MICROWAVE COMPONENTS AND INSTRUMENTS

Since 1951 the name Huggins has been closely connected with the field of microwaves . . . initially as an individual doing pioneer TWT production in a garage shop . . . and today as the firm that paces the Microwave Instrumentation, Microwave Ferrite Component, and TWT industries.

Huggins Laboratories was formed to meet the microwave system industry's vital need for highly qualified talent in the areas of traveling wave tube research, design and manufacture. That the Laboratory has met this need is evidenced by its many contributions which have advanced the state-of-the-art.

Basic research at Huggins Laboratories led to the company's distinction as being the supplier of the first commercially available traveling wave tube ... backward wave oscillator ... low noise TWT. . . PPM-focused TWT... and electrostatically focused TWT. Further significant contributions lie in the fields of PM BWOs, white noise generation, ruggedization, high power-low noise TWTs, and loop memory tubes. In the area of manufacturing, contributions of Huggins-developed handling and production techniques have made possible both small and large quantity TWT production at economical costs.

To increase its technological capabilities, the company formed Menlo Park Engineering (MPE) in 1955. Operating as a wholly-owned subsidiary, MPE made traveling wave tube equipment available for both instrumentation purposes and system evaluation. Huggins Laboratories became more intimately involved in the instrumentation field by completely absorbing MPE in 1962. In a physical and administrative merger, MPE formed the nucleus for the Systems Division. Integrating both tube and instrumentation technologies provided the customer with more efficient and diversified services, greater design versatility, and more complete engineering assistance. A very significant result of the merger is found in the finest line of TWT Amplifier units and Electronically Swept Microwave Oscillators on today's market.

Fully confident in the future of microwaves, Huggins broadened its technological base even more in 1963 by purchasing the Cascade Research Corporation... the pioneer in engineering and manufacturing of ferrite components. In addition to diversifying the product line, creation of the Cascade Research Division extended Huggins' technical capabilities to include the development and production of ferrite isolators, circulators, switches, modulators, and phase shifters.

With the 1963 acquisition of Applied Systems Corporation as a subsidiary, the company further diversified its interests into the fields of infrared optics and high frequency transient detection.

Over the years Huggins Laboratories has become well established as the leading developer and manufacturer of traveling wave tubes. One key to the company's capacity to produce is found in its engineering-trained management team-men who fully understand the customer's needs. This technical insight enables management to effectively blend the efforts of the research and manufacturing staffs for optimum operation.

The same experienced technical direction and ability have been fully integrated into all operations at Huggins Laboratories. Consequently, the customer is assured that his TWT, Microwave Instruments, and Microwave Ferrite Component needs will be met with the same proven reliability and competence characterized by Huggins TWT operations.

CAPABILITIES

RESEARCH AND DEVELOPMENT

The TWT R \& D Department is an efficient organization that combines intellectual curiosity, experience, facilities, and ability to provide advanced TWTs in minimum time at minmum development cost. Many of the engneers and technicians have worked with the TWT since its infancy.

As a result, R \& D personnel possess a store of information and unequalled experience related to TWT-BWO design and development. Augmented by the most modern and advanced equipment obtainable, this technical know-how works daily for the customer on both externally and company sponsored programs.

Capabilities, talents, and interests of this group encompass such areas as the art of PM, MRPM, and PPM focusing . . . low-noise gun design . . . ruggedization procedures . . . white noise generation . . . radar augmenter tubes . . . BWO technology . . . and metal-ceramic techniques.

PRODUCTION

Huggins TWT Production Department is staffed, equipped, and geared to deliver traveling wave tubes in small and production quantities on short delivery schedules. This ability to produce is evidenced by the fact that Huggins Laboratories consistently achieves the industry's highest annual production figures . . . an enviable record of which we are proud.

Though mass production is not presently within the state of the TWT manufacturing art, Huggins has developed simplified handling and production techniques that minimize manufacture and assembly time while meeting rigid quality standards. Experienced personnel use these techniques and the industry's most up-to-date equipment to provide the customer with quality TWTs and BWOs in quantity.

Whether you require TWTs and BWOs in small or large quantities, let Huggins' years of experience in producing quality tubes work for you.

CONTENTS

REPRESENTATIVES

ORDERING INFORMATION

ORDERING: Standard Tubes: Specify full tube nomenclature and primary performance specifications.
Custom Units: Many tubes whose characteristics fall outside those listed in this catalog are being made to individual customer specifications. Contact Huggins Sales Department, or our representative in your area, to discuss your special needs.
PRICES: F.O.B. Sunnyvale, California. Prices apply to small quantities only and are subject to change without notice.
TERMS: Net 30 days with approved credit.
DELIVERY: Indicated times represent normal delivery for small quantities. Consult Huggins Sales Department for latest quotations.

SHIPMENT: Via air freight unless requested otherwise.
SERVICE: Prompt technical service and assistance are readily available from factory-trained representatives and the manufacturer.
WARRANTY: All Huggins' TWTs and BWOs are thoroughly tested and inspected prior to shipment. Huggins' customers enjoy the most liberal warranty in the industry.
1 to 10 mw Amplifiers: 500 hours full guarantee, 2000 hours prorated. 100 mw and above: 250 hours full guarantee, 1000 hours prorated. Low Noise Amplifiers: 500 hours full guarantee, 1500 hours prorated. Backward Wave Tubes: 100 hours full guarantee, 500 hours prorated. All Tubes: 12 -month shelf life.

		Type	Frequency (Gc)	Min S-S Gain (db)	$\begin{gathered} \text { Min } \\ \text { Sat } \\ \text { Sour } \\ \text { (dbm) } \end{gathered}$	Max Noise Fig (db)	$\begin{gathered} \operatorname{Max}^{I_{k}} \\ (\mathrm{ma}) \end{gathered}$	Electrode Voltages, vdc						Comments	Unit Price
	focus							Helix	Collector	Anode 1	Anode 2	Anode 3	Grid		
a 2 2 2 2 2 2	PPM	HA-51 ${ }^{6}$ HA-51D ${ }^{6}$ HA-51C ${ }^{\circ}$ HA-51B	0.25 to 0.5 0.25 to 0.5 0.25 to 0.5 0.3 to 0.4	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	150 to 250 150 to 250 150 to 250 150 to 250	$\begin{aligned} & 350^{2} \\ & 350^{2} \\ & 350^{2} \\ & 350^{2} \end{aligned}$	\ldots	\ldots	0 to 300 0 to 300 0 to 300 0 to 300	-50 to 0 -50 to 0 -50 to 0	HUGGINS 200 (MPE 210)	$\begin{array}{r} \$ 1,575 \\ 1,575 \\ 1,575 \\ 1,675 \end{array}$
	SOL.	HA-8J ${ }^{6}$	$\left\{\begin{array}{lll} 0.3 \text { to } & 0.5 \\ 0.3 & \text { to } & 0.4 \\ 0.4 & \text { to } & 0.5 \end{array}\right.$	$\begin{aligned} & 25 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\left.\begin{array}{l} 70 \\ 70 \\ 70 \end{array}\right\}$	400 to 600	400 to 600	0 to 500	0 to 200		\$1,650

[^0]

UHF-BAND

	Focus	Type	Frequency (Gc)	Min S-S Gain (db)	Min Sat Pout (dbm)	Max Noise Fig (db)	$\begin{gathered} \operatorname{Max} \\ I_{K} \\ (\mathrm{ma}) \end{gathered}$	Electrode Voltages, vdc						Comments	Unit Price
								Helix	Collector	Anode 1	Anode 2	Anode 3	Grid		
	PPM	$\begin{aligned} & \text { HA. } 67^{8} \\ & \text { HA } 67.1^{8} \end{aligned}$	$\begin{aligned} & 0.5 \text { to } 1.0 \\ & 0.5 \text { to } 1.0 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 200 \text { to } 300 \\ & 200 \text { to } 300 \end{aligned}$	$\begin{aligned} & 250 \text { to } 500^{2} \\ & 250 \text { to } 500^{2} \end{aligned}$	150 to 350	0 to 50	$\begin{gathered} 0 \text { to } 50 \\ 75 \text { to } 300 \end{gathered}$	$\begin{array}{r} -50 \text { to } 0 \\ -100 \text { to } 0 \end{array}$		$\begin{array}{r} \$ 2,500 \\ 2,500 \end{array}$
	SOL	HA-68 ${ }^{8}$	0.5 to 1.0	25	3	6	2	75 to 120	300 to 500°	0 to 30	0 to 30	0 to 30	0 to 30		\$3,250
		HA-86 ${ }^{8}$	0.5 to 1.0	25	3	7	2	75 to 120	300 to 430^{2}	0 to 30	0 to 30	0 to 30	0 to 30		3,000
		HA.86H ${ }^{8}$	0.5 to 1.0	25	3	7	2	75 to 120	300 to 430^{2}	0 to 30	0 to 30	0 to 30	0 to 30	HUGGINS 101 (MPE TA-86)	3,000
		HA-86A ${ }^{8}$	0.8 to 1.2	25	0	7	2	75 to 120	350 to 430^{2}	0 to 30	0 to 30	0 to 30	0 to 30		3,500
		HA-72 ${ }^{8}$	0.5 to 1.0	25	3	8	2	70 to 120	270 to 4002,5	0 to 30	0 to 30	0 to 30	0 to 30		2,750
		HA-72A ${ }^{8}$	0.5 to 1.0	25	3	8	2	70 to 120	$V_{H}+300^{2}$	0 to 30	0 to 30	0 to 30	0 to 30	HUGGINS 102 (MPE TA-72)	2,750
		HA.72B ${ }^{8}$	0.5 to 1.1	25	0	8	2	70 to 120	380 to 500	0 to 30	0 to 30	0 to 30	0 to 30		2,750
		$H A-45^{6}$	0.5 to 1.0	25	5	10	2	75 to 120	270 to $4000^{2,5}$	0 to 30	0 to 30	0 to 30	0 to 30		2,000
		HA.450 ${ }^{6}$	0.5 to 1.0	25	5	10	2	70 to 120	$V_{H}+300^{2}$	0 to 30	0 to 30	0 to 30	-50 to 50	HUGGINS 103 (MPE TA-45)	2,000
		$\mathrm{HA} .45 \mathrm{E}^{8}$	0.5 to 1.0	25	0	10	1.5	78 to 100	$V_{H}+300^{2}$	0 to 30	0 to 30	0 to 50	-50 to 50	ALFRED 5051	2,000
		$\mathrm{HA}-45 \mathrm{~B}^{8}$	0.55 to 1.1	25	0	10	2	85 to 120	90 to 420^{2}	0 to 30	0 to 30	0 to 30	-50 to 50	ALPED 5051	2,100
		HA-40 ${ }^{\text {c }}$	0.5 to 1.0	25	5	15	2	75 to 120	270 to 400 ${ }^{2,5}$	0 to 30	0 to 30	0 to 30	0 to 30		$1,500$
		HA-40MP ${ }^{6}$	0.5 to 1.0	25	5	15	2	70 to 120	$\mathrm{V}_{\mathrm{H}}+300^{2}$	0 to 30	0 to 30	0 to 30	$-50 \text { to } 50$	HUGGINS 104 (MPE TA-40)	$1,500$
	PPM	HA-36 ${ }^{6}$	0.5 to 1.0	25	13	25	8	180 to 300	180 to 300*	.-.	-	0 to 175	$0{ }^{\circ}$		\$1,575
		HA-36 ${ }^{6}$	0.5 to 1.0	25	13	25	8	180 to 300	180 to 300°	-...	0 to 175	0^{9}	HUGGINS 203 (MPE 310)	1,575
		HA-36G ${ }^{6}$	0.8 to 1.2	30	10	25	6	180 to 260	180 to 260*	0 to 175	09		1,575
	SOL			30	10	25	3.5	90 to 120	$\begin{aligned} & 240 \text { to } 300^{2,5} \\ & V_{H}+150^{2} \\ & 275^{2} \end{aligned}$	-	0 to 100	0 to 5		
		$\text { HA. } 7 \mathrm{E}^{6}$	$0.5 \text { to } 1.0$	30	10	25	3.5	90 to 160		-	50 to 100	0 to 5	ALFRED 507	950
			0.5 to 1.0			25		90 to 120		--..	0 to 100	0 to 5	HUGGINS 202 (MPE 307)	950
\geq	PPM	HA-50 ${ }^{8}$	0.5 to 1.0	30	30	25	65	400 to 500	400 to 500	-...	-...	0 to 500	0 to 200		\$2,500
	SOL	HA-8 ${ }^{6}$	0.5 to 1.0	30	30	25	60	400 to 500	400 to 500	\ldots	0 to 500	0 to 200		
		HA.8.1 ${ }^{6}$	$0.5 \text { to } 1.0$	30	33	30	70	400 to 600	400 to 600	0 to 500	0 to 200		1,650
			$0.5 \text { to } 1.0$	30	30	25	60	400 to 500	400 to 500	\ldots	0 to 500	0 to 200	HUGGINS 300 (MPE 308)	1,500

[^1]${ }^{6}$ Six to eight weeks delivery
${ }^{8}$ Eight to ten weeks delivery
All Huggins TWT's and BWO's can be supplied to meet MIL-E-5400, Class II environmental specifications.

THE INDUSTRY'S broadest line

L-BAND

TRAVELING WAVE TUBES

	Focus	Type	Frequency (Gc)	Min S-S Gain (db)	$\begin{aligned} & \text { Min } \\ & \text { Sat } \\ & \mathbf{P}_{\text {out }} \\ & \text { (dbm) } \end{aligned}$	Max Noise Fig (db)	$\begin{aligned} & \operatorname{Max} \\ & I_{K} \\ & \text { (ma) } \end{aligned}$	Electrode Voltages, vde						Comments	Unit Price
								Helix	Collector	Anode 1	Anode 2	Anode 3	Grid		
	PPM	$\begin{aligned} & H A-54^{8} \\ & H A-54 C^{8} \end{aligned}$	$\begin{aligned} & 2.0 \text { to } 4.0 \\ & 2.0 \text { to } 4.0 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 15 \\ & 17 \end{aligned}$	$\begin{gathered} 2 \\ 2.5 \end{gathered}$	$\begin{aligned} & 400 \text { to } 500 \\ & 425 \text { to } 550 \end{aligned}$	600 to 800^{2} 600 to $800^{2,5}$	$\begin{aligned} & 0 \text { to } 75 \\ & 0 \text { to } 50 \end{aligned}$	$\begin{gathered} 0 \text { to } 50 \\ 20 \text { to } 100 \end{gathered}$	$\begin{array}{r} 0 \text { to } 200 \\ 75 \text { to } 125 \end{array}$	$\begin{aligned} & -200 \text { to } 0 \\ & -150 \text { to }-50 \end{aligned}$	Environmental Spec	$\begin{array}{r} \$ 2,500 \\ 2,650 \end{array}$
	SOL	HA-89 ${ }^{8}$ HA-89D ${ }^{8}$ HA-89E ${ }^{8}$ HA-62 ${ }^{6,7}$ HA-62F ${ }^{6}$ HA-62E ${ }^{6}$ HA-37 ${ }^{6,7}$ HA-37 ${ }^{6}$ HA-114 HA-11C4	2.0 to 4.0 2.0 to 4.0 2.7 to 3.5 2.0 to 4.0 2.0 to 4.0 2.7 to 2.95 2.3 to 4.4 2.3 to 4.4 2.0 to 4.0 2.0 to 4.0	$\begin{aligned} & 25 \\ & 25 \\ & 20 \\ & 25 \\ & 25 \\ & 25 \\ & 35 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 0 \\ 7 \\ 7 \\ 0 \\ 5 \\ 5 \\ 5 \\ 5 \end{array}$	$\begin{gathered} 8 \\ 8 \\ 7 \\ 70 \\ 10 \\ 10 \\ 6.5 \\ 10 \\ 10 \\ 15 \\ 15 \end{gathered}$	$\begin{gathered} 2 \\ 2 \\ 1.6 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 2 \end{gathered}$	375 to 450 375 to 450 350 to 500 385 to 500 385 to 500 385 to 500 375 to 475 375 to 475 375 to 475 385 to 500	$V_{\mathrm{H}}+450^{2}$ 800^{2} 500^{2} 385 to 700^{2} 385 to 700^{2} $V_{H}+250^{2}$ 375 to 700^{2} 375 to 700^{2} 375 to 475^{2} $V_{H}+250^{2}$	$\begin{aligned} & 0 \text { to } 75 \\ & 0 \text { to } 50 \end{aligned}$	$\begin{aligned} & 0 \text { to } 100 \\ & 0 \text { to } 100 \\ & 0 \text { to } 150 \\ & 0 \text { to } 150 \\ & 0 \text { to } 150 \\ & 0 \text { to } 100 \\ & 0 \text { to } 80 \\ & 0 \text { to } 80 \\ & 0 \text { to } 80 \\ & 0 \text { to } 100 \end{aligned}$	0 to 150	-75 to 0 -75 to 0 -40 to 0 -75 to 0 -75 to 0 -75 to 0 -50 -50 to 0 -50 to 0 -75 to 0	HUGGINS 114 (MPE TA-89) HUGGINS 115 (MPE TA-62) HUGGINS 119 (MPE TA-37) HUGGINS 117 (MPE TA-74)	$\begin{array}{r} \$ 2,250 \\ 2,000 \\ 2,350 \\ 2,000 \\ 2,000 \\ 2,500 \\ 2,500 \\ 2,500 \\ 1,500 \\ 1,500 \end{array}$
	PPM	HA-29 ${ }^{\circ}$ HA-29.1 ${ }^{6}$ HA-29AF ${ }^{6}$ HA-29A ${ }^{6}$ HA-29- 2^{6} HA-29-3 ${ }^{6}$ HA-29AD ${ }^{6}$ HA-29S ${ }^{6}$	2.0 to 4.0 2.3 to 2.7 2.5 to 3.5 3.0 to 5.0	$\begin{aligned} & 30 \\ & 40 \\ & 40 \\ & 30 \\ & 35 \\ & 30 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & 17 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 24 \\ & 25 \\ & 30 \\ & 20 \\ & 30 \\ & 30 \end{aligned}$	4 4 5 4 5 4 5 4	400 to 525 400 to 525 550 to 700 400 to 525 550 to 700 400 to 525 550 to 700 550 to 700	400 to 525^{2} 400 to 525^{2} 550 to 700^{2} 400 to 525^{2} 700^{2} 400 to 525^{*} 700^{2} 550 to 700^{2}			$\begin{array}{r} 0 \text { to } 350 \\ 0 \text { to } 350 \\ 150 \text { to } 350 \\ 0 \text { to } 350 \\ 135 \text { to } 235 \\ 0 \text { to } 350 \\ 135 \text { to } 235 \\ 0 \text { to } 350 \end{array}$	$\begin{array}{r} 0^{9} \\ 0^{9} \\ 0^{9} \\ 0^{9} \\ 0^{9} \\ -20 \text { to } \\ -2 \\ 0^{9} \\ 0^{9} \end{array}$	Environmental Spec HUGGINS 210 (MPE 510)	$\begin{array}{r} \$ 1,000 \\ 1,200 \\ 1,200 \\ 1,000 \\ 1,100 \\ 1,000 \\ 1,200 \\ 1,200 \end{array}$
	SOL	HA-14 HA-1D ${ }^{6}$ HA-1 HP ${ }^{4}$ HA-1 MP4 ${ }^{4}$	$\begin{aligned} & 2.0 \text { to } 4.0 \\ & 2.0 \text { to } 4.0 \\ & 2.0 \text { to } 4.0 \\ & 2.0 \text { to } 4.0 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 3.5 \\ 3.5 \\ 4 \\ 3.5 \end{gathered}$	400 to 525 400 to 500 400 to 525 400 to 525	400 to 525^{2} 400 to 500^{2} 400 to 525^{2} 400 to 525^{2}	\ldots. \cdots \cdots ..	\ldots	$\begin{array}{r} 0 \text { to } 350 \\ 170 \text { to } 390 \\ 150 \text { to } 350 \\ 0 \text { to } 350 \end{array}$	$\begin{aligned} & 0^{9} \\ & 0^{9} \\ & 0^{9} \\ & 0^{9} \end{aligned}$	ALFRED 501 HUGGINS 209 (MPE 501)	$\begin{array}{r} \$ 750 \\ 750 \\ 750 \\ 750 \end{array}$
	PPM	HA-304 HA-30-14 HA-30AA ${ }^{4}$ HA-30-2 ${ }^{4}$ HA-30A ${ }^{6}$ HA-30M ${ }^{4}$ HA-30P4 HA-30C 4	2.0 to 4.0 1.84 to 3.84 2.55 to 2.70 2.9 to 3.1	$\begin{aligned} & 30 \\ & 40 \\ & 35 \\ & 35 \\ & 30 \\ & 30 \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 33 \\ & 30 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 20 \\ & 25 \\ & 25 \\ & 30 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 20 \\ & 25 \\ & 25 \end{aligned}$	800 to 1100	800 to 1100 800 to 1100 800 to 1100° 600 800 to 1100 800 to 1100 800 to 1100 800 to 1100			0 to 450 250 to 450 0 to 450 0 to 450	$\begin{aligned} & 0^{9} \\ & 0^{9} \\ & 0^{9} \\ & 0^{9} \\ & 0^{9} \\ & 0^{9} \\ & 0^{9} \\ & 0^{9} \end{aligned}$	HUGGINS 304D Conduction Cooled HUGGINS 304 (MPE 512) Environmental Spec	$\begin{array}{r} \$ 1,350 \\ 1,450 \\ 1,350 \\ 1,450 \\ 1,350 \\ 1,525 \\ 1,350 \\ 1,350 \end{array}$
岸	SOL	HA- 2^{4} HA-2L4 HA-2D HA-2E4 HA-2F4 HA-2G4 HA-2HP4 HA-2HPA ${ }^{4}$	$\begin{aligned} & 2.0 \text { to } 4.0 \\ & 2.0 \text { to } 4.0 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & \mathbf{2 5} \\ & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 20 \\ & 20 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	800 to 1100 800 to 1100 800 to 1100 800 to 1000 800 to 1100 800 to 1100 800 to 1100 800 to 1100	800 to 1100 800 to 1100 800 to 1100 800 to 1000 800 to 1100 800 to 1100 $\mathrm{V}_{\mathrm{H}}+150$ $V_{H}+150$	\ldots \ldots \ldots \ldots \ldots \ldots \ldots	\ldots. \ldots. \ldots. \ldots. \ldots. \ldots	0 to 450 0 to 450 225 to 435 225 to 435 0 to 450 0 to 450 200 to 450 200 to 450	$\begin{aligned} & 0^{9} \\ & 0^{9} \\ & 0^{9} \\ & \ldots \\ & 0^{9} \end{aligned}$	ALFRED 502 ALFRED 502A HUGGINS 303 (MPE 502) HUGGINS 303, No grid	$\begin{array}{r} 850 \\ 850 \\ 850 \\ 850 \\ 850 \\ 850 \\ 850 \\ 850 \end{array}$
\sum	PPM (0.1 max dty cycle)	PA- 10^{8} PA-10C ${ }^{8}$ PA-6 ${ }^{4}$ PA-6E PA.6D ${ }^{4}$	2.0 to 4.0 2.0 to 4.0 2.0 to 4.0 2.0 to 4.0 2.3 to 2.7	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 37^{1} \\ & 37^{1} \\ & 30^{1} \\ & 30^{1} \\ & 33^{t} \end{aligned}$	$\begin{aligned} & 60^{I} \\ & 60^{1} \\ & 50^{I} \\ & 50^{I} \\ & 40^{1} \end{aligned}$	900 to 1100 900 to 1100 800 to 1000 800 to 1000 800 to 1000	900 to 1100 900 to 1100 800 to 1000 800 to 1000 800 to 1000		\ldots $\ldots .$. \ldots \ldots	$\begin{aligned} & 450 \text { to } 700^{3} \\ & 450 \text { to } 700^{3} \\ & 0 \text { to } 600 \\ & 0 \text { to } 600 \\ & 50 \text { to } 500 \end{aligned}$	$\begin{array}{r} 0 \text { to } 150^{3} \\ 0 \text { to } 150^{3} \\ 50 \text { to } 125^{3} \end{array}$	HUGGINS 404 (MPE 514) HUGGINS 307 (MPE 506)	$\begin{array}{r} \$, 500 \\ 2,500 \\ 1,575 \\ 1,575 \\ 1,675 \end{array}$
$\frac{\overline{2}}{\frac{\Sigma}{\mathbf{N}}}$	SOL $\mathbf{0 . 1}$ max dty cycle)	PA-3 ${ }^{4}$ PA. $3 \mathrm{C}^{4}$ PA-4 ${ }^{4}$ PA-4A ${ }^{4}$ PA-4MP4	$\begin{aligned} & 2.0 \text { to } 4.0 \\ & 2.0 \text { to } 4.0 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 33 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 40^{l} \\ & 40^{i} \\ & 30^{I} \\ & 30^{1} \\ & 30^{l} \end{aligned}$		$\begin{aligned} & 60^{1} \\ & 60^{1} \\ & 50^{1} \\ & 45^{1} \\ & 60^{1} \end{aligned}$	900 to 1100 900 to 1100 800 to 950 800 to 1000 800 to 1000	900 to 1100^{2} 900 to 1100^{2} 800 to 950^{2} 800 to 1000^{2} 800 to 1000^{2}			0 to 600^{3} 0 to 600^{3} 200 to 700 0 to 435 200 to 600	$\begin{aligned} & 0 \text { to } 150^{3} \\ & 0 \text { to } 150^{3} \\ & 0 \text { to } 150^{3} \end{aligned}$	HUGGINS 403 (MPE 503) ALFRED 512 HUGGINS 306 (MPE 504)	$\begin{array}{r} \$ 1,250 \\ 1,250 \\ 1,000 \\ 1,000 \\ 1,000 \end{array}$

[^2]${ }_{6}^{5}$ Fixed anywhere within range \quad Sold for replacement
${ }^{6}$ Six to eight weeks delivery $\quad{ }^{8}$ Eight to ten weeks delivery

[^3]All Huggins TWT's and BWO's can be supplied to meet MIL-E-5400, Class II environmental specifications.

THE INDUSTRY'S broadest line

TRAVELING WAVE TUBES

	Focus	Type	Frequency (Gc)	Min S-S Gain (db)	Min Sat ${ }^{\text {Pout }}$ (dbm)	Max Noise Fig (db)	$\begin{gathered} \operatorname{Max}_{1} \\ \mathbf{I}_{\mathrm{K}} \end{gathered}$	Electrode Voltages, vde						Comments	Unit Price
								Helix	Collector	Anode 1	Anode 2	Anode 3	Grid		
	PPM	$\begin{aligned} & \text { HA- } 60^{8} \\ & \text { HA } 60 D^{8} \end{aligned}$	$\begin{aligned} & 7.0 \text { to } 11.0 \\ & 7.0 \text { to } 11.0 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1050 \text { to } 1250 \\ & 1050 \text { to } 1250 \end{aligned}$	$\begin{aligned} & 1300^{2} \\ & 1300^{2} \end{aligned}$	$\begin{aligned} & 0 \text { to } 150 \\ & 0 \text { to } 150 \end{aligned}$	50 to 250 50 to 250	$\begin{aligned} & 150 \text { to } \mathbf{5 0 0} \\ & 150 \text { to } 500 \end{aligned}$	$\begin{aligned} & -100 \text { to } 0 \\ & -100 \text { to } 0 \end{aligned}$	HUGGINS 123 (MPE TA-60)	$\begin{array}{r} \$ 2,500 \\ 2,500 \end{array}$
	SOL	HA-23 ${ }^{\circ}$	8.2 to 12.4	25	5	10	2	1050 to 1250	1050 to 1250^{2}	0 to 100	0 to 150	0 to 500	-50 to 0		\$2,000
		HA-23T6	7.0 to 12.0	25	0	11	2	1050 to 1250	$\mathrm{V}_{\mathrm{H}}+300^{2}$	0 to 100	0 to 150	0 to 450	-50 to 0		2,250
		HA-23H ${ }^{6}$	8.0 to 11.0	25	5	10	2	1050 to 1250	1050 to 14502	0 to 100	0 to 150	0 to 450	-50 to 0	HUGGINS 125 (MPE TA-23)	2,000
		HA-23M ${ }^{\text {c }}$	8.0 to 12.0	25	0	10	2	1050 to 1250	$\mathrm{V}_{\mathrm{H}}+300^{2}$	0 to 100	0 to 150	0 to 500	-50 to 0		2,000
		HA-23AA ${ }^{6}$	8.5 to 9.5	25	0	8	2	1050 to 1250	1080 to 1500*	0 to 100	0 to 150	0 to 500	-50 to 0		2,000
		HA-61 ${ }^{6}$	7.0 to 14.0	25	0	15	2	1000 to 1300	1000 to 1500^{-}	0 to 150	0 to 150	0 to 500	-50 to 0		2,000
		HA-61A ${ }^{6}$	7.0 to 14.0	25	0	15	2	1000 to 1300	1000 to 1500^{2}	0 to 150	0 to 150	0 to 500	-50 to 0	HUGGINS 124 (MPE TA-61)	2,000
		HA-44 ${ }^{6}$	8.2 to 12.4	25	0	15	2	1050 to 1250	1050 to 1250^{2}	0 to 100	0 to 150	0 to 500	-50 to 0		1,500
		HA-44E ${ }^{\text {s }}$	8.2 to 12.4	25	3	15	1.5	1000 to 1300	1000 to 1300*	0 to 100	0 to 150	0 to 450	-50 to 0	HUGGINS 128 (MPE TA-44)	1,500
	PPM	HA-20 ${ }^{6}$	8.0 to 12.4	30	10	30	2.5	1100 to 1300	1100 to 1300^{2}	-.	\cdots	0 to 450	0^{3}		\$1,250
		HA-20-16	8.0 to 12.4	30	10	30	2.5	1100 to 1300	1100 to 1300^{2}	\ldots	0 to 450	0^{9}		1,250
		HA-20AU ${ }^{6}$	8.0 to 12.4	30	10	30	2.5	1100 to 1300	1100 to 1300^{2}	-...	0 to 450	00^{9}	HUGGINS 217 (MPE 702)	1,250
		HA-20BH ${ }^{6}$	7.0 to 10.0	30	10	27	2.5	1100 to 1300	1100 to 1300^{2}		\ldots	0 to 450	0^{9}		1,250
		HA-20BP ${ }^{6}$	7.0 to 11.0	33	10	30	3	1100 to 1300	1100 to 1300^{2}	--.	0 to 450	0^{9}		1,250
		HA-20AL ${ }^{\circ}$	7.5 to 11.0	30	10	25	2.5	1100 to 1350	1100 to 1850^{z}	\ldots	0 to 450	-15 to 0	\triangle S-S Gain $\pm 2 \mathrm{db}$	2,650
	SOL	HA-44	8.0 to 12.4	30	10	25	2.5	1100 to 1300	1100 to 1300^{2}	.-..	\cdots	0 to 450	0^{9}		\$ 850
		HA-4MP ${ }^{\text {d }}$	8.0 to 12.4	30	10	25	2	1100 to 1300	1100 to 1300^{2}	\ldots	0 to 450	$0{ }^{9}$	HUGGINS 215 (MPE 704)	850
		HA-4AE4	8.0 to 12.4	30	10	25	2.5	1100 to 1300	1100 to 1300^{2}	\ldots	180 to 435	$0{ }^{9}$	ALFRED 504, S/N 11 to 75	850
		HA-4D4	8.0 to 12.4	30	10	25	2.5	1100 to 1300	1100 to 1300^{2}	\ldots	\ldots	180 to 435	$0{ }^{9}$	ALFRED 504, S/N 76 and up	850
		HA-4AB ${ }^{\text {d }}$	7.0 to 12.4	35	10	25	2.5	1100 to 1300	1100 to 1300*	\ldots	0 to 450	$0{ }^{9}$		850
		HA-4AD ${ }^{\text {d }}$	7.0 to 12.4	30	13	30	3	1100 to 1300	1100 to 1300*	150 to 450	$0{ }^{9}$		950
		HA-4 HP^{4}	7.0 to 12.4	30	13	25	2	1100 to 1250	1100 to 1250^{2}	-...	0 to 450	0		850
		HA-4HPA ${ }^{4}$	7.0 to 12.4	30	13	25	2	1100 to 1250	1100 to 1250^{2}	0 to 450	0^{9}		850
	PPM	HA-21 ${ }^{6}$	8.0 to 11.0	33	27	35	20	2000 to 2400	2000 to 2400	...-	1000 to 2200	$0{ }^{9}$		\$2,500
		HA-21AH ${ }^{6}$	$\left\{\begin{array}{l} 8.0 \text { to } 11.0 \\ 8.0 \text { to } 10.0 \end{array}\right.$	$\begin{aligned} & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 27 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\left.\begin{array}{l} 20 \\ 20 \end{array}\right\}$	2000 to 2400	2000 to 2400	...	\ldots	1000 to 2200	$0{ }^{9}$	HUGGINS 315 (MPE 712)	2,500
		HA-21E ${ }^{6}$	8.0 to 12.0	30	27	40	20	2000 to 2400	2000 to 2400	-...	-...	0 to 2200	0^{9}		2,500
		HA-2116	7.5 to 11.2	30	27	40	20	2000 to 2400	2000 to 2400	\ldots	\ldots	0 to 2200	$0{ }^{9}$		2,800
		HA-21AA ${ }^{\text {a }}$	8.5 to 10.0	45^{5}	30^{5}	35	20	2100 to 2300	2100 to 2300	\ldots	1000 to 1500	0^{9}	Environmental Spec	2,700
		HA-71 ${ }^{8}$	8.0 to 12.4	25	20	30	8	2000 to 2300	2000 to 2300			0 to 800	0^{9}		1,600
		HA-71C ${ }^{8}$	8.0 to 12.4	25	20	30	8	2000 to 2300	2000 to 2300	-...	---	0 to 800	0^{9}	HUGGINS 319 (MPE 711)	1,600
	SOL	HA.9 ${ }^{6}$	8.0 to 11.0	33	27	35	20	2000 to 2400	2000 to 2400^{2}			1000 to 1800	0°		\$1,500
		HA-9E ${ }^{6}$	8.0 to 11.0	30	27	35	20	2000 to 2400	2000 to 2400^{2}	...	-...	0 to 1800	0^{9}	HUGGINS 314 (MPE 709)	1,500
		HA-9G ${ }^{6}$	8.0 to 11.0	30	27	35	20	1900 to 2400	1900 to $2400{ }^{2}$	0 to 2350	0^{9}	ALFRED 509	1,500
		HA-9P6	7.0 to 11.0	30	27	35	20	2000 to 2400	2000 to 2400 ${ }^{2}$	-...	-...	0 to 1800	$0{ }^{9}$		1,700
		HA-9K ${ }^{6}$	7.4 to 8.5	30	30	35	20	1900 to 2400	1900 to $2400{ }^{2}$	\ldots	\ldots	0 to 2350	00^{9}		1,500
		HA-9L ${ }^{6}$	8.0 to 9.6	30	32	35	20	2000 to 2400	2000 to $2400{ }^{2}$	0 to 1800	0		1,500
		HA-10	8.0 to 12.4	25	20	30	8	2000 to 2300	2000 to 2300		-.	0 to 800	0^{9}		1,000
		HA-10D ${ }^{4}$	8.0 to 12.4	25	20	30	8	1900 to 2300	1900 to 2300	…	---	0 to 580	0^{9}	HUGGINS 318 (MPE 710)	1,000
		HA-10E ${ }^{4}$	8.0 to 12.4	24	20	30 30	8	1900 to 2300	1900 to 2300	.-.	\ldots	350 to 580	ALFRED 510	1,000
		HA-10M ${ }^{4}$	$\left\{\begin{array}{l}7.0 \text { to } 8.2\end{array}\right.$	20	20	30	8 8	1900 to 2400	1900 to 2400	--.	\ldots	0 to 700	0^{9}		1,000
			l 8.2 to 12.4	25	20	30	$8)$								
		HA-10C ${ }^{\text {a }}$	8.4 to 9.6	27	27	30	8	1900 to 2300	1900 to 2300	-..	350 to 580	-..		1,000

SOL
(0.1
max
duty
cycle)

THE INDUSTRY＇S broadest line

All Huggins TWT＇s and BWO＇s can be supplied to meet MIL－E－5400，Class II environmental specifications．

BACKWARD WAVE OSCILLATORS

Band	Focus	Type	Frequency （Gc）	Minimum Power Out （mw）	Maximum $\triangle P_{\text {our }}$ （db）	Maximum Spurious Output （db down）	$\begin{gathered} \text { Maximum } \\ \substack{\mathbf{I}_{\mathrm{k}} \\ (\mathrm{ma})} \end{gathered}$	Electrode Voltages，vdc				Comments	Unit Price
								Helix	Collector	Anode	Grid		
L	PM	H0－26	1.0 to 2.0	50	6	60	25	200 to 1500	200 to 1500	0 to 200	0	Under Development	\＄
	SOL	H0．96	1.0 to 2.0	10	8	40	25	200 to 2800	200 to 2800	40 to 200	＊＊		1，500
S	PM	H0．25	2.0 to 4.0	50	6	60	25	200 to 1500	200 to 1500	0 to 200	0	Under Development	\＄．．．．．．．．
	SOL	$\begin{aligned} & \mathrm{HO}-1^{4} \\ & \mathrm{HO}-18{ }^{4} \end{aligned}$	$\begin{aligned} & 2.0 \text { to } 4.0 \\ & 2.0 \text { to } 4.0 \end{aligned}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 200 \text { to } 3400 \\ & 200 \text { to } 3400 \end{aligned}$	$\begin{aligned} & 200 \text { to } 3400 \\ & 200 \text { to } 3400 \end{aligned}$	$\begin{aligned} & 0 \text { to } 300 \\ & 0 \text { to } 300 \end{aligned}$	$\begin{aligned} & \text { 氷如 } \\ & \text { * 等 } \end{aligned}$		$\begin{array}{r} 1,000 \\ 750 \end{array}$
C	PM	H0． 24	4.0 to 8.0	50	6	60	25	200 to 1500	200 to 1500	0 to 200	0	Under Development	\＄
	SOL	$\begin{aligned} & \text { HO-20 } \\ & \text { HO-3 } \\ & \text { HO-21 } \\ & \text { HO-13 } \end{aligned}$	$\begin{array}{r} 3.75 \text { to } 7.0 \\ 3.75 \text { to } 7.0 \\ 4.0 \text { to } 8.0 \\ 4.0 \text { to } 8.0 \end{array}$	$\begin{array}{r} 10 \\ 1 \\ 10 \\ 1 \end{array}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 350 \text { to } 2600 \\ & 350 \text { to } 2600 \\ & 240 \text { to } 2400 \\ & 240 \text { to } 2400 \end{aligned}$	$\begin{aligned} & 350 \text { to } 2600 \\ & 350 \text { to } 2600 \\ & 240 \text { to } 2400 \\ & 240 \text { to } 2400 \end{aligned}$	$\begin{array}{r} 40 \text { to } 300 \\ 0 \text { to } 300 \\ 40 \text { to } 300 \\ 40 \text { to } 300 \end{array}$	$\begin{aligned} & \text { ** } \\ & \text { ** } \\ & * * \\ & * * \end{aligned}$		$\begin{array}{r} \$ 1,000 \\ 750 \\ 1,000 \\ 750 \\ \hline \end{array}$
X	PM	H0－23 ${ }^{\circ}$	$\begin{aligned} & 7.0 \text { to } 11.0 \\ & 8.2 \text { to } 12.4 \end{aligned}$	50	4	60	16	350 to 2000	350 to 2000	0 to 350	0	Insulated Collector Available	\＄1，300
	SOL	$\begin{aligned} & \text { HO-174 } \\ & \text { HO-2 } \\ & \text { HO-14 } \end{aligned}$	7.0 to 11.0 8.2 to 12.4 8.2 to 12.4	$\begin{array}{r} 1 \\ 10 \\ 1 \end{array}$	$\begin{aligned} & 6 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 350 \text { to } 2000 \\ & 350 \text { to } 2000 \\ & 350 \text { to } 2000 \end{aligned}$	$\begin{aligned} & 350 \text { to } 2000 \\ & 350 \text { to } 2000 \\ & 350 \text { to } 2000 \end{aligned}$	$\begin{array}{lll} 0 & \text { to } 300 \\ 0 & \text { to } 350 \\ 0 & \text { to } 350 \end{array}$	$\begin{aligned} & * * \\ & * * \\ & * * \\ & * * \end{aligned}$		$\begin{array}{r} 750 \\ 1,000 \\ 750 \end{array}$
Ku	SOL	$\begin{aligned} & \text { HO-196 } \\ & \text { HO.44 } \\ & \text { HO-4 } 4 \mathrm{HP}^{4} \end{aligned}$	$\begin{aligned} & 12.0 \text { to } 18.0 \\ & 12.4 \text { to } 18.0 \\ & \text { 12. } \text { to } 18.0 \end{aligned}$	$\begin{array}{r} 1 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 6 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 400 \text { to } 2200 \\ & 450 \text { to } 2200 \\ & 450 \text { to } 2300 \end{aligned}$	$\begin{aligned} & 400 \text { to } 2200 \\ & 450 \text { to } 2200 \\ & 450 \text { to } 2300^{2} \end{aligned}$	0 to 350 0 to 350 0 to 250	$\begin{aligned} & \text { \#* } \\ & \text { ** } \\ & \text { ** } \end{aligned}$		$\begin{aligned} & 1,250 \\ & 1,500 \\ & 1,500 \end{aligned}$

[^4]All Huggins TWT＇s and BWO＇s can be supplied to meet MIL－E－5400，Class II environmental specifications． TRAVELING WAVE TUBES

NOISE GENERATORS

Band	Focus	Type	Frequency (Gc)	Minimum S-S Gain (db)	Minimum Saturation Power Out (dbm)	Minimum Brdband Noise Out (dbm)	Maximum Cathode Current (ma)	Electrode Voltages, vdc				Comments	Unit Price
								Helix	Collector	Anode	Grid		
L	PPM	$\begin{aligned} & \text { HA-31R } R^{I, 6} \\ & \text { HA- } 31 \mathrm{P}^{6} \end{aligned}$	1.0 to 1.5 1.0 to 1.5	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	\ldots	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 180 \text { to } 250 \\ & 180 \text { to } 250 \end{aligned}$	$\begin{aligned} & 180 \text { to } 250^{2} \\ & 180 \text { to } 250^{2} \end{aligned}$	$\begin{aligned} & 0 \text { to } 180 \\ & 0 \text { to } 180 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	In cascade, broadband noise out is 0 dbm minimum	$\begin{array}{r} \$ 1,350 \\ 1,350 \end{array}$
		HA-53E ${ }^{6}$	1.0 to 1.5	30	33	-...	75	700 to 1000	1200	300 to 600	0 to 100	When cascaded with HA-31R and P, brdbnd noise is 33 dbm min	1,750
S	PPM	$\begin{aligned} & \text { HA- } 29 \mathrm{U}^{1,6} \\ & \text { HA- } 29 \mathrm{Y}^{6} \end{aligned}$	$\begin{aligned} & 2.0 \text { to } 4.0 \\ & 2.0 \text { to } 4.0 \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \end{aligned}$	10	-10	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 400 \text { to } 525 \\ & 400 \text { to } 525 \end{aligned}$	$\begin{aligned} & 400 \text { to } 525^{2} \\ & 400 \text { to } 525^{2} \end{aligned}$	$\begin{aligned} & 0 \text { to } 350 \\ & 0 \text { to } 350 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	In cascade, broadband noise out is 7 dbm minimum	$\begin{array}{r} \$ 1,000 \\ 1,000 \end{array}$
		$\begin{aligned} & \text { HA-29T }{ }^{1,6} \\ & \text { HA-30S } \end{aligned}$	2.0 to 3.6 2.2 to 3.6	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{array}{r} 7 \\ 30 \end{array}$	-5	$\begin{array}{r} 4 \\ 25 \end{array}$	$\begin{aligned} & 400 \text { to } 525 \\ & 800 \text { to } 1100 \end{aligned}$	$\begin{aligned} & 400 \text { to } 525^{2} \\ & 800 \text { to } 1100 \end{aligned}$	$\begin{aligned} & 0 \text { to } 350 \\ & 0 \text { to } 450 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	In cascade, broadband noise out is 30 dbm minimum	$\begin{aligned} & 1,000 \\ & 1,350 \end{aligned}$
C	SOL	HA-26L4	5.85 to 6.0	**	10	\% ${ }^{\text {\% }}$	3	650 to 800	650 to 800*	0 to 450	0	Operated with input terminated	\$900

SERRODYNE TUBES

Band	Focus	Type	Frequency (Gc)	Maximum S-S Gain (db)	Minimum Saturation Power Out (dbm)	Minimum Sideband Suppression at 150 Kc (db)	Maximum Cathode Current (ma)	Electrode Voltages, vdc				Unit Price
								Helix	Collector	Anode	Grid	
	PPM	HA-28.2 ${ }^{6}$	5.0 to 6.5	30	10	33	2.5	600 to 800	600 to $800{ }^{2}$	0 to 450	0	\$1,200
C	SOL	$\begin{aligned} & \text { HA-26-14 } \\ & \text { HA-4F4 } \end{aligned}$	$\begin{aligned} & 5.0 \text { to } 6.0 \\ & 7.5 \text { to } 8.5 \end{aligned}$	$\begin{aligned} & 25 \\ & 18 \end{aligned}$	$\begin{gathered} 10 \\ 9^{10} \\ \hline \end{gathered}$	$\begin{aligned} & 33 \\ & 33 \end{aligned}$	$\begin{gathered} 2.5 \\ 3 \end{gathered}$	$\begin{gathered} 600 \text { to } 800 \\ 1050 \text { to } 1275 \\ \hline \end{gathered}$	$\begin{gathered} 600 \text { to } 800^{2} \\ V_{H}+200^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \text { to } 450 \\ & 0 \text { to } 370 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} \$ 950 \\ 1,100 \\ \hline \end{array}$
	PPM	$\begin{aligned} & \text { HA-20BN }{ }^{6} \\ & \text { HA-20G } \end{aligned}$	$\begin{array}{r} 7.0 \text { to } 12.4 \\ 10.25 \text { to } 10.5 \end{array}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 33 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{array}{r} 1100 \text { to } 1300 \\ 900 \text { to } 1400 \end{array}$	$\begin{array}{r} 1100 \text { to } 1300^{2} \\ 900 \text { to } 1400^{2} \end{array}$	0 to 450 0 to 500	$\begin{gathered} 0 \\ -25 \text { to } 0 \end{gathered}$	$\begin{array}{r} \$ 1,400 \\ 1,350 \end{array}$
X	SOL	HA-4Y4 HA-4E HA-4G ${ }^{4}$	$\begin{array}{r} 9.0 \text { to } 10.0 \\ 9.0 \text { to } 10.2 \\ 10.0 \text { to } 10.5 \end{array}$	$\begin{aligned} & 30 \\ & 15 \\ & 18 \end{aligned}$	$\begin{array}{r} 10 \\ 7 \\ 3 \end{array}$	$\begin{aligned} & 20 \\ & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1050 \text { to } 1275 \\ & 900 \text { to } 1400 \\ & 900 \text { to } 1400 \end{aligned}$	$\begin{array}{r} 1050 \text { to } 1275^{2} \\ 900 \text { to } 1400^{2} \\ 900 \text { to } 1400^{2} \end{array}$	0 to 450 0 to 450 0 to 450	$\begin{gathered} 0 \\ -50 \text { to } 0 \\ -50 \text { to } 0 \end{gathered}$	$\begin{array}{r} \$ 1,100 \\ 1,100 \\ 1,100 \end{array}$

FREQUENCY MULTIPLIERS

Band	Focus	Type	Frequency, Gc		Min Conv Gain (db)	Minimum Saturation Power Out (dbm)	Max Noise Figure (db)	Max Cathode Current (ma)	Electrode Voltages, vdc					Unit Price
			Input	Output					Helix 1	Helix 2	Collector	Anode	Grid	
$\begin{aligned} & \text { UHF } \\ & \text { to } \\ & \mathrm{S} \end{aligned}$	SOL	HA-34 ${ }^{6}$ HA-34G ${ }^{6}$ HA-34GE ${ }^{6}$	$\begin{gathered} 0.4 \text { to } 1.0 \\ 0.289 \text { to } 0.309 \\ 0.45 \text { to } 0.5 \end{gathered}$	$\begin{aligned} & 2.0 \text { to } 4.0 \\ & 2.601 \text { to } 2.781 \\ & 2.7 \text { to } 3.0 \end{aligned}$	$\begin{array}{r} -10 \\ -20 \\ 10 \end{array}$	$\begin{array}{r} 3 \\ -10 \\ 3 \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 170 \text { to } 250 \\ & 170 \text { to } 250 \\ & 180 \text { to } 250 \end{aligned}$	400 to 550 400 to 550 450 to 550	400 to 550^{2} 400 to 550^{2} 400 to 550^{2}	0 to 200 0 to 200 0 to 200	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} \$ 1,250 \\ 1,400 \\ 1,250 \end{array}$
L-X	SOL	HA-16B ${ }^{6}$	1.7 to 1.92	8.5 to 9.6		0	30	25	800 to 1100	800 to 1100	0 to 550	\$1,000
S-C	PPM	HA-30L ${ }^{4}$	2.275	4.55		24	30	25	800 to 1100	-...	800 to 1100	0 to 450	\$1,350
S-X	SOL	HA-16 ${ }^{6}$	$1.76 \pm 10 \%$	$8.8 \pm 10 \%$	-10	3	30	25	850 to 1200	-...	850 to 1200	0 to 550	\$1,000
C-X	SOL	HA-6AH ${ }^{4}$	4.75	9.50	\cdots	$\begin{aligned} & 30 \text { at } 4.75 \mathrm{Gc} \\ & 23 \text { at } 9.5 \mathrm{Gc} \end{aligned}$	30	20	1200 to 1500	-..-	1200 to 1500	0 to 705	0	\$1,000

DISPERSIVE AMPLIFIERS (Voltage Tuned)

Band	Focus	Type	Frequency (Gc)	Small-Signal Gain (db)		$\begin{gathered} \text { Bandwidth } \\ 5 \mathrm{db} \text { Down } \\ \text { (\% of center f) } \end{gathered}$	Maximum Cathode Current (ma)	Electrode Voltages, vdc			Unit Price
				Swept Anode	Fixed Anode			Helix	Anode (Fixed)	Collector	
UHF		DA-3 ${ }^{8}$	0.5 to 1.0	$\left\{\begin{array}{l} 15 \text { at } 0.5 \mathrm{Gc} \\ 30 \text { at } 1.0 \mathrm{Gc} \end{array}\right.$	$\left.\begin{array}{r} 2 \text { at } 0.5 \mathrm{Gc} \\ 30 \text { at } 1.0 \mathrm{Gc} \end{array}\right\}$	15 to 20	1.5	450 to 1065	450 to 1065^{2}	0 to 450	\$1,350
L		DA-2 ${ }^{8}$	1.0 to 2.0	$\left\{\begin{array}{l} 15 \text { at } 1.0 \mathrm{Gc} \\ 33 \text { at } 2.0 \mathrm{Gc} \end{array}\right.$	$\left.\begin{array}{r}3 \text { at } 1.0 \mathrm{Gc} \\ 30 \text { at } 2.0 \mathrm{Gc}\end{array}\right\}$	15 to 20	. 75	330 to 1020	330 to 1065^{2}	0 to 330	1,350
S	SOL	DA-1 ${ }^{8}$	2.0 to 4.0	$\left\{\begin{array}{l} 22 \text { at } 2.0 \mathrm{Gc} \\ 28 \text { at } 4.0 \mathrm{Gc} \end{array}\right.$	$\left.\begin{array}{l} 10 \text { at } 2.0 \mathrm{Gc} \\ 28 \text { at } 4.0 \mathrm{Gc} \end{array}\right\}$	15 to 20	1.5	1110 to 2380	1110 to 1065^{2}	0 to 650	1,350
C		DA-4 4^{8}	4.0 to 8.0	$\left\{\begin{array}{l} 25 \text { at } 4.0 \mathrm{Gc} \\ 15 \text { at } 8.0 \mathrm{Gc} \end{array}\right.$	$\left.\begin{array}{l} 25 \text { at } 4.0 \mathrm{Gc} \\ 10 \text { at } 8.0 \mathrm{Gc} \end{array}\right\}$	15 to 20	1	1250 to 2500	1250 to 1065^{2}	0 to 300	1,350

BACKWARD WAVE AMPLIFIERS (Voltage Tuned)

HIGH VACUUM DIODES

HUGGINS LABORATORIES, INC.

SYSTEMS DIVISION

RESEARCH AND DEVELOPMENT

Huggins Systems Division R \& D section has been engaged in the research and development of microwave instrumentation and power supply design since 1955. Experience gained over the years has equipped this group to handle all engineering problems encountered in TWT packaging, power supply design, and low-power microwave work.

Close liaison between TWT and application engineers results in creative engineering with a sound approach to solving instrumentation and subsystems design problems. By combining both TWT manufacturing and packaging capabilities, Huggins Laboratories holds a unique position in the industry-a position that offers the customer obvious advantages in serving his microwave instrument requirements.

Through aggressive and progressive engineering, the $\mathrm{R} \& \mathrm{D}$ group has significantly advanced the state-of-the-art in developing extremely small TWT amplifier packages, nanosecond pulse generators, the industry's first 'portable" TWT amplifier, a modular plug-in approach to TWT packaging, and a completely new line of electronically swept oscillators which feature latest advances in modern circuitry.

Abilities and aptitudes of this group also include solid-state circuitry, microwave test instrumentation,
and nanosecond pulse generation. Further areas of interest are concerned with infrared instrumentation and its application to military and industrial systems, ferro-electric and ferro-magnetic bolometers, and high frequency transient detection.

PRODUCTION

The Systems Production Department is well equipped and staffed with personnel specially trained for producing small or large quantities. Whether producing Huggins' standard line of non-stop quality instruments or custom units, this organization displays a high degree of efficiency which is achieved with only years' of experience. Because the manufacturing team takes pride in the products it produces, each instrument receives interested personal attention from every individual involved with its manufacture.

Production of Huggins' microwave instruments depends on the efforts of experienced industrial and product engineering specialists, sheet-metal personnel, and wiring technicians. The methods of production are determined in terms of highest quality, minimum time, and minimum cost.

Should your requirements demand volume manufacturing or custom fabrication, Huggins' experience and proven ability is at your disposal.

ORDERING INFORMATION

ORDERING

Standard Units: Specify name of instrument, model number, and primary performance specifications.
Special Units: Instruments requiring electrical and mechanical modifications, custom design, and non-standard input power characteristics are being furnished. Military environmental specifications are also being met. Contact Huggins' Sales Department, or our representative in your area, to discuss your specific requirements.
Parts: When ordering replacement parts, specify instrument model and serial numbers, part designation on the drawing, and manufacturer's part number.
PRICES
F.O.B. Sunnyvale, California. Prices apply to small quantities only and are subject to change without notice.
TERMS
Net 30 days with approved credit.

DELIVERY

Normal delivery for instruments and solenoids in small quantities is 30 days and 4 weeks respectively. Consult Huggins' Sales Department for latest quotations.

SHIPMENT
Via motor freight unless otherwise requested. Units are packed to withstand rough handling.
SERVICE
Prompt technical service and assistance is readily available from factory-trained representatives and the manufacturer.

WARRANTY

All Huggins' instruments and solenoids are thoroughly tested and inspected prior to shipment. Instruments and solenoids are warranted for one year to be free from defects in material and workmanship. Microwave tubes are covered by the tube manufacturer's warranty.

SWEEP OSCILLATORS

A NEW LINE OF PM-FOCUSED ELECTRONICALLY SWEPT OSGILLATORS

Stable Reliable Operation

Built-in RF Power Leveling

CW or SWEEP Operation

Operator-Designed Control Panels

Designed for Easy Maintenance

Huggins completely new PM-focused Electronically Swept Microwave Oscillators provide a fast, convenient means of determining the wideband frequency response of microwave devices and systems. When used with reflectometers, for example, these oscillators reduce previously tedious VSWR measurements to a few seconds. In addition to directly measuring the transmission characteristics of filters, attenuators, ferrite devices, and amplifiers, Huggins Sweep Oscillators also prove valuable in ECM equipment design and broadband antenna development.

Seven standard models covering L through K-band are available. Each model in this series is a complete, selfcontained rugged unit that features attractive and functional design and a functionally grouped control panel. Maintenance procedures and problems have been minimized: solidstate low voltage circuitry reduces the number of vacuum components, internal voltage adjustments are readily accessible, and removal of only the top dust cover and RF shield permits full and easy access to all electronic components.

Further, Huggins Sweep Oscillators are versatility engineered: Power output is leveled to $\pm 0.75 \mathrm{db}$ (X-band and below) and is adjustable from 0 to rated power; both CW and swept frequency operation are provided, during which AM, pulse, internal square wave, and FM modulation can be applied; sweep width and rate are independently adjustable; the sweep may be operated recurrently, triggered manually, or triggered externally; sweep and blanking outputs are available; and four slide rule readouts indicate start, stop, and two marker frequencies.

Conversion kits consisting of a BWO, logarithmic attenuator, directional coupler, crystal, and dial plate are available to change the frequency coverage of any model. Units which operate over bandwidths other than those given can be supplied on request.

MODEL	6010	604D	6070	6120	6160	6180	619 D
Frequency, Gc	1.0 to 2.0	2.0 to 4.0	4.0 to 8.0	8.0 to 12.4	12.4 to 18.0	18.0 to 26.5	26.5 to 40.0
Minimum Power Out, mw	50	50	50	50	20	10	5
Power Out Level To, db	± 0.75	± 0.75	± 0.75	± 0.75	-...	--	--.
Peak Residual FM, Kc	$\begin{array}{r} 10 \text { at } 1.0 \mathrm{Gc} \\ 6 \text { at } 2.0 \mathrm{Gc} \end{array}$	$\begin{aligned} & 20 \text { at } 2.0 \mathrm{Gc} \\ & 12 \text { at } 4.0 \mathrm{Gc} \end{aligned}$	$\begin{aligned} & 40 \text { at } 4.0 \mathrm{Gc} \\ & 24 \text { at } 8.0 \mathrm{Gc} \end{aligned}$	$\begin{array}{r} 80 \text { at } 8.0 \mathrm{Gc} \\ 37.2 \text { at } 12.4 \mathrm{Gc} \end{array}$	$\begin{aligned} & 248 \text { at } 12.4 \mathrm{Gc} \\ & 108 \text { at } 18.0 \mathrm{Gc} \end{aligned}$	$\begin{aligned} & 360 \text { at } 18.0 \mathrm{Gc} \\ & 159 \text { at } 26.5 \mathrm{Gc} \end{aligned}$	$\begin{aligned} & 530 \text { at } 26.5 \mathrm{Gc} \\ & 240 \text { at } 40.0 \mathrm{Gc} \end{aligned}$
RF Output Connector	N Female	N Female	N Female	Waveguide UG-135/U	Waveguide UG-419/U	Waveguide UG-595/U	Waveguide UG-599/U
Unit Price	\$3,050	\$2,950	\$2,850	\$2,850	\$3,300	\$5,420	\$6,500

SWEEP OSCILLATORS

GENERAL SPECIFICATIONS

SWEEP MODE: Recurrent, manually triggered, and externally triggered. Sweep is continuously variable by two independently adjustable controls which determine the start and stop frequencies. Either control may be used to set the high or low frequency; thus, frequency either increases or decreases with time.
Sweep Width: Adjustable from 0 to 100% of operating bandwidth.
Sweep Rate: Continuously variable from 3 minutes to 0.001 seconds. Sweep Linearity: RF frequency vs sweep time is linear within 1%. Flyback: Less than 30 microseconds at any sweep rate.
External Sweep: DC coupled input; +12 volts gives 100% sweep; frequency increases.
Sweep Out: +12 v peak sawtooth (positive slope).
Blanking: 30 microseconds, -6 volt pulse.
Markers: Two calibrated markers, both adjustable over full frequency range of instrument.

FREQUENCY READOUT: Four slide rule dials accurate to 1% indicate start, stop, and two calibrated marker frequencies.

POWER OUTPUT: Adjustable from 0 to rated power.
RESIDUAL AM: At least 50 db below signal output.
PROTECTION: Main Power Fuse, High Votage Primary Fuse, Filament Fuse, and Filament Warmup.

CW MODE: Fixed frequency operation, continuously adjustable over full frequency range of instrument with either the Start, Stop, or two Marker controls.

MODULATION: Internal AM: Square wave, continuously variable between 800 and 1200 cps .
External AM: DC coupled Input-permits external programmed attenuation and application of modulating signals from DC to several megacycles; only on-to-off pulsing can be accomplished; at least -50 volts is required for full attenuation.

AC Coupled Input-permits pulsing from any output level to an on or off condition; 50 volts peak-to-peak superimposed on -25 volt bias gives 100% modulation; passband, 50 cps to several megacycles.
Internal FM: In CW Mode the fixed RF frequency can be swept from 0 to $\pm 5 \%$; modulating frequency cart be varied between 50 and 1000 cps . External FM: In either the CW or Sweep Mode the fixed RF frequency can be varied from 0 to $\pm 5 \%$; 12 volts peak-to-peak are required for $\pm 5 \%$ deviation; modulating frequencies from 50 cps to 10 Kc can be used.

INPUT POWER: $115 \mathrm{vac}, 50-60 \mathrm{cps}, 150$ watts.
MOUNTING: Easily attached adapters are provided for standard rack and slide mounting.

WEIGHT: Approximately 55 pounds.
SIZE: Models 601D, 604D, 607D; 6-15/16" $\times 16-3 / 8^{\prime \prime} \times 20-3 / 4^{\prime \prime}(H \times W \times D)$. Models 612D, $616 \mathrm{D}, 618 \mathrm{D}, 619 \mathrm{D} ; 8$-11/16" $\times 16-3 / 8^{\prime \prime} \times 20-3 / 4^{\prime \prime}(H \times W \times D)$

Solenoid models consist of two separate chassis units: one contains the high voltage supply and the other accommodates the TWT, solenoid, and solenoid supply. This configuration permits remote operation of the TWT at distances up to 100 feet.

The complete line of new low-noise amplifiers consists of units which are attractively and functionally designed. All operating controls and monitoring meters are located on operator-designed front panels. Adequate overload circuits are incorporated in the hybrid power supplies to prevent accidental damage. Such features as unitized mechanical construction, advanced electrical plug-in modules, conveniently located voltage adjustments and test points, and a twopiece dust cover permit a high degree of accessibility and contribute to easy maintenance.

From UHF to X-band, Huggins Laboratories offers a complete line of non-stop quality broadband low-noise TWT amplifiers with noise figures as low as 7 db . Both PPM and solenoid units are available. All models are inherently rugged and can be supplied to commercial or military specifications.

Stable, low-ripple power supplies minimize spurious modulation and degradation in TWT performance. The relatively high power output plus a low noise figure results in a maximum degree of linear operation which reduces the effects of intermodulation and cross-modulation when multisignal reception is experienced. When used as an input stage in a receiver, these amplifiers provide crystal burnout protection (most units will withstand 4.5 watts average incident power), substantially reduce local oscillator radiation, and directly increase receiver sensitivity.

GENERAL SPECIFICATIONS

Small-Signal Gain: 25 db minimum.
Spurious Modulation: 40 db minimum below signal.
Input, Output Connectors: Type N, female.
Input, Output Impedance: 50 ohms, 2:1 maximum VSWR.
Controls: Power On-Off; High Voltage On-Off, Helix Voltage Adjust.
Metering: Helix and Collector Voltages; Helix Current; Collector Current; Solenoid Current where applicable
Power Supply Regulation: $\pm 0.1 \%$ High Voltage; 1.0% DC Filament Voltage; 20 mv peak ripple.
Protection: Main Power Fuse; High Voltage Primary Fuse; Filament Fuse; Filament Warmup; Solenoid Primary Fuse, delayed removal of solenoid field, and Solenoid Thermal Overload where applicable.
Input Power: $115 \mathrm{vac}, 50-60 \mathrm{cps}, 800$ watts maximum.
Mounting: Easily attached adapters are provided for standard rack and slide mounting.
Size: PPM Units, $6.15 / 16^{\prime \prime} \times 16.3 / 8^{\prime \prime} \times 20-3 / 4^{\prime \prime}(H \times W \times D)$ Solenoid Units, $5 \cdot 3 / 16^{\prime \prime} \times 16-3 / 8^{\prime \prime} \times 20-3 / 4^{\prime \prime}(H \times W \times D)$ High Voltage Supply; $6-15 / 16^{\prime \prime} \times 16-3 / 8^{\prime \prime} \times 20-3 / 4^{\prime \prime}(H \times W \times D)$ Solenoid Supply

Focus	Model	Frequency (Gc)	Maximum Noise Figure (db)	Minimum S-S Gain (db)	Minimum Saturation Power Out (dbm)	Weight (lbs)		Unit Price
						TWT Supply	Solenoid Supply	
PPM	110 D	1.0 to 2.0	14	25	7	40	\ldots	\$3,980
	129 D	2.0 to 4.0	11	30	7	40	\ldots	4,430
	130 D	2.0 to 4.0	15	35	30	40		3,950
	140D	2.0 to 4.0	15	25	5	40	\cdots	3,980
	123 D	7.0 to 11.0	15	25	10	40	\ldots	3,980
	126 D	8.0 to 12.0	12	30	7	40	3,780
SOLENOID	101 D	0.5 to 1.0	7	25	3	35	65	\$4,830
	102D	0.5 to 1.0	8	25	3	35	65	4,580
	103D	0.5 to 1.0	10	25	5	35	65	3,780
	104 D	0.5 to 1.0	15	25	5	35	65	3,180
	106 D	1.0 to 2.0	7	25	5	35	65	4,830
	107D	1.0 to 2.0	8	25	3	35	65	4,580
	108D	1.0 to 2.0	10	25	3	35	65	3,780
	109 D	1.0 to 2.0	15	25	5	35	65	3,180
	112 D	1.6 to 2.6	15	25	3	35	65	3,180
	114 D	2.0 to 4.0	8	25	10	35	65	3,780
	115 D	2.0 to 4.0	10	25	7	35	65	3,780
	117 D	2.0 to 4.0	15	25	5	35	65	3,180
	119 D	2.3 to 4.4	10	25	5	35	65	4,280
	120 D	4.0 to 8.0	10	25	3	35	65	3,630
	121 D	4.0 to 8.0	15 15	25	5	35	65	3,180
	124 D	7.0 to 14.0 8.0 to 11.0	15 10	25 25	0	35 35	65	3,780
	128 D	8.2 to 12.4	15	25	5 3	35 35	65 65	3,530 3,180

Requirenents for small, lightweight broadband microwave amplifiers are met with this completely new line of Huggins Portable TWT Amplifiers. Advanced packaging techniques have produced rugged, attractive units which average a trim 28 pounds in weight and a compact $67 / 32^{\prime \prime} \times 8{ }^{1 / 21} \times 203^{\prime \prime}$ in size. Low power amplifiers are available in UHF through Ku -band and both intermediate power and low noise units are offered in L through X-band.

Designed for reliable operation in the field or on the bench, these portables are ideal for use in attenuation and antenna pattern measurements, buffer and augmenter applications, and ECM equipment design. All models are designed so that two units fit side-by-side for standard rack mounting, and the entire line exhibits the same easy maintenance features described on pages 16 and 17 .

Special power, gain, or bandwidth specifications can also be supplied, as can units which meet commercial or military specifications.

GENERAL SPECIFICATIONS

Input, Output Connectors: Type N, female
Input, Output Impedance: 50 ohms, 2:1 maximum VSWR.
Focusing: PPM
Modulation: Front panel BNC grid connector on 200 and 300 series for AM or pulse modulation-AM passband DC to 100 Kc . Front panel BNC helix connector for helix modulation.
Controls: Power On-Off; High Voltage On-Off; Helix and Grid Voltage Adjusts.
Metering: Helix Voltage; Helix Current; Collector Current.

Power Supply Regulation: $\pm 0.1 \%$ High Voltage; 2.0\% AC Filament Voltage (200 and 300 Series); 1.0% DC Filament Voltage (100 Series); 20 mv peak ripple (200 and 300 Series, DC filament units available on special request).
Protection: Helix Overload (except 100 and 200 Series); Main Power Fuse; High Voltage Primary Fuse; Filament Fuse; Filament Warmup.
Input Power: $115 \mathrm{vac}, 50-60 \mathrm{cps}, 300$ watts maximum.
Mounting: Easily attached adapters are provided for standard rack and slide mounting.
Size: $6-7 / 32^{\prime \prime} \times 8-1 / 2^{\prime \prime} \times 20-3 / 4^{\prime \prime}(H \times W \times D)$.

LOW NOISE

Model	Frequency (Gc)	Maximum Noise Figure (db)	Minimum S-S Gain (db)	Minimum Saturation Power Out (dbm)	Spurious Modulation [below signal] (db)	Approximate Weight (pounds)	Unit Price
1110	1.0 to 2.0	14	25	7	40	27	\$4,250
116 D	2.0 to 4.0	11	30	7	40	27	4,750
131D	2.0 to 4.0	15	35	30	35	27	3,950
118 D	2.0 to 4.0	15	30	10	40	27	3,750
122D	4.0 to 8.0	15	30	10	40	27	3,750
127D	7.0 to 11.0	15	25	10	40	27	4.250

LOW POWER

Model	Frequency (Gc)	Minimum S-S Gain (db)	Minimum Saturation Power Out (dbm)	Minimum Gain at Rated $\mathbf{P}_{\text {OUT }}$ (db)	Maximum Noise Figure (db)	Spurious Modulation [below signal] (db)	Minimum Grid On/Off Ratio	$\begin{aligned} & \text { Maximum } \\ & V_{2} \pi \\ & \text { (Helix Volts) } \end{aligned}$	Approximate Weight (pounds)	Unit Price
201D	0.25 to 0.5	20	17	15	25	40	20 db at 30 v	30	30	\$2,750
204D	0.5 to 1.0	25	13	15	25	35	30 db at -50 v	50	27	2,750
206D	1.0 to 2.0	30	13	20	25	35	30 db at -50 v	25	25	2,500
2110	2.0 to 4.0	30	10	20	25	35	30 db at -50 v	30	25	2,000
213D	4.0 to 8.0	30	10	20	30	35	30 db at -50 v	40	25	2,200
218D	8.0 to 12.4	30	10	23	30	35	30 db at -50 v	40	25	2,100
$225 \mathrm{D}^{1}$	12.4 to 18.0	30	10	35	30	35	30 db at -50 v	40	25	On Reqst

INTERMEDIATE POWER

Huggins non-stop quality line of Traveling Wave Tube Amplifiers embodies a conceptually-fresh approach to TWT packaging-an approach which exemplifies quality and technological achievement. Compact, versatile microwave units covering the frequency range of 250 mc to 18.0 Gc are offered in the standard line. Broadband small-signal gain is typically 30 db , and output powers up to 2 watts are available as standard units. All models can be supplied to commercial or military specifications.

The broadband frequency characteristic of the TWT results in non-tuned band coverage, faithful amplification of RF signals, minimum pulse distortion, and other desirable characteristics. Stable, low-ripple power supplies minimize spurious modulation and permit full realization of the TWT's capabilities.

GENERAL SPECIFICATIONS

Modulation: BNC front panel connector for grid modulation; AM passband DC to 100 Kc . BNC front panel connector for helix modulation. Input, Output Connectors: Type N, female.
Input, Output Impedance: 50 ohms, $2: 1$ maximum VSWR.
Spurious Modulation: 40 db minimum below signal on 200 Series; refer to Intermediate Power table for 300 Series specifications.
Controls: Power On-Off; High Voltage On-Off; Helix and Grid Voltage Adjusts. Metering: Helix Voltage; Helix Current; Collector Current.
Power Supply Regulation: $\pm 0.1 \%$ High Voltage; 2.0% AC Filament Voltage; 20 mv peak ripple (DC filament models available on special request).

Focus	Model	Frequency (Gc)	Minimum S-S Gain (db)	Minimum Saturation Power Out (dbm)	Minimum Gain at Rated $\mathbf{P}_{\text {OUT }}$ (db)	Maximum Noise Figure (db)	Spurious Modulation [below signal] (db)	Minimum Grid On/Off Ratio	$\begin{aligned} & \text { Maximum } \\ & V_{2} \pi \\ & \text { (Helix Volts) } \end{aligned}$	Approximate Weight (pounds)	Unit Price
	200D	0.25 to 0.5	20	17	15	25	40	20 db at 30 v	30	37	\$2,530
	203 D	0.5 to 1.0	25	13	15	25	40	30 db at -50 v	50	37	2,530
	205D	1.0 to 2.0	30	10	20	25	40	30 db at - 50 v	25	37	2,280
PPM	210 D	2.0 to 4.0	30	10	20	25	40	30 db at -50 v	30	37	1,880
	212D	4.0 to 8.0	30	10	20	30	40	30 db at - 50 v	40	37	2,030
	217 D	8.0 to 12.4	30	10	23	30	40	30 db at -50 v	40	40	1,780
	$220 \mathrm{D}^{1}$	12.4 to 18.0	30	10	25	30	35	30 db at -100 v	30	37	On Reqst
	202D	0.5 to 1.0	30	10	20	25	40	40 db at -60 v	25	55	\$1,680
	207 D	1.0 to 2.0	30	10	20	25	40	30 db at -50 v	25	60	1,555
	208 D	1.6 to 2.6	30	10	20	25	40	30 db at -50 v	40	60	1,780
SOLENOID	209D	2.0 to 4.0	30	10	20	25	40	30 db at -50 v	30	60	1,405
	214 D	4.0 to 8.0	30	10	20	25	40	30 db at -50 v	35	60	1,505
	216D	7.0 to 12.4	30	13	27	30	40	40 db at -50 v	40	60	1,780
	219D	12.4 to 16.0	25		15	30	40	30 db at -50 v	30	60	2,130

${ }^{1}$ UG-419/U Waveguide

All amplifiers have provisions for grid and helix modulation. Accidental damage protection is adequately provided by overload circuits which are incorporated in the power supplies. Helix and grid voltage controls and a monitoring meter are located on a functionally-grouped, operator-designed control panel.

Maintenance ease is designed into the complete line with such unique features as unitized mechanical construction, modular plug-in electrical assemblies (including the front panel), and conveniently located voltage adjustments and test points. Hybrid power supplies using vacuum and solidstate components are conservatively designed. Removal of only the top dust cover permits access to the entire internal assembly, and maintenance procedures can be easily performed with the instrument operating by using an interconnecting test harness.

Protection: Helix Overload (except 200 Series); Main Power Fuse; High Voltage Primary Power Fuse; Filament Fuse; Filament Warmup; Solenoid Primary Fuse, delayed removal of solenoid field, and solenoid thermal overload where applicable.
Input Power: $115 \mathrm{vac}, 50-60 \mathrm{cps}, 1000$ watts maximum.
Mounting: Easily attached adapters are provided for standard rack and slide mounting.
Size: PPM Units, $5.3 / 16^{\prime \prime} \times 16-3 / 8^{\prime \prime} \times 20-3 / 4^{\prime \prime}(H \times W \times D)$ Solenoid Units, 200 Series, $6-15 / 16^{\prime \prime} \times 16-3 / 8^{\prime \prime} \times 20-3 / 4^{\prime \prime}$ (HxWxD). 300 Series (except 321D, 322D), $6-15 / 16^{\prime \prime} \times 16-3 / 8^{\prime \prime} \times 20-3 / 4^{\prime \prime}$ ($\mathrm{H} \times W \times \mathrm{D}$). 321D and 322D, $8-11 / 16^{\prime \prime} \times 16-3 / 8^{\prime \prime} \times 20-3 / 4^{\prime \prime}$ (HxWxD)

INTERMEDIATE POWER TWT AMPLIFIERS

Focus	Model	Frequency (Gc)	Minimum S-S Gain (db)	Minimum Saturation Power Out (dbm)	Minimum Gain at Rated $\mathbf{P}_{\text {OUT }}$ (db)	Maximum Noise Figure (db)	Spurious Modulation [below signal] (db)	Minimum Grid On/Off Ratio	$\begin{aligned} & \text { Maximum } \\ & V_{2} \pi \\ & \text { (Helix Volts) } \end{aligned}$	Approximate Weight (pounds)	Unit Price
PPM	342D	0.5 to 1.0	30	30	30	25	40	30 db at 30 v		45	\$3,500
	324 D	1.0 to 2.0	30	30	27	30	40	15 db at 30 v		60	2,275
	130 D	2.0 to 4.0	35	30	30	15	35	20 db at 30 v	35	27	3,950
	304D	2.0 to 4.0	35	30	27	20	35	20 db at 30 v	35	37	2,280
	309 D	4.0 to 8.0	30	27^{3}	27	30	35	20 db at 30 v	60	37	2,780
	326 D	4.0 to 8.0	30	33	30	35	40	15 db at 30 v	100	37	3,530
	328 D	7.0 to 12.4	30	30	30	35	40	15 db at 30 v	100	37	2,930
	315 D	8.0 to 11.0	33	274	27	35	35	25 db at 30 v	100	37	2,880
	319 D	8.0 to 12.4	25	20	20	30	35	30 db at 30 v	75	37	2,730
	$337 \mathrm{D}^{\text {t }}$	12.4 to 18.0	30	30	30	35	40	15 db at 30 v	150	37	On Reqst
SOLENOID	300 D	0.5 to 1.0	30	30	30	25	40	30 db at 30 v	-...	60	\$2,880
	325D	1.0 to 2.0	30	33	27	30	40	15 db at 30 v	90	2,330
	302 D	1.6 to 2.6	30	30	27	25	40	10 db at 30 v		90	2,180
	303 D	2.0 to 4.0	30	30	30	25	40	20 db at 30 v	35	65	1,390
	308D	4.0 to 8.0	30	30	27	30	40	20 db at 30 v	60	85	2,330
	321 D	7.0 to 12.4	30	30^{5}	30	35	40	15 db at 30 v	100	90	2,930
	314 D	8.0 to 11.0	30	27	27	35	35	25 db at 30 v	100	85	2,930
	318 D	8.0 to 12.4	25	20	20	30	35	30 db at 20 v	75	85	2,155
	$322 \mathrm{D}^{1}$	$\ddagger 2.4$ to 18.0	30	30	30	35	40	15 db at 30 v	150	90	4,030

${ }^{1}$ UG-419/U Waveguide
${ }^{3} 30 \mathrm{dbm}, 4.5$ to 7.5 Gc
$430 \mathrm{dbm}, 8.0$ to 10.2 Gc
${ }^{5} 33 \mathrm{dbm}, 7.0$ to 11.0 Gc

The Huggins 806D and 807D variable power sources are ruggedly designed to operate most TWT and BWO focusing solenoids used in the field. Model 806D fulfills the need for an inexpensive unregulated supply which provides 0 to 105 vde at 0 to 7.0 amperes. The 807D, on the other hand, satisfies requirements for a constant current source that is adjustable from 60 to 105 vdc at 1.5 to 7.0 amperes.
GENERAL SPECIFICATIONS
Controls: Power On-Off, Voltage Adjust.
Metering: Output Current and Voltage.
Protection: Main Power Fuse; Thermal Overload provisions.
Output Connectors: Two sets; banana plugs, spade lugs.
Input Power: $115 \mathrm{vac}, 50-60 \mathrm{cps}, 850$ watts.
Size: $6.15 / 16^{\prime \prime} \times 16.3 / 8^{\prime \prime} \times 20.3 / 4^{\prime \prime}(H \times W \times D)$.

Model	806D	8070
Voltage	0 to 105 vdc	60 to 105 vdc
Current	0 to 7.0 amperes	1.5 to 7.0 amperes
Current Regulation	Unregulated	1% line or load
Ripple	0.5% peak-to-peak	0.5% peak-to-peak
Response		5 seconds maximum
Blower Supply	115 vac, $50-60 \mathrm{cps}$	115 vac, $50-60 \mathrm{cps}$
Weight	70 pounds	80 pounds
Unit Price	$\$ 380.00$	$\$ 480.00$

CONVECTION COOLED SOLENOIDS

Huggins solenoids are engineered to meet the exacting requirements encountered in focusing traveling-wave tubes and backward wave oscillators. These rugged units provide an exceptionally uniform field that is constant in strength to within 97% of the rated value.

Winding techniques which assure symmetrical and uniform turns are used to eliminate undesirable transverse field components. The added feature of double magnetic shielding minimizes solenoid field radiation and AC field penetration. To prevent damage from overheating, all standard units (except AS series) are equipped with a $200^{\circ} \mathrm{F}$ thermal switch rated at 2 amperes, 115 vac.

A spring-loaded button and 4 adjustment screw arrangement at both ends of the solenoid makes TWT focusing a simple operation. And once in focus, the TWT's position may be fixed by setting the adjustment locking screws.

Both convection and forced air cooled units are designed to meet most focusing requirements. The coil in convection cooled solenoids is encased in an epoxy resin to insure adequate heat conduction. On forced air cooled units, cooling air is supplied by an integrally mounted blower assembly, and a sufficient number of longitudinal openings through the windings permits air flow along at least one side of each layer.

Type	Field (Gauss)	Voltage	Current (Amperes)	Winding Length (Inches)	$\begin{gathered} A \\ \text { (Inches) } \end{gathered}$	$\begin{gathered} \text { B } \\ \text { (Inches) } \end{gathered}$	$\begin{gathered} c \\ \text { (Inches) } \end{gathered}$	Weight (Pounds)	Tube Type	Unit Price
AS-3	300	90 to 100	0.64	14	$33 / 8$	15-3/16	$11 / 8$	23	HA-1, HA-22	\$175
AS. 6	400	90 to 100	0.75	121/4	37/8	13-7/16	$11 / 8$	29	HA-4, HA-24, HA- 26	190
AS-7	400	90 to 100	0.66	11	37/8	12-3/16	11/8	24	HA-3, DA-4	185
AS. 10	500	90 to 100	1.35	16	$43 / 8$	17-3/16	$11 / 8$	52	HA-11	235
AS-19	250	90 to 100	0.48	15\%/8	33/4	17-1/16	11/8	26	DA-1, DA-2	175
AS-20	250	90 to 100	0.50	157/8	33/4	17-1/16	1.7/16	26	DA-3	175
AS. 21	500	90 to 100	1.10	14	$43 / 8$	15-3/16	11/8	45	HA. 34	235
AS-22	400	90 to 100	0.77	13	$33 / 8$	14.3/16	11/8	21	HA. 5	180
AS-25	300	90 to 100	0.66	14	$43 / 8$	151/4	$11 / 2$	36	HA. 7	190
AS-28 ${ }^{\text {P }}$	Shaped	80 to 110	$3.00{ }^{2}$	121/8	4-11/16 ${ }^{3}$	151/4	1/8	35	RCA 4036	400
AS.684	610	103 to 112	1.55	121/2	41/4	141/4	$11 / 2$	39	RCA 6861	400

FORCED AIR COOLED SOLENOIDS

Type	Field (Gauss)	Voltage	Current (Amperes)	Winding Length (Inches)	$\begin{gathered} \mathbf{G} \\ \text { (Inches) } \end{gathered}$	$\underset{\text { (Inches) }}{\mathrm{H}}$	$\underset{\text { (Inches) }}{\text { J }}$	$\underset{\text { (Inches) }}{\mathbf{K}}$	Weight (Pounds)	Tube Type	Unit Price
BS-3C	1000	90 to 100	4.10	$81 / 2$	41/4	$11^{1 / 4}$	$11 / 4$	$93 / 8$	26	$\begin{aligned} & \text { HO-2, но-4, НО-10, HO-11, } \\ & \text { HO-14, HO-17, HO-19 } \end{aligned}$	\$385
BS.4C	1000	90 to 100	4.90	11	41/4	$133 / 4$	$11 / 4$	$93 / 8$	31	$\begin{aligned} & \text { HA-10, HA-16, PA-3, PA-5, } \\ & \text { HO-13, HO-20, HO-21 } \end{aligned}$	385
BS.5C	760	90 to 100	4.30	$131 / 2$	$41 / 4$	161/4	$13 / 4$	$93 / 8$	43	BA-1, HO-1, НО-18	385
BS.9C	600	90 to 100	2.60	$12^{1 / 2}$	$41 / 4$	151/4	$11 / 4$	$93 / 8$	25	HA-2, HA-39, PA-4	385
BS-11C	1000	90 to 100	4.90	11	$41 / 4$	$133 / 8$	$11 / 4$	$93 / 8$	32	HA-9, PA-1	405
BS -26C	800	95 to 105	4.80	15	$41 / 4$	$173 / 4$	$11 / 2$	$93 / 8$	37	HA-40, HA-45, HA-72, HA-86	410
BS-27C	1000	90 to 100	6.50	14	$41 / 4$	$163 / 4$	$11 / 4$	$93 / 8$	36	HA-14, HA-17, HA-19, HA-23, HA-32, НА-33, HA-44, HA-47, HA-61, HA-73, HA-80	385
BA-29 ${ }^{1}$	600	90 to 100	2.50	$12^{1 / 2}$	41/4	141/8	$11 / 2$	N/A	32	RCA 6861	385
BS-31C	900	90 to 100	3.54	10	41/4	$121 / 2$	$11 / 4$	$93 / 8$	26	SECO BWOs	385
BS-39C	1000	90 to 105	7.00	$133 / 8$	$43 / 4$	$161 / 8$	$15 / 8$	11	48	WJ 211,212	475
BS -41C	750	90 to 100	3.60	14	$41 / 4$	161/8	$11 / 4$	$93 / 8$	38	HA-18	385
BS -43C	820	90 to 100	5.00	15	$41 / 4$	171/2	11/8	$93 / 8$	33	HA-72B	385
BS -44E	Shaped	90 to 100	$1.25{ }^{2}$	19	41/4	$213 / 4$	$11 / 4$	$93 / 8$	28	HA. 37	385
BA-45 ${ }^{1}$	1000	90 to 100	3.70	65/8	51/8	7.7/16	$13 / 4$	N/A	30	ITT F-6868, MEC M2404, M2405	300
BS -46C	560	90 to 100	2.50	15	41/4	$173 / 4$	$11 / 2$	$93 / 8$	37	HA. 8	385
BA-471	1200	90 to 100	4.80	$63 / 8$	43/4	71/4	$13 / 8$	N/A	23	MEC M2404, M2405	300
BS 49 C	1100	90 to 100	5.20	11	41/4	$133 / 4$	$11 / 4$	$93 / 8$	35	HA-6, PA-7	385
BS-53C	Shaped	90 to 100	0.80^{2}	14	41/4	$161 / 8$	11/4	$93 / 8$	27	HA-62	385
BS 67 C	Shaped	90 to 100	$1.15{ }^{2}$	14	$41 / 4$	$163 / 4$	$11 / 2$	$91 / 4$	26	HA. 89	405

NANOSECOND PULSE GENERATORS

USES

simulating scintillations for multiplier arrays
photosynthesis timingimpedance measurements
multiplier phototube testing
nanosecond response of photosensitive devices

- magnetic materials research

Here is a high level pulse generator which produces a 2 kilovolt pulse 2 to 20 nanoseconds wide with a half nanosecond rise and fall time. The Huggins 961D Pulse Generator may be used to excite a single nanosecond light source (such as the PEK 118) which requires no more than a 2 Kv pulse into 51 ohms. By using Huggins 961-T Splitting Transformers, this Pulse Generator will drive up to 64 nanosecond light sources which require a maximum 1 Kv pulse into 51 ohms.

When used with a nanosecond light source, the 961D can be used to simulate the scintillations from nuclear events or test the nanosecond response of photosensitive devices. The electrical pulse from the 961D is also used to measure the impedance of transmission lines. Further, the Model 961D Pulse Generator proves valuable in magnetic materials research.

GENERAL SPECIFICATIONS

Pulse Amplitude: Variable from 0 to 2000 volts with front panel control. Relative height given by front panel indicator which can be used to repeat pulse heights within 5% from a previous time.

Pulse Shape: Positive, $1 / 2$ nanosecond rise and fall time (from $10-90 \%$ of pulse amplitude), width variable from 2 to 20 nanoseconds by using different charging lines. Standard units are supplied with a 2 nanosecond pulse width. Please specify width desired.

Amplitude Pulse Jitter: 4\% maximum.

Pulse Repetition Rate: Line frequency ($50-60 \mathrm{cps}$); push button actuated "single" pulse operation.

Output: 51 ohms; Type N , female.

Trigger Puise Amplitude: 15 volts maximum at 2 Kv pulse output.

Trigger Pulse Shape: Positive leading edge, $1 / 2$ nanosecond rise time (from $10-90 \%$ of trigger pulse amplitude), 2 to 20 nanoseconds wide, 70% maximum overshoot.

Trigger Output: Type UHF, female.

Remote Operation: Pulse generating module may be easily removed from the instrument, 18 -inch cable provided.

Power Input: 961D; 115 vac, $50-60 \mathrm{cps}, 25$ watts. $961 \mathrm{DA} ; 220 \mathrm{vac}, 50-60 \mathrm{cps}, 25$ watts.

Size: $6-7 / 32^{\prime \prime} \times 8.1 / 2^{\prime \prime} \times 13-3 / 4^{\prime \prime}(H \times W \times D)$.
Weight: Approximately 30 pounds.

PRICES

Model 961D Generator: $\$ 900.00$
Model 961DA Pulse Generator: $\$ 950.00$
Charging Lines (other than 2 nanosecond): $\$ 25.00$
Model 961-T Splitting Transformer: $\$ 75.00$

CASCADE RESEARCH DIVISION

CAPABILITIES

RESEARCH AND DEVELOPMENT

Staffed with leading scientists and engineers, the R \& D section of the Cascade Research Division of Huggins Laboratories possesses a comprehensive understanding of the microwave and ferrite state-of-the-art.

Advanced thinking, engineering skills, precision workmanship, and modern equipment are blended to provide the customer with components and subassemblies for most microwave, radar, and communication equipment. This combination of talent, facilities, and matchless experience insures optimum performance in highly advanced, customengineered components and assemblies.

Technological capabilities of this group embrace microwave ferrite and solid-state components, attenuators, filters, mechanical phase shifters, windows, pressure adapters, transitions, varactors, dummy loads, waveguide subassemblies, and antennas.

ORDERING INFORMATION

[^5]
PRODUCTION

A fully integrated and proven manufacturing facility processes over 1000 different microwave and ferrite components in all frequency ranges from below 700 mc to above 70.0 Gc .

In-house capabilities cover every step in the production process . . . from raw materials through plating, brazing, and painting to final performance testing. Techniques and knowledge are backed by nearly 12 years of unparalleled experience to provide the fastest possible delivery of either large or small quantities.

Complimented by the excellent facilities of Huggins Laboratories, the Cascade Research Production Department is equally adept at delivering large quantity orders or special-ly-fabricated items on schedule. Close liaison between engineering and manufacturing staffs creates the ability to produce reliable microwave and ferrite components and subassemblies which are needed for today's and tomorrow's system requirements.

If your application demands the best microwave and ferrite components available, turn to the acknowledged leader ... Huggins Cascade Research Division.

DELIVERY

Many items can be delivered from stock. Maximum delivery on any standard unit is 30 days.
SHIPMENT
Via air freight unless requested otherwise.
SERVICE
Prompt technical service and assistance are readily available from factory-trained representatives and the manufacturer.

WARRANTY

All components manufactured by Huggins Cascade Research Division are thoroughly tested and inspected prior to shipment. Products are protected by the most liberal warranty available. All Huggins ferrite components are warranted for one full year to be free from defects in materials and workmanship.

UNILINE LOAD ISOLATORS

WAVEGUIDE

Huggins UNILINE Load Isolators provide isolation between source and load with negligible loss in transmitted power. These characteristics are particularly important in radar systems where it is impractical to use resistive attenuators to improve magnetron or klystron stability. In communication systems, UNILINE Isolators provide isolation for the microwave transmitter tubes by absorbing energy reflected into the transmission line by the antenna; thus, phase distortion problems are substantially reduced.

UNILINE Isolators also eliminate long line effects . . . permit smoother magnetron and klystron tuning . . . smooth out power variations with tuning . . . improve the frequency spectrum of the magnetron . . . eliminate frequency pulling . . . and protect and prolong magnetron or klystron life. Huggins provides complete coverage of all frequency bands in the microwave region with both low and high power level units.

COAXIAL

Huggins Coaxial Load Isolators combine small size and light weight with extremely broadband characteristics. Available at frequencies from 750 mc to 10.7 Gc , Huggins Coaxial Isolators are ideal for use where moderate isolation and low insertion loss are required.

Special Coaxial Isolators can be supplied to meet shock, vibration, and environmental military specifications. All Coaxial Isolators can be supplied with magnetic shielding, internal DC blocks, dummy loads, signal samplers, power monitors, and bias injectors.

UNILINE LOAD ISOLATORS

LOW POWER

	Band	Model	Frequency (Gc)	Peak Power (Kw)	Average Power (watts)	Band Edge Isolation (db)	Peak Isolation (db)	Maximum Insertion Loss (db)	Maximum Input VSWR	Guide Size	Type ${ }^{2}$	Length (inches)	Approximate Weight (ibs-az)	Unit Price
$\begin{aligned} & \text { 山 } \\ & \text { 를 } \\ & \text { 3 } \\ & 3 \end{aligned}$	S	S-13-1	2.8 to 3.2	50	50	22	25	1.0	1.15	RG-48/U	T	8.00	12.0	\$ 450
	C	$\begin{aligned} & \text { G-12.4 } \\ & \text { J-12-65 } \\ & \text { J-12-70 } \end{aligned}$	$\begin{aligned} & 3.95 \text { to } 5.85 \\ & 5.85 \text { to } 8.2 \\ & 5.85 \text { to } 8.2 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.15 \\ & 1.15 \end{aligned}$	RG.49/U RG-50/U RG-50/U	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & 8.00 \\ & 8.00 \\ & 8.00 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.6 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 295 \\ & 240 \\ & 225 \end{aligned}$
	X	$\begin{aligned} & \mathrm{XL}-12-7 \\ & \mathrm{XL}-12-10 \\ & \mathrm{X}-12-25 \\ & \mathrm{X}-12-29 \end{aligned}$	$\begin{aligned} & 7.0 \text { to } 10.0 \\ & 7.0 \text { to } 10.0 \\ & 8.2 \text { to } 12.4 \\ & 8.2 \text { to } 12.4 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & \text { RG-51/U } \\ & \text { RG-51/U } \\ & \text { RG-52/U } \\ & \text { RG-52/U } \end{aligned}$	$\begin{aligned} & T \\ & T \\ & T \\ & T \end{aligned}$	$\begin{aligned} & 7.00 \\ & 7.00 \\ & 9.00 \\ & 9.00 \end{aligned}$	$\begin{aligned} & 4-5 \\ & 4-6 \\ & 4-13 \\ & 4-13 \end{aligned}$	$\begin{aligned} & 225 \\ & 195 \\ & 195 \\ & 175 \end{aligned}$
	K	$\begin{aligned} & \mathrm{KU} \cdot 14-3 \mathrm{~L} \\ & \mathrm{~K}-13-5 \mathrm{~L} \\ & \mathrm{~K}-13 \cdot 1 \mathrm{~L} \\ & \mathrm{~K}-23-25 \\ & \mathrm{KA}-13 \cdot 1 \mathrm{~L} \end{aligned}$	12.4 to 18.0 23.0 to 25.0 23.0 to 25.0 23.0 to 25.0 34.0 to 36.0	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 1 \\ 10 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 1 \\ 10 \end{array}$	$\begin{aligned} & 13 \\ & 17 \\ & 10 \\ & 13 \\ & 17 \end{aligned}$	$\begin{aligned} & 18 \\ & 30 \\ & 15 \\ & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.30 \\ & 1.30 \\ & 1.30 \\ & 1.25 \end{aligned}$	RG.91/U RG.53/U RG-53/U RG-53/U RG-96/U	$\begin{aligned} & T \\ & T \\ & T \\ & T \\ & T \end{aligned}$	$\begin{aligned} & 4.50 \\ & 1.75 \\ & 1.56 \\ & 2.63 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 0.12 \\ & 0.8 \\ & 0.6 \\ & 1-3 \end{aligned}$	$\begin{aligned} & 195 \\ & 395 \\ & 395 \\ & 495 \\ & 395 \end{aligned}$
छ88	UHF	CN-12.74	0.75 to 1.0	10	10	10	15 to 30	1.0	1.30	Type N	c	10.00	3.0	\$ 245
	L	$\begin{aligned} & \mathrm{CN}-12.62 \\ & \mathrm{CN}-12.70 \end{aligned}$	$\begin{aligned} & 1.0 \text { to } 2.0 \\ & 1.2 \text { to } 2.6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \text { to } 30 \\ & 15 \text { to } 30 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.30 \end{aligned}$	Type N Type N	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{array}{r} 10.00 \\ 9.00 \end{array}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 245 \\ & 245 \end{aligned}$
	S	$\begin{aligned} & \mathrm{CN}-12.67 \\ & \mathrm{CN}-12.79 \end{aligned}$	$\begin{aligned} & 2.0 \text { to } 4.0 \\ & 3.5 \text { to } 5.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \text { to } 30 \\ & 15 \text { to } 30 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.30 \end{aligned}$	Type N Type N	$\begin{aligned} & \mathrm{C} \\ & \mathrm{c} \end{aligned}$	$\begin{aligned} & 6.125 \\ & 5.50 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 195 \\ & 195 \end{aligned}$
	C	CN-12.77	4.0 to 8.0	10	10	10	15 to 30	1.0	1.30	Type N	c	6.625	1.8	195
	X	CN-12-68	7.0 to 10.7	10	10	10	15 to 30	1.0	1.30	Type N	c	6.625	1.8	245

COMMUNICATIONS

	Band	Model	Frequency (Gc)	Peak Power (Kw)	Average Power (watts)	Band Edge Isolation (db)	Peak Isolation (db)	Maximum Insertion Loss (db)	Maximum Input VSWR	Guide Size	Type ${ }^{2}$	Length (inches)	Approximate Weight (lbs-0z)	Unit Price
	C	$\begin{aligned} & J .12 .50 A \\ & J .12 .51 A \\ & J .12 .52 A \\ & J .12 .53 A \end{aligned}$	$\begin{aligned} & 5.925 \text { to } 6.425 \\ & 6.575 \text { to } 6.875 \\ & 6.825 \text { to } 7.125 \\ & 7.125 \text { to } 7.65 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & \text { RG. } 50 / \mathrm{U} \\ & \text { RG. } 50 / \mathrm{U} \\ & \text { RG.50/U } \\ & \text { RG-50/U } \end{aligned}$	$\begin{aligned} & T \\ & T \\ & T \end{aligned}$	$\begin{aligned} & 5.00 \\ & 5.00 \\ & 5.00 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 1-11 \\ & 1-11 \\ & 1.11 \\ & 1-11 \end{aligned}$	$\begin{array}{r} 150 \\ 150 \\ 150 \\ 150 \end{array}$
	X	$\begin{aligned} & \mathrm{XL} \cdot 12-32 \\ & \mathrm{XL} \cdot 12 \cdot 34 \\ & \mathrm{XL} \cdot 12-35 \\ & \mathrm{XL} \cdot 12 \cdot 33 \end{aligned}$	$\begin{aligned} & 7.125 \text { to } 7.8 \\ & 7.125 \text { to } 7.8 \\ & 7.8 \text { to } 8.5 \\ & 7.8 \text { to } 8.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 60 \\ & 20 \\ & 60 \\ & 20 \end{aligned}$	$\begin{gathered} \cdots \\ \cdots \\ \cdots \\ \hline . . \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.5 \\ & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & \text { RG-51/U } \\ & \text { RG-51/U } \\ & \text { RG. } 51 / \mathrm{U} \\ & \text { RG. } 51 / \mathrm{U} \end{aligned}$	$\begin{aligned} & T \\ & T \\ & T \end{aligned}$	$\begin{aligned} & 5.00 \\ & 5.00 \\ & 5.00 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 195 \\ & 175 \\ & 195 \\ & 175 \end{aligned}$
	M	$\begin{aligned} & M-12-1 \\ & M \cdot 12 \cdot 2 \end{aligned}$	$\begin{aligned} & 10.5 \text { to } 11.7 \\ & 11.7 \text { to } 13.2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	\cdots	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \end{aligned}$	WR-75 WR-75	$\begin{aligned} & T \\ & T \end{aligned}$	$\begin{aligned} & 3.00 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \end{aligned}$

HIGH POWER

	Band	Model	Frequency (Gc)	Peak Power (Kw)	Average Power (watts)	Band Edge Isolation (db)	Peak Isolation (db)	Maximum Insertion Loss (db)	Maximum Input VSWR	Guide Size	Type ${ }^{2}$	Length (inches)	Approximate Weight (lbs-oz)	Unit Price
	S	$\begin{aligned} & \text { SL-17-2 } \\ & \text { S-17-1 } \\ & \text { S-15-1 } \end{aligned}$	2.4 to 2.5 2.7 to 2.9 2.7 to 2.9	$\begin{aligned} & 1000 \\ & 5000^{*} \\ & 750 \end{aligned}$	$\begin{array}{r} 5000 \\ 4000 \\ 750 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.20 \\ & 1.10 \\ & 1.15 \end{aligned}$	$\begin{aligned} & \text { RG-104/U } \\ & \text { RG-48/U } \\ & \text { RG-48/U } \end{aligned}$	$\begin{aligned} & T \\ & T \\ & T \end{aligned}$	$\begin{array}{r} 13.80 \\ 12.00 \\ 8.00 \end{array}$	$\begin{array}{r} 20.0 \\ 13.0 \end{array}$	$\begin{array}{r} \$ 1,250 \\ 950 \\ 550 \end{array}$
	C	$\begin{aligned} & \text { G-19-1 } \\ & \text { G-16-1 } \\ & \text { G-15-3 } \end{aligned}$	$\begin{aligned} & 5.4 \text { to } 5.9 \\ & 5.4 \text { to } 5.9 \\ & 5.4 \text { to } 5.9 \end{aligned}$	$\begin{gathered} 3300 \\ 1000 \\ 300 \end{gathered}$	$\begin{array}{r} 5500 \\ 1000 \\ 300 \end{array}$	$\begin{array}{r} 8 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 8 \\ 12 \\ 20 \end{array}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.15 \\ & 1.15 \end{aligned}$	RG-49/U RG-49/U RG-49/U	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$	$\begin{array}{r} 11.00 \\ 12.00 \\ 5.00 \end{array}$	$\begin{array}{r} 14.0 \\ 13.9 \\ 3.8 \end{array}$	$\begin{aligned} & 845 \\ & 415 \\ & 275 \end{aligned}$
	X	$\begin{aligned} & \mathrm{XL}-12 \cdot 6 \\ & \mathrm{XL}-15 \cdot 7 \\ & \mathrm{XL}-15-10 \\ & \mathrm{X}-12.1 \\ & \mathrm{X}-12 \cdot 0 \\ & \mathrm{X} \cdot 12.6 \\ & \mathrm{X}-12.5 \\ & \mathrm{X}-14 \cdot 6 \\ & \mathrm{X}-12.7 \end{aligned}$	7.5 to 8.5 8.5 to 8.6 8.6 to 9.4 8.2 to 12.4 8.2 to 12.4 8.5 to 9.6 8.5 to 9.6 8.5 to 10.2 8.9 to 9.3	100 300 300 200 200 200 100 200 100	$\begin{aligned} & 200 \\ & 300 \\ & 300 \\ & 400 \\ & 400 \\ & 200 \\ & 100 \\ & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 13 \\ & 20 \\ & 10 \\ & 25 \\ & 10 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \\ & 16 \\ & 22 \\ & 11 \\ & 30 \\ & 15 \\ & 19 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.6 \\ & 1.4 \\ & 0.7 \\ & 1.0 \\ & 1.0 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.20 \\ & 1.15 \\ & 1.15 \\ & 1.15 \\ & 1.15 \\ & 1.20 \\ & 1.10 \\ & 1.10 \\ & 1.10 \end{aligned}$	RG-52/U RG.51/U RG-51/U RG-52/U RG-52/U RG.52/U RG-52/U RG-52/U RG-52/U	$\begin{aligned} & T \\ & T \end{aligned}$	$\begin{aligned} & 1.50 \\ & 2.50 \\ & 1.75 \\ & 8.38 \\ & 4.20 \\ & 3.50 \\ & 1.00 \\ & 3.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 2.0 \\ & 3.6 \\ & 1.8 \\ & 1.9 \\ & 0.8 \\ & 1.9 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 250 \\ & 175 \\ & 175 \\ & 235 \\ & 225 \\ & 195 \\ & 175 \\ & 195 \\ & 175 \end{aligned}$
	K	$\begin{aligned} & \mathrm{KU}-14-3 \\ & \mathrm{~K}-13-5 \\ & \mathrm{~K}-13-1 \\ & \mathrm{KA}-13-1 \end{aligned}$	12.4 to 18.0 23.0 to 25.0 23.0 to 25.0 34.0 to 36.0	$\begin{array}{r} 100 \\ 50^{*} \\ 50^{*} \\ 25^{*} \end{array}$	$\begin{array}{r} 100 \\ 25 \\ 25 \\ 50 \end{array}$	$\begin{aligned} & 13 \\ & 17 \\ & 10 \\ & 17 \end{aligned}$	$\begin{aligned} & 18 \\ & 30 \\ & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.30 \\ & 1.30 \\ & 1.25 \end{aligned}$	$\begin{aligned} & \text { RG-91/U } \\ & \text { RG-53/U } \\ & \text { RG-53/U } \\ & \text { RG-96/U } \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & 4.50 \\ & 1.75 \\ & 1.56 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 0.12 \\ & 0.8 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 195 \\ & 395 \\ & 395 \\ & 395 \end{aligned}$
$\begin{aligned} & \text { j } \\ & \frac{1}{3} \\ & 8 \end{aligned}$	UHF	CN-14-4	0.75 to 1.0	10	250	10	15 to 30	1.0	1.30	Type N	c	10.00	3.0	\$ 495
	L	$\begin{aligned} & \text { CN-14-5 } \\ & \text { CN-14-6 } \end{aligned}$	$\begin{aligned} & 1.0 \text { to } 2.0 \\ & 1.2 \text { to } 2.6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \text { to } 30 \\ & 15 \text { to } 30 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.30 \end{aligned}$	Type N Type N	$\begin{aligned} & \mathrm{c} \\ & \mathrm{c} \end{aligned}$	$\begin{array}{r} 10.00 \\ 9.00 \end{array}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 495 \\ & 495 \end{aligned}$
	S	$\begin{aligned} & \mathrm{CN}-14-7 \\ & \mathrm{CN}-14-8 \end{aligned}$	$\begin{aligned} & 2.0 \text { to } 4.0 \\ & 3.5 \text { to } 5.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \text { to } 30 \\ & 15 \text { to } 30 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.30 \end{aligned}$	Type N Type N	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 8.50 \\ & 5.50 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 375 \\ & 375 \end{aligned}$
	C	CN-14-9	4.0 to 8.0	10	250	10	15 to 30	1.0	1.30	Type N	c	6.625	3.0	375
	X	CN-14-10	7.0 to 10.7	10	250	10	15 to 30	1.0	1.30	Type N	c	6.625	3.0	750

Huggins Ferrite Circulators are non-reciprocal microwave networks which transmit power from one terminal to another in sequence. Power introduced at port "a" leaves the network at port "b". . "b" at "c" . . "c" at "d". . . and "d" at "a". These Ferrite Circulators provide an entirely new parameter for the design of microwave circuits.
(continued on page 25)

${ }^{1}$ Junction Type: Specify " Y " or " T "' configuration for 3 -port units and " Pi " or " H ' for 4 -port units. " T " and " H " configurations priced slightly higher
${ }^{2} \mathrm{~J}=$ Junction Circulator; D = Differential Phase Shift

The duplexing effect of the circulator is ideal in both radar and microwave-relay applications. In microwave-relay applications, for example, the circulator permits transmission and reception on the same antenna, thereby simplifying filter problems. Huggins " Y ," "T,' "Pi", and " H " Circulators are new ferrite devices specially designed for applications where compact size is of particular advantage.

[^6]Any Huggins Circulator can be fitted with an electromagnet by the manufacturer for use as a circulator

FERRITE CIRCULATORS

COMMUNICATIONS

	Band	Model ${ }^{2}$	Frequency (Gc)	Peak Power (Kw)	Average Power (watts)	Isolation (db)	Insertion Loss (db)	Maximum Input YSWR	Ports	$\begin{aligned} & \text { Guide } \\ & \text { Size } \end{aligned}$	Type ${ }^{2}$	Approx. Weight (lbs-oz)	Unit Price
訔ㅎ\#33	C	G.44-3	6.425 to 6.875	150	150	20	0.5	1.2	4	RG-49/U	D	8.0	\$ 595
	X	$\begin{aligned} & \mathrm{XL}-44-9 \\ & \mathrm{XL}-44-2 \\ & \mathrm{X}-44-2 A \\ & \mathrm{X}-43-8 \end{aligned}$	$\begin{aligned} & 7.5 \text { to } 8.5 \\ & 8.5 \text { to } 9.6 \\ & 8.5 \text { to } 9.6 \\ & 8.6 \text { to } 9.6 \end{aligned}$	$\begin{array}{r} 300 \\ 300 \\ 250 \\ 50 \end{array}$	$\begin{array}{r} 250 \\ 300 \\ 250 \\ 50 \end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { RG-51/U } \\ & \text { RG-51/U } \\ & \text { RG-52/U } \\ & \text { RG-52/U } \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \\ & \mathrm{D} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & 4-4 \\ & 4-4 \\ & 3-4 \\ & 1-12 \end{aligned}$	$\begin{aligned} & 495 \\ & 495 \\ & 320 \\ & 375 \end{aligned}$
	K	$\begin{aligned} & \text { KU-43-4 } \\ & \text { KA-43-3C } \end{aligned}$	$\begin{aligned} & 16.0 \text { to } 17.0 \\ & 34.5 \text { to } 35.2 \end{aligned}$	$\begin{gathered} 150 \\ 60^{*} \end{gathered}$	$\begin{array}{r} 150 \\ 25 \end{array}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { RG-91/U } \\ & \text { RG-96/U } \end{aligned}$	$\begin{aligned} & D \\ & D \end{aligned}$	$\begin{aligned} & 2.8 \\ & 0.10 \end{aligned}$	$\begin{array}{r} 925 \\ 1,495 \end{array}$

HIGH POWER

	Band	Mode ${ }^{\text {I }}$	Frequency (Gc)	Peak Power (Kw)	Average Power (watts)	Isolation (db)	Insertion Loss (db)	Maximum Input VSWR	Ports	Guide Size	Type ${ }^{2}$	Approx. Weight (lbs-oz)	Unit Price
	C	$\begin{aligned} & J-43-7 \\ & J-42-14 \end{aligned}$	$\begin{aligned} & 5.925 \text { to } 6.425 \\ & 5.925 \text { to } 6.425 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{array}{r} \text { RG-50/U } \\ \text { RG-106/U } \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{j} \end{aligned}$	$\begin{aligned} & 6-13 \\ & 2-8 \end{aligned}$	$\begin{array}{r} \$ 495 \\ 425 \end{array}$
		J.43-34	5.925 to 6.425	10	10	$\left\{\begin{array}{l} 20,2 \cdot 1 \text { and } 4-3 \\ 35,1-4 \text { and } 3-2 \end{array}\right.$	$\left.\begin{array}{l} 0.3,1-2 \text { and } 3-4 \\ 0.6,2-3 \text { and } 4-1 \end{array}\right\}$	1.20	4	RG-106/U	J	3.8	635
		$\begin{aligned} & J-43-3 \\ & J-42-15 \end{aligned}$	$\begin{aligned} & 6.425 \text { to } 6.875 \\ & 6.575 \text { to } 6.875 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	0.6, 0.5	$\begin{aligned} & 1.15 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{array}{r} \text { RG-50/U } \\ \text { RG-106/U } \end{array}$	D	$\begin{aligned} & 6.13 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 495 \\ & 425 \end{aligned}$
		J-43-35	6.575 to 6.875	10	10	$\left\{\begin{array}{l} 20,2 \cdot 1 \text { and } 4 \cdot 3 \\ 35,1 \cdot 4 \text { and } 3 \cdot 2 \end{array}\right.$	$\left.\begin{array}{l} 0.3,1-2 \text { and } 3-4 \\ 0.6,2-3 \text { and } 4-1 \end{array}\right\}$	1.20	4	RG-106/U	J	3.8	635
		$\begin{aligned} & J-43-4 \\ & J-43-26 \end{aligned}$	$\begin{aligned} & 6.875 \text { to } 7.150 \\ & 6.875 \text { to } 7.150 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{array}{r} \text { RG-50/U } \\ \text { RG-106/U } \end{array}$	D	$\begin{aligned} & 6.13 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 495 \\ & 425 \end{aligned}$
		J.43-36	6.875 to 7.150	10	10	$\left\{\begin{array}{l} 20,2-1 \text { and } 4-3 \\ 35,1-4 \text { and } 3-2 \end{array}\right.$	$\left.\begin{array}{l} 0.3,1-2 \text { and } 3-4 \\ 0.6,2-3 \text { and } 4-1 \end{array}\right\}$	1.20	4	RG-106/U	」	3.8	635
		$\begin{aligned} & \text { J. } 43-5 \\ & 1.42 .17 \end{aligned}$	$\begin{aligned} & 7.125 \text { to } 7.750 \\ & 7.125 \text { to } 7.750 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{array}{r} \text { RG-50/U } \\ \text { RG-106/U } \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & 6.13 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 495 \\ & 425 \end{aligned}$
		J.43-37	7.125 to 7.750	10	10	$\left\{\begin{array}{l} 20,2 \cdot 1 \text { and } 4-3 \\ 35,1-4 \text { and } 3-2 \end{array}\right.$	$\left.\begin{array}{l} 0.3,1-2 \text { and } 3-4 \\ 0.6,2-3 \text { and } 4-1 \end{array}\right\}$	1.20	4	RG-106/U	J	3-8	635

${ }^{1}$ Junction Type: Specify " Y "' or " T "' configuration for 3 -port units and "Pi" or " H " for 4 -port units. " T " and " H " configurations priced slightly higher.
${ }^{2} \mathrm{~J}=$ Junction Circulator; D $=$ Differential Phase Shift
Any Huggins Circulator can be fitted with an electromagnet by the manufacturer for use as a circulator

Huggins GYRALINE Amplitude Modulators are electronically controlled variable attenuators. These units can be used as amplitude modulators, automatic gain controls, and as on-off switches when operated in conjunction with suitable electronic equipment. Slight modifications also•permit their use as transfer switches.

GYRALINE-modulated CW signals eliminate frequency modulation and possible double moding which are frequently present with square-wave modulated klystron signals. All GYRALINE units can also be supplied as $\pm 90^{\circ}$ rotators for use in single sideband modulation systems.

Band	Model	Frequency (Gc)	Average Power Absorbed (watts)	Minimum Attenuation (db)	Maximum Attenuation (db)	Nominal Current at Mid Band (Ma)	Maximum Input VSWR	Modulation Frequency (Kc)	Guide Size	Length (inches)	Approx. Weight (lbs-oz)	Unit Price
S	CN-22-3	2.0 to 4.0	5	1.0	10	225	1.30	. 1	Type N	6.63	7.8	\$ 395
	CN-22-2	2.5 to 3.8	5	1.0	10	225	1.30	. 1	Type N	6.63	7.8	395
C	CN-22-4	4.0 to 7.0	5	1.0	10	250	1.25	. 1	Type N	6.50	$7-8$	
	RS-570	5.4 to 5.9	2	1.4	18	350	1.35	3	RG-50/U	5.45	2-2	645
	RS-570 (HF)	5.4 to 5.9	2	1.4	18	350	1.35	70	RG-50/U	5.45	2-2	745
	R-620	5.9 to 6.4	2	1.2	25	90	1.35	3	RG-50/U	5.60	2-2	645
	R-620 (HF)	5.9 to 6.4	2	1.2	25	90	1.35	70	RG-50/U	5.60	$2 \cdot 2$	745
	R-670	6.4 to 6.9	2	1.0	25	90	1.30	3	RG-50/U	5.10	2-2	645
	R-670 (HF)	6.4 to 6.9	2	1.0	25	90	1.30	70	RG-50/U	5.10	2-2	745
	R-720	6.9 to 7.4	2	1.0	25	90	1.30	3	RG-50/U	4.10	1-2	645
	R-720 (HF)	6.9 to 7.4	2	1.0	25	90	1.30	70	RG-50/U	4.10	1.2	745
X		8.2 to 10.6					1.45			3.50	0-14	325
	R-920	8.2 to 10.6	2	1.0	25	45	1.45	3	RG-52/U	3.50	0.11	315
	HF-920	$8.2 \text { to } 10.6$	2	1.0	25	85	1.45	70	RG-52/U	3.50	0.10	335
	X-22-17	10.25 to 10.5	2	1.0	30	250	1.15	50	RG-52/U	4.90	2.0	495
K	R-1350	13.5 to 15.0	1	1.0	25	30	1.30	3	RG-91/U	2.58	0.8	950
	R-1350 (HF)	13.5 to 15.0	1	1.0	25	30	1.30	70	RG-91/U	2.58	0.8	1,050
	R-1650	15.0 to 17.0	1	1.0	25	30	1.30	3	RG-91/U	2.58	0.8	, 950
	R-1650 (HF)	15.0 to 17.0	1	1.0	25	30	1.30	70	RG-91/U	2.58	0.8	1,050
	K-21-1	23.0 to 25.0	1	1.0	25	50	1.40	70	RG-53/U	2.63	0.6	745
	KA-21-1	34.0 to 35.5	1	1.0	25	75	1.50	70	RG-96/U	1.24	0.6	845

FERRITE PHASE SHIFTERS

Huggins Ferrite Phase Shifters are available in a variety of types. Stock designs include rectangular and circular waveguide, transverse and longitudinal field models. Coaxial and strip line units can also be supplied.

These Phase Shifters, manufactured by the Cascade Research Division of Huggins Laboratories, are particularly suited to phase modulation and electrical scan radar antenna applications. Designs of stock items can be modified or new designs developed to customer specifications. Special temperature compensated models are available on request.

Band	Model	Frequency (Gc)	Peak Power (Kw)	Average Power (watts)	Phase Shift (degrees)	Maximum VSWR	Maximum Insertion Loss (db)	Guide Size	Type ${ }^{\text {? }}$	Approx. Weight (Ibs-0z)	Unit Price
S	CN-33-1	2.8 to 3.2	1	1	180	1.5	1.0	Type N	L	7.8	\$495
C	G-33-2	5.55 to 5.75	30	30	180	1.3	0.6	RG-48/U	T	19.0	650
X	$\begin{aligned} & \text { LPS- } 920 \\ & \text { X- } 32.4 \\ & \text { X-32.5 } \\ & \text { LPS-1000 } \end{aligned}$	8.8 to 9.6 9.1 to 9.4 9.1 to 9.4 9.6 to 10.4	$\begin{array}{r} 1 \\ 10 \\ 1 \\ 1 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 1 \\ 10 \end{array}$	$\begin{aligned} & 360 \\ & 180 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.2 \\ & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.5 \\ & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \text { RG-52/U } \\ & \text { RG-52/U } \\ & \text { RG.52/U } \\ & \text { RG-52/U } \end{aligned}$	$\begin{aligned} & R \\ & L \\ & L \\ & R \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \\ & 3.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 645 \\ & 350 \\ & 495 \\ & 985 \end{aligned}$
K	$\begin{aligned} & \mathrm{KU}-31-1^{3} \\ & \mathrm{~K}-31-1 \\ & \mathrm{KA}-31-1 \end{aligned}$	$\begin{aligned} & 12.8 \text { to } 18.0 \\ & 23.0 \text { to } 25.0 \\ & 34.0 \text { to } 36.0 \end{aligned}$	1 1 1	1 1 1	$\begin{aligned} & 360 \\ & 180 \\ & 360 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \text { RG-91/U } \\ & \text { RG-53/U } \\ & \text { RG-96/U } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.4 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 975 \\ & 745 \\ & 975 \end{aligned}$

${ }^{2} \mathrm{~L}=$ Longitudinal Field; $\mathrm{T}=$ Transverse Field; $\mathrm{R}=$ Faraday Rotation
${ }^{3}$ Any 200 mc

SPECIAL COMPONENTS \& SUBASSEMBLIES

MEDIUM POWER DUMMY LOADS Designed to operate over the 23.0 to 25.0 Gc frequency band with a maximum VSWR of 1.10 . Power handling capacity is 30 Kw peak, 10 watts average.
 MEDIUM POWER DUMMY LOADS Designed to operate over the 23.0 to 25.0 Gc frequency band with a maximum VSWR of 1.10 . Power handling capacity is 30 Kw peak, 10 watts average.
 MEDIUM POWER DUMMY LOADS Designed to operate over the 23.0 to 25.0 Gc frequency band with a maximum VSWR of 1.10 . Power handling capacity is 30 Kw peak, 10 watts average.
 MEDIUM POWER DUMMY LOADS Designed to operate over the 23.0 to 25.0 Gc frequency band with a maximum VSWR of 1.10 . Power handling capacity is 30 Kw peak, 10 watts average.
 MEDIUM POWER DUMMY LOADS Designed to operate over the 23.0 to 25.0 Gc frequency band with a maximum VSWR of 1.10 . Power handling capacity is 30 Kw peak, 10 watts average.
 MEDIUM POWER DUMMY LOADS Designed to operate over the 23.0 to 25.0 Gc frequency band with a maximum VSWR of 1.10 . Power handling capacity is 30 Kw peak, 10 watts average.
 MEDIUM POWER DUMMY LOADS Designed to operate over the 23.0 to 25.0 Gc frequency band with a maximum VSWR of 1.10 . Power handling capacity is 30 Kw peak, 10 watts average.

DIODE DETECTORS

Available from 100 mc to 7.0 Gc . . . 100 db dynamic range .., units tested at 1 Kw peak and 12 watts average with no changes in performance ... impedance independent of power level . . . $150 \mathrm{mv} / \mathrm{mw}$ sensitivity excellent square wave law characteristics ... response time less than 1.0 microseconds ... heater operates at 6.3 volts, 135 ma .

BROADBAND, HIGH POWER
PRESSURE ADAPTERS
AND WINDOWS
Units can be provided from 4.75 Gc to $11.0 \mathrm{Gc} . .500$ watts CW power . . . 0.05 db maximum insertion loss . . . 1.08 maximum VSWR . . . DR-19 waveguide and 45 psig pressure.

In addition to processing a broad line of microwave ferrite components, the Gascade Research Division of Huggins Laboratories is in a position to provide many custom-engineered microwave devices and subassemblies.
The following are typical examples.

Other microwave products recently supplied by the Cascade Research Division include Varactor Multipliers . . . Beacon and Spiral Antennas . . . Weather and Ground Mapping Radar Antennas . . . Mechanical Attenuators and Phase Shifters ... Communications Relay Subsystems ... and Filters.

call your nearest HUGGINS

Pacific Northwest
J. K. DOOLEY CO., INC.

159 Western Avenue W.
Seattle 99, Washington
206 ATwater 4.8313 FAX: GLX
Northern California - Nevada
HUGGINS LABORATORIES, INC.
999 East Arques Avenue
Sunnyvale, California
408-736-9330 TWX: 408-737-9992
Southern California
RF ASSOCIATES
1608 Centinela
Inglewood, California
213-670-8896, 8897, or 8898 TWX: 213-670-8315
Rocky Mountain States - El Paso, Texas
ELTON K. KELLEY
336 East Fourth Street

* Loveland, Colorado 303-667-1376
Post Office Box 9014
El Paso, Texas
915-751-3843
Arkansas - Louisiana - Oklahoma -
Texas (except El Paso)
AIREP ENGINEERING CO.
Post Office Box 404
Austin, Texas
512 GR 6-4388
Post Office Box 9555
* Dallas 14, Texas

214 TAylor 4-3800
Post Office Box 36211
Houston 36, Texas
713 GY 4-2260
Mid-West
COZZENS \& CUDAHY, INC.
125 Old Orchard Arcade

* Skokie, Illinois

312 ORchard 5-6700 TWX: 312-677-6735
9725 Girard Avenue
Minneapolis, Minnesota
612-881-2121
4430 North Wilson Drive
Milwaukee, Wisconsin
414 ED 2-0700
Kentucky - Michigan - Ohio -
Western Pennsylvania - West Virginia
micro sales corporation
104 West Huron Street
Ann Arbor, Michigan
313-662.7497
1925 Lee Road
Cleveland 18, Ohio
216-371.0522
Suite 220 Paul Welsh Building
3300 South Dixie Drive

* Dayton 39, Ohio

513-298-3033 TWX: 513-944-0158

Southeast
E. G. HOLMES \& ASSOCIATES

308 South Bumby Street
Orlando, Florida
305-241-2128
4969 Roswell Road, N. E.

* Atlanta 5, Georgia

404-255-6660 TWX: 404-231-3417
440 West Market Street - Suite B-1
Greensboro, North Carolina
919 BRoadway $2-0855$
Delaware - Maryland - Northern
Virginia - Washington, D. C.
E-A, INCORPORATED
1406 Shoemaker Road

* Baltimore 9, Maryland

301 VA 5-2385 TWX: 301-828-7039
Washington, D. C.
202 STerling 3.7319
New Jersey - Metropolitan New York -
Long Island - Eastern Pennsylvania
CDB ENTERPRISES, INC.
26 Haddon Avenue
Camden, New Jersey
609 WOodlawn 3.9164
501 Broadway

* Hicksville, New York

516-938-8644
Upstate New York
KLM ASSOCIATES
46 Clinton Street
Clark Mills, New York
315-853-8945 TWX: 315-853-5733
New England
GERALD ROSEN CO., INC.
14 Wedgewood Road
Natick, Massachusetts
617-653-6510 TWX: 617-653-6051

Canada

RADIONICS LIMITED (Tubes and Instruments)
4938 Younge Street
Willowdale, Ontario
416-222-3261
8230 Mayrand Street

* Montreal 9, Quebec

514 REgent 9-5517
MICROWAVE SYSTEMS (Ferrite Components)
20 Barbados Boulevard
Scarborough, Ontario
416-261-7265
Export
HUGGINS INTERNATIONAL DIVISION
750 Third Avenue
New York 17, New York
YUkon 6-2244 Cable: ARTROCKE, N. Y.

[^7]
NON-STOP QUALITY

NON-STOP QUALITY IS BUILT INTO EVERY HUGGINS PRODUCT

Huggins Laboratories Quality Program is a team effort based on the concept of "Total Quality Control." Each manager concerned with planning, design, manufacturing, purchasing, and sales is a member of this team; thus, every product produced by Huggins Labs inherently possesses non-stop quality. To the customer, this Total Quality Control concept delivers a high grade product at the lowest possible cost.

The Quality Program Department coordinates and integrates this concept from the time of proposal through order placement, product design, manufacturing, testing, and shipment. Other prime responsibilities include reliability and maintainability analysis to both increase product quality and meet customer requirements. This department is comprised of a Quality Committee, Quality Engineering, Inspection, and Metrology. The Quality Committee consists of the aforementioned team of management personnel. Quality Engineering - in addition to analyzing customer requirements and insuring that they are met - also performs the training and studies for improvement in the Quality Program. Necessary sorting and collection of data for assuring the required high quality level is accomplished by Inspection. Metrology maintains the consistency of highly accurate measuring devices so that the customer receives correlated data. This group also studies and develops new and improved measuring techniques and instrumentation to increase accuracy and efficiency. Each man in the Quality Program Department is selected for his high qualifications in quality mindedness, technical background, and his desire to maintain and assure the high quality level required at Huggins Laboratories. By maintaining quality standards in materials, components, and the finished product, the Quality Program Department makes certain that Huggins customers receive the best in traveling wave tubes, microwave
instruments, and ferrite components. Material and component quality control and inspection are stressed throughout manufacturing; each part and assembly is closely inspected for adherence to
the industry's highest standards. The over-all result is that extra dividends are passed on to the
customer: high reliability . . maintenance ease . . increased life expectancy . . . assurance that
the product meets specifications .. and protection of the most liberal warranties available.

For further information about Huggins Quality Program, you are invited to contact our Sales Department for a copy of "Quality Program Summary."

SALES \& SERVICE IN THE UNited Kingdom:-
B. \& K. LABORATORIES LTD.

4 TILNEY ST., PARK LANE, LONDON, W.1., ENGLAND TELEPHONE: GROSVENOR 4567

TBEDAMING WAVF TUBFS
traveling wave tubes

LABORT VHF-BAND
VHF-BAND UHF-BAND
L-BAND

LOW NOISE AMPLIFIERS

BACKWARD WAVE AMPLIFIERS (Voltage Tuned)

| SOLENOID
 FOCUSED | Voltage Tuned
 0.1 to 1.0% bandwidth
 15 db gain | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

BACKWARD WAVE OSCILLATORS (Voltage Tuned)

MANY MODIFICATIONS of these tubes have been made to customers' specifications. A technical staff is available for problems as well as for special research and development. Feel free to address us with your inquiry.
PRICE NOTE: Above prices apply to small quantities only and are subiect to change without notice. A 10% credit will be allowed upon return of the used encapsulated tube when reordering. Shipment made from F.O.B. Sunnyvale, California, via air freight. Terms: Net 30 days.

C-BAND
X-BAND
Ku-BAND

LOW NOISE AMPLIFIERS

BACKWARD WAVE AMPLIFIERS (Voltage Tuned)

| BWABA-1 \dagger
 2.43 .6 Gc
 $\$ 1,500.00$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| | | | |

BACKWARD WAVE OSCILLATORS (Voltage Tuned)

BWO	$\begin{gathered} \mathrm{HO}-18 \S \\ 2.0 \mathrm{TO} 4.0 \mathrm{Gc} \\ \$ 750.00 \end{gathered}$	$\begin{gathered} \text { BWO HO-3§ } \\ 3.75 \mathrm{TO} 7.0 \mathrm{GC} \\ \$ 750.00 \end{gathered}$	$\begin{gathered} \mathrm{BWO} \\ \mathrm{HO}-13 \S \\ 4.0 \mathrm{TO} 8.0 \mathrm{GC} \\ \$ 750.00 \end{gathered}$	BWO 8.2	$\begin{gathered} { }^{\mathrm{BWO}} \mathrm{HO}-17 \S \\ 7.0 \text { TO } 11.0 \mathrm{GC} \\ \$ 750.00 \end{gathered}$	BWO	$\begin{gathered} \mathrm{HO}-19 \S \\ 12.0 \mathrm{TO} 18.0 \mathrm{Gc} \\ \$ 1.250 .00 \end{gathered}$
BWO	$\begin{gathered} \mathrm{HO}-1 \S \\ 2.0 \mathrm{TO} 4.0 \mathrm{Gc} \\ \$ 1000.00 \end{gathered}$	$\begin{gathered} \text { BWO } \mathrm{HO}-20^{*} \\ 3.75 \mathrm{TO} 7.0 \mathrm{GC} \\ \$ 1.000 .00 \end{gathered}$	$\mathrm{BWO} \mathrm{HO}-21^{*}$ 4.0 TO 8.0 Gc $\$ 1.000 .00$	$\begin{gathered} \mathrm{HO}-2^{*} \\ \text { 8.2 TO } 12.4 \mathrm{GC} \\ \$ 1000.00 \end{gathered}$		BWO	$\begin{gathered} \mathrm{HO}-4 \S \\ 12.4 \mathrm{TO} 18.0 \mathrm{GC} \\ \$ 1.500 .00 \end{gathered}$
		$\begin{gathered} \mathrm{HO}-24^{\mathrm{D}} \\ 4.0 \mathrm{TO} 8.0 \mathrm{GC} \end{gathered}$		EWO HO-23 7.0 TO 11.0 GC 8.2 OR 12.4 GC $\$ 1.300 .00$			
D Under development This performance obtained in a \& 4 to 6 weeks delivery Iightweight, low-power solenoid * 6 to 8 weeks delivery \# Sold for replacement +8 to 10 weeks delivery					Changes or additions to the September Short-Form Catalog		
LNT. BWA. BWO. Refer to Low Noise Tube, Backward Wave Amplifier, and Backward Wave Oscillator sections of Huggins TWT Catalog for detailed information.					A CATALOG and Engineering Handbook are available for you. Please submit your request on company letterhead.		

TRAVELING WAVE TUBES

VHF-BAND

BROADBAND FORWARD WAVE AMPLIFIERS

SPECIAL PURPOSE TUBES

SOLENOID FOCUSED	Dispersive Amplifiers Voltage Tuned 20\% Bandwidth		$\begin{gathered} \text { DA }-\mathbf{3}^{\dagger} \\ 0.5 \mathrm{TO} 1.0 \mathrm{Gc} \\ \$ 1.350 .00 \end{gathered}$	
SOLENOID FOCUSED	Frequency multiplier tubes	SPT	$\text { HA } 34^{*}$ UHF-BAND TO S-BAND \$1,250.00	

A GRID ELECTRODE for attenuation and modulation is incorporated in all forward wave amplifiers and frequency multipliers.
COLD VSWR less than 1.7 to 1 over the specified operating range is attained in most tubes.
MANUFACTURE to meet rigid environmental requirements is possible. Send us your specifications.

the industry's broadest line

S-BAND C-BAND
BROADBAND FORWARD WAVE AMPLIFIERS

SPECIAL PURPOSE TUBES

New England
GERALD ROSE CO., INC.
14 WEDGEWOOD ROAD
NATICK, MASSACH 617.65
$617-653-6510$ TWX $617-653-6051$
(2) Delaware - Maryland - Southern New Jersey -

Upper New York - Eastern Pennsylvania -
Northern Virginia - West Virginia
GEIST ASSOCIATES, INC.
695 SUMMER STREET
STAMFORD, CONNECTICUT
STAMFORD, CONNECTICUT
203 DAVIS 4-7309 TWX 203-327-2897
1123 MEADOW LARK DRIVE
BALTIMORE 27, MARYLAND
$301-242-4123$
TWX $301-242-899$
201 CRESCENT AVENUE
LEONA, NEW JERSEY
201 WINDSOR 4-6488 TWX 201-947-0291
II ROBERT ROAD
PENFIELD, NEW YORK
$716-671-4150$ TWX $716-671-4571$
Metropolitan New York - Long Island -
Northern New Jersey
HARVEY J. KRASNER ASSOCIATES
33 GREAT NECK ROAD
GREAT NECK, NEW YORK
516 HUNTER 7-0690 TWX 516-466-9310
Kentucky - Michigan - Ohio - Western
Pennsylvania
MICRO SALES CORPORATION
104 WEST HURON STREET
ANN ARBOR, MICHIGAN
313-662-7497
1925 LEE ROAD
CLEVELAND 18, OHIO
216-371-0522
SUITE 220 PAUL WELSH BLDG.
3300 SOUTH DIXIE DRIVE
DAYTON 39, OHIO
513-298-3033 TWX 513-944-0158
Southeast U.S.
E. G. HOLMES \& ASSOCIATES

4969 ROSWELL ROAD, N.E.
ATLANTA 5, GEORGIA
404-255-6660 TWX 404-231-3417
440 WEST MARKET STREET - SUITE B-
GREENSBORO, NORTH CAROLINA
919 BROADWAY $2-0855$
308 SOUTH BUMBY STREET
ORLANDO, FLORIDA
305-241-2128
6) Arkansas - Louisiana - Oklahoma - Texas

AIRES ENGINEERING COMPANY
P. C . Box 404
${ }_{512} \mathrm{~A}_{\mathrm{GR}} \mathrm{b}-4388$
P. O. BOX 9555

DALLAS IS, TEXAS
214 TAYLOR 4.3800
p. $\mathrm{O} .80 \times 36211$

713 KY $4 \cdot 2260^{\prime}$: AA
(7) Southern Illinois - Western Iowa - Kansas -

Missouri - Nebraska
IMPALA, INC.
BOX 4341
OVERLAND PARK, KANSAS
913-648-6901 TWX 913-642-837।
BOX 6163
LAMBERT FIELD, MISSOURI
314 JA 2-1600 TWX 314-921-3859
(8) Mid-West

COZZENS \& CUDAHY, INC.
125 OLD ORCHARD ARCADE
SKOKIE, ILLINOIS
312 ORCHARD 5-6700 TWX 312-677-6735
925 EAST WELLS STREET
414 BROADWAY 3.6700
9) Canada

RADIONICS LIMITED
8230 MAYRAND STREET
MONTREAL 9, QUEBEC
514 REGENT 9-5517
4938 YOUNG STREET
WILLOWDALE, ONTARIO
4|6-222-326|
Rocky Mountain States
ELTON K. KELLEY
336 EAST 4 th STREET
LOVELAND, COLORADO
303-667-1376'
P. O. BOX 9014

EL PAS, TEXAS
915-751-3843
California - Nevada
HUGGINS LABORATORIES, INC.
999 EAST ARQUES AVENUE
SUNNYVALE, CALIFORNIA
$408-736.9330$ TWX 408.737 .9992
408-736-9330
Northwest
J. K. DOOLEY CO., INC.

159 WESTERN AVENUE W.
SEATTLE 99, WASHINGTON
206 ATWATER 4-8313 FAX: GLX

- Call your nearest HUGGINS
 Representative

England

B \& K LABS

57/61 UNION STREET LONDON S.E. I. ENGLAND

Netherlands and Belgium
INGENIEURSBUREAU HEIJNEN
MAASWEG 63
gennep, netherlands TEL: 08851. . 956 or 678 TELEX: 45239

Norway
MORGENSTIERNE \& COMPANY
WESSELS GATE OSLO NORWA
TEL: 42 2-99.93 TELEGRAMADR: 1719 (morofo)
Sweden
MAGNETIC AB
BOX 1160
BROMMA II, SWEDEN
TEL: (08) 290460

France

SASSOON SOPHER, INC.

Switzerland

NUCLETRON AG

SPITALGASSE 30
BERN, SWITZERLAND
TEL: 03|-3745|
Italy
NUCLETRON S.P.A.
PIAZZA LUIGI DI SAVOIA N22
MILANO, ITALY
TEL: 27-81-89
Germany
SCHNEIDER, HENLEY CO., G.M.B.H.
II GROSS-NABAS STRASSE
MUNICH, GERMANY
TEL: 467161 TELEGRAMM: ELEKTRADIMEX
HENLEY \& CO.
202 EAST 44th STREET
Israel
ELIMEX, LTD.
4 MORAD HACRAMIN STREET
HAIFA, ISRAEL
TEL: 82513
Australia
GENERAL ELECTRONICS SERVICES, PTY. LTD.
P. O. BOX 68

LIDCOMBE N.S.W., AUSTRALIA
TEL: SYDNEY 649.8732 CABLE: SERVO
Japan
INDUSTRIAL IMPORTS LTD.
BOX 1271, CENTRAL POST OFFICE
TOKYO, JAPAN

NHW PN ROCUSHD x-Band Bfockwaid WhVE OSCDhमYOR

HO-23

50 MILLIWATTS POWER OUTPUT © NO COOLING REQUIRED
The $\mathrm{HO}-23$ is the first in a broad line of voltage tunable PM focused BWOs now being developed at Huggins Laboratories. Military environmental considerations form an integral part of the design concept to produce compact, lightweight units which are rugged and reliable. C-band and S-band BWOs will soon be available.

GENERAL

Application versatility is designed into the $\mathrm{HO}-23$: A grid is incorporated for gating or leveling purposes . . . packaging techniques minimize field leakage and permit adjacent operation of two or more units with no significant effect on operation . . . the BWO can be supplied for either grounded cathode or grounded collector operation . .. and repeatability of HO-23 electrical characteristics is excellent.

SPECIFICATIONS

Frequency: 8.2 to 12.4 GC
Power Output: 50 mw min Tuning Voltage: 350 to 2000 volts Cathode Current: 10 ma max Beam Cutoff: $\mathrm{V}_{\mathrm{g}} \quad-50$ volts max Output Impedance: 50 ohms, $2: 1$ VSWR max RF Connector: TNC, female
DC Connector: Amphenol 67-03E-14.9P
Weight: 9 lbs
Environment: Can be manufactured to MIL-E-5400, Class 2

TRAVELING WAVETUBES

BACKWARD WAVE AMPLIFIERS FORWARD WAVE AMPLIFIERS

BACKWARD WAVE OSCILLATORS
SPECIAL PURPOSE TUBES

SALES \& SERVICE IN THE UNited Kingdom :-
B. \& K. LABORATORIES LTD.

4 TILNEY ST., PARK LANE, LONDON, W.1., ENGLAND
TELEPHONE: GROSVENOR 4567

TRAVELING WAVE TUBES

VHF-BAND

UHF-BAND
L-BAND

LOW NOISE AMPLIFIERS

BACKWARD WAVE AMPLIFIERS (Voltage Tuned)

SOLENOID FOCUSED	Voltage Tuned 0.1 to 1.0% bandwidth 15 db gain			

BACKWARD WAVE OSCILLATORS (Voltage Tuned)

SOLENOID FOCUSED	1 MW min. power output			

MANY MODIFICATIONS of these tubes have been made to customers' specifications. A technical staff is available for problems as well as for special research and development. Feel free to address us with your inquiry.
PRICE NOTE: Above prices apply to small quantities only and are subject to change without notice. A 10% credit will be allowed upon return of the used encapsulated tube when reordering. Shipment made from F.O.B. Sunnyvale, California, via air freight. Terms: Net 30 days.

C-BAND
X-BAND
Ku-BAND

LOW NOISE AMPLIFIERS

BACKWARD WAVE AMPLIFIERS (Voltage Tuned)

BACKWARD WAVE OSCILLATORS (Voltage Tuned)

D Under development
§ 4 to 6 weeks delivery

* 6 to 8 weeks delivery
+8 to 10 weeks delivery

This performance obtained in a lightweight, low-power solenoid
\# Sold for replacement

Changes or additions to the March Short-Form Catalog

A CATALOG and Engineering Handbook are available for you. Please submit your request on company letterhead.

BROADBAND FORWARD WAVE AMPLIFIERS

SPECIAL PURPOSE TUBES

SOLENOID FOCUSED	Dispersive Amplifiers Voltage Tuned 20\% Bandwidth	SPT	$\begin{gathered} \text { DA-3 } \dagger \\ 0.5 \mathrm{TO} 1.0 \mathrm{Gc} \\ \$ 1,350.00 \end{gathered}$	SPT DA-2 \dagger 1.0 TO 2.0 Gc $\$ 1,350.00$
SOLENOID FOCUSED	Frequency multiplier tubes	SPT HA-34* UHF-BAND TO S-BAND $\$ 1,250.00$	$\begin{gathered} \text { HA-34* } \\ \text { UHF-BAND TO S-BAND } \\ \$ 1.250 .00 \end{gathered}$	
			-	

A GRID ELECTRODE for attenuation and modulation is incorporated in all forward wave amplifiers and frequency multipliers.

COLD VSWR less than 1.7 to 1 over the specified operating range is attained in most tubes.
MANUFACTURE to meet rigid environmental requirements is possible. Send us your specifications.

S-BAND
C-BAND
X-BAND
Ku-BAND

BROADBAND FORWARD WAVE AMPLIFIERS

SPECIAL PURPOSE TUBES

FOR FURTHER INFORMATION

(1) Atlantic Seaboard

GEIST ASSOCIATES, INC.
695 SUMMER STREET
STAMFORD, CONNECTICUT
203 DAVIS 4-7300 TWX STAM-373
1123 MEADOW LARK DRIVE
BALTIMORE, MARYLAND
301-242-4123 TWX ARB-548-U
14 WEDGEWOOD ROAD
NATICK, MASSACHUSETTS
617 OLYMPIC 3-6510 TWX NTK-1125-U
201 CRESCENT AVENUE
LEONIA, NEW JERSEY
201 WINDSOR 4-6488 TWX LEON-805-U
NEW YORK, NEW YORK
212 CYPRESS 4-0017
11 ROBERT ROAD
PENFIELD, NEW YORK
716 OSBORNE 1.4150 TWX RO. 855
(2) Southeast U.S.
E. G. HOLMES \& ASSOCIATES

4969 ROSWELL ROAD, N.E.
4969 ROSWELL ROAD
ATLANTA 5, GEORGIA
ATLANTA 5, GEORGIA
404 BLACKBURN $5-6660$ TWX AT-39
440 WEST MARKET STREET - SUITE B- 1
GREENSBORO, NORTH CAROLINA
919 BROADWAY 2.0855
308 SOUTH BUMBY STREET
ORLANDO, FLORIDA
CHERRY i-2128
Kentucky - Michigan - Ohio -
Western Pennsylvania
MICRO SALES CORPORATION
140 WEST HURON
ANN ARBOR, MICHIGAN
313-662-7497
1925 LEE ROAD
CLEVELAND 18, OHIO
216-371-0522
SUITE 220, PAUL WELSH BLDG.
3300 SOUTH DIXIE DRIVE
DAYTON 39, OHIO
513-298-3033 TWX DY-408
Mid-West
COZZENS \& CUDAHY, INC.
125 OLD ORCHARD ARCADE
SKOKIE, ILLINOIS
SKOKIE, ILLINOIS
312 ORCHARD 5.6700
925 EAST WELLS STREET
MILWAUKEE, WISCONSIN
414 BROADWAY 3.6700
(5) Arkansas-Louisiana-Oklahoma-Texas

AIREP ENGINEERING COMPANY

P.O. BOX 404

AUSTIN, TEXAS
512 GR 6.4388
P. O. BOX 9555

DALLAS 14, TEXAS
214 TAYLOR 4-3800
P. O. BOX 36211

HOUSTON, TEXA
713 GY 4-2260
6) California - Nevada

HUGGINS LABORATORIES, INC.
999 EAST ARQUES AVENUE
SUNNYVALE, CALIFORNIA
408-736.9330 TWX 408-737-9992
(7) Rocky Mountain States

ELTON K. KELLY
336 EAST 4TH STREET
LOVELAND. COLORADO
303 NORMANDY 7-1376
EL PASO, TEXAS
915-751.3843
(8) Northwest - Western British Columbia
J. K. DOOLEY CO., INC.

159 WESTERN AVENUE W.
SEATTLE 99, WASHINGTON
206 ATWATER 4.8313
(9) Canada

RADIONICS LIMITED
8230 MAYRAND STREET
MONTREAL 9, CANADA
514^{*} REGENT 9.5517
4938 YOUNGE STREET
WILLOWDALE, ONTARIO
416-222-3261
(10) Southern Illinois - Kansas - Missouri

GORDON FIXMAN ENGINEERING CO.
8160 STANFORD AVENUE
ST. LOUIS 30, MISSOURI
314 PARKVIEW 5.5219

England
B \& K LABS
57/61 UNION STREET LONDON S.E. 1, ENGLAND

Netherlands
INGENIEURSBUREAU HEIJNEN
POSTBUS 10
GENNEP, NETHERLANDS
Norway
MORGENSTIERNE \& COMPANY
WESSELS GATE 6
OSLO, NORWAY
Sweden
MAGNETIC AB
BOX 1160
BROMMA 11, SWEDEN
France
SASSOON SOPHER, INC.
65, RUE DE RICHELIEU
PARIS 2E, FRANCE
630 FIFTH AVENUE
NEW YORK 20, NEW YORK

Switzerland
NUCLETRON AG
SPITALGASSE 30
BERN, SWITZERLAND
Italy
NUCLETRON S.P.A.
PIAZZA LUIGI DI SAVOIA N22
MILANO, ITALY
Germany
SCHNEIDER, HENLEY CO., G.M.B.H.
11 GROSS-NABAS STR.
MUNICH, GERMANY
HENLEY \& CO.
202 E. 44TH STREET
NEW YORK 17, NEW YORK

Australia

general electronics services, pry. LTD.
15 JAMES STREET
LIDCOMBE, N.S.W. AUSTRALIA
Japan
INDUSTRIAL IMPORT LTD.
BOX 1271 , CENTRAL POST OFFICE
TOKYO, JAPAN

ALWAYS the industry's broadest line STILL the industry's broadest warranty NOW the industry's broadest technology INTRODUCING HUGGINS' NEW CERAMIC TWTs

Space-Age requirements for extremely compact, lightweight, broadband amplifiers exhibiting high efficiency, gain, and power output are fulfilled by a new family of ceramic traveling-wave tubes. Recent advances in vacuum-tube technology at Huggins Laboratories have produced a TWT design capable of operating under the most severe shock, vibration, and temperature extremes encountered in tomorrow's military and space vehicles. This truly remarkable design demands a whole new concept of the performance capabilities of weapons systems such as radar augmenters and decoys, airborne communications, and many electronic countermeasures applications.
Huggins Laboratories continues to expand the industry's broadest line of glass traveling-wave tubesTWTs that have the proven ability to withstand shock of $30 \mathrm{G} .$. vibration of 15 G to 2000 cps . . . and operating temperature ranges from $-65^{\circ} \mathrm{F}$ to $+260^{\circ} \mathrm{F}$.

RUGGEDIZATION

Huggins' low and medium power PPM-focused traveling-wave tubes perform over severe environmental extremes.
--Some Examples Of Huggins' TWTs Manufactured To MIL-E-5400--

Frequency Band		Tube Type	
	Class		
UHF-band		HA-36	
L-band		HA-31	I
		HA-53	I
S-band		HA-29	I
C-band	HA-28	I	
	HA-35	III	
	X-band	HA-20	III
		II	

Years of TWT engineering know-how and experience have created sound ruggedization techniques which have given Huggins PPM traveling-wave tubes field-proven environmental capabilities.

Techniques such as...
...rigid support along the entire length of the slow-wave circuit, ceramic heater supports, a specially designed electron gun, additional inner capsule support, and a reinforced focusing structure minimize the effects of shock and vibration.
...hermetic sealing with thermoplastic compounds prevents damage from moisture.
...and an Alnico magnet focusing structure with compensating alloy shunts reduces gain and power output variations over wide temperature ranges.

If your application demands ruggedness and reliability, call on Huggins for complete assistance.

LOW NOISE AMPLIFIERS

SOLENOID FOCUSED	25 db min. small-signal gain 15 db max. noise figure	LNT $\begin{gathered} \mathrm{HA}-40^{*} \\ 0.5 \mathrm{TO} 1.0 \mathrm{KMC} \\ \$ 1,500.00 \end{gathered}$	$\begin{aligned} & \text { LNT } \\ & \text { VHA }-17^{*} \\ & \text { 1.O TO 2.0 KMC } \\ & \$ 1.500 .00 \end{aligned}$	$\begin{gathered} \text { LNT } \\ \text { HA }-19 \S \\ 1.6 \mathrm{TO} 2.6 \mathrm{KMC} \\ \$ 1,500.00 \end{gathered}$
	25 db min. small-signal gain 10 db max. noise figure	$\begin{array}{ll} \text { LNT } & V \mathrm{HA}-45^{*} \\ & 0.5 \mathrm{TO} 1.0 \mathrm{KMC} \\ \$ 2.000 .00 \end{array}$	LNT$\begin{gathered} \mathrm{HA}-14^{*} \\ 1.0 \mathrm{TO} 2.0 \mathrm{KMC} \\ \$ 2.000 .00 \end{gathered}$	
	25 db min. small-signal gain 8 db max. noise figure	LNT$\mathrm{HA}-72 \dagger$ 0.5 TO 1.0 KMC $\$ 2,750.00$	$\begin{gathered} \mathrm{HA}-73 \dagger \\ 1.0 \mathrm{TO} 2.0 \mathrm{KMC} \\ \$ 2,750.00 \end{gathered}$	
	25 db min. small-signal gain 7 db max. noise figure	LNT $\begin{gathered} \mathrm{HA}-86 \dagger \\ 0.5 \mathrm{TO} 1.0 \mathrm{KMC} \\ \$ 3.000 .00 \end{gathered}$	$\mathrm{HA}-80^{\mathrm{D}}$ 1.0 TO 2.0 кMC	
	25 db min. small-signal gain 6 db max. noise figure			
PPM FOCUSED	25 db min. small-signal gain 15 db max. noise figure		LNT$\begin{aligned} & \mathrm{HA}-85 \dagger \\ & 1.0 \mathrm{TO} 2.0 \mathrm{KMC} \\ & \$ 2.500 .00 \end{aligned}$	
	.			

BACKWARD WAVE AMPLIFIERS (Voltage Tuned)

BACKWARD WAVE OSCILLATORS (Voltage Tuned)

MANY MODIFICATIONS of these tubes have been made to customers' specifications. A technical staff is available for your problems as well as for special research and development. Feel free to address us with your inquiry.
PRICE NOTE: Above prices apply to small quantities only and are subject to change without notice. A 10% credit wit be allowed upon return of the used encapsulated tube when reordering. Shipment made from F.O.B. Sunnyval California, via air freight. Terms: Net 30 days.

DELIVERY QUOTATIONS given above represent the average situation. Consult us directly for latest quotations.
S-BAND
C-BAND
X-BAND
Ku-BAND

LOW NOISE AMPLIFIERS

bACKWARD WAVE AMPLIFIERS (Voltage Tuned)

| BWA | | |
| :--- | :--- | :--- | :--- | :--- |
| BA-1才
 2.4 TO 3.6 KMC
 $\$ 1.500 .00$ | | |
| | | |
| | | |

BACKWARD WAVE OSCILLATORS (Voltage Tuned)

[^8]A This performance obtained in a lightweight, low-power solenoid

Changes or additions to the November Short-Form Catalog

L-BAND

BROADBAND FORWARD WAVE AMPLIFIERS

SPECIAL PURPOSE TUBES

SOLENOID FOCUSED	Dispersive Amplifiers Voltage Tuned 20\% Bandwidth	SPT	$\begin{gathered} \text { DA }-3 \dagger \\ 0.5 \mathrm{TO} 1.0 \mathrm{kMC} \\ \$ 1,350.00 \end{gathered}$	SPT DA-2 \dagger 1.0 TO 2.0 KMC $\$ 1,350.00$
SOLENOID FOCUSED	Frequency multiplier tubes	SPT	$\text { HA }-34^{*}$ UHF-BAND TO S-BAND $\$ 1.250 .00$	

A GRID ELECTRODE for attenuation and modulation is incorporated in all forward wave amplifiers and frequericy multipliers.

COLD VSWR less than 1.7 to 1 over the specified operating range is attained in most tubes.
MANUFACTURE to meet rigid environmental requirements is possible. Send us your specifications.
S-BAND
C-BAND
X-BAND
Ku-BAND

BROADBAND FORWARD WAVE AMPLIFIERS

SPECIAL PURPOSE TUBES

o Under development
§ 4 to 6 weeks delivery

* 6 to 8 weeks delivery
$\dagger 8$ to 10 weeks delivery

Changes or additions to the November Short-Form Catalog

FOR FURTHER INFORMATION
(1) Atlantic Seaboard

GEIST-HOTZ, INC.
695 SUMMER STREET
STAMFORD. CONNECTICUT
203 DAVIS 4.7300 TWX STAM 373
1123 MEADOW LARK DRIVE
BALTMMORE MARYLAND
301.242 .4123 TWX AR
301.242-4123 TWX ARB-548-U

14 WEDGEWOOD ROAD
NATICK. MASSACHUSETTS
617 OLYMPIC 3.6510° TWX NTK $1125-\mathrm{U}$
201 CRESCENT AVENUE
LEONIA. NEW JERSEY
201 WINDSOR 4.6488 TWX LEON 8O5-U
11 robert road
PENFIELD, NEW YORK
716 OSBORNE 1-4150 TWX RO-855
(2) Southeast U.S.
E. G. HOLMES \& ASSOCIATES

4969 ROSWELL ROAD. N.E.
ATLANTA 5. GEORGIA
404 BLACKBURN 5.6660 TWX AT 39
440 WEST MARKET STREET .- SUITE B-1
GREENSBORO. NORTH CAROLINA
919 BROADWAY $2-0855$
308 SOUTH BUMBY STREET
ORLANDO. FLORIDA
CHERRY 1-2128
(6) Arizona-California-Nevada

JOHN FRANCIS
O'HALLORAN \& ASSOCIATES
11636 VENTURA BLVD.
NORTH HOLLYWOOD. CALIFORNIA
213 TRIANGLE $7-0173$ TWX N HOL 7002
825 SAN ANTONIO ROAD
PALO ALTO. CALIFORNIA TWX PAL AL 119
SAN DIEGO, CALIFORNIA
714 ACADEMY 4-2824
PHOENIX/TUCSON. ARIZONA
ENTERPRISE 1200
(7) Rocky Mountain States

ELTON K. KELLEY
336 EAST 4TH STREET
LOVELAND, COLORADO
303 NORMANDY 7.1376
(8) Northwest
J. K. DOOLEY CO., INC.

3215 WESTERN AVENUE
SEATTLE 1. WASHINGTON
206 ATWATER 4.8313
MICRO SALES CORPORATION
SUITE 220 PAUL WELSH BLDG.
33OO SOUTH DIXIE
DAYTON 39. OHIO
$513 \quad 2983033$ TWX DY 408
(9) Canada

RADIONICS LIMITED
8230 MAYRAND STREET
MONTREAL 9. CANADA
514 REGENT 9.5517
4938 YOUNGE STREET
WILLOWDALE, ONTARIO
416-222-3261
(5) Texas

AIREP ENGINEERING CO.
P. O. BOX 9555

DALLAS 14. TEXAS
214 TAYLOR 4.3800

(10) Kansas - Missouri - Southern Illinois

GORDON FIXMAN ENGINEERING CO. 8160 STANFORD AVENUE
8160 STANFORD AVENUE
ST. LOUIS 30 . MISSOUURI
ST.
314 PARKKVIEW
5.5219

England

B \& K LABS
57/61 UNION STREET
LONDON S.E 1. ENGLAND

Netherlands

INGENIEURSBUREAU HEIJNEN
POSTBUS 10
GENNEP. NETHERLANDS

Norway

MORGENSTIERNE \& COMPANY

COLLETTS GATE 10
OSLO, NORWAY

Sweden
MAGNETIC AB
Box 94
VALLINGBY 1, SWEDEN

France

Japan

INDUSTRIAL IMPORT LTD.
BOX 1271 . CENTRAL POST OFFICE

Versatile engineering ...

accurate assembly of delicate parts . . .

modern equipment and advanced skills ...

all are combined to bring you a dependable, long-lived product.

FREQUENCY SHIFTING WITH THE TRAVEINGGWAVE TUBE

Phase Modulation Time Reference Diagram

Frequency shifting by phase modulation is one of the more important narrowband applications of the TWT. As a frequency translator the TWT finds use in doppler and coherent pulse simulators, homodyne systems, and similar frequency shift or frequency sensitive applications.

Though phase shifts of 2π radians can be obtained by modulating either the grid, anode, or helix, the latter proves most satisfactory from the standpoint of amplitude modulation. We will, therefore, confine the discussion to helix modulation.

Any change in helix voltage will affect electron beam velocity. The resulting velocity variation will either advance or retard the output phase relative to the input phase. Because phase shift is a near-linear function of helix voltage, we can sawtooth modulate the helix to obtain frequency shifts.
Referring to the above idealized time reference diagram for modulating a Huggins HA-1, we see that an 18 volt swing (433 v to 415 v) on the helix produces a relative phase shift of 2π radians (from $-\pi$ to $+\pi$).

A phase of $-\pi$ or $+\pi$ is functionally the same. Consequently, the helix voltage can
be immediately returned from 415 v to 433 v with no apparent change in phase. We recognize the composite voltage change as a linear sawtooth with an infinitely rapid flyback time.

A repetitive sawtooth voltage modulation which changes the relative phase by 360° per voltage swing produces single sideband modulation in which the amount of frequency shift equals the modulating frequency (i.e., $\mathrm{f}_{\text {in }}-\mathrm{f}_{\text {out }}=1 / \dagger+\Delta t$, where $1 / \Delta t$ represents a small energy component of the total frequency spectrum).

As applied to the helix, a negative slope on the modulating voltage gives a decrease in output frequency compared to the input. The converse is also true.
By using a TWT that is specially manufactured for low gain, frequency shifts in which unwanted sidebands that are 30 to 40 db below the carrier amplitude can be achieved.

A more comprehensive discussion on frequency translation is contained in Note 7, "Phase Modulation of Traveling Wave Tubes," in Volume I of our Engineering Handbook. This Note can be obtained by submitting a request on your company letterhead.

LOW NOISE AMPLIFIERS

BACKWARD WAVE AMPLIFIERS (Voltage Tuned)

BACKWARD WAVE OSCILLATORS (Voltage Tuned)

MANY MODIFICATIONS of these tubes have been made to customers' specifications. A technical staff is available for your problems as well as for special research and development. Feel free to address us with your inquiry.
PRICE NOTE: Above prices apply to small quantities only and are subject to change without notice. A 10% credit will be allowed upon return of the used encapsulated tube when reordering. Shipment made from F.O.B. Sunnyvale, California, via air freight. Terms: Net 30 days.

DELIVERY QUOTATIONS given above represent the average situation. Consult us directly for latest quotations.
S-BAND
C-BAND
X-BAND
Ku-BAND

LOW NOISE AMPLIFIERS

BACKWARD WAVE AMPLIFIERS (Voltage Tuned)

$\begin{gathered} \text { BA-1 } \dagger \\ 2.4 \mathrm{TO} 3.6 \mathrm{KMC} \\ \$ 1,500.00 \end{gathered}$	$\begin{gathered} \text { BA-2 } \dagger \\ \mathbf{8 . 2} \mathrm{TA} 12.4 \mathrm{KMC} \\ \$ 1,500.00 \end{gathered}$	$\begin{gathered} \text { BA-4 } \dagger \\ 12.0 \text { TO } 18.0 \text { KMC } \\ 30 \mathrm{~KB} \text { GAIN } \\ \$ 2.550 .00 \end{gathered}$

BACKWARD WAVE OSCILLATORS (Voltage Tuned)

$\begin{gathered} \mathrm{HO}-18 \S \\ 2.0 \mathrm{TO} 4.0 \mathrm{KMC} \\ \$ 750.00 \end{gathered}$	$\begin{gathered} \mathrm{HO}-3 \S \\ 3.75 \mathrm{TO} 7.0 \mathrm{KMC} \\ \$ 750.00 \end{gathered}$	$\begin{gathered} \text { HO- } 13 \S \\ 4.0 \text { TO } 8.0 \mathrm{KMC} \\ \$ 750.00 \end{gathered}$	$\begin{gathered} \mathrm{HO}-14 \S \\ 8.2 \mathrm{TO} 12.4 \mathrm{KMC} \\ \$ 750.00 \end{gathered}$	$\begin{gathered} \mathrm{HO}-17 \S \\ 7.0 \mathrm{TO} 11.0 \mathrm{KMC} \\ \$ 750.00 \end{gathered}$	$\begin{gathered} \mathrm{HO}-19 \S \\ 12.0 \mathrm{TO} 18.0 \mathrm{KMC} \\ \$ 1,250.00 \end{gathered}$
$\begin{gathered} \mathrm{HO}-1 \S \\ 2.0 \mathrm{TO}-4.0 \mathrm{KMC} \\ \$ 1.000 .00 \end{gathered}$	$\begin{gathered} \mathrm{HO}-20^{*} \\ 3.75 \mathrm{TO} 7.0 \mathrm{KMC} \\ \$ 1,000.00 \end{gathered}$	$\begin{gathered} \mathrm{HO}-21^{*} \\ 4.0 \mathrm{TO} 8.0 \mathrm{KMC} \\ \$ 1,000.00 \end{gathered}$	$\begin{gathered} \mathrm{HO}-2^{*} \\ 8.2 \mathrm{TO}_{12.4 \mathrm{KM}}^{\$ 1.000 .00} \end{gathered}$		$\begin{gathered} \mathrm{HO}-4 \S \\ 12.4 \mathrm{TO} 18.0 \mathrm{KMC} \\ \$ 1,500.00 \end{gathered}$
			$\begin{gathered} \mathrm{HO}-22 \dagger \\ 8.5 \mathrm{TO} 12.0 \mathrm{KMC} \\ 8.2 \mathrm{TO}^{12.4 \mathrm{KMC}} 3 \mathrm{MW} \text { MIN. } \\ \$ 2.000 .00 \end{gathered}$		

BROADBAND FORWARD WAVE AMPLIFIERS

SPECIAL PURPOSE TUBES

SOLENOID FOCUSED	Dispersive Amplifiers Voltage Tuned 20\% Bandwidth	$\begin{gathered} \text { DA-3 } \dagger \\ 0.5 \mathrm{TO} 1.0 \mathrm{KMC} \\ \$ 1,350.00 \end{gathered}$	$\begin{gathered} \text { DA-2 } \dagger \\ 1.0 \mathrm{TO} 2.0 \mathrm{KMC} \\ \$ 1,350.00 \end{gathered}$
SOLENOID FOCUSED	Frequency multiplier tubes	$\begin{gathered} \text { HA-34* } \\ \text { UHF-BAND TO S-BAND } \\ \$ 1.250 .00 \end{gathered}$	

A GRID ELECTRODE for attenuation and modulation is incorporated in all forward wave amplifiers and frequency multipliers.
COLD VSWR less than 1.7 to 1 over the specified operating range is attained in most tubes.
MANUFACTURE to meet rigid environmental requirements is possible. Send us your specifications.
S-BAND
C-BAND
X-BAND
Ku-BAND

BROADBAND FORWARD WAVE AMPLIFIERS

SPECIAL PURPOSE TUBES

FOR FURTHER INFORMATION

Atlantic Seaboard
GEIST-HOTZ. INC.
200 FIFTH STREET
STAMFORD, CONNECTICUT
203 DAVIS 4.7300 TWX STAM 373
14 WEDGEWOOD ROAD
NATICK. MASACHUSETTS
201 CRESCENT AVENUE
LEONIA. NEW JERSEY
201 WINDSOR 4.6483 TWXLEON 805.U
PENFIELD, NEW YORK
716 DUDLEY 1.2002

Southeast U.S.
E. G. HOLMES \& ASSOCIATES

4969 ROSWELL ROAD. N.E.
ATLANTA 5. GEORGIA
404 BLACKBURN 5.6660 TWX AT 39
440 WEST MARKET STREET .. SUITE B-1
GREENSBORO. NORTH CAROLINA
919 BROADWAY 2.0855
308 SOUTH BUMBY STREET
ORLANDO. FLORIDA
CHERRY 1-2128Kentucky - Michigan - Obio
MICRO SALES CORPORATION
SUITE 220 PAUL WELSH BLDG.
330O SOUTH DIXIE
DAYTON 39. OHIO
$513 \quad 2983033$
(4) Mid-W est

COZZENS \& CUDAHY, INC.
125 OLD ORCHARD ARCADE
SKOKIE ILINOIS ARCADE
312 ORCHARD 5.6700 TWX SKOK ILL 2723

Texas
AIREP ENGINEERING CO.
P. O. Box 9555

DALLAS 14 . TEXAS
214 TAYLOR 4-3800
6) Arizona-California-Nevada

JOHN FRANCIS
O'HALLORAN \& ASSOCIATES 11636 VENTURA BLVD.
NORTH HOLLYWOOD. CALIFORNIA
213 TRIANGLE 7-0173 TWX N HOL 7002
825 SAN ANTONIO ROAD
415 DAVENPORT 6-1493 TWX PAL AL 119
SAN DIEGO. CALIFORNIA
714 BROADWAY 3.5500
PHOENIX/TUCSON. ARIZONA
ENTERPRISE 1200Rocky Mountain States
ELTON K. KELLEY
336 EAST 4TH STREET
LOVELAND. COLORADO
(8) Northwest
J. K. DOOLEY CO., INC.

3215 WESTERN AVENUE
SEATTLE 1, WASHINGTON
206 ATWATER 4.8313
(9) Canada

RADIONICS LIMITED
8230 MAYRAND STREET
MONTREAL 9. CANADA
514 REGENT 9.5517
(10) Kansas - Missouri - Southern Illinois

GORDON FIXMAN ENGINEERING CO.
8160 STANFORD AVENUE
314 PARKVIEW 5 -5219

England

ALLIED INTERNATIONAL (B \& K LABS)

> 4 TILNEY ST. PARK LANE LONDON W1, ENGLAND

Netherlands

INGENIEURSBUREAU HEIJNEN
POSTBUS 10
GENNEP, NETHERLANDS

Norway

MORGENSTIERNE \& COMPANY
COLLETTS GATE 10 OSLO, NORWAY

Sweden

MAGNETIC AB
STORA NYGATAN 39 STOCKHOLM C, SWEDEN

Switzerland
NUCLETRON AG
SPITALGASSE 30
BERN, SWITZERLAND
Italy
NUCLETRON S.P.A.
PIAZZA LUIGI DI SAVOIA N22 MILANO. ITALY

Germany

SCHNEIDER, HENLEY CO., G.M.B.H. MAXIMILIANSPLATZ $12 A$
MUNICH 2, GERMANY
HENLEY \& CO.
202 E. 44TH STREET
NEW YORK 17. NEW YORK

Australia

GENERAL ELECTRONICS
SERVICES, PTY. LTD.
15JAMES STREET.
LIDCOMBE, N.S.W., AUSTRALIA

France

SASSOON SOPHER, INC.
65, RUE DE RICHLIEU
PARIS $2 E$, FRANCE
630 FIFTH AVENUE NEW YORK 2O, NEW YORK

Japan

INDUSTRIAL IMPORT LTD.
BOX 1271. CENTRAL POST OFFICE TOKYO. JAPAN

Versatile engineering . . .

exacting performance of precision operations . . .

accurate assembly of delicate parts . . .

modern equipment and advanced skills . . .

all are combined to bring you a dependable, long-lived product.

CONSTANT POWER SICNAL SOURC: USES CRID CONITROL IN THE TWT

Figure 1.
HA-1 Transfer Characteristics

Figure 2.
Constant Power Output System Block Diagram

The advantages of a constant power output signal source become immediately apparent to the applications or systems engineer. Such a source can be designed around a TWT amplifier that operates in the linear region (small signal) of its transfer characteristic. Compared to limiter operation, small-signal operation gives a more constant output power and is freer from phase distortion.

Consider the transfer characteristics shown in Figure 1 of a Huggins HA-1 TWT amplifier. These curves were taken at 3.0 kmc , but similar curves are experienced at all other frequencies in the operating band. If an unsaturated power output is needed, the operating region is limited as indicated.

Assume "that a constant power output of -10 dbm is desired. Readily seen is the fact that for all values of input power from -50 dbm to -12 dbm (a dynamic range of 38 db) there exists a corresponding grid voltage which will give a power output of -10 dbm .

A system which will provide a constant output power by controlling the TWT grid voltage is illustrated in Figure 2. A signal source, varying in both frequency and power output, drives a TWT amplifier through a variable attenuator of fixed value. A portion of the TWT's output is sampled by means of a directional coupler and detected by some
convenient means (e.g., crystal or bolometer). This signal is amplified, compared with a reference, and applied to the TWT grid.

The control voltage applied to the TWT grid is proportional to the logarithm of the TWT's output power. If the power output increases, the grid control voltage increases in the negative direction to lower the TWT's output, and the converse is also true.

The constancy of power output at point A in Figure 2 as a function of frequency rests upon the frequency dependence of the directional coupler and detector.

When composed of a Huggins HO-2 backward wave oscillator as the signal source and a Huggins HA-4 TWT amplifier as the leveler, this system is capable of providing an output power at point A that is constant within $\pm 0.7 \mathrm{db}$ over an 8.2 to 12.5 kmc frequency range.

Note 8, "The Use of the TWT Amplifier in Constant Power Systems," in Volume I of our Engineering Handbook describes a modified version of the system in Figure 2 which produced a power output that was constant within $\pm 0: 3 \mathrm{db}$.

A copy of this Note can be obtained by submitting a request on your company letterhead.

LOW-NOISE TRAVELING-WAVE-TUBE AMPLIFIERS

J. C. Stevenson ${ }^{\beta}$

As the importance of long-range microwave communications increases, the low-noise capability of the traveling-wave tube becomes more significant that ever. Long-range communications usually involves receiving relatively weak signals, and successful reception of such signals requires a high receiver sensitivity.

Receiver sensitivity (commonly measured as tangential sensitivity, i. e., the input signal power that is just equal to the total equivalent input noise of the receiver) depends upon the amount of spurious signals that are generated within the receiver. It then follows that internal noise generation by the receiver must be minimized if weak signals are to be detected. Especially is this true of the first amplifying stage, for receiver noise is largely determined by the noise figure (contribution of noise by the tube) of the input amplifier if the amplifier's gain is such that its noise overrides that of the following stages.

[^9]The ability to receive extremely low-level signals is closely allied with the noise bandwidth of the receiver. Many applications hinge upon broadband operation, either for versatility or the capacity to handle large amounts of information. Unfortunately, spurious signal generation increases with bandwidth. To detect weak signals then, we must either decrease the bandwidth or turn to a low-noise broadband amplifying device.

The traveling-wave tube is just such a device. TWT's with maximum noise figures of 5 to 8 db over octave bandwidths have been built, and TWT's having a maximum noise figure of 10 db over an octave bandwidth are readily available. With its lownoise and broadband capabilities, therefore, the traveling-wave tube has no peer as a preamplifier in many applications.

This Encineering Note is concerned with the more general aspects of low-noise traveling-wave tube amplifiers. The difference between thermal noise and tube noise is made, and the more important sources of tube noise are noted. A brief look at the
existing noise theory is followed by a short discussion of the factors that influence noise figure. After examining some methods used to reduce ThT noise fisures, the individual characteristic of the wave tube is probed.

Thermal And Tube Noise

The noise that exists in any amplifier consists of hum and random noise signals. The former is primarily a power supply problem; random noise signals, however, originate within the tube (tube noise) and its associated circuitry (thermal noise).

Thermal noise

The thermal energy of free electrons in a system's conductors causes a random movement of the electrons that is similar to Brownian motion. Because this movement is random in both time and space, a "thermal noise voltage" is produced.

If tube noise were nonexistent the minimum detectable signal would be set by the thermal noise level. Thermal noise power is expressed as:

$$
\begin{equation*}
N_{t}=K T B \tag{1}
\end{equation*}
$$

$$
\text { Where, } \quad \begin{aligned}
K= & \begin{array}{l}
\text { Boltzmann's constant } \\
\\
\\
\\
\\
\text { (watt-second per delvin) }
\end{array} \\
T= & \text { temperature (degrees } \\
& \text { Kelvin) } \\
\mathrm{B}= & \text { bandwidth (cps) }
\end{aligned}
$$

When the source and load in a transmission system are matched for maximum power transfer, thermal noise power at room temperature--as com-
puted by equation 1 --is 4.0×10^{-21} watts per cycle of bandwidth. A more convenient figure for the thermal noise level at room temperature is -114 dbm per megacycle of bandwidth.

Tube noise

Random motion of the electrons in thermionic vacuum tubes generates noise. Such phenomena a.s random division of electrons between electrodes and random emission of electrons from the cathode produce this random motion. And noise in a traveling-wave tube depends especially upon the amount of axial velocity fluctuations of the electrons.

Sources of Tube Noise

Numerous sources of tube noise exist in a traveling-wave tube. Some of the more important are shot, secondary emission, and partition noise. Though it is debatable as to what percentage of total noise generation is accountable to each source, experience shows that none of these sources can be neglected if low noise figures are desired.

Shot noise

A variation in the number of electrons that are emitted by the cathode causes shot noise. The noise is in the form of current fluctuations in the beam that are introduced by the random changes in the time rate of emission of electrons about some mean value.

Secondary emission

Random fluctuations in the number of secondary electrons that are emitted when primary electrons strike one or more of the electrodes gener-
ate secondary emission noise. This action increases noise by adding shot current to the beam. Though secondary emission can occur at all positive electrodes, it is most prevalent at the collector.

Partition noise

The radial components of electron thermal velocity give rise to random fluctuations in the division of cathode current among two or more positive electrodes (e. g., helix and collector). These changes in division create partition noise.

Pierce [1] discusses the possibility of another source of noise in a TWT that is analogus to partition noise. Should the aforementioned radial components of thermal velocity alter electron position in the helix, a noise very similar to partition noise may arise--even though no electrons strike the helix.

Nature of TWT Noise

In 1950 Pierce [1] discussed a simplified noise theory for travelingwave tubes which predicted that noise in a TWT would take the form of a standing wave along the electron beam. Subsequent experiments by Cutler and Quate [2] produced qualitative agreement with the standing-wave theory.

As a result it is widely accepted that most of the noise generation in a TWT originates at the virtual cathode and that it takes the form of standing space-charge waves. Furthermore, these waves propagate along the electron beam in the same manner as electromagnetic energy propagates alone a lossless, nonuniform transmission line.

Three phenomena set up noise standing waves. As the cathode emitts
electrons at random, they move away under the influence of an accelerating anode. In so doing, the electrons exhibit minute changes in current density and emission velocity. Current density fluctuations occur in the axial direction only, but variations in emission velocity exist in both the transverse and axial directions. Only axial components contribute to beam noise. It is these current and velocity fluctuations that produce noise standing spacecharge waves on the beam.

In addition to current and velocity produced space-charge waves, other waves are set up along the beam by a third phenomenon--perturbations in the beam. Perturbed electrons oscillate at their plasma frequency and give rise to space-charge waves [3]. These waves also apply to the transmission line analogy, an analogy of great importance to the reduction of TWT noise figures.

Factors Affecting Noise Figure

The noise figure (F) for any network or combination of networks is defined by the following equation:

$$
\begin{equation*}
F=\frac{(S / N)_{i}}{(S / N)_{0}} \tag{2}
\end{equation*}
$$

$$
\text { where, } \begin{aligned}
(\mathrm{S} / \mathrm{N})_{i}= & \begin{array}{l}
\text { signal-to-noise } \\
\\
\\
\text { ratio at the } \\
\text { input }
\end{array} \\
(\mathrm{S} / \mathrm{N})_{0}= & \left.\begin{array}{l}
\text { signal-to-noise } \\
\begin{array}{l}
\text { ratio at the } \\
\\
\\
\text { output }
\end{array}
\end{array}\right)
\end{aligned}
$$

Equations 1 and 2 can be combined with the fundamental gain definition ($G=S_{0} / S_{i}$) to express the noise figure in terms of output quantities:

$$
\begin{align*}
\mathrm{F}=1+ & \left(\mathrm{Na}_{\mathrm{a}} / \mathrm{N}_{\mathrm{t}}\right)_{0} \tag{3}\\
\text { where, } \quad \mathrm{N}_{\mathrm{a}}= & \text { the portion of out- } \\
& \begin{array}{l}
\text { put noise that is } \\
\\
\\
\text { caused by the tube }
\end{array} \\
\mathrm{N}_{\mathrm{t}}= & \text { the portion of out- } \\
& \text { put noise that re- } \\
& \text { sults from the } \\
& \text { thermal noise at } \\
& \text { the input }
\end{align*}
$$

Many factors contribute to the magnitude of the term N_{a} in equation 3. Yet to be understood is just how and to what extent all the variables in a TWT influence noise generation, but there are some factors which are fairly well understood. It is to these that we turn our attention.

Input coupler

Because any coupling loss at the input decreases the signal without affecting tube noise, the noise figure in $d b$ will be increased by the input coupler loss in db .

Perturbations

As mentioned previously, perturbations in the beam give rise to noise because perturbed electrons, which oscillate at their plasma frequency, set up standing space-charge waves on the electron beam.

Lens action

Electron lenses which are formed by the electrodes in the gun increase both partition noise and velocity fluctuations in a TWT. Already discussed is the fact that both transverse and axial velocity variations are present. In a high-velocity beam, the mean-square transverse velocity fluctuations greatly exceed the mean-square axial fluctuations.

In passing through a lens, the direction of motion of the electrons changes. Because of this action, velocity fluctuations in the axial direction may be changed into transverse fluctuations, and the converse, of course, is also true. As a result it is conceivable that more transverse fluctuations will be converted than axial. Should this be the case there would be an increase in axial fluctuations and noise figure.

Focusing field

The strength of the focusing field has a bearing on lens action and interception. A strong field can reduce lens effect. Partition noise increases in a high-energy beam if the focusing field is too weak. Also, the paths of electron groups from different parts of the cathode will cross should the focusing field be too weak, and if these groups have different velocity distributions, total beam noise increases.

Cathode

Several characteristics of the cathode come under careful scrutiny when we speak of lowering the noise figure. For example, the minimum theoretical noise figure is a direct function of cathode temperature [4]. Electrons that are emitted from a high work function cathode possess high thermal energy, and such emission produces a beam that has a greater velocity spread, more perturbations, and a higher noise temperature. A cathode whose surface is not uniform in density provides patchy or spotty emission which results in nonuniform charge density in the beam. Poor axial emission is caused by a rough emitting surface, and poor axial emission increases velocity fluctuations in the beam. All of
these characteristics, either individually or collectively, increase the noise content of the beam

Lowering The Noise Figure

Numerous theories were advanced and many achievements were made by TWT engineers during the last 10 years. Historically, the achievements ran--and still are running-ahead of the theories.

In addition to theories dealing with lens action, perturbations, cathodes, et cetera, several ideas for lowering the noise figure by means of the electron gun were proposed over the years.

Experimental verification of the standing-wave theory by Cutler and Quate prompted the first sucgestion: place the gun at some critical distance from the helix, the distance beine selected to place a noise standing wave minimum at the entrance to the helix. Such a step did improve noise figures somewhat.

A much greater improvement was realized, however, with Watkins' velocity jump gun [5]. Following came the transmission line analog which led to the exponential gun [6]. The exponential gun represented a major contribution to lowering TWT noise figures, and it was with this gun that much success in the low-noise TWT field was realized. As we shall soon see, recent developments have brought about modifications in the original exponential gun. These modifications have made it possible to make further reductions in TWT noise figures.

The low-noise sun

Present low-noise theory and the transmission line analog make it possible to treat the electron gun as a
space-charge wave transformer. The gun functions to match the effective beam impedance at the virtual cathode (potential minimum) to the desired beam impedance at the entrance to the helix. Matching these impedances makes the standing-wave ratio ($S: N R$) of noise current relatively small and places a current minimum at the helix entrance. First order noise theory shows that these conditions give minimum noise figure.

Changing the characteristic beam impedance slowly and smoothly is the best way to match the beam impedance at the potential minimum to that at the helix entrance. An exponential transmission line can perform such an impedance transformation. We choose an exponential transformer because it can match widely different impedances over wide frequency ranges and because it provides a fairly good match over short electrical lengths.

An exponential transformer can be approximated by a properly designed multi-anode or multi-region electron gun. This type of gun is essentially a series of exponential transformers operating in cascade. A typical gun and its potential profile appears in Figure 1.

[^10] MULTI-REGION LOW-NOISE ELECTRON GUN

Low mismatches in all regions of the gun provide a near unity SWR at the helix entrance. In regions B, C, and D, low mismatches are maintained by providing exponential transformations that are not too steep.

The one-dimensional theoretical transformation in region A for a parallel-flow beam is comparatively steep and undesirable. This transformation is based on the assumption that the noise parameters are invariant between the potential minimum and the helix. It has been found, however, that the noise parameters are not invariant in the immediate vicinity of the cathode.

Currie and Forster investigated the effects on beam noiseness of radical changes in the d-c potential distribution in the multi-velocity region near the cathode [7]. Results of their investigation led to a potential profile in region A that differs greatly from the profile previously used in low-noise guns. Figure 2 shows a comparison of the transformation curves prescribed for a one-dimensional beam and Currie's and Forster's "quasi-one-dimensional" beam.

FIGURE 2. COMPARISON OF TRANSFORMATION CURVES
IN THE ABSENCE OF SPACE CHARGE, FOR ONE-DIMENIN THE ABSENCE OF SPACE CHARGE, FOR ONE-DIMEN-
SIONAL AND QUASI-ONE-DIMENSIONAL ELECTRON BEAMS.

The Currie-Forster profile exhibits an extended low-velocity region in which the electrons are slowly accelerated immediately after leaving the cathode. In essence, this lowvelocity region is considered to be a flexible noise transducer that transforms the variant noise parameters at the potential minimum to the single-velocity region in which the parameters are invariant.

Mueller and Currie calculated the characteristics of noise propagation through a multi-velocity region in which the d-c potential increases linearly [8]. They have shown that beam noiseness decreases as the rate of acceleration decreases in the multi-velocity region. Once the beam leaves the multi-velocity region, however, the single-valued velocity theory of space-charge wave propagation applies, and the previously discussed theory for regions B, C, and D in a multi-anode gun becomes valid.

Several important advantages are inherent in the multi-anode gun: 1) lens effect is reduced since the gun operates without sharp potential discontinuities, 2) the gun lends itself to quantity production because of its mechanical simplicity, and 3) the gun is flexible (i. e., the noise current minimum can be positioned electrically).

In addition to electron gun design, other steps must be taken to combat tube noise.

For example, the input coupler must be designed for minimum coupling loss so that the noise figure will not be greatly degraded. Regardless of the type of coupler used, its parameters are manipulated to give the best possible VSWR (i. e., the best signal transfer to the helix).

As another example, attention is given to the mechanical configuration and chemical composition of the collector with a view toward reducing secondary emission or its effects. The final design often requires that the collector be operated positive with respect to the helix for optimum noise figure.

Other steps taken to lower the noise figure are concerned with focusing and the cathode. Using a strong focusing field reduces lens effect, interception, and perturbations in the beam. Axial and even electron emission is approached by using cathodes with smooth, evendensity coatings; high cathode temperatures and high thermal energies are avoided by employing low-workfunction emitters such as oxide coated cathodes.

Each TWT Is Unique

In the present state of the art, each traveling-wave tube is an individual. Unlike 6SN7's, 5U4's, and other tubes of that breed, the TWT isn't compatible with direct interchangeability or replacement, for each TWT gives optimum performance under unique operating conditions.

This uniqueness stems from two facts: the electron gun is paramount to low TWT noise figures, and the potential profile associated with the gun is a function of the voltages applied to the anodes. Due to the many variables which influence noise, the anode voltages required to obtain the proper profile usually differ from gun to gun. Improper electrode voltages can, therefore, produce disappointing performance and possibly tube damage.

Accordingly, the manufacturer supplies with each tube a "data sheet" that gives all operating voltages and currents for that tube. Figure 3 shows an example of a data sheet for a Huggins HA-72 which has specified performance of 25 db minimum smallsignal gain and 8 db maximum noise figure across the 0.5 to 1.0 kmc frequency range.

The voltages and currents on this data sheet are unique to the particular tube with which the sheet is supplied. The TWT's individuality is stressed by the improbability that another HA-72 will give optimum performance with identical voltages applied. Departure from gun voltages changes the all-important potential distribution of the electron gun and consequently moves the noise-current minimum relative to the helix entrance. Because the specified voltages represent optimum operating conditions, unsatisfactory performance usually results when operating the heater, helix, and collector at other than specified voltages. The dependence of noise figure on operating voltages is discussed in more detail in Note 3, Volume II, of Huggins Engineering Handbook.

There is, of course, a tolerance on the voltage specifications, but system requirements primarily determine the amount of tolerance. All TWT manufacturers are equipped and ready to assist the engineer in attaining best TWT performance in his particular application.

Future Low-Noise TWT Developments

Research in low-noise wave tubes is intense and widespread throughout the industry. Such research is pushing noise figures lower and lower, and in the not-too-distant future we

DATA SHEET

RETURN SHIPMENT OF THIS TUBE NOT ACCEPTED WITHOUT HUGGINS LABORATORIES APPROVAL.

POWER SUPPLY CONNECTIONS:

WINCHESTER CONNECTOR M9P

```
A - ANODE NO. }
B - ANODE NO. 3
C - CAPSULE GROUND
D - HELIX
E - HEATER
F - HEATER
H - ANODE NO. 1
J - ANODE NO. 4
K - CATHODE
```

WINCHESTER CONNECTOR SMIP IS COLLECTOR CONNECTION.

OPERATING CONDITIONS:

* V ${ }^{\text {anOde }}$ NO. 1	0
* $V_{\text {ANODE }}$ NO. 2	7.3
* $V_{\text {ANODE }}$ NO. 3	0
* V ${ }^{\text {anode }}$ NO. 4	7.2
* $\mathrm{V}_{\text {HELIX }}$	81
* VCOLL.	$\mathrm{V}_{\text {Helix }}+300$
$\mathrm{V}_{\text {HTR }}$	6.5

* measured with respect to cathode.

I ${ }_{\text {ANODE }}$ NO. 1	--
${ }^{\text {I }}$ ANODE NO. 2	--
${ }^{\text {I }}$ ANODE NO. 3	--
${ }^{1}$ ANODE NO. 4	--
${ }^{1}$ HELIX	0
${ }^{1}$ COLL.	0.62 ma
${ }^{\text {I CATH. }}$	0.62 ma
IHTR.	0.7 amp

SOL TYPE	BS-26C
V SOL $^{\text {SOL }}$	105
I SOL	4.8 amp
GAUSS	820

[^11]\qquad
DATE
HUGGINS LABORATORIES 999 East Arques Avenue . Sunnyvale, California F-107

FIGURE 3. SAMPLE "DATA SHEET" FOR A HUGGINS LOW-NOISE TWT AMPLIFIER. SPECIFIED VOLTAGES REPRESENT OPTIMUM OPERATING CONDITIONS.
should see TWT's operating over octave bandwidths with significantly lower noise figures than presently obtained.

Much effort is being devoted to reducing the weight of low-noise TWT amplifiers. Special lightweight solenoids notwithstanding, substantial weight reduction is possible only by eliminating the solenoid.

One method of eliminating the solenoid is to use a straight-field permanent magnet for focusing; solenoidfocused low-noise TWT performance can be duplicated in such a focusing structure. Though PM focusing does lower system weight since no solenoid power supply is required, it may increase tube weight considerably [9]. Therefore, the industry is concentrating on periodic focusing, both magnetic and electrostatic.

Periodic focusing works very well for low and medium power amplifiers. In the present state of the art, however, PPM focusing of "low-noise" THT's gives, at best, a 12 to 13 db noise figure over a 2 : 1 frequency range. An octave bandwidth noise figure of 25 db represents current achievements with electrostatic focusing. It appears that conflicting field strength requirements for gain and noise figure must be overcome before periodically focused wave tubes will operate over an octave bandwidth with a maximum noise figure of 10 db or less.

Backward wave amplifiers (BWA) form another important phase of lownoise research. Possibilities of extremely low noise figures in the BWA are great, for this type of TWT operates over a comparatively small bandwidth. Yet a BWA still has broadband capabilities since it is voltage tunable over a wide frequency range. Currie and Forster report reproducible maximum noise figures of 6 db for a 25% tuning range and 4.5 db for a 10% tuning range [10]. The two apparent problems that must be solved are reducing focusing requirements and limiting gain fluctuations as the tube is tuned.

The history of low-noise travelingwave tube amplifiers is filled with many, many theories and proposed solutions to reducing noise figures. From each theory and from each solution have come other theories and solutions to push the noise figure progressively lower. This trend is certain to continue until the yet-to-be-determined limiting noise figure in the TWT is reached.

Acknowledgements

The author extends his thanks to D. E. MacKerrow, J. C. Mc Caig, and V. D. Varenhorst for their informative discussions on low-noise travel-ing-wave tubes.

REFERENCES

1. J.R. Pierce, Traveling-Wave Tubes, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1950.
2. C. C. Cutler and C. F. Quate, "Experimental Verification of Space-Charge and Transit-Time Reduction of Noise In Electron Beams," Physics Review, December, 1950.
3. E. W. Kinaman and M. Magid, "Very Low-Noise TravelingWave Amplifier," Proceedings of The IRE, May, 1958.
4. D. A. Watkins, "Noise At The Potential Minimum In The High Frequency Diode," Journal Of Applied Physics, May, 1955.
5. D. A. Watkins, "Traveling-wave Tube Noise Figure," Proceedings of The IRE, January, 1952.
6. S. Bloom and R. W. Peter, "Transmission-Line Analog of a Modulated Electron Beam," RCA Review, March, 1954.
7. M. R. Currie and D. C. Forster, "New Mechanism of Noise Reduction in Electron Beams," Journal Of Applied Physics, January, 1959.
8. W. M. Mueller and M. R. Currie, "Noise Propagation on Uniformly Accelerated Multivelocity Electron Beams," Journal Of Applied Physics, December, 1959.
9. "Periodic Permanent Magnet Focused Traveling-Wave-Tube Amplifiers," Huggins Engineering Handbook, Vol. I.
10. M. R. Currie and D. C. Forster, "Low Noise Tunable Preamplifier for Microwave Receivers," Proceedings Of The IRE, March, 1958.

the effect of operating voltage VARIATIONS ON TWT NOISE FIGURE

J. C. Stevenson ${ }^{\beta}$

As discussed in Note 2, Volume II, "Low-Noise Traveling-Wave-Tube Amplifiers," the traveling-wave tube is an individual, and this characteristic of the TWT cannot be neglected if optimum tube performance is to be obtained. In harmony with this trait of individuality, Note 2 also points out that the manufacturer's prescribed voltages--which represent optimum per-formance--should be followed. Operation with different voltages usually gives other than optimum performance.

This Engineering Note is concerned with TWT noise figure specifications, the area of investigation being confined to the effect on noise figure of changes in the operating parameters (viz., the focusing field and the collector, helix, anode, and heater voltages). The dependence of noise figure on operating parameters is theoretically analyzed to lay a foundation for understanding the series of noise figure curves which are presented as a part of this Note. These curves graphically illustrate

[^12]the importance of operating a wave tube with its optimum voltages applied.

An unsophisticated look at three concepts of the low-noise TWT amplifier will lead to an insight of how and why operating parameter changes affect noise figure.

Noise Standing Waves

That most of the noise generation in a wave tube originates at the virtual cathode (potential minimum) and that it takes the form of standing space-charge waves along the electron beam is widely accepted by lownoise TWT engineers. In addition, there is nearly universal agreement that a minimum noise figure for any given tube is theoretically attained when the noise standing wave goes through a minimum at the helix entrance. A standing wave and the oritical placement of a standingwave minimum immediately suggests an impedance matching problem.

The Low-Noise Gun

In its simplest form, a low-noise electron gun can be thought of as a transformer which functions to match the characteristic beam impedance at the virtual cathode to the desired beam impedance at the helix entrance. Such an impedance transformation makes the SWR relatively small and places a standing-wave minimum at the entrance to the helix. More specifically, the electron gun can be treated as an exponential transformer which varies the beam impedance in the following manner:

$$
\begin{equation*}
z=z_{0} e^{k a} \tag{1}
\end{equation*}
$$

where,

$$
\left.\begin{array}{rl}
\mathrm{Z}= & \text { characteristic beam } \\
& \text { impedance } \\
\mathrm{Z}_{0}= & \text { characteristic beam } \\
& \text { impedance at the } \\
& \text { virtual cathode }
\end{array}\right\} \begin{aligned}
\mathrm{k}= & \text { "steepness factor" } \\
\alpha= & \beta-\beta_{0}=\begin{array}{l}
\text { total phase } \\
\text { angle }
\end{array}
\end{aligned}
$$

The total phase angle will prove to be an important factor toward understanding why changes in operating parameters affect noise figure, and it may be defined as:

$$
\begin{equation*}
\alpha=\int_{Z_{0}}^{z} \frac{2 \pi}{\lambda p} d z \tag{2}
\end{equation*}
$$

where,

$$
\begin{aligned}
\mathrm{Z}= & \text { distance along the } \\
& \text { beam (} Z \text { increases } \\
& \text { from cathode to } \\
& \text { collector) } \\
& \\
\lambda_{\mathrm{p}}= & \text { plasma wavelength }
\end{aligned}
$$

Because the total phase angle is important, the plasma wavelength or frequency is also essential to the purpose of this Note. The plasma frequency is associated with bunching in the electron beam. As electrons are displaced in the beam to form a bunch, there is a concentration of space charge in the bunch, and this concentration of space charge possesses a corresponding electric field. The electric field produces a restoring force on the electrons that is proportional to their displacement. As a result there is simple harmonic motion of the charge (i.e., the charge oscillates at the plasme frequency).

Without going into the subtleties of plasma frequency and effective plasma frequency, only the infinitely broad electron beam case will be considered. In such a beam the plasma frequency may be defined as:

$$
\begin{align*}
& f_{p}=\frac{1.83 \times 10^{8} \mathrm{~J}_{0}^{1 / 2}}{2 \pi V_{0}^{1 / 4}} \tag{3}\\
& \text { where, } \quad J_{0}=d-c \text { current density } \\
& \quad V 0=d-c \text { beam voltage }
\end{align*}
$$

Noise Temperature

The third and last concept to be examined is that of the noise temperature in the beam, and this will be merely defined as:

$$
\begin{equation*}
N T=\frac{f}{f_{c}} T_{k} \tag{4}
\end{equation*}
$$

where, $f=$ frequency of interest
$f_{c}=$ cyclotron frequency
$T_{k}=$ cathode temperature

As revealed in elementary physics, the cyclotron frequency is related to the motion of a moving charged particle in a uniform magnetic field. For an electron, the cyclotron frequency may be expressed by the following equation:

$$
\begin{equation*}
f_{c}=\frac{q_{e}^{B}}{m_{e}^{2 \pi}} \tag{5}
\end{equation*}
$$

where, $\quad q_{e}=$ charge on the electron

$$
\begin{aligned}
& m_{e}=\text { mass of the electron } \\
& B=\text { magnetic flux density }
\end{aligned}
$$

Interpreting The Equations

Certain conditions must be set before any correlation between the equations and operating parameter changes can be made. The following discussion will, therefore, be based upon the assumption that the TWT operating parameters are adjusted for optimum performance. Effects on output power and gain are ignored in this discussion since the noise figure is the characteristic of importance.

The impedance transformation between virtual cathode and helix entrance, according to equation 1 , is dependent on the total phase angle, a, among other factors. From a matched condition, any change in a will 1) cause an impedance mismatch, 2) increase the SWR of the noise standing wave, and 3) move the standing-wave minimum relative to the helix entrance. These actions, of course, produce a change in the noise figure.

Equation 2 shows that α is a function of λ_{p} which, as stated in e-
quation 3, is dependent upon current density and beam voltage. Changing the helix, heater, or any anode voltage will naturally affect the current density, the beam voltage, or both. It them follows that the noise figure is a function of a TWT's operating potentials. Though neither the current density or beam voltage is affected by a change in collector potential, the collector voltage does influence secondary emission. Thus, we would expect the noise figure to vary somewhat with a change in the collector voltage.

A glance at equations 4 and 5 instantly reveals that the noise figure varies with heater voltage and, in addition, the focusing field. The former determines cathode temperature and the latter determines the cyclotron frequency.

These equations in no way indicate the relative effect on noise figure of the various parameters, but the following noise figure curves do show that some parameters have more effect on noise figure than do others.

Noise Figure Curves

Noise figure data is presented on four Huggins low-noise amplifiers: a L-band $\mathrm{HA}-14$, a S-band $\mathrm{HA}-37$, a C -band HA-47, and a Ku-band HA-43. All four tubes provide 25 db minimum smallsignal gain and 1 mw minimum power output over their specified frequency ranges. The $\mathrm{HA}-14$ and $\mathrm{HA}-47$ have maximum noise figures of 10 db over the 1.0 to 2.0 kmc and 4.0 to 8.0 kmc bands respectively. A maximum noise figure of 11 db across the 2.0 to 4.0 kmc range is attained with the HA-37, and the HA- 43 has a maximum noise figure of 17 db over the 12.0 to 18.0 kenc band.

Each series of noise figure data was taken with the tube optimized for broadband gain, power output, and noise figure. The curves shown in Figures 1, 2, 3, and 4 are not presented as being typical of the applicable tube type, but they are representative of the fact that noise figure normally varies with each operating parameter.

In a few cases a curve appears to be inconsistent with low-noise theory. For example, the noise figure should decrease to a limiting value as the focusing field increases. But the HA-37 and HA 43 data shows an increase in noise figure as the field
is increased beyond its optimum value. Though contrary to theory, this phenomenon has no adverse effect on tube performance. At any rate inconsistencies do exist and provide further support to the fact that each TWT is indeed an individual.

Acknowledgments

The author expresses his appreciation to J. C. McCaig and V. D. Varenhorst for their helpful suggestions and for their illuminating discussions on the relationships between TWT noise figure and operating parameters.

HA - 14 (DATA TAKEN AT 1.5 KMC)
FREQUENCY RANGE, 1.0 TO 2.0 KMC ; NF, 10 DB MAX: $S-S$ GAIN, 25 DB MIN: POWER OUTPUT, O DBM MIN

HA - 37 (DATA TAKEN AT 3.0 KMC)
 $\mathrm{V}_{\mathrm{A}_{1}}=5 \mathrm{~V}, \mathrm{~V}_{A_{2}}=21 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{3}}=21 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{4}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=400 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{F}}=6.3 \mathrm{~V}, \mathrm{AND} \mathrm{B}=1000 \mathrm{GAUSS}$

FIGURE 2. HA - 37, NOISE FIGURE VS. OPERATING PARAMETERS

 $V_{A_{1}}=23 \mathrm{~V}, \mathrm{~V}_{A_{2}}=36 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{3}}=102 \mathrm{~V}_{0} \mathrm{~V}_{\mathrm{A}_{4}}=-49 \mathrm{~V}_{1} \mathrm{~V}_{\mathrm{H}}=680 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=780 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{F}}=6.3 \mathrm{~V}$, AND B $=1000 \mathrm{GAUSS}$ FIGURE 3. HA - 47, NOISE FIGURE VS. OPERATING PARAMETERS

THE EFFECT OF OPERATING VOLTAGE VARIATIONS ON TWT NOISE FIGURE

HA - 43 (DATA TAKEN AT 12.0 KMC)
FREQUENCY RANGE, 12.0 TO 18.0 KMC ; NF, 17 DB MAX; $S-S$ GAIN, 25 DB MIN; POWER OUT, O DBM MIN $V_{A_{1}}=25 \mathrm{~V}, V_{A_{2}}=42 \mathrm{~V}, V_{A_{3}}=620 \mathrm{~V}, V_{A_{4}}=-10 \mathrm{~V}, V_{H}=1070 \mathrm{~V}, V_{C}=1070 \mathrm{~V}, V_{F}=6.3 \mathrm{~V}, \quad$ AND B $=1000 \mathrm{GAUSS}$

FIGURE 4. HA - 43, NOISE FIGURE VS. OPERATING PARAMETERS
$\int \frac{\text { FORWARD WAVE AMPLIFIERS }}{\text { BACKWARD WAVE OSCILLATORS }}$

- DISPERSIVE FORWARD WA VE AMPLIFIERS

VOLTAGE TUNED 20 PER CENT BANDWIDTH 15 DB GAIN	$\begin{gathered} \text { DA-3 } \\ 0.5-1.0 \text { KMC } \\ \$ 850.00 \\ 6-8 \text { WEEKS DELIVERY } \end{gathered}$	$\begin{gathered} \text { DA-2 } \\ \text { 1.0-2.0 KMC } \\ \$ 750.00 \\ 6-8 \text { WEEKS DELIVERY } \end{gathered}$

- BACKWARD WAVE AMPLIFIERS

```
VOLTAGE TUNED
0.1 TO 1.0 PER CENT BANDWIDTH
15 DB GAIN
```

PERMANENT MAGNET FOCUSED AMPLIFIERS

10 MW STANDARD 30 DB SMALL SIGNAL GAIN	$\underset{1.0-2.0 \mathrm{kMC}}{\mathrm{HA}-31^{\mathrm{D}}}$
1 W STANDARD 30 DB MIN. SMALL SIGNAL GAIN	

- BACKWARD WAVE OSCILLATORS

10 MW MIN. POWER OUT VOLTAGE TUNED	

SPECIAL PURPOSE TUBES

THE INDUSTRY'S BROADEST LINE FORWARD WAVE AMPLIFIERS

- BROADBAND FORWARD WAVE AMPLIFIERS

$\begin{gathered} \text { HA-1 A } \\ \text { 2.0-4.0 KMC } \\ \$ 650.00 \\ 4-6 \text { WEEKS DELIVERY } \end{gathered}$	$\begin{gathered} \text { HA-26 (HA-3) } \\ 4.0-8.0 \text { KMC } \\ \$ 750.00 \\ 4-6 \text { WEEKS DELIVERY } \end{gathered}$	$\begin{gathered} \text { HA }-4 \mathrm{M} \\ \text { 8.2-12.4 KMC } \\ \$ 750.00 \\ 4-6 \text { WEEKS DELIVERY } \\ \hline \end{gathered}$	$\begin{aligned} & \text { HA-24A HA } 25^{\text {D }} \\ & 12.4-15.0 \mathrm{KMC} \\ & \$ 750.00 \\ & 4-6 \text { WKS DEL. } \end{aligned}$
$\begin{gathered} \text { HA-2 } \\ \text { 2.0-4.0 KMC } \\ \$ 650.00 \\ \text { 4-6. WEEKS DELIVERY } \end{gathered}$		$\begin{gathered} \text { HA-9A } \\ 8,2-11.0 \text { KMC } \\ \$ 1.500 .00 \\ 6-8 \text { WEEKS DELIVERY } \end{gathered}$	
$\begin{gathered} \text { HA-11A } \\ \text { 2.0-4.0 KMC } \\ \$ 750.00 \\ 4-6 \text { WEEKS DELIVERY } \end{gathered}$		$\begin{gathered} \text { HA-15 } \\ 8.2-12.4 \text { KMC } \\ \$ 850.00 \\ 6-8 \text { WEEKS DELIVERY } \end{gathered}$	
		$\begin{gathered} \text { HA }-23 \mathrm{M} \\ 8.2-11.0 \mathrm{KMC} \\ \$ 1.500 .00 \\ 4-6 \mathrm{MONTHS} \text { DEL } \end{gathered}$	
$\begin{gathered} \text { PA-4 }(\mathrm{HA}-12) \\ 2.0-4.0 \text { KMC } \\ \$ 850.00 \\ 4-6 \text { WEEKS DELIVERY } \end{gathered}$		$\begin{gathered} \text { PA-5A(HA-13) } \\ 8.2-12.4 \text { KMC } \\ \text { WEE50.00 } \\ 4-6 \text { WEESS DELIVERY } \end{gathered}$	
		$\underset{8.2-12.4-1}{\mathrm{KMC}}$	
$\begin{gathered} \text { PA-3 } \\ \text { 2.0-4.0 KMC } \\ \$ 1.000 .00 \\ 6-8 \text { WEEKS DELIVERY } \end{gathered}$			

- DISPERSIVE FORWARD WAVE AMPLIFIERS

DA-1	DA-4		
$2.0-4,0$ KMC	$4.0-8.0$ KMC		
$4-6$ WEEKS DELIVERY	$4-6$ WEEKS DELIVERY		

- BACKWARD WAVE AMPLIFIERS

$\begin{gathered} \text { BA-1 } \\ \text { 2.4-3.6 KMC } \\ \$ 1.500 .00 \\ 2-3 \mathrm{MONTHS} \text { DEL } \end{gathered}$		$\begin{gathered} \text { BA-2 } \\ 8.2-12.4 \mathrm{KMC} \\ \$ 1.500 .00 \\ 2-3 \mathrm{MONTHS} \text { DEL } \end{gathered}$	$\begin{gathered} \mathrm{BA}-4^{\mathrm{D}} \\ 12.0-18.0 \mathrm{KMC} \end{gathered}$
PERMANENT MAGNET FOCUSED AMPLIFIERS			
$\begin{gathered} \mathrm{HA}-29^{\mathrm{D}} \\ 2.0-4.0 \mathrm{KMC} \end{gathered}$	$\begin{array}{r} \mathrm{HA}-28^{\mathrm{D}} \\ 4.0-8.0 \mathrm{KMC} \end{array}$	$\begin{gathered} \text { HA-20A } \\ 8,2-11.0 \text { KMC } \\ \$ 1,500.00 \\ 6-8 \text { WEEKS DELIVERY } \end{gathered}$	
$\begin{gathered} \mathrm{HA}-30^{\mathrm{D}} \\ 2.0-4.0 \mathrm{kMC} \end{gathered}$		$\begin{gathered} \text { HA-21A } \\ \text { 8.2-12.4 KMC } \\ 33,000.00 \\ 6-9 \text { MONTHS DEL. } \end{gathered}$	*

- BACKWARD WAVE OSCILLATORS

$\begin{gathered} \mathrm{HO}-1 \\ \text { 2.0-4.0 KMC } \\ \text { 4-6 WEKSS DELIVERY } \end{gathered}$		$\begin{gathered} \mathrm{HO}-2 \\ \text { 7.5-14.0 KMC } \\ \$ 1,000.00 \\ 4-6 \text { WEEKS DELIVERY } \end{gathered}$	

- SPECIAL PURPOSE TUBES

HA-16 1.8 KMC IN, 9.0 KMC OUT FREQ, MULT. $\$ 850.00$ 6-8 WEEKS DELIVERY	$\begin{gathered} \text { HA-10 } \\ \text { 8.2-12.4KMC } \\ 100 \text { MW AMPLIFIER } \\ \text { \$850.00 } \\ \text { 4-6 WEEKS DELIVERY } \end{gathered}$

PRICE NOTE:
ABOVE PRICES APPLY TO SMALL QUANTITIES ONLY, SUBJECT TO CHANGE WITHOUT NOTICE, A 15 PER CENT CREDIT WILL BE ALLOWED UPON THE RETURN OF THE USED ENCAPSULATED TUBE WHEN REORDERING. SHIPMENT MADE F.O.B. FROM MENLO PARK, CALIFORNIA, VIA AIR FREIGHT. TERMS: . 5 PER CENT IN 10 DAYS, NET 30 DAYS.

Call your nearest HUGGINS Representative

RADIONICS LTD.
8230 MAYRAND STREET
MONTREAL 9, CANADA
REGENT 3-3937
TOWER ENGINEERING CO.
627 SALEM AVENUE
DAYTON 6, OHIO
OREGON 9346
ELTON K. KELLEY
336 EAST 4TH STREET LOVELAND, COLORADO NORMANDY 7-1376
T. LOUIS SNITZER CO.

5354 WEST PICO BLVD
LOS ANGELES, CALIFORNIA
WEBSTER 2-0874
J. K. DOOLEY \& CO.

2315 WESTERN AVENUE
SEATTLE 1, WASHINGTON
ALDER 3208
H. L. HOFFMAN \& CO.

804 NEWBRIDGE AVENUE
WESTBURY, LONG ISLAND, NEW YORK
EDGEWOOD 4-5600
737 HIGH STREET
WESTWOOD, MASSACHUSETTS
DEDHAM 3-2́667
19 BAUER DRIVE
ALBANY 5, NEW YORK
FRANKLIN'7-0831 OR UNION 9-8165
662 MONROE AVENUE
ROCHESTER, NEW YORK *
BROWNING i-2144
1468 OLD YORK ROAD
ABINGTON, PENNSYLVANIA
TURNER 4-9900
79 PROSPECT STREET
STAMFORD, CONNECTICUT
FIRESIDE 8-2810
104 SOUTH MAIN STREET NORTH SYRACUSE, NEW YORK GLENVIEW 8-0430

44 NORTH DEAN STREET
ENGLEWOOD, NEW JERSEY
ENGLEWOOD $3-1012$ OR LOWELL 8-1012
310 EAST 25TH STREET
BALTIMORE, MARYLAND
BELMONT 5-8073

HUGGINS LABORATORIES

711 HAMILTON AVENUE, MENLO PARK, CALIFORNIA.
DAvenport 3-0013 - TWX Palo Alto 52

[^0]: ${ }^{2}$ Insulated Collector
 ${ }^{6}$ Six to eight weeks delivery

[^1]: ${ }^{2}$ Insulated Collector
 ${ }^{5}$ Fixed anywhere within range

[^2]: ${ }^{1}$ Peak Values
 ${ }^{2}$ Insulated Collector
 ${ }^{3}$ Modulating Electrode
 4 Four to six weeks delivery

[^3]: ${ }^{9}$ Negative voltage can be applied for RF attenuation

[^4]: ${ }^{2}$ Insulated Collector
 ${ }^{4}$ Four to six weeks delivery
 ${ }^{6}$ Six to eight weeks delivery
 ＊＊No Grid

[^5]: ## ORDERING

 Standard Units: Specify full unit nomenclature and primary performance specifications. Certified outline drawings and specifications are available on request.
 Custom Units: Numerous components whose characteristics fall outside those listed in this catalog are being supplied to meet individual requirements. Military environmental specifications can also be met. Contact Huggins Sales Department, or our representative in your area, to discuss your special needs.

 PRICES
 F.O.B. Sunnyvale, California. Prices apply to small quantities only and are subject to change without notice.
 TERMS
 Net 30 days with approved credit.

[^6]: ${ }^{1}$ Specify " Y ", " T ", or " L " (load) configuration for 3 -port units and " $\mathrm{Pi}^{\prime \prime}$, " H ", or "' L " for 4 -port units. " T ", " H ", and " L " configurations priced slightly higher $2 \mathrm{~J}=$ Junction Circulator $\quad * *$ Price on request

[^7]: * Main Office

[^8]: D Under development
 § 4 to 6 weeks delivery

 * 6 to 8 weeks delivery $\dagger 8$ to 10 weeks delivery

[^9]: β hUGGINS LABORATORIES, INC.

[^10]: FIGURE 1. POTENTIAL PROFILE AND RELATIVE POSITION OF THE ELECTRODES IN A TYPICAL

[^11]: tested by

[^12]: β HUGGINS LABORATORIES, INC.

