HOLDING ANODE REQUIREMENTS




POWER TUBE DEPARTMENT
Schenectady 5, N. Y.


# IGNITRON <br> POWER RECTIFIER SERVICE TWO IGNITORS <br> INVERTER SERVICE <br> TEMPERATURE CONTROLLED <br> <br> 2000 AMPERES PEAK 

 <br> <br> 2000 AMPERES PEAK}

The GL-7042 is a double-grid ignitron for industrial rectifier or inverter service at voltage levels up to 4000 volts peak inverse. This tube is particularly suitable when more than usual amounts of voltage control by phase retard are required.

The GL-7042 is identical in ratings and characteristics to the GL- 6958 but it has the additional advantage of an integral thermostatic control arrangement with protective features. The arrange-
ment includes a switch which controls a solenoid valve in the water-supply line to the tube in response to increasing and decreasing tube temperature, thus maintaining the minimum amount of cooling water required by the operating conditions. It also includes an over-temperature switch which may be used to remove power from the ignitron if its temperature should ever exceed a safe value.

## GENERAL

## Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes .................................................................. 1

Main Cathodes . . ............................................................... 1
Ignitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2



At 2000 Peak Amperes
(See Curve K-69087-72A709 for Details)

## GENERAL (CONT'D)

## Mechanical

Envelope Material-Stainless Steel
Over-all Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273/8 Inches
Over-all Width . . . . . .................................................................. 9 Inches
Net Weight, approximate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Pounds
Mounting Position-Vertical, Anode Terminal Up

## Thermal

Type of Cooling - Water
Inlet Water Temperature, minimum*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 C
Inlet Water Temperature, maximum $\dagger$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 C
Outlet Water Temperature, maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C
Water Flow, water valve open $\ddagger$
At Continuous Rated Average Current, minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Gallons per Minute
Water flow should be continued for at least one hour after removal of anode power.
Characteristics at 10 Gallons per Minute
Water Temperature Rise, maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 C
Pressure Drop, maximum . . . . . ........................................................ 1. Poun
Working Water Pressure-Non-Shock, maximum.
100 Pounds per Square Inch

## MAXIMUM RATINGS AND TYPICAL OPERATION



## MAXIMUM RATINGS AND TYPICAL OPERATION (CONT'D)

```
Temperature-Control Switch Ratings\S
 Maximum Voltage . 575 Volts
 Maximum Current
 Over-Temperature Switch . }6\mathrm{ Amperes
 Water-Control Switch .1.5 Amperen Switch Circuit and Tube Water Cylinder.1500 Volts
 1.5 Amperes
 Switch-Contact Arrangement
 Over-Temperature Switch - Normally Closed
 (Contacts Open on Temperature Rise)
 Water-Control Switch Normally Open
 (Contacts Close on Temperature Rise)
```

*This value assumes that the water will be supplied through a rapid-closing solenoid valve which prevents all water flow except when the water-control switch closes.
$\dagger$ If two tubes are cooled in series this value must be low enough to prevent the maximum outlet water temperature from being exceeded.
$\ddagger$ Water flow should be continued for one hour after removal of anode power.
§Suitable fuses should be provided in the switch circuits to prevent a power arc should a ground occur in the switch or wiring.

## APPLICATION NOTES

In order to realize the advantage of safe tube operation on low temperature cooling water, water must be supplied to the tube through a rapid closing solenoid valve controlled by the water-control switch on the tube. The valve must completely stop the water flow to the tube except when the water-control switch is closed.

The cooling water for two tubes may be connected in series provided the inlet water at the first tube is above +20 C and the outlet water of the second tube is below 55 C . If two tubes are connected in series only one solenoid valve is required for each pair of tubes and it is only necessary to use the thermostat on the tube installed in the outgoing end of the series pair. For more complete protection two temperature-controlled tubes should be used with their over-temperature switches in series and their water-control switches in parallel.

For inlet water temperatures below 20 C , each tube should be connected to the water supply through a rapid-closing solenoid valve controlled by the water-control switch on the tube thermostat.

To prevent excessive condensation of mercury on the inside of the glass, heat should be externally applied to the anode glass-seal area.


## IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIER

THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA


SHORT-PERIOD OPERATION RATINGS

PEAK INVERSE VOLTAGE $=4000$ VOLTS INLET WATER TEMPERATURE $=45 \mathrm{C}$

PHASE RETARD
$\mathrm{A}=\mathrm{ZERO}$
$\mathrm{B}=15 \%$, ESTIMATED
$\mathrm{C}=50 \%$, ESTIMATED

AUXILIARY-ANODE ARC-DROP VOLTAGE IN VOLTS


## GL-7042

## ET-T1510A

PAGE 6
4-63


# GL-7736 



## IGNITRON

## RECTIFIER SERVICE-400 AMPERES

## HOLDING ANODE

## TWO IGNITORS

The GL-7736 ignitron is a sealed, stainless -steel-jacketed, water-cooled, mercury-pool tube designed for rectifier service in the $125-, 250-, 600-$, and $900-$ volt d-c power fields. It is suitable for use in rectifiers rated up to 1000 kilowatts output, depending upon the number of ignitrons used, the output voltage, and the circuit. Continuous average current rating is 400 amperes per tube in rectifiers rated up to 300 volts d-c.

The GL-7736 has a holding anode and


#### Abstract

two ignitors. Excitation of the auxiliary anode permits stabilizing the cathode spot for very small anode currents. The two ignitors assure long life since only one is used at a time. Phase control of the ignitor impulses permits voltage control of the rectified output. In common with other ignitrons arc losses in the 7736 are low, and design and construction features, such as a complete stainless-steel-water jacket, assure ease of installation, economical use of space, and reliability of operation.


## ELECTRICAL



## THERMAL

Type of Cooling-Water
Inlet Water Temperature, minimum.......35 C
Outlet Water Temperature, maximum
Power-Rectifier Service
Peak Inverse Anode Voltage $=$ 900 Volts. . . . . . . . . . . . . . . . . . . . . 60 C
Peak Inverse Anode Voltage = 2100 Volts . . . . . . . . . . . . . . . . . . . . . 50 C
Water Flow, minimum*
At No Load.
Minute
At Continuous Rated Average Current . . . . 6 Gallons per Minute
Characteristics for Water Cooling at Rated Minimum Flow
Water Temperature Rise, maximum....... 19 C Pressure Drop at 6 Gallons per Minute, maximum .
. 1 Pound per Square Inch

## MAXIMUM RATINGS

Power-Rectifier Service, Continuous Duty		
(Ratings are for Zero-Phase-Control Angle)		
Maximum Peak Anode Voltage		
Inverse . . . . . . . . . . . . . . . . . . . . . . . . 900	2100	Volts
Forward. . . . . . . . . . . . . . . . . . . 900	2100	Volts
Maximum Anode Current		
Peak . . . . . . . . . . . . . . . . . . . . . . . 3600	2400	Amperes
Average		
Continuous . . . . . . . . . . . . . . . . 400	300	Amperes
Two-Hours-Averaged Over Any		
Two-Minute Interval . . . . . . 600	450	Amperes
One-Minute-Averaged Over Any		
One-Minute Interval . . . . . . . 800	600	Amperes
Fault . . . . . . . . . . . . . . . . . . . 16,000	16,000	Amperes
Maximum Duration of Fault		
Current. . . . . . . . . . . . . . . . . 0.15	0.15	Second
Frequency Range . . . . . . . . . . 25-60	25-60	Cycles per
		Second
Grid Requirements $\dagger$		
Minimum Voltage to Establish Conduction . 50 Volts		
Minimum Voltage to Prevent Conduction. . . 100		Volts
Positive Current to Establish Conduction	. . 0.1	Ampere


Holding Anode		
Maximum Peak Forward Voltage.	160	Volts
Maximum Peak Inverse Voltage		
Main Anode Conducting	25	Volts
Main Anode Not Conducting	160	Volts
Maximum Current		
Peak	. 30	Amperes
Average	9	Amperes
Maximum Averaging Time.		Seconds
Root Mean Square .	. 15	Seconds
Grid $\dagger$		
Maximum Peak Forward Voltage.	250	Volts
Maximum Peak Inverse Voltage	. 300	Volts
Maximum Grid-Current		
Peak Positive	1.5	Amperes
Peak Negative.	0.5	Ampere
Average	0.5	Ampere
Root Mean Square	. 1.0	Amperes

## MAXIMUM RATINGS (Cont'd)

Cathode Excitation Requirements
Ignitor Voltage Required to Fire. 450 Volts
Starting Time at Required Voltage or ..... 45 Amperes
CurrentPeak Excitation Arc Current Required
minimum
Excitation Arc-Drop Voltage. . 6 Amperes ..... 12 Volts100 Microseconds
Ignitor
Maximum Inverse Voltage
Maximum Current ..... 5 Volts
Peak.
Root Mean SquareAverage.100 AmperesMaximum Averaging Time15 Amperes10 Secor

* Water flow should be continued for one hour after removal of anode power.
Recirculating cooling system recommended. Other systems possible depending on application.
Anode heaters recommended.
$\dagger$ At main anode voltages of 500 volts and over, the grid circuit should provide a negative d-c bias of 100 volts and a suitable turn-on voltage to swing the grid positive at the time the ignitor is fired. At lower anode voltages, it is sufficient to connect the grid to the main anode through a resistor. In either case, the grid circuit resistance should be 500 to 1000 ohms.


## IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIERS

THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA


ARC-DROP CHARACTERISTIC
COOLING WATER TEMPERATURE - 50 TO 60 C
WATER FLOW - 6 GPM

GL-7736

COMMUTATION LIMITS
2-HOUR LOADS


AVERAGE ANODE CURRENT AMPERES PER TUBE

average anode current in amperes per tube


INLET WATER TEMPERATURE IN C


## GENERAL ELECTRIC <br> POWER TUBE DEPARTMENT <br> Schenectady 5, N. Y.

PRODUCT INFORMATION
IGNITRON
GL-8420

## AC CONTACTOR SERVICE-2000 AMPERES



The GL-8420 is a forced-air-cooled ignitron for use in railroad locomotive service as an electronic contactor. In such application two tubes in an inverseparallel connection control the a-c voltage input to a semiconductor rectifier.

Features include a coaxial construction in which current flows from anode to
cathode, then up the tube wall to a coaxial cathode terminal. Coaxial current flow minimizes arc deflection caused by high peak currents. A removable thermostat provides protection against excessive temperature and loss of cooling air. An ignitor terminal block on the periphery of the tube facilitates connecting to the ignitor.

## ELECTRICAL

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes . . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes . . . . . . . . . . . . . . . . . . . . 1
Ignitors.. 1100 Amperes Peak
Arc Drop at
. 2
19 Volts
See Curve "Arc Drop"

## MECHANICAL

Envelope Material-Steel
Net Weight, approximate . .................. 130 Pounds
Mounting Position-Vertical Anode Terminal Up

## THERMAL

Type of Cooling-Forced Air
Cooling Air Temperature


Incoming Air Enters Beneath Tube-See Outline Drawing

## MAXIMUM RATINGS

## AC Contactor Service

Two Tubes in Inverse Parallel, Ratings per Tube

Air Flow, minimum .


Frequency Range

750 Cubic Feet per Minute

1000 Volts
2500 Amperes
2000 Amperes
325 Amperes
200 Amperes
25-60 Cycles per Second

## Ignitor

Maximum Voltage
Positive-Anode Voltage
Inverse..................................... 5 Volts
Maximum Current
Peak.................................... . 100 Amperes
Average................................. 2 Amperes
Maximum Averaging Time .............. 10 Seconds
Root Mean Square . . . . . . . . . . . . . . . . . . 15 Amperes
Volt-Ampere Time Requirements-See Curve on page 2
Over-Temperature Thermostat Rating
Maximum Peak Potential Difference Between
Tube Cylinder and Thermostat Contacts. 4000 Volts
Maximum Current ( 220 Volts AC, Resistive).. 15 Amperes

## OPERATING NOTE

For railway and similar service the tube must be shockmounted to maintain the resonant frequency of the shockmounted assembly at less than five cycles per second at normal operating temperatures. The resonant frequency of all internal parts of the tube is above thirty-five cycles per second.

The center of gravity of the tube is approximately three
inches below the cathode terminal and mounting ring of the tube.

For best operation the tube should be mounted with the ignitor seals in line with the length of the car or locomotive. The maximum effective tip of the tube should not exceed ten degrees. "Effective tip" is the actual tip in any direction plus the simulated tip in that direction caused by acceleration of the car or locomotive.

IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION


THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO
OPERATE WITHIN THE SHADED AREA



# GENERAL ELECTRIC <br> TUBE DEPARTMENT <br> Schenectady, N. Y. 12025 

## RECTIFIER SERVICE-400 AMPERES

## TWO IGNITORS



The GL-8465 and -8466 are sealed, stainlesssteel jacketed, water-cooled, mercury-pool tubes for rectifier service in the $125-, 250-, 600-$, and 900 -volt d-c power fields. The tubes are suitable for use in rectifiers rated up to 500 kilowatts output, depending on the number used, the output voltage, and the circuit. Continuous average current rating is 200 amperes per tube in rectifiers rated up to 300 volts d-c.

These ignitrons can also be used in 2400 -volt a-c control service. In this application their rating is 2400 kilovolt-amperes.

The GL- 8466 features an integral thermostatic arrangement with protective elements. With this exception the tubes are identical in ratings and characteristics.
The thermostatic arrangement includes a switch which controls a solenoid valve in the water-supply line in response to increasing and decreasing tube temperature, thus maintaining the amount of cooling water to the minimum required by the operating conditions. An over-
temperature switch permits removal of power when ignitron temperature exceeds a safe value.

The temperature-controlled design has several advantages over the non-temperature-controlled types. It eliminates heat exchangers and recirculating water systems required to ensure safe operation when the water temperature is too low to maintain the minimum reliable mercury-vapor pressure in the tubes. It eliminates the usual safety devices such as water-flow and water-overtemperature relays, and water-pressure interlocks, all of which require considerable maintenance. The control feature also prevents excessive moisture condensation on the external parts of the tube under conditions of high humidity.

Both the 8465 and 8466 have a holding anode and two ignitors. Excitation of this anode stabilizes the cathode spot for very small anode currents. Two ignitors assure long life since only one is used at a time. Phase control of the ignitor impulses permits voltage control of the rectified output.

## ELECTRICAL

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Numbers of Electrodes

Main Anodes Main Cathodes Holding Anodes Ignitors	

Ignitors. . . . . . . ......................
Arc Drop at 600 Amperes Peak.......16.2 $\pm 0.5$ Volts See Curve "Arc Drop"

## MECHANICAL

Envelope Material-Stainless Steel
Over-all Length, excluding anode lead ..... $17 \frac{15}{16}$ Inches
Over-all Diameter .
Net Weight, approximate

## THERMAL

Type of Cooling-Water
Inlet Water Temperature*, minimum
6 C
Outlet Water Temperature, maximum Power-Rectifier Service

> Peak Inverse Anode Voltage $=$ 900 Volts. .................... Peak Inverse Anode Voltage = 2100 Volts.
> .55 C
> 2100 Volts............................... 40
> AC Control Service
> Voltage $=2400$ Volts RMS
> 35 C

Water Flow, minimum, solenoid water valve open At No Load $\dagger$

1 Gallon per Minute
At Continuous Rated Average Current..... 3 Gallons per Minute
Characteristics for Water Cooling at Rated Minimum Flow Water Temperature Rise, maximum......4.5 C
Pressure Drop at 3 Gallons per Minute, maximum

3 Pounds per Square Inch

* Dependent upon load conditions. For substantially constant load 6 C is satisfactory. For widely fluctuating loads 20 C is required
$\dagger$ Water flow should be continued for at least thirty minutes after removal of anode power.


## MAXIMUM RATINGS

Power-Rectifier Service, Continuous Duty
Ratings are for Zero-Phase-Control Angle-See Curves "Commutation Limits"

Maximum Peak Anode Voltage		
Inverse . . . . . . . . . . . . . . . . . . . . . . 900	2100	Volts
Forward. . . . . . . . . . . . . . . . . . 900	2100	Volts
Maximum Anode Current		
Peak. . . . . . . . . . . . . . . . . . . . . . 1800	1200	Amperes
Average		
Continuous . . . . . . . . . . . . . . 200	150	Amperes
Two-Hours-Averaged Over Any		
Two-Minute Interval . . . . . 300	225	Amperes
One-Minute-Averaged Over Any		
One-Minute Interval . . . . . . 400	300	Amperes
Fault . . . . . . . . . . . . . . . . . . 12,000	9000	Amperes
Maximum Duration of Fault		
Current. . . . . . . . . . . . . . . . 0.15	0.15	Seconds
Frequency Range . . . . . . . . . . . 25-60	25-60	Cycles per

## Holding Anode

See Curve "Holding Anode Requirements"		
Forward	160	Volts
Inverse		
Main Anode Conducting	25	Volts
Main Anode Non-Conducting		Volts
Maximum Current		
Peak	30	Amperes
Average	. 9	Amperes
Maximum Averaging Time	10	Seconds
Root Mean Square	15	Amperes

## Cathode Excitation Requirements

Ignitor Voltage Required to Fire. ........... 450 Volts See Curve "Ignitor Volt-Ampere Requirements"
Ignitor Current Required to Fire . . . . . . . . . . 45 Amperes See Curve "Ignitor Volt-Ampere Requirements"
Starting Time at Required Voltage or Current.
Peak Excitation Arc Current Required, minimum
ion Arc Current Required, See Curve "Holding Anode Requirements"
Excitation Arc-Drop Voltage . . . ........ $9 \pm 0.5$ Volts
Excitation Arc Open-Circuit Voltage, minimum.
$\triangle$ RMS demand voltage, current and KVA demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used.
$\ddagger$ Suitable fuses should be provided in the switch circuits to prevent a power arc should a ground occur in the switch or wiring.

## INSTALLATION AND OPERATION GL-8466

To realize the advantage of safe tube operation on lowtemperature cooling water, water must be supplied to the tube through a rapid-closing solenoid valve controlled by the water-control switch on the tube. The valve must completely stop the water flow to the tube except when the water-control switch is closed. The number of tubes connected in series for water from a single valve must be restricted for the lower temperatures. Placing fewer tubes in series with a solenoid valve will permit the use of lower incoming water temperatures without resulting in arcbacks caused by low tube temperatures.

If the water-supply temperature will never be below plus 5 C , three tubes may be connected in series for water flow, provided the temperature is not so high as to cause overtemperature on the last tube for the flow available and the load expected on the rectifier. If three tubes are connected in series, only one solenoid valve is required for the series group, and only the last tube in the group requires the temperature-control switch.

If the water-supply may sometimes drop below plus 5 C , all tubes in the rectifier must be temperature-controlled, be connected in parallel for water flow, and have individual solenoid water valves to prevent water from circulating through any tube until its water-control switch closes. If
the tubes themselves are at this low temperature initially, a low load (such as one-quarter load) should be applied to the rectifier long enough to cause one operation of the solenoid valves. After this initial warming, the rectifier should be in condition to handle safely normal loads unless it is idle in a cold atmosphere long enough for the tube again to become cold.

The minimum allowable temperature for the series-parallel connection is based on normal industrial loads on the rectifier. For some special conditions of loading it is possible to lower these temperatures.

In some applications, for example where the rectifier has only intermittent low loads which are insufficient to heat the anode end of the tubes to normal temperature, there may be a tendency for mercury to accumulate on the inside of the anode-glass-insulating bushing. Small amounts of mercury here are not serious. However, if the entire surface becomes covered, an arc will form over the inside of the glass which may permanently damage the tube. If this type of service is anticipated, large accumulations of mercury over the glass can be prevented by applying external heat to the glass with small radiant heaters or heat lamps. The glass temperature should be raised to approximately 50 C , but may go to 200 C without damage when the tubes are loaded.


ARC DROP
OUTLET WATER TEMPERATURE - 40 TO 60 C WATER FLOW-3 GPM


DEMAND CURRENT VS PERCENTAGE DUTY AT 2400 VOLTS RMS


Two Tubes Connected in inverse parallel

COMMUTATION LIMITS
I-MINUTE LOADS




IGNITOR VOLT-AMPERE REQUIREMENTS




## TUBE DEPARTMENT <br> GENERAL (8) ELECTRIC <br> Schenectady, New York 12305



## IGNITRON

The GL-5550 ignitron is a sealed, clamp-cooled, mercury-pool tube designed primarily for resistance welding control. In this service, two tubes in the inverse-parallel connection will control 300 kilovoltamperes at voltages of 250 to 600 volts and over the
frequency range of $25-60$ cycles. The tubes are also used in electrostatic energy storage types of resistance welding equipment to control the capacitor discharge.

## GENERAL

## Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ignitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Arc Drop at 1697 Peak Amperes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Volts
Arc Drop at 70.4 Peak Amperes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Volts
Cathode Excitation Requirements
Ignitor Voltage Required to Fire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Volts
Ignitor Current Required to Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Amperes
Starting Time at Required Voltage or Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Microseconds

Mechanical		
Envelope Material-Metal		
Over-all Length	9 $\frac{1}{16}$	Inches
Over-all Width	$2 \frac{9}{64}$	Inches
Net Weight	1.5	Pounds
Type of Cooling-Removable Clamp		
Clamp Contact Width	$1 / 8$	Inches
Clamp Contact Area	9.4	Square Inches

## MAXIMUM RATINGS

## As AC Control Tube

Two Tubes in Inverse Parallel
Maximum Clamp Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 . 50 C
Minimum Clamp Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 . 10 C
Voltage Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 to 600 RMS Volts
Maximum Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $150 \quad 300$ Kilovolt-Amperes

Average Current at Maximum Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.86 12.1 Amperes
Maximum Average Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.0 9.0 22.4 Amperes
Demand at Maximum Average Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50.0 100 Kilovolt-Amperes
Maximum Averaging Time at 250 Volts RMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $27.8 \quad 22$ Seconds
Maximum Averaging Time at 600 Volts RMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6 9.2 Seconds
Maximum Surge Current at 250 Volts RMS .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $1680 \quad 3360$ Peak Amperes
Maximum Surge Current at 600 Volts RMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $700 \quad 1400$ Peak Amperes
Note 1-RMS demand voltage, current and kva are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used.

Note 2 -For voltages below the minimum, the minimum-voltage current rating applies.
Note 3 -With the use of $\log -\log$ paper straight line interpolation between tabulated points may be used for other detailed ratings of:

1. Demand kva vs. average anode current.
2. Maximum averaging time vs. anode voltage and temperature.
3. Demand kva and average anode current vs. temperature.

As Capacitor Discharge Tube


Note 1 -With the use of log-log paper straight line interpolation between tabulated points may be used for other detailed ratings of average anode current and maximum averaging time vs. temperature.




AVERAGING TME $=22$ SECONDS


AVERAGING TIME $=11$ SECONDS


## TUBE DEPARTMENT

## GENERAL ELECTRIC

SCHENECTADY, N. Y. 12305

## IGNITRON

## ADAPTED TO WATER-FLOW CONTROL RECTIFIER SERVICE-40 AMPERES

The GL-5551-A is a sealed, stainless-steel jacketed, water-cooled ignitron for a-c control service. In such application two tubes in inverseparallel connection will control 600 kilovoltamperes at voltages of 250 to 600 over a frequency range of 25 to 60 cycles.

The tube is identical in rating and size to the GL-5551/FG-271 for which it is a direct replacement. The new tube, however, has the advantage of providing for simple, economical, and effective control of tube temperature and cooling-water flow. A copper plate on the tube envelope in thermal contact with the inner cylinder of the tube is maintained at substantially the same tempera-

## ADAPTED TO TEMPERATURE CONTROL AC CONTROL SERVICE-56 AMPERES

ture as the inner cylinder. This plate is slotted to permit convenient mounting of a thermostat which on a single tube will either provide over-temperature protection or temperature control through regulation of the water flow.

Thermostats mounted on two tubes will provide both protection against excessive temperature and regulation of water flow. Advantages of the control feature include reduction of condensation on the tube walls during hot weather, protection against overloads, elimination of water supply as a limiting factor in equipment location, and appreciable savings in water consumption.
GENERAL
Electrical
Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes .....  1
Main Cathodes. .....  1
Ignitors. ..... 1
Arc Drop at 3400 Peak AmperesVolts
Arc Drop at 176 Peak Amperes . ..... 13
Cathode Excitation Requirements
Ignitor Voltage Required to Fire . ..... 200
Ignitor Current Required to Fire ..... 30
Starting Time at Required Voltage or Current ..... 100
Mechanical
Envelope Material-Stainless Steel
Over-all Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Over-all Width. ..... 23/4
Net Weight. ..... 3.6
Thermal
Type of Cooling-Water
Inlet Water Temperature, minimum ..... C
Inlet Water Temperature, maximum. ..... C
Outlet Water Temperature, maximum ..... C
Water Flow, minimum, solenoid water valve open 1.0 Gallons per Minute
Characteristics for Water Cooling at Rated Minimum Flow
Water Temperature Rise, maximum .
Pressure Drop at 1 Gallon per Minute 1.8 Pounds per Square4 CInch

Volts
Volts
Amperes
Microseconds

Inches
Inches
Pounds

Inch
MAXIMUM RATINGS AND TYPICAL OPERATION
AC Control Service*
Two Tubes in Inverse Parallel, Ratings per Tube
Maximum Demand. ..... 600
Average Current at Maximum Demand ..... 30.2
Maximum Average Current ..... 56.0
Demand at Maximum Average Current. ..... 200Maximum Averaging Time at 250 Volts RMS 18
Maximum Averaging Time at 600 Volts RMS ..... 7.5 Seconds
Maximum Peak Fault Current at 250 Volts ..... 6720 Amperes
Maximum Peak Fault Current at 600 Volts

Amperes
Frequency Range.25-60
Power-Rectifier Service, Intermittent Duty
Ratings are for Zero Phase-Control Angle
(See Curve K-69087-72A310 for details)
Ratings Apply only at Inlet Water Temperatures up to 40 C
Maximum Peak Anode Voltage

Inverse.	500	1200	1500	Volts
Forward.	500	1200	1500	Volts
Maximum Anode Current				
Peak	700	600	480	Amperes
Corresponding Average	-	5	4	Amperes
Average	40	22.5	18	Amperes
Corresponding Peak	-	135	108	Amperes
Maximum Averaging Time	6	10	10	Seconds
Fault.	8000	8000	8000	Amperes
Maximum Duration of Fault Current	0.15	0.15	0.15	Seconds
Ratio of Average to Peak Current, maximum				
Averaging Time 0.2 Second	-	0.166	0.166	
Ratio of Fault to Maximum Peak Current. .	12.5	12.5	12.5	
Frequency Range .	50-60	50-60	50-60	Cycles per Second

Volts RMS
Kilovolt-Amperes
Amperes
Amperes
Kilovolt-Amperes
Seconds Cycles per Second

## Ignitor

Maximum Voltage
Positive-Anode Voltage
Negative............................................................................................... 5 Volts
Maximum Current
Peak.
100 Amperes
Root Mean Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Amperes
Average................................................................................... 1 Amperes
Maximum Averaging Time........................................................ 5 Seconds

* RMS demand voltage, current, and kilovolt-ampere demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used. For voltages below the minimum, the minimum-voltage current rating applies. With the use of $\log -\log$ paper straight-line interpolation between tabulated points may be used for other detailed ratings of: Demand kva vs average anode current, and maximum averaging time vs anode voltage.

Control thermostats, with mounting brackets, are available through regular tube supply channels under the following catalog numbers:

AC Control Service
Flying-Lead Type
Water-Control Thermostat - N15272AA
Over-Temperature Thermostat-N15273AA
Terminal-Block Type
Water-Control Thermostat-N15286AA
Over-Temperature Thermostat-N15287AA
See Ignitron Accessories publication in front of Ignitron section for details.

## APPLICATION DATA

Since two thermostats are required to achieve both temperature and water control, these features can be obtained in combination only when two or more tubes are used.

The water-flow thermostat should be mounted on the tube receiving water from the water-supply line; the over-temperature thermostat should be mounted on the other tube in a-c control service and on the last tube in the series in power-rectifier service.

The water-control thermostat, whose contacts are set to close at 35 C , should be mounted on the tube and connected in series with the electric water valve that provides the cooling water. As long as the tube temperature remains below this value the valve remains closed, preventing water from flowing through the tube. When current is passed through the ignitron its temperature rises and at 35 C the thermostat contacts close, opening the water valve and allowing water to flow. Should the current be reduced, the water will cause the temperature to fall below the 35 C value, and the valve will close and stop the water flow.

The over-temperature thermostat provides an additional protection should the water flow be interrupted or the water-supply valve fail to open. It operates under emergency conditions to remove power from the ignitrons before they reach an excessive temperature. This thermostat is set to open its contacts at 52 C .

Appreciable time is required for the mechanism of the thermostats to reach the temperature of the copper plate on the tube. Heavy currents at high percentage duty passing through the tubes will cause their temperatures to rise more rapidly than the action of the thermostat. Where heavy loads are likely to exist, an auxiliary contact should be provided to start water flow as soon as current flows. The curve on page four shows the region of operation where this precaution must be provided for.

When the control thermostats are used with this tube, care must be taken that the cooling water has completely filled the tube before it is operated. This will prevent damage to the tube by arc-backs caused by rapid heating before the thermostats can function.





AVERAGING TIME $=9$ SECONDS


NOTE: ENVELOPE IS at Gathode potential


## GENERAL ELECTRIC <br> POWER TUBE DEPARTMENT

Schenectady 5, N. Y.

## IGNITRON

## ADAPTED TO WATER-FLOW CONTROL RECTIFIER SERVICE-100 AMPERES

## ADAPTED TO TEMPERATURE CONTROL AC CONTROL SERVICE-140 AMPERES

The GL-5552-A is a sealed, stainless-steeljacketed, water-cooled ignitron for a-c control service. In such application two tubes in inverseparallel connection will control 1200 kilovoltamperes at voltages of 250 to 600 over a frequency range of 25 to 60 cycles.

The tube is identical in rating and size to the GL-5552/FG-235-A for which it is a direct replacement. The new tube, however, has the advantage of providing for simple, economical, and effective control of tube temperature and cooling-water flow. A copper plate on the tube envelope in thermal contact with the inner cylinder of the tube is maintained at substantially the same temperature
as the inner cylinder. This plate is slotted to permit convenient mounting of a thermostat which on a single tube will either provide over-temperature protection or temperature control through regulation of the water flow.

Since the tubes are used in pairs, thermostats mounted on both tubes will provide both protection against excessive temperature and regulation of water flow. Advantages of the control feature include reduction of condensation on the tube walls during hot weather, protection against overloads, elimination of water supply as a limiting factor in equipment location, and appreciable savings in water consumption.

## GL-5552-A

## GENERAL

Electrical
Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes .....  1
Main Cathodes ..... 1
Ignitors ..... 1
Arc Drop at 6800 Peak Amperes ..... Volts
Arc Drop at 440 Peak Amperes ..... Volts
Cathode Excitation Requirements
Ignitor Voltage Required to Fire ..... 200 Volts
Ignitor Current Required to Fire ..... 30 Amperes
Starting Time at Required Voltage or Current ..... Microseconds
Mechanical
Envelope Material-Stainless Steel
Over-all Length ..... Inches ..... 8 Pounds
Over-all Width.
Over-all Width.
Net Weight
ThermalType of Cooling-WaterInlet Water Temperature
Maximum ..... 30 C
Minimum ..... C
Outlet Water Temperature, maximum ..... 40 C
Water Flow, minimum, solenoid water valve open 1.5 Gallons per Minute
Characteristics for Water Cooling at Rated Minimum Flow
Water Temperature Rise, maximum ..... 6 C
Pressure Drop at 1.5 Gallons per Minute, maximum ..... 4.5 Pounds per Square Inch

## MAXIMUM RATINGS AND TYPICAL OPERATION

## AC Control Service*

Two Tubes in Inverse Parallel, Ratings per Tube
Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 to 600

Maximum Demand
Average Current at Maximum Demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.6
Maximum Average Current
Demand at Maximum Average Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Maximum Averaging Time at 250 Volts RMS14

Maximum Averaging Time at 600 Volts RMS
Maximum Peak Fault Current at 250 Volts
Maximum Peak Fault Current at 250 Volts.
Maximum Peak Fault Current at 600 Volts
Frequency Range
5.8 Seconds

Volts RMS
Kilovolt-Amperes
Amperes
Amperes
Kilovolt-Amperes
Seconds

Amperes
Amperes Cycles per Second

## Power-Rectifier Service, Intermittent Duty

Ratings are for Zero Phase-Control Angle
Ratings Apply Only of Inlet Water Temperatures Up to 30 C
Maximum Peak Anode Voltage


Maximum Anode Current
Peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1600

Average ................................. 100
Maximum Averaging Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Seconds
Fault.
6000 Amperes
Maximum Duration of Fault Current
0.15 Seconds

Frequency Range
25-60 Cycles per Second

```
Ignitor
 Maximum Voltage
 Positive - Anode Voltage
 Negative.
 Maximum Current
 Peak. 100 Amperes
 Root Mean Square . 10 Amperes
 Average.
 Maximum Averaging Time.
 .1 Amperes
```

* RMS demand voltage, current, and kilovolt-ampere demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used. For voltages below the minimum, the minimum-voltage current rating applies. With the use of log-log paper straight-line interpolation between tabulated points may be used for other detailed ratings of: Demand kva vs average anode current, and maximum averaging time vs anode voltage.

Control thermostats, with mounting brackets, are available through regular tube supply channels under the following catalog numbers:

AC Control Service
Flying-Lead Type
Water-Control Thermostat-N15272AA
Over-Temperature Thermostat-N15273AA
Terminal-Block Type
Water-Control Thermostat-N15286AA
Over-Temperature Thermostat-N15287AA
See Ignitron Accessories publication in front of Ignitron section for details.

## APPLICATION DATA

Since two thermostats are required to achieve both temperature and water control, these features can be obtained in combination only when the tubes are used in pairs, which is normal usage. The application information that follows is based on use of a pair of 5552-A's.

The water-flow thermostat should be mounted on the tube receiving water from the water-supply line; the over-temperature thermostat should be mounted on the other tube.

The water-control thermostat, whose contacts are set to close at 35 C , should be mounted on the tube and connected in series with the electric water valve that provides the cooling water. As long as the tube temperature remains below this value the valve remains closed, preventing water from flowing through the tube. When current is passed through the ignitron its temperature rises and at 35 C the thermostat contacts close, opening the water valve and allowing water to flow. Should the current be reduced, the water will cause the temperature to fall below the 35 C value and the valve will close and stop the water flow.

The over-temperature thermostat provides an additional protection should the water flow be interrupted or the water-supply valve fail to open. It operates under emergency conditions to remove power from the ignitrons before they reach an excessive temperature. This thermostat is set to open its contacts at 52 C .

Appreciable time is required for the mechanism of the thermostats to reach the temperature of the copper plate on the tube. Heavy currents at high percentage duty passing through the tubes will cause their temperatures to rise more rapidly than the action of the thermostat. Where heavy loads are likely to exist, an auxiliary contact should be provided to start water flow as soon as current flows. The curves on page four show the region of operation when this precaution must be provided for.

When the control thermostats are used with this tube, care must be taken that the cooling water has completely filled the tube before it is operated. This will prevent damage to the tube by arc-backs caused by rapid tube heating before the thermostats can function.


K-69087-72A862


AVERAGING TIME $=14$ SECONDS



NOTE: ENVELOPE IS at cathode potential


POWER TUBE DEPARTMENT
Schenectady 5, N. Y.

## IGNITRON

## adapted to water-flow control RECTIFIER SERVICE-190 AMPERES

## ADAPTED TO TEMPERATURE CONTROL AC CONTROL SERVICE- 355 AMPERES

The GL-5553-B is a sealed, stainless-steel jacketed, water-cooled ignitron for a-c control service. In such application two tubes in inverseparallel connection will control 2400 kilovoltamperes at voltages of 250 to 600 over a frequency range of 25 to 60 cycles.
This tube is identical in rating and size to the GL-5553-A for which it is a direct replacement. The new tube, however, has the advantage of providing for simple, economical, and effective control of tube temperature and cooling-water flow.

A copper plate on the tube envelope in thermal contact with the inner cylinder of the tube is maintained at substantially the same temperature as
the inner cylinder. This plate is slotted to permit convenient mounting of a thermostat which on a single tube will either provide over-temperature protection or temperature control through regulation of the water flow.
Thermostats mounted on two tubes will provide both protection against excessive temperature and regulation of water flow. Advantages of the control feature include reduction of condensation on the tube walls during hot weather, protection against overload, elimination of water supply as a limiting factor in equipment location, and appreciable saving in water consumption.

## GENERAL

Electrical		
Cathode Excitation-Cyclic		
Cathode Spot Starting-Ignitor		
Number of Electrodes		
Main Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1		
Main Cathodes... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1		
Ignitors.		
Arc Drop at 13,600 Peak Amperes.	36	Volts
Arc Drop at 1115 Peak Amperes.	17	Volts
Cathode Excitation Requirements		
Ignitor Voltage Required to Fire .	200	Volts
Ignitor Current Required to Fire .	. 30	Amperes
Starting Time at Required Voltage or Current.	100	Microseconds
Mechanical		
Envelope Material-Stainless Steel		
Over-all Length	191/2	Inches
Over-all Width.	5\%/8	Inches
Net Weight.	. 21	Pounds
Thermal		
Type of Cooling - Water		
Inlet Water Temperature, minimum	0	C
Outlet Water Temperature, maximum .	. 40	C
Water Flow, minimum, solenoid water valve open.	. 3.0	Gallons per Minute
Characteristics for Water Cooling at Rated Minimum Flow		
Water Temperature Rise, maximum . . . . . . . . .	. 9	C
Pressure Drop at 3 Gallons per Minute, maximum. .	. 5.1	Pounds per Square Inch

## MAXIMUM RATINGS AND TYPICAL OPERATION

AC Control Service*				
Two Tubes in Inverse Parallel, Ratings per Tube				
(See Curves K-69087-72A723 and K-69087-72A724 for details)				
Voltage.			- 600	Volts RMS
Maximum Demand			2400	Kilovolt-Amperes
Average Current at Maximum Demand.			192	Amperes
Maximum Average Current			. 355	Amperes
Demand at Maximum Average Current			800	Kilovolt-Amperes
Maximum Averaging Time at 220 Volts RMS			12.5	Seconds
Maximum Averaging Time at 600 Volts RMS.			. 4.6	Seconds
Maximum Peak Fault Current at 250 Volts.			7,000	Amperes
Maximum Peak Fault Current at 600 Volts .			1,200	Amperes
Frequency Range.			25-60	Cycles per Second
Power-Rectifier Service, Intermittent Duty				
Ratings are for Zero-Phase-Control Angle				
(See Curves K-69087-72A513 and K-69087-72A630 for details)				
Ratings Apply Only at Inlet Water Temperatures Up to 40 C				
Maximum Peak Anode Voltage				
Inverse.	600	1200	1500	Volts
Forward	. 600	1200	1500	Volts
Maximum Anode Current				
Peak.	4000	3000	2400	Amperes
Corresponding Average	. 54	40	32	Amperes
Average	. 190	140	112	Amperes
Corresponding Peak	1140	840	672	Amperes
Maximum Averaging Time	6.23	6.25	6.25	Seconds
Ratio of Average to Peak Current, maximum				
Averaging Time 0.2 Second	0.166	0.166	0.166	
Ratio of Fault to Maximum Peak Current.	. 12.5	12.5	12.5	
Maximum Duration of Fault Current.	. 0.15	0.15	0.15	Seconds
Frequency Range. . .	50-60	50-60	50-60	Cycles per Second

## GL-5553-B




AVERAGING TIME $=11$ SECONDS


AVERAGING TIME $=5.6$ SECONDS

## GL-5553-B



TUBE DEPARTMENT

SCHENECTADY, N. Y. 12305

# INDUSTRIAL EQUIPMENT TYPES MANUAL 

GL-5554

Technical data on tube type GL-5554 is filed in the "Rectifier Ignitrons" section of this manual.

# INDUSTRIAL EQUIPMENT TYPES MANUAL 

GL-5555

Technical data on tube type GL-5555 is filed in the "Rectifier Ignitrons" section of this manual.

Technical data on tube type GL-5564 is filed in the "Rectifier Ignitrons" section of this manual.

## INDUSTRIAL EQUIPMENT TYPES MANUAL

## GL-5788

Technical data on tube type GL-5788 is filed in the "Rectifier Ignitrons" section of this manual.

## ?

$\square$


## IGNITRON

## ADAPTED TO WATER-FLOW CONTROL FREQUENCY-CHANGER WELDING SERVICE

The GL-5822-A ignitron is a sealed, stainless-steel-jacketed, water-cooled, mercury-pool tube designed particularly for use in frequency-changer resistance welders. It is also suitable for use in power-rectifier service. The frequency-changer method converts three-phase 60 -cycle power to single-phase power at four to twelve cycles per second. A particular advantage of this method is the appreciable reduction of kilovolt-ampere demand from that required in single-phase welding, with consequent saving in the amount of power required. In addition, the three-phase circuit balances the power load and makes possible improved results in welding aluminum, magnesium, and their alloys.

The tube is identical in rating and size to the GL-5822 for which it is a direct replacement. The new tube, however, has the advantage of providing

## ADAPTED TO TEMPERATURE CONTROL POWER-RECTIFIER SERVICE

for simple, economical, and effective control of tube temperature and cooling-water flow. A copper plate on the tube envelope in thermal contact with the inner cylinder of the tube is maintained at substantially the same temperature as the inner cylinder. This plate is slotted to permit convenient mounting of a thermostat which on a single tube will either provide over-temperature protection or temperature control through regulation of the water flow.
A feature of the GL-5822-A is the use of baffles which reduce deionization time and assure satisfactory operation under the severe conditions of commutation imposed by the service for which the tube is designed. Other design features are an ignitor adapted to intermittent service, and a helical water guide to assure uniform cooling.

## GENERAL

## Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes ..... 1
Main Cathodes ..... 1
Ignitors. ..... 1
Arc Drop at 1500 Amperes Peak. ..... Volts
Cathode Excitation Requirements
Ignitor Voltage Required to Fire ..... 200
Ignitor Current Required to Fire
Starting Time at Required Voltage or Current100 Microseconds
MechanicalEnvelope Material—Stainless Steel
Over-all Length .....  14 Inches
Over-all Width. ..... 41/4 Inches
Net Weight, approximate 81/4 Pounds
ThermalType of Cooling-Water
Inlet Water Temperature, minimum10 C
Outlet Water Temperature, maximum ..... 35 C
Water Flow, Minimum
At Continuous Rated Average Current1.5 Gallons per Minute
At No Load ..... 0.5 Gallons per Minute
Characteristics for Water Cooling at Rated Minimum Flow6 C
Pressure Drop at 1.5 Gallon per Minute, maximum ..... 5 Pounds per Square
Inch

## MAXIMUM RATINGS AND TYPICAL OPERATION

Frequency-Changer Resistance Welding Service or Power-Rectifier Service-Intermiftent Duty
Ratings are for zero-phase-control angle (see Curve K-69087-72A316 for details).
Maximum Peak Anode Voltage

Inverse.	1200	1500	Volts
Forward	. 1200	1500	Volts
Maximum Anode Current*			
Peak	1500	1200	Amperes
Corresponding Average	. 20	16	Amperes
Average	. 70	56	Amperes
Corresponding Peak	. 420	336	Amperes
Maximum Averaging Time.	. 6.25	6.25	Seconds
Ratio of Average to Peak Current	. 0.166	0.166	
Maximum Averaging Time.	. 0.2	0.2	Seconds
Ratio of Fault to Maximum Peak Current	. 12.5	12.5	
Maximum Duration of Fault Current	. 0.15	0.15	Seconds
Frequency Range. . .	50-60	50-60	Cycles per Second

## Ignitor

Maximum Voltage
Positive-Anode Voltage
Negative.
. 5 Volts
Maximum Current
Peak. . . . . . . . .
Root Mean Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Average
Maximum Averaging Time
Amperes

* Straight line interpolation on $\log -\log$ paper is allowed between corresponding points.

```
Control thermostats, with mounting brackets, are available through regular tube supply channels under the following catalog numbers:
```

```
AC Control Service
```

AC Control Service
Flying-Lead Type
Flying-Lead Type
Water-Control Thermostat-N15272AA
Water-Control Thermostat-N15272AA
Over-Temperature Thermostat-N15273AA
Over-Temperature Thermostat-N15273AA
Terminal-Block Type
Terminal-Block Type
Water-Control Thermostat-N15286AA
Water-Control Thermostat-N15286AA
Over-Temperature Thermostat - N15287AA
Over-Temperature Thermostat - N15287AA
See Ignitron Accessories publication in front of Ignitron section for details,

```
See Ignitron Accessories publication in front of Ignitron section for details,
```


## APPLICATION DATA

Since two thermostats are required to achieve both temperature and water control, these features can be obtained in combination only when the tubes are used in pairs, which is normal usage. The application information that follows is based on use of a pair of 5822-A's.
The water-flow thermostat should be mounted on the tube receiving water from the water-supply line; the over-temperature thermostat should be mounted on the other tube.
The water-control thermostat, whose contacts are set to close at 35 C , should be mounted on the tube and connected in series with the electric water valve that provides the cooling water. As long as the tube temperature remains below this value the valve remains closed, preventing water from flowing through the tube. When current is passed through the ignitron its temperature rises and at 35 C the thermostat contacts close, opening the water valve and allowing water to flow. Should the current be reduced, the water will cause the temperature to fall below the 35 C value and the valve will close and stop the water flow.

The over-temperature thermostat provides an additional protection should the water flow be interrupted or the water-supply valve fail to open. It operates under emergency conditions to remove power from the ignitrons before they reach an excessive temperature. This thermostat is set to open its contacts at 52 C .

Appreciable time is required for the mechanism of the thermostats to reach the temperature of the copper plate on the tube. Heavy currents at high percentage duty passing through the tubes will cause their temperatures to rise more rapidly than the action of the thermostat. Where heavy loads are likely to exist, an auxiliary contact should be provided to start water flow as soon as current flows. The curves on page four show the region of operation when this precaution must be provided for.

When the control thermostats are used with this tube, care must be taken that the cooling water has completely filled the tube before it is operated. This will prevent damage to the tube by arc-backs caused by rapid tube heating before the thermostats can function.

## GL-5822-A

## ET-T1351A

## PAGE 4

4-63

## frequency-CHANGER RESISTANCE WELDING SERVICE <br> OR <br> POWER RECTIFIER SERVICE-INTERMITTENT DUTY



MAXIMUM AVERAGING TIME $=6.25$ SECONDS
$\frac{\text { AVERAGE CURRENT }}{\text { PEAK CURRENT }}$ MAXIMUM AVERAGING TIME 0.2 SECOND $=0.166$ MAXIMUM
$\frac{\text { SURGE CURRENT }}{\text { PEAK CURRENT }}$ MAXIMUM DURATION OF FAULT CURRENT 0.15 SECOND $=12.5$ MAXIMUM

ELEMENTARY CIRCUIT FOR CAPACITOR FIRING


K-9033525

SELF OR ANODE EXCITATION IN WHICH A PART OF THE LOAD CURRENT IS DIVERTED THROUGH THE IGNITOR



NOTE: ENVELOPE IS AT CATHODE POTENTIAL


## GENERAL ELECTRIC <br> POWER TUBE DEPARTMENT <br> Schenectady 5, N. Y.

## INDUSTRIAL EQUIPMENT TYPES MANUAL

```
GL-6512
```

Technical data on tube type GL-6512 is filed in the "Rectifier Ignitrons" section of this manual.

## 0

## $\circ$

## -

## INDUSTRIAL EQUIPMENT TYPES MANUAL

GL-6513

Technical data on tube type GL-6513 is filed in the"Rectifier Ignitrons" section of this manual.

INDUSTRIAL EQUIPMENT TYPES MANUAL

GL-6514

Technical data on tube type GL-6514 is filed in the "Rectifier Ignitrons" section of this manual.

INDUSTRIAL EQUIPMENT TYPES MANUAL

GL-6515

Technical data on tube type GL-6515 is filed in the "Rectifier Ignitrons" section of this manual.
$\qquad$


## GL-7151

## IGNITRON

## THERMOSTAT BRACKET HIGH-EFFICIENCY COOLING AC CONTROL SERVICE- 900 AMPERES

The GL-7151 is a sealed water-cooled ignitron with a stainless-steel jacket for a-c control service. In such application two tubes in an inverse-parallel connection will control 4800 kilovolt-amperes at voltages of 250 to 500 volts over a fre-
quency range of 25 to 60 cycles. The water-cooling chamber is especially designed to provide high-efficiency cooling at the bottom of the tube without increasing the water pressure drop of the cooling jacket.

## ELECTRICAL

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes.
. 1
Main Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ignitors.

## MECHANICAL

Envelope Material-Stainless Steel
Net Weight
Mounting Position-Vertical, Anode Terminal Up

## THERMAL

Type of Cooling-Water
Inlet Water Temperature, minimum ......... 0 C
Outlet Water Temperature, maximum ....... 40 C
Water Flow, minimum . . . . . . . . . . . . . . . . . . 10
Water flow should be continued for at least one
hour after removal of anode power.
Maximum Working Water Pressure, NonShock

100 Pounds per Square Inch
Characteristics at 10 Gallons per Minute
Water Temperature Rise, maximum.
Pressure Drop, maximum.

8
1.5 Pounds per Square Inch

## MAXIMUM RATINGS-AC CONTROL SERVICE

Two Tubes in Inverse Parallel, Ratings per Tube
Voltage Range . . . . . . . . . . . . . . . . . . . . 250 to 600
Maximum Demand . . . . . . . . . . . . . . . . . . . . . . 4800

Corresponding Average Current*	486
Maximum Average Current*	900
Corresponding Demand.	1600

Maximum Demand Current Below 500 Volts*. 9600
Maximum Peak Fault Current At 250 Volts.
At 600 Volts. ........................... 54,000 22,400
Frequency Range.

Amperes
Volts RMS
Kilovolt-
Amperes Amperes Amperes KilovoltAmperes

## Cathode Excitation Requirements

Anode Firing
Ignitor Voltage Required to Fire............ 200 Volts
Ignitor Current Required to Fire
Starting Time at Required Voltage or Current

30 Amperes
100 Microseconds

Ignitor

Maximum Voltage		
Positive-Anode Voltage Negative	5	Volts
Maximum Current		
Peak	. 100	Amperes
Root Mean Square	10	Amperes
Average	1	Ampere
Maximum Averagin		Seconds

## Separate Excitation

Pulse Width
. 500 Microseconds
Recommended. .. . . . . . . . . . . . . . . . . . . 500 Microseconds
Maximum................................... 2000 Microseconds
When the average anode current is greater than 20 amperes the
pulse width must not fall below 150 microseconds.
Maximum Rate of Rise of Ignitor Current. . 2.5 Amperes per
Microsecond

[^19]



# GENERAL (86) ELECTRIC 

POWER TUBE DEPARTMENT
Schenectady 5, N. Y.


Electrical	
Cathode Excitation-Cyclic	
Cathode Spot Starting-Ignitor	
Number of Electrodes	
Main Anodes.	1
Main Cathodes	1
Ignitors	1
Arc Drop at 3400 Peak Amperes.	26 Volts
Arc Drop at 176 Peak Amperes.	13 Volts
Mechanical	
Over-all Length.	101/4 Inches
Over-all Width	31/4 Inches




[^20]
aVERAGE ANODE CURRENT IN AMPERES PER TUBE DEMAND CURRENT VS PERCENTAGE DUTY AT 250 VOLTS RMS AVERAGING TIME-18 SECONDS


Averaging Time $=9$ Seconds
K-69087-72A867


POWER-RECTIFIER RATINGS-INTERMITTENT DUTY


Control thermostats, with mounting brackets, are available through regular tube supply channels under the following catalog numbers:

AC Control Service
Flying-Lead Type
Water-Control Thermostat-N15272AA
Over-Temperature Thermostat-N15273AA
Terminal-Block Type
Water-Control Thermostat-N15286AA
Over-Temperature Thermostat-N15287AA
See Ignitron Accessories publication in front of Ignitron section for details.

TUBE DEPARTMENT

## GENERAL ELECTRIC

SCHENECTADY, N.Y. 12305

## GL-7670



## IGNITRON

## Coaxial

## PULSE-WELDER SERVICE—2000 AMPERES PEAK <br> ADAPTED TO WATER-FLOW CONTROL <br> ADAPTED TO TEMPERATURE CONTROL

The GL-7670 is a sealed, stainless-steeljacketed, water-cooled ignitron designed to control the high-current, short-duration power pulses required in pulsewelding service. In such use two tubes in inverse-parallel connection will control 2000 amperes peak at voltages up to 2500 volts peak at a frequency of 60 cycles. The tube is also useful in other high-peak-current applications such as capac-itor-discharge circuits.

The 7670 features a new coaxial con-
struction in which current flows through the tube from anode to cathode, then up the tube wall to a coaxial cathode terminal at the top. This coaxial current flow provides a magnetic shield to eliminate the arc deflection which the high peak currents of this tube might cause in standard design ignitrons.

A slotted mounting plate permits convenient mounting of a thermostat to provide control of the water flow or overtemperature protection.

## Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes ............................................ . . . 1
Main Cathodes ............................................. 1
Ignitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Arc Drop at 2500 Peak Amperes.......................... 25 Volts
Arc Drop at 150 Amperes ............................... . 13 Volts

## Mechanical

Envelope Material-Stainless Steel
Over-all Length ....................................... $811 / 16$ Inches
Over-all Width .......................................... $2^{3 / 4}$ Inches
Net Weight .................................................. . . 3.6 Pounds

## Thermal

Type of Cooling-Water
Inlet Water Temperature, minimum..................... 10 C
Inlet Water Temperature, maximum.................... . . 30 C
Outlet Water Temperature, Maximum................... 35 C
Water Flow, minimum, solenoid
water-valve open .................. 1.0 Gallons per Minute
Characteristics for Water Cooling at Rated Minimum Flow Water Temperature Rise, Maximum...................... 4 C
Pressure Drop at 1 Gallon per
Minute .......................... Pounds per Square Inch

MAXIMUM RATINGS-PULSE WELDER SERVICE

Peak Forward Anode Voltage . . . . . . . . 2500 Volts	Peak Anode Current . . . . . . . . . . . . . . . . 2000 Amperes
Peak Inverse Anode Voltage . . . . . . . . . . 2500 Volts	Average Anode Current. . . . . . . . . . . . . . 10 Amperes
Initial Inverse Voltage*. . . . . . . . . . . . . 1250 Volts	Averaging Time . . . . . . . . . . . . . . . . 2 Seconds
	Anode Current Repetition Rate . . . . . . . 60 Pulses per Second
	Anode Current Pulse Width . . . . . . . . . 1000 Microseconds

## Cathode Excitation Requirements

Ignitor Voltage Required to Fire......... 200 Volts
Ignitor Current Required to Fire....... 30 Amperes
Starting time at Required Voltage or
$\quad$ Current......................................... Microseconds

Ignitor	
Maximum Voltage	
Positive-Anode Voltage	
Negative	5 Volts
Maximum Current	
Peak	100 Amperes
Root Mean Square	10 Amperes
Average . . . . .	1 Ampere
Maximum Averag	5 Seconds

[^21]PERFORMANCE CHARACTERISTIC CURVE FOR PULSE-WELDING SERVICE Average Arc-back Rate vs. Circuit Duty CONDITIONS:

Half-sine-wave current pulses 1000 microseconds long. 60-cycle repetition rate (maximum).
10 per cent duty cycle- 10 half-sine-wave current pulses followed by 90 cycles of non-conduction.


COAXIAL CATHODE RETURN



Control thermostats, with mounting brackets, are available through regular tube supply channels under the following catalog numbers:

AC Control Service
Flying-Lead Type
Water-Control Thermostat - N15272AA
Over-Temperature Thermostat N15273AA Terminal-Block Type

Water-Control Thermostat-N15286AA
Over-Temperature Thermostat-N15287AA
See Ignitron Accessories publication in front of Ignitron section for details.


# GENERAL ELECTRIC <br> TUBE DEPARTMENT <br> Schenectady, N. Y. 12025 

## GL-7671



## Electrical

Cathode Excitation-Cyclic
Cathode Spot Starting-Ignitor
Number of Electrodes
Main Anodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Main Cathodes..................................... 1
Ignitors.
Arc Drop at 6800 Peak Amperes....................... 28 Volts
Arc Drop at 440 Peak Amperes

## Mechanical

Envelope Material-Stainless Steel
Over-all Length
141/4 Inches
Over-all Width. .................................. . . . $4 / 8$ Inches
Net Weight

8 Pounds

## IGNITRON

## Coaxial

RECTIFIER SERVICE-100 AMPERES AC CONTROL SERVICE- 140 AMPERES

## ADAPTED TO WATER-FLOW CONTROL <br> ADAPTED TO TEMPERATURE CONTROL

The GL-7671 is a sealed, stainless-steeljacketed, water-cooled ignitron for a-c control service. In such application two tubes in inverse-parallel connection will control 1200 kilovolt-amperes at voltages of 250 to 600 over a frequency range of 25 to 60 cycles.

The 7671 features a new coaxial construction in which current flows through the tube from anode to cathode, then up the tube wall to a coaxial cathode terminal at the top. This coaxial current flow provides a magnetic shield to eliminate the arc deflection which the high
peak currents of this tube might cause in standard design ignitrons.

A slotted mounting plate permits convenient mounting of a thermostat to provide control of the water flow or overtemperature protection.

Advantages of the control feature include reduction of condensation on the tube walls during hot weather, protection against overloads, elimination of water supply as a limiting factor in equipment location, and appreciable savings in water consumption.

## Thermal

Type of Cooling-Water
Inlet Water Temperature, minimum... 0 C
Inlet Water Temperature, maximum . 30 C
Outlet Water Temperature, maximum 40 C
Water Flow, minimum, solenoid water valve open
1.5 Gallons per Minute Characteristics for Water Cooling at Rated Minimum Flow Water Temperature Rise, maximum . . 6 C
Pressure Drop at 1.5 Gallons per Minute, maximum
4.5 Pounds per Square Inch

## MAXIMUM RATINGS

Power-Rectifier Service, Intermittent Duty		
Ratings are for Zero Phase-Control Angle		
Ratings Apply Only at Inlet Water Temperatures Up to 40 C		
Maximum Peak Anode Voltage		
Inverse	500	Volts
Forward		Volts
Maximum Anode Current		
Peak	1600	Amperes
Average	100	Amperes
Maximum Averaging Time		Seconds
Fault	6000	Amperes
Maximum Duration of Fault Current	0.15	Second
Frequency Range	25-60	Cycles per Second

## AC Control Service*

Ratings Apply Only at Inlet Water Temperatures Up to 40 C
Maximum Peak Anode Voltage
Inverse.................................. 500 Volts
Finder
Maximum Anode Current
Peak .................................. 1600 Amperes
verage
100 Amperes
6000 Amperes
0.15 Second

Frequency Range . ........................25-60 Cycles per
Second

## Two Tubes in Inverse Parallel, Ratings per Tube

(See Curves K-69087-72A721 and K-69087-72A722 for Details)
Voltage . . . . . . . . . . . . . . . . . . . . . 250 to 600 Volts RMS
Maximum Demand.................. 1200 Kilovolt-Amperes
Average Current at Maximum Demand.
75.6 Amperes

Maximum Average Current......... . 140 Amperes
Demand at Maximum Average Current.

400 Kilovolt-Amperes
Maximum Averaging Time at 250 Volts
RMS.............................. 14 Seconds

Maximum Averaging Time at 600 Volts RMS. . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8 Seconds
Maximum Peak Fault Current at 250
Volts . . . . . . . . . . . . . . . . . . . . . . . . 13,450 Amperes
Maximum Peak Fault Current at 600
Volts. . . . . . . . . . . . . . . . . . . . . . . . . . 5600 Amperes
Frequency Range............................25-60 Cycles per Second


demand current vs percentage duty at 440 volts rms




Averaging Time $=14$ Seconds


Control thermostats, with mounting brackets, are available through regular tube supply channels under the following catalog numbers:

AC Control Service
Flying-Lead Type
Water-Control Thermostat-N15272AA
Over-Temperature Thermostat-N15273AA
Terminal-Block Type
Water-Control Thermostat-N15286AA
Over-Temperature Thermostat-N15287AA
See Ignitron Accessories publication in front of Ignitron section for details.


CATHODE POTENTIAL

IGNITOR TERMINAL . 250 " $\pm .010 " \mathrm{DIA}$.

## GENERAL ELECTRIC <br> TUBE DEPARTMENT <br> Schenectady, N. Y. 12025



GL-7681

## IGNITRON

## FREQUENCY-CHANGER WELDER SERVICE

AC-CONTROL SERVICE

Electrical


The GL-7681 is a sealed, stainless-steeljacketed, water-cooled, mercury-pool tube for use in electronic-contactor and resistance-welding-control service, both single-phase and three-phase.
In AC-control service two tubes in an inverse-parallel connection will control 1800 kilovolt amperes at 440 to 600 volts RMS, 25 to 60 cycles. Six tubes will
control 2250 amperes peak at 1200 volts inverse in frequency-changer welder service.
A thermostat mounting plate, thermally coupled to the mercury-condensing surface of the tube, provides protection against excessive temperature or temperature control through regulation of the water flow.

## Thermal

Cooling-Liquid. If other than water is used, correct for conductivity, specific heat and viscosity.
Inlet Water Temperature, minimum... 6 C
Outlet Water Temperature, maximum. 45 C
Water Flow, minimum
At Continuous Rated Average
Current.
2.0 Gallons per Minute

At No Load
0
Note: Flow at intermediate loads may be decreased to an amount proportional to load. Water flow should be continued for 30 minutes after load is removed.
Characteristics for Water Cooling at Rated Minimum Flow
Water Temperature Rise at Maximum Current.

9 C

Water Pressure Drop at 2.0 Gallons
per Minute, Maximum. ....... 5 pounds per square inch

AC-Control Service*   Two Tubes in Inverse Parallel, Ratings per Tube				
Voltage. . . . . . . . . . . . . . . . . . . . . . 500-600	Volts RMS	Maximum Averaging Time		
Maximum Demand. . . . . . . . . . . . . $1800 \dagger$	Kilovolt Amperes	At 250 Volts RMS	9.5	Seconds
Average Current at Maximum Demand............................. . . 113.5	Amperes	At 500 Volts RMS   Maximum Peak Fault Current		Seconds
Maximum Average Current. .......... 210	Amperes	At 250 Volts.	20,040	Amperes
Demand at Maximum Average Current. . . . . . . . . . . . . . . . . . . . . . . . . . . 600	Kilovolt Amperes	At 600 Volts. Frequency Rang	$\begin{array}{r} 8400 \\ 25-60 \end{array}$	Amperes Cycles per second

## Frequency-Changer-Welder Service

Ratings are for zero phase-control angle

Maximum Peak Anode Voltage			Ratio of Average to Peak		
Inverse and Forward....... 1200	1500	Volts	Current. . . . . . . . . . . . 0.166	0.166	
Maximum Anode Current			Maximum Averaging Time 0.2	2	Seconds
Peak.... . . . . . . . . . . . . . . . 22250	1800	Amperes	Ratio of Fault to Maximum Peak		
Corresponding Average.... 30	24	Amperes	Current. . . . . . . . . . 12.5	12.5	
Average.................. . 105	84	Amperes	Maximum Duration of Fault		
Corresponding Peak....... 630	502	Amperes	Current............. 0.15	0.15	Seconds
Maximum Averaging Time 6.25	6.25	Seconds	Frequency Range. . . . . . 50-60	50-60	Cycles per second

## Cathode Excitation Requirements

Ignitor Voltage Required to Fire . . . . 200
Ignitor Current Required to Fire . . . . 30
Starting Time at Required Voltage or
Current. . . . . . . . . . . . . . . . . . . . . . 100 Microseconds

Ignitor
Maximum Voltage
Negative....................... 5 Volts

Maximum Current
Peak........................... 100 Amperes
RMS........................ 10 Amperes

Average.......................... 1 Ampere
Maximum Averaging Time.... 5 Seconds

* RMS demand voltage, current, and kilovolt-ampere demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used. Straight-line interpolation on log-log paper is allowed between corresponding points.
$\dagger$ Maximum demand current for 250 volts RMS is 4800 amperes. For voltages between 250 and 500 use proportional values between 4800 and 3600 amperes.


## AC CONTROL SERVICE

demand Current vs percentage duty


FREQUENCY-CHANGER WELDER SERVICE



## GENERAL ELECTRIC

TUBE DEPARTMENT
Schenectady 5, N. Y.

## COAXIAL IGNITRON



## FREQUENCY-CHANGER WELDER SERVICE <br> 2250 AMPERES PEAK

The GL-7998 is a sealed, stainless-steeljacketed, water-cooled ignitron for use in electronic-contactor and resistance-welding-control service, both single-phase and three-phase. It is a coaxial-design version of the GL-7681.

In AC-control service two tubes in an inverse-parallel connection will control 1800 kilovolt-amperes at 440 to 600 volts RMS, 25 to 60 cycles. In frequencychanger welder service six tubes will control 2250 amperes peak at 1200 volts inverse.

In the coaxial construction current

## AC-CONTROL SERVICE

## 1800 KILOVOLT-AMPERES

flows through the tube from anode to cathode, then up the tube wall to a coaxial cathode terminal at the top. This current flow provides a magnetic shield which eliminates the arc deflection that the high peak currents possible with this tube might cause in standard design ignitrons.
A thermostat mounting plate thermally coupled to the mercury-condensing surface of the tube facilitates attachment of a thermostat to provide either protection against excessive temperature or temperature control through regulation of the water flow.

	Electrical
Electrodes	
Anodes	1
Cathodes	. 1
Ignitors	- 1
Deionization Baffles.	- 1
Arc Drop	
At 5000 Amperes Peak	30 Volts
At 500 Amperes Peak	16 Volts

## Mechanical

Envelope Stainless Steel Mounting-Vertical, Anode Terminal Up Net Weight, approximate . . . . . . . . . . . . . 15 Pounds

## Thermal

Cooling-Liquid. If other than water is used, correct for conductivity, specific heat and viscosity.
Inlet Water Temperature, minimum . . 6 C
Outlet Water Temperature, maximum. 45 C
Water Flow, minimum
At Continuous Rated Average
Current.
2.0 Gallons per Minute At no Load. . 0
Note: Flow at intermediate loads may be decreased to an amount proportional to load. Water flow should be continued for 30 minutes after load is removed.
Water Cooling Characteristics at Rated Maximum Flow Water Temperature Rise at Maxi-
mum Current. . . . . . . . . . . . . . . . . 9 C
Water Pressure Drop, maximum. 5 Pounds per Square Inch

## MAXIMUM RATINGS

## AC-Control Service* <br> Two Tubes in Inverse Parallel, Ratings per Tube



Frequency-Changer-Welder Service
Ratings are for zero phase-control angle

Maximum Peak Anode Voltage		
Inverse and Forward . . . . . 1200	1500	Volts
Maximum Anode Current		
Peak. . . . . . . . . . . . . . . . 2250	1800	Amperes
Corresponding Average . . . . 30	24	Amperes
Average. . . . . . . . . . . . . . . 105	84	Amperes
Corresponding Peak. ...... 630	502	Amperes
Maximum Averaging Time 6.25	6.25	Seconds
Ratio of Average to Peak		
Current. . . . . . . . . . . . . . 0.166	0.166	
Maximum Averaging Time. 0.2	0.2	Seconds
Ratio of Fault to Maximum Peak		
Current. . . . . . . . . . . . . . . 12.5	12.5	
Maximum Duration of Fault		
Current. . . . . . . . . . . . . . . 0.15	0.15	Seconds

Frequency Range. ........50-50 50-60 Cycles per second

## MAXIMUM RATINGS (Cont'd)

## Cathode Excitation Requirements

Ignitor Voltage Required to Fire. . . . . 200 Volts
Ignitor Current Required to Fire . . . . . 30
Starting Time at Required Voltage or Current

Ignitor
Maximum Voltage
Positive-Anode Voltage
Negative. . . ......................... 5 Volts
Maximum Current
Peak............................. . . . . 100 Amperes

Peak	100	Amperes
RMS	10	Amperes
Average	1	Ampere

* RMS demand voltage, current, and kilovolt-ampere demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used. Straight-line interpolation on log-log paper is allowed between corresponding points.
$\dagger$ Maximum demand current for 250 volts RMS is 4800 amperes. For voltages between 250 and 500 use proportional values between 4800 and 3600 amperes.


Schenectady 5, N. Y.

# COAXIAL IGNITRON 



## 4800 KILOVOLT-AMPERES

HIGH EFFICIENCY COOLING

The GL-8205 is a sealed, stainless-steeljacketed ignitron for a-c control welder service. It is a coaxial-design version of the GL-7151.

Two tubes in an inverse-parallel connection will control 4800 kilovolt-amperes at 250 to 600 volts RMS, 25 to 60 cycles.

In the coaxial construction, current flows through the tube from anode to cathode, then up the tube wall to a coaxial cathode terminal at the top. This current flow provides a magnetic shield which eliminates the arc deflection that the high peak currents possible with this
tube might cause in standard-design ignitrons.

Other features of the 8205 include a specially designed water-cooling chamber that provides high-efficiency cooling at the bottom of the tube without increasing the water-pressure drop of the cooling jacket. A thermostat mounting plate, thermally coupled to the mercury-condensing surface of the tube, facilitates attachment of a thermostat to provide either protection against excessive temperature or temperature control through regulation of the water flow.

ELECTRICAL


## MECHANICAL



## THERMAL

Cooling-Water
Inlet Water Temperature, minimum........ 0 C
Outlet Water Temperature, maximum.... 40 C
Water Flow, minimum....................... 10 Gallons per
Minute
Water flow should be continued for at least one hour after removal of anode power.
Maximum Working Water Pressure, Non-
Shock ........................................... . . 100
Pounds per Square

Water-Cooling Characteristics at Rated Minimum Flow
Water Temperature Rise at Maximum Cur-
rent..................................
Water Pressure Drop, maximum........... . . 1.5
Pounds pe
Square

AC-Control Service*			
Two Tubes in Inverse Parallel, Ratings per Tube			
Voltage . . . . . . . . . . . . . . . . . . . . . . . 250 to 600	Volts RMS	Maximum Averaging Time	
Maximum Demand . . . . . . . . . . . . . . . . . . . . 4800	Kilovolt-	At 250 Volts RMS.	Seconds
	Amperes	At 500 Volts RMS	Seconds
Corresponding Average Current*....... . 486	Amperes	Maximum Peak Fault Cur	
Maximum Average Current*. . . . . . . . . . . . 900	Amperes	At 250 Volts	Amperes
Corresponding Demand.... . . . . . . . . . . . . 1600	Kilovolt-	At 600 Volts	Amperes
	Amperes	Frequency Range	Cycles per second
Below 500 Volts........................ 9600	RMS		

## Cathode Excitation Requirements



Ignitor $\dagger$
Maximum Voltage
Maximum Voltage
Positive-Anode Voltage
Negative

Maximum Current
Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Amperes

RMS $\ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$.
Average . . . ..................................... 1 Ampere
Maximum Averaging Time ................. 5 Seconds

* RMS demand voltage, current, and kilovolt-ampere demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used. Straight-line interpolation on log-log paper is allowed between corresponding points.
$\dagger$ These ratings apply only when anode firing of the ignitor is employed.


1. THERMOSTAT CONTACT AREA
2. CATHODE CONTACT AREA, $21 / 2$ WIDE
3. TUBE SUPPORT \& CATHODE TERMINAL


POWER TUBE DEPARTMENT
Schenectady 5, N. Y.

## CL-8360

## IGNITRON

## Coaxial



## PULSE-WELDER SERVICE-2000 AMPERES PEAK ADAPTED TO WATER-FLOW CONTROL <br> ADAPTED TO TEMPERATURE CONTROL

The GL-8360 is a sealed, stainless-steel-jacketed, water-cooled ignitron designed to control the high-current, short-duration power pulses required in pulse-welding service. In such use two tubes in inverse-parallel connection will control 2000 amperes peak at voltages up to 2500 volts peak at a frequency of 60 cycles. The tube is also useful in other high-peak-current applications such as capacitor-discharge circuits.

The 8360 features a new coaxial construction in which current flows through
the tube from anode to cathode, then up the tube wall to a coaxial cathode terminal at the top. This coaxial current flow provides a magnetic shield to eliminate the arc deflection which the high peak currents of this tube might cause in standard design ignitrons. Except for an increase in the size of the coaxial mounting plate, this tube is identical to the GL-7670.
A slotted mounting plate permits convenient mounting of a thermostat to provide control of the water flow or over-temperature protection.

## Electrical

Cathode Excitation-Cyclic Cathode Spot Starting-Ignitor	
Number of Electrodes	
Main Anodes	
Main Cathodes	
Ignitors	
Arc Drop at 2500 Peak Amperes	25 Volts
Arc Drop at 10 Amperes ....................... 13 Volts	
Mechanical	
Envelope Material-Stainless Steel	
Over-all Length	13 Inches
Over-all Width	$23 / 4$ Inches
Net Weight	3.6 Pounds

## Thermal

Type of Cooling-Water
Inlet Water Temperature, minimum ..................... 10 C
Inlet Water Temperature, maximum ........................... 30 C
Outlet Water Temperature, maximum....................... 35 C
Water Flow, minimum, solenoid
water-valve open.................. 1.0 Gallons per Minute
Characteristics for Water Cooling at Rated Minimum Flow
Water Temperature Rise, maximum....................... 4 C
Pressure Drop at 1 Gallon per
Minute ....................... 1.8 Pounds per Square Inch

## MAXIMUM RATINGS-PULSE WELDER SERVICE

Peak Forward Anode Voltage . . . . . . . . 2500 Volts	Peak Anode Current. . . . . . . . . . . . . . . . 2000 Amperes
Peak Inverse Anode Voltage . . . . . . . . . 2500 Volts	Average Anode Current . . . . . . . . . . . . . 10 Amperes
Initial Inverse Voltage*. . . . . . . . . . . . . 1250 Volts	Averaging Time. . . . . . . . . . . . . . . . . 2 Seconds
	Anode Current Repetition Rate . . . . . . 60 Pulses per Second
	Anode Current Pulse Width . . . . . . . . . 1000 Microseconds


Cathode Excitation Requirements		
Ignitor Voltage Required to Fire. . . . . . . 200 Volts	Ignitor	
Ignitor Current Required to Fire . . . . . . 30 Amperes	Maximum Voltage	
Starting time at Required Voltage or	Positive-Anode Voltage	
Current. . . . . . . . . . . . . . . . . . . . . . . . 100 Microseconds	Negative	5 Volts
	Maximum Current	
	Peak	100 Amperes
	Root Mean Square	10 Amperes
	Average .	1 Ampere
	Maximum Averaging T	5 Seconds

[^22]
## GL-8360

## PERFORMANCE CHARACTERISTIC CURVE FOR PULSE-WELDING SERVICE Average Arc-back Rate vs. Circuit Duty

 CONDITIONS: Half-sine-wave current pulses 1000 microseconds long. 60 -cycle repetition rate (maximum). 10 per cent duty cycle- 10 half-sine-wave current pulses followed by 90 cycles of non-conduction.


Control thermostats, with mounting brackets, are available through regular tube supply channels under the following catalog numbers:

AC Control Service
Flying-Lead Type
Water-Control Thermostat N15272AA
Over-Temperature Thermostat - N15273AA
Terminal-Block Type
Water-Control Thermostat-N15286AA
Over-Temperature Thermostat-N15287AA
See Ignitron Accessories publication in front of Ignitron section for details.


# GENERAL ELECTRIC <br> TUBE DEPARTMENT <br> Schenectady, N. Y. 12025 

# INDUSTRIAL EQUIPMENT TYPES MANUAL 

## GL-8465, GL-8466

Technical data on these types is filed in the "Rectifier Ignitrons" section of this manual.

FG-280
RECTIFIER


HALF-WAVE
MERCURY VAPOR

### 6.4 AMPERES

## Electrical

Heater Voltage	. 5.0	Volts
Heater Current, approximate	10.0	Amperes
Heating Time, typical.	5	Minutes
Peak Voltage Drop, typical	15	Volts

## Mechanical

Net Weight, approximate ..... 22 Ounces Mounting Position............. Vertical, with Radiator End Down


## GENERAL (\%) ELECTRIC

## RATE OF RISE OF CONDENSED-

MERCURY TEMPERATURE ABOVE AMBIENT
$\mathrm{E}_{\mathrm{f}}=4.75 \mathrm{VOLTS}$


3-10-47
CATHODE REHEATING CURVE
ANODE VOLTAGE $=0$



# GENERAL ELECTRIC <br> POWER TUBE DEPARTMENT <br> Schenectady 5, N. Y. 



## PHANOTRON

The GL-857-B is a half-wave, mercury-vapor rectifier tube for use in the high voltage field. The low voltage drop characteristic inherent in mercury-
vapor tubes, together with other features of design and construction assure maximum efficiency of operation in many different rectifier applications.

## GENERAL

Electrical	Minimum	Bogey		ximum
Filament Voltage	. 4.75	5	5.25	Volts
Filament Current at 5 Volts.	- -	30	33	Amperes
Cathode Heating Time	. 60	-		Seconds
Anode Voltage Drop.	-	15	-	Volts
Critical Anode Voltage	. -	-	100	Volts
Mechanical				
Type of Cooling-Convection or Forced Air				
Equilibrium Condensed-Mercury Temperatur				
At Full Load, approximate.			15	C
At No Load, approximate.			11.5	C
Mounting Position-Vertical, Base Down				
Net Weight, maximum .				Pounds



## X-RAY WARNING NOTICE

This device may produce X-rays when energized. X-ray warning signs or labels should be permanently attached to the equipment.
Precautions must be exercised during the service and operation of equipment to assure that any shielding components are replaced to their intended position before the equipment is operated.

## RATE OF RISE OF <br> CONDENSED-MERCURY TEMPERATURE

$E_{f}=4.75$ VOLTS



## PHANOTRON

The GL-869-B is a half-wave, mercury-vapor rectifier tube for use in broadcast transmitters and other applications where high d-c voltages are re-
quired. The cathode is designed for economical, long-life operation.

## GENERAL (CONT'D)

## Mechanical

Type of Cooling-Convection or Forced Air
Equilibrium Condensed-Mercury Temperature Rise above Ambient
At Full Load, approximate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 C
At No Load, approximate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 C
Mounting Position-Vertical, Base Down
Net Weight, maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Pounds
MAXIMUM RATINGS, Absolute Values
Maximum Peak Inverse Anode Voltage . . . . . . . . . . . . . . . . . . . . . . . . $10,000 \quad 15,000 \quad$ 20,000 Volts
Condensed-Mercury Temperature Limits . . . . . . . . . . . . . . . . . . . . . . 30 to $60 \quad 30$ to $50 \quad 30$ to 40 C
Maximum Cathode Current Peak
In-Phase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Amperes

Quadrature Operation........................................ 20 Amperes
Average


Maximum Averaging Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Seconds
Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Amperes
Maximum Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0.1 \quad 0.1 \quad$.1 . 1 Seconds
Maximum Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 . 150
150 Cycles per Second

## X-RAY WARNING NOTICE

This device may produce X-rays when energized. X-ray warning signs or labels should be permanently attached to the equipment.
Precautions must be exercised during the service and operation of equipment to assure that any shielding components are replaced to their intended position before the equipment is operated.




## Electrical

Number of Electrodes	2	
Cathode-Coated Unipotential		
Voltage.	5.0	Volts
Current, approximate	65.0	Amperes
Transformer Power, for design	. 400	Watts
Heating Time, typical		Minutes
Peak Voltage Drop, typical		Volts

HALF-WAVE

GL-870-A RECTIFIER

MERCURY-VAPOR

## 75 AMPERES

The GL-870-A is a heavy duty, halfwave mercury-vapor rectifier tube containing a heater-cathode of the equipotential type. The cathode consists of a
coated cylinder heated by means of an enclosed tungsten filament (heater). The cathode is connected to one side of the heater within the tube.

## MAXIMUM RATINGS



## X-RAY WARNING NOTICE

This device may produce X-rays when energized. X-ray warning signs or labels should be permanently attached to the equipment.

Precautions must be exercised during the service and operation of equipment to assure that any shielding components are replaced to their intended position before the equipment is operated.


## RECOMMENDED TYPES AND SELECTION CHART

Thyratrons

Maximum Cathode Current in Amperes			Max   Peak Inverse Voltage	Control Characteristics			Cathode		Temperature Range C	Type
Average	Peak	Fault		At 100 Volts	Intermediate Voltage	$\begin{aligned} & \text { At } 1000 \\ & \text { Volts } \end{aligned}$	Heater Volts	Heafer Amperes		
0.2	1.0	10	360	$-1.3$	-3.3@650V		6.3	0.6	-75 to +90	2050-A
0.1			1300							
2.5	30	250	1500	$-1.0$		$\frac{-6.5 @ 1500 \mathrm{~V}}{-9.0 @ 3500 \mathrm{~V}}$	2.5	9.0	-40 to +80	$\begin{aligned} & \text { GL-6011/710 } \\ & \text { GL-7518 } \end{aligned}$
			3500							$\begin{aligned} & \text { GL-7725 } \\ & \text { GL-7726 } \end{aligned}$
6.4	77	400	2000	$+2.0$	. . . . . .	-9.0	5.0	10.0	+30 to +95	FG-172
12.5	75	1500	10,000	. . .	-6.0@8000V	$+1.0$	5.0	20.0	+40 to +65	GL-5830
	100	1500	3000	. . .	$0 @$ 200V	-10.0	5.0	19.0	+40 to +80	GL-414



## THYRATRON

The FG-172 is a double-grid, mercury-vapor thyratron. Double-grid tubes are designed for applications where the grid is actuated from a high-im-
pedance source and where the available grid power is very small. The all-metal construction results in a sturdy tube for industrial applications.

## GENERAL

Number of Electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Electrical
Cathode-Indirectly Heated Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.0 Current, approximate
10.0Heating Time, typical
Peak Voltage Drop, typical5
Control Characteristics, approximate
Anode Voltage.16
Shield-Grid Voltage ..... 100 ..... 100
Control-Grid Voltage
Anode to Grid Capacitance, approximate ..... +1.0
0.07
Ionization Time, approximate ..... 10
Deionization Time, approximate ..... 1000

## Service

20005.5 Volts
11.0 Amperes

5 Minutes
16 Volts

$$
0
$$

$$
-14
$$

2000 Volts
0 Volt
-14 Volts
$0.07 \mu \mu \mathrm{f}$
10 Microseconds
1000 Microseconds

Mechanical


MAXIMUM RATINGS	Continuous Service	Welder-Control Service	
Maximum Peak Anode Voltage			
Inverse	2000	750	Volts
Forward	2000	750	Volts
Maximum Negative Control-Grid Voltage Before Conduction................	1000	1000	Volts
During Conduction	10	10	Volts
Maximum Negative Shield-Grid Voltage			
Before Conduction.	30	300	Volts
During Conduction	5.0	5.0	Volts
Maximum Anode Current			
Instantaneous, 25 cycles and above		77	Amperes
Instantaneous, below 25 cycles...	13.0	13.0	Amperes
Average.	6.4	2.5	Amperes
Surge, for design only	400	400	Amperes
Maximum Duration.	. 0.1	0.1	Seconds
Maximum Control-Grid Current			
Instantaneous.	. 1.0	1.0	Ampere
Average..	0.25	0.25	Amperes
Maximum Shield-Grid Current			
Instantaneous.	2.0	2.0	Amperes
Average.	- 0.50	0.50	Amperes
Maximum Averaging Time	15	15	Seconds
Temperature Limits, condensed mercury .	to $+80+$	+95	C
Recommended Temperature, condensed m	40	40	C

TYPICAL CONTROL CHARACTERISTIC
SHADED AREA SHOWS RANGE OF CHARACTERISTIC CONDENSED-MERCURY TEMP 40 C , SHIELD GRID CONNECTED TO CATHODE


DC CONTROL GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

RATE OF RISE OF CONDENSEDMERCURY TEMPERATURE ABOVE AMBIENT $E_{f}=4.75$ VOLTS


## RaNGE OF CHARACTERISTICS VS SHIELD-GRID VOLTAGES CONDENSED MERCURY TEMPERATURE 40C

dC anode voltage in volts

DC CONTROL-GRID VOLTAGE AT START OF CONDUCTION IN VOLTS

## FG-172

ET-T1513A
PAGE 4
4-63



GENERAL (96) ELECTRIC
POWER TUBE DEPARTMENT
Schenectady 5, N. Y.

## THYRATRON

The GL-414 is a three-electrode, mercury-vapor, metal thyratron with negative control characteristic. This tube is designed for industrial use in
welder-control and grid-control-rectifier applications.

## GENERAL

Electrical	Minimum	Bogey	Maximum
Heater Voltage.	4.75	5.0	5.25 Volts
Heater Current at 5.0 Volts		19.0	22.5 Volts
Cathode Heating Time Required	10	...	. Minutes
Anode-to-Control Grid Capacitance	. . .	0.1	... $\mu \mu \mathrm{f}$
Control Grid-to-Cathode Capacitance.	. . .	6.5	$\ldots \mu \mu \mathrm{f}$
Deionization Time, approximate			
$\mathrm{E}_{\mathrm{b}}=120 \mathrm{vd}-\mathrm{c} ; \mathrm{I}_{\mathrm{b}}=12.5 \mathrm{ad}$-c $; \mathrm{R}_{\mathrm{g}}=1000$ ohms			
$\mathrm{E}_{\mathrm{cc}}=-20 \mathrm{vd}-\mathrm{c}$	. . .	2200	. Microseconds
$\mathrm{E}_{\mathrm{cc}}=-1000 \mathrm{vd}-\mathrm{c}$		900	Microseconds
Ionization Time, approximate			
$\mathrm{E}_{\mathrm{b}}=100 \mathrm{v} ; \mathrm{I}_{\mathrm{b}}=100$ amperes			
$\mathrm{E}_{\mathrm{c}}=+30 \mathrm{v}$.	.	8	. Microseconds
Anode Voltage Drop .		20	... Volts
Critical Grid Current at $\mathrm{E}_{\mathrm{p}}=220 \mathrm{va-c}$.	. . .	$\cdots$	12 Microamperes

## Mechanical

Type of Cooling-Convection
Equilibrium Condensed-Mercury Temperature Rise above Ambient
At Full Load, approximate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 C
At No Load, approximate .
23 C
Mounting Position-Vertical, Radiator Down
Net Weight, maximum .
4 Pounds
MAXIMUM RATINGS, Absolute Values

Maximum Peak Anode Voltage			
Inverse.	3000	2000	Volts
Forward	. 3000	2000	Volts
Maximum Cathode Current			
Peak	100	100	Amperes
Average	5	12.5	Amperes
Maximum Averaging Time	30	30	Seconds
Surge .	. 1500	1500	Amperes
Maximum Duration.	0.1	0.1	Second
Maximum Negative Control-Grid Voltage			
Before Conduction.	1000	1000	Volts
During Conduction	10	10	Volts
Maximum Positive Control-Grid Current			
Average.	1.0		Amperes
Averaging Time	1	1	Cycle
Condensed-Mercury Temperature Limits	$+80$	+40	to +80 C

## CONTROL CHARACTERISTIC

SHADED AREA SHOWS RANGE OF CHARACTERISTIC CONDENSED-MERCURY TEMPERATURE +40 TO +80 C

$$
E_{f}=4.75-5.25 \text { VOLTS }
$$



TYPICAL VARIATION OF CONTROL CHARACTERISTIC
WITH A HEATER PHASE VARIATION OF 180 DEGREES

HEATER VOLTAGE OUT OF PHASE WITH ANODE VOLTAGE
CHARACTERISTICS SAME WITH DC ANODE VOLTAGE
heater voltage in phase with anode voltage


RATE OF RISE OF CONDENSED-MERCURY
TEMPERATURE ABOVE AMBIENT

$$
\mathrm{E}_{\mathrm{f}}=4.75 \mathrm{VOLTS}
$$




```
TYPICAL CONTROL-GRID CHARACTERISTICS DURING ANODE CONDUCTION
```

$\mathrm{E}_{\mathrm{f}}=5.0 \mathrm{VOLTS} \mathrm{AC}$


ENVELOPE IS AT GATHODE POTENTIAL



## 2050-A <br> THYRATRON

The $2050-\mathrm{A}$ is a four-electrode, inert-gas-filled thyratron for relay and grid-controlled-rectifier service. Features of the tube include a control characteristic independent of ambient tempera-
ture over a wide range, low grid-anode capacitance, low grid current, and high sensitivity. The 2050-A differs from the 2050 in having a T-9 envelope and a larger base.

## ELECTRICAL



## MECHANICAL

Mounting Position-Any
Envelope-T-9, Glass
Base-B6-229, Intermediate-Shell Octal 6-Pin or B8-142, Intermediate-Shell Octal 8-Pin

THERMAL
Type of Cooling-Air

## MAXIMUM RATINGS, ABSOLUTE VALUES

Peak Anode Voltage		
Inverse . . . . . . . . . . . . . . . . . . . 360	1300	Volts
Forward . . . . . . . . . . . . . . . . . . 180	650	Volts
Cathode Current		
Peak . . . . . . . . . . . . . . . . . . . . . 1.0	1.0	Amperes
Average .................... 0.2	0.1	Amperes
Maximum Averaging Time... 30	30	Seconds
Fault . . . . . . . . . . . . . . . . . . . 10	10	Amperes
Maximum Duration . . . . . . . . 0.1	0.1	Seconds
Negative Control-Grid Voltage		
Before Conduction . . . . . . . . . 250	250	Volts
During Conduction . . . . . . . . . 10	10	Volts


Positive Control-Grid Current   Average, Averaging Time			
One Cycle	. 01	0.01	Amperes
Negative Shield-Grid Voltage			
Before Conduction	100	100	Volts
During Conduction		10	Volts
Positive Shield-Grid Current			
Average, Averaging Time			
One Cycle.	0.01	0.01	Amperes
Heater-Cathode Voltage			
Heater Positive with Respect to Cathode	25	25	Volts
Heater Negative with Respect to Cathode $\qquad$		100	Vol
Ambient Temperature Limits			C

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey tube of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the tube manufacturer to provide acceptable serviceability of the tube, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, variation in characteristics of all other tubes in the equipment, equipment control adjustment, load variation, signal variation, and environmental conditions.

## TYPICAL OPERATION

Ionization Time, approximate	0.5	Microseconds
Deionization Time, approximate		
$\mathrm{Eb}=125$ volts, $\mathrm{lb}=100$ milliamperes, $\mathrm{Rg}=1000$ ohms		
Ecc $=-250$ volts.	50	Microseconds
Ecc $=-10$ volts	100	Microseconds
Critical Grid Current, maximum		
$\mathrm{Ebb}=460$ volts, $\mathrm{RMS} ; \mathrm{lb}=100$ milliamperes.	0.5	Microamperes



OUTLINE
(EIA 9-7)


TERMINAL CONNECTIONS
Pin 1-No Connection
Pin 2-Heater
Pin 3-Anode
Pin 4-No Connection
Pin 5-Grid Number 1 (Control Grid)
Pin 6-Grid Number 2 (Screen Grid)
Pin 7-Heater
Pin 8-Cathode

BASING DIAGRAM
(EIA 6BS)



## THYRATRON

The GL-5830 is a three-electrode mercury-vapor thyratron with negative control characteristic.

This tube is designed for grid control rectifier application of relatively high voltage and current.

## GENERAL

Electrical
Heater Voltage
Heater Current at 5.0 Volts
Cathode Heating Time Required
Anode-to-Control-Grid Capacitance
Control-Grid-to-Cathode Capacitance
Deionization Time, approximate

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{b}}=120 \mathrm{v} \text { d-c, } \mathrm{I}_{\mathrm{b}}=12.5 \mathrm{amp} \mathrm{~d}-\mathrm{c}, \mathrm{R}_{\mathrm{g}}=1000 \mathrm{ohms} \\
& \mathrm{E}_{\mathrm{cc}}=-1000 \mathrm{v} \\
& \mathrm{E}_{\mathrm{cc}}=-22 \mathrm{v}
\end{aligned}
$$

Ionization Time, approximate

$$
\mathrm{E}_{\mathrm{b}}=100 \mathrm{v}, \mathrm{E}_{\mathrm{c}}=+30 \mathrm{v}, \mathrm{I}_{\mathrm{b}}=75 \mathrm{amp}
$$16

Maximum
5.25 Volts
22.5 Amperes

Seconds
$\mu \mu \mathrm{f}$
$\mu \mu \mathrm{f}$

Microseconds
Microseconds

Microseconds Volts


## CONTROL CHARACTERISTICS

Shaded Area Shows Range of Characteristic
Condensed Mercury Temperature 40-65 C

$$
E_{f}=4.75-5.25 \text { Volts }
$$



TYPICAL VARIATION OF CONTROL CHARACTERISTIC WITH A HEATER PHASE VARIATION OF 180 DEGREES


## GL-5 830

ET-T1584A
PAGE 4
4.63


RATE OF RISE OF CONDENSED MERCURY TEMPERATURE ABOVE AMBIENT $\mathrm{E}_{\mathrm{i}}=4.75$ Volts


TYPICAL CONTROL-GRID CURRENT VS CONTROL-GRID VOLTAGE DURING CONDUCTION



### 2.5 AMPERES

These four thyratrons constitute a family of tubes particularly designed for industrial service under stringent operating conditions, ignitor firing, regulated rectifier, and similar applications.

They feature a negative control characteristic and a quick-heating cathode requiring only twenty seconds to attain operating temperature. Throughout life
initial conduction is possible at temperatures as low as -40 C .

A specially designed electrode structure permits mounting in any vertical to horizontal position, base down.

With the exception of peak voltage ratings and bases used, the tubes are identical both electrically and mechanically.

GAS AND MERCURY NEGATIVE CONTROL

## QUICK-HEATING CATHODE



## TRIODE THYRATRON

Electrical			
Minimum	Bogey	Maximum	
Cathode-Filamentary			
Filament Voltage . . . . . 2.37	2.50	2.63	Volts
Filament Current at			
2.50 Volts	9	11	Amperes
Heating Time. . . . . . . . . 20	-	-	Seconds
Anode to Control-Grid Capacitance.	2	-	$\mu \mu \mathrm{f}$
Control-Grid to Cathode Capacitance.	12	-	$\mu \mu \mathrm{f}$
Deionization Time, approximate.	1000	-	Microseconds
Ionization Time, approximate.	10	-	Microseconds
Anode Voltage Drop.	15	-	Volts
Critical Grid Current, $\mathrm{E}_{\mathrm{p}}=220 \mathrm{v}$ a-c or RMS	-	10	Microamperes



MAXIMUM RATINGS, ABSOLUTE VALUES

$\begin{gathered} 6011 / 710 \\ 7518 \end{gathered}$	$\begin{aligned} & 7725 \\ & 7726 \end{aligned}$				
Maximum Peak Anode Voltage					
Inverse . . . . . . . . . . . . . . . . . . . . 1500	3500	Volts			
Forward. . . . . . . . . . . . . . . . . 1500	3500	Volts			
Maximum Cathode Current $\dagger$			Maximum Negative Grid Voltage		
Peak	. 30	Amperes	Before Conduction.	500	Volts
Average	2.5	Amperes	During Conduction	. 10	Volts
Maximum Averaging Time	. 5	Seconds	Maximum Positive Grid Current*		
Fault. . . . . .	250	Amperes	Average. . . . . . . . . . . .	0.25	Amperes
Maximum Duration	. 0.1	Seconds	Averaging Time	. 1	Cycle

[^23]$6011 / 710$
7518/710L
7725
7726

## PAGE 2

11-65

SHADED AREA SHOWS RANGE OF CHARACTERISTICS


SINGLE-PHASE ELECTRONIC-WELDER RATING


Maximum Peak Forward and Inverse Anode Voltage
$6011 / 710$ and 7518/710L $=1500$ Volts
7725 and $7726=3500$ Volts
Demand Current Measured with Full Conduction During Each Half Cycle Averaging Time $=5$ Seconds


[^24]OUTLINE
$7518 / 7101$
7726

BOTTOM VIEW

Tube Department


#### Abstract

ZM-6287 INDUSTRIAL HEATING MAGNETRON

918 Megahertz Forced-Air Cooled

\section*{1000 Watts Output Power <br> Integral Series Field Coils}

The ZM-6287 is a low-voltage CW magnetron assembly for use in the $915-\mathrm{MHz}$ ISM Band for microwave heating applications. It is designed for operation from a low cost, voltage doubler circuit, connected to a 240 -volt a-c line. Approximately 50 volts a-c boost from an autotransformer is needed to achieve the 1000 -watt output(Fig. 1). It contains an integral electromagnet energized by the voltage doubler output(series connection). The r-f output line contains a d-c bypass arrangement which allows the body of the tube to run off ground.


## GENERAL

## Mechanical

Mounting Position - Tube axis vertical
Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Pounds

## Thermal

> Forced-Air Cooled
> $100 \mathrm{Cu} . \mathrm{ft} / \mathrm{min}$.
> Thermostat Temperature $230^{\circ} \mathrm{F}$

## MAXIMUM RATINGS (Absolute Values)

## Electrical

## Filament

Voltage
Starting
Min. Max.

Standby

- $\quad 6.3$ Volts

Operating(650 watt level)
1.0
5.5 Volts

Operating(1000 watt level)
0
1.5 Volts

Current
Starting
Surge ............................................... - $\quad$ Amperes
Stabilized (1 min.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 18 Amperes
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 15 Amperes
Operating ( 650 watt) . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . 8 Amperes
Operating (1000 watt) .................................... 0 Amperes

	Min.	Max.
Preheat Time	50	Seconds
Plate Voltage		725 Volts DC
Plate Current		3.5 Amperes DC
Load VSWR		
Opposite Sink		3/1 VSWR
In Sink		2/1 VSWR
A-C Input Voltage to Doubler		300 V AC
Power Output ( 300 V AC Matched Load)	1000	Watts
Frequency, Matched Load	913	923 MHz

## TYPICAL OPERATING CONDITIONS




K-1	Main Contactor	R-1	$25 \Omega, 25 \mathrm{~W}$
K-2	DC Overload (4A)	R-2	$.5 \Omega, 100 \mathrm{~W}$ (Open coil of
K-3	Time Delay Relay		Nichrome or equiv.)
	$\quad$ (Thermal Type)	R-3,4	$20,000 \Omega, 25 \mathrm{~W}$
K-4	Short Time Delay Relay	T-1	Filament Transformers
C-1,2	$500 \mu \mathrm{f}, 500 \mathrm{~V}$		(6.3V, 18A)



FIGURE 2



FIGURE 4

# TUBE PRODUCTS DEPARTMENT <br> general fogide eltic <br>  <br> Schenectady, New York 12305 


[^0]:    *FS = Special Products and Microwave Devices for Industry Manual.
    I = Industrial Equipment Types Manual.
    $\mathbf{M}=$ Military Equipment Types Manual.
    R-1 = Receiving Types Manual, Vol 1, Compactrons.
    $\mathbf{R}-2=$ Receiving Types Manual, Vol. 2, Conventional Types.

[^1]:    * Anode-seal, insulating-compound temperature must always be higher than the cathode temperature to prevent mercury condensation on the anode and anode seal. Before tube operation, the anode seals must be heated long enough to vaporize all mercury from the seal area.
    $\dagger$ The tube may become a closed switch (does not open) carrying current in both directions until the current dampens out.
    $\ddagger$ The tube cannot hold off this voltage immediately after conduction. A 1-to-10-second delay may be required before reapplication of voltage.
    T Dampened oscillations are permissible provided the oscillating cycles do not exceed 20 . The peak current value for one-half cycle must not be exceeded.
    § Rate of rise depends on circuit.

[^2]:    The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most recent information conserning the status of this development, please consult your local Tube Department Regional Sales Office, or current Preliminary Technical Information for the same catalog number.
    ET-J37
    8-62

[^3]:    
     Information for the same catalog number.
    ET-J37
    $8-62$

[^4]:    CAUTION: A CLEARANCE OF SIX INCHES BETWEEN FERROMAGNETIC MATERIALS AND THE TUBE WILL PREVENT ANY SERIOUS CHANGE OF THE OPERATING CHARACTERISTICS.

[^5]:    The specifications of this type are subject to change. Delivery of samples and the existence of these data do not imply continued availability of types with the same characteristics or dimensions. For the most recent information concerning the status of this device, please consult your local Tube Department Regional Sales Office. ET-J38
    8-62

[^6]:    * Liquid-Cooled Version Available (ZP-1079)

[^7]:    The specifications of this type are subject to change. Delivery of samples and the existence of these data do not imply continued availability of types with the same characteristics or dimensions. For the most recent information concerning the status of this device, please consult your local Tube Department Regional Sales Office. ET-J38

[^8]:    * The cathode of the GL-6848, because of transit-time effects which raise the temperature of the cathode, is subjected to considerable back bombardment in ultra-high-frequency service. The amount of heating due to bombardment is a function of the operating conditions and frequency, and must be compensated for by a reduction of the cathode power input to prevent overheating of the cathode with resulting short life. In any case it is important from a tube life standpoint to keep the cathode power at as low a level as possible consistent with required performance. Bombarder power should be monitored by a suitable wattmeter or DC voltmeter and milliammeter arrangement. For long life, the tube should be put in operation with about 180 watts bombarding power. After the circuit has been adjusted for proper tube operation, bombarding voltage should be reduced to a value slightly above that at which circuit performance is affected. Minor circuit readjustment may be necessary after the above adjustment. The procedure for determining proper bombarding power should be repeated periodically.
    $\ddagger$ Represents maximum usable cathode current. (plate current plus current to each grid) for any condition of operation.
    § Measured with complete isolation between cathode and plate.
    - Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.
    \# Useful power output including power transferred from driver stage.

[^9]:    Note 1: Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for

[^10]:    Note 1: Under the typical operating conditions shown the heater voltage should be reduced to approximately 6.0 volts because of back-heating resulting from transit-time effects.

    * Control grid connected directly to screen grid.
    $\dagger$ Complete external shielding between cathode and plate.
    $\ddagger$ Forced air cooling should be applied during the application of any voltages.
    § A suitable heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified; the tem. perature is measured at the point indicated on the outline drawing.
    For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
    - Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
    $\phi$ Maximum ratio of on-time to elapsed time during any 7.5 -millisecond period.

[^11]:    * Because of back-heating due to transit-time effects, it may be necessary to reduce the heater voltage. For the $1100 \mathrm{mcs}, 2 \mathrm{kw}, 0.02$ duty condition, the typical heater voltage is 5.5 volts. The optimum heater voltage for any application should be determined by RF performance testing.
    § A suitable clamp-on radiator or heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified. Higher plate dissipation is allowable with provision for proper cooling.
    $\diamond$ Pulse duration is measured between points at 70 percent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse. For applications requiring longer pulses, refer to the tube manufacturer.
    $\phi$ Maximum ratio of on-time to elapsed time during any 3.3 -millisecond period.
    $\phi \phi$ Maximum ratio of on-time to elapsed time during any 75-millisecond period.
    ** With a series grid resistance of 50 ohms.

[^12]:    GENERAL (\%6) ELECTRIC TUBE DEPARTMENT
    Schenectady 5, N. Y.

[^13]:    

[^14]:    ANODE VOLTAGE $=600$ VOLTS OR LESS - 4 OHMS
    ANODE VOLTAGE $=601$ VOLTS TO 1000 VOLTS- 10 OHMS
    $R_{I}$
    ANODE VOLTAGE $=1501$ VOLTS TO 2000 VOLTS- 35 OHMS ANODE VOLTAGE $=2001$ VOLTS TO 2400 VOLTS - 50 OHMS

    $$
    \begin{aligned}
    \mathrm{R}_{\mathrm{g}} & =500 \mathrm{OHMS} \\
    \mathrm{C}_{\mathrm{B}} & =8 \mathrm{MFD} \\
    \mathrm{C}_{\mathrm{G}} & =0.1 \mathrm{MFD} \\
    \text { FUSE } & =6 \mathrm{AMPERES}
    \end{aligned}
    $$

[^15]:    * Ratings are for zero-phase-control angle-See curve K-69087-72A513 for ratings at other phase-control angles.
    $\ddagger$ Reduce duration of fault current by suppressing rectifier by removing ignitor and grid excitation.
    $\pm$ Precautions should be taken to assure that magnetic fields of adjacent conductors do not deflect the arc in the tube.

[^16]:    K-9033528

[^17]:    * When two or more tubes are connected in series for water flow, the temperature of the incoming water to the warmest tube in the series must be within the rated limit.
    $\dagger$ RMS demand voltage, current, and kilovolt-ampere demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used.

    The switching circuit must be insulated to prevent excessive voltage between tube cylinder and switches.
    $\ddagger$ Suitable fuses should be provided in the switch circuits to prevent a power arc should a ground occur in the switch or wiring.

[^18]:    $\mathrm{C}_{\mathrm{B}}=8 \mathrm{MFD}$
    $\mathrm{C}_{\mathrm{G}}=0.1 \mathrm{MFD}$
    $\mathrm{C}_{\mathrm{I}}=15-20 \mathrm{MFD}$
    $\mathrm{L}_{\mathrm{I}}=1-1.5 \mathrm{mh}$
    $\mathrm{R}_{\mathrm{C}}=10$ OHMS

[^19]:    * A concentric current-return path from the cathode terminal to the top of this tube should be provided in installations where high-current conductors, including other ignitrons, are operating within 20 inches of it. This is necessary to prevent the magnetic field established by the high current from disturbing the arc within the GL-7151. This return path can be made by clamping the cathode connection to the top of the tube jacket; or by extending, from the cathode terminal to a bus-bar connection at the top of the tube, four or more equally spaced copper bars placed around the circumference and running the length of the tube. Clean tight connections are necessary for proper conduction of the high currents.

[^20]:    * RMS demand voltage, current, and kilovolt-ampere demand are all on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used. For voltages below the minimum, the minimum-voltage current rating applies. With the use of log-log paper straight-line interpolation between tabulated points may be used for other detailed ratings of: Demand kva vs average anode current, and maximum averaging time vs anode voltage.

[^21]:    * Initial inverse voltage is the negative voltage applied to the anode immediately after anode current conduction.

[^22]:    * Initial inverse voltage is the negative voltage applied to the anode immediately after anode current conduction.

[^23]:    * The tube may be started throughout life at condensed-mercury temperatures as low as -40 C . Although it will operate satisfactorily between -40 C and +30 C condensed mercury life will be reduced at these low temperatures. For maximum life the condensedmercury temperature after warm-up should be maintained between +40 and $+80 \mathrm{C}(+10$ to +50 C ambient $)$.
    $\dagger$ Since the center of the filament is internally connected to pin No. 2, the anode and grid-circuit returns should be made to that pin. If this is not possible, the returns can be made to the center tap of the filament transformer, but in such a case the anode current and therefore any fault current will pass through the transformer.

[^24]:    OUTLINE
    6011/710
    7725

