
MICROWAVE TUBES

NEC

NEC

N

NEC

VES - 3379

TRAVELING WAVE TUBES

22 Sept. '62

NIPPON ELECTRIC CO., LTD.

TOKYO, JAPAN.

Туре	Descrip- tion App: Du.Cy	Fre- quency (kmc)	Heater V;A	Helix V	Foc.Fld. (Gauss)	Gain (db)	Noise Fig. (db)	Power Output
4W72A	Ampl, CW	3.6 - 4.3	6.3, 1	2.92K	300	20		3W .
4W75A	Ampl, CW	3.6 -4.3	6.3, 1	3К	ppm	23		2W
4W76A	Ampl, CW	3.6 -4.3	6.3,1.2	3.19K	ppim	30	27	low
4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Ampl, CW	3.6 -4.3	6.3,0.74	3.1K	ppm	30	26	20W
41185	Ampl, CW	3.7 -4.2	6.3,1.5	1.13K	400	24	1. 1. 1.	20mW
4W86A	Ampl, CW	3.7 -4.2	6.3,1.5	2.03K	400	12		1.5W
6w50	Ampl, CW	5.8 -6.5	6.3,1.1	3.3K	ppm	30	27	JOW
8W76A	Ampl, CW	6 - 7.5	6.3, 1	ЗК	ppm	30	27	5W
11W17A	Ampl, CW	10.7-11.7	6.3, 1	2K	ppm	30	27	IW
LD-418	Lw.noise	5.8-6.5	6.3,0.5	850	850	25	7	15mW
LD-513	Ampl, CW	5.8-6.5	6.3,0.75	31.5K	ppm	30	27	20W
LD-550A	Ampl, CW	5.8.8.2	6.3,0.73	3.4K	ppm	30	25.	low
LD-570	Lw. noise	2.1-2.9	5, 0.7	450	650	32	5.5	3mW
LD-571	Lw. noise	8.5-9.5	5, 0.7	840	700	23	6	2.4mW

VES - 3380

KLYSTRONS

22 Sept. 162.

Nippon Electric Co., Tokyo, Japan

	Description	17	1 17	1	0-03	These	
Type	Description	Frequency	Heater	Beam	Refl	Tun Range	Power Output.
	App; Du. Cy.	(Kne)	V; A	V; A		Mange	ou opue.
2125	refl	8.5-9.66	6.3. 0.44	300, 0.025	-180	40mc	35mW
2126	refl	6.25 - 7.06	6.3, 0.44	300, 0.025	-115	50me	100mW
2K54A	refl	4.05-4.3	6.3. 0.45	400, 0.025	-350		500mW
,2854B	refl	3.85-4.1	6.3. 0.45	400, 0.025	-350	-	500m₩
28540	refl	3.65-3.9	6.3, 0.45	4,00, 0.025	-350	•	500mW
2K54DA	refl	4.25-4.35	6.3, 0.45	250, 0.012	-160	35mc	50mW
5V553	refl	4.8 - 5.1	6.3, 0.44	300, 0.025	-220		150mW
6V26AM	refl	6.1 - 6.5	6.3. 0.44	300, 0.025	-100	50mc	100mM
5976	refl	6.2 -7.425	6.3, 0.44	300, 0.025	-110	60mc	120mW
5721	refl	4 - 11	6.3, 0.58	1k, 0.02	-150		100mW
4727	refl	3.5 - 4.5	6.3, 0.675	325. 0.025	-180		150mW
6v200	refl	6,225-6.325	6.3, 0.76	750, 0.070	-130	50mc	300mW
67201	refl	5.925-6.225	6.3, 0.76	750, 0.070	-330	35ma	1.2 W
67202	refl	6.125-6.425	6.3, 0.76	750, 0.070	-330	35me	1.2 W
67203	refl	6.425-6.575	6.3, 0.76	750, 0.070	-330	35me	1.2 W
77204	refl	6.575-6.875	6.3, 0.76	750, 0.070	-330	35mc	1.2 W
71205	refl	6.875-7.125	6.3, 0.76	750, 0.070	-330	35mo	1.2 ₩
7V206	refl	7.125-7.425	6.3, 0.76	750, 0.070	-330	35me	1.2 W
87207	refl	7.425-7.750	6.3, 0.76	750, 0.070	-330	28me	1 1
87208	refl	7.750-8.100	6.3, 0.76	750, 0.070	-330	23me	1 W
6V211	refl	5.985-6.285	6.3, 0.44	300, 0.023	-100	40mc	95 mW
67212	refl	6.285-6.585	6.3, 0.44	300, 0.023	-100	40mc	35 mV
77213	refl	6.585-6.705	6.3. 0.44	300, 0.023	-100	4.Omc	40 mV
77214	refl	6.705-7.005	6.3. 0.44	300, 0.023	-100	* 40mc	40 mW
77215	refl	6.955-7.255	6.3. 0.44	300, 0.023	-100	40me	40 mW
77216	refl	7.255-7.555	6.3. 0.44	300, 0.023	-100	40mc	40 mij
8v217	refl	7.550-7.850	6.3, 0.44	300, 0.023	-100	35me	35mW
1							

P.1

Туре	Description App; Du.Cy.	Frequency (Kmc)	Heater VIA	Besm V: A	Refl V	Tun Range	Power Output
67221	refl	5.925-6.225	6.3, 0.76	750, 0.070	-330	35mo	1.21
67222	refl	6.125-6.425	6.3, 0.76	750, 0.070	-330	35mo	1.24
71223	refl	6.425-6.575	6.3. 0.76	750, 0.070	-330	35ma	1.21
77224	refl	6.575-6.875	6.3, 0.76	750, 0.070	-330	35mg	1.2W
77225	refl	6.875-7.125	6.3, 0.76	750, 0.070	-330	35mo	1.2W
77226	refl	7.125-7.425	6.3, 0.76	750, 0.070	-330	35mo	1.20
87227	refl	7.425-7.750	6.3, 0.76	750, 0.070	-330	28mc	1.0%
\$7228	refl	7,750-8.100	6.3, 0.76	750, 0.070	-330	23me	1.0W
8V69	refl	7.350-7.850	6.3, 0.44	300, 0.025	-110	50me	80mW
6777	refl	7.650-8.200	6.3. 0.44	300, 0.025	-100	40mg	60mW
LD-588	refl	7.050-7.550	6.3. 0.44	300, 0.025	-80	40me	60mW
9754	refl .	8.200-9.600	6.3, 0.45	450, 0.050	-270	40mc	350mW
10054	refl	9.400-10.700	6.3, 0.45	450, 0.050	-190	65ma	250mW
10V13	refl	\$.100-12.400	6.3. 0.45	500, 0.055	-300	65me	350mi
11753	refl	10.700-11.700	6.3, 1.1	300, 0.028	-180	40me	70mW
117534	refl	10.700-11.700	6.3, 1.1	450, 0.050	-260	50mc	250mW
11754	refl	10.700-11.700	6.3. 0.45	300, 0.028	-180	43me	90mW
11V54A	refl	10.700-11.700	6.3. 0.45	450, 0.050	-260	50mc	25 Om/
11755	refl	10.700-11.700	6.3. 0.45	500, 0.065	-260	70mc	45 Ora)
LD-561	refl	11.700-12.440	6.3. 0.45	400, 0.045	-220	60me	200mW
LD-554	refl.	10.700-11.700	6.3, 0.5	450, 0.050	-260	50me	250mi
22720	refl	21.000-23.800	6.3, 1.8	600, 0.040	-430	4.Ome	50mW
24720	refl	22.500-23.500	6.3, 1.6	600, 0.040	-460	50mo	50mW
35720	refl	33.000-37.000	6.3, 1.6	600, 0.038	-380	64me	25mW
VA-800	CW ampl	1.700-2.400	Bomb, Type	16KV, 2	Gain	55db	10KW
VA-802B	CM ampl	1.700-2.400	6.0, 7.8	6KV, 0.55	Gain	504b	IKW

P.2

VES-3381

22 Sept. '62.

Magnetron

and a

0

Nippon Electric Co., Htd. Tokyo, Japan.

			Sector Contraction					
Туре	Description Du. Cy	Frequency (KMC)	Heater V: A	Anode KV: mA	Pull Fac. (mc/s)	Pls. Dur: (µs)	Power Output (KW)	
2.342	OSC, .002	9.345-9.405	6.3, 0.53	55. 9	15	1	7	
6027	do, .001	9.345-9.405	6.3, 0.53	6.9,7.5	15	1	18	
2J42H	do, .00036	9.345-9.405	6.3, 0.53	5.275,1.62	20	0.45	7	
2349	do, .001	9 - 9.16	6.3, 1	12,. 12	15	1	50	
2350	do, .001	8.75 - 8.9	6.3, 1	12, 12	15	1	50	
2355	do, .001	9.345-9.405	6.3, 1	12, 12	15	1	50	
725A	do, .001	9.345-9.405	6.3, 1	12, 12	15	l	50	
6406A	do, .0006	2.85 - 2.91	8.3, 79	52, 51	10	2	2000	
5795	do, .002	3.1 - 3.5	107,3.65	46, 90	10	1.33	1000	
6249B	do, .001	8.5 - 9.6	9, 14.2	28, 25	15	2.5	250	
25M10	do, .0006	24.5 - 24.7	5, 2.9	14, 9	30	0.15	40	
1		1	1	1	J	1		

Disc-Sealed Tubes

Туре	Description	Frequency (KMC)	Heater V: A	Anode (max.) (V)	Ampl. Fac.	Max. Diss. (W)	Power Output (W)
2B22	diode, det	1.2	6.3, 0.75				
2039A,B	Tri. Ampl.	2.5	6.3, 1	1000	100	100	15 (2.5Kmc)
2040	do.	3.37	6.3, 0.75	500	.35	6.5	0.075 (3.37Kme)
2043	do.	3.37	6.3, 0.9	• 3500 4	48	12	1000 🛆
5861	do.	3.7	6.3, 0.4	350	30	10	(3.37Kmc) 0.5 (3 Kmc)
2046	do.	1.3	6.3, 0.75	500	65	12	
LD-497	do.	2.5	6.3, 1.3	1000	• 90	130	26 (2.5Kmc)
LD_583*	do.	2.5	6.3, 1.3	1000	90	130	26 (2.5Kmc)
LD-509*	do.	2.5	6.3, 1.3	1300	100	150	50 (2.5Kmc)
LD-531*	do.	2.3	6.3, 2.3	2000	130	600	100
LD-551*	do.	2.0	6,3, 3.6	3000	110	2100	(2.2Kmc) 300 (2 Kmc)

.

* Ceramic Sealed

△ Plate pulsed

(CUMUTPLIFIER) HEATER HEATER HEL (V) (A) 6.3 1.05. 2400 6.3 0.45 340 6.3 0.45 370 6.3 0.45 370 6.3 0.45 370 6.3 0.45 370 6.3 0.45 370 6.3 0.45 370 6.3 0.45 320 6.3 0.45 320 6.3 0.45 320 6.3 0.45 320 6.3 0.44 2400 6.3 0.44 300	(V) (A) (V) (A) (V) (A) (A) (V) (A) (V) (A) (V) (A) (V) (A) (V) (A) (A) (V) (A) (A) (V) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	FOC. FI ELD PPM PPM PPM SOL	(db) NOISE 30	FIG P. OUT 20W 20W 20W 16W 10W 1W
HEATER HEATER (V) (A) (V) (A) (V) (A) (V) (A) (V) (A) (A) (A)	2000 2000 2000 2000 1 200 1 200 2500 2500 2500 2500	FOC. FI ELI PPM PPM PPM SOL PPM PPM	(db) 30 30 33 40 24 6.5 40 27 40 27 30 	1.6 P. 0U 20W 20W 1.6W 1.0W
6.3 1.05, 2400 6.3 0.7 280 6.3 0.6 340 6.3 0.45 87 6.3 0.6 320 6.3 0.45 87 6.3 0.45 87 6.3 0.45 87 6.3 0.6 340 6.3 0.6 320 6.3 0.6 320	2000 1 700 2 2000 1 200 4 1 200 4 1 200 4 1 200 2 500	Mad Nad Nad Nad	30 - 33 27 33 27 40 27 24 6.5 40 27 30 -	20 W 20 W 1 0 m W 1 0 W
6.3 0.7 280 6.3 0.6 340 6.3 0.45 87 6.3 0.6 320 6.3 0.4 240 5.3 0.4 240 6.3 0.4 240 6.3 0.4 200	2000 1 200 1 200 2500 2500	Mad Nad Nad	27 27 6.	1 6% 20 W 1 0m W 1 0 W
0.6 340 0.45 87 0.5 320 0.4 2400 0.44 200	2000 1 200 1 600 2500 2500	Mdd Ndd	27 6. 27	20W 10W 11W
6.3 0.45 87 6.3 0.6 320 6.3 0.4 240 73760NJ 6.3 0.44 300	1 200 4 1 600 2500 2500 2500	Mdd	27	10mV 10W
6.3 0.6 320 6.3 0.4 2400 7.5.3 0.4 2400 86 6.3 0.44 300	1 600 2500 2500	Wdd .		NOI 1 M
6.3 0.4 2400 <u>VSTRONJ</u> 6.3 0.44 300	2500 2500 25mA	W44	30	MI
0.44 300V	Am	•		
6.3 0.44 300 V	Am			
BRO M/R-BAND ANPLIFIER				
BRÖAD-BAND PULSE MAPLIFIER TUBE.				
PLATE SCREENGRID gm M	P OUT			
(V) (V) (V) (V)				
0.6 170 80mA 170 25mA 2mu 10	0 I M			

2C39A

UHF/VHF TRIODE (GLASS-TO-METAL DISC-SEALED)

GENERAL CHARACTERISTICS

Cathode	Oxide-coated, indirect	ly heated
Heater	Voltage	6.3 Volts
Heater	Current	1.0 Ampere
Mutual Con	nductance	
Amplificati	on Factor	
	ode Capacitance	
Grid to	Plate	$\dots 1.9 \ \mu\mu F$
Grid to	Cathode	$\dots 6.5 \ \mu\mu$ F
Plate t	o Cathode	$0.035 \mu\mu F max$

MAXIMUM RATINGS

Plate Voltage1,00	0 Volts
Plate Current 125 Millia	
Plate Dissipation 100) Watts
Frequency 2	,500 Mc
Seal Temperature	

COOLING

Anode	and Anode	Seal (
Grid an	nd Cathode		Ā

Conduction and Forced Air Cooling As above

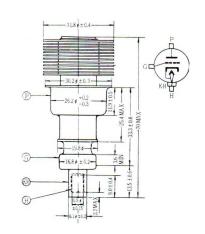
STRUCTURAL FEATURES

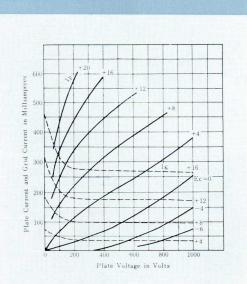
- A. Low lead inductance effected by the disc-seal construction.
- B. Small interelectrode capacitance and high transconductance due to planar electrode construction.
- C. 100 watts dissipation can be tolerated with forced-air cooling of the radiator through a suitable cowling.
- D. Complete enclosure of electromagnetic field to avoid possible radiation loss.
- E. Silver-plated finish to reduce radio frequency resistance loss.

TYPICAL OPERATING DATA

CW Oscillator at 2,500 Mc

D.C. Plate Voltage	900 Volts
D.C. Plate Current	90 Milliamperes
D.C. Grid Current	25 Milliamperes
Power Output	
D.C. Grid Voltage Approx	


NOTICE


- 1. All contacting external parts should be silver plated or, if this is impossible, should be kept clean.
- Due to transit time effects of the electron current, there is an optimum heater voltage for different frequencies. Recommended values are as follows,
 - Below
 400 Mc
 6.3 Volts
 1,500 to
 2,000 Mc
 5.0 Volts

 400 to
 1,000 Mc
 6.0 Volts
 Above
 2,000 Mc
 4.5 Volts

 1,000 to
 1,500 Mc
 5.5 Volts
 Above
 2,000 Mc
 4.5 Volts
 - All heater voltages must be kept within plus or minus 5% of the above values.
- Glass-to-metal sealed parts must be kept below 175°C. Recommended air flow on anode radiator at sea level is 0.34 m³/min.

2C39B

* UHF/VHF TRIODE (CERAMIC-TO-METAL DISC-SEALED)

GENERAL CHARACTERISTICS

Cathode	Oxide-coated, indirectly Heated
Heater	Voltage 6.3 Volts
	Current 1.0 Ampere
	nductance
Amplificatio	on Factor100
Interelectro	de Capacitances
Grid to	plate1.9 µµF
	Cathode 7.0 μμF
Plate to	Cathode 0.035µµ F max.

MAXIMUM RATINGS

Plate Voltage1,000) Volts
Plate Current125 Millian	nperes
Plate Dissipation 100	Watts
Frequency 2,	
Seal Temperature	

COOLING

Anode and Anode Seal

Grid and Cathode Seal

STRUCTURAL FEATURES

A. Ceramic seal to allow operation at higher ambient temperatures.

Cooling

As above

Conduction and Forced Air

- B. Low lead inductance effected by the disc-seal construction.
- C. Small interelectrode capacitance and high transcondutance due to planar electrode construction.
- D. 100 watts dissipation can be tolerated with forcedair cooling of the radiator through a suitable cowling.
- E. Complete enclosure of electromagnetic field to avoid possible radiation loss.
- F. Silver-plated finish to reduce radio frequency resist ance loss.

TYPICAL OPERATING DATA

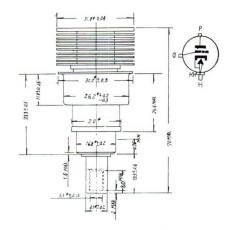
CW Oscillator at 2,500 Mc

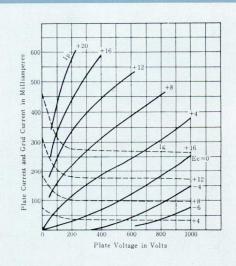
D.C. Plate Voltage	900 Volts
D.C. Plate Current	
D.C. Grid Current 251	
Power Output	
D.C. Grid Votage Approx	

NOTICE

- 1. All contacting external parts should be silver plated or, if this is impossible, should be kept clean.
- 2. Due to transit time effects of the electron current, there is an optimum heater voltage for different frequencies. Recommended values are as follows,
 - Below
 400 Mc
 6.3 Volts
 1,500 to
 2,000 Mc
 5.0 Volts

 400 to
 1,000 Mc
 6.0 Volts
 Above
 2,000 Mc
 4.5 Volts


 1,000 to
 1,500 Mc
 5.5 Volts
 Above
 2,000 Mc
 4.5 Volts


All heater voltages must be kept within plus or minus 5% of the above values.

 Ceramic-to-metal sealed parts must be kept below 200°C. Recommended air flow on anode radiator at sea level is 0.34 m³/min.

Nippon Electric Company Ltd.

* In Preparation

UHF TRIODE (DISC-SEALED)

GENERAL CHARACTERISTICS

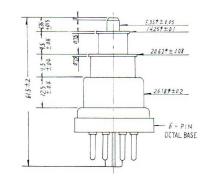
Cathode	Oxide-coa	ted, indin	ectly heat	ted	
Heater	Voltage ····			6	.3 Volts
	Current				
	nductance				
Amplificati	on Factor		• • • • • • • • • • • • • • • • • • • •		35
	ode Capacita				
Grid to	Plate				$1.3 \mu\mu F$
	Cathode				
Plate t	o Cathode	••••••		$\dots 0.05 \ \mu$	μFmax

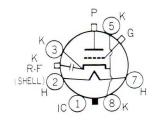
MAXIMUM RATINGS

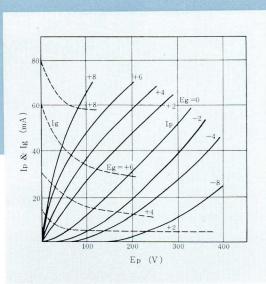
Plate Voltage 500 Volts
Plate Current 25 Milliamperes
Plate Dissipation
Duty Cycle
Pulse Width
Frequency
Seal Temperature

STRUCTURAL FEATURES

- A. Low lead inductance effected by the disc-seal construction.
- B. Small interelectrode capacitance due to planar electrode construction.
- C. Effective cooling of anode cap through lead-in structure.
- D. Complete enclosure of electromagnetic field to avoid possible radiation loss.
- E. Silver-plated finish to reduce radio frequency resistance loss.


TYPICAL OPERATING DATA


	CW Oscillator at 2,000 Mc	CW Oscillator at 550 Mc	CW Oscillator at 3,370 Mc
D.C. Plate Voltage	150 Volts	250 Volts	250 Volts
D.C. plate Current	18 Milliamperes	16 Milliamperes	20 Milliamperes
D.C. Grid Current	2 Milliamperes	7 Milliamperes	0.3 Milliamperes
Power Output	100 Milliwatts	600 Milliwatts	85 Milliwatts
Grid Leak Resistance	750 Ohms	2,000 Ohms	10,000 Ohms


NOTICE

- 1. All contacting external parts should be silver plated or, if this is impossible, should be kept clean.
- By-pass capacitors of not less than $100 \ \mu\mu$ F shall be used to minimize radio frequency leakage through lead-in connections.
- 3. Recommended value of seal temperature is below $175^\circ\mathrm{C}$

UHF TRIODE (DISC-SEALED)

GENERAL CHARACTERISTICS

Cathode Ox	ide-coated, indirectly heated
	age 6.3 Volts
Heater Curr	ent 0.9 Amperes
	ance
Amplification Fa	actor
Interelectrode C	
	e ······ $1.7 \mu\mu\mathrm{F}$
Grid to Catl	hode······ $2.8 \mu\mu\text{F}$
Plate to Cat	hode

MAXIMUM RATINGS

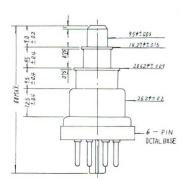
Peak Plate Voltage
Peak Cathode Current 4 Amperes
Plate Dissipation12 Watts
Duty Cycle 0.006
Pulse Width
Frequency3,370 Mc
Seal Temperature 200°C

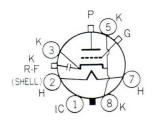
STRUCTURAL FEATURES

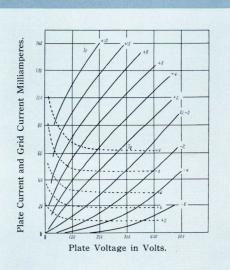
- A. Low lead inductance effected by the disc-seal construction.
- B. Small interelectrode capacitance due to planar electrode construction.
- C. Effective cooling of anode cap through lead-in structure.
- D. Complete enclosure of electromagnetic field to avoid possible radiation loss.
- E. Silver-plated finish to reduce radio frequency resistance loss.

TYPICAL OPERATING DATA

			and the second
CW Oscillato	or at 2,000 Mc	Average Output	2.5 Watts
D.C. Plate Voltage	150 Volts	Grid Leak Resistance	100 Ohms
D.C. Plate	22 Milliamperes	Duty Cycle	0.1
Current	22 Williamperes	Pulse Width	0.5 Microsecond
D.C. Grid Current	2.9 Milliamperes	Pulse Oscillator at 3,370 Mc	
Power Output	100 Milliwatts	Peak Plate	3.000 Volts
Grid Leak	750 Ohms	Voltage	3,000 V 0115
Resistance	750 Onnis	Peak Plate	2 Amperes
Pulse Oscillator at 2,000 Mc		Current	2 Amperes
Peak Plate Voltage	600 Volts	Average Power Output	1 Watt
Average Plate Current	35 Milliamperes	Grid Leak Resistance	100 Ohms
Average Grid	10 M'III	Duty Cycle	0.001
Current	18 Milliamperes	Pulse Width	1 Microsecond


NOTICE


- 1. All contacting external parts should be silver plated or, if this is impossible, should be kept clean.
- 2. By-pass capacitors of not less than $100 \ \mu\mu$ F shall be used to minimize radio frquency leakage through lead-in connections.


Nippon Electric Company Ltd.

3. Recommended value of seal temperature is below 175°C.

2 K 2 5

SHF REFLEX KLYSTRON

The type 2K25 is a reflex klystron operating over a frequency range of 8,500 to 9,660 Mc and delivering a power output of 20 mW (min.) at 9,370 Mc, 300 Volts on resonator.

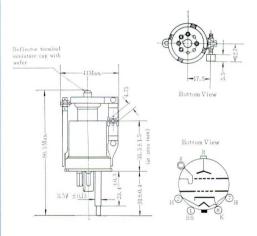
STRUCTURAL FEATURES

Integral cavity and full-range tuner, coaxial output line through base of tube designed for use with broadband waveguide starting section.

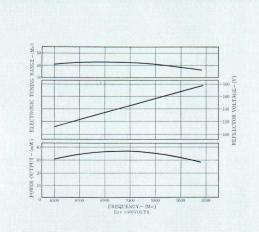
GENERAL CHARACTERISTICS

MECHANICAL FEATURES

Resonant	Cavity	· Integral part of the tube	•
Envelope		······ Metal	
Base		Small wafer, octal, 4 pins	;
		and coaxial output term-	
		inal	
Weight			


MAXIMUM RATINGS

Resonetor Voltage	···· 330 Volts
Resonctor Current	Milliamperes
Heater Voltage	5.8~6.8 Volts
Heater to Cathode Voltage	$\cdots \pm 50$ Volts
Reflector Voltage 0 to	-400 Volts


TYPICAL OPERATING DATA

Frequency9,370Mc
Resonator Voltage
Resonator Current 25 Milliamperes
Reflector Voltage130 to -180 Volts
Reflector Current Less than 1 Microampere
Electronic Tuning Range
Power Output

Note: Coaxial Output Line passes through vacant pin position No. 4

NOTICE

- 1. The heater voltage must be applied one minute before resonator voltage is applied.
- 2. The reflector voltage must always be applied before resonator voltage.
- 3. The reflector must never become positive with respect to the cathode. $% \left({{{\cal C}_{{\rm{c}}}}} \right)$

2K26

SHF REFLEX KLYSTRON

The type 2K26 is a reflex klystron operating over a frequency range of 6,250 to 7,060 Mc and delivering a power output of 80 mW (min.) at 6,660 Mc, 300 Volts on resonator.

STRUCTURAL FEATURES

Integral cavity and full-range tuner; coaxial output line through base of tube designed for use with broadband waveguide starting section.

GENERAL CHARACTERISTICS

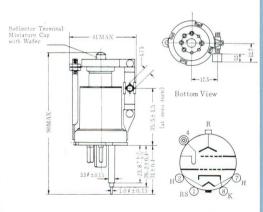
Frequency	Range
Cathode	Oxide-coated, indirectly heated
Heater	Voltage 6.3 Volts
Heater	Current

MECHANICAL FEATURES

Resonant Cavity	Integral part of the tube
Envelope	······ Metal
Base ····· Sn	nall wafer, octal, 4 pins
an	d coaxial output terminal
Weight	45 g

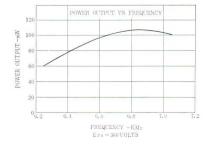
MAXIMUM RATINGS

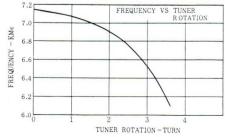
Resonator Voltage	
Resonator Current 35 M	Iilliamperes
Heater Voltage 5.8	to 6.8 Volt
Heater to Cathode Voltage	$\cdot \pm 50$ Volts
Reflector Voltage······ 0 to	-350 Volts

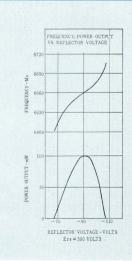

TYPICAL OPERATING DATA

Frequency	· 6,660 Mc
Resonator Voltage	300 Volts
Resonator Current 25 Mil	liamperes
Reflector Voltage	
Reflector Current Less than 1 Mic	roampere
Electronic Tuning Range	50 Mc
Power Output100]	Milliwatts

NOTICE


- 1. The heater voltage must be applied one minute before resonator voltage is applied.
- 2. The reflector voltage must always be applied before the resonator voltage.
- 3. The reflector must never become positive with respect to the cathode.





Bottom View

Note: Coaxial Output Line passes through vacant Pin Position No. 4

Nippon Electric Company Ltd.

SHF REFLEX KLYSTRON

The types 2K54A, 2K54B and 2K54C are reflex klystrons designed for use as oscillators in continuous service. The type 2K54A klystron has an output not less than 300 mW over the full range between 4,050 and 4,300 Mc, while the type 2K54B operates similarly on the 3,850 to 4,100 Mc band and the type 2K54C on the 3,650 to 3,900 Mc band.

2K54A

2K54B

2K54C

STRUCTURAL FEATURES

Integral cavity and full-range mechanical tuner; coaxial output line through base of tube designed for use with broadband waveguide starting section.

GENERAL CHARACTERISTICS

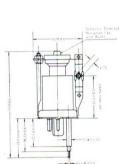
Frequency	Range2K54A : 4,050 to 4,300 Mc
	2K54B: 3,850 to 4,100 Mc
	2K54C : 3,650 to 3,900 Mc
Cathode	Oxide-coated, indirectly heated
Heater	Voltage 6.3 Volts
Heater	Current

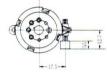
MECHANICAL FEATURES

Resonant Cavity	Integral part of the tube
Envelope	
Base·····	···· Small wafer, octal, 4 pins
	and coaxial output term-
	inal
Weight	

MAXIMUM RATINGS

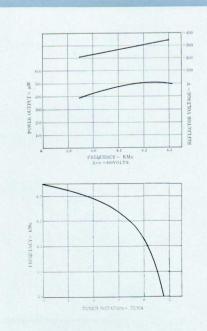
Resonator Voltage 430 Vol	ts
Resonator Current 35 Milliamper	es
Heater Voltage 5.8 ~ 6.8 Vol	ts
Heater to Cathode Voltage ±50 Vol	ts
Reflector Voltage 0 to -450 Vol	lts


TYPICAL OPERATING DATA ······2K54A


Frequency	00 Mc
Resonator Voltage 400	Volts
Resonator Current 25 Milliam	iperes
Reflector Voltage $-250 \sim -350$	
Reflector Current Less than 1 Microan	npere
Power Output 500 Milli	watts

NOTICE

- 1. The heater voltage must be applied one minute before resonator voltage is applied.
- 2. The reflector voltage must always be applied before the resonator voltage.
- 3. The reflector must never become positive with respect to the cathode.



Bottom View

Note Coaxial Output Line passes through vacant Pin Position No. 4

2K54DA

SHF REFLEX KLYSTRON

The type 2K54DA is a reflex klystron designed specifically for use as frequency deviator, operating over a frequency range of 4,250 to 4,350 Mc and delivering power output of not less than 30 milliwatts at 4,300 Mc. The electronic tuning range of 2K54DA is approximately 35 Mc.

STRUCTURAL FEATURES

Integral cavity and full-range tuner; coaxial output line through base of tube designed for use with broadband waveguide starting section.

GENERAL CHARACTERISTICS

Frequency	Range
Cathode	Oxide-coated, indirectly heated
Heater	Voltage 6.3 Volts
Heater	Current

MECHANICAL FEATURES

Resonant Cavity	Integral part of the tube
Envelope	Metal
Base	Small wafer, octal, 4 pins
	and coaxial output termi-
	nal

MAXIMUM RATINGS

Resonator Voltage	
Resonator Current 35 Milliampe	res
Heater Voltage $\cdots 5.8 \sim 6.8$ Vo	olts
Heater to Cathode Voltage±50 Vo	olts
Reflector Voltage 0 to -350 Vo	olts

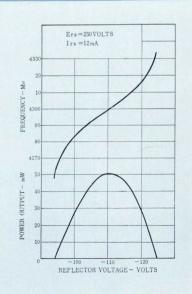
TYPICAL OPERATING DATA


Frequency
Resonator Voltage 250 Volts
Resonator Current 12 Milliamperes
Reflector Voltage
Reflector Current Less than 1 Microampere
Electronic Tuning Range 35 Mc
Modulation Sensitivity 1.2 Mc/Volt
Power Output 50 Milliwatts

NOTICE

- 1. The heater voltage must be applied one minute before resonator voltage is applied.
- 2. The reflector voltage must always be applied before the resonator voltage.
- 3. The reflector must never become positive with respect to the cathode.

Nippon Electric Company Ltd.



Bottom View

Note Coaxial Output Line passes through vacant Pin Position No. 4

SHF TRAVELING WAVE TUBE

4W72A

The type 4W72 A is a traveling-wave tube designed for use with an electro-magnetic solenoid for CW operation over the 3,600 to 4,200 Mc range with an average small-signal gain of 20 db and a maximum power output of 3 watts. It is a conventional helical line type tube employing waveguide input and output coupling. 4W72 A has improved chracteristics of the input and output voltage standing-wave ratio.

GENERAL CHARACTERISTICS

Cathode	Oxide-coated,	indirecty heated
Heater	Voltage	6.3 Volts
Heater	Current	1.0 Amperes

MAXIMUM RATINGS

1 st Anode Voltage	1,450 Volts
Helix Voltage (2 nd Anode Voltage)	3,150 Volts
Collector Voltage	3,200 Volts
Cathode Current	18 Milliamperes
1 st Anode Current	0.25 Milliamperes
Helix Current (2 nd Anode Current)	4 Milliamperes
Collector Seal Temperature	150°C

TYPICAL OPERATING DATA

Frequency	4,200 Mc
1 st Anode Voltage	1,160 Volts
Helix Voltage (2 nd Anode Voltage)	2,920 Volts
Helix Current (2 nd Anode Current)	0.6 Milliamperes
Collector Current	14 Milliamperes
R.F. Imput	25 Milliwatts
R.F. Output	1,850 Milliwatts
Focusing Field	300 Gauss

0.12 m³/min

COOLING

Forced-air Cooling

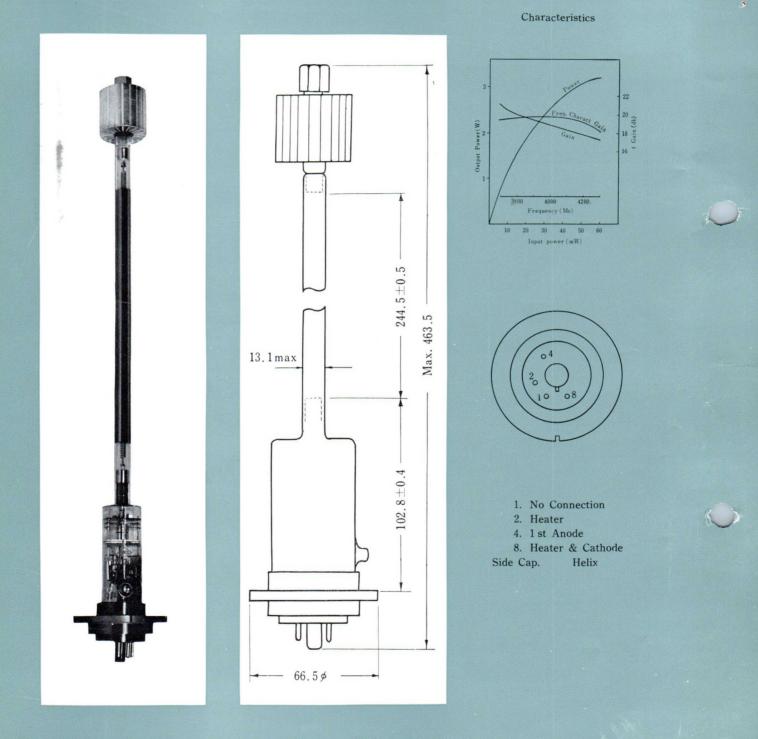
OPERATIONAL SEQUENCE

When putting the 4W72 A into operation, initial adjustment should be performed in the following sequence :

- 1. Apply the recommended focusing field and supply the required air flow.
- 2. Applly heater voltage and allow one minute minimum warm up.
- Apply 3,200 volts maximum to the collector;
 3,000 volts to the helix (2 nd anode) in that order, then increase the 1 st anode voltage until the 4 mA cathode current is reached.
- Adjust tube position relative to the focus coil so that colletor current is maximum and helix (2 nd anode) current is minimum.
- 5. Slowly increase the 1 st anode voltage to the rated cathode current.
- 6. Trim the tube position for proper current division.

MAGNETIC FIELD

Small variation of the magnetic field strength along the axis may be tolerated as long as the field distribution is symmetrical with respect to its axis. It is essential, however, that the axis of the tube and that of the magnetic field be coaxial, in any event.


WAVEGUIDES

Internal dimensions of the input and output coupling waveguide are as follows:

$12.1 \text{ mm} \times 58.1 \text{ mm}$

The proper impedance matching of the tube and the guides will be obtained only if the terminations of the helix are correctly oriented relative to the guides.

Nippon Electric Company Ltd.

Head Office 2, Shiba Mita Shikoku-machi, Minato-ku, Tokyo, Japan Tel. Tokyo 451-1171(9) • 5121(9) • 5221(9) Cable Address "MICROPHONE TOKYO"

5

4 W 7 5

NEC MICROWAVE TUBES

SHF PACKAGE-TYPE TRAVELING WAVE TUBE

The type 4W75 is a traveling wave amplifier and oscillator for C.W. operation over the 3,600 to 4,200 Mc range with an average small signal gain of 23 db and a maximum power output of around 2 watts. It is a conventional helical line type tube employing wave guide input and output coupling. The focusing system of this tube consists of special magnetic lenses and periodic-magnetic field system which are packaged in cylindrical cases together with input and output waveguides and the tube itself.

GENERAL CHARACTERISTICS

Cathode	Oxide-coated,	indirectly heated	
Heater	Voltage	6.3 Volts	
Heater	Current	1.0 Amperes	

MAXIMUM RATINGS

Focusing Electrode Voltage	-60 Volts
Ist Anode Voltage	1,800 Volts
Helix Voltage	
(2 nd Anode Voltage)	3,200 Volts
Collector Voltage	3,250 Volts
Cathode Current	18 Milliamperes
Ist Anode Current	250 Microamperes
Helix Current	
(2 nd Anode Current)	4 Milliamperes
Collector Seal Temperature	150°C

MECHANICAL CHARACTERISTICS

Mounting position	any
Volume of air required	
for cooling	0.12 m ³ /min
Net weight	3.8 kgs.

TYPICAL OPERATING DATA

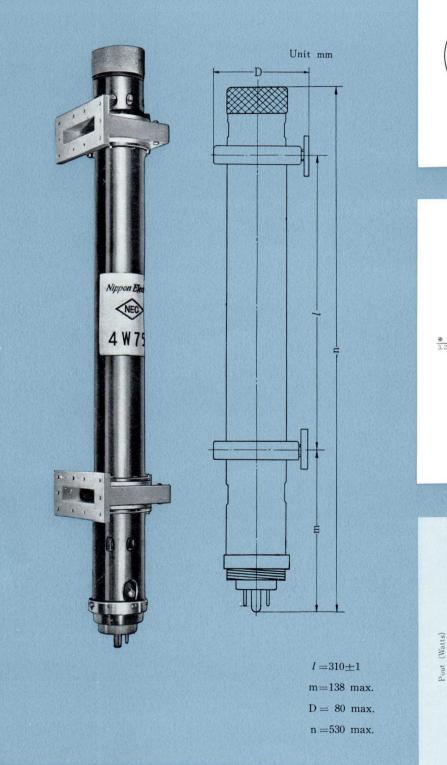
Frequency	4,200 Mc
Focusing Electrode Voltage	-50 Voltage
Ist Anode Voltage	1,500 Volts
Helix Voltage	
(2 nd Anode Voltage)	3,000 Volts
Helix Current	
(2 nd Anode Current)	1 Milliamperes
Cathode Current	15 Milliamperes

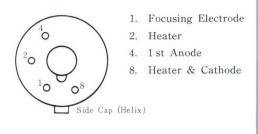
Collector Voltage	3,050 Volts	
R.F. Output		
(at 10 mW input level)	1.8 Watts	

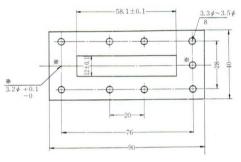
PRECAUTIONS

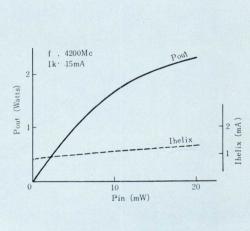
- Care should be taken to avoid shock damage to the tube and the input and output waveguides. For the installation of this tube, it is desirable to use flexible waveguide sections to which the tube is connected.
- 2. The screws used to fix the tube elements should never be moved.
- 3. The required air flow must always be supplied before any high voltages are applied to the tube.
- 4. The first anode voltage should not be applied before the focusing electrode, helix and collector voltages reach the specified values.
- 5. The tube body is connected to the collector electrode internally, so it is recommended that the body be kept at ground potential.

OPERATIONAL SEQUENCE


- 1. Bolt the tube securely to the mating waveguide flanges. Do not distort the tube capsule on mounting, to avoid damage of the glass envelope.
- 2. Apply heater voltage and allow one minute minimum warm up.
- 3. Apply the specified voltages to the focusing electrode, collector and helix voltages in that order.
- 4. Increase the 1st anode voltage until the rated cathode current is reached.
- 5. Trim the helix voltage for optimum operation.


TUNING PROCEDURE


Two short plungers provided in the input and output waveguides are used to tune the tube roughly to the external circuits.


When fine adjustment of impedance matching at input and output circuits is required, it is recommended that matching devices be used.

Nippon Electric Company Ltd.

4 W 7 6

NEC MICROWAVE TUBES

SHF PACKAGE-TYPE TRAVELING WAVE TUBE

The type 4W76 is a traveling wave amplifier and oscillator in C. W. operation over the 3,600to 4,200 Mc range with an average small signal gain of 30 db and a maximum power output of around 10 watts. It is a conventional helical line type tube employing waveguide input and output coupling. The focusing system of this tube consists of a novel magnetic circuit and a conventional periodic magnetic field system which are packaged in cylindrical cases together with input and output waveguides and the tube itself, so the complete assembly is remarkably compact and light-weight.

GENERAL CHARACTERISTICS

Cathode	Oxide-coated,	indirectly heated	
Heater	Voltage	6.3 Volts	
Heater	Current	1.2 Amperes	

MAXIMUM RATINGS

Focusing Electrode Voltage	-50 Volts
1 st Anode Voltage	2,800 Volts
Helix Voltage	
(2 nd Anode Voltage)	3,450 Volts
Collector Voltage	3,500 Volts
Cathode Current	40 Milliamperes
1 st Anode Current	1 Milliampere
Helix Current	
(2 nd Anode Current)	4 Milliamperes
Collector seal Temperature	150°C

MECHANICAL CHARACTERISTICS

Mounting position	Any
Volume of air required	
for cooling	0.3 m ³ /min
Net Weight	3 kgs.

TYPICAL OPERATING DATA

Frequency	4,200 Mc
Focusing Electrode Voltage	-40 Volts
1 st Anode Voltage	2,400 Volts
Helix Voltage	
(2 nd Anode Voltage)	3,190 Volts
Helix Current	
(2 nd Anode Current)	0.7 Milliamperes

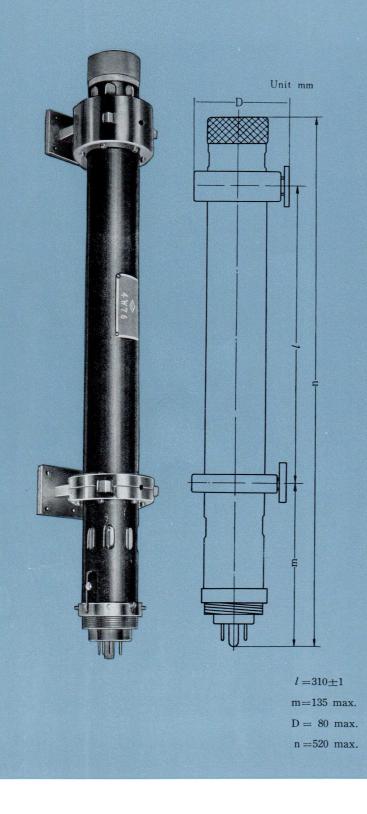
Cathode Current Collector Voltage R.F. Output (at 20 mW input level) 9.1 Watts

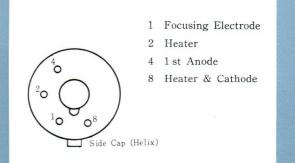
35 Milliamperes 3,240 Volts

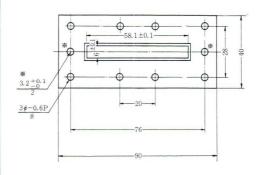
PRECAUTIONS

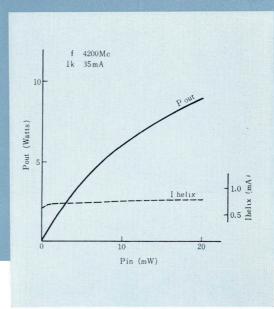
- 1. Care should be taken to avoid shock damage to the tube and the input and output waveguides. For the installation of this tube, it is desirable to use flexible waveguide section to which the tube is connected.
- 2. The screws used to fix the tube elements should never be moved.
- 3. The required air flow must always be supplied before any high voltages are applied to the tube.
- 4. The first anode voltage should not be applied before the focusing electrode, helix and collector voltages reach the specified values.
- 5. The tube body is connected to the collector electrode internally, so it is recommended that the body be kept at ground potential.

OPERATIONAL SEQUENCE


- 1. Bolt the tube securely to the mating waveguide flanges. Do not distort the tube capsule on mounting, to avoid damage of the glass envelope.
- 2. Apply heater voltage and allow 90 seconds minimum warm up.
- 3. Apply the specified voltages to the focusing electrode, collector and helix voltages in that order.
- 4. Increase the 1 st anode voltage until the rated cathode current is reached.
- 5. Trim the helix voltage for optimum operation.


TUNING PROCEDURE


Two short plungers provided in the input and output waveguides are used to tune the tube roughly to the external circuits.


When fine adjustment of impedance matching at input and output cricuits is required, it is recommended that matching devices be used.

NEC Nippon Electric Company Ltd.

TRAVELING-WAVE TUBE 4W80

GENERAL

The 4W80 is a CW traveling-wave amplifier designed for operation in a frequency range of 3.6 to 4.2 kMc. This tube has an average small signal gain of 30 db and a saturated output power of 18 watts. It is of conventional helical line construction employing input and output waveguide couplings. These couplings have integral tapered waveguide adapters with adjusting screws for impedance matching. The 4W80 uses integral permanent magnet focusing. It is convection-cooled, and operates with depressed collector electrode voltage. The latter feature produces significant improvement in the operating efficiency. The design, construction, and durability of the tube make it exceptionally well suited for use in point-to-point, broad-band, multichannel microwave relay equipment.

FEATURES

- · Depressed collector operation for improved efficiency
- Convection-cooled
- · PPM focused
- Durability

CHARACTERISTICS

Electrical

MAXIMUM RATINGS*

Accelerating anode voltage	3700 v
Accelerating anode current	1 ma
Helix voltage	3400 v
Helix current**	1.5 ma
Collector voltage, min.	2000 v
Collector current***	45 ma
Collector dissipation	90 w
Focusing electrode voltage	75 v
Ambient temperature	55° c
Ambient temperature, min	−55° c
Collector seal temperature	180° c

Physical

GENERAL

Dimensions	. See outline drawing	
Weight	11 lbs	
Preferred mounting position****	Horizontal	
CathodeOxide	e coated, unipotential	
(Minimum heating time		
Connections RF input and output		
Reduced he	ight WR229 (₩DT-4)	

WRJ

Operation

(HEATER VOLTAGE=6.3v HEATER CURRENT	AT 6.	3v = 0.7	4a)
Frequency	3.7	4.0	4.2 kMc
Accelerating anode voltage	100	3100	3100 v
Helix voltage2	900	2850	2770 v
Helix current	0.6	0.6	0.6 ma
Collector voltage2	000	2000	2000 v
Collector current	45	45	45 ma
Focusing electrode voltage	-30	-30	-30 v
RF output (10-mw input level)	11	13	12 w
RF saturated output	19	20	19 w
Noise figure (small signal)	27	27	27 db
Small signal gain (0.5-mw input)	33	33	33 db

NOTES:

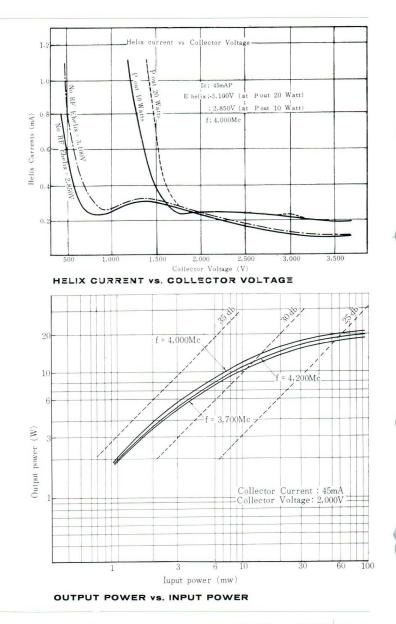
* Ratings should not be exceeded under continuous or transient conditions. A single rating may be the limitation and simultaneous operation at another rating may not be possible. Design values for systems should include a safety factor to maintain operation within ratings under voltage and environmental variations.

** Helix current increases gradually with tube life. Impending termination of tube life is indicated when the helix current reaches 2.5 milliamperes.

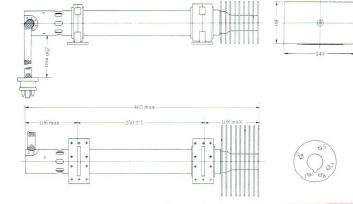
*** No RF drive power should be used during installation and voltage adjustments of the tube. Under these conditions, brief excursions of the collector current up to 50 millamperes will not damage the tube.

**** Convection cooling is sufficient when the tube is used in a horizontal position. For any other mounting position it may be necessary to direct some air flow through the cooling fans in order to keep the collector seal temperature at a safe operating level.

MOUNTING


The optimum arrangement for mounting the 4W80 is to provide a mounting clamp in the center of the tube between the two waveguides, and then use **a** flexible waveguides for the input and output connectors.

A satisfactory alternate arrangement is to use a fixed waveguide for the output connector, supporting the tube at this point, and then use a flexible waveguide for the input connector.


4W80 NEC

CHARACTERISTIC CURVES

ALL CURVES ARE OF AVERAGE VALUES

OUTLINE DRAWING

HEATER
 IST ANODE
 HELIX
 HEATER & CATHODE
 FOCUSING ELECTRODE

P.O. Box 1, Takanawa, Tokyo, Japan Cable Address: "MICROPHONE TOKYO" Cat. No. 443-5-E 6208-1000-M Printed in Japan Traveling Wave Tube CW Amplifier

4 W 8 0

The 4W80 is a CW traveling-wave amplifier for operation over the frequency range of 3.6 to 4.2 kmc. This tube type has an average small signal gain of 30 db and a saturated output power of 18 watts. The construction of the tube is of the conventional helical line type employing input and output waveguide couplings. These couplings have integral tapered waveguide adapters with adjusting screws for impedance matching. The 4W80 uses integral periodic permanent magnet focusing; it is convection cooled, and operates with a depressed collector electrode voltage. The latter feature produces a significant improvement in the operating efficiency. The design, construction, and long life expectancy of the tube make it exceptionally well suited for use in point-to-point, broadband, multi-channel microwave relay equipments.

FEATURES

o Depressed Collector Operation For Improved Effciency o PPM Focused

Convection Cooled

o Long Life

CHARACTERISTICS

ELECTRICAL.

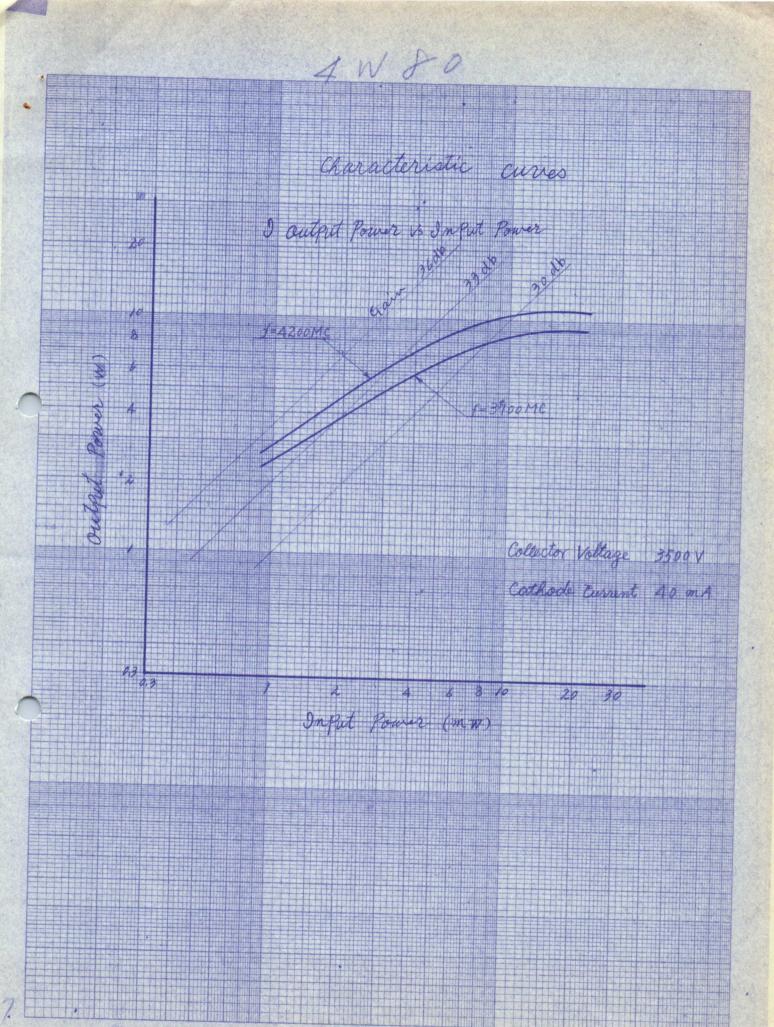
Maximum Ratings General Accelerating Anode Voltage 3700 V Accelerating Anode Current ImA Helix Voltage 3400 V Helix Current² 1.5 mA Collector Voltage, min. 2000 V Collector Current? 45 mA Collector Dissipation 90 W Focusing Electrode Voltage -75 V Ambient Temperature 55°C Ambient Temperature, min. -55°C Collector Seal Temperature 180°C

PHYSICAL.

ollor Gr	
Dimensions	See Outline
Weight	11 lbs
Preferred Mounting	
Position4	Horizontal
Cathode	Oxide coated,
un	ipotential
Connections	
RF Input and	
Output	Reduced height
	WR229
a second and the second second second	

OPERATION

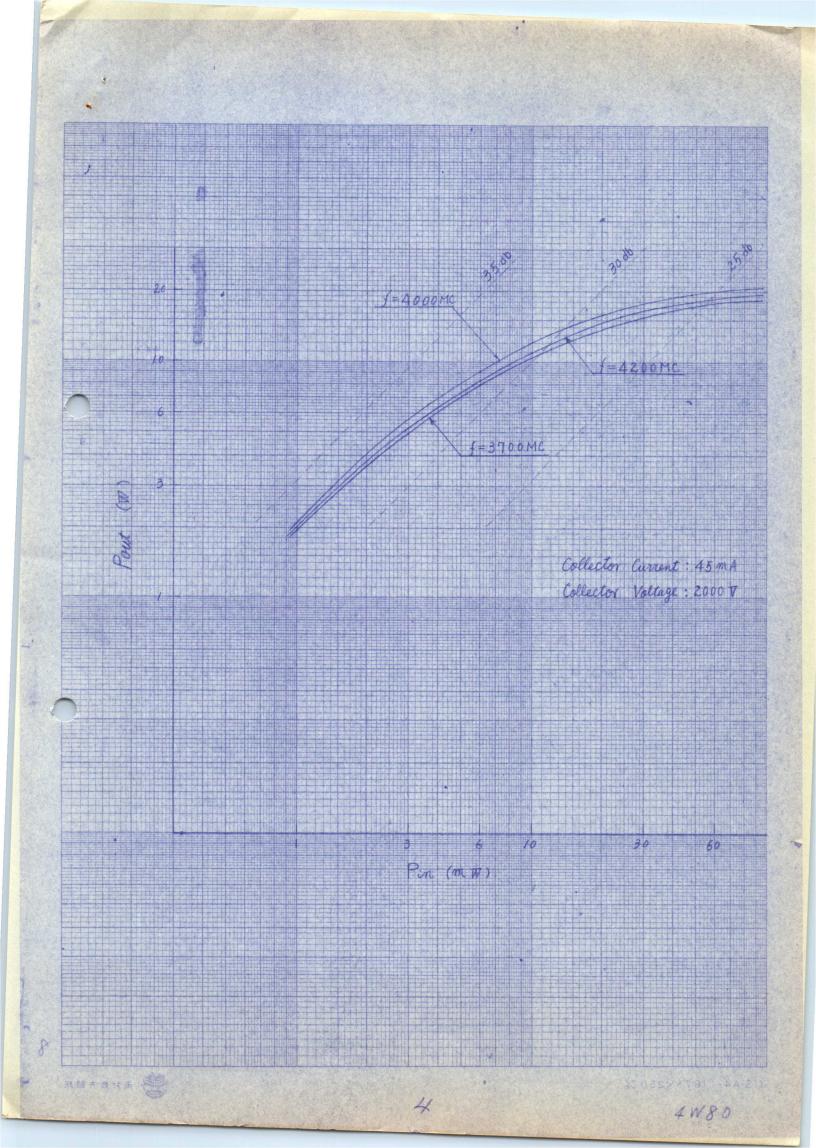
Heater Voltage = 6.3 V; Heater Current at 6.3 V = 0.74 A

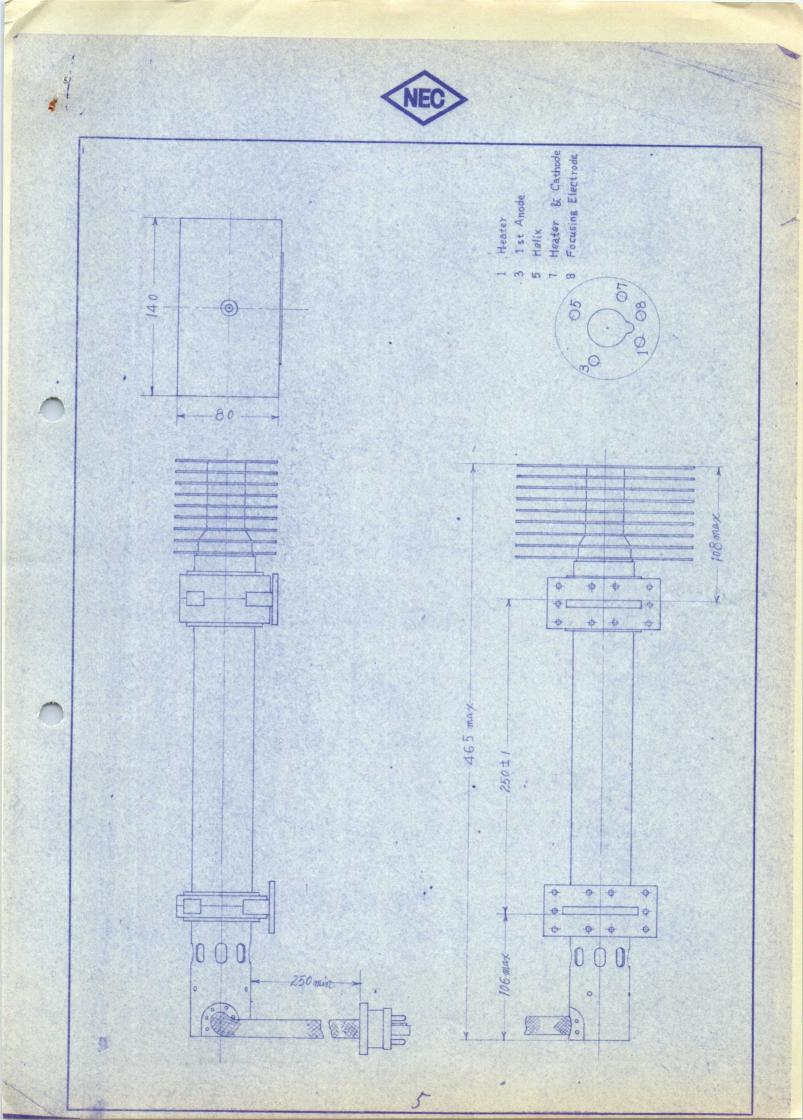

Frequency	3.7	4.0	4.2	kMe
Accelerating Anode Voltage	3100	3100	3100	V
Helix Voltage	2900	2850	2770	V
Helix Current	0.6	0.6	0.6	mA
Collector Voltage	2000	2000	2000	• 7
Collector Current	45	45	45	mA
Focusing Electrode Voltage	-30	-30	-30	V
RF Output (10 mW input level)	n	13	12	W
RF Saturated Output	19	20	19	W
Noise Figure (small signal)	27	. 27	27	db
Small Signal Gain (0.5 mW input)	33	33	33	db

NOTES:

- 1. Ratings should not be exceeded under continuous or transient conditions. A single rating may be the limitation and simultaneous operation at an other rating may not be possible. Design values for systems should include a safety factor to maintain operation within ratings under volt age and environmental variations.
- 2. Helix current increases gradually with tube life. Impending end of tube, life is indicated when the helix current reaches 2.5 milliamperes.
- 3. No rf drive power should be used during installation and voltages adjustments on the tube. Under these conditions brief excursions of the collector current up to 50 milliamperes will not damage the tube.
- 4. Convection cooling is sufficient when the tube is used in a horizontal position. For any other mounting position it may be necessary to direct some air flow through the cooling fins in order to keep the collector seal temperature at a safe operating level.

ス


4W80



3

西林教方眼新

115-A4- 1875×250 %

4 W 8 5

NEC MICROWAVE TUBES

SHF TRAVELING WAVE TUBE

The type 4W85 is a traveling wave tube designed for use with an electro-magnetic solenoid for CW operation over the 3,700 to 4,200 Mc range with an average gain of 24 db and a maximum power output of 200 milliwatts. It is a conventional helical line type tube employing waveguide input and output coupling.

GENERAL CHARACTERISTICS

Cathode	Oxide-c	coated, indirectly heated
Heater	Voltage	6.3 Volts
Heater	Current	1.5 Amperes.

MAXIMUM RATINGS

Focusing Electrode Voltage	-12 Volts
1 st Anode Voltage	1,000 Volts
Helix Voltage	
(2 nd Anode Voltage)	1,200 Volts
Collector Voltage	1,200 Volts
Cathode Current	5 Milliamperes
1 st Anode Current	0.3 Milliamperes
Helix Current	
(2 nd Anode Current)	2 Milliamperes
Collector Dissipation	6 Watts

TYPICAL OPERATING DATA

Frequency	4,000 Mc
Focusing Electrode Voltage	-3 Volts
1 st Anode Voltage	820 Volts
Helix Voltage	
(2 nd Anode Voltage)	1,130 Volts
Helix Current	
(2 nd Anode Current)	0.7 Milliampere
Cathode Current	5 Milliamperes
R.F. Input	0.6 Milliwatts
R.F. Output	180 Milliwatts
Focusing Fielá	400 Gauss

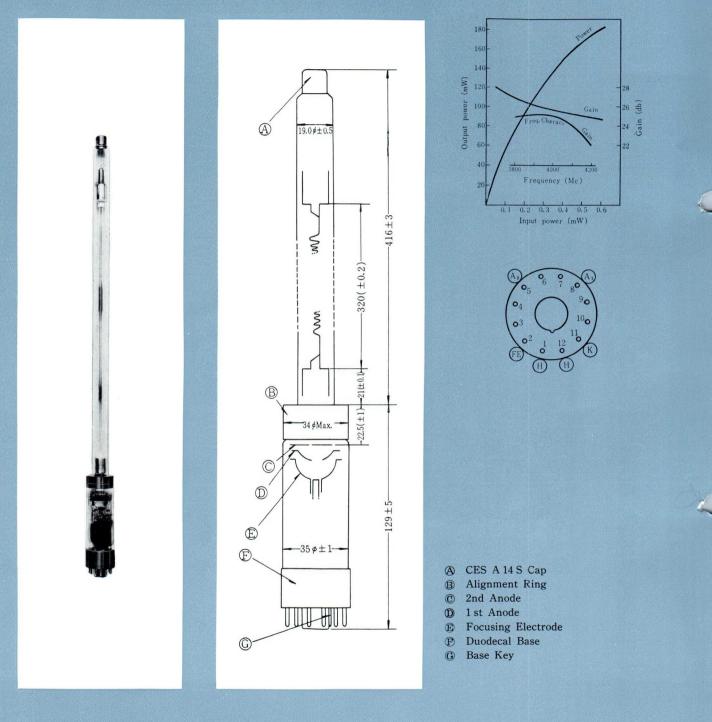
OPERATIONAL SEQUENCE

When putting the 4W85 into operation, initial adjustments should be performed in the following sequence :

- 1. Apply the recommended focusing field.
- 2. Apply heater voltage and allow one minute minimum warm up.
- Apply -5 volts to the focusing electrode; 1,200 volts maximum to the collector; 1,000 volts to the helix (2 nd anode); 500 volts to the 1 st anode in that order.
- 4. Adjust tube position relative to the focus coil so that collector current is maximum, and helix (2 nd anode) current is minimum. This current division can be optimized by adjusting the position of the magnetic shield surrounding the electron gun and focusing electrode voltage.
- 5. Slowly increase the 1 st anode voltage until the rated cathode current is reached.
- 6. Trim the focusing electrode voltage and tube position for proper current division.

MAGNETIC FIELD

Small variations of the magnetic field strength along the axis may be tolerated as long as the field distribution is symmetrical with respect to its axis. It is essential, however, that the axis of the tube and that of the magnetic field be coaxial, in any event.


WAVEGUIDES

Internal dimensions of the input and output coupling waveguide are as follows:

$12 \text{ mm} \times 58 \text{ mm}$

The proper impedance matching of the tube and the guides will be obtained only if the terminations of the helix are correctly oriented relative to the guides.

Characteristics

Nippon Electric Company Ltd.

4W86A

NEC MICROWAVE TUBES

SHF TRAVELING WAVE TUBE

The type 4W86 A is a traveling wave tube designed for use with an electro-magnetic solenoid in CW operation over the 3,700 to 4,200 Mc range with an average gain of 12 db and a maximum power output of 1.5 Watts. It is a conventional helical line type tube employing waveguide input and output coupling. 4W86 A has better input and out- put voltage standing wave ratio than that of the type 4W86.

GENERAL CHARACTERISTICS

Cathode Oxid	e-coated, indirectly heated
Heater Voltage	6.3 Volts
Heater Current	1.5 Amperes
MAXIMUM RATINGS	
Focusing Electrode	Voltage -22 Volts
1 st Anode Voltage	e 2,000 Volts
Helix Voltage	
(2 nd Anode Vol	tage) 2,150 Volts
Collector Voltage	2,150 Volts
Cathode Current	15 Milliamperes
1 st Anode Current	0.5 Milliamperes
Helix Current	
(2 nd Anode Cur	rrent) 1.6 Milliamperes
Collector Dissipatio	on 35 Watts
TYPICAL OPERATIN	G DATA
Frequency	4,000 Mc
Focusing Electrode	e Voltage -10 Volts
1 st Anode Voltage	e 1,700 Volts
Helix Voltage	
(2 nd Anode Vol	tage) 0.4 Milliamperes
Helix Current	
(2 nd Anode Cur	
Cathode Current	15 Milliamperes
R.F. Input	60 Milliwatts
R.F. Output	1,250 Milliwatts
Focusing Field	400 Gauss
COOLING	
Forced-air Cooling	0. 05 m³/min

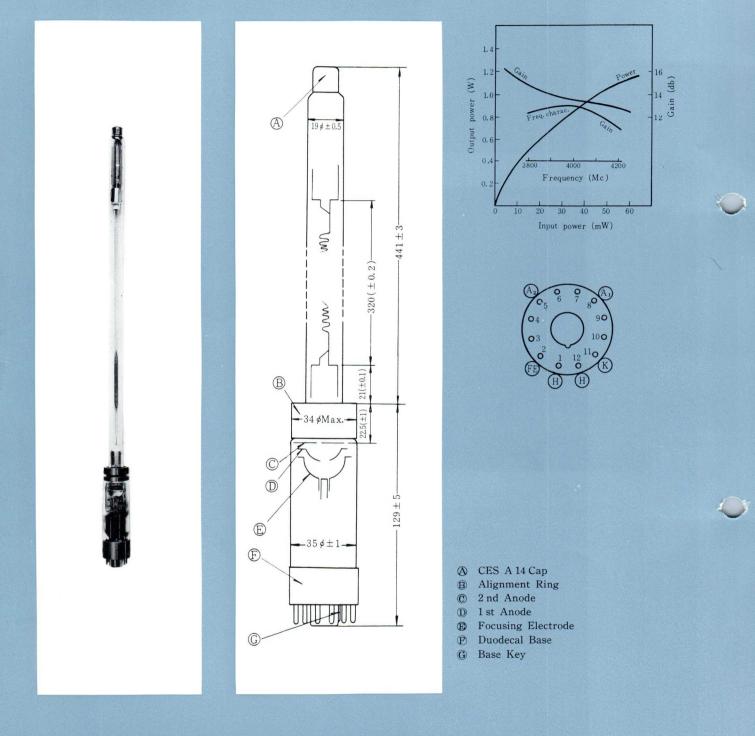
OPERATIONAL SEQUENCE

When putting the 4W86A into operation, initial adjustments should be performed in the following sequence :

- 1. Apply the recommended focusing field.
- 2. Apply heater voltage and allow one minute minimum warm up.
- Apply -10 volts to the focusing electrode;
 2,150 volts maximum to the collector; 2,000 volts to the helix (2 nd anode); 1,200 volts to the 1 st anode in that order.
- 4. Adjust tube position relative to the focus coil so that collector current is maximum, and helix (2 nd anode) current is minimum. This current division can be optimized by adjusting the position of the magnetic shield surrounding the electron gun and focusing electrode voltage.
- 5. Slowly increase the 1st anode voltage to the the rated cathode current.
- 6. Trim the focusing electrode voltage and tube position for proper current division.

MAGNETIC FIELD

Small variations of the magnetic field strength along the axis may be tolerated as long as the field distribution is symmetrical with respect to its axis. It is essential, however, that the axis of the tube and that of the magnetic field be coaxial, in any event.


WAVEGUIDE

Internal dimensions of the input and output coupling waveguide are as follows:

$12 \text{ mm} \times 58 \text{ mm}$

The proper impedance matching of the tube and the guides will be obtained only if the terminations of the helix are correctly oriented relative to the guides.

Characteristics

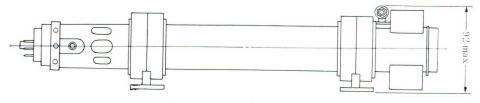
Nippon Electric Company Ltd.

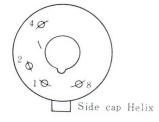
TRAVELING-WAVE TUBE 6W50

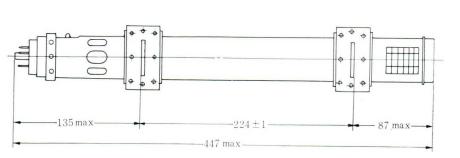
GENERAL

The 6W50 is a CW traveling-wave amplifier designed for operation in a frequency range of **5.66** to 6.45 kMc. This tube has an average small signal gain of 30 db and a saturated output power of 10 watts. The tube operates with depressed collector electrode voltage to provide significant improvement in operating efficiency. It is of coventional helical line construction with reduced height waveguide input and output coupling. Separate tapered waveguide adapters, with adjusting screws for impedance matching, are available to match standard WRJ-6 flanges. This tube employs integral periodic-permanent magnet focusing and forced air cooling. The design, construction, and durability of the tube make it exceptionally well suited for use in point-to-point, broad-band, multichannel microwave relay equipment.

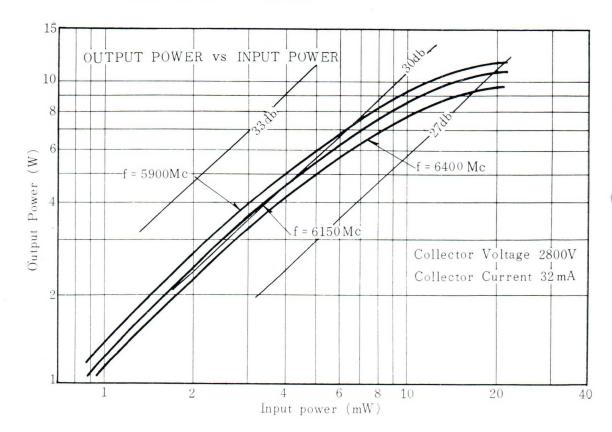
FEATURES


· Depressed collector operation for improved efficiency · PPM focused · Durability


CHARACTERISTICS Physical	Dimensions	
	Preferred mounting position	
	Cathode	
	(Minimum heating time	Alde Couled, unipotential
	Cooling	Forced air 0.5 m ³ /min
	Connector	
Electrical	MAXIMUM RATINGS*	
	Accelerating anode voltage	2800 v
	Accelerating anode current	0.5 ma
	Helix voltage	
	Helix current**	
	Collector voltage, min	
	Collector current	
	Collector dissipation	90 w
	Focusing electrode voltage	–50 v
	Ambient temperature	
	Ambient temperature, min	
	Collector seal temperature	
OTES :	OPERATION (HEATER VOLTAGE=6.3v HEATER CURRENT AT 6.3	
Ratings should not be exceeded under con-	Frequency	
nuous or transient conditions. A single rating hay be the limitation and simultaneous opera-	Accelerating anode voltage	2320 v
on at another rating may not be possible.	Helix voltage	
esign values for systems should include a	Helix current	0.1 ma
afety factor to maintain operation within rat-	Collector voltage	2800 v
ngs under voltage and environmental varia-	Collector current	
tions. ** Helix current increases gradually with tube life. Impending termination of tube life is indi-	Focusing electrode voltage	
	RF output (8-mw input level)	7.7 w
ated when the helix current reaches 2 milli-	RF saturated output	11 w
mperes.	Noise figure (small signal)	
	Small signal gain (0.5-mw input)	



OUTLINE DRAWING


- 1. FOCUSING ELECTRODE
- 2. HEATER
- 4. ACCELERATING ANODE
- 8. HEATER-CATHODE

CHARACTERISTIC CURVES ALL CURVES ARE OF AVERAGE VALUES

NEC Nippon Electric Company Limited P.O. Box 1, Takanawa, Tokyo, Japan Cable Address: "MICROPHONE TOKYO"

Cat. No. 443-16-e 6208-1000-M Printed in Japan

SHF PACKAGE-TYPE TRAVELING WAVE TUBE (TENTATIVE DATA)

The type 6W50 is a periodically focused travelingwave amplifier with cotinuous power output of 10 watts and gain of 30 db over the frequency range of $5,850 \sim 6,450$ megacycles. It is intended primarily to be used at new radio relay system of Nippon Telegraph and Telephone Public Corporation, which is new under construction.

The tube is made of glass envelope construction, employing helical wave propagating structure, and packaged in cylindrical cases together with input and output waveguides and permanent magnet focusing devices.

GENERAL CHARACTERISTICS

Cathode	Oxide-coated, Unipotential
Heater Voltage	6.3 Volts
Heater Current	1.2 Amperes

MAXIMUM RATINGS

Heater-Cathode Voltage	Internally connected
Accelerator Voltage	2,800 Volts
Accelerator Current	0.5 Milliamperes
Helix Voltage	3,600 Volts
Helix Current	2 Milliamperes
Collector Voltage	3,700 Volts
Collector Dissipation	130 Watts
Focusing Electrode Voltage	-20 Volts
Helix Voltage to Ground	500 Volts (Note 1)
(Collector)	
Collector Temperature	150°C
Ambient Temperature	50°C

MECHANICAL CHARACTERISTICS

Mounting position	Any (Note 2)
Weight	3.5 Kgs
Adequate cooling required	0.5 m ³ /minutes

TYPICAL OPERATING DATA

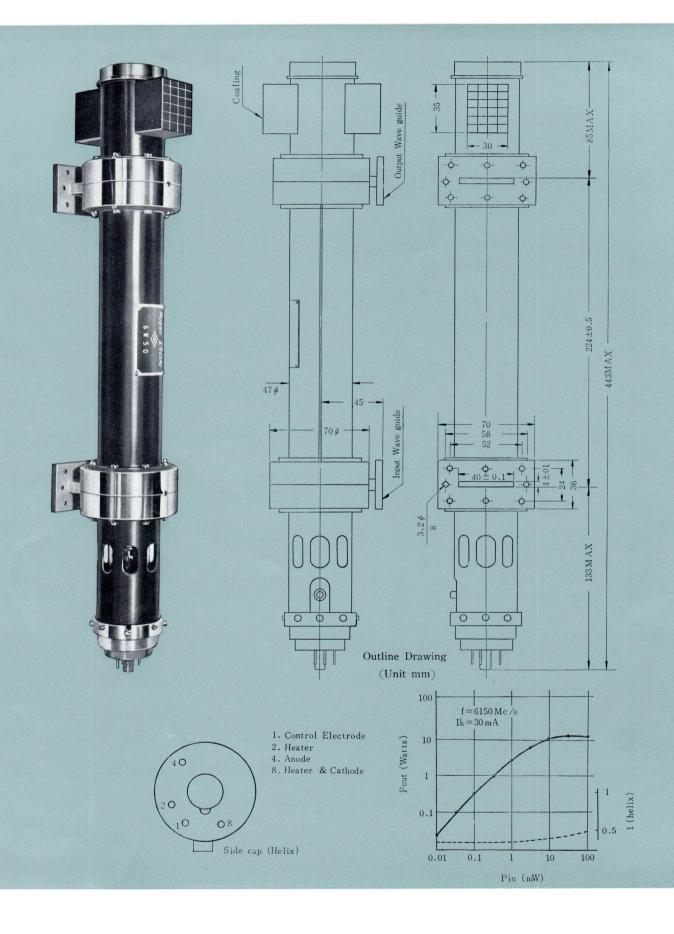
Frequency	6,150 Mc
Accelerator Votage	2,100 Volts
Accelerator Current	0 Milliampere
Helix Voltage	3,300 Volts
Helix Current	0.4 Milliamperes
Collector Voltage	3,350 Volts
Collector Current	30 Milliamperes
Focusing Electrode Voltage	0 Volt
Power Output	5 Watts

PRECAUTIONS

- 1. Care should be taken to avoid shock damage to the tube and the input and output waveguides. For the installation of this tube, it is desirable to use flexible waveguide section to which the tube is connected.
- 2. The screws used to fix the tube elements should never be moved.
- 3. The required air flow must always be supplied before any high voltages are applied to the tube.
- 4. The first anode voltage should not be applied before the focusing electrode, helix and collector voltages reach the specified values.
- 5. The tube body is connected to the collector electrode internally, so it is recommended that the body be kept at ground potential.

OPERATIONAL SEQUENCE

- 1. Bolt the tube securely to the mating wave guide flanges. Do not distort the tube capsule on the mounting, to avoid damage of the glass envelope.
- 2. Apply heater voltage and allow 90 seconds minimum warm up.
- 3. Apply the specified voltage to the focusing electrode, collector and helix voltages in that order.
- 4. Increase the 1st anode voltage until the rated cathode current is reached.
- 5. Trim the helix voltage for optimum operation.


TUNING PROCEDURE

Two short plungers provided in the input and output waveguides are used to tune the tube roughly to the external circuits.

When fine adjustment of impedance matching at input and output circuits is required, it is recommended that matching devices be used.

- Note 1. Collector is internally connected to waveguides.
 - 2. Upon connecting waveguides to external circuits, any stress in the package should be avoided.

Nippon Electric Company Ltd.

2, Shiba Mita Shikoku-machi, Minato-ku, Tokyo, Japan Tel. Tokyo 45-1171 (9) • 5121 (9) • 5221 (9) Cable Address ''MICROPHONE TOKYO''

÷.

* `@

8 W 7 5

S H F PACKAGE-TYPE TRAVELING WAVE TUBE

The type 8W75 is a traveling wave amplifier and oscillator for CW operation over the 6,000 to 7,500 Mc range with an average small signal gain of 23 db and a maximum power output of around 2 Watts. It is a conventional helical line type tube employing wave guide input and output coupling. The focusing system of this tube consists of special magnetic lenses and periodic-magnetic field system which are packaged in cylindrical cases together with input and output waveguides and the tube itself.

GENERAL CHARACTERISTICS

Cathode	Oxide-coated,	indirectly heated	
Heater	Voltage	6.3 Volts	
Heater	Current	1.0 Amperes	

MAXIMUM RATINGS

Focusing Electrode Voltage	-70 Volts
1 st Anode Voltage	1,800 Volts
Helix Voltage	
(2 nd Anode Voltage)	3,300 Volts
Collector Voltage	3,350 Volts
Cathode Current	16 Milliamperes
1 st Anode Current	500 Microamperes
Helix Current	
(2 nd Anode Current)	2 Milliamperes
Collector Seal Temperature	150°C

MECHANICAL CHARACTERISTICS

Mounting position	Any
Volume of air required	
for cooling	0.12 m ³ /min
Net weight	3 kgs.

TYPICAL OPERATING DATA

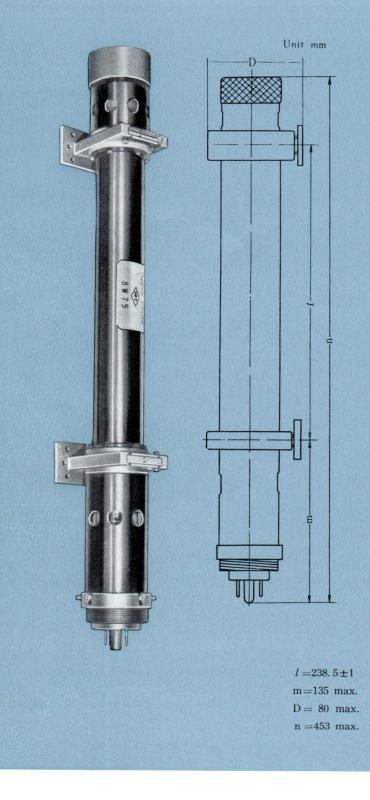
Frequency	6,400 Mc
Focusing Electrode Voltage	-50 Volts
1 st Anode Voltage	1,290 Volts
Helix Voltage	
(2 nd Anode Voltage)	3,200 Volts
Helix Current	
(2 nd Anode Current)	0.5 Milliamperes
Cathode Current	14 Milliamperes
Collector Voltage	3,250 Volts
R. F. Output (Saturated)	2.8 Watts
Small signal gain	30 db

PRECAUTIONS

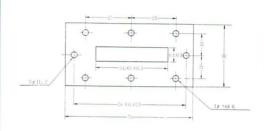
- 1. Care should be taken to avoid shock damage to the tube and the input and output waveguides. For the installation of this tube, it is desirable to use flexible waveguides section to which the tube is connected.
- 2. The screws used to fix the tube elements should never be moved.
- 3. The required air flow must always be supplied before any high voltages are applied to the amplifier.
- 4. The first anode voltage should not be applied before the focusing electrode, helix and collector voltages reach the specified values,
- 5. The tube body is connected to the collector electrode internally, so it is recommended that the body be kept at ground potential.

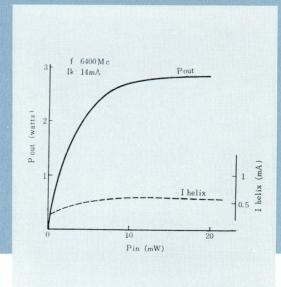
OPERATIONAL SEQUENCE

- 1. Bolt the tube securely to the mating wave guide flanges. Do not distort the tube capsule on mounting, to avoid damage of the glass envelope.
- 2. Apply heater voltage and allow one minute minimum warm up.
- 3. Apply the specified voltages to the focusing electrode, collector and helix voltages in that order.
- 4. Increase the 1 st anode voltage until the rated cathode current is reached.
- 5. Trim the helix voltage for optimum operation.


TUNING PROCEDURE

Two short plungers provided in the input and output waveguides are used to tune the tube roughly to the external circuits.


When fine adjustment of impedance matching at input and output circuits is required, it is recommended that matching devices be used.



Nippon Electric Company Ltd.

Nippon Electric Company Ltd.

2, Shiba Mita Shikoku-machi, Minato-ku, Tokyo, Japan Tel. Tokyo 45-1171 (9) • 5121 (9) • 5221 (9) Cable Address "MICROPHONE TOKYO"

8 W 7 6

S H F PACKAGE-TYPE TRAVELING WAVE TUBE

The type 8W76 is a traveling wave amplifier and oscillator for C. W. operation over the 6,000 to 7,500 Mc range with an average small signal gain of 30 db and a maximum power output of around 5 watts. It is a conventional helical line type tube employing waveguide input and output coupling. The focusing system of this tube consists of a novel magnetic circuit and a conventional periodic magnetic field system which are packaged in cylindrical cases together with input and output waveguides and the tube itself, so the complete assembly is remarkably compact and light weight.

compact and light weight.			
GENERAL CHARACTERISTICS			
	indirectly heated		
Heater Voltage	6.3 Volts		
Heater Current	1.0 Amperes		
MAXIMUM RATINGS			
Focusing Electrode Voltage	-60 Volts		
1 st Anode Voltage	3,000 Volts		
Helix Voltage			
(2 nd Anode Voltage)	3,450 Volts		
Collector Voltage	3,500 Volts		
Cathode Current	28 Milliamperes		
1 st Anode Current	1 Milliampere		
Helix Current			
(2 nd Anode Current)	2 Milliamperes		
Collector Seal Temperature	150°C		
MECHANICAL CHARACTERIS	STICS		
Mounting position	Any		
Volume of air required			
for cooling	0.25 m ³ /min		
Net Weight	2.5 kgs.		
TYPICAL OPERATING DATA			
Frequency	7,500 Mc		
Focusing Electrode Voltage	-40 Volts		
1 st Anode Voltage	2,450 Volts		
Helix Voltage			
(2 nd Anode Voltage)	3,000 Volts		
Helix Current			
(2 nd Anode Current)	0.6 Milliamperes		
Cathode Current	26 Milliamperes		
Collecter Voltage	3,050 Volts		
R.F. Output			
(at 5mW input level)	5 Watts		

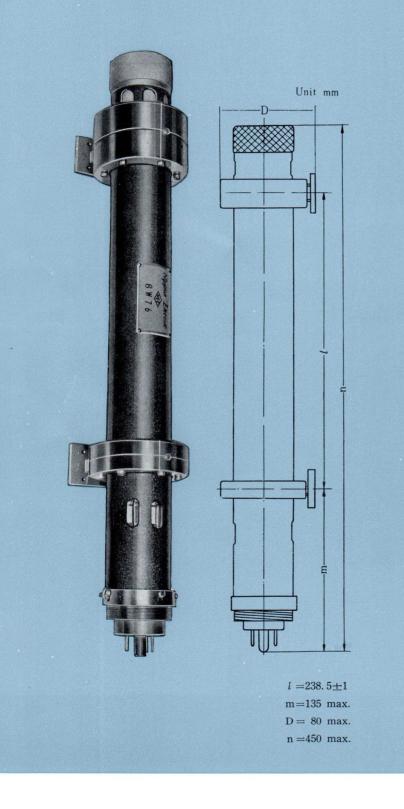
PRECAUTIONS

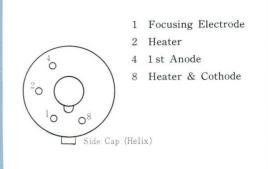
- 1. Care should be taken to avoid shock damage to the tube and the input and output waveguides. For the installation of this tube, it is desirable to use flexible waveguide section to which the tube is connected.
- 2. The screws used to fix the tube elements should never be moved.
- 3. The required air flow must always be supplied before any high voltages are applied to the tube.
- 4. The first anode voltage should not be applied before the focusing electrode, helix and collector voltages reach the specified values.
- 5. The tube body is connected to the collector electrode internally, so it is recommended that the body be kept at ground potential.

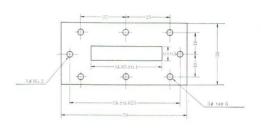
OPERATIONAL SEQUENCE

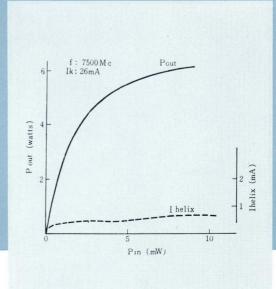
- 1. Bolt the tube securely to the mating wave guide flanges. Do not distort the tube capsule on the mounting, to avoid damage of the glass envelope.
- 2. Apply heater voltage and allow 90 seconds minimum warm up.
- 3. Apply the specified voltage to the focusing electrode, collector and helix voltages in that order.
- 4. Increase the 1 st anode voltage until the rated cathode current is reached.
- 5. Trim the helix voltage for optimum operation.

TUNING PROCEDURE


Two short plungers provided in the input and output waveguides are used to tune the tube roughly to the external circuits.


When fine adjustment of impedance matching at input and output circuits is required, it is recommended that matching devices be used.




Nippon Electric Company Ltd.

and the second s

Nippon Electric Company Ltd.

2, Shiba Mita Shikoku-machi, Minato-ku, Tokyo, Japan Tel. Tokyo 45-1171 (9) • 5121 (9) • 5221 (9) Cable Address "MICROPHONE TOKYO"

11 W 17

NEC MICROWAVE TUBES

SHF PACKAGE-TYPE TRAVELING WAVE TUBE

The type 11W17 is a traveling wave amplifier and oscillator in C. W. operation over the 10,700 to 11,700 Mc range with an average small signal gain of 30 db and a maximum power output of around 0.7 watts. It is a conventional helical line type tube employing waveguide input and output coupling. The focusing system of this tube consists of a novel magnetic circuit and a conventional periodic magnetic field system which are packaged in cylindrical cases together with input and output waveguides and the tube itself, so the complete assembly is remarkably compact and light-weight.

GENERAL CHARACTERISTICS

Cathode	Oxide-coated,	indirectly heated
Heater	Voltage	6.3 Volts
Heater	Current	1.0 Ampere

MAXIMUM RATINGS

Focusing Electrode Voltage	-50 Volts
1 st Anode Voltage	1,400 Volts
Helix Voltage	
(2 nd Anode Voltage)	2,400 Volts
Collector Voltage	2,500 Volts
Cathode Current	8 Milliamperes
1 st Anode Current	0.5 Milliamperes
Helix Current	
(2 nd Anode Current)	1.5 Milliamperes
Collector seal Temperature	150°C

MECHANICAL CHARACTERISTICS

Mounting position	Any
Volume of air required	
for cooling	0.05 m ³ /min
Net Weight	1.7 kgs.

TYPICAL OPERATING DATA

Frequency	11,200 Mc
Focusing Electrode Voltage	-20 Volts
1 st Anode Voltage	1,070 Volts
Helix Voltage	· · · · · · · · · · · · · · · · · · ·
(2 nd Anode Voltage)	2,110 Volts
Helix Current	
(2 nd Anode Current)	0.56 Milliampere
	ATTACK TO A COMPANY OF A STATE OF

Cathode Current Collector Voltage R.F. Output (at 4 mW input level) 8 Milliamperes 2210 Volts

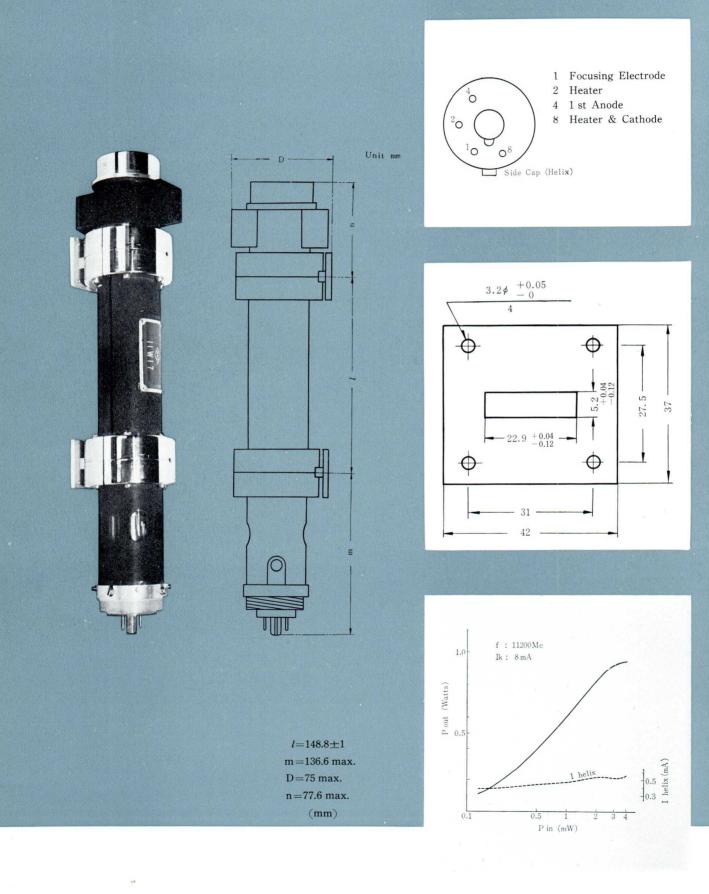
0.95 Watts

PRECAUTIONS

- 1. Care should be taken to avoid shock damage to the tube and the input and output waveguides. For the installation of this tube, it is desirable to use flexible waveguide section to which the tube is connected.
- 2. The screws used to fix the tube elements should never be moved.
- 3. The required air flow must always be supplied before any high voltages are applied to the tube.
- 4. The first anode voltage should not be applied before the focusing electrode, helix and collector voltages reach the specified values.
- 5. The tube body is connected to the collector electrode internally, so it is recommended that the body be kept at ground potential.

OPERATIONAL SEQUENCE

- 1. Bolt the tube securely to the mating waveguide flanges. Do not distort the tube capsule on mounting, to avoid damage of the glass envelope.
- 2. Apply heater voltage and allow 90 seconds minimum warm up.
- 3. Apply the specified voltages to the focusing electrode, collector and helix voltages in that order.
- 4. Increase the 1 st anode voltage until the rated cathode current is reached.
- 5. Trim the helix voltage for optimum operation.


TUNING PROCEDURE

Two short plungers provided in the input and output waveguides are used to tune the tube roughly to the external circuits.

When fine adjustment of impedance matching at input and output circuits is required, it is recommended that matching devices be used.

Nippon Electric Company Ltd.

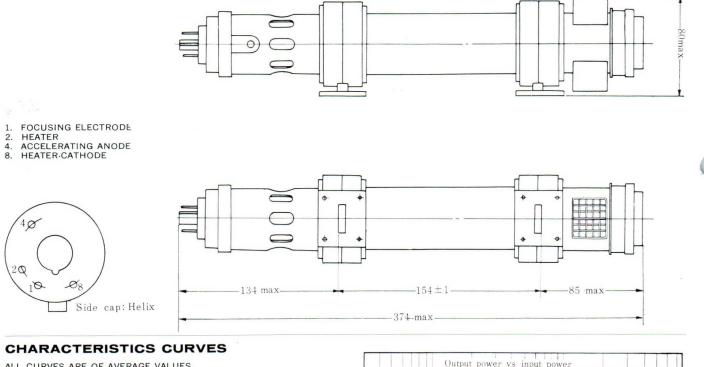
NEC

Nippon Electric Company Ltd.

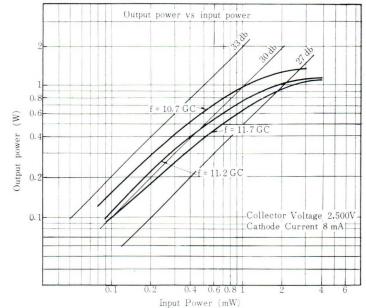
2, Shiba Mita Shikoku-machi, Minato-ku, Tokyo, Japan Tel. Tokyo 45–1171 (9) • 5121 (9) • 5221 (9) Cable Address "MICROPHONE TOKYO"

TRAVELING-WAVE TUBE 11W17A

GENERAL


The 11W17A is a CW traveling-wave amplifier designed for operation in a frequency range of 10.7 to 11.7 kMc. This tube has an average small signal gain of 30 db and a saturated output power of 1 watt. It is of conventional helical line construction with reduced height waveguide input and output coupling. Separate tapered waveguide adapters, with adjusting screws for impedance matching, are available to match standard WR90 flanges. This tube employs integral periodicpermanent focusing and forced air cooling. The design, construction, and durability of the tube make it exceptionally well suited for use in point-to-point, multichannel microwave relay equipment.

FEATURES • PPM focused • Durability


CHARACTERISTIC	Physical	Dimensions	
		Preferred mounting position	
		Cathode	
		Cooling	Forced air 0.05 m ³ /min
		Connector	
	Electrical	MAXIMUM RATINGS*	
		Accelerating anode voltage	
		Accelerating anode current	0.5 ma
		Helix voltage	
		Helix current**	0.7 ma
		Collector voltage,	
		Cathode current	8 ma
		Collector dissipation	
		Focusing electrode voltage	
		Ambient temperature	
		Ambient temperature, min	–55° (
		Collector seal temperature	150° (
NOTES:		OPERATION (HEATER VOLTAGE=6.3v HEATER	R CURRENT AT 6.3v=1.0a)
* 5		Frequency	
* Ratings should not be exceeded tinuous or transient condition		Accelerating anode voltage	
rating may be the limitation and simulta- neous operation at another rating may not be possible. Design values for systems should include a safety factor to maintain operation within rating under voltage and environmental variations.		Helix voltage	
		Helix current	0.25 ma
		Collector voltage	
		Collector current	
		Focusing electrode voltage	
		RF output (10-mw input level)	
** Helix current increases gradual life. Impending termination of		RF saturated output	
indicated when the helix currer		Noise figure (small signal)	
milliamperes.		Small signal gain (0.1-mw input)	

OUTLINE DRAWING

ALL CURVES ARE OF AVERAGE VALUES

Cat. No. 443-17-E 6208-1000-M Printed in Japan

5721

REFLEX KLYSTRON

The type 5721 is a broadband reflex klystron designed primarily for use in signal generators, spectrum analyzers, or local oscillators where broadband frequency coverage is required.

This tube operates over the frequency range from 2,500 to 11,000 Mc in conjunction with external cavities.

STRUCTURAL FEATURES

Disk sealed external cavity type; gold plated to keep the tube surface clean and make a good contact with an external cavity.

GENERAL CHARACTERISTICS

Frequency range	·2,500 to 11,000	Mc	
Cathode	·Oxide coated,	indirectly	heated
Heater Voltage			
Heater Current	·0.58 Amperes		

MECHANICAL FEATURES

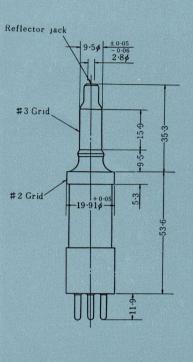
Resonant Cavity	··external
Envelope	···Glass & metal
Base	Special small 4-pin
Weight	30 g

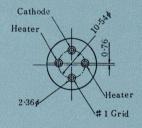
MAXIMUM RATINGS

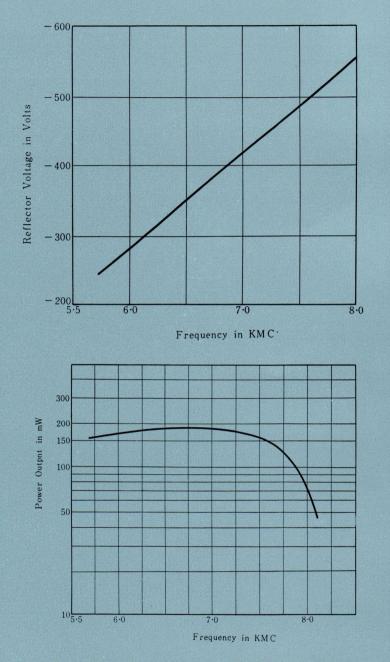
Resonator Voltage	1,250 Volts
Resonator Current	······20 milliamperes
#1 Grid Voltage	25 Volts
#1 Grid Current	······6 milliamperes
#3 Grid Sleave Temperature	160°C
Reflector Voltage	$\dots -15$ to -800 Volts
Heater Voltage	······5.8 to 6.8 Volts
Heater to Cathode Voltage	·····±45 Volts

TYPICAL OPERATION DATA

Frequency	4,200	7,500	10,800	Mc
Reflector Mode	23/4	23/4	38/4	A TAL AND
Cavity Mode	3/4	8/4	8/4	
Resonator Voltage	1,000	1,000	1,250	Volts
Resonator Current (Adjusted by grid voltage)	20	20*	20	Milliamperes
Reflector Voltage	-90	-480	-290	Volts
Grid Voltage	14	11	12	Volts
Grid Current	3.0	2.5	2.5	Milliamperes
Power Output	125	160	40	Milliamperes


NOTICE :


1. The heater voltage must be applied one minute before resonator voltage is applied.


- 2. The reflector voltage must be applied before resonator voltage.
- 3. The reflector must never become positive with respect to the cathode.
- 4. All contacting external parts should be silver plated or, if this is impossible, should be kept clean.
- 5. #3 grid sleave must be kept below 160°C.
- 6. When inserting the tube into the cavity, use very light twisting motion while pushing in.
- Be sure never to apply bending force onto the tube.

NEC Nippon Electric Company Ltd.

* Cathode current

Note: These characteristics are obtained in conjunction with a cavity designed for use over the frequency range from 6,000 to 7,500 megacycles. When other frequency ranges are required, suitable cavities must be designed.

NEC

Nippon Electric Company Ltd.

2, Shiba Mita Shikoku-machi, Minato-ku, Tokyo, Japan Tel. Tokyo 45-1171 (9) • 5121 (9) • 5221 (9) Cable Address "MICROPHONE TOKYO"

DISC-SEALED PLANAR TRIODE 5861

GENERAL

The 5861 is a disc-sealed planar triode designed for use as an oscillator, or frequency multiplier in radio transmitters operating at frequencies up to 3700 Mc. It features low lead inductance and capacitance, ensuring good UHF performance.

The cathode consists of an indirectly-heated oxide coated disc. The anode dissipation is 10 watts with air cooling.

GENERAL CHARACTERISTICS

Electrical
Heater voltage 6.3 volts
Heater current0.4 amps
$Transconductance(I_b \ 20 \ ma, \ E_b \ 250 \ v)6 \ millimhos$
Amplification factor
Interelectrode capacitances
Grid-plate 1.0 $\mu\mu$ f
Grid-cathode
Plate-cathode0.03 $\mu\mu f(max)$
Mechanical
Mounting positionAny
Type of coolingConvection

Net weight.....10 g

Nippon Electric Company Limited

MAXIMUM RATINGS AND TYPICAL **OPERATING CONDITIONS**

RF POWER AMPLIFIER AND OSCILLATOR

Maximum Ratings

DC plate voltage	.350 volts
DC plate current	40 ma
Peak plate current	150 ma
Plate dissipation*	10 watts
Frequency	3700 Mc
Seal temperature	140°C

Operating Data

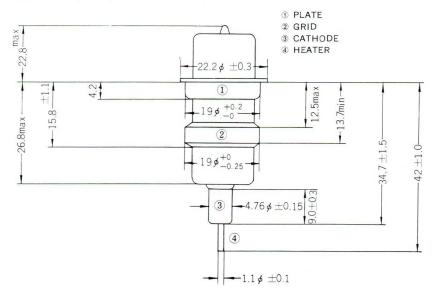
RF oscillator, 300 Mc

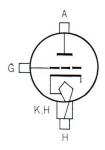
DC plate voltage
DC grid voltage8.5 volts
DC plate current
DC grid current
Useful power output1 watt

Tolerance Ranges in Equipment Design

Min.	Max.
Filament current at 6.3 volts0.30	0.45 amps
Cut-off bias**	-15 volts
Grid-plate capacitance***0.7	1.4 $\mu\mu$ f
Grid-cathode capacitance***1.5	2.5 μμf

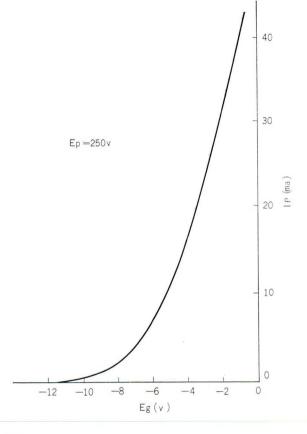
Mounting

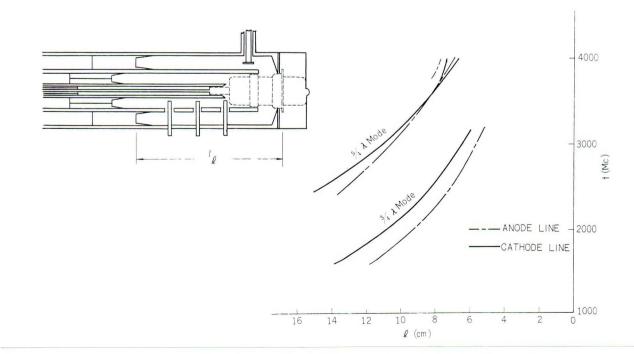

In mounting the tube, care must be taken to secure good electrical contacts. For this reason, it is strongly recommended that the anode, grid, cathode, and heater terminals of the tube should ride against spring collets or fingers.


Details of the terminal contacting surface are included in the outline drawing.

- * To limit seal temperature and temperature rate of change at the anode seal, it is necessary that the mass of metal in close thermal contact with the anode disc be not less than 60 grams of brass or its equivalent. **
- Measured at 1-ma plate current and a plate voltage of 250 volts

*** Capacitance measured with no voltage applied to the tube


DIMENSIONS (mm)



DISC-SEALED PLANAR TRIODE 5861

STATIC TRANSFER CHARACTERISTICS

TUNING CIRCUITS AND CHARACTERISTICS

POWER OUTPUT vs. FREQUENCY

3 (I)2 Po (W) 1 0 2500 3000 3500 f(Mc) (]]) 0.2 N 0.1 Ро 0 3600 3800 4000 4200 f (Mc) POWER OUTPUT AND EFFICIENCY vs. DC PLATE INPUT POWER 3000 3500 2 Po (W) 1

NEC Nippon Electric Company Limited P.O. Box 1, Takanawa, Tokyo, Japan Cable Address: "MICROPHONE TOKYO"

Cat. No. 445-2-E 6208-1000-M Printed in Japan

12

3500

Pin (W)

20

10 %

0

6

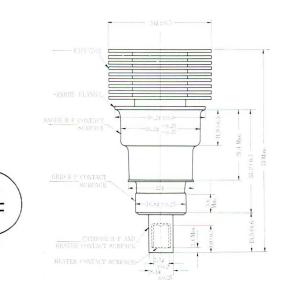
ELECTRON TUBE LD-497

GENERAL

The LD-497 is a high-mu planar triode designed for use as an oscillator, power amplifier, or frequency multiplier in radio transmitting service at frequencies up to 2500 Mc. Features include low lead inductance and capacitance, high transconductance, and high plate dissipation. The cathode is an indirectly heated oxide-coated disc. The anode is cooled by forced air and is capable of dissipating 130 watts. Outline dimensions of the LD-497 are the same as the 2C39A or the 2C39B.

GENERAL CHARACTERISTICS

Electrical


Heater voltage (see application)6.3 v
Heater current1.3 a
Transconductance $(I_{\rm b}{=}120~\text{ma},~E_{\rm b}{=}600\text{v})36$ millimhos
Amplification factor90
Interelectrode capacitances
Grid plate2.1 $\mu\mu f$
Grid cathode
Plate cathode0.08 µµf max

Mounting positionAny
Type of coolingForced air
Required air flow on anode0.4 $m^{\scriptscriptstyle 3}/min$
Maximum seal temperature150°C
Net weight90 g

OUTLINE DRAWING

Nippon Electric Company Limited

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS RF POWER AMPLIFIER AND OSCILLATOR

Maximum Ratings

DC plate voltage 1000 v
DC grid voltage
DC cathode current
DC grid current
Peak positive RF grid voltage
Peak negative RF grid voltage400 v
Plate dissipation (forced-air cooling)
Grid dissipation
Frequency

Typical Operating Data

RF oscillator, 2500 Mc	
DC plate voltage	0 v
DC grid voltage2	0 v
DC plate current	ma
DC grid current	ma
Useful power output	5 w

Class C Amplifier in Grounded-Grid Circuit at 1800 Mc

DC plate voltage
DC grid voltage22 v
DC plate current 140 ma
DC grid current (approx.) 10 ma
Driver power output (approx.) 4 w
Useful power output (approx.) $25w$

Characteristic Range Values for Equipment Design

Filament current at 6.3 v		Max 1.4 v
Cut-off bias* Grid plate capacitance**	2.0	-15 v
Grid plate capacitance**	1.8	2.2 µµf
Grid cathode capacitance**	8	12 µµf

 $^{\ast}\,$ Measured at 1 ma of plate current and a plate voltage of 600 volts $^{\ast\ast}\,$ Capacitance measured during cold state of the tube

APPLICATION

Mechanical

Electrical

Mounting

When mounting the tube, care must be taken to secure a good electrical contact. For this reason it is strongly recommended that anode, grid, cathode, and heater terminals of the tube should ride against spring collets or spring fingers.

Details of the contacting surface of the terminals are shown in the outline drawing.

The tube, when in the socket, should be seated against the anode flange.

Cooling

Temperature of plate, grid, and cathode seals should not exceed 150°C under any operating conditions. Tube life and reliability will be enhanced when all seals are properly cooled under all operating conditions. An air flow through cowling, of 0.4-cubic meters per minute is recommended for the anode radiator when operating up to the rated maximum dissipation.

Heater Voltage

Back-heating of the cathode will occur if operated above 400 Mc and merits consideration. Back-heating depends upon frequency, grid current, grid bias, circuit design and adjustment.

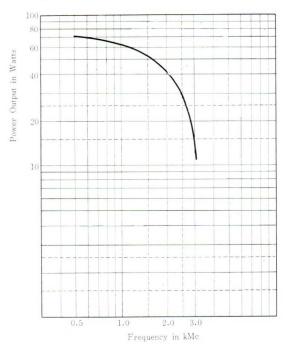
However, the following table can be safely used as a rule under normal conditions to offset the back-heating effects :

Operating	Freque	ency	Heater Voltage, Ef
Below	400	Mc	6.3 v
400 to	1000	Mc	6.0 v
1000 to	1500	Mc	5.5 v
1500 to	2000	Mc	5.0 v
Above	2000	Mc	4.5 v

Tolerance of plus or minus 5 % may be allowed for the above recommended heater voltage values.

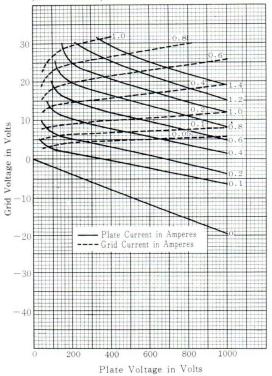
Circuit Tuning

With high-frequency circuits, a very small motion of the tuning plunger may throw the tube out of resonance and result in high plate current and/or excessive anode dissipation. In practical useage it is recommended that provisions be made for tuneup at a reduced plate voltage.


Driving Power

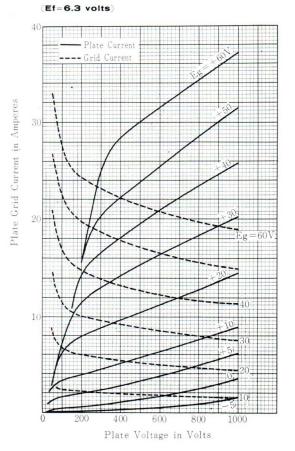
In normal use a part of the total power supplied by the driving source will appear as grid dissipation; the remainder is mainly absorbed by circuit losses.

For optimum tube life, the plate circuit should be heavily-loaded and the driving power should be reduced to the lowest value consistent with reasonable efficiency.


In general, low voltage, high current operation is preferable to high voltage, low current operation. The tube should never be operated without a reasonable plate load.

FREQUENCY CHARACTERISTICS (Oscillation)

CONSTANT CURRENT CHARACTERISTICS


Ef=6.3 volts

Nippon Electric Company Limited

P.O. Box 1, Takanawa, Tokyo, Japan Cable Address: "MICROPHONE TOKYO"

AVERAGE CHARACTERISTICS

VES-3359-2 June 6, 1963 Nippon Electric Co., Ltd.

1/5

Traveling-Wave Tube CW Amplifier NEC LD-508A

(Tentative Data Sheet)

The NEC LD-508A is a CW traveling-wave amplifier for operation over the 3.6 to 4.9 KMC.

For the upper half of this frequency range, this type tube has an average small signal gain of 31db and a saturated output power of about 16 watts. For the lower half of the frequency range, the average small signal gain is 33db and the saturated output power is about 18 watts. The construction of the tube is of the conventional helical line type employing input and output waveguide couplings.

The LD-508A is available with a light-weight periodic permanent magnet focusing system, LD-508A Mount; it is convection cooled, and operates with a collector electrode voltage that is depressed to approximately two thirds of helix voltage. This latter feature produces a significant improvement in the operating efficiency.

The design, construction, and long life expectancy of the tube make it exceptionally well suited for use in point to point, broadband, multi-channel microwave relay system.

Feature

1. PPM Focused and Field Replaceable.

2. Depressed Collector Operation For Improved Efficiency.

3. Convection Cooled.

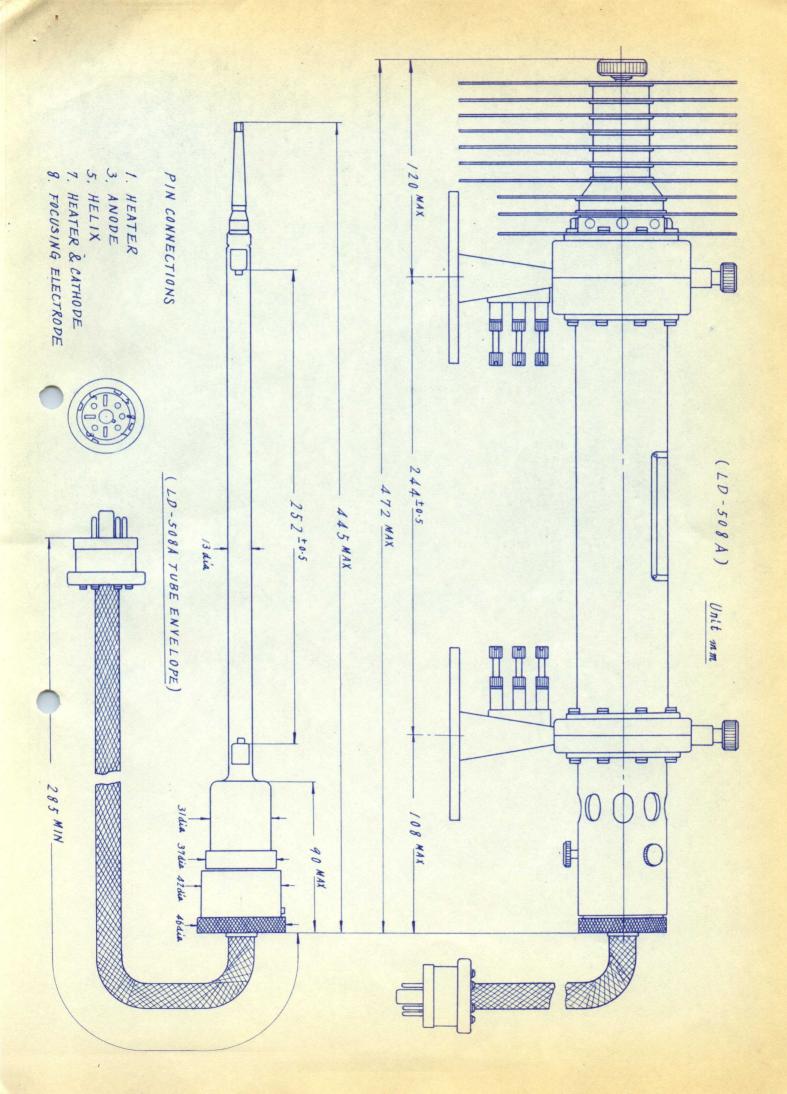
4. Long Life.

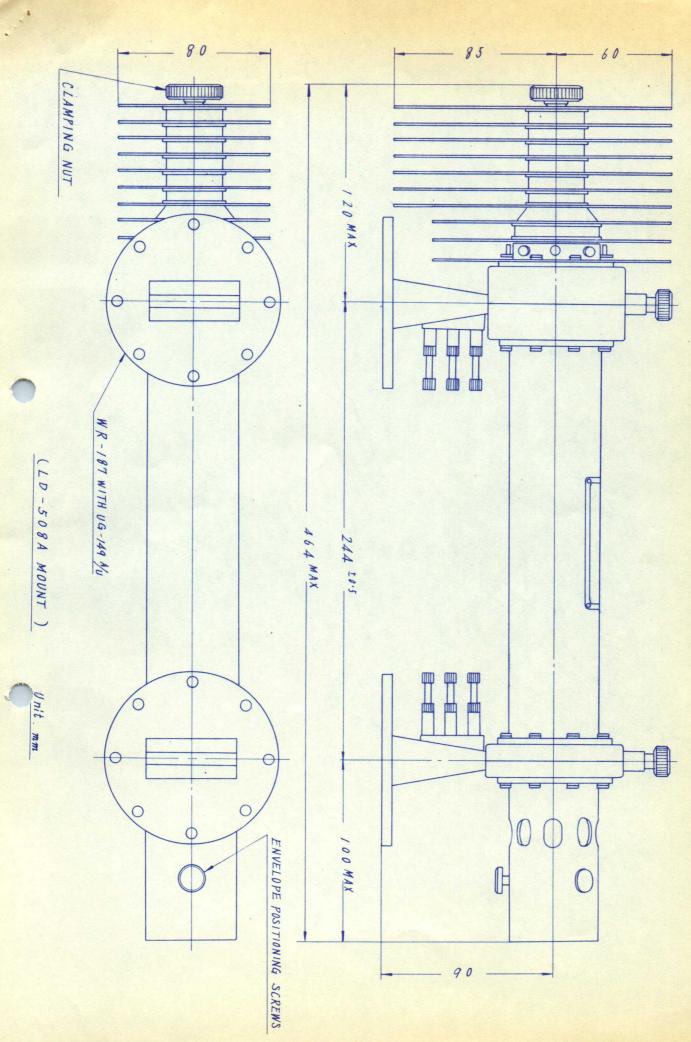
Characteristics

Physical

Dimensions	See outline
Weight	Tube Envelope: 0.27 Kg.
	Tube Mount: 5.5 Kg.
Preferred Mounting Position	Horizontal(1)
Cathode	Oxide Coated, unipotential
Connections RF Input and output	WR-187 with UG-149 A/U Flange or WR-229 with CMR-229 Flange

Electrical


	Mar Acc	ximum Ratings ⁽²⁾ celerating Anode Voltage	3500 Vdc
	Acc	celerating Anode Current	0.8 mAdc
	Hel	Lix Current	2.5 mAdc
	Col	Llector Voltage, min	2000 Vdc
	Col	Llector Current	45 mAdc
	Col	llector Dissipation	90 W
	Foc	cusing Electrode Voltage, max	-20 Vdc
	Foc	cusing Electrode Voltage, min	-70 Vdc
	Amk	pient Temperature, max	55°C
	Amb	pient Temperature, min	-55°C
	Col	llector Seal Temperature	180°C
			÷
Op	erat	tion	×
	0	Heater Voltage = $6.3V$; Heater Current at $6.3V = 0.7$	7 A
	0	Frequency	4000 MC
	0	Accelerating Anode Voltage	3200 Vdc
	0	Accelerating Anode Current	0.01 mAdc
	0	Helix Voltage	2900 Vdc
	0	Helix Current	0.3 mAdc
	0	Collector Voltage	2000 Vdc
	0	Collector Current	45 mAdc
	0	Focusing Electrode Voltage	-50 Vdc
	0	RF Output (6 mw input level)	lo W
	0	RF Output Saturated	20 W
	0	Noise Figure (Small Signal)	27 db
,	0	Small Signal Gain	34 db


0	Cold input and output match over 600 Mc/s band with matching device adjusted	VSWR <1.4
0	Hot input and output match	100010 (1.4

over 600 Mc/s band without readjustment after cold input and output matching test . . . VSWR <1.6

Note

- Convection cooling is sufficient when the tube is used in a horizontal position.
 For any other mounting position it may be necessary to direct a flow of air through the cooling fins through a convection duct or other means in order to keep the collector seal temperature at a safe operating level.
- Ratings should not be exceeded under continuous or transient conditions.
 A single rating may be the limit, and simultaneous operation at another rating may not be possible.
 Design values for systems should include a safety factor aimed at maintaining operation within ratings under voltage and environmental variations.
- 3. Helix current increases gradually with tube life. Warning of the end of tube life is given when helix current reaches 2.5 milliamperes.

VACUUM TUBE LD-531

GENERAL

The LD-531 high-mu planar triode is a metal-ceramic type manufactured by NEC to rigid specifications. The triode is intended for use as an oscillator, power amplifier or frequency multiplier in transmitters operating up to 2300 Mc. The planar (coaxial contact) construction provides low lead inductances and capacitances, which result in high power output at UHF. The cathode is an indirectly-heated oxide-coated disc. The anode can dissipate up to 600 watts when cooled with forced air.

CHARACTERISTICS	Heater voltage	. 6.3 volts
Electrical	Heater current	2.3 amps
	Transconductance (I_b=200 ma; $E_b{=}1200\nu)$ 45000 n	nicromhos
	Amplification factor	130
	Interelectrode capacitances	
	Grid-plate	<mark>3.3</mark> pf
	Grid-cathode	15.0 pf
	Plate-cathode C	0.1 pf max
Mechanical	Mounting position	Any
	Type of cooling	Forced air
	Air flow required	2 M ³ /min
	Net weight	550 grams
Maximum Ratings	DC plate voltage	2000 volts
	DC grid voltage	-150 volts
	Cathode current	400 ma
	Grid current	<mark>60 ma</mark>
	Plate dissipation (w/forced air cooling)	600 watts
	Grid dissipation	7 watts
	Frequency	. 2300 Mc
	Seal temperature	200 °C
Typical Operation	A. RF OSCILLATOR, 22000 Mc	3
	DC plate voltage	1700 volts
	DC grid voltage25 volts	(approx.)
	Plate current	350 ma
	Grid current40 ma	(approx.)
	Heater voltage	4 volts
	Useful power output	100 watts

Nippon Electric Company Limited

Typical Operation (cont'd)	B. GROUNDED-GRID CLASS-B AMPLIFIER, 1800 Mc		
	DC plate voltage		. 1700 volts
	DC grid voltage	25 vo	Its (approx.)
	Plate current		300 ma
	Grid current	15 r	ma (approx.)
	Heater voltage		5.8 volts
	Driving power	23 wa	tts (approx.)
	Bandwidth		± 2 Mc
	Useful power output		110 watts
	C. GROUNDED-GRID CLASS-B AMPLIFIER, 2300 Mc		
	DC plate voltage		. 1700 volts
	DC grid voltage	–25 vo	lts (approx.)
	Plate current		300 ma
	Grid current	15 r	na (approx.)
	Heater voltage		5.8 volts
	Driving power	20 wa	tts (approx.)
	Bandwidth		± 2 Mc
	Useful power output		65 watts
Typical Parameter Spreads		Min.	Max.
	Filament current at 6.3 volts	2.1	2.45 amps
	Cut-off bias*	—	20 volts
	Grid-plate capacitance**	2.8	3.8 pf
	Grid-cathode capacitance**	13	17 pf
	NOTES: / 200 * Measured at 1-ma plate current and 2000 -volts plate voltage.		

** Capacitance measured with no power applied to tube.

LD-531

APPLICATION Mechanical In mounting the tube, care must be taken to assure firm and positive electrical contacts. The socket assembly should provide spring collets or fingers for contacting all terminals. The dimensions of the terminals are shown on the outline drawing. The tube, when inserted in a socket, should be seated at the anode flange.

Under no condition should the temperature of any of the tube seals exceed 2000 C. Operation at a reduced temperature will greatly extend the life and reliability of the tube. For operation at elevated plate power dissipations, an air flow of two cubic meters per minute must be provided.

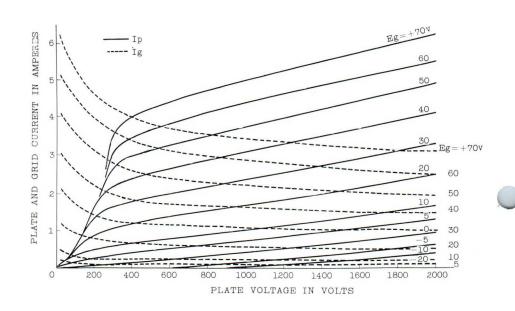
Electrical Back-heating of the cathode will occur when operation is above 400 Mc, and must be considered. Back-heating is a function of frequency, grid current, grid bias, circuit design and adjustment. However, the table below may be used as a safe rule-of-thumb under normal conditions.

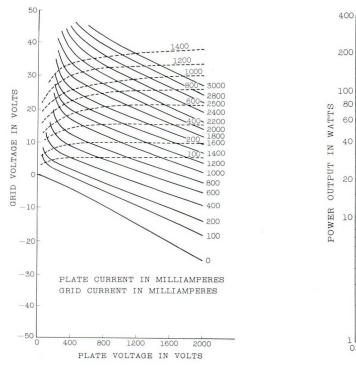
Frequency	Heater voltage
Below 400 Mc	6.3 volts
400~1000 Mc	6.0 volts
$1000{\sim}1500~{\rm Mc}$	5.5 volts
$1500{\sim}2000~{\rm Mc}$	5.0 volts
Above 2000 Mc	4.5 volts

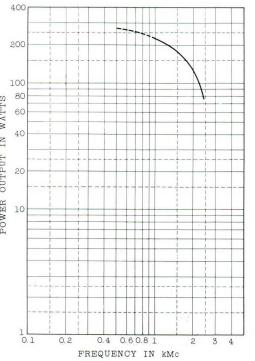
A tolerance of five-percent may be tolerated in the determination of the filament voltage.

With high-frequency circuits, a very small motion of the tuning plunger may result in high plate current and/or plate dissipation. Therefore, in practical use, it is recommended that tunep be performed at reduced plate voltage.

In the general case for amplifiers, a part of the total power supplied by the driving source will be dissipated by the grid.


To optimize tube life, the plate circuit should always be heavily loaded, and the driving power should be reduced to the lowest practical value. Generally, low-voltage-high-current operation of the LD-531 is to be preferred rather than high-voltage-low-current operation. The tube should never be operated without a plate load.




AVERAGE CHARACTERISTICS (Ef=6.3 volts)

CONSTANT CURRENT CHARACTERISTICS (Ef=6.3 volts)

FREQUENCY CHARACTERISTICS

NEC Nippon Electric Company Limited P.O. Box 1, Takanawa, Tokyo, Japan Cable Address: "MICROPHONE TOKYO"

Cat. No. 445-3-E 6208-1000-M Printed in Japan

LD-550

NEC MICROWAVE TUBES

S H F PACKAGE-TYPE TRAVELING WAVE TUBE

The type LD-550 is a travelling wave amplifier and oscillator for C.W. operation over the 5,800 to 8,200 Mc range.

It is capable of delivering a saturated output power of more than 10 watts in the frequency range of $5,800 \sim 7,500$ Mc and more than 5 watts in the frequency range of $7,500 \sim 8,200$ Mc.

It is a conventional helical line type tube employing waveguide input and output coupling. The focusing system of this tube consists of a novel magnetic circuit and a conventional periodic magnetic field system which are packaged in cylindrical cases together with input and output waveguides and the tube itself, so the complete assembly is remarkably compact and light weight.

The collector voltage is depressed to about one half of the helix voltage and the tube is convection cooled. An efficient heat transfer of the collector is effected by the dimensions and the number of cooling fins.

GENERAL CHARACTERISTICS

Cathode	Oxide-coated, indirectly heated
Heater Voltage	6.3 Volts
Heater Current	0.73 Amperes
AXIMUM RATING	S

Focusing Electrode Voltage	-60 Volts
1 st Anode Voltage	3,400 Volts
Helix Voltage	
(2 nd Anode Voltage)	3,400 Volts
Collector Voltage	1,700 Volts
Collector Current	35 Milliamperes
Helix Current	
(2 nd Anode Current)	4 Milliamperes
1 Anode Current	1 Milliamperes
Collector Seal Temperature	130°C

MECHANICAL CHARACTERISTICS

Mounting position	Horizontal
Net Weight	5 kgs.
Cooling	Natural
Waveguide Conductors	WR 137 fitted with
	UG 344 cover flange

TYPICAL OPERATING DATA

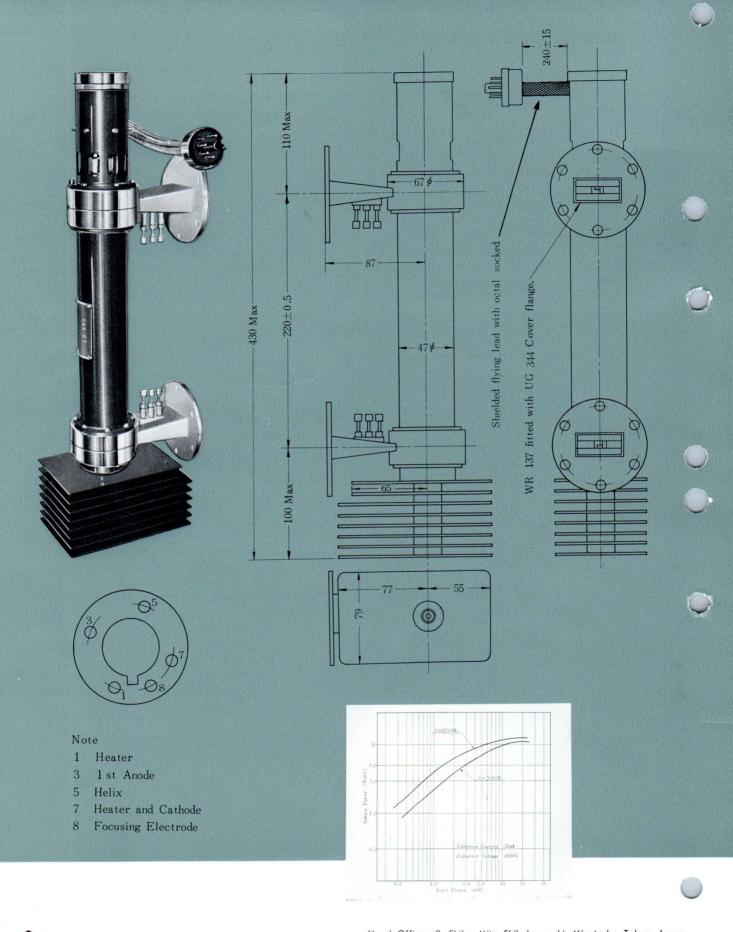
Frequency	6,150 Mc	7,650 Mc
Focusing Electrode	-30 Volts	-30 Volts
Voltage		
1 st Anode Voltage	2,500 Volts	2,500 Volts

Helix Voltage			
(2 nd Anode Voltage)	3,300 Volts	3,200 Volts	
Helix Current			
(2 nd Anode Current)	0.3 mA	0.3 mA	
Collector Current	35 mA	35 mA	
Collector Voltage	1,600 Volts	1,600 Volts	
R.F. Output			
(at 4 mW input level)	8.5 Watts	6 Watts	
Saturated Power Output	12 Watts	10.5 Watts	
Noise Figure	25 db		
Cold input and output m	atch with m	atching	
device adjusted			
At 6,150 Mc/s VSV	WR 1.02		
At +15 Mc/s about 6150 Mc/s VSWR <11			

PRECAUTIONS

- 1. Care should be taken to avoid shock damage to the tube and the input and output waveguides. For the installation of this tube, it is desirable to use flexible waveguide section to which the tube is connected.
- 2. The screws used to fix the tube elemenets should never be moved.
- 3. The first anode voltage should not be applied before the focusing electrode, helix and collector voltage reach the specified values.
- 4. The tube body is connected to the collector electrode internnally, so it is recommended that the body be kept at ground potential.

OPERATIONAL SEQUENCE


- 1. Bolt the tube securely to the matching waveguide flanges. Do not distort the tube capsule on the mounting to avoid damage of the glass envelope.
- 2. Apply heater voltage and allow 90 seconds minimum warm up.
- 3. Apply the specified voltage to the focusing electrode, collector and helix voltage in that order.
- 4. Increase the 1 st anode voltage until the rated collector current is reached.
- 5. Trim the helix voltage for optimum operation.

TUNING PROCEDURE

Two short plungers provided in the input and output waveguides are used to tune the tube roughly to the external circuits.

When fine adjustment of impedance matching at input and output circuits required, trim matching screws on the waveguides.

NEC Nippon Electric Company Ltd.

NEC

Nippon Electric Company Ltd.

Head Office 2, Shiba Mita Shikoku-machi, Minato-ku, Tokyo, Japan Tel. Tokyo 451-1171(9) • 5121(9) • 5221(9) Cable Address "MICROPHONE TOKYO"

TRAVELING-WAVE TUBE LD-550

GENERAL

The LD-550 is a CW traveling-wave amplifier designed for operation in a frequency range of 5.8 to 8.2 kMc. For the upper half of this frequency range, this tube has an average small signal gain of 32 db and a saturated output power of about 8 watts. For the lower half of the frequency range, the average small signal gain is 35 db and the saturated output power is about 10 watts. The tube is of a conventional helical line construction employing input and output waveguide couplings. These couplings have integral tapered waveguide adaptors with adjusting screws for impedance matching. The LD-550 uses integral permanent magnet focusing. It is convection cooled, and operates with a collector electrode voltage that is depressed to approximately one-half of the helix voltage. The latter feature produces a significant improvement in the operating efficiency. The design, construction and durability of the tube make it exceptionally well suited for use in point-to-point, broad-band, multichannel microwave relay equipment.

FEATURES

- · Depressed Collector Operation for Improved Efficiency
- Convection-Cooled
- PPM Focused
- Durability

Nippon Electric Company Limited

CHARACTERISTICS	Electrical	MAXIMUM RATINGS*
		Accelerating anode voltage
		Accelerating anode current1.0 n
		Helix voltage
		Helix current**1.0 n
		Collector voltage,*** min1600
		Collector current
		Collector dissipation 56
		Focusing electrode voltage50
		Ambient temperature
		Ambient temperature, min
		Collector seal temperature
	Physical	GENERAL
		Dimensions
		Weight 11
		Preferred mounting position**** Horizont
		Cathode Oxide coated, unipotenti (Minimum heating time
OPERATION		Frequency

HEATER VOLTAGE=6.3 v HEATER CURRENT AT 6.3 v=0.73 v

Frequency	7.65 kMc
Accelerating anode voltage	1500-V
Helix voltage	
Helix current 0.3	0.3 ma
Collector voltage	1600 v
Collector current	35 ma
Focusing electrode voltage30	-30 v
RF output (8-mw input level) 10	9 w
Noise figure (small signal) $<\!25$	<25 db
Small signal gain (1-mw input)	33 db

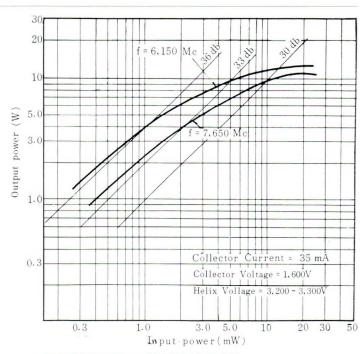
NOTES:

* Ratings should not be exceeded under continuous or transient conditions. A single rating may be the limitation and simultaneous operation at another rating may not be possible. Design values for systems should include a safety factor to maintain operation within ratings under voltage and environmental variations. ** Helix current increases gradually with tube life. Impending termination of

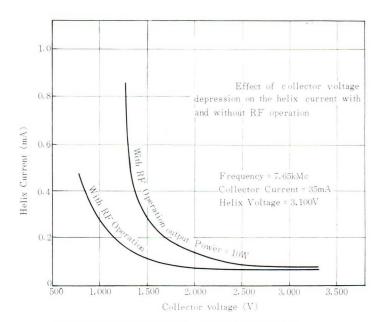
** Helix current increases gradually with tube life. Impending termination of tube life is indicated when the helix current reaches 2 milliamperes.

*** No RF drive power should be used during installation and voltage adjustments on the tube. Under these conditions brief excursions of the collector current up to 40 milliamperes will not damage the tube.

**** Convection cooling is sufficient when the tube is used in a horizontal position. For any other mounting position it may be necessary to direct some air flow through the cooling fans in order to keep the collector seal temperature at a safe operating level.


The optimum arrangement for mounting the LD-550 is to provide a mounting clamp in the center of the tube between the two waveguides and then use **a** flexible waveguideS for the input and output connectors. A satisfactory alternate arrangement is to use a fixed waveguide for the output connector, supporting the tube at this point, and then use a flexible waveguide for the input connector.

MOUNTING


NEC

CHARACTERISTIC CURVES

All curves are of average value

1.

LD-550

OUTLINE DRAWING -430 Max. -110 Max.--100 Max.— 79-. E E h 664-Ó 0 66 17 20 E E h 6 R Œ - -240 ± 15 -220 ± 0.5 1. HEATER 3. ACCELERATING ANODE 5. HELIX 7. HEATER & CATHODE 8. FOCUSING ELECTRODE 0 0 0 0 05 • 30 0 C 0 0 07 10 08 0 0 0 0

WR137 Fitted With UG344 Cover Flange

NEC Nippon Electric Company Limited P.O. Box 1, Takanawa, Tokyo, Japan Cable Address: "MICROPHONE TOKYO" Cat. No. 443-3-E 6208-1000-M Printed in Japan

Nippon Electric Co., Ltd. 3/11/63

Traveling Wave Tube CW Amplifier NEC LD-550A (Tentative Data Sheet)

The NEC LD-550A is a CW traveling-wave amplifier for operation over a frequency range of 5.8 to 8.2 kMc. For the upper half of this frequency range, this type tube has an average small signal gain of 30 db and a saturated output power of about 8 watts. For the lower half of the feqency range, the average small signal gain is 33db and the saturated output power is about 10 watts. The construction of the tube is of the conventional helical line type employing input and output waveguide couplings.

The LD-550A is available with a light-weight periodic permanent magnet focusing system, LD-550A Mount; it is convention-cooled, and operates with a collector electrode voltage that is depressed to approximately one half of the helix voltage. This latter feature produces a significant inprovement in the operating efficiency.

The design, construction, and long life expectancy of the tube wake it exceptionally well suited for use in point-to-point, broad-band, or multi-channel microwave relay equipments.

Features

- 1. PPM Focused and Field Replaceable.
- 2. Depressed Collector Operation For Improved Efficiency.
- 3. Convection Cooled.
- 4. Long Life.

Characteristics

Physical

Dimensions - - - - - - - - See Outline

- 1 -

Weight	Tube Envelope: 0.25 Kg.
	Tube Mount: 4.6 Kg.
Freferred Mounting Position	Horizontal l
Cathode	Oxide coated, unipotential
Connections	
RF Input & Output	WR-137 with UG-344/U flange

Electrical

Maximum Ratings 2

Accelerating Anode Voltage		3400 V
Accelerating Anode Current		1.0 mA
Helix Voltage		3400 V
Helix Current 3		1.0 mA
Collector or Voltage, min.		1600 V
Collector Current		35 mA
Collector Dissipation		56 W
Focusing Electrode Voltage,	max	-20 V
Focusing Electrode Voltage,	min	-60 V
Ambient Temperature, max		55°C
Ambient Temperature, min		-55°C
Collector Seal Temperature		130 ⁰ C

Operation

0	Heater Voltage = $6.3 V$;	Heater Current at $6.3 V = 0.73A$	
0	Frequency	6860 <u>+</u> 15	Mc
0	Accelerating Anode Voltage	e 2500 V	
0	Accelerating Anode Current	0.01 mA	
0	Helix Voltage	3100 V	
0	Helix Current	0.3 mA	

- 2 -

0	Collector Voltage	1600 V
0	Collector Current	35 mA
0	Focusing Electrode Voltage	-30 V
0	RF Output (3 mW input level)	5 W
0	RF Output Saturated	ll W
0	Noise Figure (Small Signal)	27 db
0	Small Signal Gain	33 db
0	Cold and hot input match over 30 Mc/s band with matching device adjusted	VSWR < 1.1
0	Cold output match over 30 Mc/s band with matching device adjusted $-$	vswr $<$ 1.1
0	Hot output match over 30 Mc/s band with matching device adjusted	VSWR $<$ 1.2
0	Gain Linearity over 30 Mc/s band	0.2 db

- Note
 - 1. Convection cooling is sufficient when the tube is used in a horizontal position. For any other mounting position it may be necessary to direct a flow of air through the cooling fins through a convection duct or other means in order to keep the collector seal temperature at a safe operating level.
 - 2. Ratings should not be exceeded under continuous or transient conditions. A single rating may be the limit, and simultaneous operation at another rating may not be possible. Design values for systems should include a safety factor aimed at maintaining operation within ratings under voltage and environmental variations.
 - Helix current increases gradually with tube life. Warning of the end of tube life is given when helix current reaches 2 milliamperes.

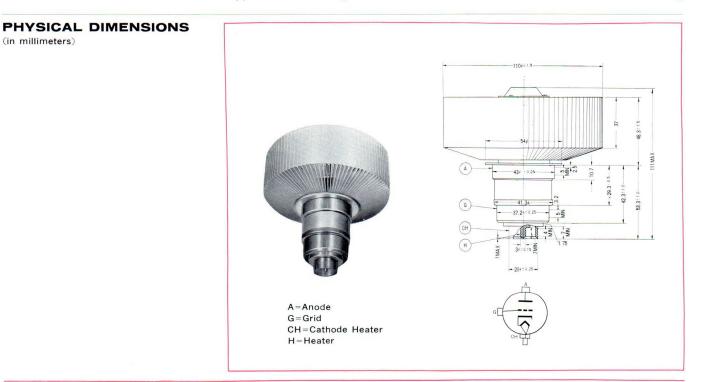
- 3 -

METAL-CERAMIC-SEALED HIGH-MU PLANAR UHF TRIODE LD-551

GENERAL

(in millimeters)

The LD-551 is a metal-ceramic-sealed high-mu planar UHF triode, originally manufactured by NEC for use as an oscillator, a power amplifier, or a frequency multiplier in radio transmitting service at frequencies ranging up to 2100 Mc.


The LD-551 features include low lead inductances and capacitances, a high transconductance and a high power output in ultra-high frequencies. The cathode is an indirectly-heated oxide-coated disc. The anode can dissipate 2100 watts with forcedair cooling.

GENERAL CHARACTERISTICS

ELECTRICAL

Heater Voltage	6.3 volts
Heater Current	3.6 amps
Transconductance $(I_b=300 \text{ ma}, E_b=2000 \text{ volts})$	50 millimhos
Amplification Factor	
Interelectrode Capacitances	
Grid-Plate	5 μμf
Grid-Cathode	20 μμf
Plate-Cathode	0.1 µµf max
MECHANICAL	
Mounting Position	Any
Turne of Cooling	Fored air

Mounting PositionAny	1
Type of CoolingForced-air	•
Required Air Flow on Anode7 $m^{\scriptscriptstyle 3}/mir$	1
Approximate Net Weight	5

Nippon Electric Company Limited

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS (RF Power Amplifier and Oscillator)

Maximum Ratings	DC Plate Voltage	3000 volts
	DC Grid Voltage	– 175 volts
	DC Cathode Current	830 ma
	DC Grid Current	130 ma
	Plate Dissipation (forced-air cooling)	2100 watts
	Grid Dissipation	10 watts
	Frequency	
	Seal Temperature	200°C
Typical Operating Data	RF OSCILLATOR (I), 1000 Mc	
	DC Plate Voltage	3000 volts
	DC Grid Voltage (approx)	– 38 volts
	DC Plate Current	700 ma
	DC Grid Current (approx)	60 ma
	Useful Power Output	
	RF OSCILLATOR (II), 1000 Mc	
	DC Plate Voltage	2200 volts
	DC Grid Voltage (approx)	– 32 volts
	DC Plate Current	750 ma
	DC Grid Current (approx)	50 ma
	Useful Power Output	
	RF OSCILLATOR (III), 2000 Mc	
	DC Plate Voltage	2100 volts
	DC Grid Voltage (approx)	– 30 volts
	DC Plate Current	800 ma
	DC Grid Current (approx)	50 ma
	Useful Power Output	
	CLASS-B AMPLIFIER IN GROUNDED-GRID CIR	CUIT AT 800 Mc
	DC Plate Voltage	
	DC Grid Voltage (approx)	40 volts
	DC Plate Current	780 ma
	Driver Power Output (approx)	100 watts
	Useful Power Output (approx)	

Cat. No. 445-4-E 6302-1000-M Printed in Japan

S-Band Low Noise Traveling Wave Tube LD-570, Developmental Type

(Preliminary and Tentative Data)

The LD-570 is suitable for a microwave preamplifier stage where low noise figure is required. The LD-570 has a maximum noise figure of 6.5 db and a minimum small signal gain of 20db, and is used over the frequency band of 2,700 to 2,900 MC/S without readjustment of tuning devices. Application of this tube include radar receivers, electronic countermeasure equipment, microwave relay systems and so on.

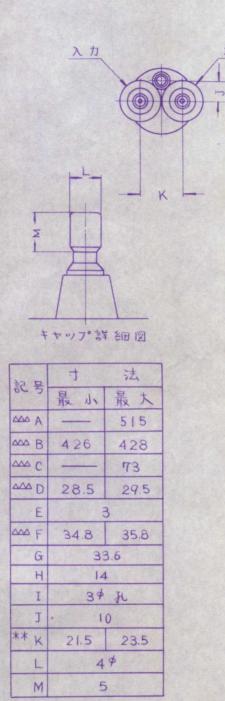
General Characteristics:

Electrical

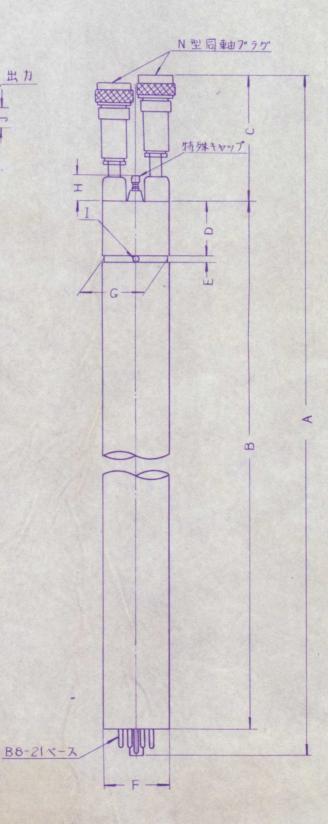
Heater Voltage	¢.	ε.	¢	5	6	0	6	٥		0	c	c	0	4 to 7 V
Rester Current	2	5	^B	0	Q	0	0	o	P	¢1	0	0	D +	0.7 A Max.
Frequency Asage	0	ō	8	¢	0	C				n	0	÷	0	2700 to 2900 MC/S
Noise Figure	ų	0	ę	Ċ.	¢.	0	Ð	v	÷	e	e	e	G	6.5 db Mex.
Small Signal Gain	d.	a	0	Ð	ġ.	0	é.			ė	D	0	6	20 db Min.
Input and Output VSWR		0	ø	e	5	6	0	0	0	0	c		9	2.0 Max.

Mechanical

Mounteing Position	u o	e				* * *	. Azy
Input & Output .	¢ ¢	5 G	9 9 9	ő u	a c a	9 0 0	. Coasial Connector, Type N Flugs
Socket	ē 4		6 - N	с ь	a a a	0 0 B	. Octal base
Collector Connecto	1 .	-	0 0	n 6	6 U R	6 6 b	. Special size
Dimension	p 5	ų s		0 0	0 0 S	0 0 0	. See Outlien Draving
Walght	• g	α 0	5 C 6	a p	0 0 6	4 C 3	. 850 grs.
Coolisg	0 0	0 0	, 6 a	u c	6 0 C	5 2 1	. Not required


Typical Operation

all and


3

Prequency	2600 MC/S
Heater Voltago	6.0 V
Heater Current	0.5 A
Grid Voltage	0 V
Anode 1 Voltage	19.7 V
Anode 2 Voltage	41. T
Anode 3 Voltage	300 V
Helix Voltage	437 V
Helix Gurrent	0.1 µA
Collector Voltage	700 V
Collector Current	200 µA
Magnetic Field Strengh	650 g ausa
Noise Figure	5.5 db
Seall Signal Gain	32 db
Saturated Power Output	3 mW

LD-570 付図

i

X-Band Low Noise Traveling Wave Tube LD-571, Developmental Type (Preliminary and Tentative Data)

The LD_571 is suitable for a microwave preamplifier stage where low noise figure is required. The LD-571 has a maximum noise figure of 8.5 db and a minimum small signal gain of 20 db, and is used over the frequency band of 8,500 to 9,500 MC/S without readjustment of tuning devices. Application of this tube include radar receivers, electrical counter-mesure equipments, microwave relay systems and so on.

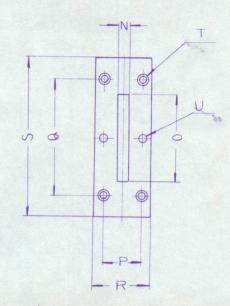
General Cheracteristics

Electrical

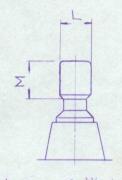
Heater	Voitage	*	s e	5	6	6		9	0	*		0	u	¢	0	4 to 7 V
Heater	Current	¢	6 2	а.	4	v	5	6	0	0	0	0	0	•	ø	0.7 A
Freque	ncy range	e	a o	ø	Ð	0	ų	e	a.		Q	ŵ	8	0	Q	8,500 to 9,500 MC/S
Noise	Figure	¢	6 Q	0	0	9	0	4	0	ø	6	4	9	4	u.	8.5 db Max.
Small	Signal Gai	in	a o	0	0		•	Ð	0	Q	ν	0	0	ø	ø	20 db Min.
Input	and Output	s Vi	SWR	U	0	0	4	4	2		ø	0	y	a	0	2.0 Max.

Mechanical

Mountaing P	osition	0	Q	0	ii	0	v	ø	÷	4	10	a	0	¢	Any
Input & Out	put	G	0	0	4	5	0	Q	8	0	Ø		ů.	9	Reduced Height of RG-52/U Special flange
Socket	6 0 0 0					0	~				a	0	10	0	Octal base
Collector C															Special size
	6 6 L 6														See Outline Drawing
Weight	6 n e n e	c	0	c	0	0	0	9	0	0	Ð	0	0		800 grs.
Cooling		٥	- u	٩	σ	ø	b	ø	¢	9	ø	Q	e	0	not required

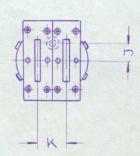

Typical Operation

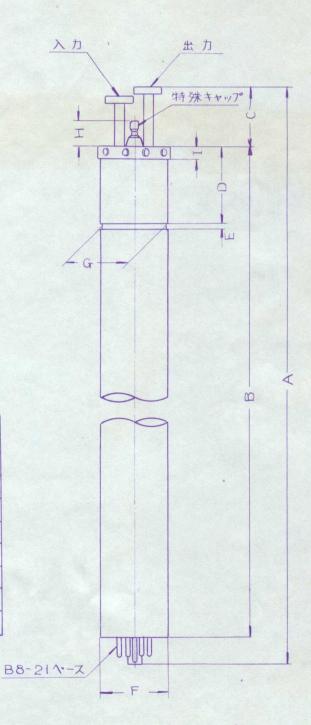
Frequ	ene	oy	n	¢ 9	0	0	0	Ø	α	0	¢	0	Ð	0	n	0	0	12	Ð	9,08	O MC/S
Heate	r 1	Vol	tege	8 •	3	9	×	¢	0	и	r.	B	0	0	6	0	G	ф	Q.	6.0	V
Heate	I* (Jur	rent	e .	4	a	0	6	÷	e	0	¢	5	ø	0	Q	£2		÷	0.50	A
Grid		Vo.	ltag	0	P	-	0	ø	6	ø	c.	tr	4	x	0	÷	0	2	G	-5.0	V
Anode	(press)	Vo.	itag	e	ů.	¢	Ó	c	D	\$	¢	ą	9	9	a	4	43	9	0	22.2	V
Anode	2	Vol	ltag	1	ç	c	0	ų.	ō	9	p	5	Ŀ	45	4	9	0	0	ġ.	115	V
Anode	Carl	Vo]	iteg	6	4	6	0	9	¢	6	\$	ġ.	U.	¢	0	¢.	6	0	4	550	26
Heltz		Vo]	teg	<u> </u>	4	4	0	•	<i>a</i> -	0	8	÷2	é	¢.	2	a	8	^b	0	840	V
Helix		Guy	ren	t	¢		ы.	°0	n.	4	s	ç.	0	c	¢.	0	0	12	5	0.3	14.4
Colle	oto	1 2	lolt	age		a	9	é	Ċ	6	Ð	5	0	D	G	6	6	U	0	1200	V
Colles	oto	22 (durr	ent		Ġ.	<i>u</i>	a.	8	e	0	ø	e.		40	44	4	9	t.	200	12A
Magnet	:ia	¥4	eld	St	rg	ngi	h	6	0	6	0	0	a	•	ø	Q	Đ	÷	0	700	Gauss
Noise	F1	gur	0		9	¢.	ð	ø	0		6	c	G	10	*	4	2	6	. 0	6.4	db
Small.	SI	gna	1 6	sin	N	0	÷	0	9	0	4	4	42	v	0	10	6.	0	0	23	đb
Sature	te	d F	owe:	r Ga	sty	put	-	t.	13		ž.		0	0	ti.		9	a.	Ð	2.4	ma


1. Pas

---- 2 -----

LD-571 付国


導波管フランチ"詳細図



キャッフ。詳細図

記号	寸	法	記号	寸	法
则马	最小	最大	005	最小	最大
A ava		402	N		3
AND B	348	350	0	22	2.9
SSA C		37	P	1	0
	40.5	41.5	Q	З	1
E	:	3	R	1	5
MA F	34.8	35.8	S	4	2
G	33	3.6	Т	4-34	0.6 P
н	1	З	U	2 - 3.2	ф
I		6			
J		9			
K	1	5			
L	-	4			
M		5			

*

HIGH-MU PLANAR TRIODE LD-583

GENERAL

The LD-583 high-mu planar triode is a metal-ceramic type manufactured by NEC to rigid specifications. The triode is intended for use as an oscillator, a power amplifier or a frequency multiplier for radio transmitting service in frequencies ranging up to 2500 Mc. Triode features include low lead inductances and capacitances, high transconductance, and high plate dissipation. The cathode is an indirectly-heated oxide-coated disc. The anode is cooled by forced-air and is capable of dissipating 130 watts.

Exterior dimensions of LD-583 are the same as LD-497.

CHARACTERISTICS

.

ELECTRICAL

Heater Voltage (see application)	6.3 volts
Heater Current	1.3 amps
Transconductance $(I_b = 120 \text{ ma}, E_b = 600 \text{ volts})$	36 millimhos
Amplification Factor	90
Interelectrode Capacitances	
Grid-Plate	2.2 μμf
Grid-Cathode	
Plate-Cathode	0.08 µµf max
MECHANICAL	
Mounting Position	Any
Type of Cooling	Forced-air
Required Air Flow on Anode	0.4 m ³ /min
Maximum Seal Temperature	.150°C
Net Weight	90 grams

PHYSICAL DIMENSIONS

(in millimeters)

Nippon Electric Company Limited

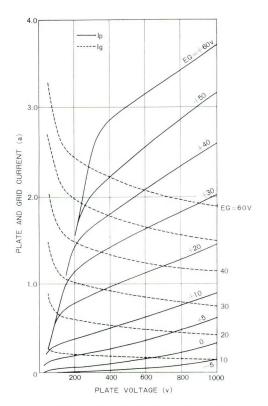
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS (RF Power Amplifier and Oscillator)

Maximum Ratings	DC Plate Voltage	
	DC Grid Voltage	–1 <mark>50</mark> volts
	DC Cathode Current	200 ma
	DC Grid Current	60 ma
	Peak Positive RF Grid Voltage	30 volts
	Peak Negative RF Grid Voltage	400 volts
	Plate Dissipation (Forced-Air Cooling)	
	Grid Dissipation	3 watts
	Frequency	2500 Mc
Typical Operating Data	RF OSCILLATOR, 2500 Mc	
	DC Plate Voltage	900 volts
	DC Grid Voltage	20 volts
	DC Plate Current	140 ma
	DC Grid Current	
	Useful Power Output	
	CLASS-C AMPLIFIER IN GROUNDED-GRID CIR	CUIT AT 1800 Mc
	DC Plate Voltage	
	DC Grid Voltage	22 volts
	DC Plate Current	140 ma
	DC Grid Current (Approx)	10 ma
	Driver Power Output (Approx)	4 watts
	Useful Power Output (Approx)	

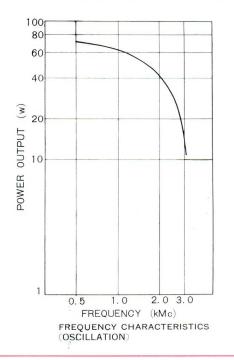
Characteristic Range Values for Equipment Design

	Min	Max	Unit
Filament Current at 6.3 volts	1.25	1.4	amp
*Cut-off Bias		-15	volt
**Grid-Plate Capacitance	2.0	2.4	$\mu\mu$ f
**Grid-Cathode Capacitance	8.0	12	μµf

Note: *Measured at 1 ma of plate current and a plate voltage of 600 volts **Capacitance measured at cold state of the tube

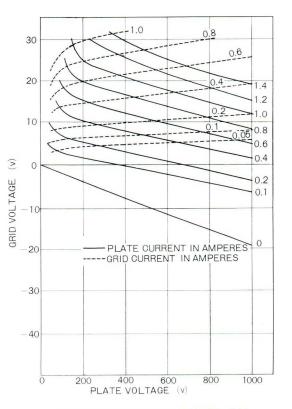


AP	PL	ICA	TI	ON	


chanical	MOUNTING	In mounting the tube care must be taken to secure good electrical contacts. For this purpose, it is strongly recommended that anode, grid, cathode and heater terminals of the tube should ride against spring collets or spring fingers. Details on contacting surface of terminals will be shown in the illustration.
		The tube, when in the socket, should be seated against the anode flange.
	COOLING	Temperature of plate, grid and cathode seals should not exceed 200 150°C under any operating condition. Tube life and reliability will
		be enhanced when all seals are properly cooled at all times. An air
		flow through cowling of 0.4 cubic meter per minute is recommended
		for the anode radiator for operation up to the rated maximum dis-
		sipation.
ctrical	HEATER VOLTAGE	When back-heating of the cathode occurs in operations exceeding 400
		Mc, it merits consideration. Back-heating depends upon frequency,
		grid current, grid bias, circuit design and adjustment. However, the
		following table can be safely used as a rule of thumb under normal
		conditions to offset back-heating effects;
		Operating Frequency Heater Voltage Er
		Below 400 Mc 6.3 volts 400 to 1000 Mc 6.0 volts 1000 to 1500 Mc 5.5 volts
		1500 to 2000 Mc 5.0 volts Above 2000 Mc 4.5 volts
		A tolerance of plus or minus 5 per cent may be allowed for the
		above recommended heater voltage values.
	CIRCUIT TUNING	With high-frequency circuits, a very small motion of a tuning plunger may throw the tube out of resonance and result in a high plate current and/or an excessive anode dissipation. For practical use, it is recommended that provision be made for tuneup at a reduced plate voltage.
	DRIVING POWER	In general, a part of the total power supplied by the driving source will appear as grid dissipation; the remainder is mainly absorbed by circuit losses.
		For optimum tube life, the plate circuit should be heavily loaded and the driving power should be reduced to the lowest value consistent with reasonable efficiency.
		In general, low-voltage high-current operation is preferable to high- voltage low-current operation. The tube should never be operated
	ctrical	ctrical HEATER VOLTAGE

LD-583

CHARACTERISTIC CURVES



AVERAGE CHARACTERISTICS $(E_{\rm f}{=}6.3\,volts)$

P.O. Box 1, Takanawa, Tokyo, Japan Cable Address: "MICROPHONE TOKYO"

Cat. No. 445-5-E 6302-1000-M Printed in Japan

Nippon Electric Company Ltd.

Head Office

2, Shiba Mita Shikoku-machi, Minato-ku, Tokyo, Japan Tel. Tokyo 45–1171 (9) • 5121 (9) • 5221 (9) Cable Address "MICROPHONE TOKYO"

