

Electron tubes

Book T8

1986

Colour TV picture tubes and deflection units

Colour data graphic display tube assemblies

Elcoma – Philips Electronic Components and Materials Division – embraces a world-wide group of companies operating under the following names:

IBRAPE
Miniwatt Signetics
Mullard
PHILIPS

Elcoma offers you a technological partnership in developing your systems to the full. A partnership to which we can bring

- world-wide production and marketing
- know-how
- systems approach
- continuity
- broad product line
- fundamental research
- leading technologies
- applications support
- quality

ADEK

COLOUR DISPLAY SYSTEMS

								p	age
Selection guide									
90° colour picture tubes		 							.2
110° colour picture tubes		 							.4
Colour data graphic display tube assemblie	es	 							.5
General									
List of symbols		 							.9
General operational recommendations		 							11
Type designation		 							17
Kelly chart		 			 				.19
Device specifications									
Colour TV picture tubes and deflection ur	nits .	 			 				21
Colour data graphic display tube assemblie	25	 							747

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES

BLUE

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The contents of each series are listed on pages iv to viii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is

available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1	Tubes for r.f. heating
T2a	Transmitting tubes for communications, glass types
T2b	Transmitting tubes for communications, ceramic types
Т3	Klystrons
T4	Magnetrons for microwave heating
T5	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
Т6	Geiger-Müller tubes
Т8	Colour display systems Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
Т9	Photo and electron multipliers
T 10	Plumbicon camera tubes and accessories
T11	Microwave semiconductors and components
T12	Vidicon and Newvicon camera tubes
T13	Image intensifiers and infrared detectors
T15	Dry reed switches
T16	Monochrome tubes and deflection units Black and white TV picture tubes, monochrome data graphic display tubes, deflection unit

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S13

Semiconductor sensors

S1	$\label{eq:Diodes} \textbf{Small-signal silicon diodes, voltage regulator diodes ($<$ 1,5$ W), voltage reference diodes, tuner diodes, rectifier diodes}$
S2a	Power diodes
S2b	Thyristors and triacs
S3	Small-signal transistors
S4a	Low-frequency power transistors and hybrid modules
S4b	High-voltage and switching power transistors
S5	Field-effect transistors
S6	R.F. power transistors and modules
S7	Surface mounted semiconductors
S8a	Light-emitting diodes
S8b	Devices for optoelectronics Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components
S9	Power MOS transistors
S10	Wideband transistors and wideband hybrid IC modules
S11	Microwave transistors
S12	Surface acoustic wave devices

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXIST	ING SERIES	Superseded by:
IC1	Bipolar ICs for radio and audio equipment	IC01N
IC2	Bipolar ICs for video equipment	IC02Na and IC02Nb
IC3	ICs for digital systems in radio, audio and video equipment	IC01N, IC02Na and IC02Nb
IC4	Digital integrated circuits CMOS HE4000B family	
IC5	Digital integrated circuits — ECL ECL10 000 (GX family), ECL100 000 (HX family), dedicate	IC08N ed designs
IC6	Professional analogue integrated circuits	IC03N and Supplement to IC11N
IC7	Signetics bipolar memories	
IC8	Signetics analogue circuits	IC11N
IC9	Signetics TTL logic	IC09N and IC15N
IC10	Signetics Integrated Fuse Logic (IFL)	IC13N
IC11	Microprocessors, microcomputers and peripheral circuitry	IC14N

_			
	NEW SERIES		
	IC01N	Radio, audio and associated systems Bipolar, MOS	(published 1985)
	IC02Na	Video and associated systems Bipolar, MOS Types MAB8031AH to TDA1524A	(published 1985)
	IC02Nb	Video and associated systems Bipolar, MOS Types TDA2501 to TEA1002	(published 1985)
	IC03N	Integrated circuits for telephony	(published 1985)
	IC04N	HE4000B logic family CMOS	
	IC05N	HE4000B logic family — incased ICs CMOS	(published 1984)
	IC06N*	High-speed CMOS; PC74HC/HCT/HCU Logic family	(published 1986)
	IC07N	High-speed CMOS; PC54/74HC/HCT/HCU — uncased ICs Logic family	
	IC08N	ECL 10K and 100K logic families	(published 1984)
	IC09N	TTL logic series	(published 1984)
	IC10N	Memories MOS, TTL, ECL	
	IC11N	Linear LSI	(published 1985)
	Supplement to IC11N	Linear LSI	(published 1986)
	IC12N	Semi-custom gate arrays & cell libraries ISL, ECL, CMOS	
	IC13N	Semi-custom Integrated Fuse Logic	(published 1985)
	IC14N	Microprocessors, microcontrollers & peripherals Bipolar, MOS	(published 1985)

FAST TTL logic series

IC15N

Note

(published 1984)

Books available in the new series are shown with their date of publication.

 $^{^{}st}$ Supersedes the IC06N 1985 edition and the Supplement to IC06N issued Autumn 1985.

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

C1	Programmable controller modules
	PLC modules, PC20 modules

- C2 Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
- C3 Loudspeakers
- C4 Ferroxcube potcores, square cores and cross cores
- C5 Ferroxcube for power, audio/video and accelerators
- C6 Synchronous motors and gearboxes
- C7 Variable capacitors
- C8 Variable mains transformers
- C9 Piezoelectric quartz devices
- C10 Connectors
- C11 Varistors, thermistors and sensors
- C12 Potentiometers, encoders and switches
- C13 Fixed resistors
- C14 Electrolytic and solid capacitors
- C15 Ceramic capacitors
- C16 Permanent magnet materials
- C17 Stepping motors and associated electronics
- C18 Direct current motors
- C19 Piezoelectric ceramics
- C20 Wire-wound components for TVs and monitors
- C21* Assemblies for industrial use
 HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input devices
- C22 Film capacitors

^{*} To be issued shortly.

SELECTION GUIDE

90° COLOUR PICTURE TUBES

type	min. usetul	max.	neck	V _f /I _f	Va,g4	V _{g3}	V _{g2}	electron gun	appropriate	page*
	diagonal	length	alaine a					k	unit	
	mm	mm	mm	V/mA	kV		>			
14 INCH										
A34EAC00X	335,4	339,4	22,5	6,3/300	23	28% of V _a	310-600	hi-bi potential	AT1625 series	23
A34EAC50X	335,4	342,1	22,5	6,3/300	23	31% of Va	310-650	hi-bi potential	AT1625 series	39
A37-573X	335,4	342,4	29,1	6,3/685	25	20% of Va	310-560	bi-potential	AT1205/10	93
A37-590X	335,4	347,1	29,1	6,3/685	25	28% of Va	390-760	hi-bi potential	AT1206/20	115
A37-591X	335,4	351,5	29,1	6,3/685	25	28% of Va	390-760	hi-bi potential	AT1206/21	137
A37-598X A37-599X	335,4	347,1	29,1	6,3/685	25	28% of V _a	390-760	hi-bi potential	AT1206/20	159
16 INCH										
A38EAC00X	382,3	370,9	22,5	6,3/300	23	28% of V _a	310-600	hi-bi potential	AT1635 series	167
A38EAC50X	382,3	373,1	22,5	6,3/300	23	31% of Va	310-650	hi-bi potential	AT1635 series	183
A42-570X	382,3	373,4	29,1	6,3/685	25	20% of Va	310-560	bi-potential	AT1215/00	233
A42-592X	382,3	378,6	29,1	6,3/685	25	28% of V _a	390-760	hi-bi potential	AT1216/20 AT1470/21	255
► A42-593X	382,3	383,0	29,1	6,3/685	25	28% of V _a	390-760	hi-bi potential	AT1216/25 AT1470/25	281

* Data sheets of deflection units follow the data sheets of the relevant picture tube.

SELECTION GUIDE

type	min. useful screen	max.	neck diameter	٧ ال	Va,g4	Vg3	V _g 2	electron gun	appropriate deflection	page*
	diagonal mm	length mm	ш	V/mA	×		>		unit	
20 INCH										
A48EAC00X	480,0	431,6	22,5	6,3/300	25	31% of Va	310-650	hi-bi potential	AT1645 series	307
A51-570X	480,0	429	29,1	6,3/685	25	20% of Va	310-560	bi-potential	AT1237/50	365
A51-590X	480,0	436,4	29,1	6,3/685	25	28% of V _a	390-760	hi-bi potential	AT1236/20 AT1236/23 AT1480/20	429
A51-591X	480,0	441,0	29,1	6,3/685	25	28% of V _a	390-760	hi-bi potential	AT1236/25 AT1239/30	459
FLAT SQUARE COLOUR PICTURE TUBES	COLOUR PICT	URE TUB	ES							
36 cm										
A36EAM00X	355,6	344,5	22,5	6,3/300	23	31% of V _a	310-650	hi-bi potential	AT6060 series	71
41 cm										
A41EAM00X	406,4	373,6	22,5	6,3/300	23	31% of V _a	310-650	hi-bi potential	AT6050 series	211
51 cm										
A51EAL X	508,0	448,7	29,1	6,3/310	25	31% of Va	575-825	hi-bi potential	AT6035 series	202
A51EAM00X	508,0	434,9	22,5	6,3/300	25	31% of V _a	310-650	hi-bi potential	AT6040 series	533
- A51EBD X**	510,0	448,7	29,1	6,3/310	27,5	31% of V _a	575-825	hi-bi potential	AT6030 series	549
A51EBSX▲	510.0	448.7	29.1	6.3/310	27.5	31% of V ₂	575-825	hi-bi potential	AT6030 series	575

^{**} With rimband type implosion protection.

A With reinforced envelope for push-through mounting.

Data sheets of deflection units follow the data sheets of the relevant picture tube.

110° COLOUR PICTURE TUBES

	screen	overall	diameter	1.71.	, a,g4 , g3	, g3	76,		deflection	2
	diagonal	length	mm	V/mA	×		>		unit	
FLAT SQUARE COLOUR PICTURE TUBES	COLOUR PICT	URE TUB	ES							
51 cm	1 2 1									
A51EAK01X	0'809	368	29,1	6,3/310	25	31% of V _a	575-825	hi-bi potential	AT6020	485
59 cm			2							
A59EAK00X	0'069	398	29,1	6,3/310	25	31% of V _a	575-825	hi-bi potential	AT6010	629
66 cm	9	67			V			April		
A66EAK00X	0'099	428	29,1	6,3/310	25	31% of V _a 575-825	575-825	hi-bi potential	AT6000/01	719

Data sheets of deflection units follow the data sheets of the relevant picture tube.

SELECTION GUIDE

					520
	screen finish			etched	high gloss
MBLIES	electron gun			hi-bi potential	28% of V _a 390-760 hi-bi potential high gloss
E ASSE	V_{92}	>		28% of V _a 390-760	390-760
AY TUBI	V_{g3}			28% of V _a	28% of V _a
DISPL	Va,g4 Vg3	kV		25	25
APHIC	٧٫ اړ	V/mA		6,3/685	6,3/685
COLOUR DATA GRAPHIC DISPLAY TUBE ASSEMBLIES	number of V _f /I _f displayable pixels			480 × 360	480 × 360
OUR D	neck diameter	mm		29,1	29,1
100	max. overall length	mm		346,6 29,1	346,6
	min. useful screen diagonal	mm		335,4	335,4
	type		14 INCH	M34EAQ00X	M34EAQ10X

page

749

April	1986

GENERAL

LIST OF SYMBOLS

Symbols denoting electrodes/elements and electrode/element connections

f Heater

k Cathode

g Grid: Grids are distinguished by means of an additional numeral;

the electrode nearest to the cathode having the lowest number.

a Anode

m

External conductive coating

m1 Rim band

Fluorescent screen

i.c. Tube pin which must not be connected externally

n.c. Tube pin which may be connected externally

Symbols denoting voltages

Unless otherwise stated, the reference point for electrode voltages is the cathode.

V Symbol for voltage, followed by a subscript denoting the relevant electrode/element

V_f Heater voltage

V_{DD} Peak-to-peak value of a voltage

V_D Peak value of a voltage

V_{GR} Grid 1 voltage for visual extinction of focused raster (grid drive service)

VKR Cathode voltage for visual extinction of focused raster (cathode drive service)

Symbols denoting currents

Symbol for current followed by a subscript denoting the relevant electrode

If Heater current (r.m.s. value)

Note: The symbols quoted represent the average value of the current, unless otherwise stated.

Symbols denoting powers

Po Dissipation of the fluorescent screen

P_a Grid dissipation

Symbols denoting capacitances

See IEC publication 100

Symbols denoting resistances and impedances

R Symbol for resistance followed by a subscript for the relevant electrode pair. When only one

subscript is given the second electrode is the cathode.

Z Symbol for impedance followed by a subscript for the relevant electrode pair. When only one

subscript is given the second electrode is the cathode.

Symbols denoting various quantities

L Luminance

f Frequency

H Magnetic field strength

GENERAL OPERATIONAL RECOMMENDATIONS

INTRODUCTION

Equipment design should be based on the characteristics as stated in the data sheets. Where deviations from these general recommendations are permissible or necessary, statements to that effect will be made.

If applications are considered which are not referred to in the data sheets of the relevant tube type, extra care should be taken with circuit design to prevent the tube being overloaded due to unfavourable operating conditions.

SPREAD IN TUBE CHARACTERISTICS

The spread in tube characteristics is the difference between maximum and minimum values. Values not qualified as maximum or minimum are nominal ones. It is evident that average or nominal values, as well as spread figures, may differ according to the number of tubes of a certain type that are being checked. No guarantee is given for values of characteristics in settings substantially differing from those specified in the data sheets.

SPREAD AND VARIATION IN OPERATING CONDITIONS

The operating conditions of a tube are subject to spread and/or variation.

Spread in an operating condition is a permanent deviation from an average condition due to, e.g., component value deviations. The average condition is found from such a number individual cases taken at random that an increase of the number will have a negligible influence.

Variation in an operating condition is non-permanent (occurs as a function of time), e.g., due to supply voltage fluctuations. The average value is calculated over a period such that a prolongation of that period will have negligible influence.

LIMITING VALUES

Limiting values are in accordance with the applicable rating system as defined by IEC publication 134. Reference may be made to one of the following 3 rating systems.

Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment components spread and variation, equipment control adjustment, load variations, signal variation, environmental conditions, and spread or variations in characteristics of the device under considerations and of all other electronic devices in the equipment.

COLOUR DISPLAY SYSTEMS

Design-maximum rating system. Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and thoughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

Design-centre rating system. Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under average conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component spread and variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations or spread in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device* in equipment operating at the stated normal supply voltage.

If the tube data specify limiting values according to more than one rating system the circuit has to be designed so that none of these limiting values is exceeded under the relevant conditions.

In addition to the limiting values given in the individual data sheets the directives in the following paragraphs should be observed.

HEATER SUPPLY

For maximum cathode life and optimum performance it is recommended that the heater supply be designed at the nominal heater voltage at zero beam current. Any deviation from this heater voltage has a detrimental effect on tube performance and life, and should therefore be kept to a minimum. In any case the deviations of the heater voltage must not exceed $\pm 5\%$ and $\pm 10\%$ from the nominal value at zero beam current. Such deviations may be caused by:

- mains voltage fluctuations;
- spread in the characteristics of components such as transformers, resistors, capacitors, etc.;
- spread in circuit adjustments;
- operational variations.

^{*} A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.

CATHODE TO HEATER VOLTAGE

The voltage between cathode and heater should be as low as possible and never exceed the limiting values given in the data sheets of the individual tubes. The limiting values relate to that side of the heater where the voltage between cathode and heater is greatest. The voltage between cathode and heater may be d.c., a.c., or a combination of both. Unless otherwise stated, the maximum values quoted indicate the maximum permissible d.c. voltage. If a combination of d.c. and a.c. voltages is applied, the peak value may be twice the rated V_{kf} ; however, unless otherwise stated, this peak value shall never exceed 315 V. Unless otherwise stated, the V_{kf} max. holds for both polarities of the voltage; however, a positive cathode is usually the most favourable in view of insulation during life.

A d.c. connection should always be present between heater and cathode. Unless otherwise specified the maximum resistance should not exceed 1 M Ω ; the maximum impedance at mains frequency should be less than 100 k Ω .

INTERMEDIATE ELECTRODES (between cathode and anode)

In no circumstances should the tube be operated without a d.c. connection between each electrode and the cathode. The total effective impedance between each electrode and the cathode should never exceed the published maximum value. However, no electrode should be connected directly to a high energy source. When such a connection is required, it should be made via a series resistor of not less than $1 \text{ k}\Omega$.

CUT-OFF VOLTAGE

Curves showing the limits of the cut-off voltage as a function of grid 2 voltage are generally included in the data. The brightness control should be so dimensioned that it can handle any tube within the limits shown, at the appropriate grid 2 voltage.

The published limits are determined at an ambient illumination level of 10 lux. Because the brightness of a spot is in general greater than that of a raster of the same current, the cut-off voltage determined with the aid of a focused spot will be more negative by about 5 V as compared with that of a focused raster.

COLOUR DISPLAY SYSTEMS

LUMINESCENT SCREEN

To prevent permanent screen damage, care should be taken:

- not to operate the tube with a stationary picture at high beam currents for extended periods;
- not to operate the tube with a stationary or slowly moving spot except at extremely low beam currents;
- if no e.h.t. bleeder is used, to choose the time constants of the cathode, grid 1, grid 2, and deflection circuits, such that sufficient beam current is maintained to discharge the e.h.t. capacitance before deflection has ceased after equipment has been switched off.

EXTERNAL CONDUCTIVE COATING

The external conductive coating must be connected to the chassis. The capacitance of this coating to the final accelerating electrode may be used to provide smoothing for the e.h.t. supply.

The coating is not a perfect conductor and in order to reduce electromagnetic radiation caused by the line time base and the picture content it may be necessary to make multiple connections to the coating. See also 'Flashover'.

METAL RIMBAND

An appreciable capacitance exists between the metal rimband and the internal conductive coating of the tube; its value is quoted in the individual data sheets. To avoid electric shock, a d.c. connection should be provided between the metal band and the external conductive coating. In receivers where the chassis can be connected directly to the mains there is a risk of electric shock if access is made to the metal band. To reduce the shock to the safe limit, it is suggested that a 2 M Ω resistor capable of handling the peak voltages be inserted between the metal band and the point of contact with the external conductive coating. This safety arrangement will provide the necessary insulation from the mains but in the event of flashover high voltages will be induced on the metal band. It is therefore recommended that the 2 M Ω resistor be bypassed by a 4,7 nF capacitor capable of withstanding the peak voltage determined by the voltage divider formed by this capacitor and the capacitance of the metal rimband to the internal conductive coating, and the anode voltage. The 4,7 nF capacitor also serves to improve e.h.t. smoothing by adding the rimband capacitance to the capacitance of the outer conductive coating.

FLASHOVER

High electric field strengths are present between the gun electrodes of picture tubes. Voltages between gun electrodes may reach values of 20 kV over approx. 1 mm. Although the utmost precautions are taken in the design and manufacture of the tubes, there is always a chance that flashover will occur. The resulting transient currents and voltages may be of sufficient magnitude to cause damage to the tube itself and to various components on the chassis. Arcing terminates when the e.h.t. capacitor is discharged. Therefore it is of vital importance to provide protective circuits with spark gaps and series resistors, which should be connected according to Fig. 1. No other connections between the outer conductive coating and the chassis are permissible.

As our picture tubes are manufactured in Soft-Flash technology, the peak discharge currents are limited to approx. 60 A, offering higher set reliability, optimum circuit protection and component savings (see also Technical Note 039). However this limited value of 60 A is still too high for the circuitry which is directly connected to the tube socket. Therefore Soft-Flash picture tubes should also be provided with spark gaps.

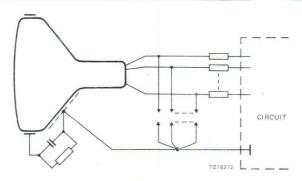


Fig. 1.

IMPLOSION PROTECTION

All picture tubes employ integral implosion protection and must be replaced with a tube of the same type number or recommended replacement to assure continued safety.

HANDLING

Although all picture tubes are provided with integral implosion protection, which meets the intrinsic protection requirements stipulated in the relevant part of IEC 65, care should be taken not to scratch or knock any part of the tube. The tube assembly should never be handled by the neck, deflection unit or other neck components.

A picture tube assembly can be lifted from the edge-down position by using the two upper mounting lugs. An alternative lifting method is firmly to press the hands against the vertical sides of the rimband.

When placing a tube assembly face downwards ensure that the screen rests on a soft pad of suitable material, kept free from abrasive substances. When lifting from the face-down position the hand should be placed under the areas of the faceplate close to the mounting lugs at diagonally opposite corners of the faceplate (Fig. 2).

When lifting from the face-up position the hands should be placed under the areas of the cone close to the mounting lugs at diagonally opposite corners of the cone (Fig. 3).

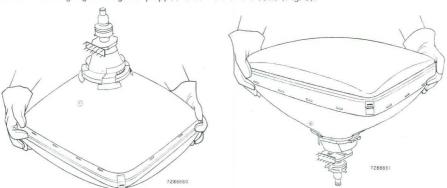


Fig. 2 Lifting tube assembly from face-down position.

Fig. 3 Lifting tube assembly from face-up position.

COLOUR DISPLAY SYSTEMS

In all handling procedures prior to insertion in the receiver cabinet there is a risk of personal injury as a result of severe accidental damage to the tube. It is therefore recommended that protective clothing should be worn, particularly eye shielding.

When suspending the tube assembly from the mounting lugs ensure that a minimum of 2 are used; UNDER NO CIRCUMSTANCES HANG THE TUBE ASSEMBLY FROM ONE LUG.

If provided the slots in the rimband of colour picture tubes are used in the mounting of the degaussing coils. It is not recommended to suspend the tube assembly from one or more of these slots as permanent deformation to the rimband can occur.

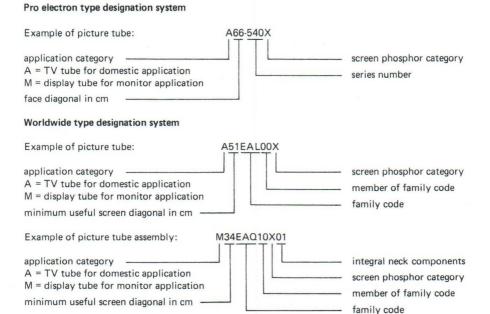
Remember when replacing or servicing the tube assembly that a residual electrical charge may be carried by the anode contact and also the external coating if not earthed. Before removing the tube assembly from the equipment, earth the external coating and short the anode contact to the coating.

PACKING

The packing provides protection against tube damage under normal conditions of shipment or handling. Observe any instructions given on the packing and handle accordingly. The tube should under no circumstances be subjected to accelerations greater than 350 m/s².

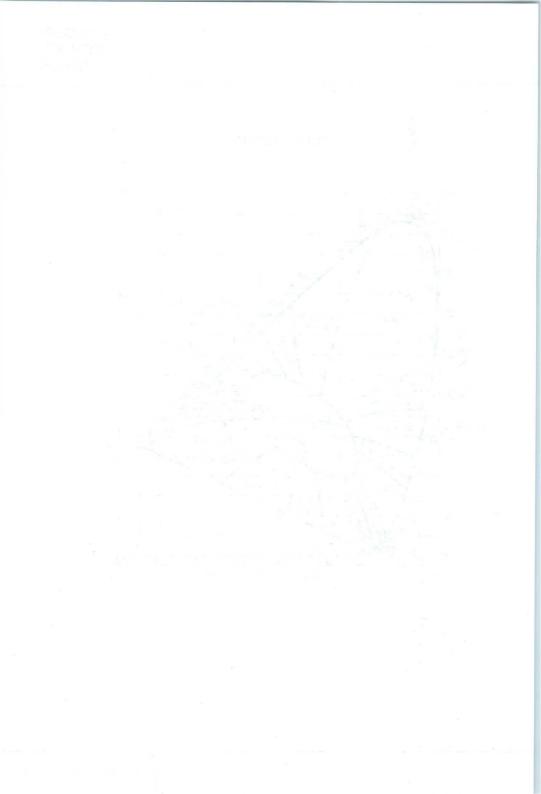
MOUNTING

Unless otherwise specified on the data sheets for individual tubes there are no restrictions on the position of mounting.


The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

It is very desirable that tubes should not be exposed to strong electrostatic and magnetic fields.


DIMENSIONS


In designing the equipment the tolerances given on the dimensional drawings should be considered. Under no circumstances should the equipment be designed around dimensions taken from individual tubes.

TYPE DESIGNATION

KELLY CHART

COLOUR TV PICTURE TUBES
AND DEFLECTION UNITS

Hi-Bri COLOUR PICTURE TUBE

- 900 deflection
- In-line, thermally stable hi-bi potential gun
- 22,5 mm neck diameter
- Hi-Bri technology
- Pigmented phosphors
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick heating low-power cathodes
- Soft-flash technology
- Internal magnetic shield
- · Reinforced envelope for push-through mounting
- Combined with a deflection unit of the AT1625 series, it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	900
Minimum useful screen diagonal	34 cm
Overall-length	334 mm
Neck diameter	22,5 mm
Heating	6,3 V, 300 mA
Focusing voltage	28% of anode voltage

A34EACOOX

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method

Focus lens

Deflection method

Deflection angles

diagonal

horizontal

vertical

unitized triple-aperture electrodes

electrostatic

hi-bi-potential

magnetic

approx. 900

approx. 780

approx. 600

ELECTRICAL DATA

Capacitances

anode to external conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes focusing electrode to all other electrodes

Heating

heater voltage

heater current

 $C_{a(m+m')}$

max. 1600 pF min. 800 pF

15 pF C_{q1}

CkR, CkG, CkB 4 pF 4 pF

C_{a3} indirect by a.c. or d.c.

Vf 6,3 V

If 300 mA

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal horizontal axis

vertical axis

area

Phosphors red

green

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

metal-backed vertical phosphor stripes; phosphor lines follow glass

contour satinized

min. 335.4 mm

min. 280,8 mm

min. 210,6 mm

min. 580 cm²

pigmented europium activated rare

earth

sulphide type

pigmented sulphide type

0,65 mm

68%

MECHANICAL DATA (see also the figures on the following pages)

Overall length

334,4 ± 5 mm

Neck diameter

Bulb dimensions

22,5^{+1,4} mm*

diagonal

max.368 mm max.317 mm

width height

max. 248 mm

Base

JEDEC B8-288

Anode contact

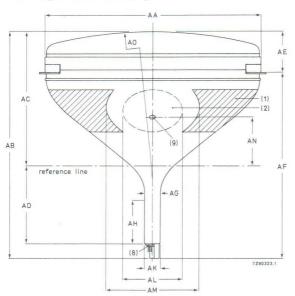
small cavity contact J1-21, IEC 67-III-2

Mounting position

anode contact on top approx. 6 kg

Net mass

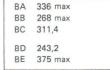
Handling

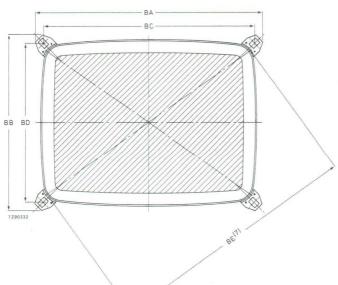

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

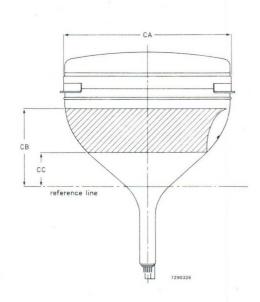
^{*} In the region of 66 mm from the neck end, the maximum diameter is 23,2 mm.

A34EAC00X

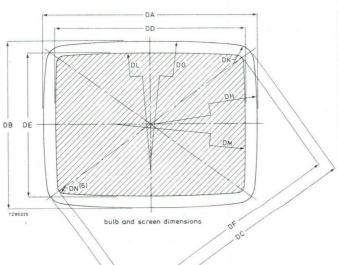
MECHANICAL DATA (continued)


Notes are given after the drawings.




Dimensions in mm

	AA	319 max	max
	AB	339,4 max	9,4 max
	AC	200,5 ± 4),5 ± 4
	AD	116,5 ± 1	6,5 ± 1
	AE	63,5 max	5 max
	AF	278 max	3 max
	AG	22,5 ^{+1,4} -0,7	5 ^{+1,4} -0,7
	AH	66	
	AK	22,5 ± 0,7	5 ± 0,7
	AL	90 ± 10	± 10
	AM	140 ± 3) ± 3
	AN	72 ± 3,2	± 3,2
	AO	R575 approx.	75 approx.
-	-		

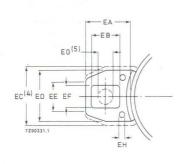


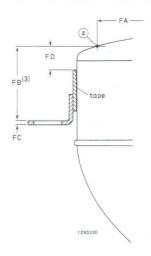
Dimensions in mm

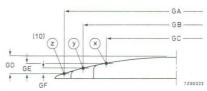
CA 251 max CB 114 min CC 49 max

Dimensions in mm

DA 315,4 ± 1,6
DB 246,4 ± 1,6
DC 366,4 ± 1,6
DD 280,8 min


DE 210,6 min
DF 335,4 min
DG R1545
DH R1173


DK R27,1
DL R2773

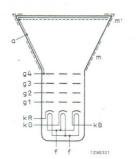

DM R2299 DN R11,6

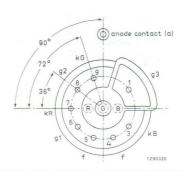
A34EAC00X

MECHANICAL DATA (continued)

Dimensions in mm

EA 22,5 ± 0,2 EB 14 ± 0,2 EC 29 max ED 25 EE 14 EF 11 ± 0,2


EG 7,5 EH 3 min


Dimensions in mm

GA 335,4 GB 280,8 GC 210,6 GD 25 ± 2,0 GE 15,3 ± 2,0 GF 7,6 ± 2,0

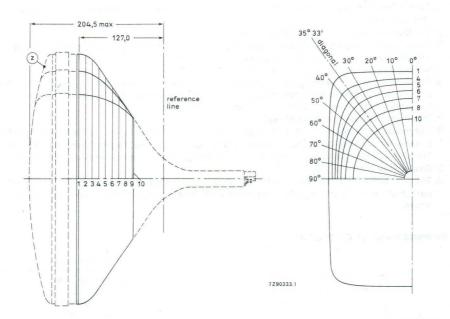
Dimensions in mm

FA 335,4 FB 35,5 ± 1,8 FC 2 FD 12 min

Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- One of the four mounting lugs may deviate (1,5 mm max.) from the plane of the other three lugs.
 This deviation is incorporated in the tolerance of ± 1,8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 7,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 311,4 mm x 243,2 mm.
- 6. Co-ordinates for radius R = 11,6 mm; x = 126,98 mm, y = 90,76 mm.
- 7. Maximum dimensions in plane of lugs.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

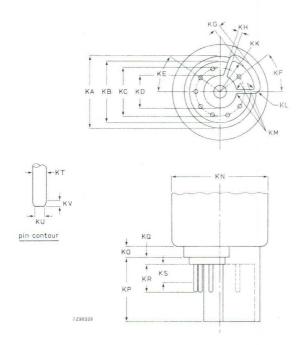
Reference line gauge; G-R90CJ10



Dimensions in mm

НА	φ100,00
НВ	65,00
HC	ϕ 78,70
HD	ϕ 80,00
HE	9,20 ± 0,02
HF	$36,22 \pm 0,02$
HG	20,00
нн	ϕ 75,48 ± 0,02
нк	ϕ 60,77 ± 0,02
HL	$\phi^{23,90}_{-0}^{+0,04}$
НМ	R220,00
HN	R70,00
но	50,30
HP	132,71
HQ	80,52
HR	205,85

A34EAC00X


Maximum cone contour

Dimensions in mm

sec- tion	nom. distance from reference line	distance from centre (max. values)														
		00	100	200	250	30°	32º 30'	diag. axes	37º 30′	400	450	50°	60°	700	80º	900
1	127,0	160,3	162,5	169,4	174,8	181,6	185,2	186,7	186,2	183,8	171,7	160,1	143,3	133,0	127,3	125,5
2	117,0	159,5	161,6	168,3	173,5	180,1	183,5	185,3	184,7	181,8	169,8	158,7	142,5	132,3	126,8	125,0
3	107,0	156,4	158,3	164,2	168,5	173,8	176,4	177,7	177,1	174,5	164,7	155,0	140,1	130,5	125,2	123,5
4	97,0	149,9	151,5	156,0	159,2	162,7	164,2	165,1	164,9	163,5	157,0	149,3	136,1	127,3	122,3	120,7
5	87,0	141,3	142,6	146,2	148,5	150,3	150,8	150,8	150,3	149,2	145,3	140,1	130,0	122,6	118,3	116,9
6	77,0	131,1	132,2	134,5	135,7	136,4	136,5	136,4	136,1	135,4	133,4	130,4	123,4	117,4	113,7	112,4
7	67,0	119,0	119,7	120,9	121,5	121,9	121,9	121,9	121,8	121,5	120,6	119,2	115,3	111,2	108,2	107,1
8	57,0	105,7	105,9	106,5	106,8	107,0	107,0	107,0	107,0	107,0	106,7	106,2	104,7	102,7	100,9	100,0
9	47,0	91,6	91,6	91,7	91,8	91,8	91,8	91,9	91,9	91,9	91,8	91,7	91,5	91,1	90,7	90,5
10	45,0	88,6	88,7	88,7	88,8	88,88	88,8	88,8	88,7	88,7	88,7	88,6	88,5	88,3	88,2	88,1

Base JEDEC B8-288

Dimensions in mm

·KA	17,9 max
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2 max
KE	36°
KF	38°
KG	1,3 max
KH	0,8 min; 1,0 max
KK	R8,66 ± 0,1
KL	R1,0
KM	R0,25
KN	23,2 max
KO	2,7 max
KP	$15,4 \pm 0,2$
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	$1,016 \pm 0,076$
KU	0,63 max

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage

Grid 3 (focusing electrode) voltage

Grid 2 voltage for a spot cut-off

voltage V_k = 120 V

Luminance at the centre of the screen*

Va,g4	23	kV
V_{g3}	6,1 to 6,9	kV
V_{g2}	310 to 600	V
1	165	cd/m

KV 0,4 min

^{*} Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329) focused raster, current density 0,4 μ A/cm².

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage	V_{g3}	26,6 to 29,8% of anode voltage
Grid 2 voltage and cathode voltage		
for visual extinction of focused spot	V_{g2} and V_{k}	see cut-off design chart
Difference in cut-off voltages between		
guns in any tube	$\Delta V_{\mathbf{k}}$	lowest value > 80% of highest value
Video drive characteristics		see graphs*
Grid 3 (focusing electrode) current	lg3	$-5 \text{ to } + 5 \mu A$
Grid 2 current	lg2	$-5 \text{ to } + 5 \mu A$
Grid 1 current under cut-off conditions	lg1	$-5 \text{ to } + 5 \mu A$
To produce white of 6500K + 7 M.P.C.D. (CIE co-ordinates $x = 0.313$, $y = 0.329$)		
Percentage of the total anode current supplied by each	gun (typical)	
red gun		38,3%
green gun		35,8%
blue gun		25,9%
Ratio of anode currents		
red gun to green gun		min. 0,8
		average 1.1

red gun to blue gun
blue gun to green gun

min. 0,5 average 0,7 max. 0,9

max.

min.

max.

average

1,4

1,1

1,5

1,9

^{*} For optimum picture performance it is recommended that the cathodes are not driven below + 10 V.

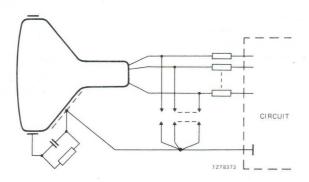
LIMITING VALUES (Design maximum rating system unless otherwise stated)

$V_{a,g4}$	max. min.			notes 1, 2, 3 notes 1 and 4
la	max.	750	μΑ	note 5
V_{g3}	max.	11	kV	
V_{g2p}	max.	1000	٧	
	max.	400	V	
Vk	max.	200	V	
$-v_k$	max.	0	V	
$-V_{kp}$	max.	2	V	
V_{f}	6,3 V	+ 5 -10	%	notes 1 and 6
	max.	200	V	
$-V_{kfp}$	peak	200	V	note 1
-V _{kf}	max.	0	V	
	Ia Vg3 Vg2p Vk Vk -Vk -Vkp Vf	Va,g4 min. Ia max. Vg3 max. Vg2p max. Vk maxVk maxVkp max. Vf 6,3 V	Va,g4 min. 20 Ia max. 750 Vg3 max. 11 Vg2p max. 1000 Vk max. 400 Vk max. 200 -Vk max. 0 -Vkp max. 2 Vf 6,3 V +5 -10 Vkf max. 200 -Vkf peak 200	Va,g4 min. 20 kV Ia max. 750 μA Vg3 max. 11 kV Vg2p max. 1000 V Vk max. 400 V Vk max. 200 V -Vk max. 0 V -Vkp max. 2 V Vf 6,3 V +5 % Vkf max. 200 V -Vkfp peak 200 V

Notes

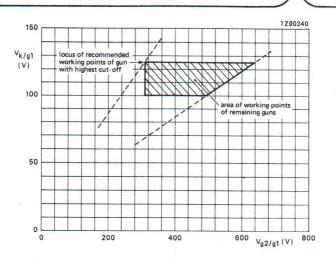
- 1. Absolute maximum rating system.
- The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1000 μ A.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

(d.c. component value)


FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV (1,5 x $V_{0.3}$ max. at $V_{a.04} = 25$ kV), and at the other electrodes of 1,5 to 2 kV.


The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.

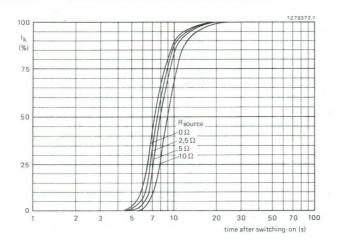
Additional information is available on request.

BEAM CORRECTIONS

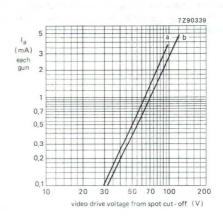
Maximum required correction for register, as measured at the centre of the screen in any direction	0,08 mm
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	4 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position	4 mm

Spot cut-off design chart.

Grid 2 voltage (V_{q2}) adjusted for highest gun spot cut-off voltage $V_k = 125 \text{ V}$.


Remaining guns adjusted for spot cut-off by means of cathode voltage

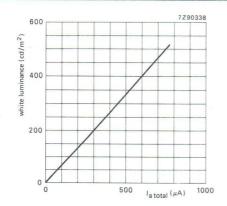
V_{q2} range 310 to 630 V;


V_k range 100 to 125 V.

Adjustment procedure:

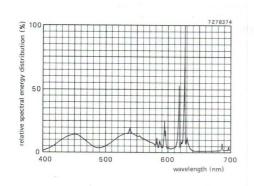
Set the cathode voltage (V_k) for each gun at 125 V; increase the grid 2 voltage (V_{g2}) from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

Cathode heating time after switching on, measured under typical operating conditions.


Typical cathode drive characteristics.

$$V_f = 6.3 V;$$

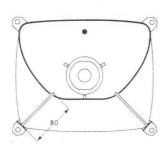
$$V_{a,g4} = 23 \text{ kV};$$

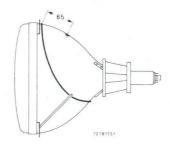

V_{g3} adjusted for focus

 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 100 V (curve a), V_k = 125 V (curve b).

Luminance at the centre of the screen as a function of I_{total} . $V_{a,g4} = 23 \text{ kV}, V_f = 6,3 \text{ V}, V_{g3}$ adjusted for optimum focus.

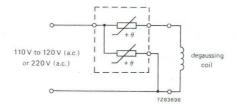
Scanned area = 280,8 mm x 210,6 mm; CIE co-ordinates x = 0,313, y = 0,329.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x=0.313, y=0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.


Colour co-or	rdinates:
	X
red	0.635

red 0,635 0,340 green 0,315 0,600 blue 0,150 0,060

DEGAUSSING


The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (≤ 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil	110 V (a.c.) mains	220 V (a.c.) mains		
Circumference	90 cm	90 cm		
Number of turns	60	120		
Copper wire diameter	0,45 mm	0,3 mm		
Resistance	6 Ω	27 Ω		
Catalogue number of appropriate dual PTC thermistor	2322 662 98013	2322 662 98009		

Hi-Bri COLOUR PICTURE TUBE

- 900 deflection
- In-line, thermally stable hi-bi potential A R T* gun
- 22,5 mm neck diameter
- Hi-Bri technology
- Pigmented phosphors
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick heating low-power cathodes
- Soft-flash technology
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- Combined with a deflection unit of the AT1625 series, it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	900
Minimum useful screen diagonal	34 cm
Overall-length	337 mm
Neck diameter	22,5 mm
Heating	6,3 V, 300 mA
Focusing voltage	31% of anode voltage

^{*} Aberration Reducing Triode.

A34FAC50X

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method Focus lens

Deflection method

Deflection angles

diagonal

vertical

horizontal

ELECTRICAL DATA

Capacitances

anode to external conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes focusing electrode to all other electrodes

Heating

heater voltage

heater current

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis

vertical axis

area

Phosphors

red

green

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

unitized triple-aperture electrodes

electrostatic

hi-bi-potential

magnetic

approx. 900

approx. 780

approx. 600

 $C_{a(m+m')}$

max. 1600 pF min. 800 pF

C_{a1}

15 pF

CkR, CkG, CkB

4 pF 4 pF

C_{a3}

indirect by a.c. or d.c.

Vf

6,3 V

If

300 mA

metal-backed vertical phosphor

stripes; phosphor lines follow glass

contour satinized

min. 335,4 mm

min. 280,8 mm

min. 210,6 mm

min. 580 cm²

pigmented europium activated rare

earth

sulphide type

pigmented sulphide type

0.65 mm

68%

MECHANICAL	DATA	(see also the	figures on	the f	following pages)
MECHANICAL	חות	13cc diso the	riguics on	LI IC I	Ollowillig pages/

Overall length

337,1 ± 5 mm

Neck diameter

22,5^{+1,4}_{-0,7} mm*

Bulb dimensions

max.368 mm

diagonal width

max.317 mm max.248 mm

height Base

JEDEC B8-288

Anode contact

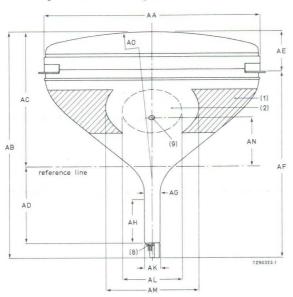
small cavity contact J1-21, IEC 67-III-2

Mounting position

anode contact on top

Net mass

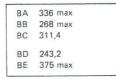
approx. 6 kg

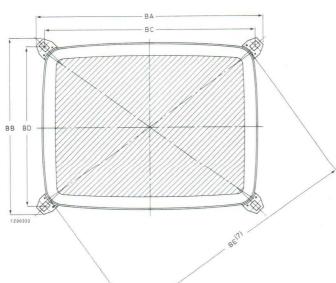

Handling

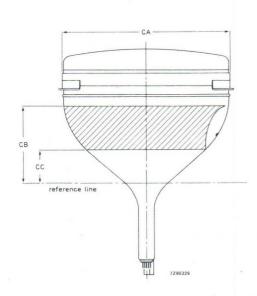
During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

A34EAC50X

MECHANICAL DATA (continued)

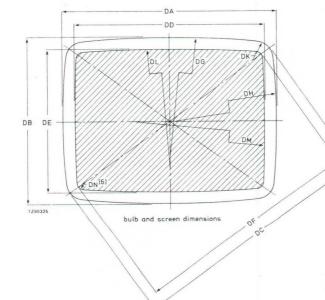

Notes are given after the drawings.




Dimensions in mm

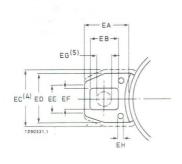
_	AA	319 max	
	AB	342,1 max	
	AC	200,5 ± 4	
	AD	118,7 ± 1	
	AE	63,5 max	
	AF	281 max	
	AG	22,5 ^{+1,4} -0,7	
	AH	66	
	AK	22,5 ± 0,7	
	AL	90 ± 10	
	AM	140 ± 3	
	AN	72 ± 3,2	
	AO	R575 approx.	

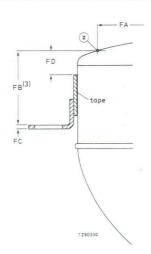
Dimensions in mm

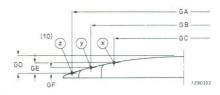


Dimensions in mm

CA	251 max
CB	114 min
CC	49 max


Dimensions in mm

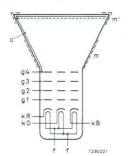


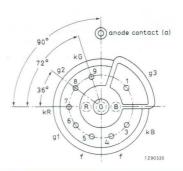


A34EAC50X

MECHANICAL DATA (continued)

Dimensions in mm

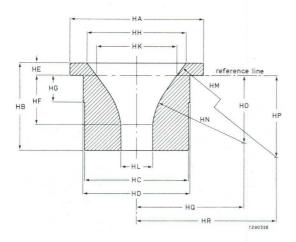

EA	22,5 ± 0,2
EB	14 ± 0,2
EC	29 max
ED	25
EE	14
EF	11 ± 0,2
EG	7,5
EH	3 min


Dimensions in mm

	GA	335,4	
1	GB	280,8	
1	GC	210,6	
	GD	25 ± 2,0	
	GE	15,3 ± 2,0	
	GF	7,6 ± 2,0	

Dimensions in mm

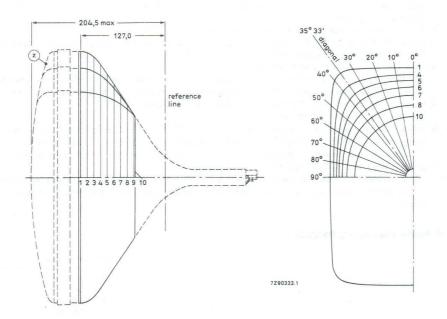
FA 335,4 FB 35,5±1,8 FC 2 FD 12 min



Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. One of the four mounting lugs may deviate (1,5 mm max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of \pm 1,8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 7,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 311,4 mm x 243,2 mm.
- 6. Co-ordinates for radius R = 11,6 mm; x = 126,98 mm, y = 90,76 mm.
- 7. Maximum dimensions in plane of lugs.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

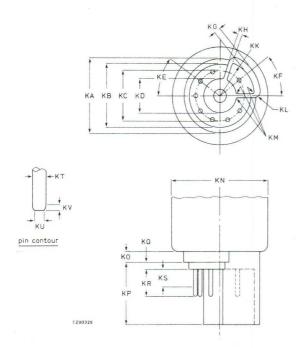
Reference line gauge; G-R90CJ10



Dimensions in mm

Jillichs	ions in min
НА	φ100,00
HB	65,00
HC	ϕ 78,70
HD	ϕ 80,00
HE	9,20 ± 0,02
HF	$36,22 \pm 0,02$
HG	20,00
НН	ϕ 75,48 ± 0,02
HK	ϕ 60,77 ± 0,02
HL	$\phi_{-0}^{+0.04}$
HM	R220,00
HN	R70,00
НО	50,30
HP	132,71
HQ	80,52
HR	205,85

A34EAC50X


Maximum cone contour

Dimensions in mm

sec-	nom. distance	distance from centre (max. values)														
tion	from reference line	00	10°	200	250	30°	32° 30′	diag.	37º 30'	400	450	50°	60°	700	80°	900
1	127,0	160,3	162,5	169,4	174,8	181,6	185,2	186,7	186,2	183,8	171,7	160,1	143,3	133,0	127,3	125,5
2	117,0	159,5	161,6	168,3	173,5	180,1	183,5	185,3	184,7	181,8	169,8	158,7	142,5	132,3	126,8	125,0
3	107,0	156,4	158,3	164,2	168,5	173,8	176,4	177,7	177,1	174,5	164,7	155,0	140,1	130,5	125,2	123,5
4	97.0	149,9	151,5	156,0	159,2	162,7	164,2	165,1	164,9	163,5	157,0	149,3	136,1	127,3	122,3	120,
5	87,0	141,3	142,6	146,2	148,5	150,3	150,8	150,8	150,3	149,2	145,3	140,1	130,0	122,6	118,3	116,9
6	77,0	131,1	132,2	134,5	135,7	136,4	136,5	136,4	136,1	135,4	133,4	130,4	123,4	117,4	113,7	112,
7	67.0	119,0	119.7	120.9	121,5	121,9	121,9	121,9	121,8	121,5	120,6	119,2	115,3	111,2	108,2	107,
8	57,0	105,7	105,9	106,5	106,8	107,0	107,0	107,0	107,0	107,0	106,7	106,2	104,7	102,7	100,9	100,0
9	47,0	91,6	91,6	91,7	91,8	91,8	91,8	91,9	91,9	91,9	91,8	91,7	91,5	91,1	90,7	90,
10	45,0	88,6	88,7	88,7	88,8	88,8	88,8	88,8	88,7	88,7	88,7	88,6	88,5	88,3	88,2	88,

Base JEDEC B8-288

Dimensions in mm

KA	17,9 max
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2 max
KE	36°
KF	38°
KG	1,3 max
KH	0,8 min; 1,0 max
KK	R8,66 ± 0,1
KL	R1,0
KM	R0,25
KN	23,2 max
KO	2,7 max
KP	$15,4 \pm 0,2$
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	1,016 ± 0,076
KU	0,63 max
ΚV	0,4 min

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage

Grid 3 (focusing electrode) voltage

Grid 2 voltage for a spot cut-off

voltage V_k = 120 V

Luminance at the centre of the screen*

V _{a,g4}	23	kV
V_{g3}	6,7 to 7,6	kV
V_{g2}	310 to 650	V
1	165	cd/m ²

^{*} Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329) focused raster, current density 0,4 μ A/cm².

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV. The voltages are specified with respect to grid 1.

The voltages are specified with respect to grid 1.		
Grid 3 (focusing electrode) voltage	V_{g3}	29 to 31% of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot	V_{g2} and V_{k}	see cut-off design chart
Difference in cut-off voltages between guns in any tube	ΔV_k	lowest value > 80% of highest value
Video drive characteristics		see graphs*
Grid 3 (focusing electrode) current	1 _{g3}	$-5 \text{ to } +5 \mu A$
Grid 2 current	I _{g2}	$-5 \text{ to } + 5 \mu A$
Grid 1 current under cut-off conditions	lg1	$-5 \text{ to } + 5 \mu A$
To produce white of 6500K + 7 M.P.C.D. (CIE co-ordinates x = 0,313, y = 0,329)		
Percentage of the total anode current supplied by ear red gun	ch gun (typical)	38,3%
green gun		35,8%
blue gun		25,9%
Ratio of anode currents		
red gun to green gun		min. 0,8 average 1,1 max. 1,4
red gun to blue gun		min. 1,1 average 1,5 max. 1,9
blue gun to green gun		min. 0,5 average 0,7 max. 0.9

^{*} For optimum picture performance it is recommended that the cathodes are not driven below \pm 10 $\,\mathrm{V}_{\cdot}$

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

The total good and opposition that the pool to give the		max.	27,5	W	notes 1, 2, 3
Anode voltage	$V_{a,g4}$	min.		kV	notes 1 and 4
Long-term average current for three guns	la	max.	750	μΑ	note 5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage, peak	V_{g2p}	max.	1000	V	
Cathode voltage					
positive	V_{k}	max.	400	٧	
positive operating cut-off	Vk	max.	200	V	
negative	$-v_k$	max.	0	V	
negative peak	$-V_{kp}$	max.	2	V	
Heater voltage	V_{f}	6,3 V	+ 5 -10	% %	notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode					
after equipment warm-up period	Vkf	max.	200	V	
heater positive with respect to cathode	$-V_{kfp}$	peak	200	٧	note 1
	$-V_{kf}$	max.	0	٧	
		(d.c. c	ompo	nent	value)

Notes

- 1. Absolute maximum rating system.
- The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1000 μ A.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV (1,5 x V_{q3} max. at $V_{a,q4} = 25$ kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.

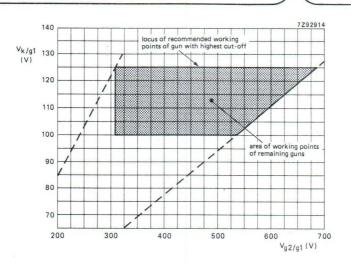
Additional information is available on request.

BEAM CORRECTIONS

Maximum required c	orrection for register, as measured
at the centre of th	e screen in any direction

0,08 mm

Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle


4 mm

Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle

2 mm

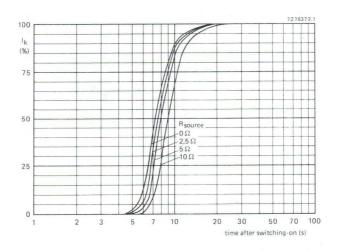
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

4 mm

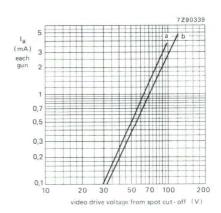
Spot cut-off design chart.

Grid 2 voltage (V_{q2}) adjusted for highest gun spot cut-off voltage V_k = 125 V.

Remaining guns adjusted for spot cut-off by means of cathode voltage


V_{q2} range 310 to 685 V;

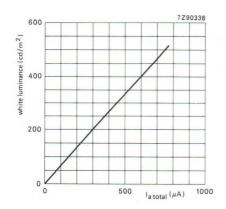
Vk range 100 to 125 V.


Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 125 V; increase the grid 2 voltage (V_{g2}) from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

A34EAC50X

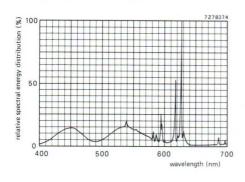
Cathode heating time after switching on, measured under typical operating conditions.


Typical cathode drive characteristics.

 $V_{f} = 6,3 V;$

 $V_{a,g4} = 23 \text{ kV};$

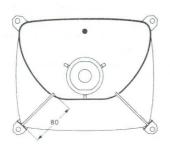
V_{a3} adjusted for focus

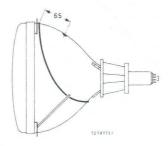

 V_{q2} (each gun) adjusted to provide spot cut-off for V_k = 100 V (curve a), V_k = 125 V (curve b).

Luminance at the centre of the screen as a function of I_{total}.

 $V_{a,g4}$ = 23 kV, V_f = 6,3 V, V_{g3} adjusted for optimum focus.

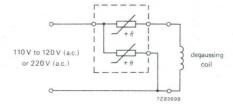
Scanned area = 280,8 mm x 210,6 mm; CIE co-ordinates x = 0,313, y = 0,329.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x=0.313, y=0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.


Colour co-ordinates:

		У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

DEGAUSSING


The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (\leq 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil	110 V (a.c.) mains	220 V (a.c.) mains
Circumference	90 cm	90 cm
Number of turns	60	120
Copper wire diameter	0,45 mm	0,3 mm
Resistance	6 Ω	27 Ω
Catalogue number of appropriate dual PTC thermistor	2322 662 98013	2322 662 98009

DEFLECTION UNIT

QUICK REFERENCE DATA

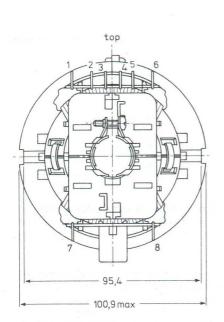
Picture tube		
gun arrangement	in line	
minimum useful screen diagonal neck diameter	34 cm 22,5 mm	
Deflection angle	900	
Line deflection current, edge to edge at 23 kV	2,15 A (p-p)	
Inductance of line coils, parallel connected (including additional coil)	2,46 mH	
Field deflection current, edge to edge at 23 kV	0,38 A (p-p)	
Resistance of field coils, series connected	54,4 Ω	

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A34EAC00X, with a neck diameter of 22,5 mm. The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.


AT1625/10

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $22,5^{+1,4}_{-0.7}$ mm.

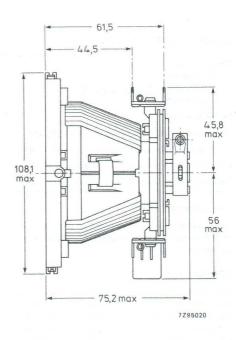


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

+90 °C

-25 to +90 °C

according to UL 1413, category 94-V1

1,0 Nm

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Shock

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

IEC 68-2-6 (test Fc)

IEC 68-2-27 (test Ea)

IEC 68-2-29 (test Eb; 25g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils, including additional coil Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C Magnetic flux at 23 kV

Line deflection current, edge to edge, at 23 kV

Additional coil

Inductance at 1 V (r.m.s.), 1 kHz

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 23 kV

Cross talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

2.46 mH ± 4%

 $3.2 \Omega \pm 10\%$

5,29 mWb ± 2,5%

2,15 A (p-p)

 $0.15 \, \text{mH} \pm 4\%$

110 mH ± 10%

 $544\Omega \pm 7\%$

0.38 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0.40 V across the field coils (damping resistors included)

> 500 M Ω

 $> 500 M\Omega$

 $> 10 M\Omega$

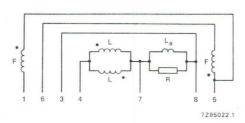


Fig. 2 Connection diagram. L = line coils; F = field coils; L_a = additional coil; $R = 4.7 \text{ k}\Omega$.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

DEFLECTION UNIT

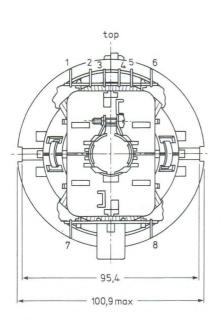
QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
minimum useful screen diagonal	34 cm
neck diameter	22,5 mm
Deflection angle	900
Line deflection current, edge to edge at 23 kV	2,15 A (p-p)
Inductance of line coils, parallel connected (including additional coil)	2,50 mH
Field deflection current, edge to edge at 23 kV	0,75 A (p-p)
Resistance of field coils, parallel connected	13,6 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A34EAC00X, with a neck diameter of 22,5 mm. The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $22,5^{+1,4}_{-0,7}$ mm.

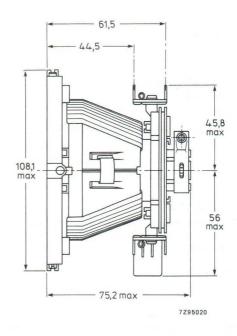


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

+90 °C -25 to +90 °C according to UL 1413, category 94-V1 1.0 Nm

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Shock

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

IEC 68-2-6 (test Fc)

IEC 68-2-27 (test Ea)

IEC 68-2-29 (test Eb; 25g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

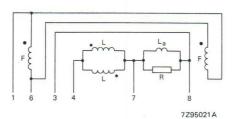
IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils, including additional coil Inductance at 1 V (r.m.s.), 1 kHz 2,50 mH \pm 4% Resistance at 25 °C 3,3 Ω \pm 10% Magnetic flux at 23 kV 5,38 mWb \pm 2,5% Line deflection current, edge to edge, at 23 kV 2,15 A (p-p) Additional coil

Inductance at 1 V (r.m.s.), 1 kHz


Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C Field deflection current, edge to edge, at 23 kV

Cross talk

 $\begin{array}{c} \text{included)} \\ \text{Insulation resistance at 1 kV (d.c.)} \\ \text{between line and field coils} & > 500 \ M\Omega \\ \text{between line coil and core clamp} & > 500 \ M\Omega \\ \text{between field coil and core clamp} & > 10 \ M\Omega \\ \end{array}$

 $0.19 \text{ mH} \pm 4\%$

27.5 mH ± 10%

a voltage of 10 V, 15625 Hz applied to

the line coils causes no more than 0,20 V across the field coils (damping resistors

13.6 $\Omega \pm 7\%$

0,75 A (p-p)

Fig. 2 Connection diagram. L = line coils; F = field coils; L_a = additional coil; R = 4,7 k Ω .

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal of vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

1, 3,74

and of the project

The second secon

- - 11

DEFLECTION UNIT

QUICK REFERENCE DATA

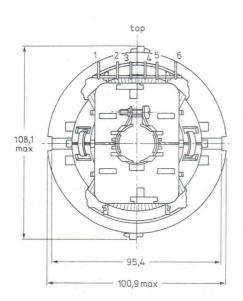
Picture tube	
gun arrangement	in line
minimum useful screen diagonal	34 cm
neck diameter	22,5 mm
Deflection angle	90°
Line deflection current, edge to edge at 23 kV	2,07 A (p-p)
Inductance of line coils, parallel connected	2,50 mH
Field deflection current, edge to edge at 23 kV 0,38 A (p-p)	
Resistance of field coils, series connected 54,4 Ω	

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A34EAC00X, with a neck diameter of 22,5 mm. The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.


AT1625/30

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $22,5^{+1,4}_{-0.7}$ mm.

45,8 max 39.9 max 75,2 max 7285897.1

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Shock

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

-25 to +90 °C

according to UL 1413, category 94-V1

1,0 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-27 (test Ea)

IEC 68-2-29 (test Eb; 25g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux at 23 kV

Line deflection current, edge to edge, at 23 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 23 kV

Cross talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

2.50 mH ± 4%

 $3.3 \Omega \pm 10\%$

5,18 mWb ± 2,5%

2,07 A (p-p)

110 mH ± 10%

 $54,4 \Omega \pm 7\%$

0,38 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,4 V across the field coils (damping resistors

included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

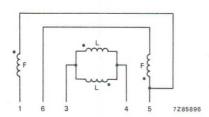


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube
 and the deflection unit. These wedges have to be cemented on to the picture tube.

DEFLECTION UNIT

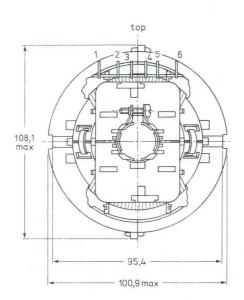
QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
minimum useful screen diagonal	34 cm
neck diameter	22,5 mm
Deflection angle	900
Line deflection current, edge to edge at 23 kV	2,07 A (p-p)
Inductance of line coils, parallel connected	2,50 mH
Field deflection current, edge to edge at 23 kV	0,75 A (p-p)
Resistance of field coils, parallel connected	13,6 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A34EAC00X, with a neck diameter of 22,5 mm. The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $22.5^{+1.4}_{-0.7}$ mm.

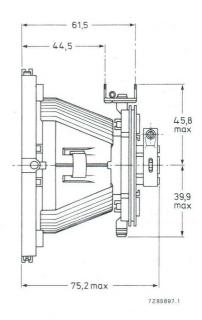


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Shock

Bump

Cold

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

 $-25 \text{ to } + 90 \, ^{\circ}\text{C}$

according to UL 1413, category 94-V1

1,0 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-27 (test Ea)

IEC 68-2-29 (test Eb; 25g)

IEC 68-2-1 (Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

120 00 2 0 (1001 04)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux at 23 kV

Line deflection current, edge to edge, at 23 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 23 kV

Cross talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

2.50 mH ± 4%

 $33\Omega + 10\%$

5,18 mWb ± 2,5%

2,07 A (p-p)

27,5 mH \pm 10% 13.6 $\Omega \pm$ 7%

0.75 A(p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

 $> 500 M\Omega$

> 500 M Ω

 $> 10 M\Omega$

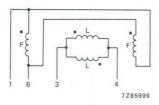


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

This data sheet contains advance information and specifications are subject to change without notice.

FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- 90º deflection
- In-line, hi-bi potential A R T* gun
- 22,5 mm neck diameter
- Shadow mask of NiFe alloy with low thermal expansion
- Hi-Bri technology
- Mask with corner suspension
- Pigmented phosphors
- Fine pitch over entire screen
- · Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 625 lines system
- Internal magnetic shield
- Internal multipole
- · Reinforced envelope for push-through mounting
- The tube is supplied with a deflection unit of the AT6060 series; it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	900	
Minimum useful screen diagonal	36 cm	
Overall length	340 mm	
Neck diameter	22,5 mm	
Heating	6,3 V, 300 mA	
Focusing voltage	31% of anode voltage	

^{*} Aberration Reducing Triode.

ELECTRON-OPTICAL DATA

Electron gun system

unitized triple-aperture electrodes;

aberration reducing triode

Focusing method

electrostatic

Focus lens

hi-bi-potential

Deflection method

magnetic

Deflection angles

approx. 900

diagonal horizontal vertical

approx. 780 approx. 600

ELECTRICAL DATA

Capacitances

anode to external

max. 1600 pF

conductive coating including rimband

grid 1 to all other electrodes

 $C_{a(m+m')}$ C_{a1}

min. 800 pF

cathode of each gun to all other electrodes

 C_{kR}, C_{kG}, C_{kB}

15 pF 4 pF

focusing electrode to all other electrodes

4 pF

Heating

C_{q3} indirect by a.c. or d.c.

heater voltage heater current

Vf

6.3 V

If

300 mA

OPTICAL DATA

Screen

metal-backed vertical phosphor stripes; phosphor lines follow

glass contour

high polish

Screen finish

Useful screen dimensions

diagonal

min. 355,6 mm

horizontal axis

min. 284,5 mm

vertical axis area

min, 213,4 mm min. 607 cm²

Positional accuracy of the screen with

see Figures on the next page

respect to the glass contour

pigmented sulphide type

Phosphors

red

pigmented europium activated

rare earth

green blue

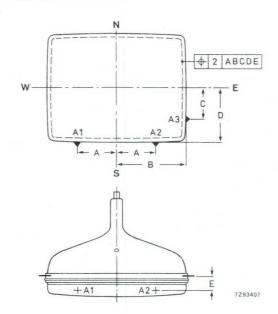
sulphide type

Centre-to-centre distance of vertical identical

0.52 mm

colour phosphor stripes, at screen centre

65%


Light transmission of face glass at centre

Luminance at the centre of the screen

140 cd/m2 *

^{*} Tube settings adjusted to produce white D (x = 0.313, y = 0.329), focused raster, current density $0.4 \, \mu A/cm^2$.

MECHANICAL DATA (see also the figures on the following pages)

Overall length

.

Neck diameter

Bulb dimensions diagonal

width

height

Base

Anode contact

Mounting position

Net mass

340 ± 4,5 mm

22,5 + 1,4 mm*

max. 392,6 mm

max. 328,4 mm

max. 263,0 mm

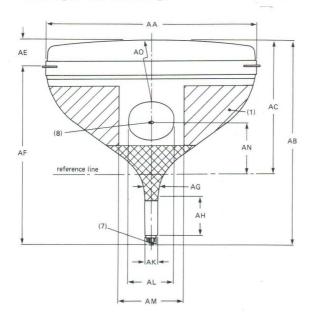
JEDEC B8-288

small cavity contact J1-21, IEC 67-III-2

anode contact on top

approx. 7 kg

Handling

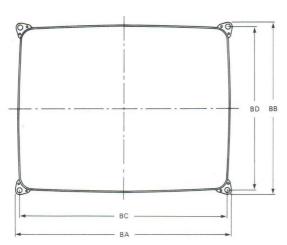

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

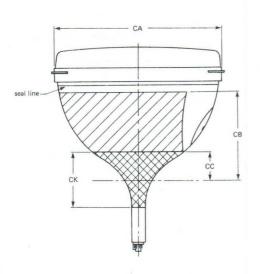
^{*} In the region of 66 mm from the neck end, the maximum diameter is 23,2 mm.

A36EAMOOX

MECHANICAL DATA (continued)

Notes are given after the drawings.




Dimensions in mm

	AA	332 max
	AB	$340 \pm 4,5$
Ì	AC	204 ± 4
	AE	51,5 max
	AF	297 max
	AG	22,5 ^{+ 1,4} -0,7
	AH	66
	AK	$22,9 \pm 0,3$
١	AL	110 ± 10
	AM	140 ± 3
	AN	$75 \pm 3,2$
	AO	R1200 approx

Dimensions in mm

BA BB BC	346,5 max 281 max 326,4	
BD	261	

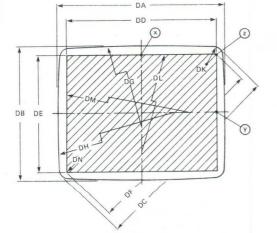
Dimensions in mm

CA 267 max CB 122,5 min CC 49 max CG 396,5 CK 53 max

Dimensions in mm

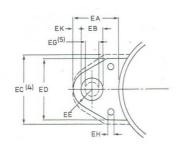
DA

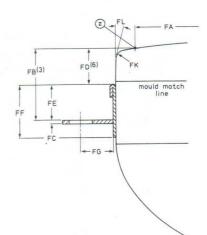
DM

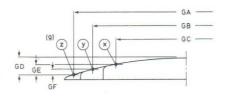

DN

DB 261,4 ± 1,6 DC 391 ± 1,6 DD 284,5 min DE 213,4 min DF 355,6 min R2028 DG R2029 DH DK R21,4 DL R10078

R5661

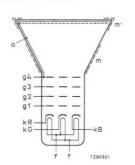

RO

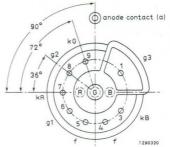

326,8 ± 1,6



A36EAMOOX

MECHANICAL DATA (continued)




Dimensions in mm

EA 20,6 ± 0,5 EB 11,5 ± 0,2 EC 35 max ED 30 ± 1 EE R8 EG 8 EH 3 min EK 2,25 ± 0,3 Dimensions in mm

GA 355,6 GB 284,5 GC 213,4 GD 13,25 ± 2 GE 8,5 ± 2 GF 4,79 ± 2 Dimensions in mm

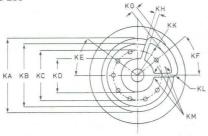
FA 355,6 FB 34,5 ± 1,5 FC 2,5 FD 17,5 min FE 15 max FF 24 max FG 13,1 FK R8 FL 5°

Notes to outline drawings on the preceding pages

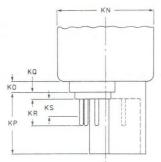
- 1. Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. One of the four mounting lugs may deviate (1,5 mm max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of \pm 1,5 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. corners of a rectangle of 326,4 mm x 261 mm.
- 6. Distance from point Z to any hardware.
- 7. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 8. Small cavity contact J1-21, IEC 67-III-2.
- 9. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

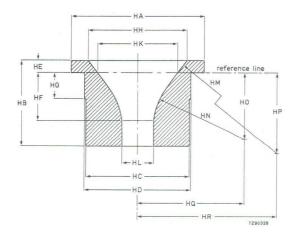
coordina	ites	sagittal
X	У	height
mm	mm	mm
0*	106,70	4,75
10	106,70	4,79
20	106,70	4,92
30	106,70	5,13
40	106,70	5,42
50	106,70	5,80
60	106,70	6,26
70	106,70	6,80
80	106,70	7,43
90	106,70	8,15
100	106,70	8,94
110	106,70	9,83
120	106,70	10,79
130	106,70	11,84
140	106,70	12,98
142,25**	106,70	13,25
142,25	100	12,66
142,25	90	11,86
142,25	80	11,15
142,25	70	10,52
142,25	60	9,97
142,25	50	9,51
142,25	40	9,13
142,25	30	8,84
142,25	20	8,63
142,25	10	8,50
142,25	0	8,46


Point ®

** Diagonal

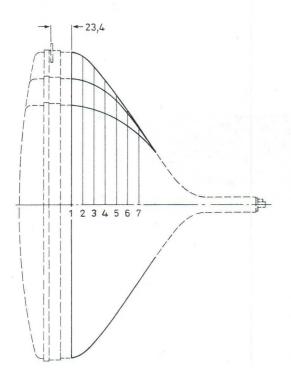

Point ®

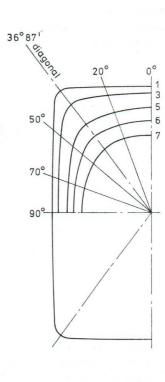
A36EAMOOX


Base JEDEC B8-288

Reference line gauge; G-R90CJ10

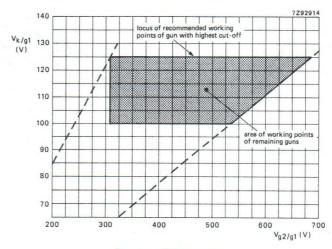
Dimensions in mm


KA	17,9 mm
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2
KE	36°
KF	380
KG	1,3 max
KH	0,8 min; 1,0 max
KK	R8,66 ± 0,1
KL	R1,0
KM	R0,25
KN	23,2 max
KO	2,7 max
KP	$15,4 \pm 0,2$
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	$1,016 \pm 0,076$
KU	0,63 max
KV	0,4 min


Dimensions in mm

	НА	φ 100,00
١	HB	65,00
	HC	ϕ 78,70
	HD	ϕ 80,00
	HE	$9,20 \pm 0,02$
	HF	$36,22 \pm 0,02$
	HG	20,00
	НН	ϕ 75,48 ± 0,02
	HK	ϕ 60,77 \pm 0,02
	HL	ϕ 23,90 $^{+}_{-0}$ 0,04
ı	НМ	R220,00
	HN	R70,00
	HO	50,30
	HP	132,71
	HQ	80,52
-	HR	205,85

Maximum cone contour



	nom, distance	nce from cen	om centre (max. values)				
section	from section 1	0o	20°	diag.	50°	70°	90°
1	0	163,3	173,0	195,8	166,9	138,2	130,3
2	20	159,1	168,5	188,0	161,1	134,5	127,2
3	40	149,2	154,4	165,5	148,2	127,5	121,5
4	60	133,5	136,4	140,0	131,2	117,4	113,0
5	80	110,7	111,9	112,6	108,7	102,3	100,0
6	100	82,2	82,7	82,7	82,0	80,8	80,2
7	115	58,3	58,3	58,3	58,3	58,5	58,7

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	V _{a,g4}	23 kV
Grid 3 (focusing electrode) voltage	V_{g3}	6,7 to 7,6 kV
Grid 2 voltage for a spot cut-off voltage V_k = 120 V	V_{g2}	310 to 650 V

Spot cut-off design chart.

Grid 2 voltage (V_{g2}) adjusted for highest gun spot cut-off voltage V_k = 125 V.

Remaining guns adjusted for spot cut-off by means of cathode voltage

Vg2 range 310 to 685 V;

Vk range 100 to 125 V.

Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 125 V; increase the grid 2 voltage (V_{g2}) from approx. 300 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage V_{g3} 29 to 33% of anode voltage

Grid 2 voltage and cathode voltage

for visual extinction of focused spot V_{a2} and V_k see cut-off design chart

Difference in cut-off voltages between

guns in any tube ΔV_{k} lowest value > 80% of highest value

Heater voltage V_f 6,3 V at zero beam current

Video drive characteristics see graphs

Grid 3 (focusing electrode) current l_{g3} $-2 \text{ to } + 2 \mu A$ Grid 2 current l_{g2} $-2 \text{ to } + 2 \mu A$

Grid 1 current under cut-off conditions $I_{q1} = -2 \text{ to } + 2 \mu A$

To produce white of 6500K + 7 M.P.C.D. (CIE co-ordinates x = 0.313, y = 0.329)

Percentage of the total anode current supplied by each gun (typical)

 red gun
 38,3%

 green gun
 35,8%

blue gun 25,9%

Ratio of anode currents
red gun to green gun min. 0,8

max. 1,4

red gun to blue gun min. 1,1 average 1.5

max. 1,9

blue gun to green gun min. 0,5 average 0,7

average

max.

1,1

0.9

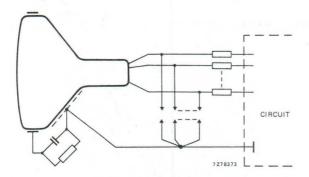
A36EAMOOX

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

Anode voltage		V _{a,g4}		,5 k\ 0 k\	
Long-term average current for three guns	5	la	max. 75	0 μ	A note 5
Grid 3 (focusing electrode) voltage		V_{g3}	max.	1 k	/
Grid 2 voltage, peak		V_{g2p}	max. 100	00 V	
Cathode voltage positive		V_k	max. 40	00 V	
positive operating cut-off		V_k	max. 20	00 V	
negative		$-V_k$	max.	0 V	
negative peak		$-V_{kp}$	max.	2 V	
Heater voltage		V_{f}	h 3 \/	5 % 0 %	notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode after equipment warm-up period		V_{kf}	max. 20	00 V	
heater positive with respect to cathode		$-V_{kfp}$	peak 20	0 V	note 1
		-V _{kf}	max.	0 V	t value)

Notes

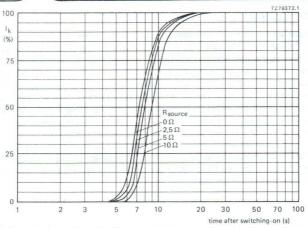

- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to $1000 \,\mu\text{A}$.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

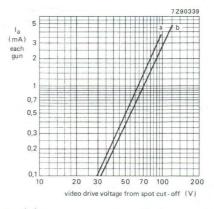
With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV (1,5 x V_{g3} max. at $V_{a,g4}$ = 25 kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.



BEAM CORRECTIONS

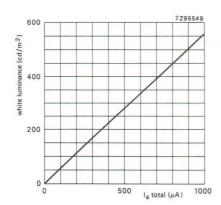

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

3 mm

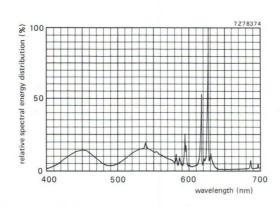
A36EAMOOX

Cathode heating time after switching on, measured under typical operating conditions.

Typical cathode drive characteristics.


 $V_f = 6.3 V;$

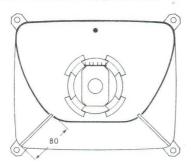
 $V_{a,q4} = 23 \text{ kV};$

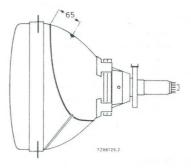

V_{q3} adjusted for focus;

 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 100 V (curve a), and V_k = 125 V (curve b).

For optimum picture performance it is recommended that the cathodes are not driven below + 1 V.

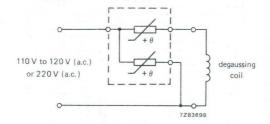
Luminance at the centre of the screen as a function of I_{total} . $V_{a,g4} = 23 \text{ kV}$. Scanned area = 404,4 mm x 303,3 mm; CIE co-ordinates x = 0,313, y = 0,329.




Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

DEGAUSSING


The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (\leq 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil

	110 V (a.c.) mains	220 V (a.c.) mains
Circumference	90 cm	90 cm
Number of turns	60	120
Copper wire diameter	0,45 mm	0,3 mm
Resistance	6 Ω	27 Ω
Catalogue number of appropriate dual PTC thermistor	2322 662 98013	2322 662 98009

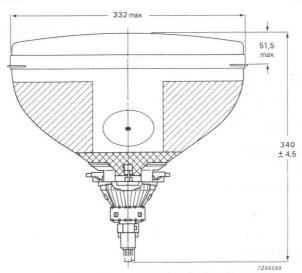
A36EAM..X..

This data sheet contains advance information and specifications are subject to change without notice.

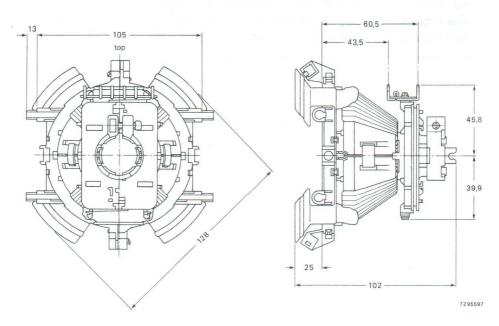
36 cm, 90° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- · Self-converging and raster correction free
- 36 cm, 90° colour picture tube A36EAM . . X
- Hybrid saddle toroidal deflection unit of the AT6060 series

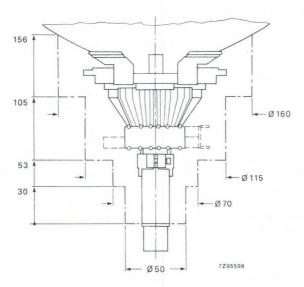
QUICK REFERENCE DATA


90	0
36	cm
340	mm
22,5	mm
	36 340

AVAILABLE ASSEMBLIES


assembly type	assembly components
A36EAM00X01	tube A36EAM00X + deflection unit AT6060/00
A36EAM00X04	tube A36EAM00X + deflection unit AT6060/30
A36EAM00X16	tube A36EAM00X + deflection unit AT6060/42

MECHANICAL DATA


Dimensions in mm

Colour picture tube assembly A36EAM . . X . .

Deflection unit of AT6060 series.

Yoke clearance.

Maximum	operating	temperature	(average copper
· A Company Section 1		1	

temperature measured with resistance method)

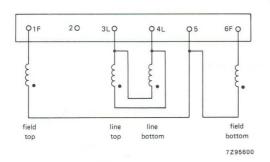
Storage temperature range $-25 \text{ to } +90 \text{ }^{\circ}\text{C}$

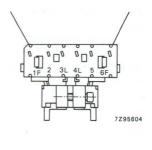
Flame retardent according to UL 1413, category 94-V1

+ 90 °C

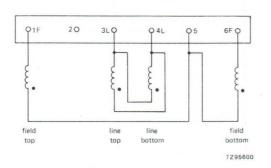
Torque on neck clamp screw 1,0 Nm

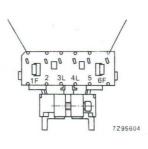
ENVIRONMENTAL TEST SPECIFICATIONS OF DEFLECTION UNITS

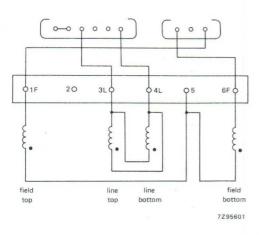

Vibration	IEC 68-2-6 (test Fc)
Shock	IEC 68-2-27 (test Ea)
Bump	IEC 68-2-29 (test Eb; 25g)
Cold	IEC 68-2-1 (test Ab)
Dry heat	IEC 68-2-2 (test Bb)
Damp heat, steady state	IEC 68-2-3 (test Ca)
Cyclic damp heat	IEC 68-2-30 (test Db)
Change of temperature	IEC 68-2-14 (test Nb)

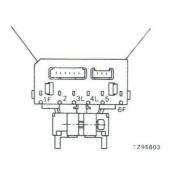

A36EAM..X..

ELECTRICAL DATA OF DEFLECTION UNITS


	deflection unit		
parameter	AT6060/00	AT6060/30	AT6060/42
Line deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C magnetic flux	2,43 mH ± 4% 3,2 Ω ± 10% 5,14 mWb ± 2,5%	2,43 mH ± 4% 3,2 Ω ± 10% 5,14 mWb ± 2,5%	1,64 mH ± 4% 2,1 Ω ± 10% 4,20 mWb ± 2,5%
Line deflection current, edge to edge, at 23 kV	2,11 A _(p-p)	2,11 A _(p-p)	2,57 A _(p-p)
Field deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C	26,2 mH ± 10% 12,2 Ω ± 7%	108 mH ± 10% 49 Ω ± 7%	108 mH ± 10% 49 Ω ± 7%
Field deflection current, edge to edge, at 23 kV	0,82 A _(p-p)	0,41 A _(p-p)	0,41 A _(p-p)
Cross-talk: voltage across the field coils when a voltage of 10 V, 15625 Hz is applied to the line coils	< 0,2 V	< 0,4 V	< 0,4 V


 $\begin{array}{ll} \mbox{Insulation resistance at 1 kV (d.c.)} \\ \mbox{between line and field coils} & > 500 \ \mbox{M}\Omega \\ \mbox{between line coil and core clamp} & > 500 \ \mbox{M}\Omega \\ \mbox{between field coil and core clamp} & > 10 \ \mbox{M}\Omega \end{array}$




Connection diagram and top view of terminals of deflection unit AT6060/00. The beginning of the windings is indicated with ullet.

Connection diagram and top view of terminals of deflection unit AT6060/30. The beginning of the windings is indicated with •.

Connection diagram and top view of terminals of deflection unit AT6060/42. The beginning of the windings is indicated with \bullet .

Hi-Bri COLOUR PICTURE TUBE

- 900 deflection
- In-line gun, electrostatic bi-potential focus
- 29,1 mm neck diameter
- · Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- · Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1205), it forms a self-converging assembly; dynamic convergence is not required.

QUICK REFERENCE DATA

Focusing voltage	20% of anode voltage	
Heating	6,3 V, 685 mA	
Neck diameter	29,1 mm	
Overall length	337,5 mm	
Face diagonal	37 cm	
Deflection angle	90°	

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method

Focus lens

Deflection method

Deflection angles

diagonal

horizontal

vertical

unitized triple-aperture electrodes

electrostatic

bi-potential

magnetic

approx. 900

approx. 780

approx. 600

ELECTRICAL DATA

Capacitances

anode to external

conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes

focusing electrode to all other electrodes

Heating

heater voltage

heater current

 $C_{a(m+m')}$

max. 1600 pF min. 800 pF

C_{a1}

15 pF 5 pF

CkR, CkG, CkB

6 pF C_{a3}

Vf 15

indirect by a.c. or d.c. 6.3 V

685 mA

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis

vertical axis

area

Phosphors

red

areen

blue

Centre-to-centre distance of vertical identical

colour phosphor stripes, at screen centre

Light transmission of face glass at centre

metal-backed vertical phosphor stripes; phosphor lines follow glass

contour

satinized

min. 335.4 mm

min. 280,8 mm

min. 210,6 mm

min. 580 cm²

pigmented europium activated rare

earth

sulphide type

pigmented sulphide type

0.65 mm

68%

MECHANICAL DATA (see also the figures on the following pages)

Overall length

337,4 ± 5 mm

Neck diameter

29,1 ^{+ 1,4} mm *

Bulb dimensions

max. 368 mm max. 317 mm max. 248 mm

diagonal width

12-pin base JEDEC B12-262

height Base

small cavity contact J1-21, IEC 67-III-2

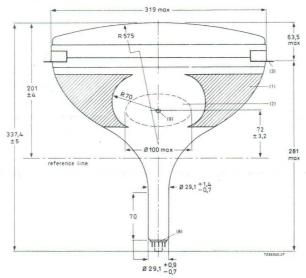
Anode contact

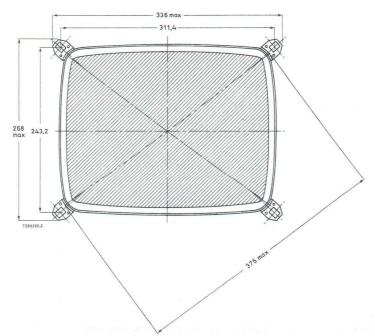
Mounting position

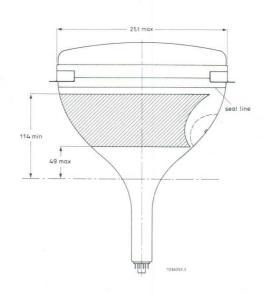
anode contact on top approx. 6 kg

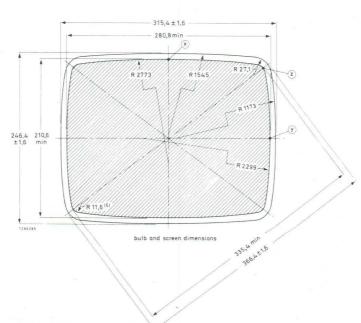
Net mass

Handling

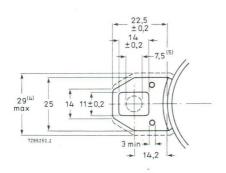

During shipment and handling the tube should not be subjected to accelerations greater than $35g\,$ in any direction.

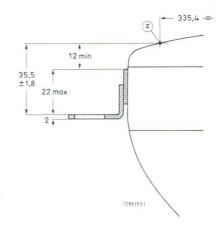

^{*} In the region of 70 mm from the neck end, the maximum diameter is 30 mm.

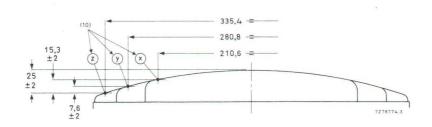

MECHANICAL DATA (continued)

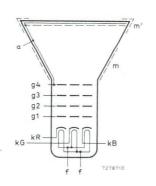

Notes are given after the drawings.

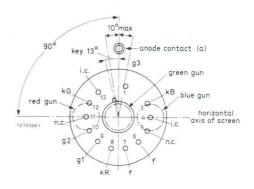
Dimensions in mm

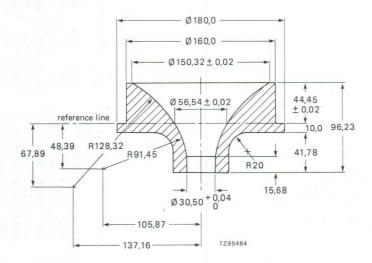


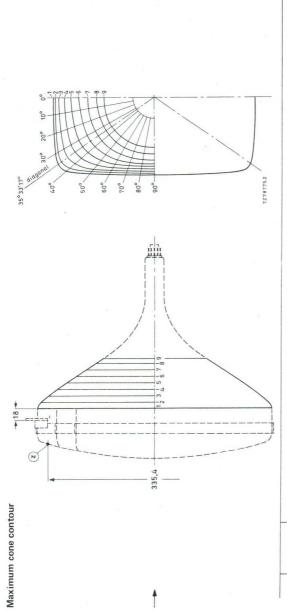






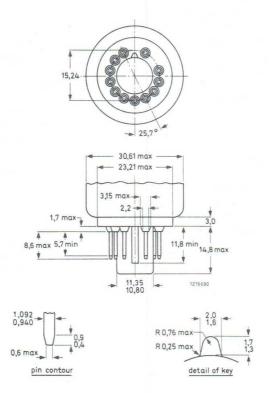

MECHANICAL DATA (continued)




i.c. = internally connected (not to be used)
n.c. = not connected

Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. The displacement of any lug with respect to the plane through the three other lugs is max. 1,5 mm. This deviation is incorporated in the tolerance of \pm 1.8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 7,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 311,4 mm x 243,2 mm.
- 6. Co-ordinates for radius R = 11.6 mm: x = 126.98 mm, v = 90.76 mm.
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis. The mass of the mating socket with circuitry should not be more than 150 g, maximum permissible torque is 40 mNm.
- 9. Small cavity contact J1-21, IEC67-III-2,


Reference line gauge; GR90CJ4

SPC-	nom.						distan	ce from	distance from centre (max. values)	ax. value	(Si					
tion	from section 1	00	100	200	250	300	32º 30'	diag.	370 30'	400	450	50 ₀	009	700	800	006
-	0	157,2	159,4	166,3	171,7	178,2	181,2	183,6	183,3	180,0	167,9	156,5	140,0	129,8	124.2	122.4
2	10	154,7	156,9	163,5	168,5	174,1	176,6	178,1	177.7	174,8	164,4	153,7	137,8	127,9	122,4	120,7
က	20	148,8	150,7	156,3	160,0	163,5	164,6	165,0	164,4	162,6	156,0	147,7	133,6	124,4	119,3	117.7
4	30	140,4	142,1	146,2	148,6	150,5	151,0	151,1	150,7	149,6	145,6	140,0	128,6	120,3	115,7	114,2
2	40	130,3	131,3	134,0	135,4	136,5	136,8	136,8	136,6	136,1	134,1	130,8	122,7	115,9	111,7	110,3
9	20	118,2	118,8	120,1	120,9	121,6	121,8	122,0	122,0	121,9	121,2	119,8	115,4	110,5	107,0	105,8
7	09	104,9	104,7	105,1	105,5	106,0	106,2	106,5	106,7	106,9	107,1	107,0	105,6	103,1	100,8	8,66
œ	70	9'06	6'68	868	0'06	90,4	9'06	6'06	91,1	91,4	91,9	92,3	92,5	91,7	90,4	89,7
0	77	6'6/	79,1	0'64	79,1	79,4	9'62	6'64	80,1	80,4	6'08	81,4	81,8	81,4	80,5	6,67

12-pin base; JEDEC B12-262

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage

Grid 3 (focusing electrode) voltage

Grid 2 voltage for a spot cut-off

voltage V_k = 120 V

Luminance at the centre of the screen *

 $V_{a,g4}$ 25 kV V_{g3} 4,7 to 5,5 kV V_{g2} 310 to 560 V L 175 cd/m²

^{*} Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329), focused raster, current density $0.4~\mu\text{A/cm}^2$.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.		
Grid 3 (focusing electrode) voltage	V_{g3}	18,8 to 22% of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot	V_{g2} and V_{k}	see cut-off design chart *
Difference in cut-off voltages between guns in any tube	ΔV_{k}	lowest value > 80% of highest value
Video drive characteristics		see graphs **
Grid 3 (focusing electrode) current	I _{q3}	$-5 \text{ to } + 5 \mu \text{A}$
Grid 2 current	l _{g2}	$-5 \text{ to } + 5 \mu \text{A}$
Grid 1 current under cut-off conditions	l _{g1}	$-5 \text{ to } + 5 \mu \text{A}$
To produce white of 6500K + 7 M.P.C.D. (CIE co-ordinates $x = 0.313$, $y = 0.329$)		
Percentage of the total anode current supplied by each gred gun green gun blue gun	gun (typical)	38,3% 35,8% 25,9%
Ratio of anode currents		
red gun to green gun		min. 0,8 average 1,1 max. 1,4
red gun to blue gun		min. 1,1 average 1,5 max. 1,9
blue gun to green gun		min. 0,5 average 0,7 max. 0,9

The common V_{g2} should be adjusted as follows: Set the cathode voltage, V_k , for each gun at 130 V. Increase the V_{g2} from about 300 V to the value at which the raster of one of the guns becomes just visible. Now decrease the V_k of the remaining guns so that the rasters of these guns also become visible.

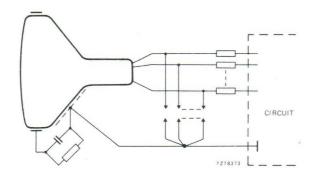
For optimum picture performance it is recommended that the cathodes are not driven below $\pm 10 \, \text{V}$.

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

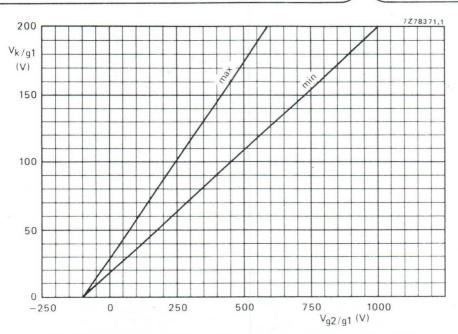
Anode voltage	V _{a,g4}	max. min.	27,5 20	kV kV	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	la	max.	750	μΑ	note 5
Grid 3 (focusing electrode) voltage	V _{g3}	max.	7	kV	
Grid 2 voltage, peak	V _{g2p}	max.	1000	V	
Cathode voltage					
positive	Vk	max.	400	V	
positive operating cut-off	Vk	max.	200	V	
negative	$-V_k$	max.	0	V	
negative peak	$-V_{kp}$	max.	2	V	
Heater voltage	V_{f}	6,3 V	+ 5 -10		notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode during equipment warm-up period					
not exceeding 15 s	V_{kf}	max.	450	V	note 1
after equipment warm-up period	Vkf	max.	250	V	
heater positive with respect to cathode	$-V_{kfp}$	peak	200	V	note 1
	-V _{kf}	max.	0	V	
	KI	(d.c. cc	mpone	nt valu	ue)

Notes

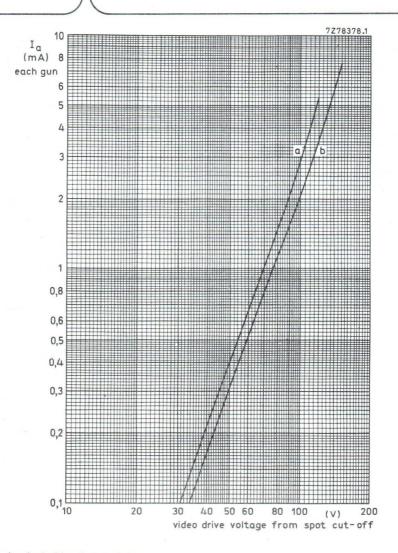

- 1. Absolute maximum rating system.
- The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1000 μ A.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.


Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 8,5 kV (1,5 x V_{g3} max. at $V_{a,g4}$ = 25 kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

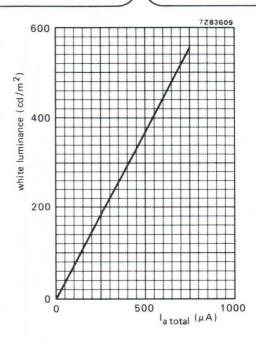


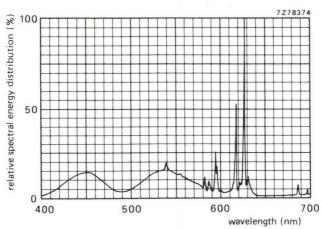
BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction	0,08 mm
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	4 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position	5 mm

Spot cut-off design chart (cathode drive), V_{g3} adjusted for focus, $V_{a,g4}$ = 20 to 27,5 kV.

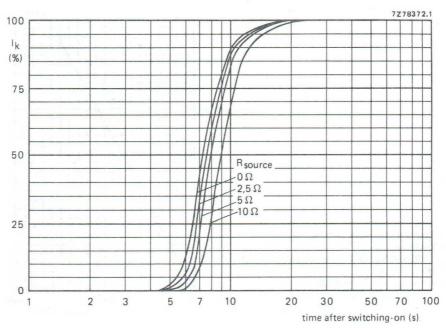
Typical cathode drive characteristics.


$$V_f = 6,3 V;$$

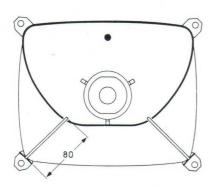

$$V_{a,q4} = 25 \text{ kV};$$

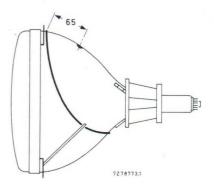
V_{g3} adjusted for focus;

V_{g2} adjusted to provide spot cut-off for desired fixed Vk.


Luminance at the centre of the screen as a function of I_{total} . $V_{a,g4} = 25 \text{ kV}$, $V_f = 6,3 \text{ V}$, V_{g3} adjusted for optimum focus. Scanned area = 280,8 mm \times 210,6 mm; CIE co-ordinates \times = 0,313, \times = 0,329.

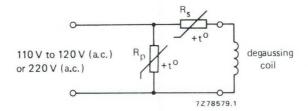
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.


Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

DEGAUSSING


The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (\leq 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil

	110 V (a.c.) mains	220 V (a.c.) mains
Circumference	90 cm	90 cm
Number of turns	70	120
Copper-wire diameter	0,45 mm	0,3 mm
Resistance	6,7 Ω	25,9 Ω
Catalogue number of appropriate dual PTC thermistor	8222 298 73091	2322 662 98009

en de la companya de la co

and the state of t

THE STREET, SANS, SECTION

Commerces

Surface of commerces

Surface of commerces

un ser nor autreght). Of a series more se

DEFLECTION UNIT

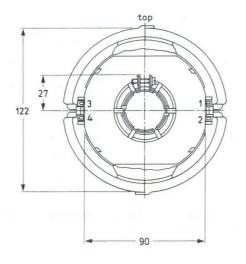
QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
diagonal	37 cm (14 in)
neck diameter	29,1 mm
Deflection angle	90°
Line deflection current, edge to edge at 25 kV	3,0 A (p-p)
Inductance of line coils, parallel connected	1,85 mH
Field deflection current, edge to edge at 25 kV	0,42 A (p-p)
Resistance of field coils, series connected	50 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence, is for 90° in-line colour picture tube A37-573X, with a neck diameter of 29,1 mm.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $29.1^{+0.9}_{-0.7}$ mm.

76,5 85,5 max 7286137

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp

parallel connected 1,85 mH \pm 5% 2,0 Ω \pm 10% 3,0 A(p-p)

series connected

 $50 \Omega \pm 7\%$

0,42 A(p-p)

a voltage of 10 V, 15750 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

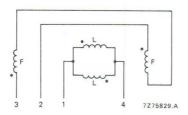


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

Hi-Bri COLOUR PICTURE TUBE

- 90º deflection
- In-line gun, thermally stable; electrostatic hi-bi potential focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
 Phosphor lines follow glass or
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- · Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1206), it forms a self-converging and raster correction free assembly.

QUICK REFERENCE DATA

Focusing voltage	28% of anode voltage
Heating	6,3 V, 685 mA
Neck diameter	29,1 mm
Overall length	342 mm
Face diagonal	37 cm
Deflection angle	900

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method

Focus lens

Deflection method

Deflection angles

diagonal horizontal

vertical

unitized triple-aperture electrodes

electrostatic

hi-bi-potential

magnetic

approx. 900

approx. 780

approx. 600

ELECTRICAL DATA

Capacitances

anode to external conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes

focusing electrode to all other electrodes

Heating

heater voltage

heater current

 $C_a(m+m')$

max. 1600 pF

min. 800 pF 17 pF

C_{q1} C_{kR}, C_{kG}, C_{kB}

5 pF

6 pF

Cq3 indirect by a.c. or d.c.

Vf

6.3 V 685 mA If

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis vertical axis

area

Phosphors red .

green

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

metal-backed vertical phosphor stripes; phosphor lines follow glass

contour satinized

min. 335,4 mm

min. 280,8 mm

min. 210.6 mm

min. 580 cm²

pigmented europium activated rare

earth

sulphide type

pigmented sulphide type

0.65 mm

68%

MECHANICAL DATA (see also the figures on the following pages)

Overall length 342,1 \pm 5 mm

Neck diameter $29,1^{+1,4}_{-0,7}$ mm *

Bulb dimensions diagonal width height

Base 10-pin base JEDEC B10-277

Anode contact small cavity contact J1-21, IEC 67-III-2

max. 368 mm

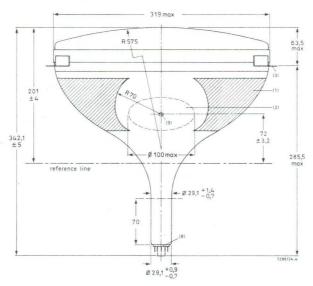
max. 317 mm

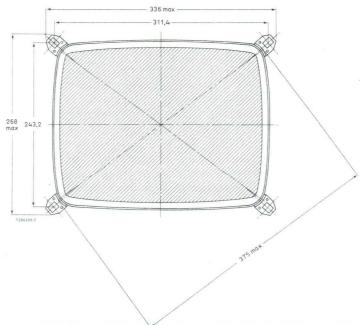
max. 248 mm

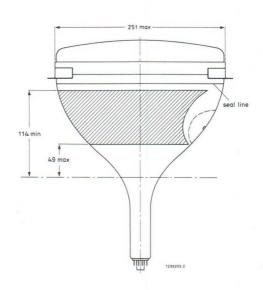
Mounting position anode contact on top

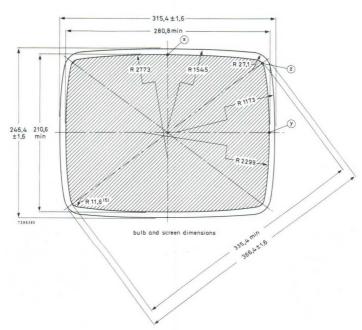
Net mass approx. 6 kg

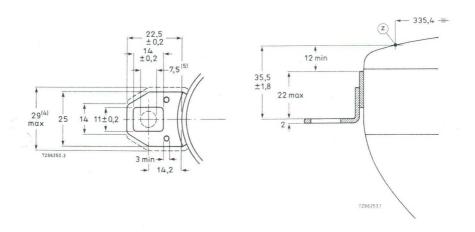
Handling

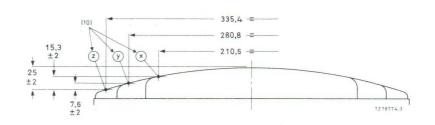

During shipment and handling the tube should not be subjected to accelerations greater than $35\,\mathrm{g}$ in any direction.

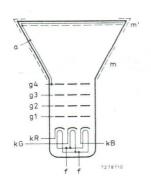

^{*} In the region of 70 mm from the neck end, the maximum diameter is 30 mm.

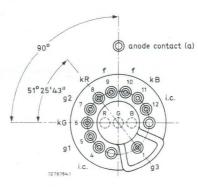

MECHANICAL DATA (continued)

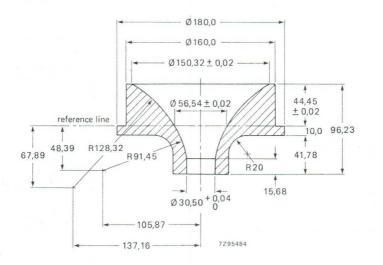

Notes are given after the drawings.

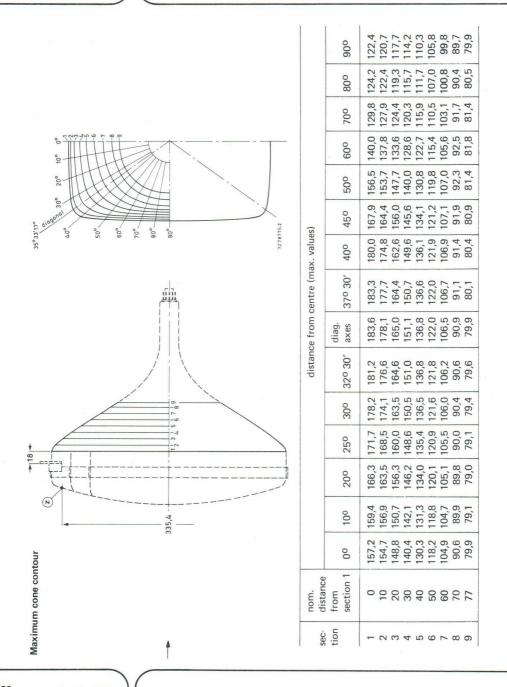

Dimensions in mm



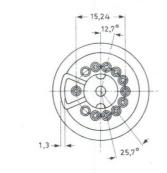


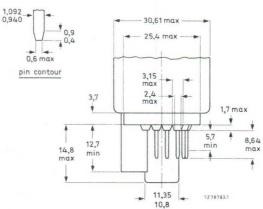





i.c. = internally connected (not to be used).

Notes to outline drawings on the preceding pages


- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. One of the four mounting lugs may deviate (1,5 mm max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of \pm 1,8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 7,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 311,4 mm x 243,2 mm.
- 6. Co-ordinates for radius R = 11,6 mm: x = 126,98 mm, y = 90,76 mm.
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis. The mass of the mating socket with circuitry should not be more than 150 g, maximum permissible torque is 40 mNm.
- 9. Small cavity contact J1-21, IEC67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.


Reference line gauge; GR90CJ4

10-pin base; JEDEC B10-277

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

The voltages are specified with respect to grid 1.			
Anode voltage	V _{a,g4}	25	kV
Grid 3 (focusing electrode) voltage	V_{g3}	6,6 to 7,5	kV
Grid 2 voltage for a spot cut-off voltage V _k = 140 V	٧/ -	390 to 760	\/
voltage V _K = 140 V	V_{g2}		
Luminance at the centre of the screen*	L	175	cd/m ²

^{*} Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329) focused raster, current density $0.4 \,\mu\text{A/cm}^2$.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage Va3 26,6 to 29,8% of anode voltage Grid 2 voltage and cathode voltage

 V_{d2} and V_k see cut-off design chart * for visual extinction of focused spot Difference in cut-off voltages between lowest value > 80% of ΔVk guns in any tube highest value Video drive characteristics see graphs ** $-5 \text{ to } + 5 \mu A$ Grid 3 (focusing electrode) current la3 Grid 2 current $-5 \text{ to } + 5 \mu A$ la2 Grid 1 current under cut-off conditions $-5 \text{ to } + 5 \mu A$ l_{q1}

To produce white of 6500K + 7 M.P.C.D. (CIE co-ordinates x = 0.313, y = 0.329)

Percentage of the total anode current supplied by each gun (typical) 38.3% red gun 35,8% green gun 25,9% blue gun

Ratio of anode currents red gun to green gun

red gun to blue gun

average 1.1 1.4 max. min. 1.1 average 1,5 max. 1.9 0,5 min.

min.

0.8

blue gun to green gun

average 0,7 0.9 max.

** For optimum picture performance it is recommended that the cathodes are not driven below + 10 V.

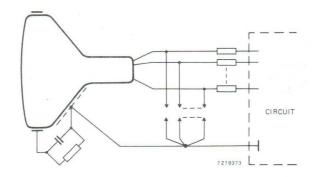
^{*} The common V_{q2} should be adjusted as follows: Set the cathode voltage, V_k , for each gun at 150 V. Increase the V_{g2} from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the Vk of the remaining guns so that the rasters of these guns also become visible.

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

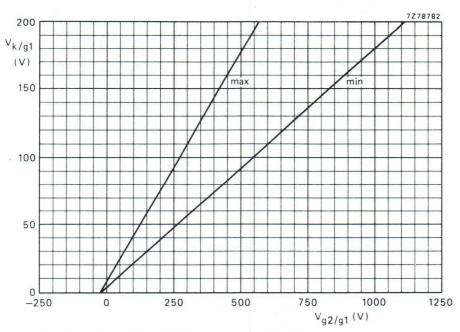
Anode voltage	V _{a,g4}	max. min.	27,5 20	kV kV	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	la	max.	750	μA	note 5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage, peak	V _{g2p}	max.	1000	V	
Cathode voltage	0 1				
positive	Vk	max.	400	V	
positive operating cut-off	Vk	max.	200	V	
negative	$-V_k$	max.	0	V	
negative peak	$-V_{kp}$	max.	2	V	
Heater voltage	V_{f}	6,3 V	+ 5 -10	%	notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode during equipment warm-up period					
not exceeding 15 s	Vkf	max.	450	V	note 1
after equipment warm-up period	V _{kf}	max.	250	V	
heater positive with respect to cathode	$-V_{kfp}$	peak	200	V	note 1
	$-V_{kf}$	max.	0	V	
		(d.c. co	mpone	nt value	e)

Notes

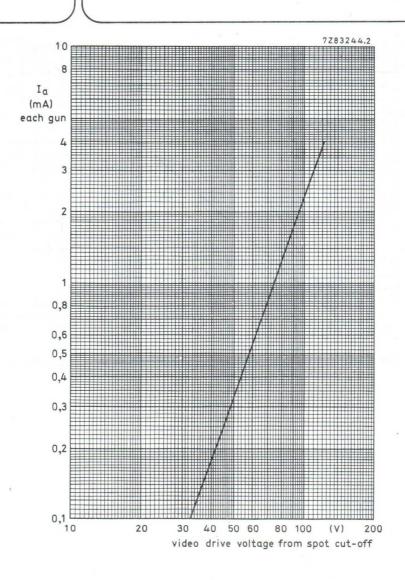

- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1000 μ A.
- 6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.


Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV (1,5 x V_{g3} max. at $V_{a,g4}$ = 25 kV), and at the other electrodes of 1,5 to 2 kV.

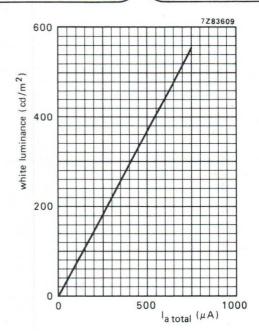
The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.



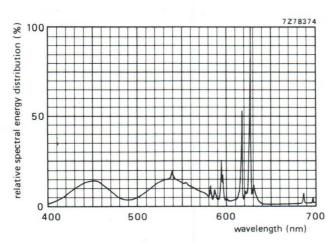
BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction	0,08 mm
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	4 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position	5 mm

Spot cut-off design chart (cathode drive), V_{g3} adjusted for focus, $V_{a,g4}$ = 20 to 27,5 kV,

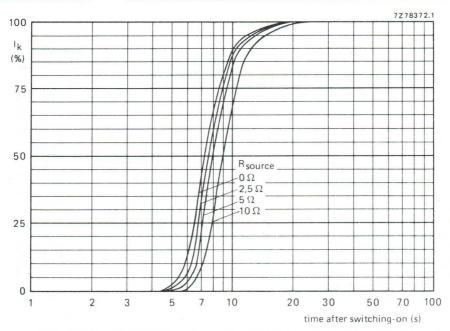

Typical cathode drive characteristics.

 $V_f = 6,3 V;$


 $V_{a,g4} = 25 \text{ kV};$

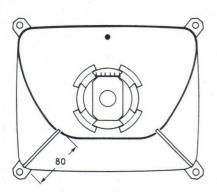
V_{g3} adjusted for focus;

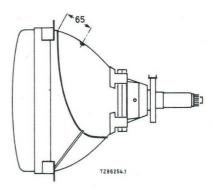
 V_{g2} adjusted to provide spot cut-off for V_K = 140 V.



Luminance at the centre of the screen as a function of I_{total}. $V_{a,g4} = 25 \text{ kV}$, $V_f = 6,3 \text{ V}$, V_{g3} adjusted for optimum focus. Scanned area = 280,8 mm x 210,6 mm; CIE co-ordinates x = 0,313, y = 0,329.

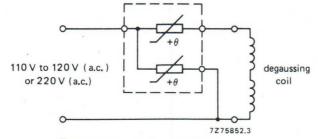
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.


Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

DEGAUSSING


The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (\leq 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil

	110 V (a.c.) mains	220 V (a.c.) mains
Circumference	90 cm	90 cm
Number of turns	70	120
Copper-wire diameter	0,45 mm	0,3 mm
Resistance	6,7 Ω	25,9 Ω
Catalogue number of appropriate dual PTC thermistor	8222 298 73091	2322 662 98009

40.75

P. S.

DEFLECTION UNIT

Raster Correction Free

QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
diagonal	37 cm (14 in)
neck diameter	29,1 mm
Deflection angle	90°
Line deflection current, edge to edge at 25 kV	3,21 A(p-p)
Inductance of line coils, parallel connected	1,78 mH
Field deflection current, edge to edge at 25 kV	0,97 A(p-p)
Resistance of field coils, parallel connected	11 Ω

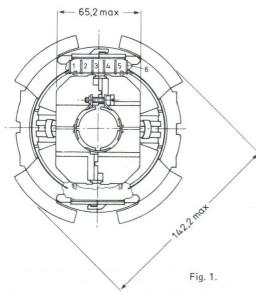
APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A37-590X, with a neck diameter of 29,1 mm.

The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.


AT1206/20

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0.9}_{-0.7}$ mm.

95,3 **←**13,74 max - 105.5 max -

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

+90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux at 25 kV

Line deflection current, edge to edge, at 25 kV

Voltage during line scan, edge to edge,

at 25 kV, scan period 52,5 µs

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

parallel connected 1,78 mH ± 5%

 $1.80 \Omega \pm 10\%$

5,59 mWb ± 2,5%

3,21 A (p-p)

109 V

parallel connected

29,1 mH ± 10%

11 $\Omega \pm 7\%$

0,97 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors

included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

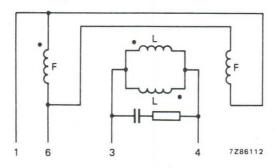


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube
 and the deflection unit. These wedges have to be cemented on to the picture tube.

Hi-Bri COLOUR PICTURE TUBE

- 900 deflection
- In-line gun, thermally stable; electrostatic hi-bi potential focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1206), it forms a self-converging and raster correction free assembly.

QUICK REFERENCE DATA

900
37 cm
346,5 mm
29,1 mm
6,3 V, 685 mA
28% of anode voltage

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method

Focus lens

Deflection method

Deflection angles

diagonal

horizontal

vertical

unitized triple-aperture electrodes

electrostatic

hi-bi-potential

magnetic

approx. 900 approx. 780

approx. 600

ELECTRICAL DATA

Capacitances

anode to external

conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes

focusing electrode to all other electrodes

Heating

heater voltage

heater current

 $C_{a(m+m')}$

C_a1

max. 1600 pF min. 800 pF

17 pF

5 pF CKR, CKG, CKB

6 pF C_{a3}

indirect by a.c. or d.c.

6.3 V

Vf 685 mA If

OF FICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis

vertical axis

area

Phosphors

red

green

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

metal-backed vertical phosphor

stripes; phosphor lines follow glass

contour

satinized

min. 335,4 mm

min. 280,8 mm

min. 210,6 mm

min. 580 cm²

pigmented europium activated rare

earth

sulphide type

pigmented sulphide type

0.65 mm

68%

MECHANICAL DATA (see also the figures on the following pages)

Overall length

346,5 ± 5 mm

Neck diameter

29,1 +1,4 mm*

Bulb dimensions

max. 368 mm

diagonal width height

max. 317 mm max. 248 mm

Base

Anode contact

JEDEC B8-274 small cavity contact J1-21, IEC 67-III-2

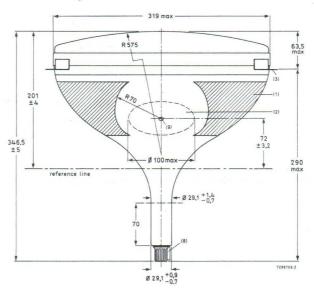
Mounting position

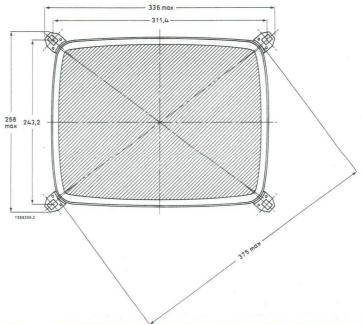
anode contact on top

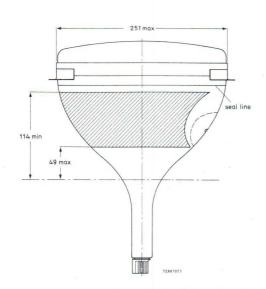
Net mass

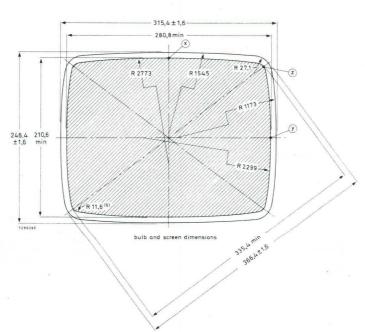
approx. 6 kg

Handling

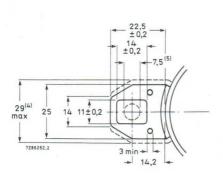

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

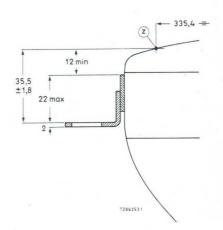

^{*} In the region of 70 mm from the neck end, the maximum diameter is 30 mm.

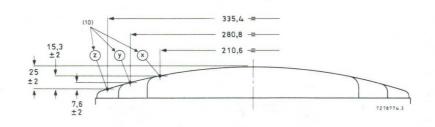

MECHANICAL DATA

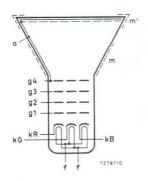

Notes are given after the drawings.

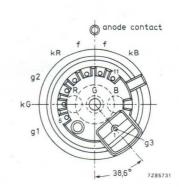
Dimensions in mm

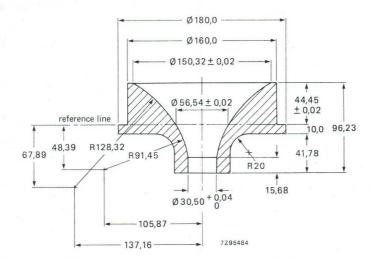


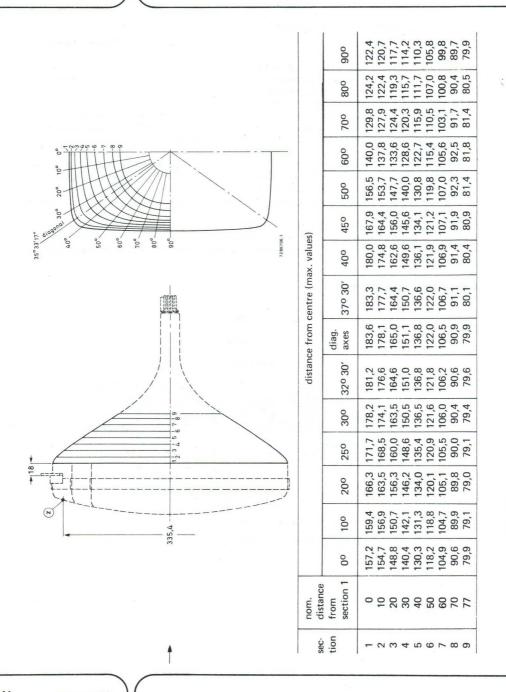




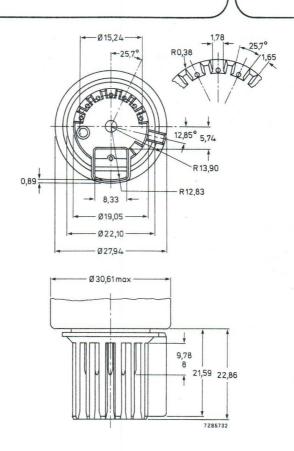



141





Notes to outline drawings on the preceding pages


- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. One of the four mounting lugs may deviate (1,5 mm max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of \pm 1,8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 7,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 311,4 mm x 243,2 mm.
- 6. Co-ordinates for radius R = 11,6 mm: x = 126,98 mm, y = 90,76 mm.
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis. The mass of the mating socket with circuitry should not be more than 150 g, maximum permissible torque is 40 mNm.
- 9. Small cavity contact J1-21, IEC67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Reference line gauge; GR90CJ4

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage Grid 3 (focusing electrode) voltage Grid 2 voltage for a spot cut-off voltage $V_k = 140 \ V$

Luminance at the centre of the screen*

V_{a,g4} 25 kV V_{g3} 6,6 to 7,5 kV

 V_{g2} 390 to 760 V L 175 cd/m²

^{*} Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329) focused raster, current density 0,4 μ A/cm².

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

The voltages are specified with respect to grid 1.		
Grid 3 (focusing electrode) voltage	V_{g3}	26,6 to 29,8% of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot	V_{g2} and V_k	see cut-off design chart *
Difference in cut-off voltages between guns in any tube	ΔV_k	lowest value > 80% of highest value
Video drive characteristics		see graphs **
Grid 3 (focusing electrode) current	l_{g3}	-5 to $+5 \mu A$
Grid 2 current	l _{g2}	-5 to + 5 μ A
Grid 1 current under cut-off conditions	l _{g1}	$-5 \text{ to } + 5 \mu A$
To produce white of $6500K + 7$ M.P.C.D. (CIE co-ordinates $x = 0.313$, $y = 0.329$)		
Percentage of the total anode current supplied by each red gun green gun blue gun	gun (typical)	38,3% 35,8% 25,9%
Ratio of anode currents red gun to green gun		min. 0,8 average 1,1 max. 1,4
red gun to blue gun		min. 1,1 average 1,5 max. 1,9
blue gun to green gun		min. 0,5 average 0,7 max. 0,9

^{*} The common V_{g2} should be adjusted as follows: Set the cathode voltage, V_k , for each gun at 150 V. Increase the V_{g2} from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the V_k of the remaining guns so that the rasters of these guns also become visible.

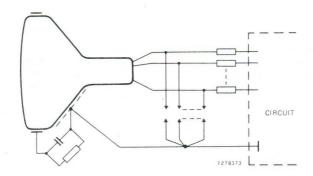
^{**} For optimum picture performance it is recommended that the cathodes are not driven below + 10 V.

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

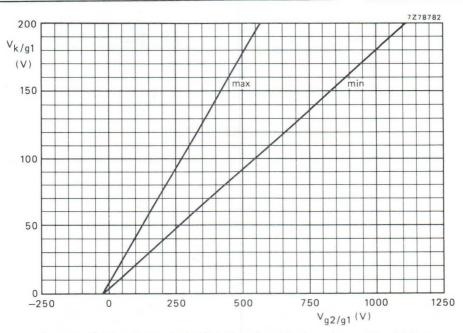
Anode voltage	V _{a,g4}	max. min.	27,5 20	kV kV	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	la	max.	750	μΑ	note 5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage, peak	V _{g2p}	max.	1000	V	
Cathode voltage positive positive operating cut-off negative negative peak Heater voltage	V _k V _k -V _k -V _{kp}	max. max. max. max.	(2)	V V V	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode during equipment warm-up period not exceeding 15 s after equipment warm-up period heater positive with respect to cathode	V _{kf} V _{kf} -V _{kfp} -V _{kf}	max. max. peak max. (d.c. co	-	V V V	note 1 note 1

Notes

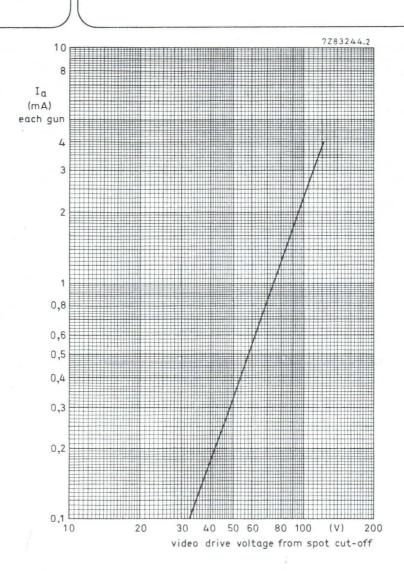

- 1. Absolute maximum rating system.
- The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1000 μ A.
- 6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.


Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV (1,5 x $V_{0.3}$ max. at $V_{0.04}$ = 25 kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

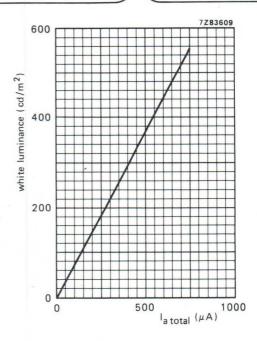


BEAM CORRECTIONS

DEAM CONTILOTION	
Maximum required correction for register, as measured at the centre of the screen in any direction	0,08 mm
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	4 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position	5 mm

Spot cut-off design chart (cathode drive), V_{g3} adjusted for focus, $V_{a,g4}$ = 20 to 27,5 kV,

Typical cathode drive characteristics.


 $V_f = 6,3 V;$

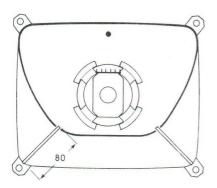

 $V_{a,g4} = 25 \text{ kV};$

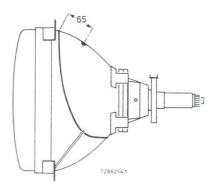
 V_{g3} adjusted for focus;

 V_{g2} adjusted to provide spot cut-off for V_K = 140 V.


Luminance at the centre of the screen as a function of Itotal. $V_{a,g4} = 25 \text{ kV}$, $V_f = 6.3 \text{ V}$, V_{g3} adjusted for optimum focus. Scanned area = 280,8 mm x 210,6 mm; CIE co-ordinates x = 0.313, y = 0.329.

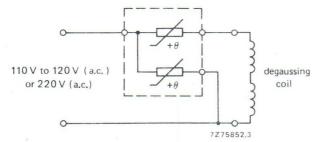
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.


Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

DEGAUSSING


The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (\leq 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

110 V (a.c.) mains	220 V.(a.c.) mains
90 cm	90 cm
70	120
0,45 mm	0,3 mm
6,7 Ω	25,9 Ω
8222 298 73091	2322 662 98009
	90 cm 70 0,45 mm 6,7 Ω

DEFLECTION UNIT

Raster Correction Free

QUICK REFERENCE DATA

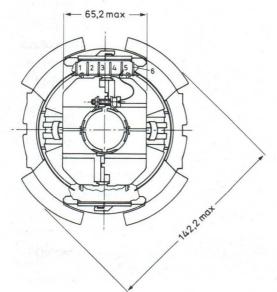
Picture tube gun arrangement diagonal neck diameter	in line 37 cm (14 in) 29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	3,19 A(p-p)
Inductance of line coils, parallel connected	1,78 mH
Field deflection current, edge to edge at 25 kV	0,97 A(p-p)
Resistance of field coils, parallel connected	11 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tubes A37-590X and A37-591X, with a neck diameter of 29,1 mm.

The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $\frac{+0.9}{-0.7}$ mm

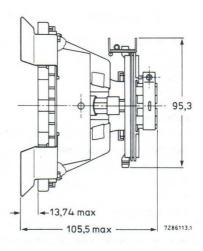


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

120 00 2 00 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Voltage during line scan, edge to edge,

at 25 kV, scan period 52,5 µs

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

parallel connected 1,78 mH \pm 5% 1.82 Ω \pm 10%

3,19 A (p-p)

108 V

parallel connected 29.1 mH ± 10%

 $11 \Omega \pm 7\%$

0,97 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

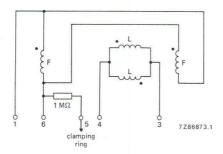


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

(-1,-1,-1)

The control of the co

Hi-Bri COLOUR PICTURE TUBE ASSEMBLIES

- The tube characteristics are identical to those of type A37-590X, see the relevant data sheet.
- Assembly A37-598X0620 consists of a picture tube with a light transmission at screen centre of 68%, and deflection unit AT1206/20.
 Assembly A37-599X0620 consists of a picture tube with a light transmission at screen centre of 46%, and deflection unit AT1206/20.
- Enhanced convergence is obtained by improved and refined matching method.

CONVERGENCE AND RASTER SPECIFICATION

The maximum convergence after 15 min operation is given in Table 1 and Fig. 1.

Test conditions (all voltages are measured with respect to grid 1)

Heater voltage	V_{f}	6,3 V
Cathode voltage	V_k	to be adjusted for correct current setting
Grid 2 voltage	V_{g2}	585 V
Grid 3 voltage	V _{g3}	to be adjusted for focus in half east and half west, using a cross-hatch pattern, when the beam current (black background) is adjusted to 5 mA(p-p) for white
Anode voltage	Va	25 kV
Test pattern		cross-hatch pattern (350 µA (p-p) for each gun)

Remarks

- Misconvergence is the distance between centres of the red, green, blue lines at the screen using rectangular co-ordinates.
- Anode and/or focusing voltage affect the static convergence performance. If the voltages are not the same as the test conditions mentioned, a minor convergence adjustment may become necessary. This can be done by readjusting the static convergence magnets.

Table 1 Maximum misconvergence after 15 min operation

location (see Fig. 1)	max, error between any colour
A	0,3 mm
B, C, D, E	0,7 mm
F, G, H, J	0,9 mm
K, L, M, N	0,8 mm
S, T, U, V	0,6 mm

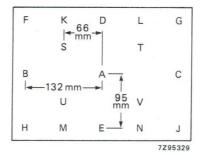


Fig. 1 Convergence test areas. Diameter of test circles at measuring points = 10 mm.

Raster centring in any direction Raster rotation, tube facing east max. 5 mm max. 2,5 mm (see Fig. 2)

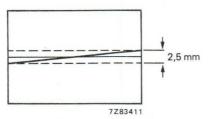


Fig. 2 Raster rotation.

Total pattern distortion, measured without east-west and north-south correction

East-west pattern distortion (H₁ and/or H₂, Fig. 3)

North-south pattern distortion (V_1 and/or V_2 , Fig. 4)

max. 3 mm max. 2,3 mm

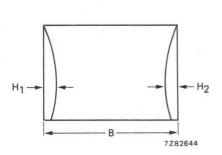


Fig. 3 East-west pattern distortion. B = 264 mm.

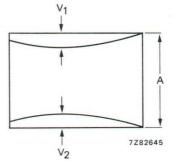


Fig. 4 North-south pattern distortion. A = 190 mm.

DEFLECTION UNIT

Raster Correction Free

QUICK REFERENCE DATA

Picture tube		
gun arrangement	in line	
diagonal	37 cm (14 in	1)
neck diameter	29,1 mm	
Deflection angle	900	
Line deflection current, edge to edge at 25 kV	3,21 A(p-p)	
Inductance of line coils, parallel connected	1,78 mH	
Field deflection current, edge to edge at 25 kV	0,97 A(p-p)	
Resistance of field coils, parallel connected	11 Ω	

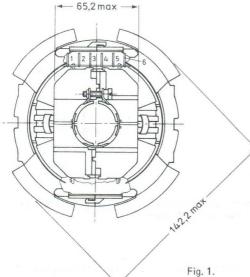
APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A37-590X, with a neck diameter of 29,1 mm.

The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.


AT1206/20

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0.7}$ mm.

95.3 ←13,74 max - 105,5 max -

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

+90 °C -20 to +90 °C according to UL 1413, category 94-V1 1.4 Nm

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux at 25 kV

Line deflection current, edge to edge, at 25 kV

Voltage during line scan, edge to edge,

at 25 kV, scan period 52,5 µs

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp between field coil and core clamp parallel connected

1,78 mH ± 5% $1.80 \Omega \pm 10\%$

5,59 mWb ± 2,5%

3.21 A (p-p)

109 V

parallel connected

29.1 mH ± 10%

11 $\Omega \pm 7\%$

0.97 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0.2 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

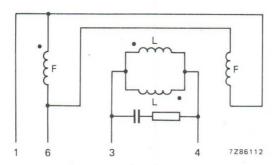


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection voke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

Hi-Bri COLOUR PICTURE TUBE

- 900 deflection
- In-line, thermally stable hi-bi potential gun
- 22,5 mm neck diameter
- Hi-Bri technology
- Pigmented phosphors
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick heating low-power cathodes
- Soft-Flash technology
- Internal magnetic shield
- · Reinforced envelope for push-through mounting
- Combined with a deflection unit of the AT1635 series, it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	90°
Minimum useful screen diagonal	38 cm
Overall-length	366 mm
Neck diameter	22,5 mm
Heating	6,3 V, 300 mA
Focusing voltage	28% of anode voltage

A38FACOOX

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method

Focus lens

Deflection method

Delfection angles

diagonal

horizontal

vertical

unitized triple-aperture electrodes

electrostatic

hi-bi-potential

magnetic

approx. 900

approx. 780

approx. 600

max, 1600 pF

ELECTRICAL DATA

Capacitances

anode to external conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes

focusing electrode to all other electrodes

Heating

heater voltage

heater current

 $C_{a(m+m')}$

min. 1000 pF 15 pF

Cq1 CkR, CkG, CkB

4 pF 4 pF C_{g3}

indirect by a.c. or d.c. 6,3 V

Vf If 300 mA

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis vertical axis

area

Phosphors red

green

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

metal-backed vertical phosphor stripes; phosphor lines follow glass contour

satinized

min. 382,3 mm

min. 322,1 mm

min. 241,6 mm

min. 755 cm²

pigmented europium activated rare

earth

sulphide type

pigmented sulphide type

0,70 mm

66.8%

MECHANICAL DATA (see also the figures on the following pages)

Overall length 365,9 ± 5 mm

Neck diameter 22,5 $^{+}_{-0.7}$ mm*

Bulb dimensions
diagonal max, 418,8 mm

 width
 max. 360,6 mm

 height
 max. 281,8 mm

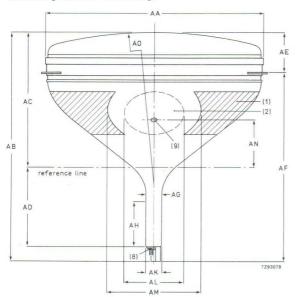
 Base
 JEDEC B8-288

Anode contact small cavity contact J1-21, IEC 67-III-2

Mounting position anode contact on top

Net mass approx. 8 kg

Handling

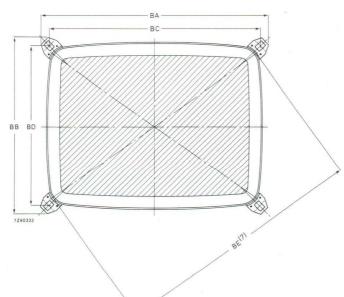

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

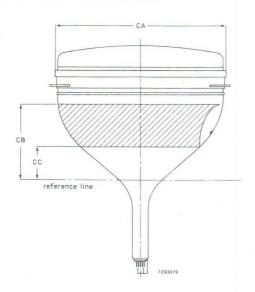
^{*} In the region of 66 mm from the neck end, the maximum diameter is 23,2 mm.

A38EAC00X

MECHANICAL DATA (continued)

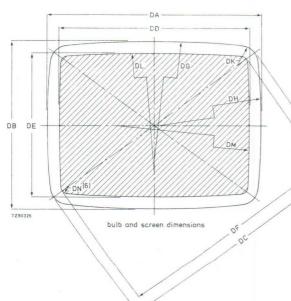
Notes are given after the drawings




Dimensions in mm

AA	365 max
AB	370,9 max
AC	232,0 ± 4
AD	116,5 ± 1
AE	69,0 max
AF	304,0 max
AG	$22,5^{+1,4}_{-0,7}$
AH	66
AK	22,5 ± 0,7
AL	110 ± 10
AM	160 ± 3
AN	$85,0 \pm 3,2$
AO	R653

Dimensions in mm

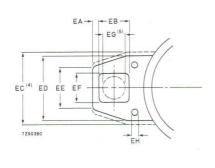

1	
BA	384 max
BB	305 max
BC	355,8
BD	276,7
BE	423 max

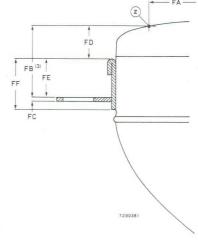
Dimensions in mm

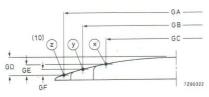
CA	286 max	
CB	126 min	
CC	63 max	

Dimensions in mm

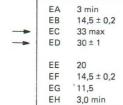
DA	35	9,0 ±	1,6
DE	28	0,2 ±	1,6
DC	41	7,2 ±	1,6
DD	32	2,1 m	in


DE 241,6 min DF 382,3 min DG R1592

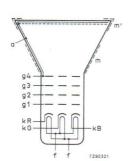

DH R1255 DK R28,5

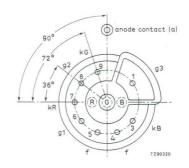

DL R2148 DM R1588 DN R11,1

A38EACOOX


MECHANICAL DATA (continued)

Dimensions in mm

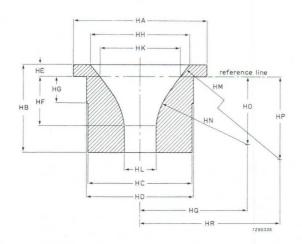



Dimensions in mm

GA 382,3 GB 322,1 GC 241,6 GD 28,6 ± 2,0 GE 17,3 ± 2,0 GF 8,4 ± 2,0

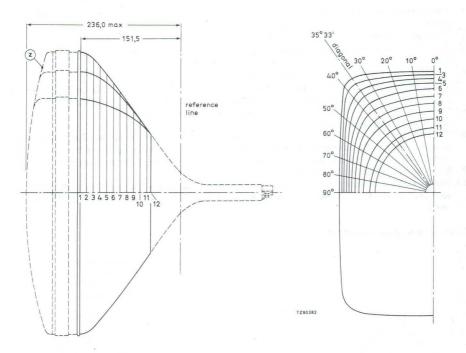
Dimensions in mm

FA 382,3 FB 37,5 ± 1,8 FC 3 FD 16 min FE 19,5 max FF 25 max

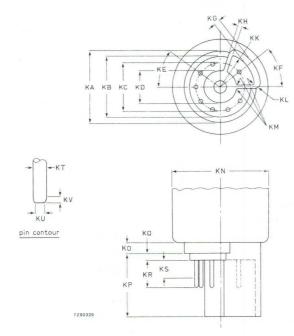


Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- One of the four mounting lugs may deviate (1,5 mm max.) from the plane of the other three lugs.
 This deviation is incorporated in the tolerance of ± 1,8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 11,5 mm diamter drawn around the true geometrical positions, i.e. the corners of a rectangle of 355,8 mm x 276,7 mm.
- 6. Co-ordinates for radius R = 11.1 mm; x = 146.52 mm, y = 104.72 mm.
- 7. Maximum dimensions in plane of lugs.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.


Reference line gauge; G-R90CJ10

НА	φ100,00
НВ	65,00
HC	ϕ 78,70
HD	ϕ 80,00
HE	9,20 ± 0,02
HF	$36,22 \pm 0,02$
HG	20,00
нн	ϕ 75,48 ± 0,02
нк	ϕ 60,77 ± 0,02
HL	ϕ 23,90 $^{+0,04}_{-0}$
НМ	R220,00
HN	R70,00
но	50,30
HP	132,71
HQ	80,52
HR	205,85


A38EAC00X

Maximum cone contour

	nom. distance	4	distance from centre (max. values)													
sec- tion	from	00	100	200	250	30°	32º 30'	diag. axes	37º 30'	400	450	500	60°	700	80°	900
1	151,5	181,5	183,9	191,5	197,4	205,0	209,2	211,2	210,5	207,2	192,7	179,9	161,4	149,9	143,6	141,6
2	141,5	180,3	182,6	190,0	195,7	202,9	206,9	209,1	208,2	204,2	190,1	177,9	160,0	148,8	142,6	140,6
3	131,5	177,1	179,3	186,0	191,0	197,0	199,9	200,9	199,7	196,0	184,1	173,2	156,7	146,1	140,2	138,3
4	121,5	172,1	174,1	179,9	184,0	188,2	189,7	189,8	188,4	185,4	176,2	167,0	152,3	142,5	137,0	135,2
5	111,5	165,4	167,0	171,8	174,9	177,6	178,3	177,9	176,8	174,4	167,4	159,9	147,1	138,3	133,3	131,6
6	101,5	156,6	158,0	161,7	164,0	165,7	166,1	165,7	164,9	163,1	158,1	152,1	141,3	133,6	129,1	127,6
7	91,5	146,0	147,1	150,0	151,8	153,1	153,4	153,2	152,7	151,6	148,1	143,7	134,9	128,3	124,4	123,1
8	81,5	134,6	135,5	137,7	139,0	140,0	140,2	140,2	139,9	139,3	137,2	134,3	127,8	122,4	119,1	118,0
9	71,5	123,0	123,6	125,2	126,0	126,5	126,7	126,7	126,5	126,2	125,1	123,5	119,3	115,5	113,0	112,1
10	61,5	110,9	111,3	112,0	112,4	112,6	112,6	112,6	112,6	112,4	112,0	111,3	109,4	107,4	105,8	105,2
11	51,5	97,8	97,9	98,1	98,1	98,2	98,2	98,1	98,1	98,1	98,1	97,8	97,4	96,9	96,4	96,2
12	45,0	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,4	88,4	88,4

Base JEDEC B8-288

KA	17,9 max
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2 max
KE	36°
KF	38°
KG	1,3 max
KH	0,8 min; 1,0 max
KK	R8,66 ± 0,1
KL	R1,0
KM	R0,25
KN	23,2 max
KO	2,7 max
KP	$15,4 \pm 0,2$
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	1,016 ± 0,076
KU	0,63 max

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage

Ariode vortage

Grid 3 (focusing electrode) voltage

Grid 2 voltage for a spot cut-off

voltage V_k = 120 V

Luminance at the centre of the screen*

 $V_{a,g4}$ 23 kV V_{g3} 6,1 to 6,9 kV V_{g2} 310 to 600 V L 165 cd/m²

0.4 min

KV

^{*} Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329) focused raster, current density 0,4 μ A/cm².

A38EAC00X

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage V_{g3} 26,6 to 29,8% of anode

voltage

Grid 2 voltage and cathode voltage for visual extinction of focused spot \$V_{02}\$ and V_k see cut-off design chart

Difference in cut-off voltages between guns in any tube $\Delta V_k \qquad \text{lowest value} > 80\% \text{ of}$

highest value

Video drive characteristics see graphs

Grid 3 (focusing electrode) current I_{g3} —5 to + 5 μ A

Grid 2 current I_{g2} -5 to +5 μA Grid 1 current under cut-off conditions I_{g1} -5 to +5 μA

To produce white of 6500K + 7 M.P.C.D.(CIE co-ordinates x = 0,313, y = 0,329)

Percentage of the total anode current supplied by each gun (typical)

red gun 38,3% green gun 35,8%

blue gun 25,9%

Ratio of anode currents
red gun to green gun min. 0,8

average 1,1 max. 1,4

red gun to blue gun min. 1,1

average 1,5 max. 1,9

blue gun to green gun min. 0,5

average 0,7 max. 0,9

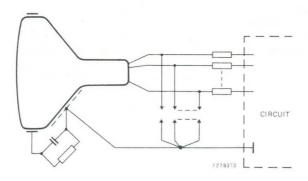
LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.					
Anode voltage	$V_{a,g4}$	max. min.	27,5 20	kV kV	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	la	max.	750	μΑ	note 5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage, peak	V_{g2p}	max.	1000	V	
Cathode voltage	3-1-				
positive	V_{k}	max.	400	V	
positive operating cut-off	Vk	max.	200	V	
negative	$-V_{k}$	max.	0	V	
negative peak	$-V_{kp}$	max.	2	V	
Heater voltage	Vf	6,3 V	+ 5 -10	%	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode					
after equipment warm-up period	Vkf	max.	200	V	
heater positive with respect to cathode	$-V_{kfp}$	peak	200	V	note 1
	-V _{kf}	max.	0	V	

Notes

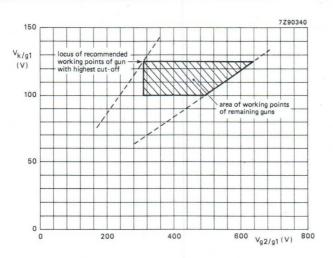
- 1. Absolute maximum rating system.
- The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1000 μ A.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

(d.c. component value)


FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV (1,5 x V_{g3} max. at $V_{a,g4} = 25$ kV), and at the other electrodes of 1,5 to 2 kV.


The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.

Additional information is available on request.

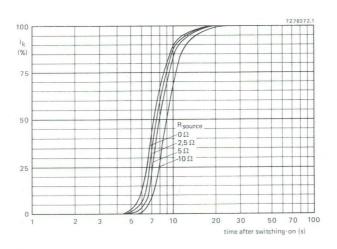
BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction	0,08 mm
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	4,5 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2,3 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction,	
measured with deflection coils in nominal position	4 mm

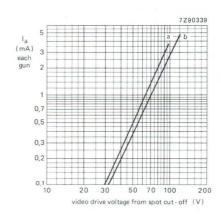
Spot cut-off design chart.

Grid 2 voltage (V_{q2}) adjusted for highest gun spot cut-off voltage $V_k = 125 \text{ V}$.

Remaining guns adjusted for spot cut-off by means of cathode voltage


V_{q2} range 310 to 630 V;

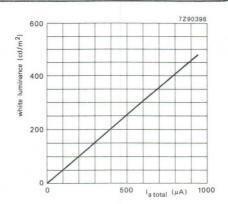
Vk range 100 to 125 V.


Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 125 V; increase the grid 2 voltage (V_{g2}) from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaning guns so that the other colours also become visible.

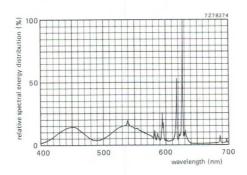
A38EAC00X

Cathode heating time after switching on, measured under typical operating conditions.


Typical cathode drive characteristics.

$$V_f = 6,3 V;$$

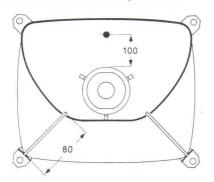
$$V_{a,g4} = 23 \text{ kV};$$

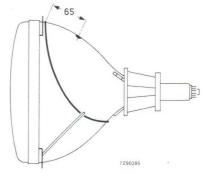

 V_{g3} adjusted for focus;

 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 100 V (curve a), and V_k = 125 V (curve b).

Luminance at the centre of the screen as a function of I_{total} . $V_{a,g4} = 23$ kV, $V_f = 6,3$ V, V_{g3} adjusted for optimum focus.

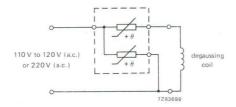
Scanned area = 322,1 mm x 241,6 mm; CIE co-ordinates x = 0,313, y = 0,329.




Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus. Colour co-ordinates:

	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

DEGAUSSING


The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (≤ 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil

	110 V (a.c.) mains	220 V (a.c.) mains
Circumference	105 cm	105 cm
Number of turns	60	120
Copper wire diameter	0,45 mm	0,35 mm
Resistance	7 Ω	23 Ω
Catalogue number of appropriate dual PTC thermistor	2322 662 98013	2322 662 98009

Hi-Bri COLOUR PICTURE TUBE

- 900 deflection
- In-line, thermally stable hi-bi potential A R T* gun
- 22,5 mm neck diameter
- Hi-Bri technology
- Pigmented phosphors
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- · Quick heating low-power cathodes
- Soft-Flash technology
- Internal magnetic shield
- · Reinforced envelope for push-through mounting
- Combined with a deflection unit of the AT1635 series, it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	900
Minimum useful screen diagonal	38 cm
Overall-length	368 mm
Neck diameter	22,5 mm
Heating	6,3 V, 300 mA
Focusing voltage	31% of anode voltage

^{*} Aberration reducing triode.

A38EAC50X

ELECTRON-OPTICAL DATA

Electron gun system

Focus lens

Deflection method

Delfection angles

diagonal

horizontal

vertical

ELECTRICAL DATA

Capacitances

anode to external conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes

focusing electrode to all other electrodes

Heating

heater voltage

heater current

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis

vertical axis

area .

Phosphors red

green

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

unitized triple-aperture electrodes

electrostatic

hi-bi-potential

magnetic

approx. 900

approx. 780

approx. 600

 $C_{a(m+m')}$ max. 1600 pF min. 1000 pF

C_{g1} 15 pF

C_{kR}, C_{kG}, C_{kB} 4 pF

C_{g3} 4 pF

indirect by a.c. or d.c. V_f 6,3 V

1f 300 mA

metal-backed vertical phosphor stripes; phosphor lines follow glass

contour

satinized

min. 382,3 mm

min. 322,1 mm

min. 241,6 mm

min, 755 cm²

pigmented europium activated rare

earth

sulphide type

pigmented sulphide type

0,70 mm

66,8%

MECHANICAL DATA (see also the figures on the following pages)

Overall length

368,1 ± 5 mm

Neck diameter

22,5 + 1,4 mm*

Bulb dimensions diagonal

max. 418,8 mm max. 360,6 mm

width height

Base

max. 281,8 mm JEDEC B8-288

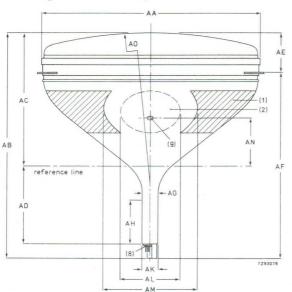
Anode contact

small cavity contact J1-21, IEC 67-III-2

Mounting position

anode contact on top approx. 8 kg

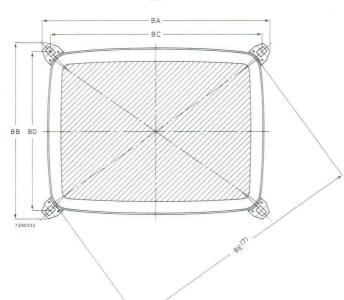
Net mass Handling

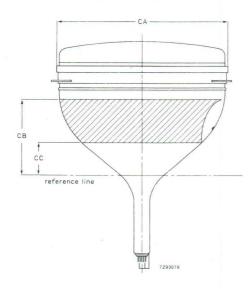

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

^{*} In the region of 66 mm from the neck end, the maximum diameter is 23,2 mm.

A38EAC50X

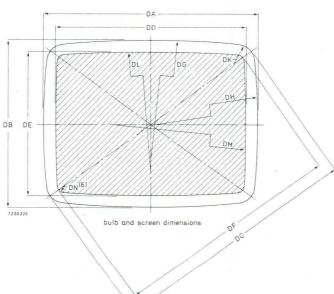
MECHANICAL DATA (continued)


Notes are given after the drawings

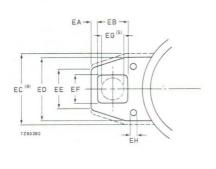


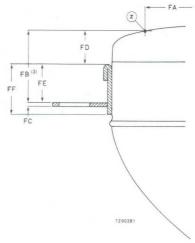
Dimensions in mm

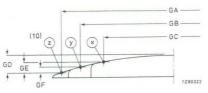
AA	365 max
AB	373,1 max
AC	232,0 ± 4
AD	$118,7 \pm 1$
AE	69,0 max
AF	307,0 max
AG	$22,5^{+1,4}_{-0,7}$
AH	66
AK	22,5 ± 0,7
AL	110 ± 10
AM	160 ± 3
AN	85,0 ± 3,2
AO	R653


BE	423 max	
BD	276,7	
BC	355,8	
BB	305 max	
BA	384 max	

Dimensions in mm


CA	286 max
CB	126 min
CC	63 max



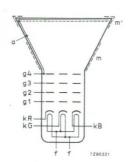

DA	359,0 ± 1,6
DB	280,2 ± 1,6
DC	417,2 ± 1,6
DD	322,1 min
DE	241,6 min
DF	382,3 min
DG	R1592
DH	R1255
DK	R28,5
DL	R2148
DM	R1588
DN	R11,1

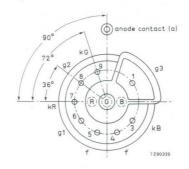
A38EAC50X

MECHANICAL DATA (continued)

Dimensions in mm

EA

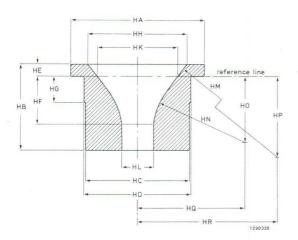

EB	$14,5 \pm 0,2$
EC	33 max
ED	30 ± 1
EE	20
EF	$14,5 \pm 0,2$
EG	11,5
EH	3,0 min


3 min

Dimensions in mm

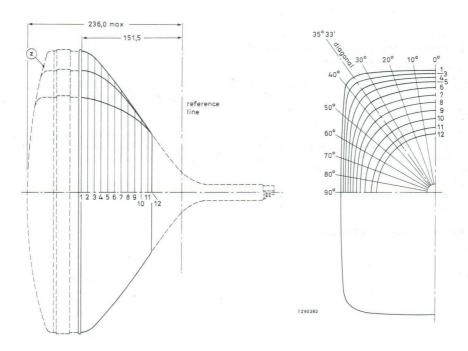
	GA	382,3	
l	GB	322,1	
l	GC	241,6	
	GD	28,6 ± 2,0	
	GE	17,3 ± 2,0	
1	GF	8,4 ± 2,0	

FA	382,3			
FB	37,5 ± 1,8			
FC	3 max			
FD	16 min			
FE	19,5 max			
FF	25 max			

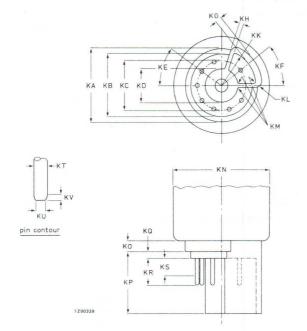


Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. One of the four mounting lugs may deviate (1,5 mm max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of ± 1,8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 11,5 mm diamter drawn around the true geometrical positions, i.e. the corners of a rectangle of 355,8 mm x 276,7 mm.
- 6. Co-ordinates for radius R = 11,1 mm; x = 146,52 mm, y = 104,72 mm.
- 7. Maximum dimensions in plane of lugs.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.


Reference line gauge; G-R90CJ10

НА	φ100,00	
HB	65,00	
HC	ϕ 78,70	
HD	ϕ 80,00	
HE	9,20 ± 0,02	
HF	$36,22 \pm 0,02$	
HG	20,00	
HH	ϕ 75,48 ± 0,02	
нк		
HL	ϕ 23,90 $^{+}$ 0,04 $_{-0}$	16
HM	R220,00	1
HN	R70,00	
НО	50,30	
HP	132,71	
HQ	80,52	
HR	205,85	


A38EAC50X

Maximum cone contour

	nom. distance	distance from centre (max. values)														
sec-	sec- tion	00	100	20°	250	300	32º 30'	diag. axes	37° 30′	400	450	50°	60°	700	80°	900
1	151,5	181,5	183,9	191,5	197,4	205,0	209,2	211,2	210,5	207,2	192,7	179,9	161,4	149,9	143,6	141,6
2	141,5	180,3	182,6	190,0	195,7	202,9	206,9	209,1	208,2	204,2	190,1	177,9	160,0	148,8	142,6	140,6
3	131,5	177,1	179,3	186,0	191,0	197,0	199,9	200,9	199,7	196,0	184,1	173,2	156,7	146,1	140,2	138,3
4	121,5	172,1	174,1	179,9	184,0	188,2	189,7	189,8	188,4	185,4	176,2	167,0	152,3	142,5	137,0	135,2
5	111,5	165,4	167,0	171,8	174,9	177,6	178,3	177,9	176,8	174,4	167,4	159,9	147,1	138,3	133,3	131,6
6	101,5	156,6	158,0	161,7	164,0	165,7	166,1	165,7	164,9	163,1	158,1	152,1	141,3	133,6	129,1	127,6
7	91,5	146,0	147,1	150,0	151,8	153,1	153,4	153,2	152,7	151,6	148,1	143,7	134,9	128,3	124,4	123,1
8	81,5	134,6	135,5	137,7	139,0	140,0	140,2	140,2	139,9	139,3	137,2	134,3	127,8	122,4	119,1	118,0
9	71,5	123,0	123,6	125.2	126,0	126.5	126,7	126,7	126,5	126,2	125,1	123,5	119,3	115,5	113,0	112,1
10	61,5	110,9	111,3	112,0	112,4	112,6	112,6	112,6	112,6	112,4	112,0	111,3	109,4	107,4	105,8	105,2
11	51,5	97,8	97,9	98,1	98,1	98,2	98,2	98,1	98,1	98,1	98,1	97,8	97,4	96,9	96,4	96,2
12	45,0	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,4	88,4	88,4

Base JEDEC B8-288

Dimensions in mm

KA	17,9 max					
KB	15,4 max					
KC	12,0					
KD	7,9 min; 8,2 max					
KE	36°					
KF	38 ⁰					
KG	1,3 max					
KH	0,8 min; 1,0 max					
KK	R8,66 ± 0,1					
KL	R1,0					
KM	R0,25					
KN	23,2 max					
КО	2,7 max					
KP	15,4 ± 0,2					
KQ	1,6 max					
KR	6,85 max					
KS	4,5 min					
KT	$1,016 \pm 0,076$					
KU	0,63 max					
KV	0,4 min					

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

V _{a,g4}	23 kV
V_{g3}	6,7 to 7,6 kV
V_{g2}	310 to 650 V
L	165 cd/m ²
	V_{g3}

^{*} Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329) focused raster, current density $0.4~\mu\text{A/cm}^2$.

A38EAC50X

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage V_{g3} 29 to 31% of anode voltage

Grid 2 voltage and cathode voltage

for visual extinction of focused spot V_{q2} and V_k see cut-off design chart

Difference in cut-off voltages between guns in any tube $\Delta V_k \qquad \qquad \text{lowest value} > 80\% \text{ of}$

highest value

Video drive characteristics see graphs Grid 3 (focusing electrode) current I $_{93}$ -5 to +5 μA

Grid 2 current I_{g2} $-5 \text{ to } + 5 \mu A$ Grid 1 current under cut-off conditions I_{g1} $-5 \text{ to } + 5 \mu A$

Grid 1 current under cut-off conditions I_{g1} —
To produce white of 6500K + 7 M.P.C.D.
(CIE co-ordinates x = 0,313, y = 0,329)

Percentage of the total anode current supplied by each gun (typical)

red gun 38,3% green gun 35,8%

blue gun 25.9%

Ratio of anode currents

red gun to green gun min. 0,8

average 1,1 max. 1.4

red gun to blue gun min. 1,1

average 1,5 max. 1,9

blue gun to green gun min. 0,5

average 0,7

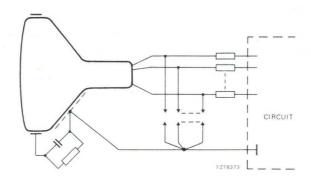
max. 0,9

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

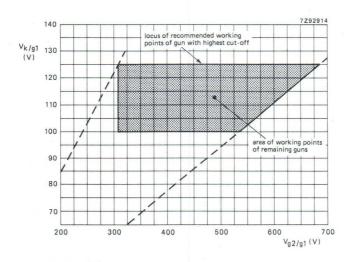
Anode voltage	$V_{a,g4}$	max. min.	27,5 20	kV kV	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	la	max.	750	μΑ	note 5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage, peak	V _{g2p}	max.	1000	V	
Cathode voltage					
positive	V_{k}	max.	400	V	
positive operating cut-off	$V_{\mathbf{k}}$	max.	200	٧	
negative	$-V_{k}$	max.	0	٧	
negative peak	$-V_{kp}$	max.	2	٧	
Heater voltage	Vf	6,3 \	/ + 5 -10	% %	notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode					
after equipment warm-up period	V_{kf}	max.	200	V	
heater positive with respect to cathode	$-V_{kfp}$	peak	200	V	note 1
	$-V_{kf}$	max.	0	V	
		(d.c. o	ompo	nent	value)

Notes


- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1000 μ A.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.


Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV (1,5 x V_{03} max. at $V_{a,04}$ = 25 kV), and at the other electrodes of 1,5 to 2 kV.

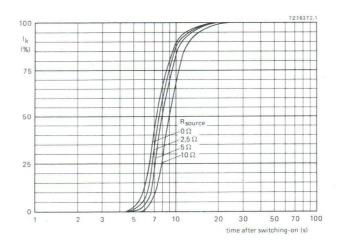
The values of the series isolation resistors should be as high as possible (min. $1.5\,\mathrm{k}\Omega$) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

BEAM CORRECTIONS

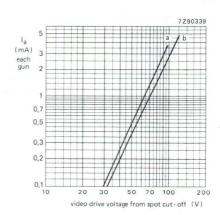
Maximum required correction for register, as measured at the centre of the screen in any direction	0,08 mm
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	4,5 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2,3 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position	4 mm

Spot cut-off design chart.

Grid 2 voltage (V_{q2}) adjusted for highest gun spot cut-off voltage V_k = 125 V.


Remaining guns adjusted for spot cut-off by means of cathode voltage

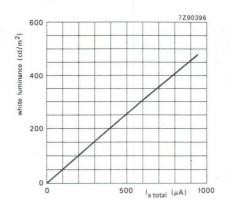
Vg2 range 310 to 685 V;


Vk range 100 to 125 V.

Adjustment procedure:

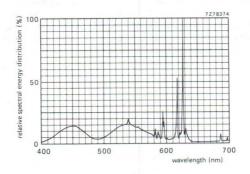
Set the cathode voltage (V_k) for each gun at 125 V; increase the grid 2 voltage (V_{g2}) from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaning guns so that the other colours also become visible.

Cathode heating time after switching on, measured under typical operating conditions.


Typical cathode drive characteristics.

$$V_f = 6,3 V;$$

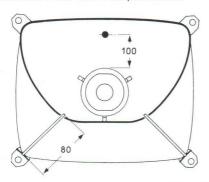
$$V_{a,g4} = 23 \text{ kV};$$

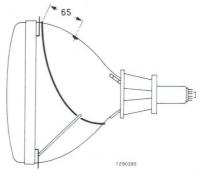

V_{g3} adjusted for focus;

 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 100 V (curve a), and V_k = 125 V (curve b).

Luminance at the centre of the screen as a function of I total. $V_{a,g4}$ = 23 kV, V_f = 6,3 V, V_{g3} adjusted for optimum focus.

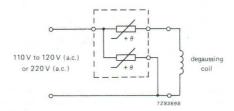
Scanned area = 322,1 mm x 241,6 mm; CIE co-ordinates x = 0.313, y = 0.329.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.


Colour co-ordinates:

	×	УУ
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

DEGAUSSING


The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (\leq 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil

	110 V (a.c.) mains	220 V (a.c.) mains
Circumference	105 cm	105 cm
Number of turns	60	120
Copper wire diameter	0,45 mm	0,35 mm
Resistance	7 Ω	23 Ω
Catalogue number of appropriate dual PTC thermistor	2322 662 98013	2322 662 98009

DEFLECTION UNIT

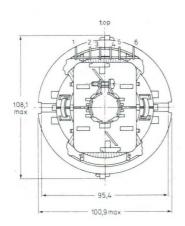
QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
minimum useful screen diagonal	38 cm
neck diameter	22,5 mm
Deflection angle	900
Line deflection current, edge to edge at 23 kV	2,07 A (p-p)
Inductance of line coils, parallel connected	2,50 mH
Field deflection current, edge to edge at 23 kV	0,78 A (p-p)
Resistance of field coils, series connected	11,8 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A38EAC00X, with a neck diameter of 22,5 mm. The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $22,5^{+1,4}_{-0.7}$ mm.

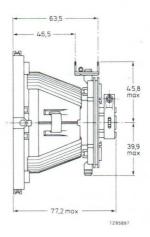


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Shock

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

-25 to +90 °C

according to UL 1413, category 94-V1

1.0 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-27 (test Ea)

IEC 68-2-29 (test Eb; 25g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

....

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux at 23 kV

Line deflection current, edge to edge, at 23 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 23 kV

Cross talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

2.50 mH ± 4%

 $3.3 \Omega \pm 10\%$

5,18 mWb ± 2,5%

2,07 A (p-p)

27,5 mH ± 10%

11,8 $\Omega \pm 7\%$

0.78 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,20 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

> 10 M Ω

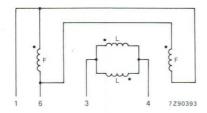


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

DEFLECTION UNIT

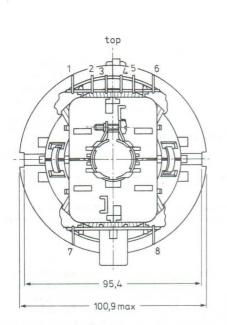
QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
minimum useful screen diagonal	38 cm
neck diameter	22,5 mm
Deflection angle	900
Line deflection current, edge to edge at 23 kV	2,21 A (p-p)
Inductance of line coils, parallel connected (including additional coil)	2,50 mH
Field deflection current, edge to edge at 23 kV	0,78 A (p-p)
Resistance of field coils, parallel connected	11,8 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A38EAC00X, with a neck diameter of 22,5 mm. The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $22,5^{+1,4}_{-0,7}$ mm.

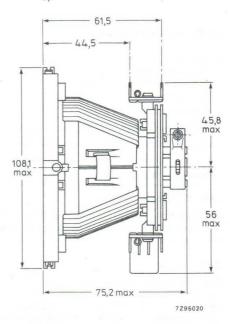


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Shock

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

-25 to +90 °C

according to UL 1413, category 94-V1

1,0 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-27 (test Ea)

IEC 68-2-29 (test Eb; 25g)

......

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils, including additional coil Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C Magnetic flux at 23 kV

Line deflection current, edge to edge, at 23 kV

Additional coil

Inductance at 1 V (r.m.s.), 1 kHz

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 23 kV

Cross talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between field coil and core clamp

between line coil and core clamp

2.50 mH ± 4%

3.3 $\Omega \pm 10\%$

5.53 mWb ± 2.5%

2,21 A (p-p)

0.31 mH ± 4%

27.5 mH ± 10%

 $11.8 \Omega \pm 7\%$

0,78 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0.20 V across the field coils (damping

resistors included)

> 500 M Ω

> 500 M Ω

> 10 M Ω

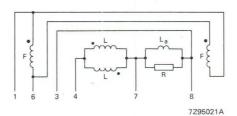


Fig. 2 Connection diagram. L = line coils; F = field coils; L_a = additional coil; $R = 4.7 \text{ k}\Omega$.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal of vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

2011 AS

41

31

DEFLECTION UNIT

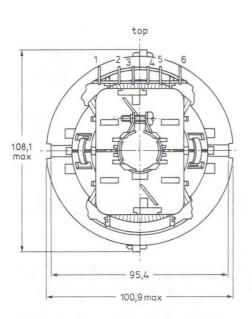
QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line 38 cm
minimum useful screen diagonal	
neck diameter	22,5 mm
Deflection angle	900
Line deflection current, edge to edge at 23 kV	2,07 A (p-p)
Inductance of line coils, parallel connected	2,50 mH
Field deflection current, edge to edge at 23 kV	0,39 A (p-p)
Resistance of field coils, series connected	47,0 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A38EAC00X, with a neck diameter of 22,5 mm. The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $22.5^{+1.4}_{-0.7}$ mm.

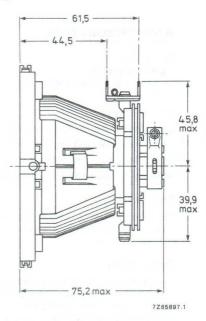


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Shock

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+ 90 °C

-25 to +90 °C

according to UL 1413, category 94-V1

1,0 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-27 (test Ea)

IEC 68-2-29 (test Eb; 25g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux at 23 kV

Line deflection current, edge to edge, at 23 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 23 kV

Cross talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

2,50 mH ± 4%

3,3 $\Omega \pm 10\%$

5,18 mWb ± 2,5%

2,07 A (p-p)

110 mH ± 10%

47,0 Ω ± 7%

0,39 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,40 V across the field coils (damping

resistors included)

 $> 500 M\Omega$

> 500 M Ω

> 10 M Ω

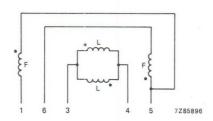
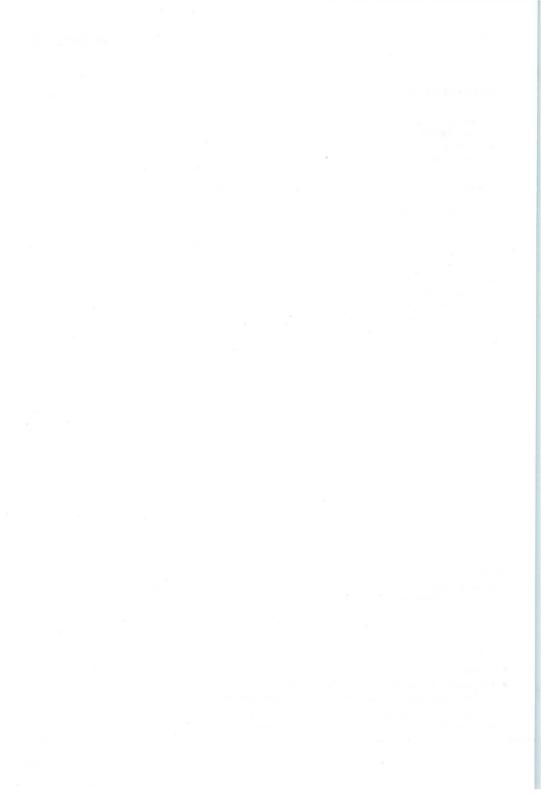



Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

This data sheet contains advance information and specifications are subject to change without notice.

FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- 90º deflection
- In-line, hi-bi potential A R T* gun
- 22,5 mm neck diameter
- Shadow mask of NiFe alloy with low thermal expansion
- Hi-Bri technology
- Mask with corner suspension
- Pigmented phosphors
- Fine pitch over entire screen
- Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 625 lines system
- Internal magnetic shield
- Internal multipole
- · Reinforced envelope for push-through mounting
- The tube is supplied with a deflection unit of the AT6050 series; it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	900
Minimum useful screen diagonal	41 cm
Overall length	369 mm
Neck diameter	22,5 mm
Heating	6,3 V, 300 mA
Focusing voltage	31% of anode voltage

^{*} Aberration Reducing Triode.

ELECTRON-OPTICAL DATA

Electron gun system

unitized triple-aperture electrodes;

aberration reducing triode

Focusing method

electrostatic

Focus lens

hi-bi-potential

Deflection method

magnetic

Deflection angles diagonal

approx. 900

horizontal

approx. 780

vertical

approx. 600

ELECTRICAL DATA

Capacitances

anode to external

C_{a(m + m')}

max. 1600 pF min. 1000 pF

grid 1 to all other electrodes

conductive coating including rimband

C_{a1}

15 pF

cathode of each gun to all other electrodes focusing electrode to all other electrodes

 C_{kR}, C_{kG}, C_{kB}

4 pF

C_{q3}

4 pF

Heating

indirect by a.c. or d.c. 6.3 V

heater voltage heater current V_f

300 mA

OPTICAL DATA

Screen

metal-backed vertical phosphor stripes; phosphor lines follow

glass contour

Screen finish

high polish

Useful screen dimensions

diagonal

min. 406,4 mm

horizontal axis

min. 325,1 mm min. 243.8 mm

vertical axis

in. 243,8 mm

area

min. 793 cm²

Positional accuracy of the screen with respect to the glass contour

see Figures on the next page

Phosphors

red

pigmented europium activated

green

rare earth

blue

sulphide type

blue

pigmented sulphide type

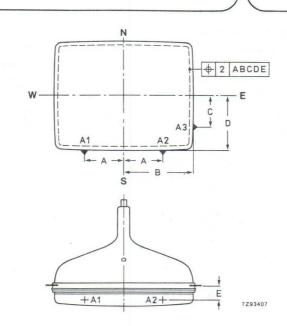
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

0,55 mm

Light transmission of face glass at centre

64%

Luminance at the centre of the screen


140 cd/m² *

L

^{*} Tube settings adjusted to produce white D (x = 0,313, y = 0,329), focused raster, current density $0.4 \,\mu\text{A/cm}^2$.

A = 139,40 mm B = 181,94 mm C = 100,00 mm D = 142,24 mm

 $E = 29,20 \, \text{mm}$

MECHANICAL DATA (see also the figures on the following pages)

Overall length 369,1 \pm 4,5 mm

Neck diameter $22,5 + 1,4 \\ -0,7 \text{ mm}^*$

Bulb dimensions
diagonal max. 443,6 mm
width max. 370,8 mm

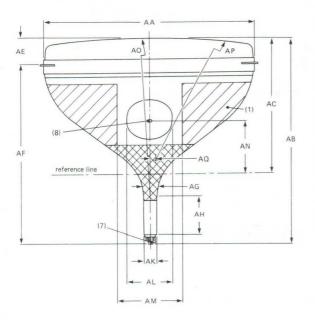
height max. 295,0 mm
Base JEDEC B8-288

Anode contact small cavity contact J1-21, IEC 67-III-2

Mounting position anode contact on top

Net mass approx. 9 kg

Handling

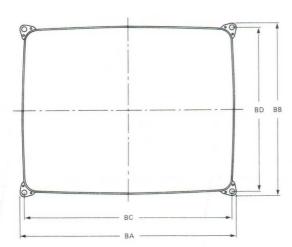

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

^{*} In the region of 66 mm from the neck end, the maximum diameter is 23,2 mm.

A41EAMOOX

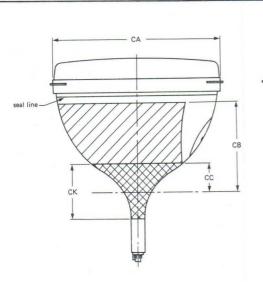
MECHANICAL DATA (continued)

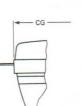
Notes are given after the drawings.



Dimensions in mm

AA	375 max
AB	$369,1 \pm 4,5$
AC	230,3 ± 4
AE	54,8 max
AF	321,3 max
AG	22,5 ⁺ 1,4 -0,7
AH	66
AK	$22,5 \pm 0,7$
AL	110 ± 10
AM	140 ± 3
AN	85,8 ± 3,2
AO	R1300 approx
AP	R1100 approx
AQ	17,7


Dimensions in mm


Е	BA	387 max	
В	ВВ	311,5 max	
Е	C	367	
Е	BD	291,5	

DB DE

DH

Dimensions in mm

CA 299 max

CB 144,5 min

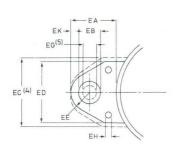
CC 49 max CG 448 max CK 53 max

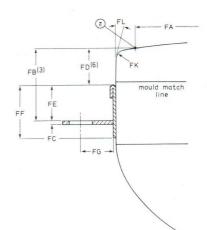
Dimensions in mm

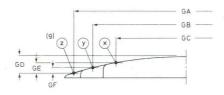
DA 369,2 ± 1,6 DB 293,4 ± 1,6 DC 442 ± 1,6

DD 325,1 min
DE 243,8 min

DF 406,4 min DG R2481


DH R2163 DK R22,4


DL R11000 DM R6300


DN RO

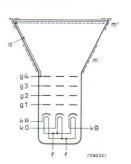
A41EAMOOX

MECHANICAL DATA (continued)

Dimensions in mm

EA 20,4 ± 0,5 EB 11,5 ± 0,2 EC 35 max ED 30 ± 1 EE R8 EG 8 EH 3 min

 $2,25 \pm 0,3$


EK

Dimensions in mm

GA 406,4 GB 325,1 GC 243,8 GD 16,5 ± 2 GE 11,0 ± 2 GF 6.3 ± 2

Dimensions in mm

FA 406,4 FB 34,8 ± 1,5 FC 2,5 FD 15,8 min FE 17,5 max FF 24 max FG 13,1 FK R6 FL 50

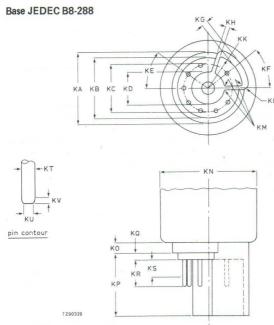
Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- One of the four mounting lugs may deviate (1,5 mm max.) from the plane of the other three lugs.
 This deviation is incorporated in the tolerance of ± 1,5 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. corners of a rectangle of 367 mm x 291,5 mm.
- 6. Distance from point Z to any hardware.
- 7. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 8. Small cavity contact J1-21, IEC 67-III-2.
- 9. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		sagittal
×	У	height
mm	mm	mm
0*	162,55	10,16
10	162,55	10,20
20	162,55	10,32
30	162,55	10,52
40	162,55	10,81
50	162,55	11,18
60	162,55	11,63
70	162,55	12,17
80	162,55	12,79
90	162,55	13,50
100	162,55	14,29
110	162,55	15,17
120	162,55	16,13
121,90**	162,55	16,33
121,90	160	15,98
121,90	150	14,68
121,90	140	13,47
121,90	130	12,35
121,90	120	11,32
121,90	110	10,38
121,90	100	9,52
121,90	90	8,75
121,90	80	8,06
121,90	70	7,46
121,90	60	6,94

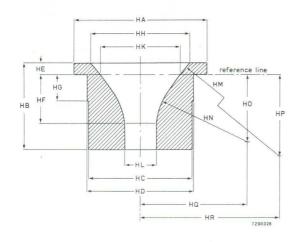
coordina	sagittal	
×	У	height
mm	mm	mm
121,90	50	6,51
121,90	40	6,15
121,90	30	5,88
121,90	20	5,68
121,90	10	5,57
121,90	0	5,53


April 1986

Point ⊗

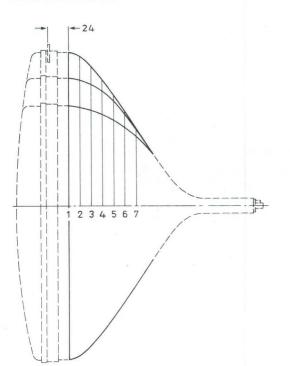
^{**} Diagonal

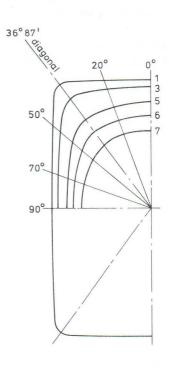
[▲] Point ⊗


A41EAMOOX

Dimensions in mm

KA	17,9 mm
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2
KE	36°
KF	38 ₀
KG	1,3 max
KH	0,8 min; 1,0 max
KK	R8,66 ± 0,1
KL	R1,0
KM	R0,25
KN	23,2 max
KO	2,7 max
KP	$15,4 \pm 0,2$
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	$1,016 \pm 0,076$
KU	0,63 max
KV	0,4 min

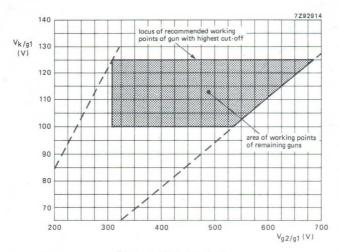

Reference line gauge; G-R90CJ10



Dimensions in mm

HA	ϕ 100,00
HB	65,00
HC	ϕ 78,70
HD	ϕ 80,00
HE	$9,20 \pm 0,02$
HF	$36,22 \pm 0,02$
HG	20,00
HH	ϕ 75,48 ± 0,02
HK	ϕ 60,77 \pm 0,02
HL	ϕ 23,90 $^{+}_{-0}$ 0,04
HM	R220,00
HN	R70,00
HO	50,30
HP	132,71
HQ	80,52
HR	205,85

Maximum cone contour



	nom, distance	distance from centre (max. values)					
section	from section 1	00	20°	diag.	50°	70°	90°
1	0	184,3	195,1	221,0	187,3	154,9	146,1
2	20	179,7	188,7	209,5	180,0	150,4	142,2
3	40	169,8	175,2	186,7	167,5	143,2	136,2
4	60	154,8	157,5	162,9	151,8	134,2	128,7
5	80	134,0	135,7	137,7	131,8	121,7	118,3
6	100	110,2	111,4	111,1	108,5	104,9	103,6
7	120	82,9	82,3	82,8	83,0	82,7	82,2
8	140	52,6	52,7	52,7	52,7	52,7	52,7

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	V _{a,g4}	23 kV
Grid 3 (focusing electrode) voltage	V_{g3}	6,7 to 7,6 kV
Grid 2 voltage for a spot cut-off voltage V _k = 120 V	Va2	310 to 650 V

Spot cut-off design chart.

Grid 2 voltage (V_{q2}) adjusted for highest gun spot cut-off voltage V_{k} = 125 V.

Remaining guns adjusted for spot cut-off by means of cathode voltage

V_{q2} range 310 to 685 V;

Vk range 100 to 125 V.

Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 125 V; increase the grid 2 voltage (V_{g2}) from approx. 300 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

FOUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

29 to 33% of anode Grid 3 (focusing electrode) voltage V_{a3}

voltage

Grid 2 voltage and cathode voltage V_{g2} and V_k see cut-off design chart for visual extinction of focused spot

Difference in cut-off voltages between

lowest value > 80% of ΔV_k

lg2

Iq1

guns in any tube

Vf Heater voltage Video drive characteristics

 $-2 \text{ to } + 2 \mu A$ Grid 3 (focusing electrode) current la3

Grid 2 current Grid 1 current under cut-off conditions

To produce white of 6500K + 7 M.P.C.D.

(CIE co-ordinates x = 0.313, y = 0.329)

Percentage of the total anode current supplied by each gun (typical)

red gun green gun

blue gun

Ratio of anode currents red gun to green gun

red gun to blue gun

blue gun to green gun

highest value 6,3 V at zero beam current

see graphs

 $-2 \text{ to } + 2 \mu A$ $-2 \text{ to } + 2 \mu A$

38,3% 35.8%

average

25,9% min. 0.8

max. 1,4 1.1 min.

1.1

average 1,5 max. 1,9 0.5 min.

average 0.7 0,9 max.

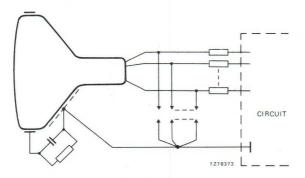
A41EAMOOX

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

The second of th	3					
Anode voltage		$V_{a,g4}$	max. min.	27,5 20	kV kV	notes 1, 2, 3 notes 1 and 4
Long-term average current for three gun	ıs	la	max.	750	μΑ	note 5
Grid 3 (focusing electrode) voltage		V_{g3}	max.	11	kV	
Grid 2 voltage, peak		V _{g2p}	max.	1000	V	
Cathode voltage						
positive		Vk	max.	400	V	
positive operating cut-off, during adju	ustment	V_k	max.	200	V	
negative		$-V_k$	max.	0	V	
negative peak		$-V_{kp}$	max.	2	V	
Heater voltage		Vf	6,3	v ₋₁₀	% %	notes 1 and 6
Heater-cathode voltage						
heater negative with respect to cathode after equipment warm-up period		V_{kf}	max.	200	٧	
heater positive with respect to cathode		$-V_{kfp}$	peak	200	V	note 1
		-V _{kf}	max.	0	V	
			(d.c. c	c. component value)		

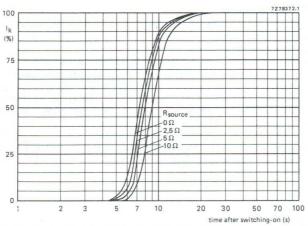
Notes

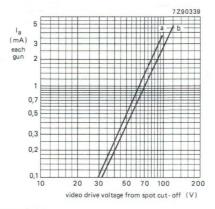

- 1. Absolute maximum rating system.
- The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to $1000 \,\mu\text{A}$.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV (1,5 x V_{g3} max. at $V_{g,g4} = 25$ kV), and at the other electrodes of 1,5 to 2 kV.


The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

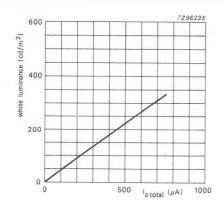

BEAM CORRECTIONS

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

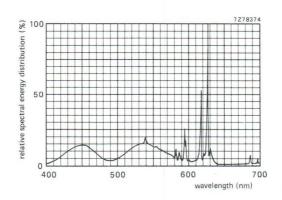
3 mm

Cathode heating time after switching on, measured under typical operating conditions.

Typical cathode drive characteristics,


 $V_f = 6.3 V;$

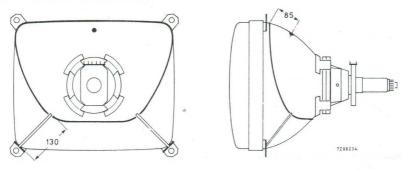
 $V_{a,g4} = 23 \text{ kV};$


V_{q3} adjusted for focus;

 V_{g2} (each gun) adjusted to provide spot cut-off for $V_k = 100 \text{ V}$ (curve a), and $V_k = 125 \text{ V}$ (curve b).

For optimum picture performance it is recommended that the cathodes are not driven below + 1 V.

Luminance at the centre of the screen as a function of I_{total} . $V_{a,94} = 23 \, kV$. Scanned area = 325,1 mm x 243,8 mm; CIE co-ordinates x = 0,313, y = 0,329.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

X	У
0,635	0,340
0,315	0,600
0,150	0,060
	0,635 0,315


DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (\leq 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil

	110 V to 120 V (a.c.) mains	220 V (a.c.) mains
Circumference	113 cm	113 cm
Number of turns	70	120
Copper wire diameter	0,50 mm	0,36 mm
Resistance	6,8 Ω	23,5 Ω
Catalogue number of appropriate dual PTC thermistor	8222 298 73091	2322 662 98009

DEVELOPMENT DATA

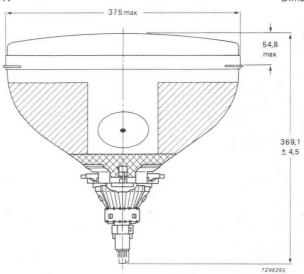
This data sheet contains advance information and specifications are subject to change without notice.

A41EAM..X..

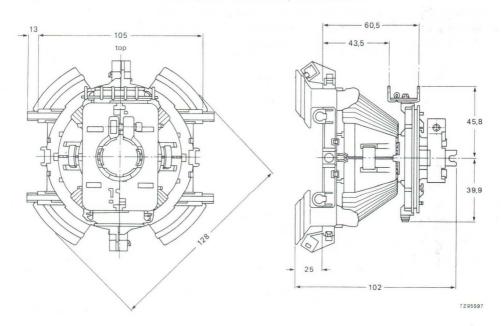
41 cm, 90° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- · Self-converging and raster correction free
- 41 cm, 90° colour picture tube A41EAM . . X
- Hybrid saddle toroidal deflection unit of the AT6050 series

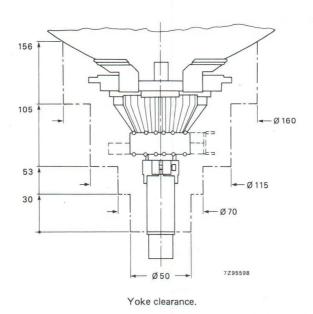
QUICK REFERENCE DATA


Deflection angle	90	0	
Minimum useful screen diagonal	41	cm	
Overall length	369	mm	
Neck diameter	22,5	mm	

AVAILABLE ASSEMBLIES


assembly type	assembly components
A41EAM00X01	type A41EAM00X + deflection unit AT6050/00
A41EAM00X04	type A41EAM00X + deflection unit AT6050/30
A41EAM00X16	tube A41EAM00X + deflection unit AT6050/42

MECHANICAL DATA


Dimensions in mm

Colour picture tube assembly A41EAM . . X . .

Deflection unit of AT6050 series.

Maximum operating temperature (average copper temperature measured with resistance method) + 90 °C

Storage temperature range -25 to +90 °C

Flame retardent according to UL 1413, category 94-V1
Torque on neck clamp screw 1,0 Nm

ENVIRONMENTAL TEST SPECIFICATIONS OF DEFLECTION UNITS

 Vibration
 IEC 68-2-6 (test Fc)

 Shock
 IEC 68-2-27 (test Ea)

 Bump
 IEC 68-2-29 (test Eb; 25g)

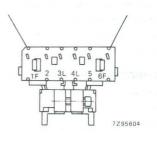
 Cold
 IEC 68-2-1 (test Ab)

 Dry heat
 IEC 68-2-2 (test Bb)

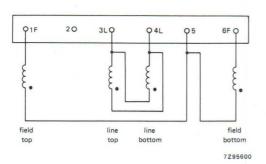
Damp heat, steady state IEC 68-2-3 (test Ca)

Cyclic damp heat IEC 68-2-30 (test Db)

Change of temperature IEC 68-2-14 (test Nb)

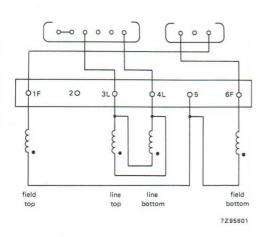

ELECTRICAL DATA OF DEFLECTION UNITS

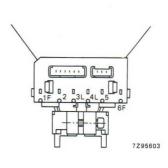
parameter	deflection unit						
	AT6050/00	AT6050/30	AT6050/42				
Line deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C magnetic flux	2,43 mH \pm 4% 3,2 Ω \pm 10% 5,14 mWb \pm 2,5%	2,43 mH ± 4% 3,2 Ω ± 10% 5,14 mWb ± 2,5%	1,64 mH ± 4% 2,2 Ω ± 10% 4,21 mWb ± 2,5%				
Line deflection current edge to edge, at 25 kV	2,11 A _(p-p)	2,11 A _(p-p)	2,57 A _(p-p)				
Field deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C	26,2 mH ± 10% 12,2 Ω ± 7%	108 mH ± 10% 50 Ω ± 7%	108 mH ± 10% 50 Ω ± 7%				
Field deflection current, edge to edge, at 25 kV	0,82 A _(p-p)	0,41 A _(p-p)	0,41 A _(p-p)				
Cross-talk: voltage across the field coils when a voltage of 10 V, 15625 Hz is applied to the line coils	<0,2 V	< 0,4 V	< 0,4 V				


Insulation resistance at 1 kV (d.c.)

between line and field coils between line coil and core clamp between field coil and core clamp $\begin{array}{l} > 500 \; \text{M}\Omega \\ > 500 \; \text{M}\Omega \\ > 10 \; \text{M}\Omega \end{array}$

field line line field bottom 7295600




Connection diagram and top view of terminals of deflection unit AT6050/00. The beginning of the windings is indicated with ullet.

Connection diagram and top view of terminals of deflection unit AT6050/30. The beginning of the windings is indicated with ullet.

Connection diagram and top view of terminals of deflection unit AT6050/42. The beginning of the windings is indicated with ullet.

Hi-Bri COLOUR PICTURE TUBE

- 90° deflection
- In-line gun, electrostatic bi-potential focus
- 29,1 mm neck diameter
- · Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1215), it forms a self-converging assembly; dynamic convergence is not required.

QUICK REFERENCE DATA

Deflection angle	900
Face diagonal	42 cm
Overall length	368 mm
Neck diameter	29,1 mm
Heating	6,3 V, 685 mA
Focusing voltage	20% of anode voltage

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method

Focus lens

Deflection method

Deflection angles diagonal

horizontal

vertical

unitized triple-aperture electrodes

electrostatic

bi-potential

magnetic

approx. 900

approx. 780

max. 1600 pF

approx. 600

ELECTRICAL DATA

Capacitances

anode to external

conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes focusing electrode to all other electrodes

Heating

heater voltage

heater current

 $C_{a(m+m')}$

min. 1000 pF

15 pF C_{a1}

CkR, CkG, CkB 5 pF

 C_{a3} 6 pF

indirect by a.c. or d.c. 6.3 V

 V_{f} 685 mA If

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis

vertical axis

area

Phosphors

red

green

blue

Centre-to-centre distance of vertical identical

colour phosphor stripes, at screen centre

Light transmission of face glass at centre

metal-backed vertical phosphor stripes; phosphor lines follow glass

contour satinized

min. 382,3 mm

min. 322,1 mm

min. 241,6 mm

min. 755 cm²

pigmented europium activated rare

earth

sulphide type

pigmented sulphide type

0,70 mm

66.8%

MECHANICAL DATA (see also the figures on the following pages)

Overall length 368,4 \pm 5 mm

Neck diameter $29,1^{+1,4}_{-0,7}$ mm *

Bulb dimensions
diagonal max. 418,8 mm
width max. 360,6 mm

Base 12-pin base JEDEC B12-262

Anode contact small cavity contact J1-21, IEC 67-III-2

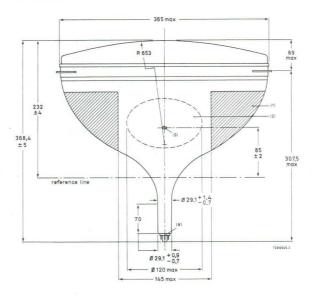
max. 281,8 mm

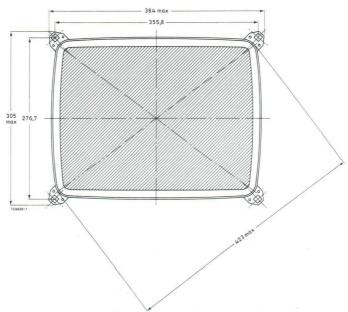
Mounting position anode contact on top

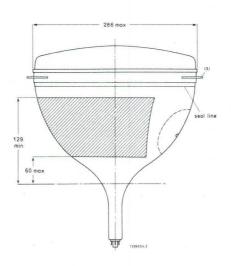
Net mass approx. 8 kg

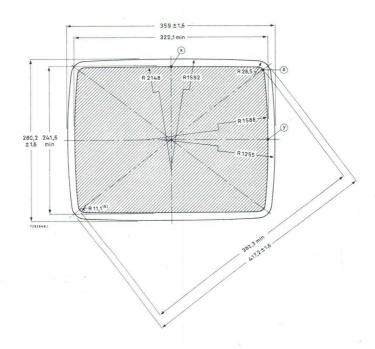
Handling

height

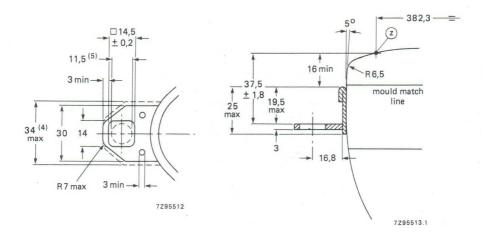

During shipment and handling the tube should not be subjected to accelerations greater than $35\,\mathrm{g}$ in any direction.

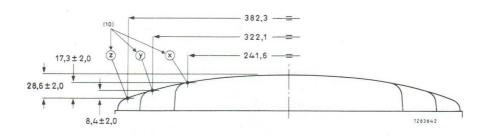

^{*} In the region of 70 mm from the neck end, the maximum diameter is 30 mm.

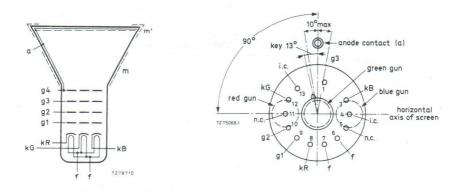

MECHANICAL DATA (continued)


Notes are given after the drawings.

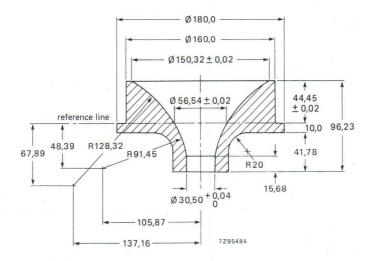
Dimensions in mm

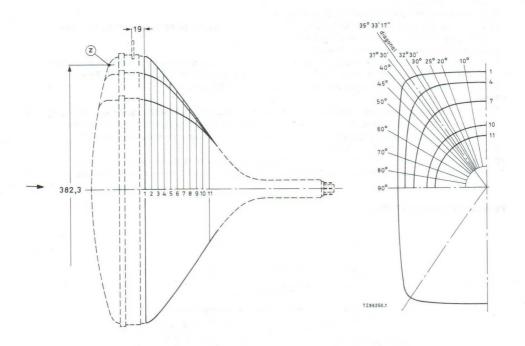






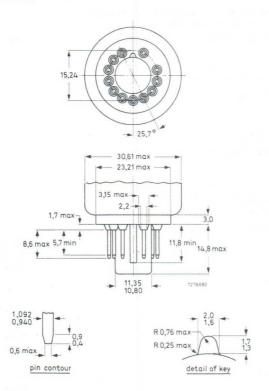
MECHANICAL DATA (continued)





Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- One of the four mounting lugs may deviate (1,5 mm max.) from the plane of the other three lugs.
 This deviation is incorporated in the tolerance of ± 1,8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 7,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 355,8 mm x 276,7 mm.
- 6. Co-ordinates for radius R = 11,1 mm: x = 146,52 mm, y = 104,72 mm.
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.


Reference line gauge; GR90CJ4

sec-	nom. distance	distance from centre (max. values)														
tion	from section 1	00	100	200	250	300	32030'	diag.	37°30′	400	450	500	600	700	800	900
Dime	nsions in m	m														
1	0	179,1	181,5	189,1	195,0	202,1	205,7	208,5	207,8	203,3	189,6	177,2	159,0	147,6	141,3	139,3
2	10	176,1	178,4	185,4	190,7	196,9	199,9	201,9	200,9	196,4	183,9	172,5	155,4	144,4	138,4	136,5
3	20	170,8	172,8	178,7	182,9	187,5	189,3	190,0	188,9	185,4	175,4	165,5	150,0	139,9	134,2	132,4
4	30	164,1	165,8	170,8	174,1	177,2	178,2	177,9	176,7	173,9	166,0	157,8	144,2	135,1	129,9	128,2
5	40	155,6	157,1	161,4	164,0	166,1	166,4	165,6	164,3	161,9	155,7	149,1	137,9	130,0	125,4	123,9
6	50	145,1	146,5	150,1	152,2	153,6	153,6	152,8	151,7	149,9	145,1	140,1	131,1	124,5	120,6	119,3
7	60	133,6	134,7	137,4	138,9	139,9	140,0	139,5	138,9	137,8	134,6	130,9	123,8	118,6	115,4	114,3
8	70	121,8	122,6	124,4	125,3	125,9	125,9	125,8	125,6	125,1	123,5	121,3	116,4	112,2	109,6	108,7
9	80	109,5	110,0	110,9	111,3	111,6	111,6	111,6	111,6	111,5	110,9	110,1	107,6	105,0	103,1	102,4
10	90	96,5	96,6	96,8	96,9	97,0	97,1	97,1	97,2	97,2	97,1	97,0	96,3	95,4	94,5	94,1
11	100	82,2	82,1	82,1	82,1	82,2	82,2	82,2	82,2	82.2	82,2	82.2	82.2	82.2	82,2	82,1

12-pin base; JEDEC B12-262

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage Grid 3 (focusing electrode) voltage Grid 2 voltage for a spot cut-off voltage $V_k = 120 \text{ V}$ Luminance at the centre of the screen * $V_{a,g4}$ 25 kV V_{g3} 4,5 to 5,3 kV V_{g2} 310 to 560 V L 180 cd/m²

^{*} Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329), focused raster, current density 0,4 μ A/cm².

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

The voltages are specified with respect to grid 1.		
Grid 3 (focusing electrode) voltage	V_{g3}	18,8 to 22% of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot	V_{g2} and V_k	see cut-off design chart *
Difference in cut-off voltages between guns in any tube	ΔV_{k}	lowest value > 80% of highest value
Video drive characteristics		see graphs **
Grid 3 (focusing electrode) current	I _{q3}	-5 to + 5 μ A
Grid 2 current	I _{q2}	$-5 \text{ to } + 5 \mu \text{A}$
Grid 1 current under cut-off conditions	I _{g1}	$-5 \text{ to} + 5 \mu A$
To produce white of $6500K + 7$ M.P.C.D. (CIE co-ordinates $x = 0.313$, $y = 0.329$)		
Percentage of the total anode current supplied by each gun red gun green gun blue gun	(typical)	38,3% 35,8% 25,9%
Ratio of anode currents		
red gun to green gun		min. 0,8 average 1,1 max. 1,4
red gun to blue gun		min. 1,1 average 1,5 max. 1,9
blue gun to green gun		min. 0,5 average 0,7 max. 0,9

^{*} The common V_{g2} should be adjusted as follows: Set the cathode voltage, V_k , for each gun at 120 V. Increase the V_{g2} from about 300 V to the value at which the raster of one of the guns becomes just visible. Now decrease the V_k of the remaining guns so that the rasters of these guns also become visible.

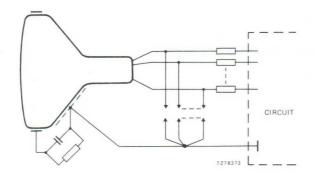
^{**} For optimum picture performance it is recommended that the cathodes are not driven below $\pm 10 \text{ V}$.

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

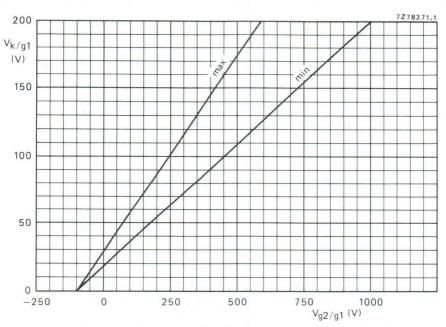
Anode voltage	V _{a,g4}	max. min.	27,5 20	kV kV	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	la	max.	750	μΑ	note 5
Grid 3 (focusing electrode) voltage	V _{q3}	max.	7	kV	
Grid 2 voltage, peak	V _{g2p}	max.	1000	V	
Cathode voltage	3-1-				
positive	V_k	max.	400	V	
positive operating cut-off	Vk	max.	200	V	
negative	$-V_k$	max.	0	V	
negative peak	$-V_{kp}$	max.	2	V	
Heater voltage	Vf	6,3 V	+ 5 -10		notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode during equipment warm-up period					
not exceeding 15 s	Vkf	max.	450	V	note 1
after equipment warm-up period	Vkf	max.	250	V	
heater positive with respect to cathode	$-V_{kfp}$	peak	200	V	note 1
	-V _{kf}	max.	0	V	
		(d.c. cc	mpone	nt valu	ie)

Notes

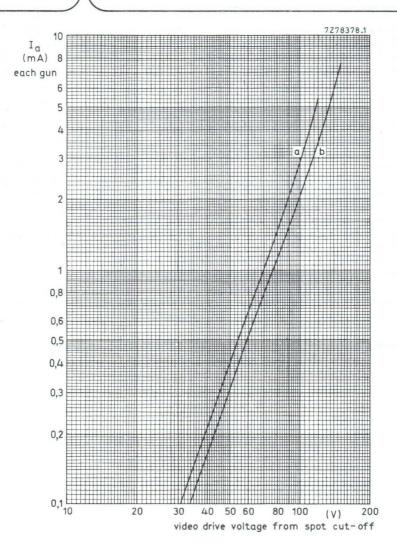

- 1. Absolute maximum rating system.
- The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1000 μ A.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.


Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 8,5 kV (1,5 x V_{q3} max. at $V_{a,q4} = 25$ kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

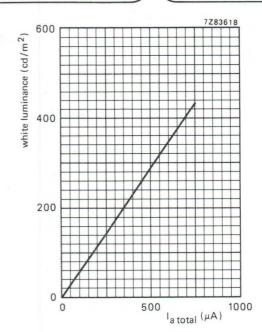


BEAM CORRECTIONS

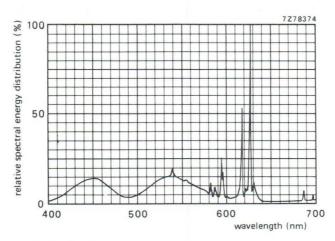
BEAM COMMED HONG	
Maximum required correction for register, as measured at the centre of the screen in any direction	0,08 mm
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	4,5 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2,3 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position	5 mm

Spot cut-off design chart (cathode drive), V_{g3} adjusted for focus, $V_{a,g4}$ = 20 to 27,5 kV.

Typical cathode drive characteristics.

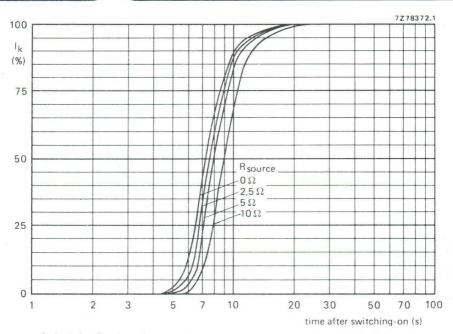

 $V_f = 6.3 V;$

 $V_{a,g4} = 25 \text{ kV};$


V_{g3} adjusted for focus;

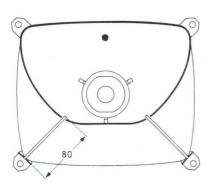
 V_{g2} adjusted to provide spot cut-off for desired fixed V_k .

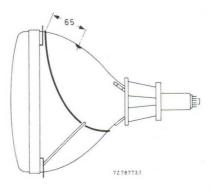
curve a = spot cut-off = 120 V; curve b = spot cut-off = 150 V.



Luminance at the centre of the screen as a function of I_{total} . $V_{a,g4} = 25 \text{ kV}$, $V_f = 6,3 \text{ V}$, V_{g3} adjusted for optimum focus. Scanned area = 322,1 mm x 241,6 mm; CIE co-ordinates x = 0,313, y = 0,329.

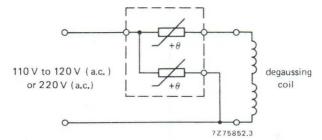
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.


Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

DEGAUSSING


The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (\leq 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil

	110 V (a.c.) mains	220 V (a.c.) mains
Circumference	105 cm	105 cm
Number of turns	70	120
Copper-wire diameter	0,5 mm	0,35 mm
Resistance	6,3 Ω	22,3 Ω
Catalogue number of appropriate dual PTC thermistor	8222 298 73091	2322 662 98009

high a Single Annual Control

DEFLECTION UNIT

QUICK REFERENCE DATA

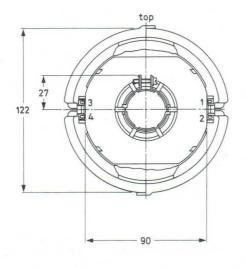
Picture tube gun arrangement diagonal neck diameter	in line 42 cm (16 in) 29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	2,75 A (p-p)
Inductance of line coils, parallel connected	2,3 mH
Field deflection current, edge to edge at 25 kV	0,87 A (p-p)
Resistance of field coils, parallel connected	12,2 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence, is for 90° in-line colour picture tube A42-570X, with a neck diameter of 29.1 mm.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.


MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0.7}$ mm.

For correct fitting the tube neck should be provided with adhesive tape.

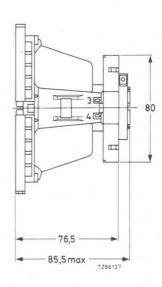


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+ 90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb: 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

2,3 mH ± 5%

 $2,25 \Omega \pm 10\%$ 2,75 A(p-p)

23 mH ± 10%

 $12.2 \Omega \pm 7\%$

0,87 A(p-p)

a voltage of 10 V, 15750 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors

included)

> 500 M Ω

 $> 500 M\Omega$ $> 10 M\Omega$

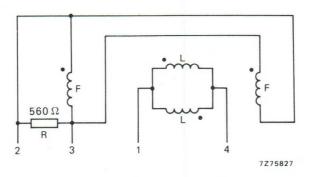


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

AT LOND OTHER TOPS IN

on Electrical Control Control

and the state of t

an account of the second of th

CONTENTS IN THE PROPERTY OF TH

The state of the s

THE PART AND A

- ret 10 g. 700 in gewone de kriemman, mig om die kraat gebier Aftigeleg leg onder nicht bestellt bei in die 100 Die geboord meertuig van die 10 geboord bestelling van die 10 gebier die 10 gewone die 10 gebier die 10 gebier
 - Adjust collections, year sufficiency manner to a state from years and judget entries the central for consensate free centraling out or now me.
 - The crew percent of the control of t
 - and services the extension of the angene and a service of the services of the second o
- I had many and the interest with the limit, the province that the first set the interest and the many and the consecution of the many and the consecution of the cons
- in the manufactor of the control of the second by the control of t

Replaces A42-590X

Hi-Bri COLOUR PICTURE TUBE

- 900 deflection
- In-line gun, thermally stable; electrostatic hi-bi-potential focus
- 29.1 mm neck diameter
- Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- · Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1216 or AT1470). it forms a self-converging and raster correction free assembly.

000

OUICK REFERENCE DATA

Focusing voltage	28% of anode voltage
Heating	6,3 V, 685 mA
Neck diameter	29,1 mm
Overall length	374 mm
Face diagonal	42 cm
Deflection angle	900

ELECTRON-OPTICAL DATA

Electron gun system unitized triple-aperture electrodes

Focusing method electrostatic

Focus lens hi-bi-potential

Deflection method magnetic

Deflection angles
diagonal approx. 900

ELECTRICAL DATA

horizontal

vertical

Capacitances max. 1600 pF anode to external $C_{a(m+m')}$ conductive coating including rimband min. 1000 pF grid 1 to all other electrodes C_{a1} 17 pF cathode of each gun to all other electrodes CkR, CkG, CkB 5 pF focusing electrode to all other electrodes 6 pF C_a3 Heating indirect by a.c. or d.c. 6.3 V heater voltage Vf 685 mA heater current If

OPTICAL DATA

Screen metal-backed vertical phosphor stripes; phosphor lines follow glass contour

Screen finish satinized

approx. 780

approx. 600

0,70 mm

Useful screen dimensions
diagonal min. 382,3 mm
horizontal axis min. 322,1 mm
vertical axis min. 241,6 mm
area min. 755 cm²
Phosphors

red pigmented europium activated rare earth
green sulphide type
blue pigmented sulphide type

blue pigmented sulphide type
Centre-to-centre distance of vertical identical

Light transmission of face glass at centre 66,8%

colour phosphor stripes, at screen centre

MECHANICAL DATA (see also the figures on the following pages)

Overall length

373,6 ± 5 mm

Neck diameter

29,1 ^{+ 1,4} _{-0,7} mm *

Bulb dimensions diagonal

max. 418,8 mm max. 360,6 mm

width height

max. 281,8 mm 10-pin base JEDEC B10-277

Base Anode contact

small cavity contact J1-21, IEC 67-III-2

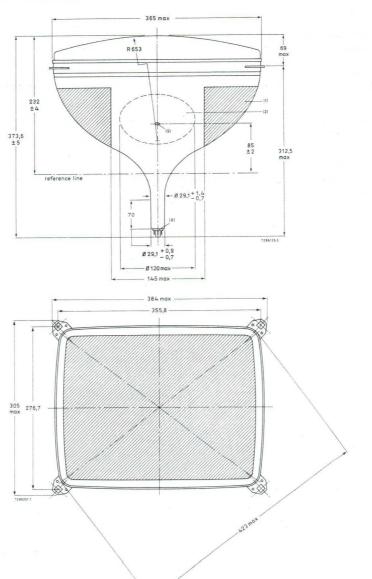
Mounting position

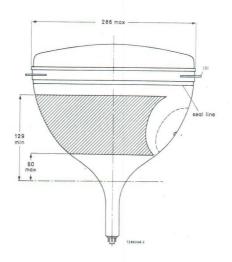
anode contact on top

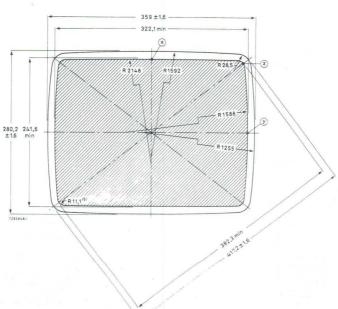
Net mass

approx. 8 kg

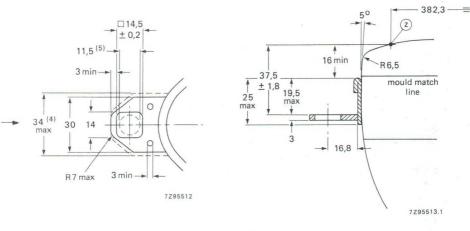
Handling

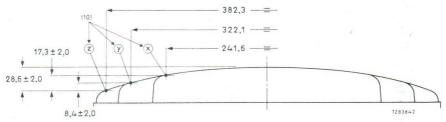

During shipment and handling the tube should not be subjected to accelerations greater than $35\,\mathrm{g}$ in any direction.

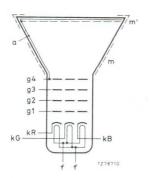

^{*} In the region of 70 mm from the neck end, the maximum diameter is 30 mm.

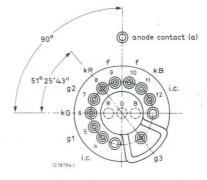

MECHANICAL DATA (continued)

Notes are given after the drawings.

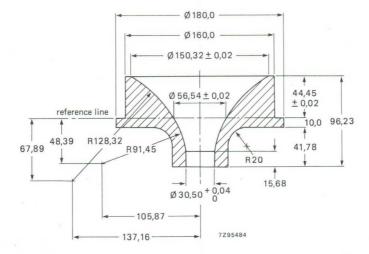

Dimensions in mm

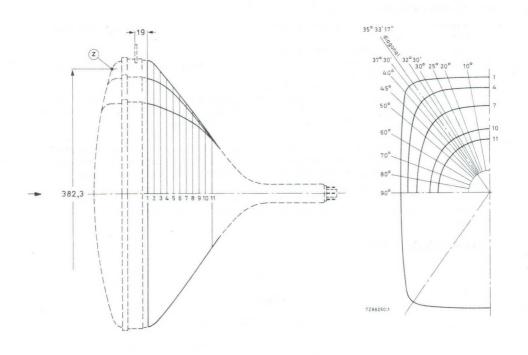






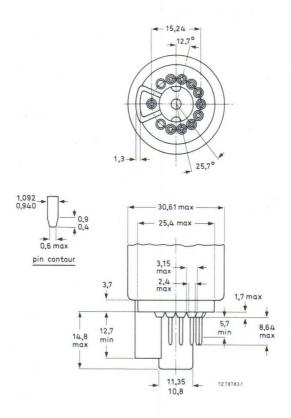
MECHANICAL DATA (continued)




i.c. = internally connected (not to be used)

Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- One of the four mounting lugs may deviate (1,5 mm max.) from the plane of the other three lugs.
 This deviation is incorporated in the tolerance of ± 1.8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 11,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 355,8 mm x 276,7 mm.
- 6. Co-ordinates for radius R = 11,1 mm: x = 146,52 mm, y = 104,72 mm.
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.


Reference line gauge; GR90CJ4

sec-	nom.	distance from centre (max. values)														
tion	from section 1	00	100	200	250	300	32030'	diag.	37030'	400	450	500	60°	700	800	900
Dime	nsions in m	m														
1	0	179,1	181,5	189,1	195,0	202,1	205,7	208,5	207,8	203,3	189,6	177,2	159,0	147,6	141,3	139,3
2	10	176,1	178,4	185,4	190,7	196,9	199,9	201,9	200,9	196,4	183,9	172,5	155,4	144,4	138,4	136,5
3	20	170,8	172,8	178,7	182,9	187,5	189,3	190,0	188,9	185,4	175,4	165,5	150,0	139,9	134,2	132,4
4	30	164,1	165,8	170,8	174,1	177,2	178,2	177,9	176,7	173,9	166,0	157,8	144,2	135,1	129,9	128,2
5	40	155,6	157,1	161,4	164,0	166,1	166,4	165,6	164,3	161,9	155,7	149,1	137,9	130,0	125,4	123,9
6	50	145,1	146,5	150,1	152,2	153,6	153,6	152,8	151,7	149,9	145,1	140,1	131,1	124,5	120,6	119,3
7	60	133,6	134,7	137,4	138,9	139,9	140,0	139,5	138,9	137,8	134,6	130,9	123,8	118,6	115,4	114,3
8	70	121,8	122,6	124,4	125,3	125,9	125,9	125,8	125,6	125,1	123,5	121,3	116,4	112,2	109,6	108,7
9	80	109,5	110,0	110,9	111,3	111,6	111,6	111,6	111,6	111,5	110,9	110,1	107,6	105,0	103,1	102,4
10	90	96,5	96,6	96,8	96,9	97,0	97,1	97,1	97,2	97,2	97,1	97,0	96,3	95,4	94,5	94,1
11	100	82,2	82,1	82,1	82,1	82,2	82,2	82,2	82,2	82,2	82,2	82,2	82,2	82,2	82,2	82,1

10-pin base; JEDEC B10-277

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

The voltages are specified with respect to grid 1.			
Anode voltage	$V_{a,g4}$	25	kV
Grid 3 (focusing electrode) voltage	V _{g3}	6,6 to 7,5	kV
Grid 2 voltage for a spot cut-off voltage $V_k = 140 \text{ V}$	V_{g2}	390 to 760	V
Luminance at the centre of the screen*	L	180	cd/m^2

^{*} Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329) focused raster, current density 0,4 μ A/cm².

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV. The voltages are specified with respect to grid 1. 26.6 to 29.8% of anode Grid 3 (focusing electrode) voltage V_{a3} voltage Grid 2 voltage and cathode voltage for visual extinction of focused spot V_{a2} and V_k see cut-off design chart * Difference in cut-off voltages between lowest value > 80% of guns in any tube DVK highest value Video drive characteristics see graphs ** Grid 3 (focusing electrode) current $-5 \text{ to } + 5 \mu A$ la3 Grid 2 current $-5 \text{ to } + 5 \mu A$ la2 Grid 1 current under cut-off conditions $-5 \text{ to } + 5 \mu \text{A}$ la1 To produce white of 6500K + 7 M.P.C.D. (CIE co-ordinates x = 0.313, y = 0.329) Percentage of the total anode current supplied by each gun (typical) 38,3% red gun 35.8% green gun blue gun 25.9% Ratio of anode currents 0.8 red gun to green gun min. average 1,1 max. 1,4

1,1

1,9

0.5 average 0,7 max.

0,9

min. average 1,5 max.

min.

red gun to blue gun

blue gun to green gun

The common V_{g2} should be adjusted as follows: Set the cathode voltage, V_k , for each gun at 150 V. Increase the V_{q2} from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the Vk of the remaining guns so that the rasters of these guns also become visible.

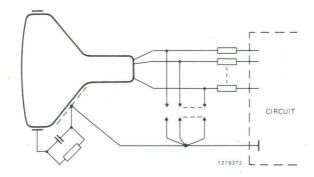
For optimum picture performance it is recommended that the cathodes are not driven below + 10 V.

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

Anode voltage	V _{a,g4}	max. min.	27,5 20	kV kV	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	la	max.	750	μΑ	note 5
Grid 3 (focusing electrode) voltage	V_{q3}	max.	11	kV	
Grid 2 voltage, peak	V _{g2p}	max.	1000	V	
Cathode voltage	3 .				
positive	Vk	max.	400	V	
positive operating cut-off	Vk	max.	200	V	
negative	$-V_k$	max.	0	V	
negative peak	$-V_{kp}$	max.	2	V	
Heater voltage	V_{f}	6,3 V	+ 5 -10	% %	notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode during equipment warm-up period					
not exceeding 15 s	Vkf	max.	450	V	note 1
after equipment warm-up period	V _{kf}	max.	250	V	
heater positive with respect to cathode	$-V_{kfp}$	peak	200	V	note 1
	$-V_{kf}$	max.	0	V	
	10.1	(d.c. co	mpone	nt valu	e)

Notes

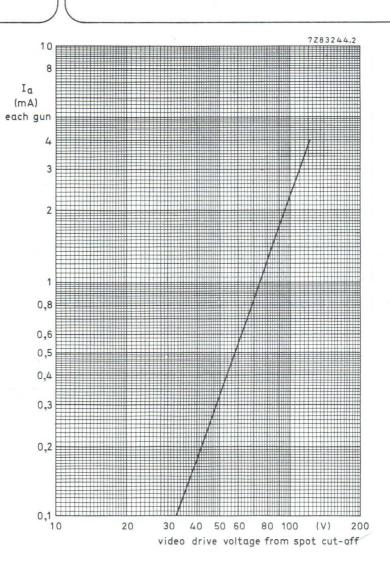

- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1000 μA.
- 6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.


Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV (1,5 x V_{q3} max. at $V_{a,q4}$ = 25 kV), and at the other electrodes of 1,5 to 2 kV.

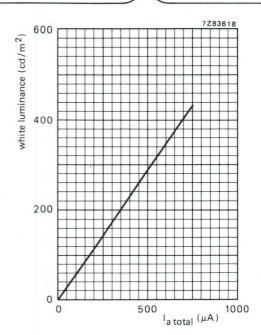
The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.



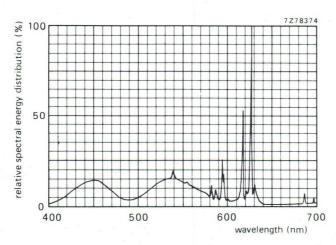
BEAM CORRECTIONS

0,08 mm
4,5 mm
2,3 mm
5 mm

Spot cut-off design chart (cathode drive), V_{g3} adjusted for focus, $V_{a,g4}$ = 20 to 27,5 kV.

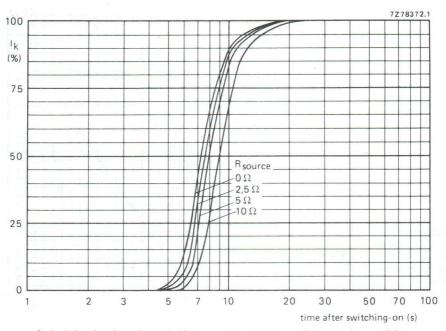

Typical cathode drive characteristics.

 $V_f = 6,3 V;$


 $V_{a,q4} = 25 \text{ kV};$

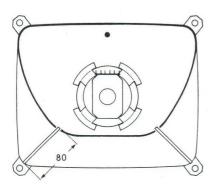
Va3 adjusted for focus;

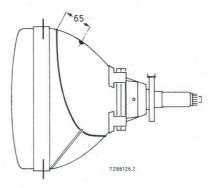
 V_{g2} adjusted to provide spot cut-off for V_{k} = 140 V_{\cdot}



Luminance at the centre of the screen as a function of I_{total} . $V_{a,g4} = 25 \text{ kV}$, $V_f = 6,3 \text{ V}$, V_{g3} adjusted for optimum focus. Scanned area = 322,1 mm x 241,6 mm; CIE co-ordinates x = 0,313, y = 0,329.

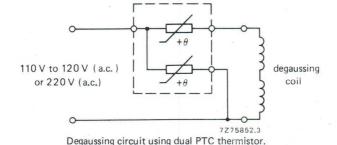
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.


Colour co-ordinates:	X	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

DEGAUSSING


The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (\leq 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Data of degaussing coil

	110 V (a.c.) mains	220 V (a.c.) mains
Circumference	105 cm	105 cm
Number of turns	70	120
Copper-wire diameter	0,5 mm	0,35 mm
Resistance	6,3 Ω	22,3 Ω
Catalogue number of appropriate dual PTC thermistor	8222 298 73091	2322 662 98009

C. A. P. Committee of the c

20.0

9.8

DEFLECTION UNIT

Raster Correction Free

QUICK REFERENCE DATA

Picture tube	
gun arrangement diagonal	in line 42 cm (16 in)
neck diameter	29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	3,28 A (p-p)
Inductance of line coils, parallel connected	1,73 mH
Field deflection current, edge to edge at 25 kV	0,94 A (p-p)
Resistance of field coils, parallel connected	11 Ω

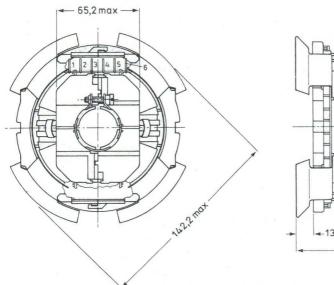
APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A42-592X, with a neck diameter of 29,1 mm.

The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.


AT1216/20

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0.9}_{-0.7}$ mm.

95,3 -13,74 max 105,5 max 7285657

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+ 90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

1EC 00-2-14 (test No

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge at 25 kV

Voltage during line scan, edge to edge,

at 25 kV, scan period 52,5 µs

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

parallel connected 1,73 mH \pm 5% 1,79 Ω \pm 10%

3.28 A (p-p)

109 V

parallel connected

29,1 mH ± 10%

11 $\Omega \pm 7\%$

0,94 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

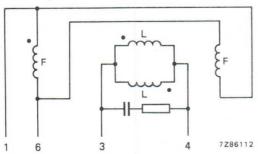
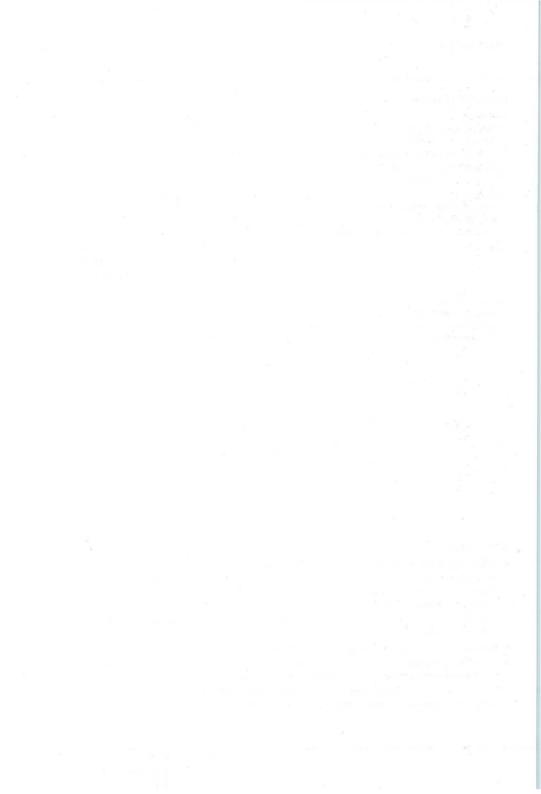



Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

DEFLECTION UNIT

Raster Correction Free

QUICK REFERENCE DATA

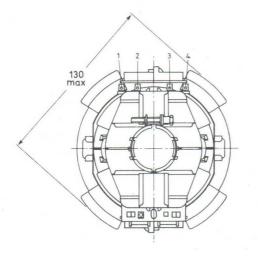
Picture tube	
gun arrangement	in line
diagonal	42 cm (16 in)
neck diameter	29,1 mm
Deflection angle	90°
Line deflection current, edge to edge at 25 kV	3,04 A(p-p)
Inductance of line coils, parallel connected	1,89 mH
Field deflection current, edge to edge at 25 kV	0,9 A(p-p)
Resistance of field coils, parallel connected	13,9 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A42-592X, with a neck diameter of 29,1 mm. The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.


MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0,7}$ mm

For correct fitting the tube neck should be provided with adhesive tape.

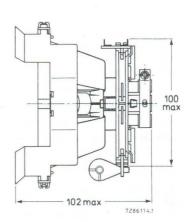


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+ 90 °C

 $-20 \text{ to} + 90 ^{\circ}\text{C}$

according to UL 1413, category 94-V1

1,4 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

278 May 1982

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Voltage during line scan, edge to edge, at 25 kV, scan period 52.5 μ s

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp between field coil and core clamp parallel connected

1,89 mH ± 5%

 $2.6 \Omega \pm 10\%$

3,04 A (p-p)

109 V

parallel connected

29 mH ± 10%

13,9 $\Omega \pm 7\%$

0,9 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

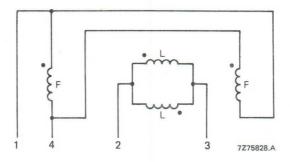


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

Replaces A42-591X

Hi-Bri COLOUR PICTURE TUBE

- 900 deflection
- In-line gun, thermally stable; electrostatic hi-bi-potential focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- · Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1216 or AT1470), it forms a self-converging and raster correction free assembly.

QUICK REFERENCE DATA

Focusing voltage	28% of anode voltage
Heating	6,3 V, 685 mA
Neck diameter	29,1 mm
Overall length	378 mm
Face diagonal	42 cm
Deflection angle	90o

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method

Focus lens

Deflection method

Deflection angles

diagonal horizontal

vertical

unitized triple-aperture electrodes

electrostatic

hi-bi-potential

magnetic

approx. 900

approx. 780

approx. 600

ELECTRICAL DATA

Capacitances

anode to external

conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes

focusing electrode to all other electrodes

Heating

heater voltage heater current $C_a(m+m')$

max. 1600 pF

min. 1000 pF

17 pF Ca1

CkR, CkG, CkB 5 pF

6 pF C_{a3}

indirect by a.c. or d.c.

Vf If

6,3 V

685 mA

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis

vertical axis

area

Phosphors

red

green

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

metal-backed vertical phosphor stripes; phosphor lines follow glass

contour

satinized

min. 382.3 mm

min. 322,1 mm

min. 241,6 mm

min. 755 cm²

pigmented europium activated rare

earth

sulphide type

pigmented sulphide type

0,70 mm

66,8%

December 1985

MECHANICAL DATA (see also the figures on the following pages)

Overall length

 $378 \pm 5 \, \text{mm}$

Neck diameter

29,1 ^{+ 1,4} _{-0,7} mm *

Bulb dimensions

max. 418,8 mm max. 360,6 mm

diagonal width

max. 281,8 mm

height Base

JEDEC B8-274

Anode contact

small cavity contact J1-21, IEC 67-III-2

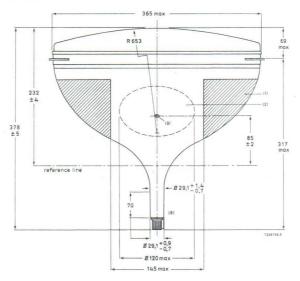
Mounting position

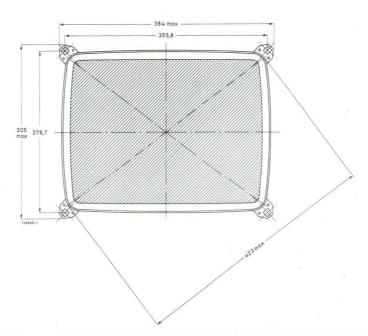
anode contact on top

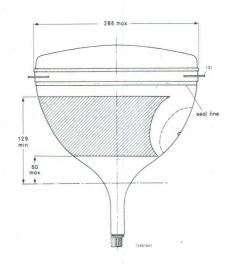
Net mass

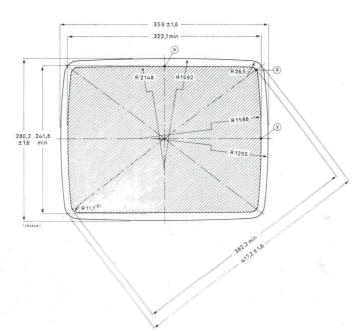
approx. 8 kg

Handling

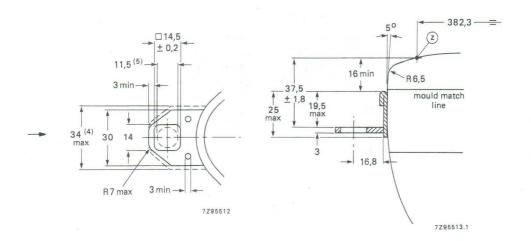

During shipment and handling the tube should not be subjected to accelerations greater than $35\,\mathrm{g}$ in any direction.

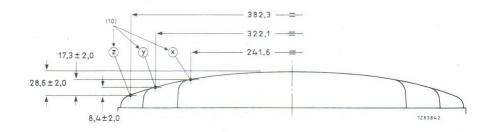

^{*} In the region of 70 mm from the neck end, the maximum diameter is 30 mm.

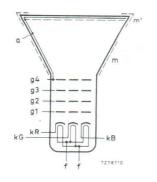

MECHANICAL DATA (continued)

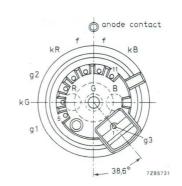

Notes are given after the drawings.

Dimensions in mm

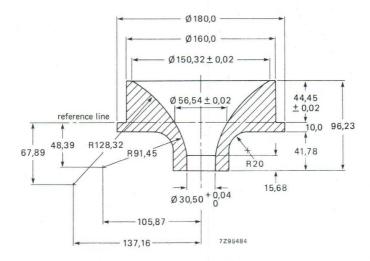


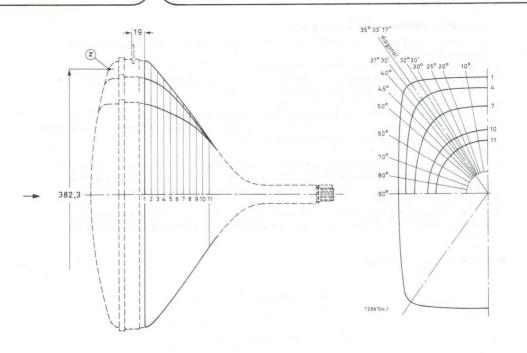






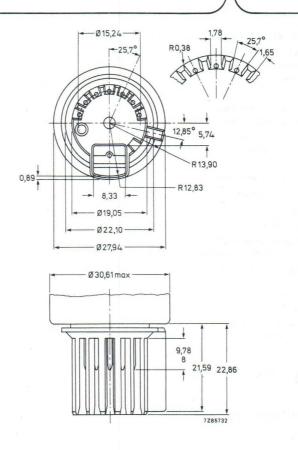
MECHANICAL DATA (continued)





Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. One of the four mounting lugs may deviate (1,5 mm max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of \pm 1,8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 11,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 355,8 mm x 276,7 mm.
- 6. Co-ordinates for radius R = 11,1 mm: x = 146,52 mm, y = 104,72 mm.
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.


Reference line gauge; GR90CJ4

500	sec-	nom.						distant	ce from	centre (n	nax. vali	ues)					
tion	from section 1	00	100	200	250	300	32°30′	diag.	37°30′	400	450	500	600	700	80°	900	
Dime	nsions in m	m															
1	0	179,1	181,5	189,1	195,0	202,1	205,7	208,5	207,8	203,3	189,6	177,2	159,0	147,6	141,3	139,3	
2	10	176,1	178,4	185,4	190,7	196,9	199,9	201,9	200,9	196,4	183,9	172,5	155,4	144,4	138,4	136,5	
3	20	170,8	172,8	178,7	182,9	187,5	189,3	190,0	188,9	185,4	175,4	165,5	150,0	139,9	134,2	132,4	
4	30	164,1	165,8	170,8	174,1	177,2	178,2	177,9	176,7	173,9	166,0	157,8	144,2	135,1	129,9	128,2	
5	40	155,6	157,1	161,4	164,0	166,1	166,4	165,6	164,3	161,9	155,7	149,1	137,9	130,0	125,4	123,9	
6	50	145,1	146,5	150,1	152,2	153,6	153,6	152,8	151,7	149,9	145,1	140,1	131,1	124,5	120,6	119,3	
7	60	133,6	134,7	137,4	138,9	139,9	140,0	139,5	138,9	137,8	134,6	130,9	123,8	118,6	115,4	114,3	
8	70	121,8	122,6	124,4	125,3	125,9	125,9	125,8	125,6	125,1	123,5	121,3	116,4	112,2	109,6	108,7	
9	80	109,5	110,0	110,9	111,3	111,6	111,6	111,6	111,6	111,5	110,9	110,1	107,6	105,0	103,1	102,4	
10	90	96,5	96,6	96,8	96,9	97,0	97,1	97,1	97,2	97,2	97,1	97,0	96,3	95,4	94,5	94,1	
11	100	82,2	82,1	82,1	82,1	82,2	82,2	82,2	82,2	82,2	82,2	82,2	82,2	82,2	82,2	82,1	

Base JEDEC B8-274

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	Va,g4
Grid 3 (focusing electrode) voltage	V _{g3}
Grid 2 voltage for a spot cut-off	
voltage V _k = 140 V	V_{g2}
Luminance at the centre of the screen*	L.

* Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329) focused raster, current density 0,4 μ A/cm².

25 kV

180 cd/m²

6,6 to 7,5 kV

390 to 760 V

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

The voltages are specified with respect to grid 1.		
Grid 3 (focusing electrode) voltage	V_{g3}	26,6 to 29,8% of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot	V_{a2} and V_{k}	see cut-off design chart *
Difference in cut-off voltages between	g ₂	
guns in any tube	ΔV_{k}	lowest value > 80% of highest value
Video drive characteristics		see graphs **
Grid 3 (focusing electrode) current	I _{q3}	$-5 \text{ to } + 5 \mu A$
Grid 2 current	I _{g2}	$-5 \text{ to } + 5 \mu A$
Grid 1 current under cut-off conditions	l _{g1}	-5 to + 5 μ A
To produce white of $6500K + 7$ M.P.C.D. (CIE co-ordinates $x = 0.313$, $y = 0.329$)		
Percentage of the total anode current supplied by each	ch gun (typical)	
red gun		38,3%
green gun		35,8%
blue gun		25,9%
Ratio of anode currents		
red gun to green gun		min. 0,8
		average 1,1
		max. 1,4
red gun to blue gun		min. 1,1
		average 1,5
		max. 1,9
blue gun to green gun		min. 0,5
		average 0,7
		max. 0,9

^{*} The common V_{g2} should be adjusted as follows: Set the cathode voltage, V_k , for each gun at 150 V. Increase the V_{g2} from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the V_k of the remaining guns so that the rasters of these guns also become visible.

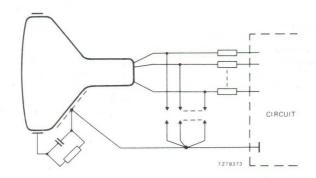
^{**} For optimum picture performance it is recommended that the cathodes are not driven below \pm 10 V.

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

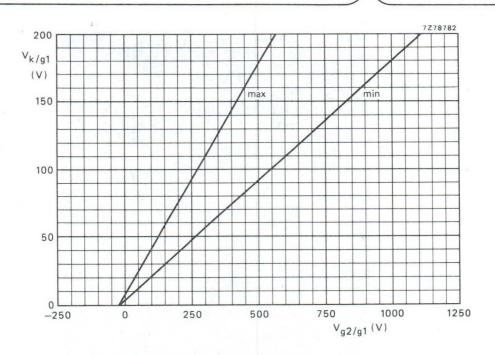
Anode voltage	V _{a,g4}	max. min.	27,5 20	kV kV	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	la	max.	750	μΑ	note 5
Grid 3 (focusing electrode) voltage	V _{g3}	max.	11	kV	
Grid 2 voltage, peak	V _{g2p}	max.	1000	V	
Cathode voltage					
positive	Vk	max.	400	V	
positive operating cut-off	Vk	max.	200	V	
negative	$-\dot{v}_{k}$	max.	0	V	
negative peak	$-V_{kp}$	max.	2	V	
Heater voltage	V_{f}	6,3 V	+ 5 -10		notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode during equipment warm-up period					
not exceeding 15 s	V_{kf}	max.	450	V	note 1
after equipment warm-up period	Vkf	max.	250	V	
heater positive with respect to cathode	$-V_{kfp}$	peak	200	V	note 1
	$-V_{kf}$	max.	0	V	
		(d.c. cc	mpone	nt valu	e)

Notes

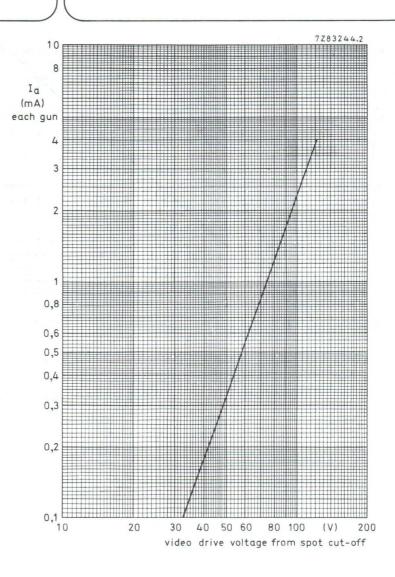

- 1. Absolute maximum rating system.
- The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1000 μ A.
- 6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.


Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV (1,5 x V_{q3} max. at $V_{a,q4} = 25$ kV), and at the other electrodes of 1,5 to 2 kV.

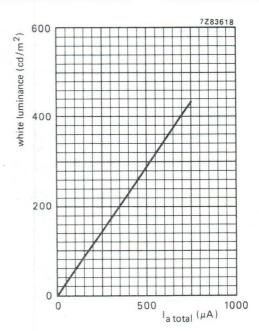
The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.



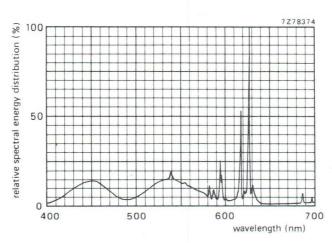
BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction	0,08	mm
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	4,5	mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2,3	mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position	5	mm

Spot cut-off design chart (cathode drive), V_{g3} adjusted for focus, $V_{a,g4}$ = 20 to 27,5 kV.

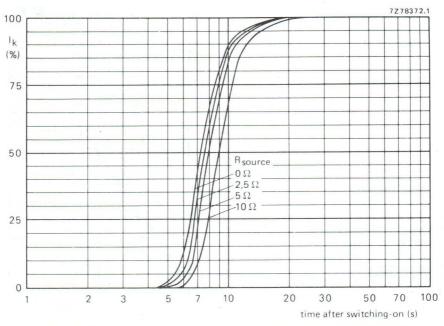

Typical cathode drive characteristics.

 $V_f = 6.3 V;$


 $V_{a,g4} = 25 \text{ kV};$

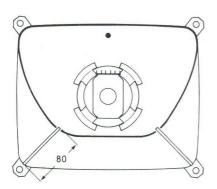
V_{g3} adjusted for focus;

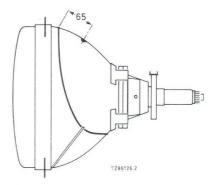
 V_{g2} adjusted to provide spot cut-off for V_k = 140 V.


Luminance at the centre of the screen as a function of I_{total}. $V_{a,g4} = 25 \text{ kV}$, $V_f = 6,3 \text{ V}$, V_{g3} adjusted for optimum focus. Scanned area = 322,1 mm x 241,6 mm; CIE co-ordinates x = 0,313, y = 0,329.

Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

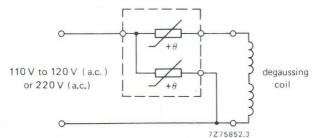
X	У
0,635	0,340
0,315	0,600
0,150	0,060
	0,315


295



Cathode heating time after switching on, measured under typical operating conditions.

DEGAUSSING


The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil (\leq 0,6 ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil

	110 V (a.c.) mains	220 V (a.c.) mains
Circumference	105 cm	105 cm
Number of turns	70	120
Copper-wire diameter	0,5 mm	0,35 mm
Resistance	6,3 Ω	22,3 Ω
Catalogue number of appropriate dual PTC thermistor	8222 298 73091	2322 662 98009

4

transport to the

DEFLECTION UNIT

Raster Correction Free

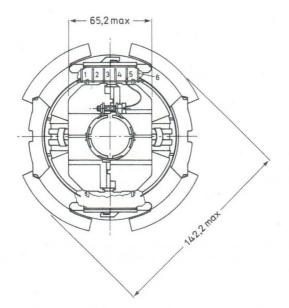
QUICK REFERENCE DATA

Picture tube	8 8 1
gun arrangement	in line
diagonal	42 cm (16 in)
neck diameter	29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	3,28 A (p-p)
Inductance of line coils, parallel connected	1,73 mH
Field deflection current, edge to edge at 25 kV	0,47 A (p-p)
Resistance of field coils, series connected	44 Ω
hesistance of field cons, series confiected	44 32

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tubes A42-592X and A42-593X, with a neck diameter of 29,1 mm. The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $29.1^{+0.9}_{-0.7}$ mm.

95,3 ←13.74 max 105,5 max

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge at 25 kV

Voltage during line scan, edge to edge,

at 25 kV, scan period 52,5 µs

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp between field coil and core clamp

parallel connected 1,73 mH \pm 5% 1,79 Ω \pm 10% 3,28 A (p-p)

109 V

series connected 116,4 mH \pm 10% 44 Ω \pm 7% 0,47 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

 $> 500 M\Omega$ > 500 M Ω > 10 M Ω

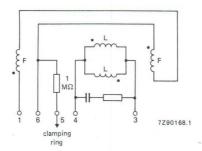


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

Print and a

- To be a factor of a second excitation of the

ten od med owlight man at Nobel Broaden and or seeming

DEFLECTION UNIT

Raster Correction Free

QUICK REFERENCE DATA

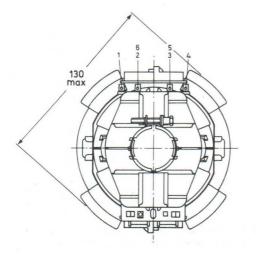
in line 42 cm (16 in) 29,1 mm
90°
3,04 A p-p
1,89 mH
0,45 A(p-p)
55,6 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tubes A42-592X and A42-593X, with a neck diameter of 29,1 mm. The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.


MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0.9}_{-0.7}$ mm

For correct fitting the tube neck should be provided with adhesive tape.

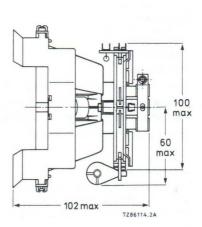


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+ 90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Voltage during line scan, edge to edge, at 25 kV, scan period 52,5 μ s

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

parallel connected

1,89 mH ± 5%

 $2,6 \Omega \pm 10\%$

3,04 A (p-p)

109 V

series connected

116 mH ± 10%

 $55.6 \Omega \pm 7\%$

0,45 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors

included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

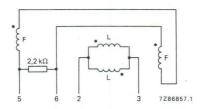


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

Hi-Bri COLOUR PICTURE TUBE

- 90º deflection
- In-line, thermally stable hi-bi potential gun
- 22,5 mm neck diameter
- Hi-Bri technology
- Pigmented phosphors
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick heating low-power cathodes
- Soft-Flash technology
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- Combined with a deflection unit of the AT1645 series, it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Defication anala

Deflection angle	30-
Minimum useful screen diagonal	48 cm
Overall-length	427 mm
Neck diameter	22,5 mm
Heating	6,3 V, 300 mA
Focusing voltage	31% of anode voltage

000

A48EACOOX

ELECTRON-OPTICAL DATA

Electron gun system
Focusing method

Focus lens

Deflection method

Deflection angles

diagonal horizontal

vertical

ELECTRICAL DATA

Capacitances

anode to external conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes

focusing electrode to all other electrodes

Heating

heater voltage

heater current

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis

vertical axis

area

Phosphors

red

green

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

octour priosprior stripes, at screen centi

Light transmission of face glass at centre

unitized triple-aperture electrodes

electrostatic

hi-bi-potential

magnetic

approx. 900

700

approx. 780

approx. 600

C_{a(m + m')} max. 2300 pF min. 1500 pF

C_{g1}

C_{kR}, C_{kG}, C_{kB} 4 pF

 C_{g3} 4 pF

indirect by a.c. or d.c.

15 pF

V_f 6,3 V

1_f 300 mA

metal-backed vertical phosphor stripes; phosphor lines follow glass

contour

satinized

min, 480,0 mm

min. 404,4 mm

.....

min. 303,3 mm

min. 1190 cm²

pigmented europium activated rare

earth

sulphide type

pigmented sulphide type

0,80 mm

64%

MECHANICAL DATA (see also the figures on the following pages)

Overall length

426,6 ± 5 mm

Neck diameter

22,5 + 1,4 mm*

Bulb dimensions

diagonal

max. 515,1 mm max. 442,1 mm

width

max. 343,4 mm

height Base

Anode contact

JEDEC B8-288 small cavity contact J1-21, IEC 67-III-2

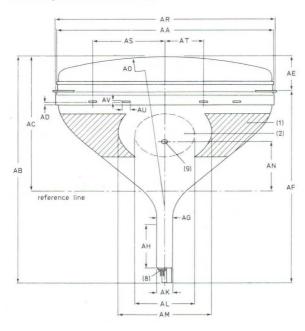
Mounting position

anode contact on top

Net mass

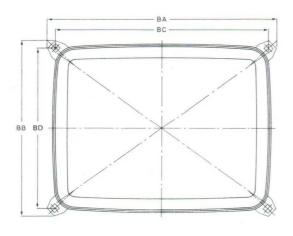
approx. 13 kg

Handling

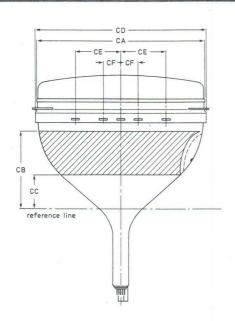

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

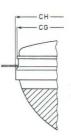
^{*} In the region of 66 mm from the neck end, the maximum diameter is 23,2 mm.

A48EACOOX


MECHANICAL DATA (continued)

Notes are given after the drawings


Dimensions in mm


AA	446 max
AB	431,6 max
AC	288,8 ± 4
AD	4 ± 1
AE	79 max
AF	355,5 max
AG	22,5 + 1,4 $-0,7$
AH	66
AK	22,5 ± 0,7
AL	110 ± 10
AM	163
AN	102 ± 3,2
AO	approx. 805
AR	455 max
AS	150 ± 5
AT	80 ± 5
AU	
AV	4,8 min

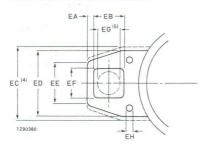
Dimensions in mm

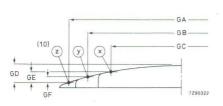
ВА	463 max	
BB	364 max	
BC	434	
BD	337	

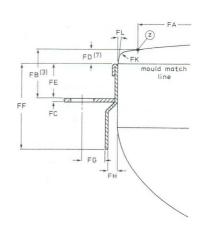
Dimensions in mm

7.		Control of the Contro	
	CA	347 max	
	CB	171 min	
	CC	63 max	
	CD	356 max	
	CE	95 ± 5	
	CF	35 ± 5	
	CG	521 max	
	CH	528 max	

	DA	
1	DL 000 DK	\
DB DE -	<u></u>	
	DM.	
7290325	EDN(6)	
	bulb and screen dimensions	


DA	440,5 ± 1,6
DB	341,8 ± 1,6
DC	513,5 ± 1,6
DD	404,4 min
DE	303,3 min
DF	480,0 min
DG	R1905
DH	R1532
DK	R29,85
DL	R2597
DM	R1948

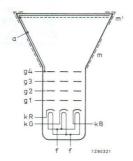

R13,1

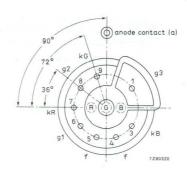

DN

A48EAC00X

MECHANICAL DATA (continued)

Dimensions in mm

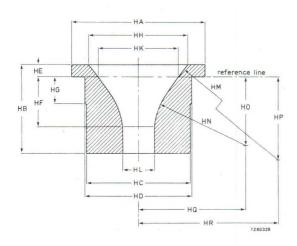

EA	$2,5 \pm 0,5$
EB	13 ± 0.3
EC	40 max
ED	35
EE	12
EF	12 ± 0.3
EG	8
EH	3,0 min


Dimensions in mm

	GA	480
	GB	404,4
	GC	303,3
	GD	36,6 ± 2,0
	GE	22,2 ± 2,0
1	GF	10.8 ± 2.0

Dimensions in mm

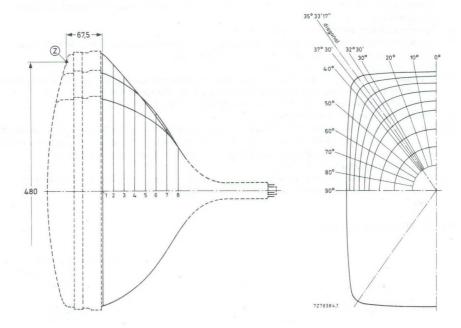
FA	480
FB	$38,5 \pm 2,5$
FC	2 max
FD	12 min
FE	24 max
FF	55 max
FG	13,4
FH	2 min
FK	R6
FL	50



Notes to outline drawings on the preceding pages

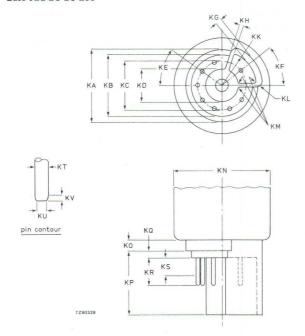
- Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. One of the four mounting lugs may deviate (2 mm max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of \pm 2,5 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 434 mm x 337 mm.
- 6. Co-ordinates for radius R = 13,1 mm; x = 184,58 mm, y = 131,93 mm.
- 7. Distance from point Z to any hardware.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Reference line gauge; G-R90CJ10



Dimensions in mm

Name of Street or other Designation of the Street or other Designation of the Street or other Designation or other	
HA	φ 100,00
HB	65,00
HC	ϕ 78,70
HD	ϕ 80,00
HE	9,20 ± 0,02
HF	36,22 ± 0,02
HG	20.00
нн	ϕ 75,48 \pm 0,02
нк	
HL	ϕ 23,90 $^{+0,04}_{-0}$
HM	R220,00
HN	R70,00
но	50,30
HP	132,71
HQ	80.52
HR	205,85


A48EAC00X

Maximum cone contour

sec- tion	nom. distance from section 1	distance from centre (max. values)														
		00	100	200	250	30°	320 30'	diag. axes	370 30'	400	450	50°	60°	700	80°	900
1	0	218,7	221,9	231,2	238,5	247,5	252,2	255,9	254,6	247,7	230,1	215,1	193,0	179,2	171,5	169,0
2	20	209,8	212,4	220,3	226,0	232,5	235,3	236,5	235,0	230,2	216,9	204,4	184,9	172,3	165,3	163,0
3	40	197,5	199,4	204,7	208,1	211,1	211,9	211,4	210,0	207,0	198,6	189,5	173,9	163,2	157,1	155,1
4	60	182,2	183,2	185,8	187,1	187,7	187,4	186,4	185,3	183,3	178,2	172,1	160,7	152,4	147,4	145,8
5	80	163,2	163,5	163,9	163,7	163,1	162,4	161,4	160,6	159,3	156,3	152,9	145,8	140,1	136,6	135,4
6	100	146,1	146,1	145,7	145,1	144,2	143,6	142,8	142,2	141,4	139,5	137,5	133,3	129,7	127,3	126,5
7	120	112,3	112,3	111,9	111,7	111,3	111,1	110,9	110,7	110,5	110,0	109,5	108,6	107,8	107,3	107,1
8	141,7	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8

Base JEDEC B8-288

TYPICAL OPERATING CONDITIONS

Dimensions in mm

KA	17,9 max
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2
KE	360
KF	380
KG	1,3 max
KH	0,8 min; 1,0 max
KK	R8,66 ± 0,1
KL	R1,0
KM	R0,25
KN	23,2 max
ко	2,7 max
KP	15,4 ± 0,2
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	1,016 ± 0,076
KU	0,63 max
KV	0,4 min

V _{a,g4}	25	kV
V_{g3}	7,3 to 8,3	kV
V_{g2}	310 to 650	V
L	170	cd/m ²

^{*} Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329) focused raster, current density $0.4 \, \mu \text{A/cm}^2$.

A48EACOOX

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage V_{g3} 29 to 33% of anode

voltage

Grid 2 voltage and cathode voltage for visual extinction of focused spot $V_{\alpha 2}$ and V_k see cut-off design chart

Difference in cut-off voltages between guns in any tube ΔV_k lowest value > 80% of

Video drive characteristics see graphs

Grid 3 (focusing electrode) current I_{03} —5 to +5 μ A

Grid 2 current I_{a2} —5 to +5 μ A

Grid 1 current under cut-off conditions I_{g1} -5 to $+5~\mu A$ To produce white of 6500K + 7 M.P.C.D.

(CIE co-ordinates x = 0.313, y = 0.329)

Percentage of the total anode current supplied by each gun (typical)

red gun 38,3% green gun 35,8%

blue gun 25,9%

Ratio of anode currents

red gun to green gun min. 0,8

average 1,1 max. 1,4

red gun to blue gun min. 1.1

average 1,5 max. 1,9

blue gun to green gun min. 0,5

average 0,7 max. 0,9

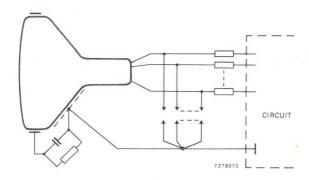
LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

Anode voltage	V _{a,g4}	max. min.	27,5 20	kV kV	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	la	max.	1000	μΑ	note 5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage, peak	V_{g2p}	max.	1000	V	
Cathode voltage					
positive	V_k	max.	400	V	
positive operating cut-off	V_k	max.	200	V	
negative	$-V_{k}$	max.	0	V	
negative peak	$-V_{kp}$	max.	2	٧	
Heater voltage	V _f	6,3	v ₋₁₀	% %	notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode					
after equipment warm-up period	Vkf	max.	200	V	
heater positive with respect to cathode	$-V_{kfp}$	peak	200	V	note 1
	$-V_{kf}$	max.	0	V	
		(d.c. c	ompon	ent v	alue)

Notes

- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.


FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV (1,5 x V_{q3} max. at $V_{a,q4} = 25$ kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.

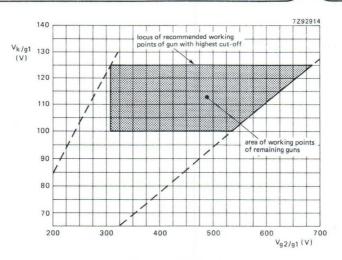
Additional information is available on request.

BEAM CORRECTIONS

Maximum required correction for register, as measured
at the centre of the screen in any direction

0.08 mm

Centre convergence displacement of the blue and red beams is contained within a circle; max, diameter of circle


5 mm

Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle

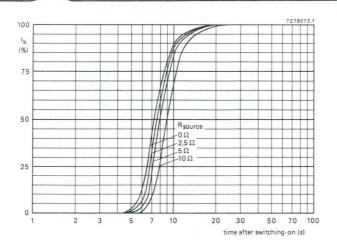
2,5 mm

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

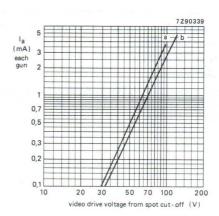
5 mm

Spot cut-off design chart.

Grid 2 voltage (V_{q2}) adjusted for highest gun spot cut-off voltage V_k = 125 V.


Remaining guns adjusted for spot cut-off by means of cathode voltage

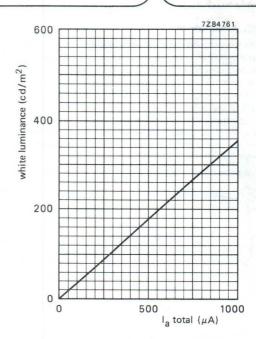
V_{q2} range 310 to 685 V;


Vk range 100 to 125 V.

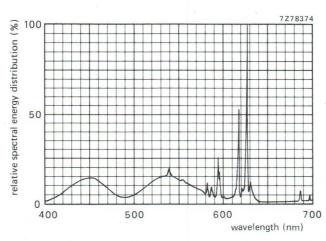
Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 125 V; increase the grid 2 voltage (V_{g2}) from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

Cathode heating time after switching on, measured under typical operating conditions.


Typical cathode drive characteristics.

 $V_f = 6,3 V;$


 $V_{a,g4} = 25 \text{ kV};$

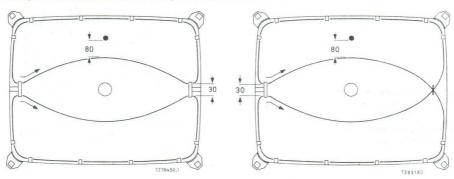
V_{g3} adjusted for focus;

 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 100 V (curve a), and V_k = 125 V (curve b).

Luminance at the centre of the screen as a function of I_{total} . $V_{a,94} = 25 \text{ kV}$. Scanned area = 404,4 mm x 303,3 mm; CIE co-ordinates x = 0,313, y = 0,329.

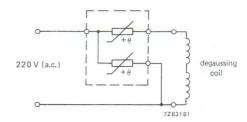
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060


DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil shaped in the form of a figure eight, with one half on the top and the other half on the bottom cone part.

For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils (≤ 0.3 ampere-turns).


If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.

Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor.

Data of each degaussing coil

	double-coil system	single-coil system
Circumference	117 cm	237 cm
Number of turns	60	60
Copper-wire diameter	0,35 mm	0,35 mm
Resistance (R _C)	13 Ω	26 Ω
Catalogue number of		1 to 1 to 1 to 2 to 2 to 2 to 2 to 2 to
appropriate dual PTC thermistor	2322 662 98009	2322 662 98009

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
minimum useful screen diagonal	48 cm
neck diameter	22,5 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	2,23 A (p-p)
Inductance of line coils, parallel connected	2,50 mH
Field deflection current, edge to edge at 25 kV	0,81 A (p-p)
Resistance of field coils, parallel connected	11,8 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A48EAC00X, with a neck diameter of 22,5 mm. The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $22,5^{+1,4}_{-0,7}$ mm.

61,5 44,5 45,8 max 75,2 max

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Shock

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

-25 to +90 °C

according to UL 1413, category 94-V1

1,0 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-27 (test Ea)

IEC 68-2-29 (test Eb; 25g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

(lest bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

Deflection unit AT1645/00

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux at 25 kV

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

2,50 mH ± 4%

3.3 $\Omega \pm 10\%$

 $5,57 \text{ mWb} \pm 2,5\%$

2,23 A (p-p)

27,5 mH ± 10% 11,8 Ω ± 7%

0,81 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors

included)

> 500 M Ω

> 500 M Ω

> 10 M Ω

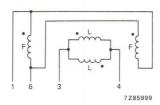


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

The Sure Name (A)

The state of the s

The first section of the second of the secon

DEFLECTION UNIT

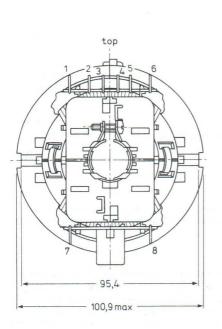
QUICK REFERENCE DATA

Picture tube gun arrangement minimum useful screen diagonal neck diameter	in line 48 cm 22,5 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	2,38 A (p-p)
Inductance of line coils, parallel connected (including additional coil)	2,34 mH
Field deflection current, edge to edge at 25 kV	0,81 A (p-p)
Resistance of field coils, parallel connected	11,8 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A48EAC00X, with a neck diameter of 22,5 mm. The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $22,5^{+1,4}_{-0.7}$ mm.

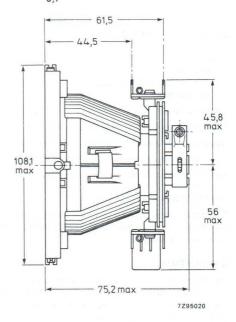


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

+90 °C -25 to +90 °C according to UL 1413, category 94-V1

ENVIRONMENTAL TEST SPECIFICATIONS

 Vibration
 IEC 68-2-6 (test Fc)

 Shock
 IEC 68-2-27 (test Ea)

 Bump
 IEC 68-2-29 (test Eb; 25g)

 Cold
 IEC 68-2-1 (test Ab)

 Dry heat
 IEC 68-2-2 (test Bb)

 Damp heat, steady state
 IEC 68-2-3 (test Ca)

 Cyclic damp heat
 IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

1,0 Nm

Cyclic damp heat Change of temperature

ELECTRICAL DATA

Line coils, including additional coil Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C Magnetic flux at 25 kV

Line deflection current, edge to edge, at 25 kV

Additional coil

Inductance at 1 V (r.m.s.), 1 kHz

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between field coil and core clamp

2.34 mH ± 4%

 $3.2 \Omega \pm 10\%$

5,57 mWb ± 2,5%

2,38 A (p-p)

0.15 mH ± 4%

27.5 mH ± 10%

 $11.8 \Omega \pm 7\%$

0,81 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,20 V across the field coils (damping

resistors included)

> 500 M Ω

> 500 $M\Omega$

> 10 M Ω

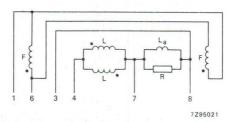


Fig. 2 Connection diagram. L = line coils; F = field coils; L_a = additional coil; R = 4,7 k Ω .

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

DEFLECTION UNIT

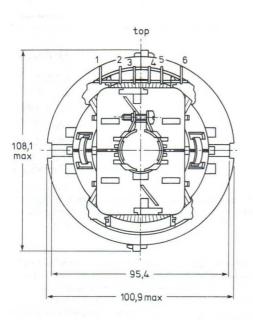
QUICK REFERENCE DATA

Picture tube gun arrangement minimum useful screen diagonal neck diameter	in line 48 cm 22,5 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	2,23 A (p-p)
Inductance of line coils, parallel connected	2,50 mH
Field deflection current, edge to edge at 25 kV	0,40 A (p-p)
Resistance of field coils, series connected	47,2 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A48EAC00X, with a neck diameter of 22,5 mm. The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $22,5^{+1,4}_{-0,7}$ mm.

75,2 max 7285897.1

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature

+ 90 °C -25 to +90 °C according to UL 1413, category 94-V1 1,0 Nm

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux at 25 kV

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

2.50 mH ± 4%

3.3 $\Omega \pm 10\%$

5,57 mWb ± 2,5%

2,23 A (p-p)

110 mH ± 10%

 $47.2 \Omega \pm 7\%$

0,40 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,4 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

> 10 M Ω

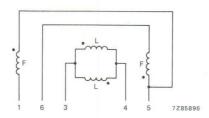


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

"ATTUINAMENTS A

and the second

Values and the property

ALL THE REST THE MADE AND A STATE OF

The state of the s

unit 185, mendrat ere et al. 1986, i 1

as the product of the second of sleepings became over the control of the control of

20AX COLOUR PICTURE TUBE

Replacement type A51-510X.

Replaces A51-500X

20AX Hi-Bri COLOUR PICTURE TUBE

QUICK REFERENCE DATA

Deflection angle 110°
Face diagonal 51 cm
Overall length 35 cm
Neck diameter 36,5 mm

Envelope reinforced; suitable for push-through

Magnetic shield internal

Focusing bi-potential

Deflection magnetic

Heating 6,3 V, 720 mA

Light transmission of face glass 64%

Quick heating cathode with a typical tube a legible picture will

appear within approx. 5 s

Inherently self-converging system with deflection unit AT1085

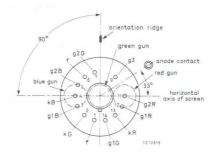
MECHANICAL DATA

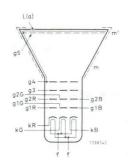
Useful screen dimensions

Overall length 351,4 \pm 6,5 mm

Neck diameter $36.5 \frac{1.0}{-0}$ mm

Bulb dimensions
diagonal max. 515,5 mm


width max. 442,5 mm height max. 343,8 mm


diagonal min. 480,0 mm horizontal axis min. 404,4 mm vertical axia min. 303,3 mm

Base 12-pin base IEC 67-I-47a, type 2

Anode contact small cavity contact J1-21, IEC 67-III-2

A51-510X

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Final accelerator voltage Grid 3 (focusing electrode) voltage

Grid 2 voltage for a spot-cut-off voltage $V_k = 140 \text{ V}$

Cathode voltage for spot cut-off at V_{g2} = 555 V

V _{a,g5,g4}	25	kV	
V _{g3}	4,0 to 4,8	kV	
V_{g2}	465 to 705	V	
٧٧	110 to 165	V	

30AX COLOUR PICTURE TUBE

- Automatic snap-in raster orientation
- Push-on axial purity positioning
- Internal magneto-static beam alignment
- Hi-Bi gun with quadrupole cathode lens
- 1100 deflection
- Hi-Bri screen
- Pigmented phosphors: enhanced contrast
- Phosphor lines follow glass contour
- In-line gun
- Standard 36,5 mm neck
- Soft-Flash technology
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Quick-heating cathodes
- Internal magnetic shield
- Anti-crackle coating
- Reinforced envelope for push-through mounting
- Self-aligning, self-converging assembly with low power consumption, when combined with deflection unit AT 1850
- North-south pin-cushion distortion-free

QUICK REFERENCE DATA

Deflection angle Face diagonal

Overall length

Neck diameter

Heating

Focusing voltage

1100

51 cm

36 cm

36.5 mm

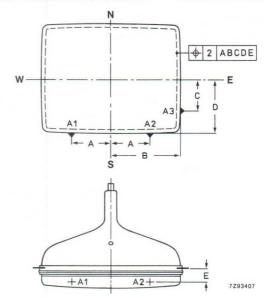
6,3 V, 720 mA

28% of anode voltage

ELECTRON-OPTIC	CAL DATA
-----------------------	----------

Electron gun system	in-line with separate grids
Focusing method	electrostatic
Focus lens	hi-bi potential
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	110° 97° 77°

ELECTRICAL DATA


Capacitances anode to external conductive coating	C _{a, g5, g4/m}	max.	1400 900	. 1	
anode to metal rimband	Ca, g5, g4/m'		250	pF	
grid of any gun to all other electrodes	Cg 1R, Cg 1G, C	g 1B	7	pF	
cathodes of all guns (connected in parallel) to all other electrodes	C _k		12	pF	
cathode of any gun to all other electrodes	CkR, CkG, CkB		4	pF	
grid 3 (focusing electrode) to all other electrodes	C _{g3}		7	pF	
Resistance between rimband and external conductive coating		min.	50	MΩ	
Heating: indirect by a.c. (preferably mains or line frequency) ord.c.				
heater voltage	Vf		6,3	V	
heater current	l f		720	mA	

OPTICAL DATA

green blue

Screen	metal-backed vertical phosphor stripes; phosphor lines follow glass contour				
Screen finish	satinized				
Useful screen dimensions diagonal horizontal axis vertical axis area	min. 480,0 mm min. 404,4 mm min. 303,3 mm min. 1190 cm ²				
Positional accuracy of the screen with respect to the glass contour	see Figure on the next page				
Phosphors red	pigmented europium activated				

pigmented europium activated rare earth sulphide type pigmented sulphide type A = 170,7 mmB = 215,5 mmC = 115,1 mmD = 162.8 mm $E = 31,5 \, \text{mm}$

Colour co-ordinates

red green blue

Centre-to-centre distance of identical colour phosphor stripes

Light transmission of face glass Luminance at the centre of the screen

X 0.635 0.340 0,315 0,600

0,150 0,060

approx. 0,8 mm 64%

160 cd/m2 *

MECHANICAL DATA (see also the figures on the following pages)

Overall length

Neck diameter

Base

Anode contact Mounting position

Rimband

Net mass

361,4 ± 6 mm

36,5 + 1,3 mm

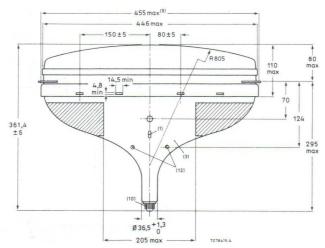
12-pin base IEC 67-I-47a, type 2 cavity cap JEDEC J1-21, IEC 67-III-2

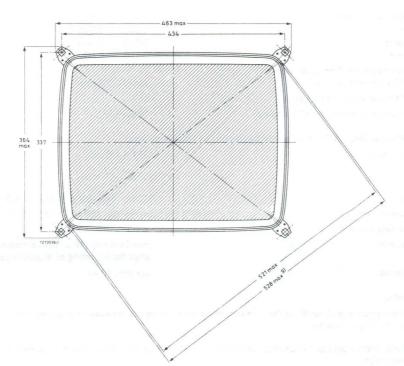
anode contact on top

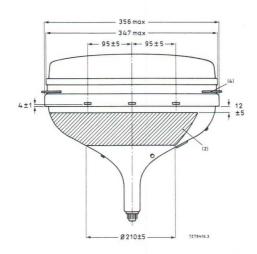
provided with 18 slots to accommodate clips for mounting of degaussing coils

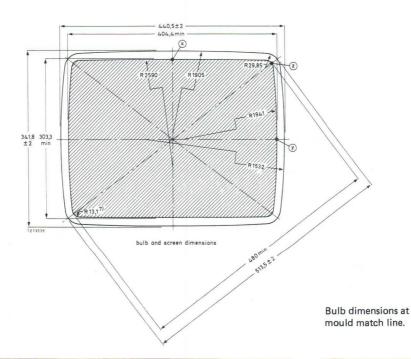
approx. 12 kg

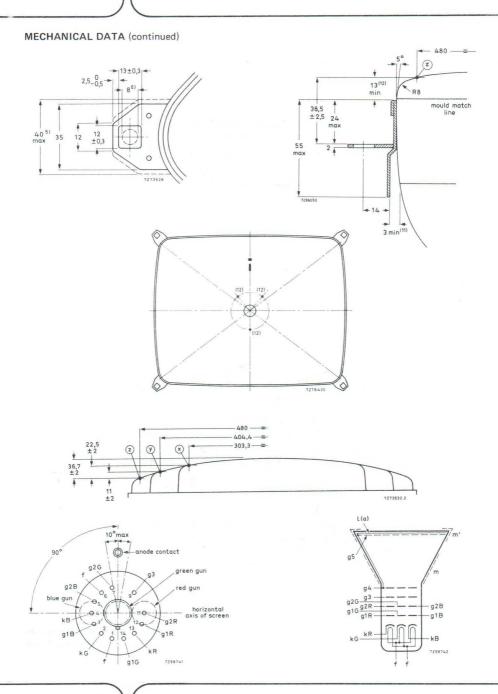
Handling


During shipment and handling the tube should not be subjected to accelerations greater than 350 m/s² in any direction.


* Tube settings adjusted to produce white D (x = 0,313, y = 0,329), focused raster, current density $0.4 \, \mu A/cm^2$.


MECHANICAL DATA (continued)


Notes are given after the drawings.

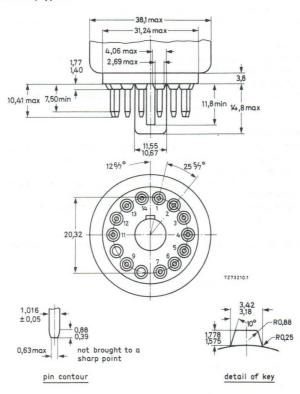

Dimensions in mm

Notes to outline drawings on the preceding pages

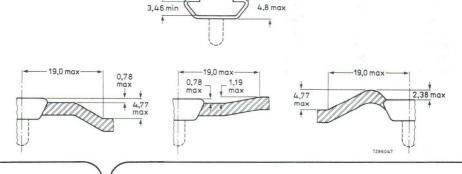
- 1. This ridge can be used as an orientation for the deflection unit.
- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 3. To clean this area, wipe only with a soft lintless cloth.
- 4. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm.
- 5. Minimum space to be reserved for mounting lug.
- 6. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 434 mm x 337 mm.
- 7. Co-ordinates for radius R = 13.1 mm: x = 184,58 mm, y = 131,93 mm.
- 8. Distance from point z to any hardware.
- 9. Maximum dimensions in plane of lugs.
- 10. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. The bottom circumference of the base will fall within a circle concentric with the tube axis and having a diameter of 55 mm.

The mass of the mating socket with circuitry should not be more than 150 g; maximum permissible torque is 40 mNm.

- 11. Minimum distance between glass and rimband in plane of centre line of apertures.
- 12. Centring bosses for deflection unit.

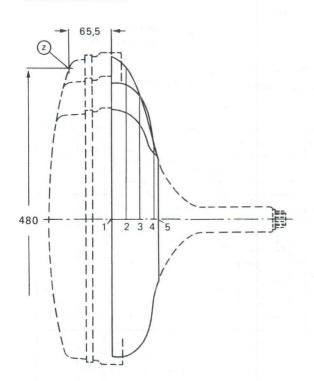

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

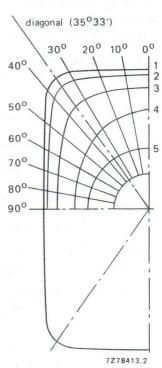
coordi	nates	sagitta		
X	У	height		
mm	mm	mm		
0*	151,7	14,6		
20	151,6	14,9		
40	151,3	15,6		
60	150,9	16,8		
80	150,4	18,4		
100	149,7	20,5		
120	148,8	23,1		
140	147,8	26,1		
160	146,7	29,7		
180	145,4	33,8		
195,4**	139,5	36,4		
197,9	130	35,3		
198,6	120	33,9		
199,7	100	31,3		
200,6	80	29,3		
201,4	60	27,6		
201,9	40	26,5		
202,2	20	25,9		
202,3▲	0	25,5		


^{*} Point (x).

^{**} Diagonal.

12-pin base, IEC 67-I-47a, type 2





-14,7 max-7,92 + 0,13 - 0,12

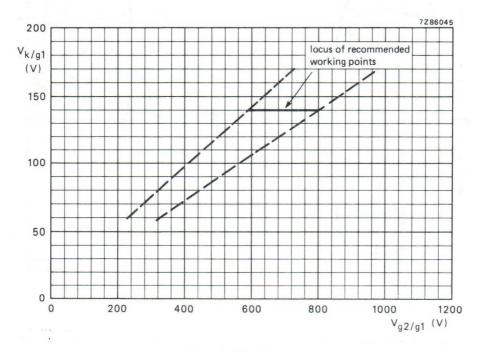
Maximum cone contour

	distance from centre (max. values)											
sec- tion	nom. distance from section 1	00	100	200	300	diag.	400	50°	60°	700	800	900
1	0	222	225	236	254	258	252	217	193	178	172	170
2	20	216	217	226	240	244	238	205	185	172	165	163
3	40	195	195	200	204	205	198	180	166	156	150	148
4	60	162	158	154	148	144	141	134	128	123	121	121
5	74	98	98	98	98	98	98	98	98	98	98	98

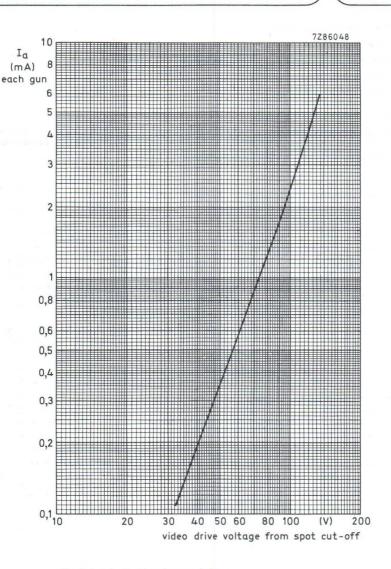
RECOMMENDED OPERATING CONDITIONS (cathode drive)

The voltages are specified with respect to grid 1.

Anode voltage


Va, g5, g4 25 kV

Grid 3 (focusing electrode) voltage


V_{g3} 6,5 to 7,45 kV

A. Operation at equal spot cut-off voltage V_k = 140 V

Grid 2 voltage (V_{q2}) adjusted for each gun separately; V_{q2} range 590 to 800 V.

Spot cut-off design chart.

Typical cathode drive characteristic.

 $V_f = 6.3 V$;

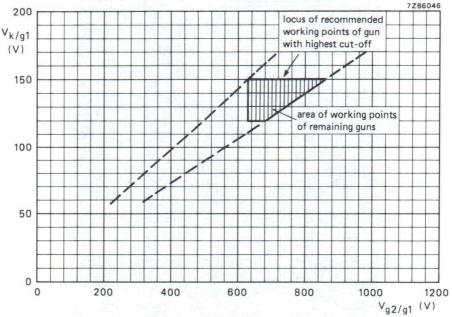
 $V_{a, g5, g4} = 25 \text{ kV};$

V_{g3} adjusted for focus;

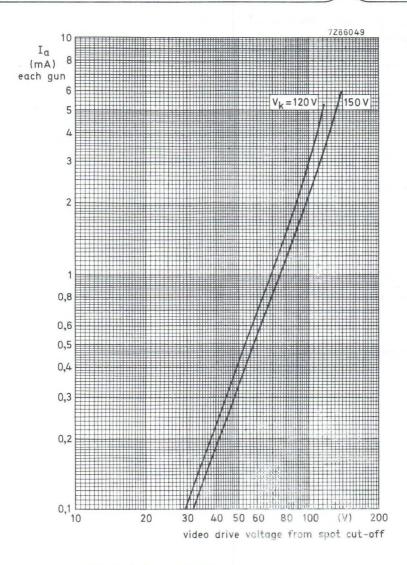
 V_{g2} (each gun) adjusted to provide spot cut-off for V_{k} = 140 V.

B. Operation at equal grid 2 voltage

Grid 2 voltage (V_{q2}) adjusted for highest gun spot cut-off voltage $V_k = 150 \text{ V}$.


Remaining guns adjusted for spot cut-off by means of cathode voltage.

V_{q2} range 630 to 860 V.


V_k range 120 to 150 V.

Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 150 V; increase the grid 2 voltage (V_{g2}) from approx. 600 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

Spot cut-off design chart.

Typical cathode drive characteristic.

 $V_f = 6.3 V$;

 $V_{a, g5, g4} = 25 \text{ kV};$

V_{g3} adjusted for focus;

 $\rm V_{g2}$ (each gun) adjusted to provide spot cut-off for $\rm V_{k}$ = 120 V and 150 V.

EQUIPMENT DESIGN VALUES (each gun if applicable)

The values are valid for anode voltages between 22,5 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage	V_{g3}	26 to 29,8% of anode voltage
Difference in cut-off voltage between guns in one tube	$\Delta V_{\mathbf{k}}$	lowest value is min. 80% of highest value
Heater voltage	Vf	6,3 V at zero beam current
Grid 3 (focusing electrode) current	l _{g3}	5 to $+5 \mu A$
Grid 2 current	l _{g2}	-5 to $+5 \mu A$
Grid 1 current at V _k = 140 V	l _{g1}	$-5 \text{ to } + 5 \mu A$
To produce white D, CIE co-ordinates $x = 0.313$, $y = 0.000$	= 0,329.	
Percentage of the total anode current supplied by ea	ch gun (typical)
red gun		38,3%
green gun		35,8%

blue gun

Ratio of anode current red gun to green gun red gun to blue gun blue gun to green gun

min.	av.	max.
0,7	1,1	1,4
1,1	1,5	2,0
0.5	0.7	10

BEAM CENTRING

Maximum centring error in any direction

4.5 mm

25,9%

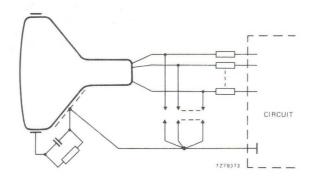
LIMITING VALUES (each gun if applicable)

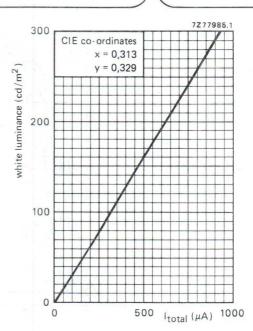
Design maximum rating system unless otherwise stated.

The voltages are specified with respect to grid 1.

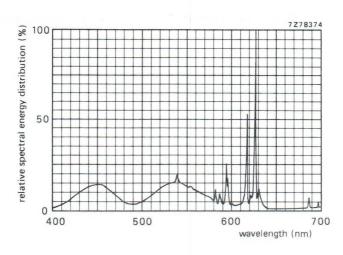
Anode voltage	V _{a, g5, g4}	max. min.	27,5 22,5		notes 1, 2, 3 note 4
Long-term average current for three guns	la	max.	1000	μΑ	note 5
Grid 3 (focusing electrode) voltage	V _g 3	max.	9	kV	
Grid 2 voltage	V _{g2}	max.	1200	V	note 6
Cathode voltage					
positive	Vk	max.	400	V	
positive operating cut-off	V_{k}	max.	200	V	
negative	$-v_k$	max.	0	V	
negative peak	-V _{kp}	max.	2	V	
Cathode to heater voltage					
positive	Vkf	max.	250	V	
positive peak	Vkfp	max.	300	V	note 1
negative	$-V_{kf}$	max.	135	V	
negative peak	-V _{kfp}	max.	180	V	note 1
Heater voltage	Vf	6,3 \	/ + 5 -10	%	notes 1, 7

Notes

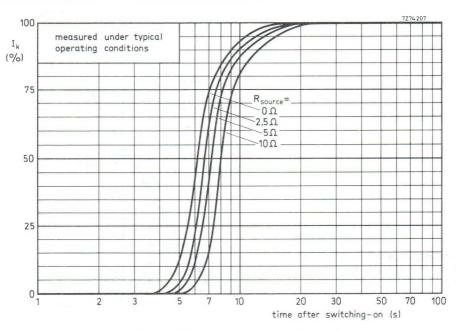

- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 36 pA/kg (0,5 mR/h), measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 6. During adjustment on the production line max. 1500 V is permitted.
- 7. For maximum cathode life and optimum performance it is recommended that the heater supply be designed for 6,3 V at zero beam current.


FLASHOVER PROTECTION

High electric field strengths are present between the gun electrodes of picture tubes. Voltages between gun electrodes may reach values of 20 kV over approx. 1 mm. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.


Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage and damage to the circuitry which is directly connected to the tube socket. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 10,5 kV, and at the other electrodes of 1,5 to 2 kV. The values of the series isolation resistors should be as high as possible (min 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.

Additional information is available on request.

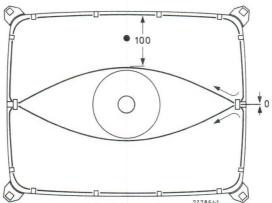


Luminance at the centre of the screen as a function of I_{total} . Scanned area 518 mm x 390 mm.

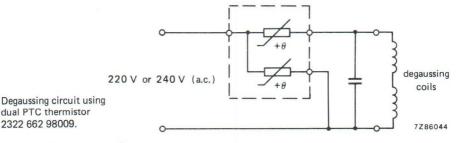
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to provide white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	X	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.


DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts.


For proper degaussing an initial magnetomotive force (m.m.f.) of 250 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils (≤ 0.25 ampere turns).

If single-phase power rectification is employed in the TV circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

To ease the mounting of the coils, the rimband is provided with rectangular holes. An example is given below.

Position of degaussing coils on the picture tube.

Data of each degaussing coil

Circumference
Number of turns
Copper-wire diameter
Aluminium-wire diameter
Resistance

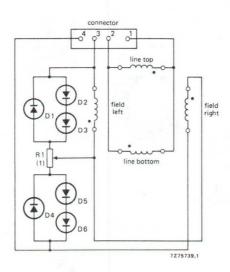
120 cm 50 0,35 mm 0,45 mm 11 Ω

i grang granta

Section Sectio

Man de la companya della companya della companya de la companya della companya de

Replaced by AT1850

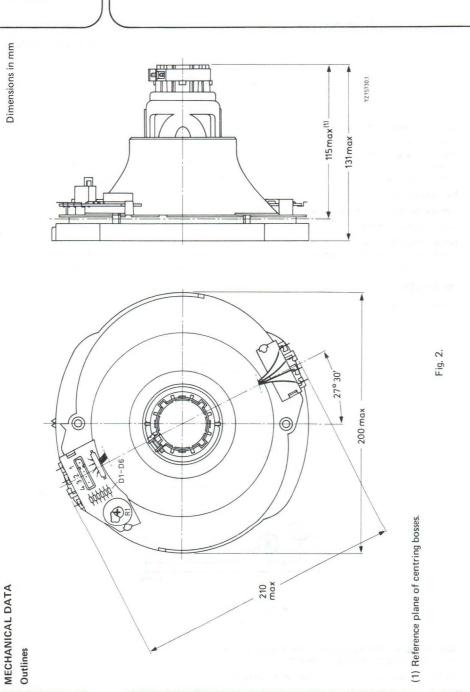

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube gun arrangement diagonal neck diameter	in line 51 cm (20 in) 36,5 mm
Deflection angle	1100
Line deflection current, edge to edge at 25 kV	4,8 A(p-p)
Inductance of line coils	1,53 mH
Resistance of field coils (damping resistor R1 included)	6,2 Ω

CONNECTIONS

(See also Fig. 2).



Means winding direction.

Fig. 1.

Matching female Stocko connector MKF 804-1-0-404. D1 to D6 = BAS11, BAX18 or BAX18A.

(1) R1 is factory adjusted and locked with adhesive.

360

April 1985

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube gun arrangement	in line
diagonal	51 cm (20 in)
neck diameter	36,5 mm
Deflection angle	1100
Line deflection current, edge to edge at 25 kV	4,8 A p-p
Inductance of line coils	1,53 mH
Resistance of field coils	
(damping resistor R1 included)	6,2 Ω

APPLICATION

This deflection unit has been designed for use with a 110° colour picture tube type A51-540X in CTV receivers in conjunction with e.g.:

diode-split line output transformer line output transistor BU208A linearity control unit AT4042/42

DESCRIPTION

The deflection unit consists of flangeless line and field coils, a one piece ferrite ring and a one piece coil carrier.

Mounting

The deflection unit can simply be pushed on the neck of a picture tube.

Both on the neck of the tube and on the deflection unit, there are 3 reference surfaces to establish angular and axial positioning.

Once the unit is mounted the combination is perfectly aligned and requires no further adjustment for static convergence, colour purity and raster orientation.

The unit must be pressed against the reference surfaces on the cone of the picture tube with a force of 20 ± 5 N and fixed by tightening the screw in the clamping ring at the rear with a torque of $1.0^{+0.4}_{-0.2}$ Nm.

Maximum axial force exerted on the screw is 20 N.

ELECTRICAL DATA

1.1	ne	CO	115	

inductance	1,53 mH ± 4%
resistance at 25 °C	$1.4 \Omega \pm 10\%$
Magnetic flux at 25 kV	7,5 mWb ± 5%
Line deflection current edge to edge at 25 kV	4,8 A p-p

F

Field coils	
inductance	9,7 mH ± 10%
resistance at 25 °C (damping resistance R1 included)	$6,2 \Omega \pm 7\%$
Field deflection current edge to edge at 25 kV	2,0 A p-p
Max, operating temperature	90 °C

Max. operating temperature

Connections

(See also Fig. 1).

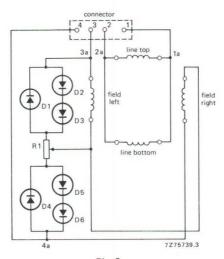


Fig. 2.

Matching female Stocko connector MKF 804-1-0-404. D1 to D6 = BAS11, BAX18, BAX18A, BAV10 or BAW62.

 $R1 = 180 \Omega$.

. .

The state of the s

erole i decenti de la compositione de la compositione de la compositione de la compositione de la compositione

and the second s

The the second s

Aloft And Tige And Ti

AND CONTROL OF THE PROPERTY OF

No company of the second of th

6.00

Hi-Bri COLOUR PICTURE TUBE

- 900 deflection
- In-line gun, electrostatic bi-potential focus
- 29,1 mm neck diameter
- · Hi-Bri screen with pigmented phosphors featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moire
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- · Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1237), it forms a self-converging assembly; dynamic convergence is not required.

QUICK REFERENCE DATA

Focusing voltage	20% of anode voltage
Heating	6,3 V, 685 mA
Neck diameter	29,1 mm
Overall length	424 mm
Face diagonal	51 cm
Deflection angle	900

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method

Focus lens

Deflection method

Deflection angles

diagonal horizontal

vertical

unitized triple-aperture electrodes

electrostatic

bi-potential

magnetic

approx. 900

approx. 780

approx. 600

max. 2300 pF

ELECTRICAL DATA

Capacitances

anode to external

conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes

focusing electrode to all other electrodes

Heating

heater voltage

heater current

 C_{a1}

CkR, CkG, CkB

Cq3

Vf

If

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis

vertical axis area

Phosphors

red

green

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

 $C_{a(m+m')}$

min. 1500 pF 15 pF

5 pF

6 pF indirect by a.c. or d.c.

6.3 V

685 mA

metal-backed vertical phosphor stripes; phosphor lines follow

glass contour

satinized

min. 480,0 mm

min. 404.4 mm

min. 303,3 mm

min. 1190 cm2

pigmented europium activated rare

earth

sulphide type

pigmented sulphide type

0.8 mm

64%

MECHANICAL DATA (see also the figures on the following pages)

Overall length

424 ± 5 mm

Neck diameter

29,1 + 1,4 mm *

Bulb dimensions

diagonal width height max. 515,5 mm max. 442,5 mm max. 343.8 mm

Base

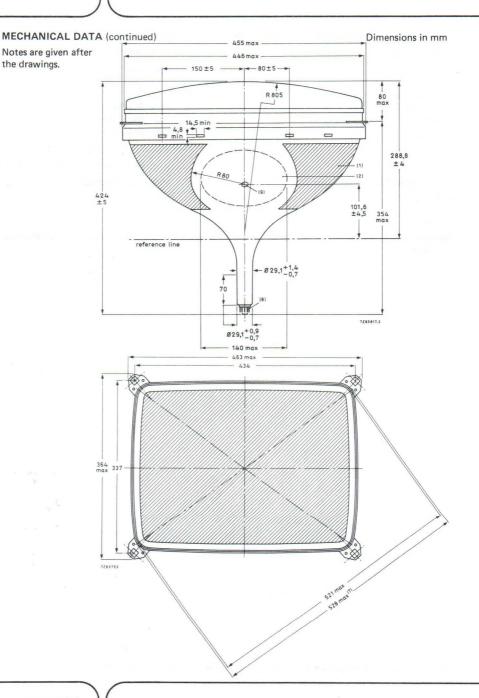
max. 343,8 mm

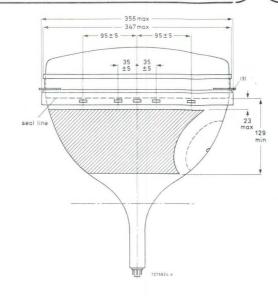
Anode contact

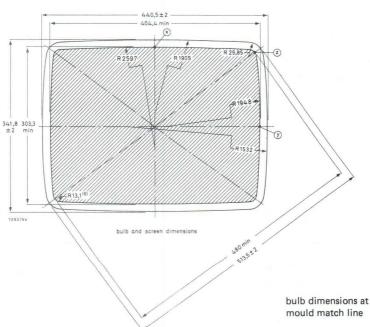
12-pin base JEDEC B12-262 small cavity contact J1-21, IEC 67-III-2

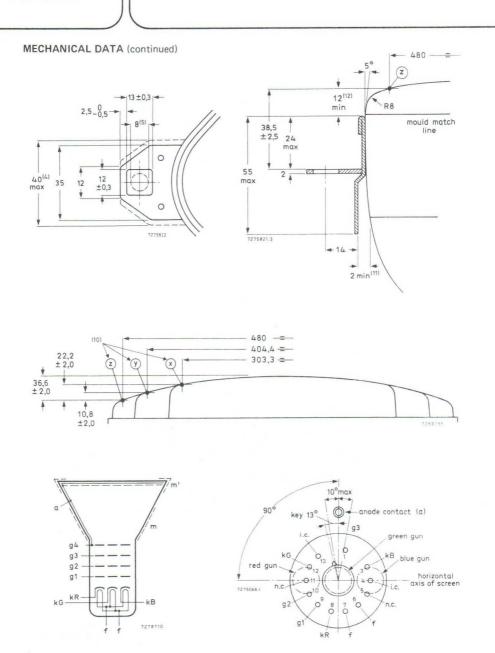
Mounting position

anode contact on top

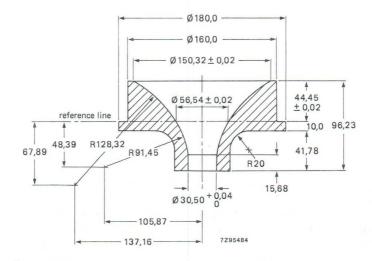

Net mass


approx. 13 kg

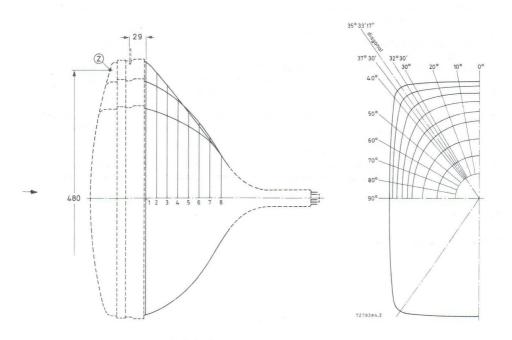

Handling


During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

^{*} In the region of 70 mm from the neck end, the maximum diameter is 30 mm.

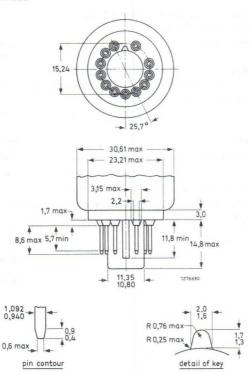


i.c. = internally connected (not to be used)
n.c. = not connected


Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 434 mm x 337 mm.
- 6. Co-ordinates for radius R = 13,1 mm; x = 184,58 mm, y = 131,93 mm.
- 7. Maximum dimensions in plane of lugs.
- The socket for this base should not be rigidly mounted: it should have flexible leads and be allowed to move freely. The bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 50 mm.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.
- 11. Minimum distance between glass and rimband in plane of centre line apertures.
- 12. Distance from point z to any handware.

Reference line gauge; GR90CJ4



Maximum cone contour

	nom. distance from centre (max. values)															
sec- tion	from section 1	00	100	200	25°	30°	32° 30′	diag.	37° 30′	400	450	500	60°	700	800	900
1	0	218,7	221,9	231,2	238,5	247,5	252,2	255,9	254,6	247,7	230,1	215,1	193,0	179,2	171,5	169,0
2	20	209,8	212,4	220,3	226,0	232,5	235,3	236,5	235,0	230,2	216,9	204,4	184,9	172,3	165,3	163,0
3	40	197,5	199,4	204,7	208,1	211,1	211,9	211,4	210,0	207,0	198,6	189,5	173,9	163,2	157,1	155,1
4	60	182,2	183,2	185,8	187,1	187,7	187,4	186,4	185,3	183,3	178,2	172,1	160,7	152,4	147,4	145,8
5	80	163,2	163,5	163,9	163,7	163,1	162,4	161,4	160,6	159,3	156,3	152,9	145,8	140,1	136,6	135,4
6	100	146,1	146,1	145,7	145,1	144,2	143,6	142,8	142,2	141,4	139,5	137,5	133,3	129,7	127,3	126,5
7	120	112,3	112,3	111,9	111,7	111,3	111,1	110,9	110,7	110,5	110,0	109,5	108,6	107,8	107,3	107,1
8	141,7	79,8	79,8	79,8	79,8	79,8	79.8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8

12-pin base; JEDEC B12-262

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1. Anode voltage or voltage Grid 3 (focusing electrode) voltage Grid 2 voltage for a spot cut-off voltage $V_k = 120 \ V$

Luminance at the centre of the screen*

Va, g4	25	kV
V _{g3}	4,7 to 5,5	kV
V_{g2}	310 to 560	V
L	170	cd/m ²

^{*} Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329), focused raster, current density $0.4 \,\mu\text{A/cm}^2$.

EQUIPMENT DESIGN VALUES

red gun to green gun

red gun to blue gun

blue gun to green gun

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.			
Grid 3 (focusing electrode) voltage	V_{g3}	18,8 to 22% of anode voltage	
Grid 2 voltage and cathode voltage for visual extinction of focused spot	V_{g2} and V_{k}	see cut-off design chart *	
Difference in cut-off voltages between guns in any tube	ΔV_{k}	lowest value > 80% of highest value	
Video drive characteristics		see graphs **	
Grid 3 (focusing electrode) current	I_{g3}	$-5 \text{ to } + 5 \mu A$	
Grid 2 current	I _{g2}	-5 to + 5 μ A	
Grid 1 current under cut-off conditions	I _{g1}	F F . A	
To produce white of 6500K + 7 M.P.C.D. (CIE co-o	rdinates x = 0,313, y =	0,329)	
Percentage of the total anode current supplied by each	h gun (typical)		
red gun		38,3%	
green gun		35,8%	
blue gun		25,9%	
Ratio of anode current		min. av. max.	

0,7

1,1

0,5

1,1

1,5

0,7

1,4

2,0

1,0

For optimum picture performance it is recommended that the cathodes are not driven below + 10 V.

The common V_{g2} should be adjusted as follows: Set the cathode voltage, V_k , for each gun at 120 V. Increase the V_{g2} from about 300 V to the value at which the raster of one of the guns becomes just visible. Now decrease the V_k of the remaining guns so that the rasters of these guns also become visible.

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

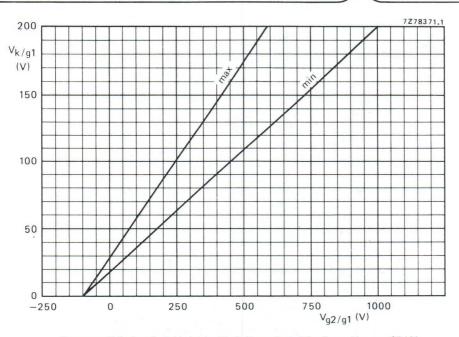
Anode voltage	V _{a, g4}	max. min.	27,5 20	kV kV	notes 1, 2 and 3 note 4
Long-term average current for three guns	la	max.	1000	μΑ	note 5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	7	kV	
Grid 2 voltage, peak	V _{g2p}	max.	1000	٧	
Cathode voltage positive positive operating cut-off negative negative peak	V _k V _k -V _k -V _{kp}	max. max. max. max.	400 200 0 2	V	
Heater voltage	V_{f}	6,3 V	+ 5		notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode during equipment warm-ip period not exceeding 15 s	Vkf	max.	450		note 1
after equipment warm-up period heater positive with respect to cathode	V _{kf} -V _{kfp} -V _{kf}	max. peak max. (d.c. cc	250 200 0 mpone	V	note 1

Notes

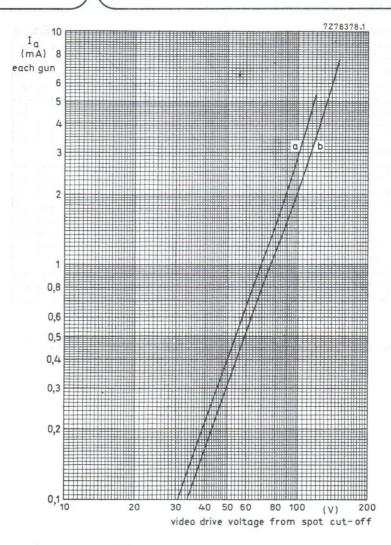

- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

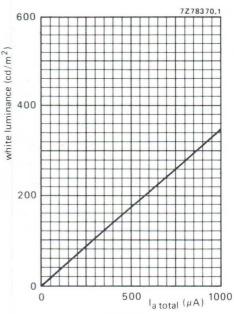

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 8,5 kV (1,5 x V_{q3} max. at $V_{a,q4}$ = 25 kV), and at the other electrodes of 1,5 to 2 kV.

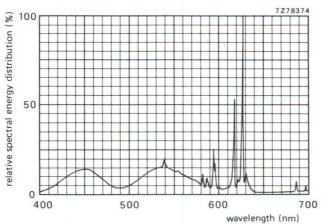
The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.



BEAM CORRECTIONS

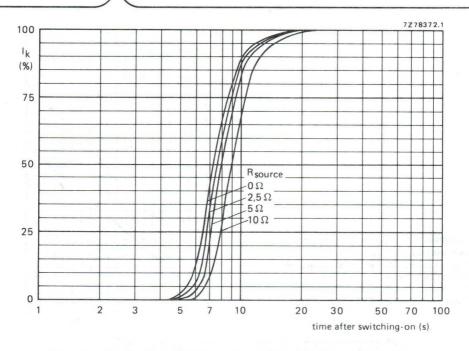
Maximum required correction for register, as measured at the centre of the screen in any direction	0,08 mm
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	5 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2,5 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured	
with deflection coils in nominal position	5 mm


Spot cut-off design chart (cathode drive), V_{g3} adjusted for focus, $V_{a, g4}$ = 25 kV.



Typical cathode drive characteristics

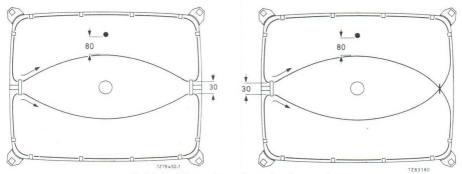
 V_f = 6,3 V; $V_{a,94}$ = 25 kV; V_{g3} adjusted for focus; V_{g2} adjusted to provide spot cut-off for desired fixed V_K .


curve a = spot cut-off = 120 V; curve b = spot cut-off = 150 V. Luminance at the centre of the screen as a function of I_{total} . $V_{a,\,g4} = 25$ kV, $V_f = 6,3$ V, V_{g3} adjusted for optimum focus. Scanned area = 404,4 mm \times 303,3 mm; CIE co-ordinates \times = 0,313, \times = 0,329.

Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

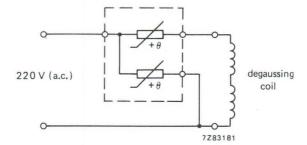
Colour co-ordinates:	X	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

Cathode heating time after switching on , measured under typical operating conditions.


DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic, degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil shaped in the form of a figure eight, with one half on the top and the other half on the bottom cone part.

For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils (≤ 0.3 ampere-turns).


If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.

Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor.

Data of each degaussing coil	double-coil system	single-coil system
Circumference	117 cm	237 cm
Number of turns	60	60
Copper-wire diameter	0,35 mm	0,35 mm
Resistance (R _c)	12,5 Ω	25,1 Ω
Catalogue number of appropriate dual PTC thermistor	2322 662 98009	2322 662 98009

and many of the state

1

1000

12-02-03 12-02-03

DEFLECTION UNIT

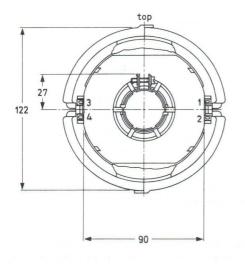
QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
diagonal	51 cm (20 in)
neck diameter	29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	3,25 A (p-p)
Inductance of line coils, parallel connected	1,66 mH
Field deflection current, edge to edge at 25 kV	0,40 A (p-p)
Resistance of field coils, series connected	60Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A51-570X, with a neck diameter of 29,1 mm.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Outlines

Dimensions in mm

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0,7}$ mm.

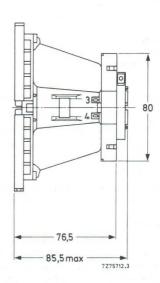


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1.4 Nm

IEC68-2-6 (test Fc)

IEC68-2-29 (test Eb; 35g)

IEC68-2-1 (test Ab)

IEC68-2-2 (test Bb)

IEC68-2-3 (test Ca)

IEC68-2-30 (test Db)

IEC68-2-14 (test Nb)

AT1237/50

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.) between line and field coils

between line coil and core clamp between field coil and core clamp 1,66 mH \pm 5% 1,9 Ω \pm 10%

3,25 A (p-p)

114 mH \pm 10% 60 Ω \pm 7%

0.40 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

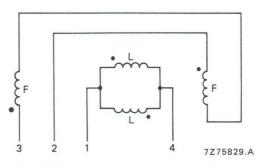


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube
 and the deflection unit. These wedges have to be cemented on to the picture tube.

Hi-Bri COLOUR PICTURE TUBE

- 90º deflection
- In-line gun, electrostatic hi-bi potential for improved focus
- 29.1 mm neck diameter
- · Hi-Bri screen with pigmented phosphors featuring high brightness and increased contrast performance
- · Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- · Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1237), it forms a self-converging assembly; dynamic convergence is not required.

QUICK REFERENCE DATA

Focusing voltage	28% of anode voltage
Heating	6,3 V, 685 mA
Neck diameter	29,1 mm
Overall length	431,5 mm
Face diagonal	51 cm
Deflection angle	900

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method

Focus lens

Deflection method

Deflection angles

diagonal

horizontal

vertical

unitized triple-aperture electrodes

electrostatic

hi-bi potential

magnetic

approx. 900

approx. 78° approx. 60°

ELECTRICAL DATA

Capacitances

anode to external

conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes focusing electrode to all other electrodes

Heating

heater voltage

heater current

 $C_{a(m+m')}$

max. 2300 pF min. 1500 pF

C_{a1} 17 pF

CkR, CkG, CkB 5 pF

C_{q3} 6 pF

indirect by a.c. or d.c.

V_f 6,3 V I_f 685 mA

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis vertical axis

area

Phosphors

red

green

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

rare earth

glass contour

min. 480.0 mm

min. 404,4 mm

min. 303,3 mm min. 1190 cm²

satinized

sulphide type

pigmented sulphide type

pigmented europium activated

metal-backed vertical phosphor stripes; phosphor lines follow

0,8 mm

64%

MECHANICAL DATA (see also the figures on the following pages)

Overall length 431,4 \pm 5 mm

Neck diameter $29,1 + \frac{1}{-0.7} \text{ mm*}$

Bulb dimensions

 diagonal
 max. 515,5 mm

 width
 max. 442,5 mm

 height
 max. 343,8 mm

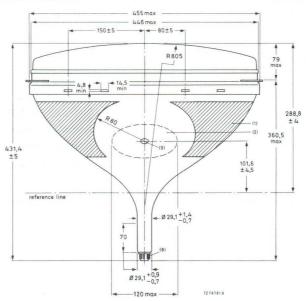
Base 10-pin base JEDEC B10-277

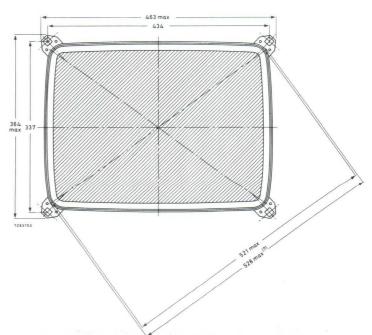
Anode contact small cavity contact J1-21, IEC 67-III-2

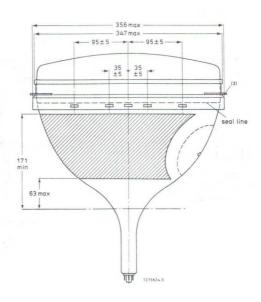
Mounting position anode contact on top

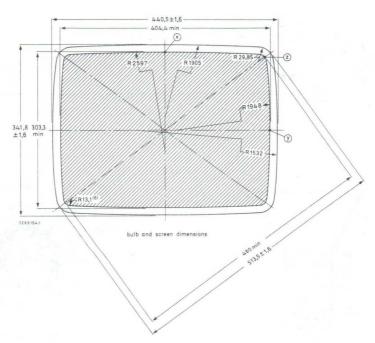
Net mass approx. 13 kg

Handling

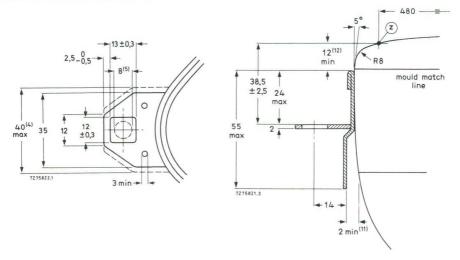

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

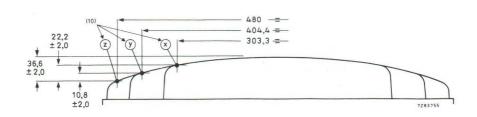

^{*} In the region of 70 mm from the neck end, the maximum diameter is 30 mm.

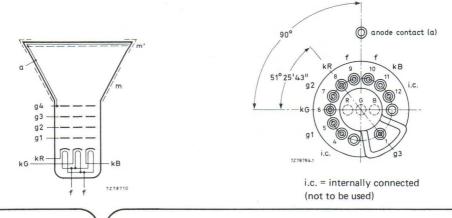

MECHANICAL DATA (continued)


Dimensions in mm

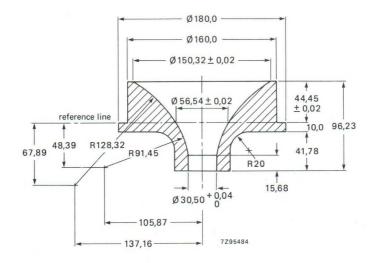
Notes are given after the drawings.



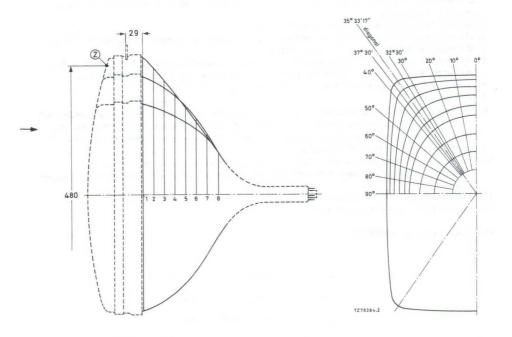




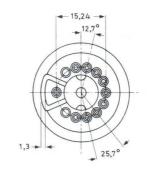
MECHANICAL DATA (continued)

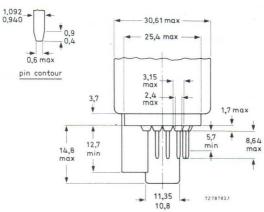


Notes to outline drawings on the preceding pages


- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 434 mm x 337 mm.
- 6. Co-ordinates for radius R = 13,1 mm: x = 184,58 mm, y = 131,93 mm.
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.
- 11. Minimum distance between glass and rimband in plane of centre line apertures.
- 12. Distance from point z to any hardware.

Reference line gauge; GR90CJ4


A51-580X


Maximum cone contour

	nom. distance from centre (max. values)															
	distance from section 1	00	10°	20°	25°	30°	32º 30'	diag. axes	37°30′	400	45°	50°	60°	70°	80o	900
1	0	218,7	221,9	231,2	238,5	247,5	252,2	255,9	254,6	247,7	230,1	215,1	193,0	179,2	171,5	169,0
2	20	209,8	212,4	220,3	226,0	232,5	235,3	236,5	235,0	230,2	216,9	204,4	184,9	172,3	165,3	163,0
3	40	197,5	199,4	204,7	208,1	211,1	211,9	211,4	210,0	207,0	198,6	189,5	173,9	163,2	157,1	155,1
4	60	182,2	183,2	185,8	187,1	187,7	187,4	186,4	185,3	183,3	178,2	172,1	160,7	152,4	147,4	145,8
5	80	163,2	163,5	163,9	163,7	163,1	162,4	161,4	160,6	159,3	156,3	152,9	145,8	140,1	136,6	135,4
6	100	146,1	146,1	145,7	145,1	144,2	143,6	142,8	142,2	141,4	139,5	137,5	133,3	129,7	127,3	126,5
7	120	112,3	112,3	111,9	111,7	111,3	111,1	110,9	110,7	110,5	110,0	109,5	108,6	107,8	107,3	107,1
8	141,7	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8

10-pin base; JEDEC B10-277

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

V _{a,g4}	25	kV
V _g 3	6,6 to 7,5	kV
V_{g2}	390 to 760	V
L	170	cd/m^2
	V _{g3}	V _{g3} 6,6 to 7,5 V _{g2} 390 to 760

^{*} Tube settings adjusted to produce white D (x = 0,313, y = 0,329), focused raster, current density $0.4~\mu\text{A/cm}^2$.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV. The voltages are specified with respect to grid 1. 26.6 to 29.8% of Grid 3 (focusing electrode) voltage V_{a3} anode voltage Grid 2 voltage and cathode voltage for visual extinction of focused spot V_{g2} and V_k see cut-off design chart* Difference in cut-off voltages between ΔVk lowest value > 80% of guns in any tube highest value Video drive characteristics see graphs** Grid 3 (focusing electrode) current $-5 \text{ to } + 5 \mu A$ lg3 $-5 \text{ to } + 5 \mu A$ Grid 2 current la2 Grid 1 current under cut-off conditions $-5 \text{ to } + 5 \mu A$ la1 To produce white D, CIE co-ordinates x = 0.313, y = 0.329. Percentage of the total anode current supplied by each gun (typical) red gun 38.3% green gun 35.8% 25,9% blue gun Ratio of anode currents min. 0.8 red gun to green gun average 1,1 max. 1,4 red gun to blue gun min. 1.1 average 1.5 max. 1,9 0.5 min. blue gun to green gun average 0.7

max.

0,9

^{*} The common V_{g2} should be adjusted as follows: Set the cathode voltage, V_k, for each gun at 150 V. Increase the V_{g2} from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the V_k of the remaining guns so that the rasters of these guns also become visible.

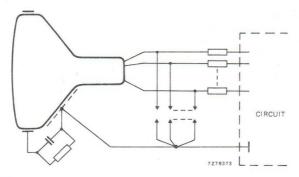
^{**} For optimum picture performance it is recommended that the cathodes are not driven below + 10 V.

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

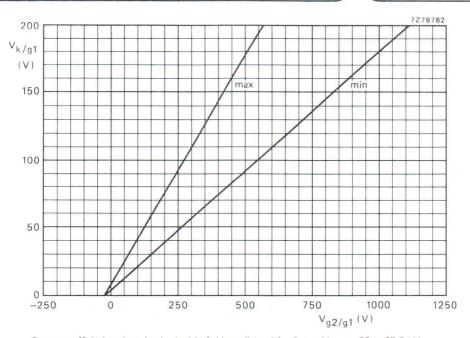
Anode voltage	V _{a, g4}	max. min.	27,5 kV 20 kV	notes 1, 2 and 3 note 4
Long-term average current for three guns	la	max.	1000 μΑ	note 5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11 kV	
Grid 2 voltage, peak	V_{g2p}	max.	1000 V	
Cathode voltage positive positive operating cut-off negative negative peak	V _k V _k -V _k -V _{kp}	max. max. max.	400 V 200 V 0 V 2 V	
Heater voltage	V _f	6,3 V	+ 5 % -10 %	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode during equipment warm-up period				
not exceeding 15 s	Vkf	max.	450 V	note 1
after equipment warm-up period heater positive with respect to cathode	V _{kf} -V _{kfp} -V _{kf}	max. peak max.	250 V 200 V 0 V	note 1
		(d.c. co	mponent va	alue)

Notes

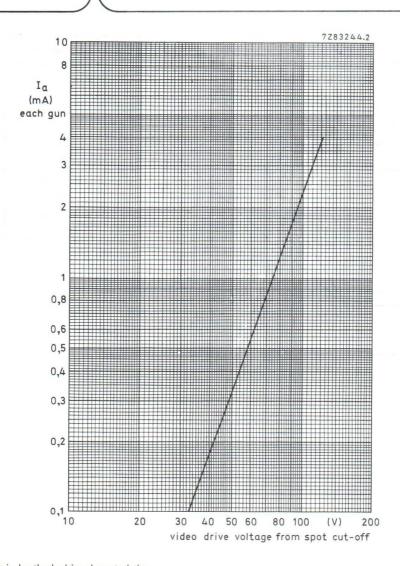

- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerable. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

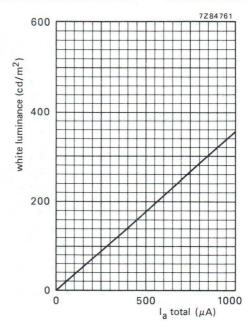
With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

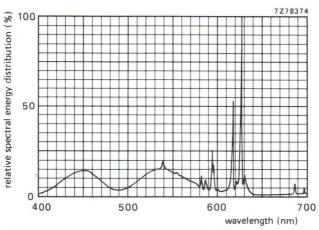

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11,5 kV (1,5 x V_{q3} max. at $V_{a,q4} = 25$ kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. $1.5 \text{ k}\Omega$) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

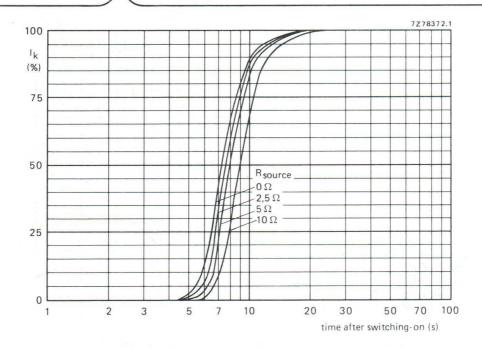


BEAM CORRECTIONS


Maximum required correction for register, as measured at the centre of the screen in any direction	0,08	mm	
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	5	mm	
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2,5	mm	
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position	5	mm	


Spot cut-off design chart (cathode drive), V_{g3} adjusted for focus, $V_{a,g4}$ = 20 to 27,5 kV.

Typical cathode drive characteristics $V_f = 6.3 \text{ V}$ $V_{a,94} = 25 \text{ kV}$ V_{g3} adjusted for focus V_{g2} adjusted to provide spot cut-off for $V_K = 140 \text{ V}$

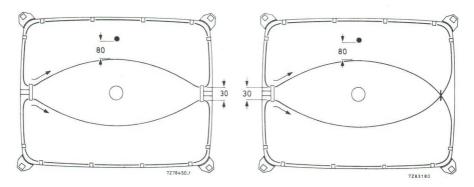


Luminance at the centre of the screen as a function of I_{total} . $V_{a,g4}$ = 25 kV. Scanned area = 404,4 mm x 303,3 mm; CIE co-ordinates x = 0,313, y = 0,329.

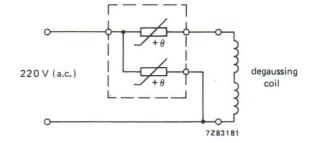
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

Cathode heating time after switching on, measured under typical operating conditions.


DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil shaped in the form of a figure eight, with one half on the top and the other half on the bottom cone part.


For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils (\leq 0,3 ampere-turns).

If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.

Position of degaussing coils on the picture tube.

double-coil system | single-coil system

Degaussing circuit using dual PTC thermistor.

Data of each degaussing coil

	double-con system	single-con system
Circumference	117 cm	237 cm
Number of turns	60	60
Copper-wire diameter	0,35 mm	0,35 mm
Resistance (R _C)	12,5 Ω	25,1 Ω
Catalogue number of		
appropriate dual PTC thermistor	2322 662 98009	2322 662 98009

DEFLECTION UNIT

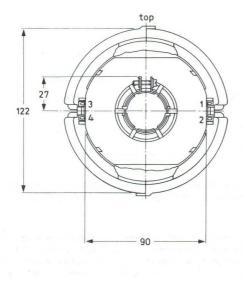
QUICK REFERENCE DATA

Picture tube, gun arrangement diagonal neck diameter	in line 51 cm (20 in) 29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	2,75 A(p-p)
Inductance of line coils, parallel connected	2,3 mH
Field deflection current, edge to edge at 25 kV	0,86 A(p-p)
Resistance of field coils, parallel connected	12,4 Ω

APPLICATION

This deflection unit is designed for 90° in-line colour picture tube A51-580X, with a neck diameter of 29,1 mm, to operate in conjunction with devices for colour purity and static convergence.

DESCRIPTION


The deflection unit consists of saddle-shaped horizontal coils and toroidal wound vertical coils, thus forming a hybrid yoke. The unit is provided with a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0,7}$ mm.

Dimensions in mm

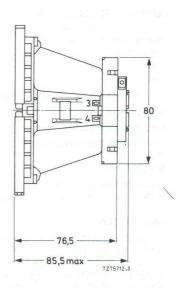


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

according to UL 1413, category 94-V1

1,4 Nm

IEC68-2-6 (test Fc)

IEC68-2-29 (test Eb; 35g)

IEC68-2-1 (test Ab)

IEC68-2-2 (test Bb)

IEC68-2-3 (test Ca)

IEC68-2-30 (test Db)

IEC68-2-14 (test Nb)

AT1237/00

ELECTRICAL DATA

Horizontal coils	
Inductance at 1 V (r.m.s.), 1 kHz	
Resistance at 25 °C	

Vertical coils

Inductance at 1 V (r.m.s.), 1 kHz Resistance at 25 °C

Typical currents with Ea = 25 kV and full scan Horizontal IH

Vertical IV

Cross-talk

 $2,3 \text{ mH} \pm 5\%$ $2,25 \Omega \pm 10\%$

23,0 mH \pm 10% 12,4 Ω \pm 7%

2,75 A (p-p) 0,86 A (p-p)

a voltage of 10 V, 15 625 Hz applied to horizontal coils causes no more than 0,2 V across the vertical coils (damping resistors included)

Insulation resistance at 1 kV (d.c.)

between horizontal and vertical coils between horizontal coil and core clamp between vertical coil and core clamp > 500 M Ω > 500 M Ω > 10 M Ω

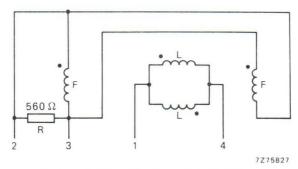


Fig. 2 Connection diagram. L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

DEFLECTION UNIT

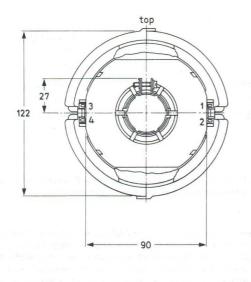
QUICK REFERENCE DATA

Picture tube, gun arrangement diagonal neck diameter	in line 51 cm (20 in) 29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	3,25 A(p-p)
Inductance of line coils, parallel connected	1,63 mH
Field deflection current, edge to edge at 25 kV	0,80 A(p-p)
Resistance of field coils, parallel connected	15 Ω

APPLICATION

This deflection unit is designed for 90° in-line colour picture tube A51-580X, with a neck diameter of 29,1 mm, to operate in conjunction with devices for colour purity and static convergence.

DESCRIPTION


The deflection unit consists of saddle-shaped horizontal coils and toroidal wound vertical coils, thus forming a hybrid yoke. The unit is provided with a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0,7}$ mm.

Dimensions in mm

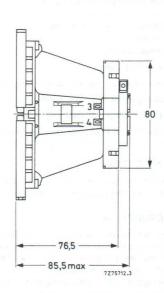


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

IEC68-2-6 (test Fc)

IEC68-2-29 (test Eb; 35g)

IEC68-2-1 (test Ab)

IEC68-2-2 (test Bb)

IEC68-2-3 (test Ca)

IEC68-2-30 (test Db)

IEC68-2-14 (test Nb)

0.2 V across the vertical coils (damping

resistors included)

ELECTRICAL DATA

Horizontal coils

Inductance at 1 V (r.m.s.), 1 kHz Resistance at 25 °C	1,63 mH \pm 5% 1,9 Ω \pm 10%
Vertical coils Inductance at 1 V (r.m.s.), 1 kHz Resistance at 25 °C	28,5 mH \pm 10% 15 Ω \pm 7%
Typical currents with Ea = 25 kV and full scan Horizontal I _H Vertical I _V	3,25 A (p-p) 0,80 A (p-p)
Cross-talk	a voltage of 10 V, 15 625 Hz applied to horizontal coils causes no more than

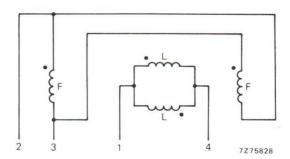


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges has to be cemented on to the picture tube.

- IJ symbol . .

din sampuagi

and the state of

and the second development of the second

Star V

And the second s

7 8 H T 18

WORLD THE PA

- The second secon
 - The state of the s
 - a de la composition Composition de la co
 - the property of the property of the contract of the property of the property of the property of the property of
- Affirm the Affirmation of the Control of the Contro
- The Soft Harden reside that the resource for a record of the resource of the state of the state

DEFLECTION UNIT

QUICK REFERENCE DATA

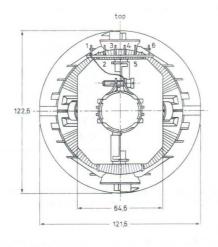
Picture tube gun arrangement diagonal neck diameter	in line 51 cm (20 in) 29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	2,75 A (p-p)
Inductance of line coils, parallel connected	2,3 mH
Field deflection current, edge to edge at 25 kV	0,9 A (p-p)
Resistance of field coils, series connected	12,4 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tubes A51-570X and A51-580X, with a neck diameter of 29,1 mm.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.


AT1238/01

MECHANICAL DATA

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0,7}$ mm.

Dimensions in mm

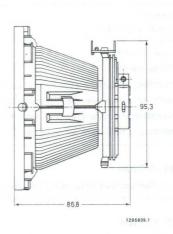


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1.4 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

1	no	coi	Ic

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross talk

Insulation resistance at 1 kV (d c)

between line and field coils

between line coil and core clamp between field coil and core clamp $2.3 \text{ mH} \pm 5\%$ $2.25 \Omega \pm 10\%$

2,75 A (p-p)

22.0 mH ± 10%

 $12.4 \Omega \pm 7\%$

0,9 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

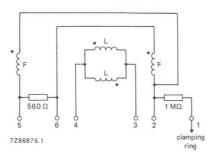


Fig. 2 Connection diagram. L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

41.00

adi kecala and silang an arang an arang

DEFLECTION UNIT

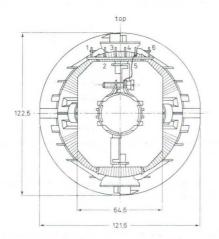
QUICK REFERENCE DATA

Picture tube gun arrangement diagonal neck diameter	in line 51 cm (20 in) 29,1 mm		
Deflection angle	900		
Line deflection current, edge to edge at 25 kV	3,15 A (p-p)		
Inductance of line coils, parallel connected	1,76 mH		
Field deflection current, edge to edge at 25 kV	0,88 A (p-p)		
Resistance of field coils, series connected	12,4 Ω		

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tubes A51-570X and A51-580X, with a neck diameter of 29,1 mm.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0.7}$ mm.

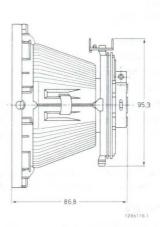


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

Shock

+90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (Na)

IEC 68-2-27 (Ea)

November 1985

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

ELECTRICAL DATA

	CO	

Field coils

Cross-talk

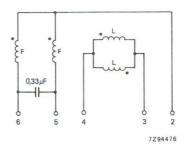


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

under in lawing til in ampropriations make a mpp in make til sin in fred tall som

DEFLECTION UNIT

QUICK REFERENCE DATA

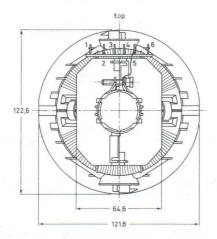
Picture tube	
gun arrangement	in line
diagonal	51 cm (20 in)
neck diameter	29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	3,25 A (p-p)
Inductance of line coils, parallel connected	1,66 mH
Field deflection current, edge to edge at 25 kV	0,80 A (p-p)
Resistance of field coils, parallel connected	15 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tubes A51-570X and A51-580X, with a neck diameter of 29,1 mm.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.


AT1238/40

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0,7}$ mm.

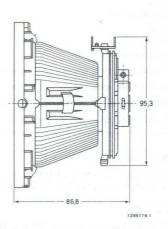


Fig. 1

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90°C

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp between field coil and core clamp

 $15 \Omega \pm 7\%$ 0,80 A (p-p)

28,5 mH ± 10%

1,66 mH \pm 5% 1.9 $\Omega \pm$ 10%

3,25 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

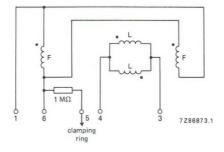


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

, a₁/14/00/0

DEFLECTION UNIT

QUICK REFERENCE DATA

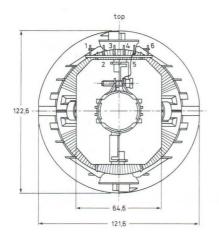
Picture tube	
qun arrangement	in line
diagonal	51 cm (20 in)
neck diameter	29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	3,25 A (p-p)
Inductance of line coils, parallel connected	1,66 mH
Field deflection current, edge to edge at 25 kV	0,40 A (p-p)
Resistance of field coils, series connected	60 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tubes A51-570X and A51-580X, with a neck diameter of 29,1 mm.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.


AT1238/50

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0,7}$ mm.

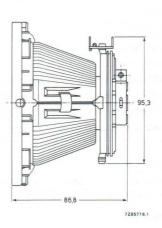


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

according to UL 1413, category 94-V1

1.4 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

Deflection unit AT1238/50

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

1,66 mH ± 5%

 $1.7 \Omega \pm 10\%$ 3.25 A (p-p)

114 mH ± 10%

60 $\Omega \pm 7\%$ 0.40 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

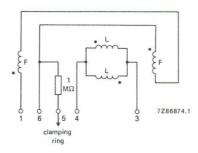


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube
 and the deflection unit. These wedges have to be cemented on to the picture tube.

Tropical Park 1

Some of the control o

- IF T - 1 - 2

- and the second s
 - Dutter for which is the first transfer to the form of the form
 - under de la laction de la laction de la laction de la général de la color de la laction de la color de la fina La laction de la financia de la color d
 - and the second the second to the second seco
- Trick to topics of the control of the

Hi-Bri COLOUR PICTURE TUBE

- 900 deflection
- In-line gun, thermally stable; electrostatic hi-bi potential for improved focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphors featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1236 or AT1480), it forms a self-converging and raster correction free assembly.

QUICK REFERENCE DATA

Focusing voltage	28% of anode voltage
Heating	6,3 V, 685 mA
Neck diameter	29,1 mm
Overall length	431,5 mm
Face diagonal	51 cm
Deflection angle	90o

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method

Focus lens

Deflection method

Deflection angles

diagonal

horizontal

vertical

unitized triple-aperture electrodes

electrostatic

hi-bi potential

magnetic

approx. 900

approx. 780

approx. 600

ELECTRICAL DATA

Capacitances

anode to external

conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes focusing electrode to all other electrodes

Heating

heater voltage

heater current

 $C_a(m + m')$

C_{a1}

CkR, CkG, CkB

C_{q3}

Vf

If

indirect by a.c. or d.c.

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis vertical axis

area

Phosphors

red

green

blue

Centre-to-centre distance of vertical identical

colour phosphor stripes, at screen centre

Light transmission of face glass at centre

max. 2300 pF min. 1500 pF 17 pF

5 pF

6 pF

6.3 V 685 mA

metal-backed vertical phosphor stripes; phosphor lines follow

glass contour

satinized

min. 480,0 mm

min. 404,4 mm

min. 303,3 mm

min. 1190 cm2

pigmented europium activated

rare earth

sulphide type

pigmented sulphide type

0,8 mm

64%

MECHANICAL DATA (see also the figures on the following pages)

Overall length 431,4 \pm 5 mm

Neck diameter $29,1 + 1,4 \\ -0,7 \text{ mm*}$

Bulb dimensions

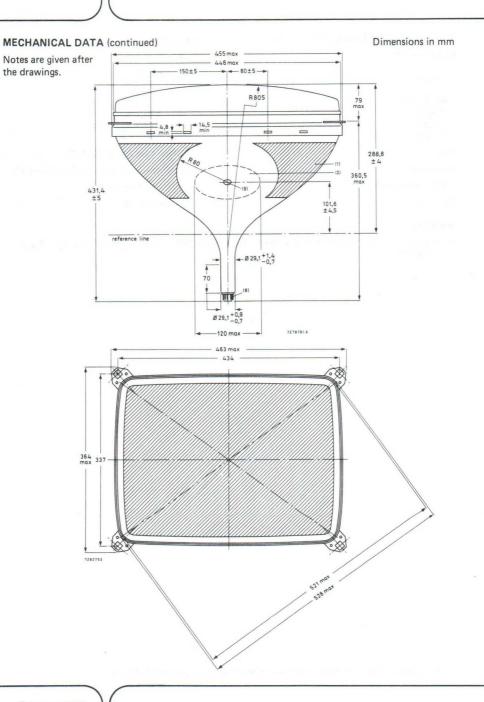
 diagonal
 max. 515,1 mm

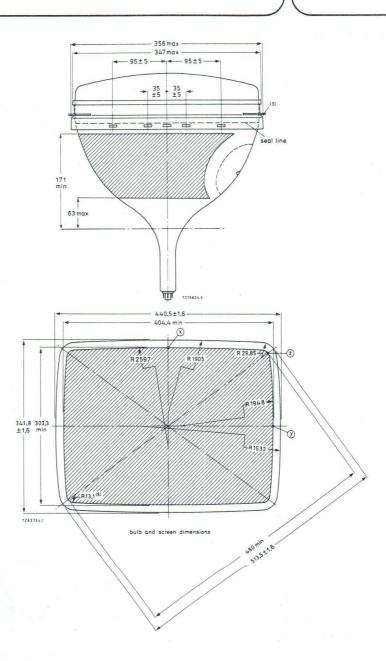
 width
 max. 442,1 mm

 height
 max. 343,4 mm

Base 10-pin base JEDEC B10-277

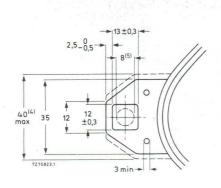
Anode contact small cavity contact J1-21, IEC 67-III-2

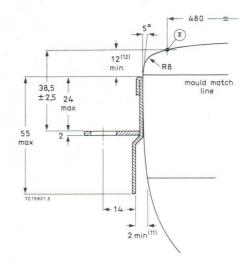

Mounting position anode contact on top

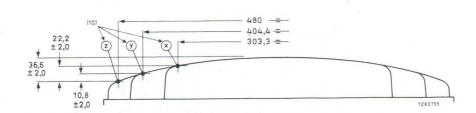

Net mass approx. 13 kg

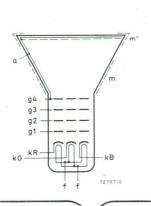
Handling

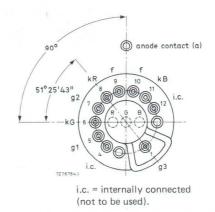
During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

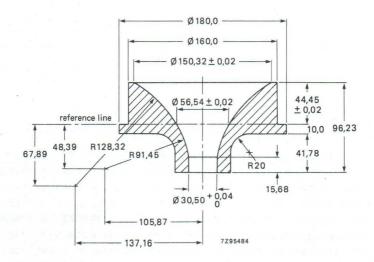

^{*} In the region of 70 mm from the neck end, the maximum diameter is 30 mm.

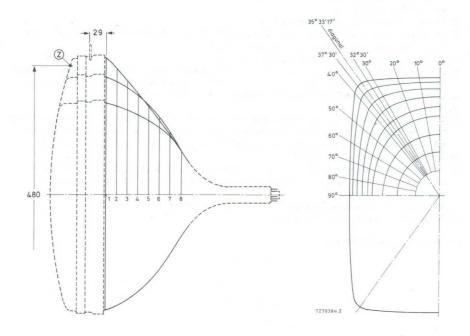





433

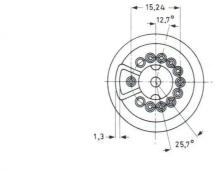

MECHANICAL DATA (continued)

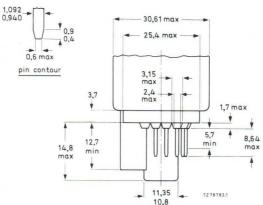



Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm. This deviation is incorporated in the tolerance of \pm 2,5 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 434 mm x 337 mm.
- 6. Co-ordinates for radius R = 13.1 mm: x = 184.58 mm, y = 131.93 mm.
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.
- 11. Minimum distance between glass and rimband in plane of centre line apertures.
- 12. Distance from point z to any hardware.

Reference line gauge; GR90CJ4




Maximum cone contour

	nom. distance from section 1					dis	tance fr	om cer	ntre (ma	ax. val	ues)					
		00	10°	20°	25°	30°	32º 30'	diag. axes	37°30′	40°	45°	50°	60°	70°	80°	90°
1	0	218,7	221,9	231,2	238,5	247,5	252,2	255,9	254,6	247,7	230,1	215,1	193,0	179,2	171,5	169,0
2	20	209,8	212,4	220,3	226,0	232,5	235,3	236,5	235,0	230,2	216,9	204,4	184,9	172,3	165,3	163,0
3	40	197,5	199,4	204,7	208,1	211,1	211,9	211,4	210,0	207,0	198,6	189,5	173,9	163,2	157,1	155,1
4	60	182,2	183,2	185,8	187,1	187,7	187,4	186,4	185,3	183,3	178,2	172,1	160,7	152,4	147,4	145,8
5	80	163,2	163,5	163,9	163,7	163,1	162,4	161,4	160,6	159,3	156,3	152,9	145,8	140,1	136,6	135,4
6	100	146,1	146,1	145,7	145,1	144,2	143,6	142,8	142,2	141,4	139,5	137,5	133,3	129,7	127,3	126,5
7	120	112,3	112,3	111,9	111,7	111,3	111,1	110,9	110,7	110,5	110,0	109,5	108,6	107,8	107,3	107,1
8	141,7	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8

10-pin base; JEDEC B10-277

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	$V_{a,q4}$	25	kV
Grid 3 (focusing electrode) voltage	V _{g3}	6,6 to 7,5	kV
Grid 2 voltage for a spot cut-off voltage $V_k = 140 \text{ V}$	V_{g2}	390 to 760	V
Luminance at the centre of the screen*	L	170	cd/m²

^{*} Tube settings adjusted to produce white D (x = 0,313, y = 0,329), focused raster, current density $0.4 \,\mu\text{A/cm}^2$.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

The voltages are specified with respect to grid 1.		
Grid 3 (focusing electrode) voltage	V_{g3}	26,6 to 29,8% of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot	V_{g2} and V_k	see cut-off design chart*
Difference in cut-off voltages between guns in any tube	ΔV_k	lowest value > 80% of highest value
Video drive characteristics		see graphs**
Grid 3 (focusing electrode) current	I _{q3}	-5 to $+5 \mu A$
Grid 2 current	I _{g2}	$-5 \text{ to } + 5 \mu A$
Grid 1 current under cut-off conditions	lg1	$-5 \text{ to } + 5 \mu A$
To produce white D, CIE co-ordinates $x = 0.313$, $y = 0.329$	9.	
Percentage of the total anode current supplied by each gur	(typical)	
red gun		38,3%
green gun		35,8%
blue gun		25,9%
Ratio of anode currents		
red gun to green gun		min. 0,8
		average 1,1
		max. 1,4
red gun to blue gun		min. 1,1
		average 1,5
		max. 1,9
blue gun to green gun		min. 0,5
2.22 3 3 3		average 0,7
		max. 0,9
		max. 0,0

^{*} The common V_{g2} should be adjusted as follows: Set the cathode voltage, V_k , for each gun at 150 V. Increase the V_{g2} from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the V_k of the remaining guns so that the rasters of these guns also become visible.

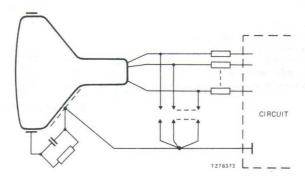
^{**} For optimum picture performance it is recommended that the cathodes are not driven below \pm 10 V.

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

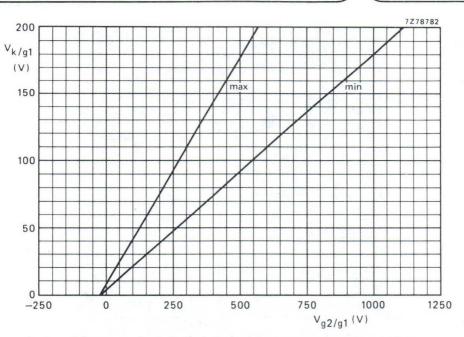
Anode voltage	Va, g4	max. min.	27,5 20	kV kV	notes 1, 2 and 3 note 4
Long-term average current for three guns	la	max.	1000	μΑ	note 5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage, peak	V_{g2p}	max.	1000	V	
Cathode voltage					
positive	$\vee_{\mathbf{k}}$	max.	400	V	
positive operating cut-off	Vk	max.	200	V	
negative	$-V_k$	max.	0	V	
negative peak	$-V_{kp}$	max.	2	V	
Heater voltage	V_{f}	6,3 V	+ 5 -10		notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode during equipment warm-up period					
not exceeding 15 s	Vkf	max.	450	V	note 1
after equipment warm-up period	V_{kf}	max.	250	V	
heater positive with respect to cathode	$-V_{kfp}$	peak	200	V	note 1
	$-V_{kf}$	max.	0	V	
		(d.c. cc	mpone	nt val	lue)

Notes

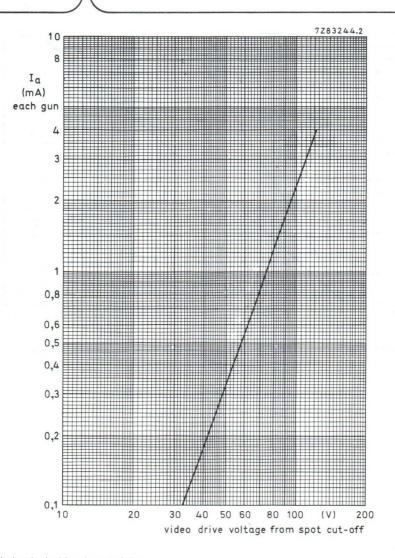

- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerable. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

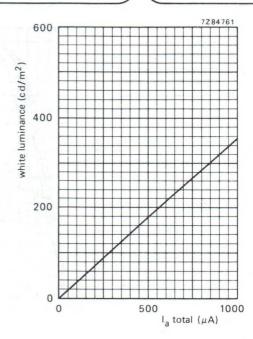

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11,5 kV (1,5 x V_{q3} max. at $V_{a,q4} = 25$ kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. $1.5 \text{ k}\Omega$) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

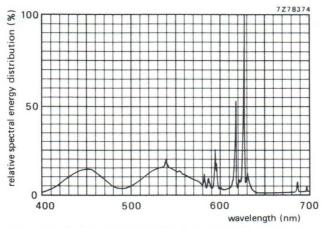


BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction	0,08 mm
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	5 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2,5 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position	5 mm

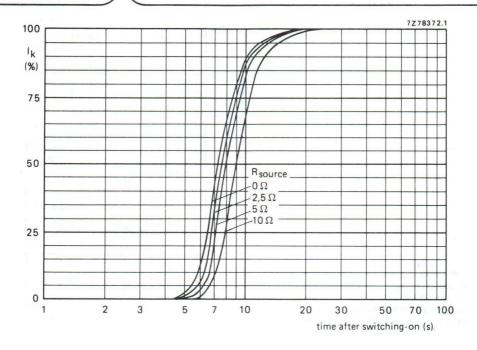


Spot cut-off design chart (cathode drive), V_{g3} adjusted for focus, $V_{a,g4}$ = 20 to 27,5 kV.



Typical cathode drive characteristics

 V_f = 6,3 V $V_{a,g4}$ = 25 kV V_{g3} adjusted for focus V_{g2} adjusted to provide spot cut-off for V_K = 140 V

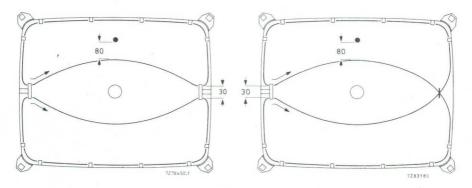


Luminance at the centre of the screen as a function of I_{total} . $V_{a,g4} = 25 \text{ kV}$. Scanned area = 404,4 mm × 303,3 mm; CIE co-ordinates x = 0,313, y = 0,329.

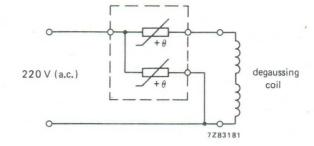
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

Cathode heating time after switching on, measured under typical operating conditions.


DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil shaped in the form of a figure eight, with one half on the top and the other half on the bottom cone part.


For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils (≤ 0,3 ampere-turns).

If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.

Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor.

Data of each degaussing coil

	double-coll system	single-con system
Circumference	117 cm	237 cm
Number of turns	60	60
Copper-wire diameter	0,35 mm	0,35 mm
Resistance (R _C)	12,5 Ω	25,1 Ω
Catalogue number of		
appropriate dual PTC thermistor	2322 662 98009	2322 662 98009

double-coil system | single-coil system

0. Table 2.

Line of the second seco

The state of the s

Eller

- 1990 Meritin ... (f) and a second s

A TRACT OF THE PARTY OF T

DEFLECTION UNIT

Raster Correction Free

QUICK REFERENCE DATA

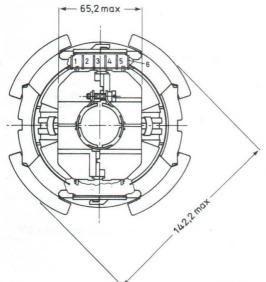
Picture tube	
gun arrangement	in line
diagonal	51 cm (20 in)
neck diameter	29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	3,0 A(p-p)
Inductance of line coils, parallel connected	1,91 mH
Field deflection current, edge to edge at 25 kV	0,895 A(p-p)
Resistance of field coils, parallel connected	13,2 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A51-590X, with a neck diameter of 29,1 mm.

The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $29.1^{+0.9}_{-0.7}$ mm.

95,3 -13,74 max 102,5 max 7286080.1

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

+90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

IEC 68-2-6 (test Fc)

IEC 66-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

1EC 00-2-3 (lest Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Voltage during line scan, edge to edge,

at 25 kV, scan period 52,5 µs

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

parallel connected 1,91 mH \pm 5% 1,75 Ω \pm 10% 3,0 A (p-p)

109 V

parallel connected

27.6 mH ± 10%

 $13,2 \Omega \pm 7\%$

0,895 A(p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

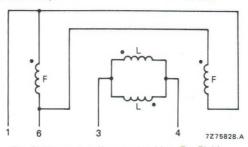


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges places between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

*

200

The state of the s

er i de partir de la compania del compania del compania de la compania del compania del compania de la compania del compan

4, 154

DEFLECTION UNIT

Raster Correction Free

QUICK REFERENCE DATA

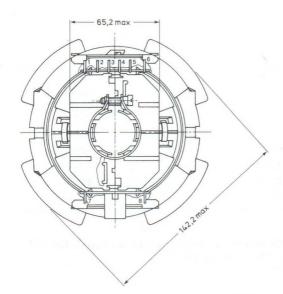
Di		
Picture tube gun arrangement diagonal neck diameter		in line 51 cm (20 in) 29,1 mm
Deflection angle		900
Line deflection current, edge to edge at 25 kV		3,04 A (p-p)
Inductance of line coils, parallel connected (including additional coil)	1	2,07 mH
Field deflection current, edge to edge at 25 kV		0,895 A (p-p)
Resistance of field coils, parallel connected		13,2 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A51-590X, with a neck diameter of 29,1 mm.

The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0,7}$ mm.

61 max - 102,5 max 7295229

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

+90°C -20 to +90 °C according to UL 1413, category 94-V1 1.4 Nm

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Shock

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

IEC 68-2-6 (test Fc) IEC 68-2-27 (test Ea; 35g)

IEC 68-2-29 (test Eb; 25g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

Cross-talk

ELECTRICAL DATA

Line coils, including additional coil
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at 25 °C
Line deflection current, edge to edge, at 25 kV
Voltage during line scan, edge to edge,
at 25 kV, scan period 52,5 µs

Additional coil Inductance at 1 V (r.m.s.), 1 kHz

Inductance at 1 V (r.m.s.), 1 kHz
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at 25 °C
Field deflection current, edge to edge, at 25 kV

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp

parallel connected 2,07 mH \pm 5% 2,06 Ω \pm 10% 3,04 A (p-p)

120 V

0,19 mH \pm 4% parallel connected 27,6 mH \pm 10% 13,2 Ω \pm 7% 0,895 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω > 500 M Ω > 10 M Ω

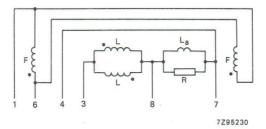


Fig. 2 Connection diagram. L = line coils; F = field coils; L_a = additional coil; R = 4,7 k Ω .

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges places between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

DEFLECTION UNIT

Raster Correction Free

QUICK REFERENCE DATA

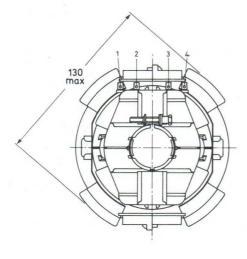
Picture tube		
gun arrangement diagonal neck diameter	in line 51 cm (20 in) 29,1 mm	
Deflection angle	900	
Line deflection current, edge to edge at 25 kV	3,1 A(p-p)	
Inductance of line coils, parallel connected	1,9 mH	
Field deflection current, edge to edge at 25 kV	0,86 A(p-p)	
Resistance of field coils, parallel connected	13,6 Ω	

APPLICATION

This deflection unit, in conjunction which devices for colour purity and static convergence is for 90° in-line colour picture tube A51-590X, with a neck diameter of 29,1 mm. The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.


MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0.9}_{-0.7}$ mm.

For correct fitting the tube neck should be provided with adhesive tape.

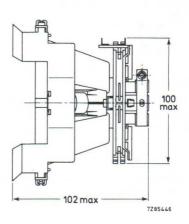


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

IEC 68-2-6 (test Fc)

IEC 68-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp between field coil and core clamp 1,9 mH ± 5%

 $2,2 \Omega \pm 10\%$

3,1 A(p-p)

29 mH ± 10%

13,6 $\Omega \pm 7\%$

0,86 A(p-p)

a voltage of 10 V, 15 625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors

included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

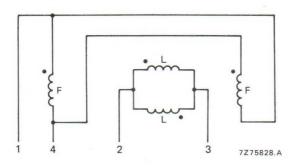


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube
 and the deflection unit. These wedges have to be cemented on to the picture tube.

Hamman and the state of the sta

Hi-Bri COLOUR PICTURE TUBE

- 900 deflection
- In-line gun, thermally stable; electrostatic hi-bi potential for improved focus
- 29.1 mm neck diameter
- Hi-Bri screen with pigmented phosphors featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1236 or AT1480), it forms a self-converging and raster correction free assembly.

QUICK REFERENCE DATA

Deflection angle	900
Face diagonal	51 cm
Overall length	436 mm
Neck diameter	29,1 mm
Heating	6,3 V, 685 mA
Focusing voltage	28% of anode voltage

A51-591X

ELECTRON-OPTICAL DATA

Electron gun system

Focusing method

Focus lens

Deflection method

Deflection angles

diagonal horizontal

vertical

Capacitances

anode to external conductive coating including rimband

grid 1 to all other electrodes

cathode of each gun to all other electrodes focusing electrode to all other electrodes

Heating

heater voltage

heater current

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis vertical axis

area

Phosphors

red

green

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

unitized triple-aperture electrodes

electrostatic

hi-bi potential

magnetic

approx. 900

approx. 780 approx. 600

max. 2300 pF

ELECTRICAL DATA

 $C_a(m + m')$

min. 1500 pF

C_{a1} 17 pF

CkR, CkG, CkB 5 pF 6 pF C_{a3}

indirect by a.c. or d.c.

6,3 V Vf 685 mA If

> metal-backed vertical phosphor stripes; phosphor lines follow

glass contour satinized

min. 480,0 mm

min. 404,4 mm min. 303,3 mm

min. 1190 cm²

pigmented europium activated

rare earth

sulphide type

pigmented sulphide type

0,8 mm

64%

MECHANICAL DATA (see also the figures on the following pages)

Overall length

436 ± 5 mm

Neck diameter

29,1 ^{+ 1,4} _{-0,7} mm*

Bulb dimensions

.

diagonal

max. 515,1 mm max. 442,1 mm

width height

max. 343,4 mm

Base

JEDEC B8-274

Anode contact

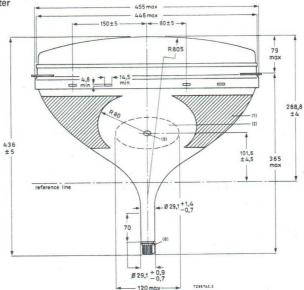
small cavity contact J1-21, IEC 67-III-2 anode contact on top

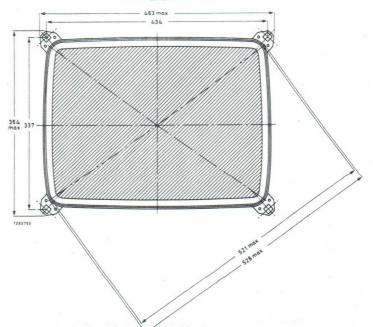
Mounting position

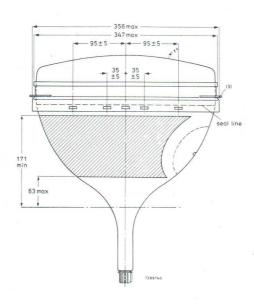
approx. 13 kg

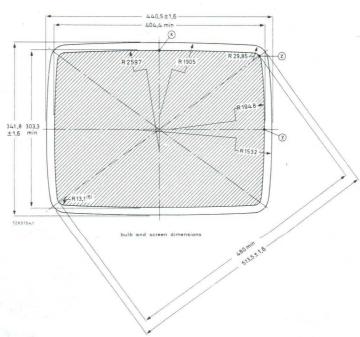
Net mass

Handling

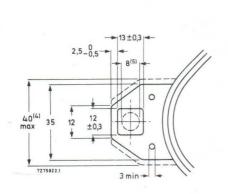

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

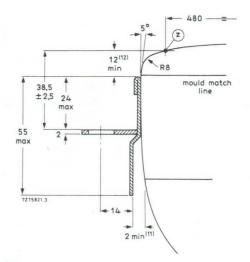

^{*} In the region of 70 mm from the neck end, the maximum diameter is 30 mm.

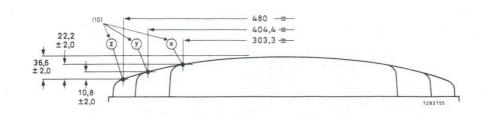

MECHANICAL DATA (continued)

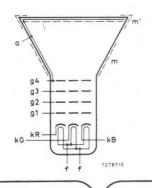

Dimensions in mm

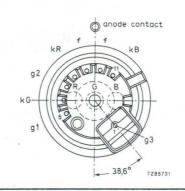
Notes are given after the drawings.

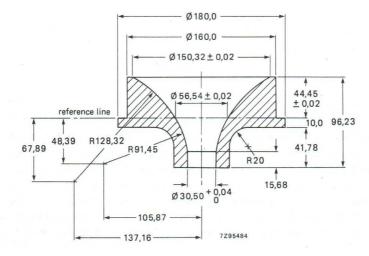




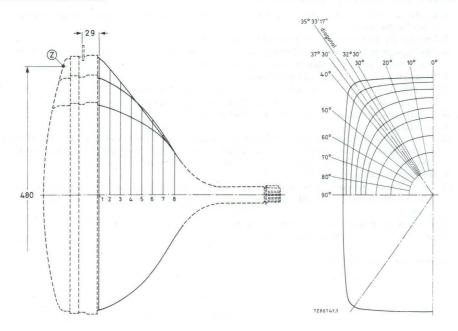




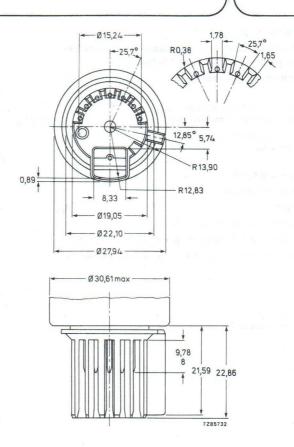

MECHANICAL DATA (continued)



Notes to outline drawings on the preceding pages


- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm. This deviation is incorporated in the tolerance of \pm 2,5 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 434 mm x 337 mm.
- 6. Co-ordinates for radius R = 13,1 mm: x = 184,58 mm, y = 131,93 mm.
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.
- 11. Minimum distance between glass and rimband in plane of centre line apertures.
- 12. Distance from point z to any hardware.

Reference line gauge; GR90CJ4


A51-591X

Maximum cone contour

	nom.					dis	tance fr	om cer	ntre (ma	x. val	ues)					
	distance from section 1	0 ₀	10°	20°	25°	30°	32º 30'	diag. axes	37°30′	40°	45°	50°	60°	70°	80°	90°
1	0	218,7	221,9	231,2	238,5	247,5	252,2	255,9	254,6	247,7	230,1	215,1	193,0	179,2	171,5	169,0
2	20	209,8	212,4	220,3	226,0	232,5	235,3	236,5	235,0	230,2	216,9	204,4	184,9	172,3	165,3	163,0
3	40	197,5	199,4	204,7	208,1	211,1	211,9	211,4	210,0	207,0	198,6	189,5	173,9	163,2	157,1	155,1
4	60	182,2	183,2	185,8	187,1	187,7	187,4	186,4	185,3	183,3	178,2	172,1	160,7	152,4	147,4	145,8
5	80	163,2	163,5	163,9	163,7	163,1	162,4	161,4	160,6	159,3	156,3	152,9	145,8	140,1	136,6	135,4
6	100	146,1	146,1	145,7	145,1	144,2	143,6	142,8	142,2	141,4	139,5	137,5	133,3	129,7	127,3	126,5
7	120	112,3	112,3	111,9	111,7	111,3	111,1	110,9	110,7	110,5	110,0	109,5	108,6	107,8	107,3	107,1
8	141,7	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	Va,g4	25	kV
Grid 3 (focusing electrode) voltage	V_{g3}	6,6 to 7,5	kV
Grid 2 voltage for a spot cut-off voltage $V_k = 140 \text{ V}$	V _{g2}	390 to 760	V
Luminance at the centre of the screen*	L	170	cd/m ²

^{*} Tube settings adjusted to produce white D (x = 0,313, y = 0,329), focused raster, current density $0.4 \ \mu\text{A/cm}^2$.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

The voltages are specified with respect to grid 1.			
Grid 3 (focusing electrode) voltage	V_{g3}	26,6 to 2 anode vo	Fig. 1
Grid 2 voltage and cathode voltage for visual extinction of focused spot	V_{g2} and V_{k}	see cut-o	ff design chart*
Difference in cut-off voltages between guns in any tube	ΔV_{k}	lowest va	alue > 80% of alue
Video drive characteristics		see graph	s**
Grid 3 (focusing electrode) current	l _{g3}	-5 to + 5	5 μA
Grid 2 current	l _{g2}	-5 to + 5	5 μΑ
Grid 1 current under cut-off conditions	l _{g1}	-5 to + 5	5 μA
To produce white D, CIE co-ordinates $x = 0.313$, $y =$	The second secon		
Percentage of the total anode current supplied by each red gun green gun blue gun	ch gun (typical)	38,3% 35,8% 25,9%	
Ratio of anode currents			
red gun to green gun		min. average max.	0,8 1,1 1,4
red gun to blue gun		min. average max.	1,1 1,5 1,9
blue gun to green gun		min. average	0,5 0,7 0.9

The common $\rm V_{g2}$ should be adjusted as follows: Set the cathode voltage, $\rm V_k$, for each gun at 150 V. Increase the $\rm V_{g2}$ from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the Vk of the remaining guns so that the rasters of these guns also become visible.

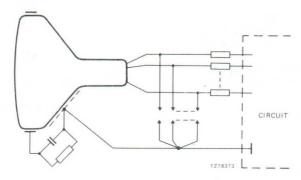
^{**} For optimum picture performance it is recommended that the cathodes are not driven below + 10 V.

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

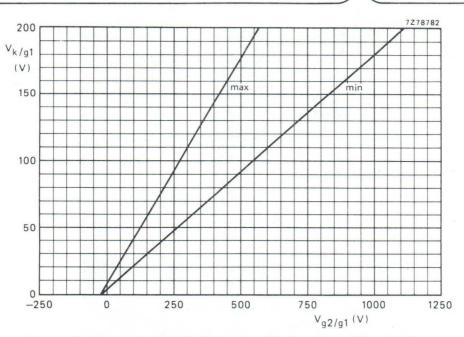
Anode voltage	V _{a, g}	max. 4 min.	27,5 20	kV kV	notes 1, 2 and 3 note 4
Long-term average current for three guns	la	max.	1000	μΑ	note 5
Grid 3 (focusing electrode) voltage	V _{g3}	max.	11	kV	
Grid 2 voltage, peak	V _{g2p}	max.	1000	V	
Cathode voltage			400	\ /	No.
positive positive operating cut-off	V_k	max.	400 200		
negative	$-\hat{v}_k$	max.	0	V	
negative peak	$-V_{kl}$	max.	2	V	
Heater voltage	Vf	6,3 V	+ 5 -10		notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode during equipment warm-up period					
not exceeding 15 s	V_{kf}	max.	450	V	note 1
after equipment warm-up period	V_{kf}	max.	250	V	
heater positive with respect to cathode	$-v_k$	p peak	200	V	note 1
	$-V_{k}$	max.	0	V	
		(d.c. cc	mpone	nt va	alue)

Notes

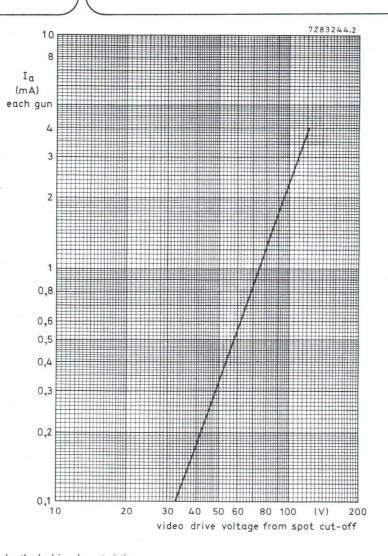

- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerable. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6.3 V at zero beam current.

FLASHOVER PROTECTION

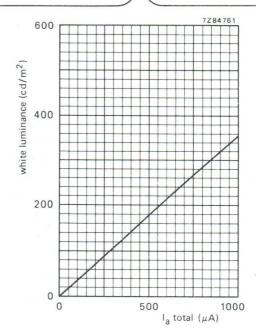
With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

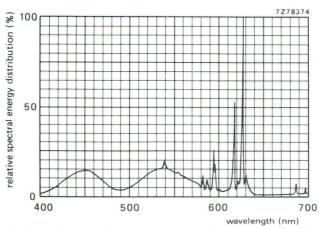

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11,5 kV (1,5 x $V_{0.3}$ max. at $V_{0.3}$ max. at $V_{0.3}$ max. at $V_{0.3}$ max. at $V_{0.3}$ max at $V_{0.3}$ max. at $V_{0.3}$ max at $V_{0.$

The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

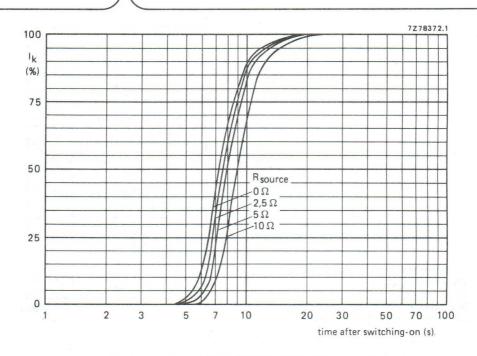


BEAM CORRECTIONS


Maximum required correction for register, as measured at the centre of the screen in any direction	0,08	mm
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle	5	mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle	2,5	mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position	-	
measured with deflection cons in nominal position	5	HIII


Spot cut-off design chart (cathode drive), V_{g3} adjusted for focus, $V_{a,g4}$ = 20 to 27,5 kV.

Typical cathode drive characteristics V_f = 6,3 V $V_{a,g4}$ = 25 kV V_{g3} adjusted for focus V_{g2} adjusted to provide spot cut-off for V_K = 140 V

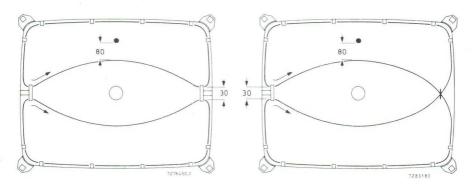


Luminance at the centre of the screen as a function of I_{total} . $V_{a,g4} = 25 \text{ kV}$. Scanned area = 404,4 mm x 303,3 mm; CIE co-ordinates x = 0,313, y = 0,329.

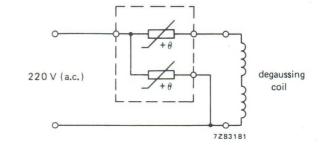
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

Cathode heating time after switching on, measured under typical operating conditions.


DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil shaped in the form of a figure eight, with one half on the top and the other half on the bottom cone part.


For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils (≤ 0.3 ampere-turns).

If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.

Position of degaussing coils on the picture tube.

double-coil system | single-coil system

Degaussing circuit using dual PTC thermistor.

Data of each degaussing coil

	double con system	single con by scom
Circumference	117 cm	237 cm
Number of turns	60	60
Copper-wire diameter	0,35 mm	0,35 mm
Resistance (R _c)	12,5 Ω	25,1 Ω
Catalogue number of		
appropriate dual PTC thermistor	2322 662 98009	2322 662 98009
Number of turns Copper-wire diameter Resistance (R _c) Catalogue number of	60 0,35 mm 12,5 Ω	60 0,35 mm 25,1 Ω

DEFLECTION UNIT

• Raster Correction Free

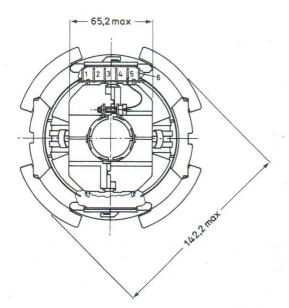
QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
diagonal	51 cm (20 in)
neck diameter	29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	3,0 A(p-p)
Inductance of line coils, parallel connected	1,91 mH
Field deflection current, edge to edge at 25 kV	0,447 A(p-p)
Resistance of field coils, series connected	52,8 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tubes A51-590X and A51-591X, with a neck diameter of 29,1 mm. The unit requires no raster correction circuitry.

DESCRIPTION


The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of $29.1^{+0.9}_{-0.7}$ mm.

95,3 -13,74 max 102,5 max 7286080.2

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

+90 °C

-20 to +90 °C

according to UL 1413, category 94-V1

1.4 Nm

IEC 68-2-6 (test Fc)

IEC 66-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca)

IEC 68-2-30 (test Db)

120 00 2 00 (1031 00)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Voltage during line scan, edge to edge,

at 25 kV, scan period 52,5 µs

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

parallel connected 1,91 mH \pm 5% 1,75 Ω \pm 10% 3.0 A (p-p)

109 V

series connected

110 mH ± 10%

52,8 $\Omega \pm 7\%$

0,447 A(p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

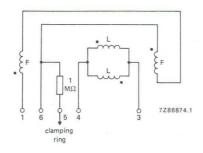


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges places between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

aller en

e de la companya de l

DEFLECTION UNIT

Raster Correction Free

QUICK REFERENCE DATA

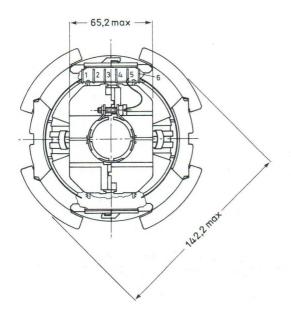
Picture tube	
gun arrangement	in line
diagonal	51 cm (20 in)
neck diameter	29,1 mm
Deflection angle	900
Line deflection current, edge to edge at 25 kV	3,23 A(p-p)
Inductance of line coils, parallel connected	1,7 mH
Field deflection current, edge to edge at 25 kV	0,82 A(p-p)
Resistance of field coils, parallel connected	13,6 Ω

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tubes A51-590X and A51-591X, with a neck diameter of 29,1 mm. The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.


AT1239/30

MECHANICAL DATA

Dimensions in mm

Outlines

The deflection unit fits a tube with a neck diameter of 29,1 $^{+0,9}_{-0,7}$ mm.

95.3 ←13.74 max 7286080.3 102,5 max

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range

Flame retardent

Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration

Bump

Cold

Dry heat

Damp heat, steady state

Cyclic damp heat

Change of temperature

-20 to +90 °C

according to UL 1413, category 94-V1

1,4 Nm

+90°C

IEC 68-2-6 (test Fc)

IEC 66-2-29 (test Eb; 35g)

IEC 68-2-1 (test Ab)

IEC 68-2-2 (test Bb)

IEC 68-2-3 (test Ca) IEC 68-2-30 (test Db)

IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Line deflection current, edge to edge, at 25 kV

Voltage during line scan, edge to edge, at 25 kV, scan period 52,5 μs

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)

between line and field coils

between line coil and core clamp

between field coil and core clamp

parallel connected

1,7 mH ± 5%

 $1.8 \Omega \pm 10\%$ 3.23 A (p-p)

105 V

parallel connected

29 mH ± 10%

13.6 $\Omega \pm 7\%$

0,82 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors

included)

> 500 M Ω

> 500 M Ω

 $> 10 M\Omega$

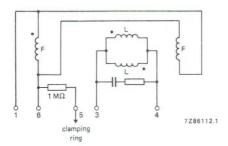


Fig. 2 Connection diagram, L = Line, F = Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole
 magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- 1100 deflection
- Shadow mask of NiFe alloy with low thermal expansion
- In-line, hi-bi potential A R T* gun with quadrupole cathode lens
- 29,1 mm neck diameter
- Mask with corner suspension
- Hi-Bri technology
- Pigmented phosphors
- Quick-heating low-power cathodes
- Soft-flash
- Slotted shadow mask optimized for minimum moire at 625 lines systems
- Internal magnetic shield
- Internal multipole
- · Reinforced envelope for push-through mounting
- Anti-crackle coating

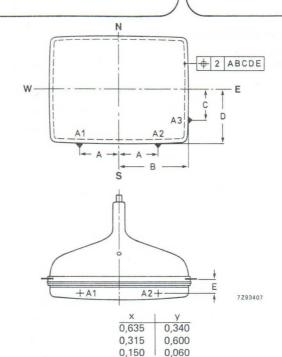
QUICK REFERENCE DATA

Deflection angle	1100
Minimum useful screen diagonal	51 cm
Overall length	36 cm
Neck diameter	29,1 mm
Heating	6,3 V, 310 mA
Focusing voltage	31% of anode voltage

^{*} Aberration Reducing Triode.

A51EAK01X

ELECTRON-OPTICAL DATA


unitized triple-aperture electrodes; Electron gun system aberration reducing triode Focusing method electrostatic hi-bi-potential Focus lens Deflection method magnetic Deflection angles 1100 diagonal horizontal 970 vertical 770

ELECTRICAL DATA

Capacitances		may	1800	nE
anode to external conductive coating	C _{a, g5, g4/m}	max.	1400	
anode to metal rimband	Ca, g5, g4/m'		250	pF
cathodes of all guns (connected in parallel) to all other electrodes	c_k		15	pF
cathode of any gun to all other electrodes	CkR, CkG, CkB		5	pF
grid 3 (focusing electrode) to all other electrodes	C_{g3}		6	pF
grid 1 to all other electrodes	C _{g1}		17	pF
grid 2 to all other electrodes	C_{g2}		4,5	pF
Resistance between rimband and external conductive coating		min.	50	МΩ
Heating: indirect by a.c. (preferably mains or line frequen	icy) or d.c.			
heater voltage	Vf		6,3	V
heater current	1.6		310	mA

heater current	lf 310	mΑ
ORTICAL DATA		
OPTICAL DATA		
Screen	metal-backed vertical phosphor stri phosphor lines follow glass contour	
Screen finish	high gloss	
Useful screen dimensions		
diagonal	min. 508,0 mm	
horizontal axis	min. 411,4 mm	
vertical axis	min. 310,8 mm	
area	min. 1265 cm ²	
Positional accuracy of the screen with		
respect to the glass contour	see Figure on the next page	
Phosphors		
red	pigmented europium activated	
	rare earth	
green	sulphide type	
blue	pigmented sulphide type	
Persistence	medium short	

Colour co-ordinates red green blue

Centre-to-centre distance of identical colour phosphor stripes Light transmission of face glass at screen centre

Luminance at the centre of the screen

approx, 0,6 mm

52% 130 cd/m2 *

MECHANICAL DATA (see also the figures on the following pages)

Overall length

Neck diameter

Base

Anode contact

Mounting position

Implosion protection

362 ± 6 mm

29,1^{+1,4}_{-0,7} mm

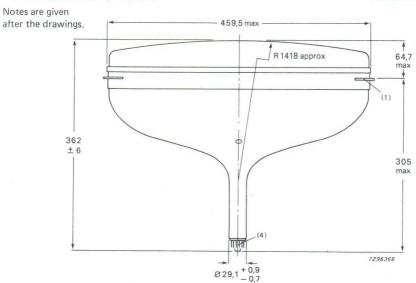
JEDEC B10-277 small cavity contact J1-21, IEC 67-III-2

anode contact on top

rimband provided with facilities to accommodate clips for mounting

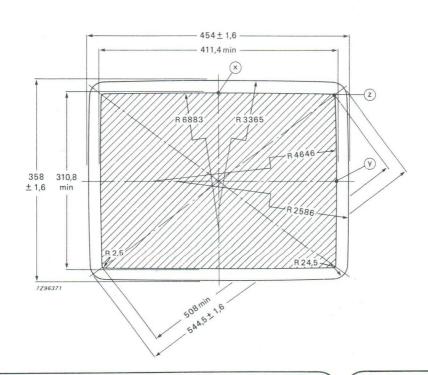
of degaussing coils approx. 15 kg

Net mass Handling

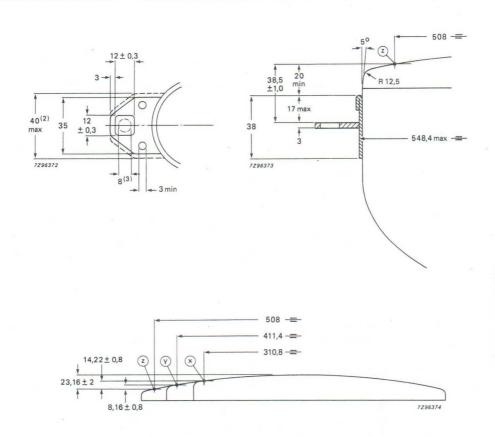

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any

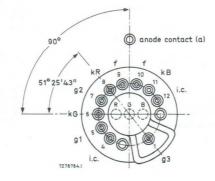

^{*} Tube setting adjusted to produce white D (x = 0,313, y = 0,329), focused raster, current density 0.4 µA/cm².

A51EAK01X


MECHANICAL DATA (continued)

Dimensions in mm



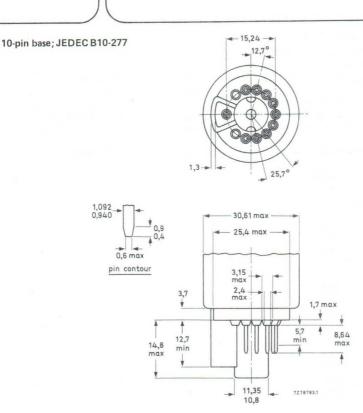


A51EAK01X

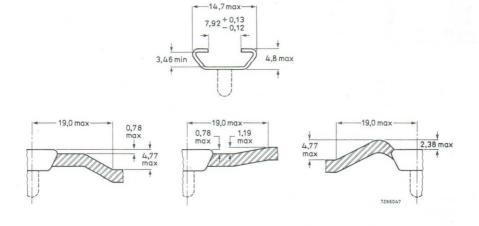
Notes to outline drawings on the preceding pages

- 1. The displacement of any lug with respect to the plane through the three other lugs is max. 1,5 mm.
- 2. Minimum space to be reserved for mounting lug.
- 3. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 449 mm x 354 mm.
- 4. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.

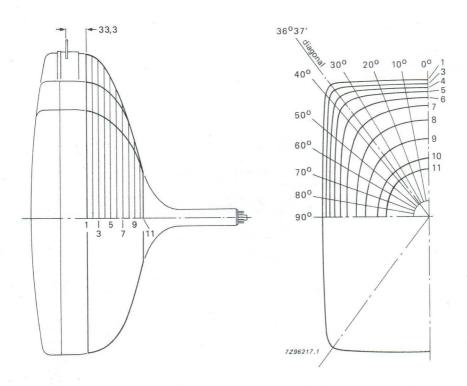
Sagittal heights with reference to screen centre at the edge of the minimum useful screen


coordinates		sagittal		
×	У	height mm		
mm	mm			
0*	155,4	9,0		
20	155,4	9,1		
40	155,3	9,4		
60	155,1	10,1		
80	154,9	11,0		
100	154,7	12,2		
120	154,4	13,7		
140	153,9	15,4		
160	153,5	17,5		
180	153,0	19,9		
200	152,5	22,7		
203,2**	152,4	23,2		
203,3	150	22,9		
203,6	140	21,8		
204,2	120	19,9		
204,6	100	18,4		
205,0	80	17,2		
205,3	60	16,3		
205,5	40	15,6		
205,7	20	15,8		
205,7	0	15,0		

^{*} Point x

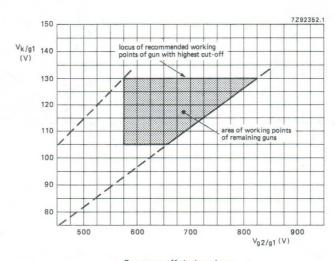

^{**} Diagonal.

Point y


A51EAK01X

Cavity cap JEDEC J1-21, IEC 67-III-2

Maximum cone contour



sec-	nom. distance	distance from centre										
tion	from section 1	00	10°	20°	30°	36,87° 40° 50	50°	60°	70°	80°	900	
1	0,00	225,8	229,0	239,2	257,7	272,0	267,4	228,1	203,2	188,0	179,7	177,1
2	10,00	224,2	227,4	237,5	255,9	270,0	264,8	226,3	201,7	186,6	178,4	175,8
3	20,00	220,0	223,2	233,1	250,9	263,1	257,1	220,7	196,8	182,1	174,1	171,5
4	30,00	214,0	217,0	226,4	242,8	252,1	246,3	212,9	190,2	176,2	168,5	166,1
5	40,00	206,4	209,2	217,5	231,1	235,3	230,1	202,1	181,4	168,4	161,3	159,0
6	50,00	196,7	198,9	205,4	212,9	211,5	207,4	187,2	169,7	158,2	151,8	149,8
7	60,00	182,2	183,8	187,5	189,1	185,3	182,1	167,9	154,3	144,7	139,2	137,4
8	70,00	158,0	159,1	161,0	160,7	157,7	155,4	146,0	136,2	128,7	124,2	122,7
9	80,00	127,9	128,6	129,8	129,6	128,0	126,8	121,6	115,6	110,4	107,0	105,8
10	90,00	95,2	95,4	95,6	95,1	94,3	93,9	92,0	89,7	87,6	86,0	85,4
11	94,6	75,9	75,8	75,7	75,4	75,1	75,0	74,6	74,2	73,8	73,6	73,5

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	Va, g4	25 kV
Grid 3 (focusing electrode) voltage	V _{g3}	7,25 to 8,25 kV
Grid 2 voltage for a spot cut-off voltage V_k = 130 V	V_{g2}	see below
Heater voltage under operating conditions	Vf	6,3 V

Spot cut-off design chart.

Grid 2 voltage (V_{g2}) adjusted for highest gun spot cut-off voltage V_{k} = 130 V.

Remaining guns adjusted for spot cut-off by means of cathode voltage

Vg2 range 575 to 825 V;

Vk range 105 to 130 V.

Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 130 V; increase the grid 2 voltage (V_{g2}) from approx. 550 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

6,3 V at zero beam current

0.8

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage $$V_{g3}$$ 29 to 33% of anode voltage Grid 2 voltage and cathode voltage

for visual extinction of focused spot V_{g2} and V_k see spot cut-off design chart

Difference in cut-off voltages between

Heater voltage

guns in any tube $$\Delta V_{k}$$ lowest value > 80% of highest value

Vf

Video drive characteristics see graphs*

Grid 3 (focusing electrode) current $l_{g3} = -2 \text{ to } + 2 \mu A$

Grid 2 current l_{q2} $-2 \text{ to } + 2 \mu A$

Grid 1 current under cut-off conditions I_{g1} -2 to $+2 \mu A$ To produce white of 6500K + 7 M.P.C.D.

(CIE co-ordinates x = 0.313, y = 0.329)

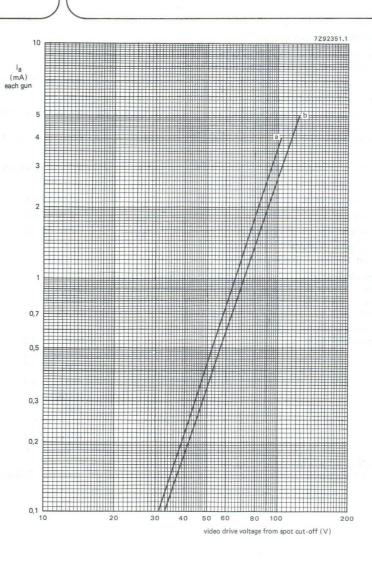
Percentage of the total anode current supplied by each gun (typical)
red gun
green gun
blue gun
38,3%
25,9%

Batio of anode currents
red gun to green gun
min.

average 1,1 max. 1,4

red gun to blue gun min. 1,1 average 1,5

max. 1,9


blue gun to green gun min. 0,5 average 0,7

max. 1,0

Insulation resistance between each cathode and grid 1 and heater min. 50 M Ω

^{*} For optimum picture performance it is recommended that the cathodes are not driven below + 1 V.

A51EAK01X

Typical cathode drive characteristic.

 $V_f = 6,3 V;$

 $V_{a, g4} = 25 \text{ kV};$

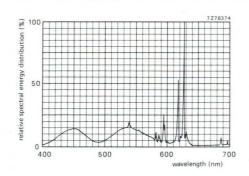
V_{g3} adjusted for focus;

 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 105 V (curve a) and V_k = 130 V (curve b).

LIMITING VALUES (Design maximum rating system unless otherwise stat	LIMITING VALUES	Design max	imum rating	system unless	otherwise stated
---	-----------------	------------	-------------	---------------	------------------

The voltages are specified with respect to grid 1.					notes
Anode voltage	$V_{a,g4}$	max. min.	27,5 20	kV kV	1, 2, 3 1, 4
Long-term average current for three guns	la	max.	1000	μA	5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage	V_{g2}	max.	1200	V	6
Cathode voltage positive positive operating cut-off negative negative peak	V _k V _k -V _k -V _{kp}	max. max. max.			
Cathode to heater voltage positive positive peak negative negative peak	V _{kf} p V _{kfp} -V _{kf} -V _{kfp}	max. max. max.	250 300 135 180	V	1
Heater voltage	V _f	6,3	V + 5 -10	%	1, 7
LIMITING CIRCUIT VALUES					
Grid 3 circuit resistance	R_{g3}	max.	70	$M\Omega$	
Grid 1 to cathode circuit resistance (each gun)	R _{g1k}	max.	0,75	Ω M	
BEAM CENTRING					

Notes


1. Absolute maximum rating system.

Maximum centring error in any direction

- 2. The X-ray dose rate remains below the acceptable value of 36 pA/kg (0,5 mR/h), measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- Operating of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 6. During adjustment on the production line max. 1500 V is permitted.
- 7. For maximum cathode life it is recommended that the heater supply be designed for 6,3 V at zero beam current.

3 mm

A51EAK01X

Simultaneously excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus. X

Co	lour	co-or	din	ates

0,635	0,340
0,315	0,600
0,150	0,060
	0,315

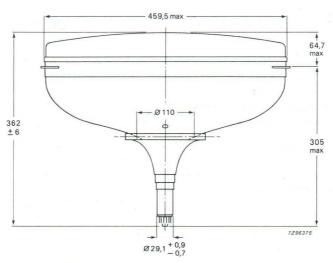
DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

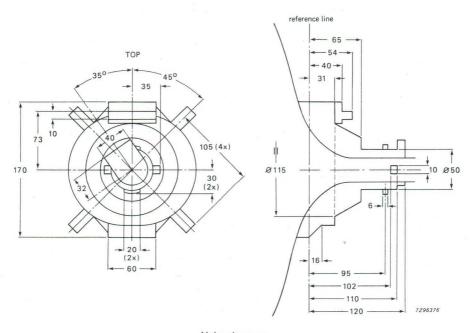
A51EAK01X01

110° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- 51 cm, 110° colour picture tube A51EAK01X
- Double saddle deflection unit AT6020


QUICK REFERENCE DATA

Deflection angle	110°
Minimum useful screen diagonal	51 cm
Overall length	36 cm
Neck diameter	29,1 mm


A51EAK01X01

MECHANICAL DATA

Dimensions in mm

Net mass of tube assembly: 16 kg

Yoke clearance.

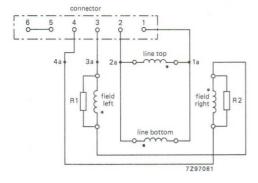
ELECTRICAL DATA OF DEFLECTION UNIT

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux


Line deflection current, edge to edge, at 25 kV

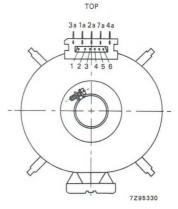
Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Electrical diagram.


The beginning of the windings is

indicated with .

 $R1 = R2 = 100 \Omega$, 0,25 W.

Matching Stocko connector MKF 806-1-0-606.

parallel connected 1,85 mH 1,85 Ω 7,6 mWb \pm 5% 4,1 A (p-p) series connected 11 mH 6,5 Ω 1,7 A (p-p)

Terminal location

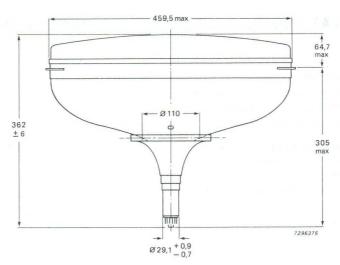
DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

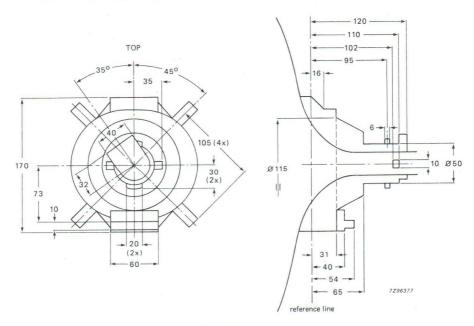
A51EAK01X02

110° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- · Self-converging and north-south raster correction free
- 51 cm, 110° colour picture tube A51EAK01X
- Double saddle deflection unit AT6020


QUICK REFERENCE DATA

Deflection angle	1100
Minimum useful screen diagonal	51 cm
Overall length	36 cm
Neck diameter	29,1 mm


A51EAK01X02

MECHANICAL DATA

Dimensions in mm

Net mass of tube assembly: 16 kg.

Yoke clearance.

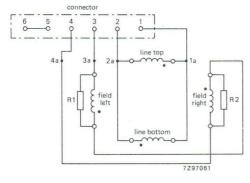
ELECTRICAL DATA OF DEFLECTION UNIT

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux


Line deflection current, edge to edge, at 25 kV

Field soils

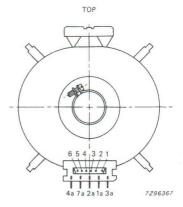
Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

Electrical diagram.

The beginning of the windings is


indicated with .

 $R1 = R2 = 100 \Omega$, 0.25 W.

Matching Stocko connector MKF806-1-0-606.

parallel connected 1,85 mH 1,85 Ω 7,6 mWb-± 5% 4,1 A (p-p) series connected 11 mH 6,5 Ω

1,7 A (p-p)

Terminal location.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

A51EAL00X A51EAL10X A51EAL20X A51EAL30X

FLAT SQUARE Hi-Bri COLOUR PICTURE TUBES

- Flat and square screen
- 90º deflection
- In-line, hi-bi potential A R T* gun
- 29,1 mm neck diameter
- Mask with corner suspension
- Hi-Bri technology
- Pigmented phosphors
- Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 625 lines system
- Internal magnetic shield
- Internal multipole
- · Reinforced envelope for push-through mounting
- The tube is supplied with a matched hybrid saddle toroidal deflection unit of the AT6035 series; it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	900
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	29,1 mm
Heating	6,3 V, 310 mA
Focusing voltage	31% of anode voltage

Type A51EAL10X is identical to type A51EAL00X, except for the base: JEDEC B8-274; see the relevant paragraph of "Mechanical Data".

Type A51EAL20X is identical to type A51EAL00X, except for the rimband, see dimensional drawings of "Mechanical Data".

Type A51EAL30X is identical to type A51EAL00X, except for the light transmission of face glass at centre: 52%.

^{*} Aberration Reducing Triode.

ELECTRON-OPTICAL DATA

Electron gun system unitized triple-aperture electrodes;

aberration reducing triode

Focusing method

electrostatic hi-bi-potential

approx. 600

Deflection method

magnetic

Deflection angles diagonal horizontal

Focus lens

approx. 900 approx. 780

ELECTRICAL DATA

capacitances

vertical

anode to external

max. 2200 pF conductive coating including rimband $C_a(m + m')$ min. 1600 pF

grid 1 to all other electrodes C_{a1} 17 pF cathode of each gun to all other electrodes CkR, CkG, CkB 5 pF

focusing electrode to all other electrodes C_{g3} 6 pF Heating indirect by a.c. or d.c.

heater voltage Vf 6.3 V heater current If 310 mA

OPTICAL DATA

Screen

metal-backed vertical phosphor stripes, phosphor lines follow glass contour

high gloss

Screen finish

Useful screen dimensions diagonal min. 508.0 mm horizontal axis min. 411,4 mm vertical axis min. 310,8 mm area min. 1265 cm²

Positional accuracy of the screen with respect to the glass contour

see Figure on the next page

Phosphors red

pigmented europium activated

green blue

rare earth sulphide type

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

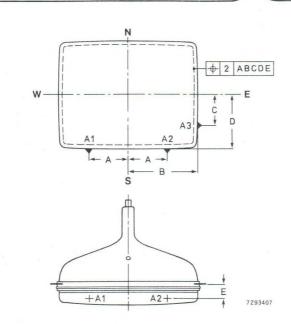
pigmented sulphide type

Light transmission of face glass at centre

approx. 0,75 mm

A51EAL00X, A51EAL10X, A51EAL20X A51EAL30X

64.4% 52,3%


Luminance at the centre of the screen

A51EAL00X, A51EAL10X, A51EAL20X 165 cd/m² * A51EAL30X 130 cd/m² *

* Tube settings adjusted to produce white D (x = 0,313, y = 0,329), focused raster, current density 0,4 µA/cm2.

A = 171,7 mm $B = 223.7 \, \text{mm}$ C = 115,6 mm

D = 173,9 mmE = 23,5 mm

MECHANICAL DATA (see also the figures on the following pages)

Overall length

Neck diameter

A51EAL00X, A51EAL20X, A51EAL30X

A51EAL10X

Bulb dimensions diagonal

width height

Base A51EAL00X, A51EAL20X, A51EAL30X

A51EAL10X

Anode contact Mounting position 443,7 ± 5 mm 448,3 ± 5 mm

29,1 + 1,4 mm*

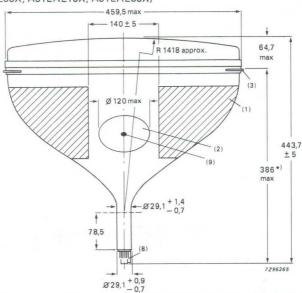
max. 546,1 mm max. 455,6 mm max. 359,6 mm

JEDEC B10-277

JEDEC B 8-274

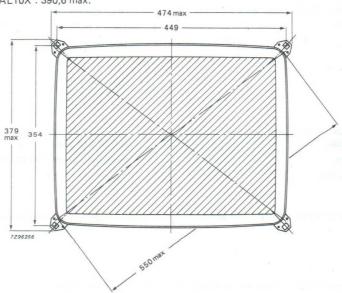
small cavity contact J1-21, IEC 67-III-2 anode contact on top

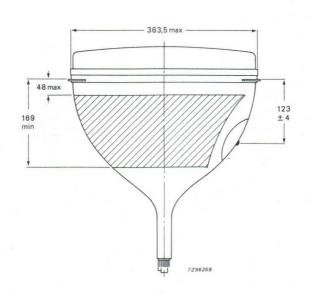
Handling

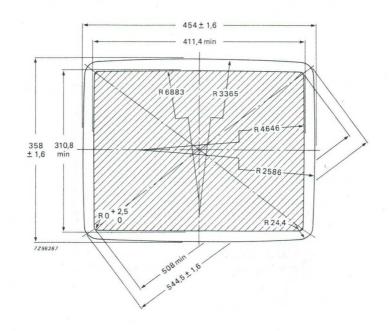

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

^{*} In the region of 78,5 mm from the neck end, the maximum diameter is 30 mm.

MECHANICAL DATA (continued)

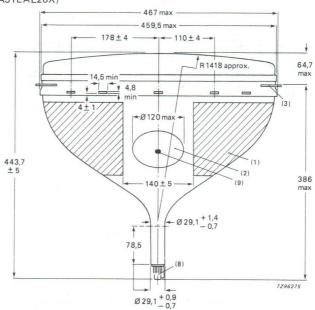

Dimensions in mm

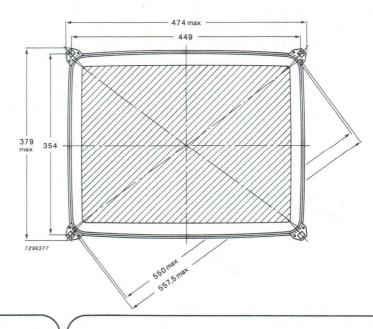

Notes are given after the drawings (Applicable to A51EAL00X, A51EAL10X, A51EAL30X)

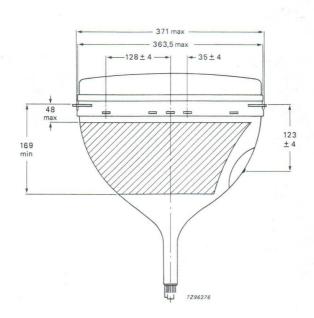


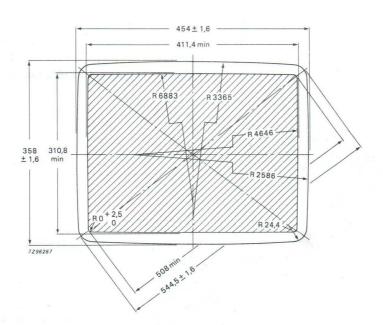
Note: Tube A51EAL10X has an overall length of 448,3 ±5 mm.

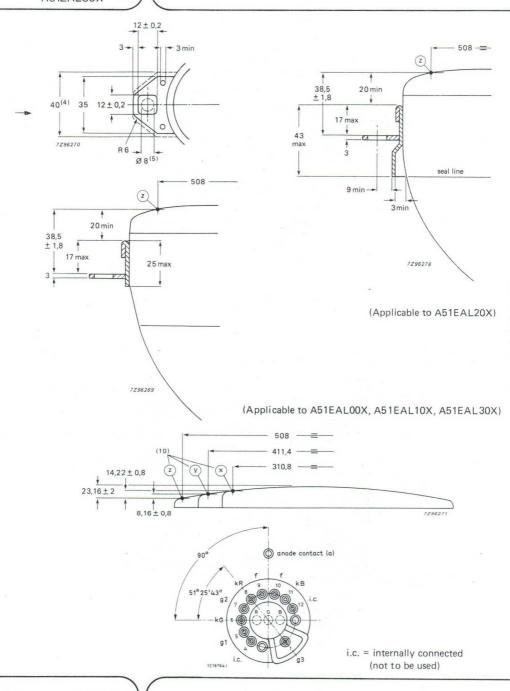
* For A51EAL10X: 390,6 max.








MECHANICAL DATA (continued)


(Applicable to A51EAL20X)

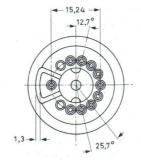
Notes to outline drawings on the preceding pages

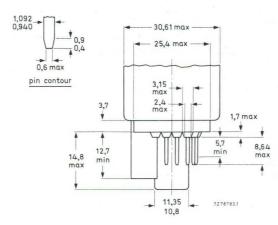
- 1. Configuration of outer conductive coating may be different but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. The displacement of any lug with respect to the plane through the three other lugs is max.1,3 mm. This deviation is incorporated in the tolerance of \pm 1,8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 354 x 449 mm.
- 6. Not applicable.
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm (1,968 in), concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

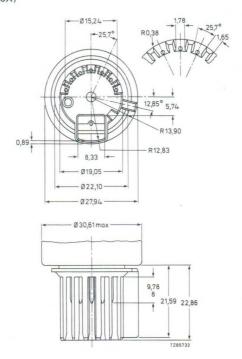
Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordin	ates	sagittal
X	У .	height
mm	mm	mm
0*	155,4	9,0
20	155,4	9,1
40	155,3	9,4
60	155,1	10,1
80	154,9	11,0
100	154,7	12,2
120	154,4	13,7
140	153,9	15,4
160	153,5	17,5
180	153,0	19,9
200	152,5	22,7
203,2**	152,4	23,2
203,3	150	22,9
203,6	140	21,8
204,2	120	19,9
204,6	100	18,4
205,0	80	17,2
205,3	60	16,3
205,5	40	15,6
205,7	20	15,8
205,7▲	0	15,0

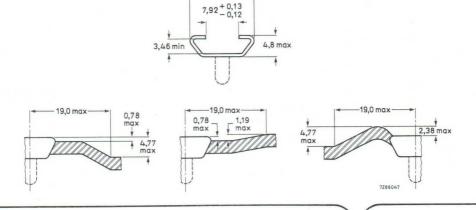
Point


** Diagonal.

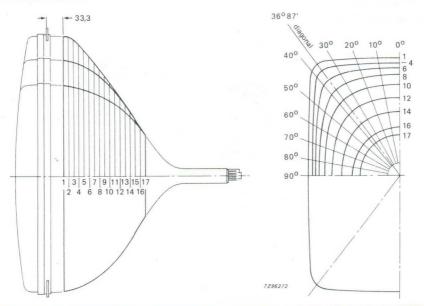

▲ Point


10-pin base; JEDEC B10-277

(Applicable to A51EAL00X, A51EAL20X and A51EAL30X)



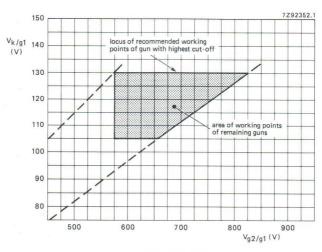
Base JEDEC B8-274
(Applicable to A51EAL10X)



Cavity cap JEDEC J1-21, IEC 67-III-2

14,7 max

Maximum cone contour


sec-	nom.	max. distance from centre										
tion	distance from section 1	00	10 ⁰	200	300	diag.	400	500	600	700	800	900
1	0	225,7	228,9	239,1	257,6	271,8	267,2	227,9	203,1	187,9	179,6	177,0
2	10	224,6	227,7	237,7	255,9	270,0	265,3	226,7	201,9	186,8	178,6	175,9
3	20	221,8	224,8	234,3	251,1	264,3	259,6	222,9	198,9	184,2	176,1	173,5
4	30	218,1	220,9	229,6	244,5	254,7	250,6	217,9	195,1	180,9	173,1	170,6
5	40	213,8	216,4	224,1	236,5	243,1	239,6	212,0	190,9	177,3	169,9	167,5
6	50	208,7	211,0	217,7	227,5	231,3	228,4	205,6	186,3	173,6	166,5	164,2
7	60	202,6	204,5	210,0	217,5	219,5	217,0	198,5	181,0	169,3	162,6	160,5
8	70	195,1	196,8	201,3	206,9	207,6	205,4	190,3	175,1	164,4	158,3	156,3
9	80	186,2	187,6	191,4	195,6	195,4	193,5	181,3	168,4	158,9	153,3	151,5
10	90	175,6	176,9	180,1	183,3	182,8	181,1	171,4	160,7	152,5	147,6	146,0
11	100	163,6	164,6	167,4	169,9	169,2	167,9	160,4	151,9	145,2	141,0	139,6
12	110	150,3	151,3	153,8	155,7	154,7	153,6	147,9	141,7	136,6	133,4	132,3
13	120	136,4	137.3	139,3	140,4	139,5	138,6	134,5	130,3	126,8	124,6	123,9
14	130	122,1	122,8	124,4	124,9	124,0	123,3	120,7	118,2	116,1	114,7	114,3
15	140	107,5	107,7	108,2	108,6	108,4	108,2	107,0	105,7	104,5	103,8	103,5
16	150	92,6	92,3	92,3	92,6	92,8	92,9	92,9	92,6	92,1	91,6	91,4
17	159,5	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1

A51EAL20X A51EAL30X

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	V _{a,g4}	25 kV
Grid 3 (focusing electrode) voltage	V _g 3	7,25 to 8,25 kV
Grid 2 voltage for a spot cut-off voltage V_k = 130 V	V_{g2}	see below
Heater voltage under operating conditions	Vf	6,3 V

Spot cut-off design chart.

Grid 2 voltage (V_{q2}) adjusted for highest gun spot cut-off voltage $V_k = 130 \text{ V}$.

Remaining guns adjusted for spot cut-off by means of cathode voltage

V_{q2} range 575 to 825 V;

Vk range 105 to 130 V.

Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 130 V; increase the grid 2 voltage (V_{q2}) from approx. 550 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

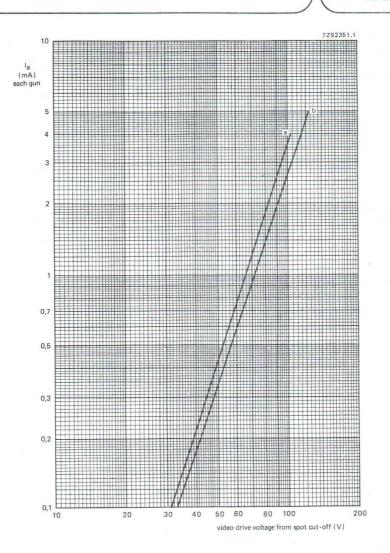
The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage	V_{g3}	29 to 33% of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot	V_{g2} and V_k	see cut-off design chart
Difference in cut-off voltages between guns in any tube	$\Delta V_{\mathbf{k}}$	lowest value > 80% of highest value
Heater voltage	V_{f}	6,3 V at zero beam current
Video drive characteristics		see graphs*
Grid 3 (focusing electrode) current	l _{g3}	$-2 \text{ to } + 2 \mu A$
Grid 2 current	I _{g2}	$-2 \text{ to } + 2 \mu A$
Grid 1 current under cut-off conditions	lg1	$-2 \text{ to } + 2 \mu A$
To produce white of $6500K + 7$ M.P.C.D. (CIE co-ordinates $x = 0.313$, $y = 0.329$)		
Percentage of the total anode curernt supplied by ea	ach gun (typical)	
red gun		38,3%
green gun blue gun		35,8% 25,9%
Ratio of anode currents		20,070
red gun to green gun		min. 0,8
		average 1,1
		max. 1,4
red gun to blue gun		min. 1,1
		average 1,5
		max. 1,9
blue gun to green gun		min. 0,5

0,7

0,9

100 MΩ


average max.

min.

Insulation resistance between each cathode

and grid 1 and heater

^{*} For optimum picture performance it is recommended that the cathodes are not driven below + 1 V.

Typical cathode drive characteristic.

 $V_f = 6,3 V;$

 $V_{a,q4} = 25 kV;$

V_{q3} adjusted for focus;

 V_{q2} (each gun) adjusted to provide spot cut-off for V_k = 105 V (curve a) and V_k = 130 V (curve b).

LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.					notes
Anode voltage	V _{a,g4}	max. min.	27,5 20	kV kV	1, 2, 3 1, 4
Long-term average current for three guns	la	max.	1000	μA	5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage, peak	V _{g2p}	max.	1200	V	6
Cathode voltage positive positive operating cut-off negative negative peak	V _k V _k -V _k -V _{kp}	max. max. max.	-	V	
Cathode to heater voltage positive positive peak negative negative peak	V _{kf} V _{kfp} -V _{kf} -V _{kfp}	max. max. max.	250 300 135 180	V	1
Heater voltage	V _f	6,3	V + 5 -10	%	1, 7
LIMITING CIRCUIT VALUES					
Grid 3 circuit resistance	Rg3	max.	70	Ω M	

0.75 MΩ

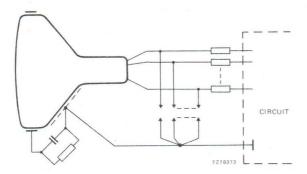
max.

Rg1k

Notes

1. Absolute maximum rating system.

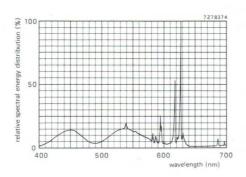
Grid 1 to cathode circuit resistance (each gun)


- The X-ray dose rate remains below the acceptable value of 36 pA/kg (0,5 mR/h), measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 6. During adjustment on the production line max, 1500 V is permitted.
- For maximum cathode life it is recommended that the heater supply be designed for 6,3 V at zero beam current,

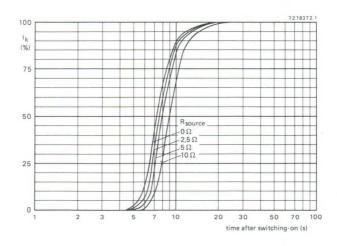
FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11,5 kV (1,5 x V_{g3} max. at $V_{a,g4}$ = 25 kV), and at the other electrodes of 1,5 to 2 kV.


The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

BEAM CORRECTIONS


Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

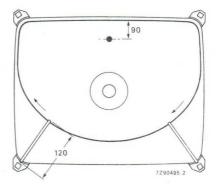
4 mm

Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

Cathode heating time after switching on, measured under typical operating conditions.

DEGAUSSING


The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.

For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns* is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils (≤ 0.3 ampere-turns**).

If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.

Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor 2322 662 98009; C = 100 nF, for double-coil system, optional for single-coil system.

110 V to 120 V (a.c.) + θ degaussing coil (s)

Data of degaussing coil

	double-coil system	single-coil system
Circumference	125 cm	139 cm
Number of turns	60	140
Copper-wire diameter	0,4 mm	0,4 mm
Aluminium-wire diameter	0,5 mm	0,5 mm
Resistance	22 Ω (two coils	27 Ω
	in series)	

- * 300 ampere-turns for double-coil system; 700 ampere-turns for single-coil system.
- ** ≤ 0.3 ampere-turns for double-coil system; ≤ 0.6 ampere-turns for single-coil system.

27.1433.142.47

S CHIMBLE A SECTION OF THE SECTION O

A company of the application of the company of the application of the company of

train a training and the second and

the second secon

entity for registration

across a

and the state of t

DEVELOPMENT DATA

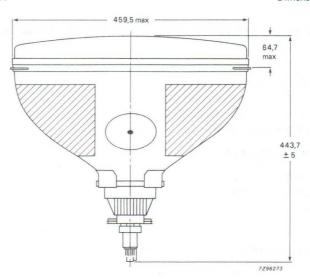
This data sheet contains advance information and specifications are subject to change without notice.

A51EAL00X.. A51EAL10X.. A51EAL20X.. A51EAL30X..

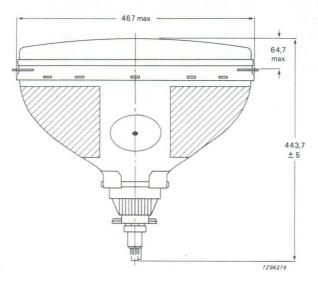
90° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- Self-converging and raster correction free
- 51 cm, 90° colour picture tube A51EAL . . X
- Hybrid saddle toroidal deflection unit of the AT6035 series

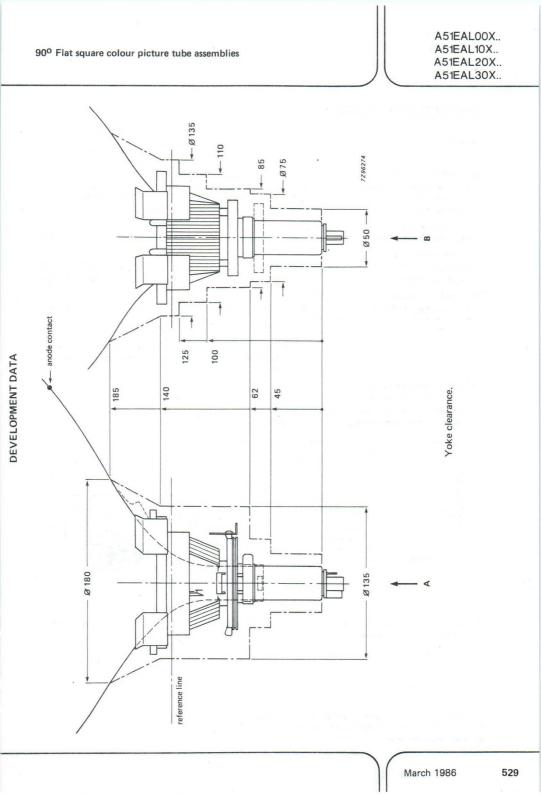
QUICK REFERENCE DATA


Deflection angle	900
Minimum useful screen diagonal	51 cm .
Overall length	444 mm
Neck diameter	29,1 mm

AVAILABLE ASSEMBLIES


assembly type	assembly components	
A51EAL00X01	tube A51EAL00X + deflection unit AT6035/04	
A51EAL00X02	tube A51EAL00X + deflection unit AT6035/02	
A51EAL00X03	tube A51EAL00X + deflection unit AT6035/03	
A51EAL00X11	tube A51EAL00X + deflection unit AT6035/11	
A51EAL10X01	tube A51EAL10X + deflection unit AT6035/04	
A51EAL10X30	tube A51EAL10X + deflection unit AT6035/30	
A51EAL20X01	tube A51EAL20X + deflection unit AT6035/04	
A51EAL30X01	tube A51EAL30X + deflection unit AT6035/04	

MECHANICAL DATA


Dimensions in mm

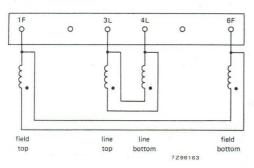
Assemblies A51EAL00X. ., A51EAL10X. . and A51EAL30X. . Assembly A51EAL10X . . has an overall length of 448,3 $\pm\,5$ mm.

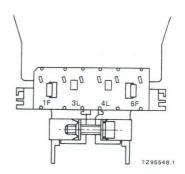
Assembly A51EAL20X..

A51EAL00X.. A51EAL10X.. A51EAL20X.. A51EAL30X..

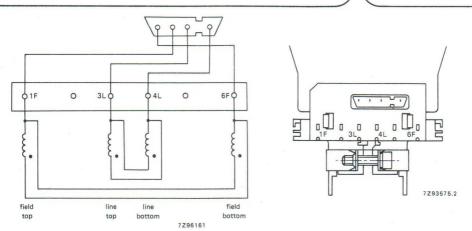
ELECTRICAL DATA OF DEFLECTION UNITS

parameter	unit	deflection unit AT6035/				
		04	02*	03**	11*	30▲
Line deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C magnetic flux	mH \pm 4% $\Omega \pm 10\%$ mWb \pm 2,5%	2,0 2,35 5,70	2,0 2,35 5,70	2,0 2,35 5,70	1,7 2,00 5,25	2,0 2,35 5,70
Line deflection current, edge to edge, at 25 kV	A (p-p)	2,85	2,85	2,85	3,09	2,85
Field deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C	mH ± 10% Ω ± 7%	19,5 9,7	19,5 9,7	19,5 9,7	19,5 9,7	78 38,8
Field deflection current, edge to edge, at 25 kV	A (p-p)	1,09	1,09	1,09	1,09	0,55

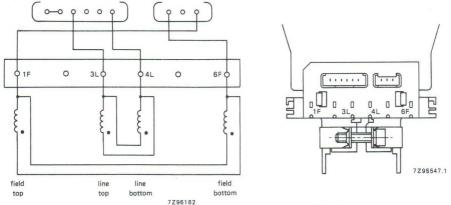

Cross-talk

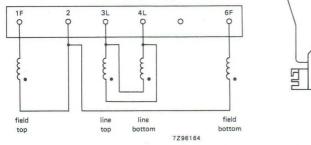

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0.2 V across the field coils (damping resistors included)

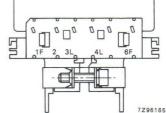
Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp


> 500 M Ω

between line coil and core clamp $$> 500~\text{M}\Omega$$ between field coil and core clamp $$> 10~\text{M}\Omega$$




- Connection diagram and top view of terminals of deflection unit AT6035/04. The beginning of the windings is indicated with •.
 - * Deflection unit has been provided with a connector.
 - ** Deflection unit has been provided with two connectors.
 - ▲ Field coils in series.



Connection diagram and top view of terminals of deflection units AT6035/02 and AT6035/11. The beginning of the windings is indicated with ●.

Connection diagram and top view of terminals of deflection unit AT6035/03. The beginning of the windings is indicated with •.

Connection diagram and top view of terminals of deflection units AT6035/30. The beginning of the windings is indicated with ullet.

This data sheet contains advance information and specifications are subject to change without notice.

FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- 90º deflection
- In-line, hi-bi potential A R T* gun
- 22,5 mm neck diameter
- Shadow mask of NiFe alloy with low thermal expansion
- Hi-Bri technology
- Mask with corner suspension
- Pigmented phosphors
- Fine pitch over entire screen
- · Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 625 lines system
- Internal magnetic shield
- Internal multipole
- · Reinforced envelope for push-through mounting
- The tube is supplied with a deflection unit of the AT6040 series; it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	900
Minimum useful screen diagonal	51 cm
Overall length	430 mm
Neck diameter	22,5 mm
Heating	6,3 V, 300 mA
Focusing voltage	31% of anode voltage

^{*} Aberration Reducing Triode.

A51EAMOOX

ELECTRON-OPTICAL DATA

unitized triple-aperture electrodes: Electron gun system aberration reducing triode Focusing method electrostatic Focus lens hi-bi-potential Deflection method magnetic Deflection angles approx. 900 diagonal approx. 780 horizontal vertical approx. 600

ELECTRICAL DATA

Capacitances anode to external max. 2200 pF conductive coating including rimband min. 1500 pF $C_a(m + m')$ C_{a1} 15 pF grid 1 to all other electrodes CkR, CkG, CkB 4 pF cathode of each gun to all other electrodes focusing electrode to all other electrodes C_{a3} 4 pF indirect by a.c. or d.c. Heating Vf 6.3 V heater voltage 300 mA heater current If

OPTICAL DATA

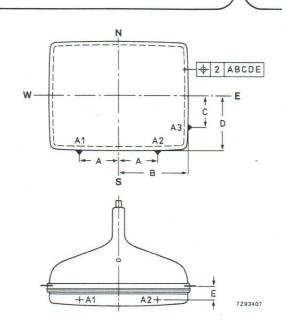
Screen metal-backed vertical phosphor stripes; phosphor lines follow glass contour Screen finish high polish Useful screen dimensions diagonal min. 508,0 mm horizontal axis min. 406,4 mm vertical axis min. 304.8 mm area min. 1240 cm² Positional accuracy of the screen with

respect to the glass contour see Figures on the next page Phosphors

red

pigmented europium activated rare earth areen sulphide type

pigmented sulphide type


blue Centre-to-centre distance of vertical identical

colour phosphor stripes, at screen centre 0.60 mm Light transmission of face glass at centre 64% Luminance at the centre of the screen 160 cd/m2 * L

Tube settings adjusted to produce white D (x = 0.313, y = 0.329), focused raster, current density $0.4 \, \mu A/cm^2$.

= 171,67 mm B = 223,70 mmC = 115,63 mmD = 173,89 mm

E = 23,50 mm

MECHANICAL DATA (see also the figures on the following pages)

Overall length

430,4 ± 4,5 mm

Neck diameter

22,5 + 1,4 mm*

Bulb dimensions diagonal

max. 546,1 mm

width height max. 455,6 mm max. 359,6 mm

Base

JEDEC B8-288

Anode contact

small cavity contact J1-21, IEC 67-III-2

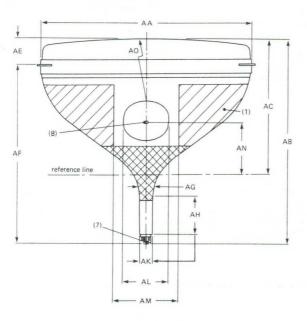
Mounting position

anode contact on top

Net mass

approx. 14 kg

Handling

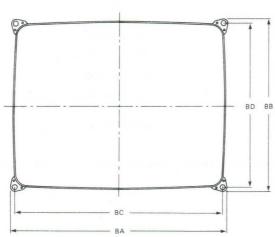

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

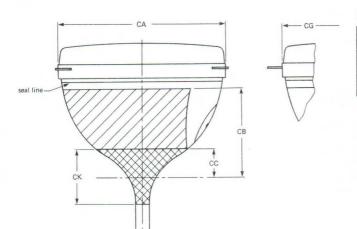
^{*} In the region of 66 mm from the neck end, the maximum diameter is 23,2 mm.

A51EAMOOX

MECHANICAL DATA (continued)

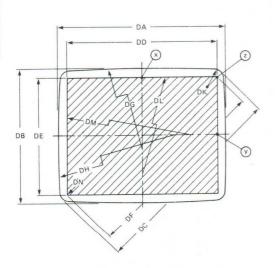
Notes are given after the drawings.




Dimensions in mm

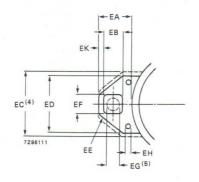
AA	459,5 max	
AB	430,4 ± 4,5	
AC	288,6 ± 4,0	
AE	64,7 max	
AF	373 max	
AG	22,5 ^{+ 1,4} _{-0,7}	
AH	66	
AK	$22,5 \pm 0,7$	
AL	110 ± 10	
AM	140 ± 3	
AN	110 ± 4,5	
AO	R1418 approx.	

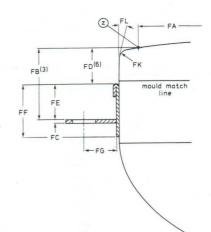
Dimensions in mm

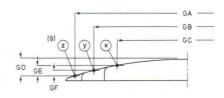

BA	474 max	
BB	379 max	
BC	449	
BD	354	

Dimensions in mm

CA	363,5 max	
CB	188 min	
CC	42 max	
CG	550 max	
CK	53 max	




Dimensions in mm

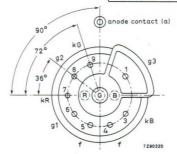

DA	454,0 ± 1,6
DB	358,0 ± 1,6
DC	544,5 ± 1,6
DD	406,4 min
DE	304,8 min
DF	508,0 min
DG	R3365
DH	R2586
DK	R24,4
DL	R14000
DM	R8000
DN	RO

A51EAMOOX

MECHANICAL DATA (continued)

Dimensions in mm


EA 21,6±0,5 EB 12±0,2 EC 40 max ED 35±1 EE R12 EF 12±0,2 EG 8


EH 3 min

Dimensions in mm

GA 508,0 GB 406,4 GC 304,8 GD 23,16 ± 2,0 GE 14,64 ± 2,0 GF 8,59 ± 2,0 Dimensions in mm

508.0 FB 38,5 ± 1,8 FC 3 FD 20 min FE 17 max 25 max FG 13,4 FK R8 50 FL

203.2**

203,2

203,2

203.2

152.4

150

140

130

23.2

22,9

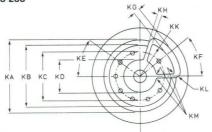
21,8

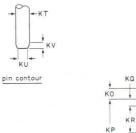
20.8

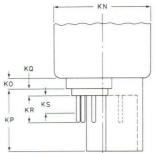
Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. One of the four mounting lugs may deviate (1,3 mm max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of \pm 1,8 mm.
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. corners of a rectangle of 354 mm x 449 mm.
- 6. Distance from point Z to any hardware,
- 7. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.
- 8. Small cavity contact J1-21. IEC 67-III-2.
- The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

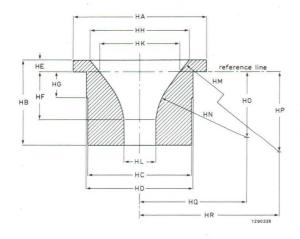

coordi	nates	sagittal	coord	inates	sagittal
X	У	height	×	У	height
mm	mm	mm	mm	mm	mm
0*	152,4	8,6	203,2	120	19,9
10	152,4	8,6	203,2	110	19,0
20	152,4	8,7	203,2	100	18,2
30	152,4	8,8	203,2	90	17,5
40	152,4	9,1	203,2	80	16,9
50	152,4	9,4	203,2	70	16,4
60	152,4	9,7	203,2	60	15,9
70	152,4	10,1	203,2	50	15,5
80	152,4	10,6	203,2	40	15,2
90	152,4	11,2	203,2	30	15,0
100	152,4	11,8	203,2	20	14,8
110	152,4	12,6	203,2	10	14,7
120	152,4	13,4	203,2 🛦	0	14,6
130	152,4	14,2	Market and the second s		
140	152,4	15,2			
150	152,4	16,2			
160	152,4	17,3			
170	152,4	18,5			
180	152,4	19,8			
190	152,4	21,2			
200	152,4	22,7			


Point X
Diagonal


Point (y)

A51EAMOOX

Base JEDEC B8-288



Reference line gauge; G-R90CJ10

7 Z 9 0 3 2 9

Dimensions in mm

KA	17,9 mm
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2
KE	36°
KF.	38º
KG	1,3 max
KH	0,8 min; 1,0 max
KK	R8,66 ± 0,1
KL	R1,0
KM	R0,25
KN	23,2 max
KO	2,7 max
KP	15,4 ± 0,2
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	$1,016 \pm 0,076$
KU	0,63 max
KV	0,4 min


Dimensions in mm

HA	ϕ 100,00
HB	65,00
HC	ϕ 78,70
HD	ϕ 80,00
HE	$9,20 \pm 0,02$
HF	$36,22 \pm 0,02$
HG	20,00
НН	ϕ 75,48 \pm 0,02
HK	ϕ 60,77 ± 0,02
HL	ϕ 23,90 $^{+\ 0,04}_{-0}$
НМ	R220,00
HN	R70,00
но	50,30
HP	132,71
HQ	80,52
HR	205,85

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	V _{a,g4}	25 kV	
Grid 3 (focusing electrode) voltage	V_{g3}	7,25 to 8,25 kV	
Grid 2 voltage for a spot cut-off voltage V _k = 120 V	V_{q2}	310 to 650 V	

Spot cut-off design chart.

Grid 2 voltage (V_{q2}) adjusted for highest gun spot cut-off voltage V_k = 125 V.

Remaining guns adjusted for spot cut-off by means of cathode voltage

V_{q2} range 310 to 685 V;

Vk range 100 to 125 V.

Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 125 V; increase the grid 2 voltage (V_{g2}) from approx. 300 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

A51EAMOOX

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.		
Grid 3 (focusing electrode) voltage	V_{g3}	29 to 33% of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot	V_{g2} and V_k	see cut-off design chart
Difference in cut-off voltages between guns in any tube	ΔV_k	lowest value > 80% of highest value
Heater voltage	Vf	6,3 V at zero beam current
Video drive characteristics		see graphs
Grid 3 (focusing electrode) current	l _{g3}	$-2 \text{ to } + 2 \mu A$
Grid 2 current	l _{g2}	$-2 \text{ to } + 2 \mu A$
Grid 1 current under cut-off conditions	lg1	$-2 \text{ to } + 2 \mu A$
To produce white of 6500K + 7 M.P.C.D. (CIE co-ordinates $x = 0.313$, $y = 0.329$)		
Percentage of the total anode current supplied by each gur red gun green gun blue gun	n (typical)	38,3% 35,8% 25,9%
Ratio of anode currents red gun to green gun		min. 0,8 average 1,1 max. 1,4
red gun to blue gun		min. 1,1 average 1,5 max. 1,9

0,5

0,7

0,9

min.

max.

average

blue gun to green gun

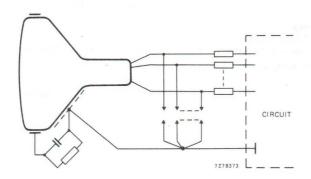
LIMITING VALUES (Design maximum rating system unless otherwise stated)

The voltages are specified with respect to grid 1.

Anode voltage	$V_{a,g4}$	max. min.	27,5 20	kV kV	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	la	max.	1000	μΑ	note 5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage, peak	V_{g2p}	max.	1000	V	
Cathode voltage					
positive	V_{k}	max.	400	V	
positive operating cut-off, during adjustment	V_k	max.	200	٧	
negative	$-v_k$	max.	0	V	
negative peak	$-V_{kp}$	max.	2	V	
Heater voltage	Vf	6,3	V ₋₁₀	% %	notes 1 and 6
Heater-cathode voltage					
heater negative with respect to cathode after equipment warm-up period	V_{kf}	max.	200	V	
heater positive with respect to cathode	$-V_{kfp}$	peak	200	V	note 1
	-V _{kf}	max.	0	V	

Notes

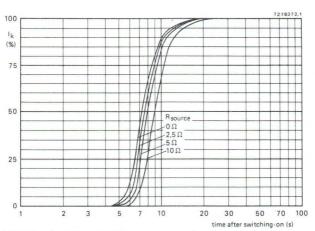
- 1. Absolute maximum rating system.
- The X-ray dose rate remains below the acceptable value of 0,5 mR/h, measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- 4. Operation of the tube at lower voltages impairs the luminance and resolution.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

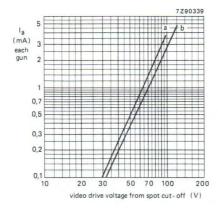

(d.c. component value)

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12,5 kV (1,5 x V_{g3} max. at $V_{a,g4}$ = 25 kV), and at the other electrodes of 1,5 to 2 kV.


The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


BEAM CORRECTIONS

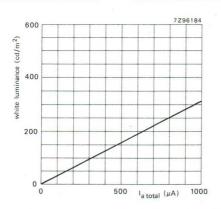
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

3 mm

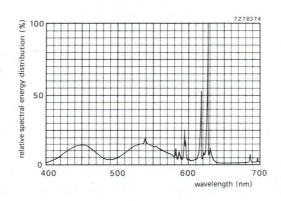
Cathode heating time after switching on, measured under typical operating conditions.

Typical cathode drive characteristics.

 $V_f = 6.3 V;$


 $V_{a,g4} = 25 \text{ kV};$

V_{a3} adjusted for focus;


 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 100 V (curve a), and V_k = 125 V (curve b).

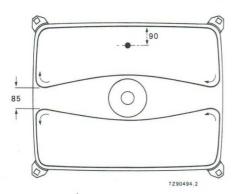
For optimum picture performance it is recommended that the cathodes are not driven below + 1 V.

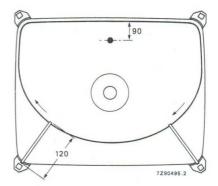
A51EAMOOX

Luminance at the centre of the screen as a function of I_{total} . $V_{a,94} = 25 \, kV$. Scanned area = 406,4 mm x 304,8 mm; CIE co-ordinates x = 0,313, y = 0,329.

Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0,313, y = 0,329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060


DEGAUSSING


The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.

For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns* is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils (≤ 0.3 ampere-turns**).

If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.

Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor 2322 662 98009; C = 100 nF, for double-coil system, optional for single-coil system.

Data of degaussing coil

Circumference	
Number of turns	
Copper-wire diameter	
Aluminium-wire diameter	
Resistance	

doubl	e-coil system	l system single-coil system					
125	cm	139	cm				
60		140					
0,4	mm	0,4	mm				
0,5	mm	0,5	mm				
22	Ω (two coils in series)	27	Ω				

- * 300 ampere-turns for double-coil system; 700 ampere-turns for single-coil system.
- ** ≤ 0.3 ampere-turns for double-coil system; ≤ 0.6 ampere-turns for single-coil system.

FLAT SQUARE HIBRICON COLOUR PICTURE TUBES

- Flat and square screen
- 90º deflection
- In-line, hi-bi potential A R T* gun
- 29,1 mm neck diameter
- Mask with corner suspension
- Hibricon screen with pigmented phosphors featuring high brightness and increased contrast performance
- · Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 525 lines system
- Internal magnetic shield
- Internal multipole
- Rimband type implosion protection
- The tube is supplied with a matched hybrid saddle toroidal deflection unit of the AT6030 series; it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	900
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	29,1 mm
Heating	6,3 V, 310 mA
Focusing voltage	31% of anode voltage

Types A51EBD00X and A51EBD10X are identical, except for the light transmission of the face glass at centre: 64,5% for A51EBD00X, and 52,3% for A51EBD10X.

^{*} Aberration Reducing Triode.

GENERAL DATA

1. ELECTRICAL	1.	EL	EC	TR	ICAL
---------------	----	----	----	----	------

Electron guns unitized triple-aperture electrodes; aberration reducing triode Heating 6,3 V heater voltage Vf heater current 310 mA If Focusing method electrostatic Focus lens hi-bi-potential Convergence method magnetic Deflection method magnetic Deflection angles (approx.) 90 deg diagonal horizontal 78 deg vertical 60 deg Direct interelectrode capacitances (approx.) grid 1 to all other electrodes 17 pF Cq1 all cathodes to all other electrodes Ck 15 pF each cathode to all other electrodes CkR, CkG, CkB 5 pF grid 3 to all other electrodes 6 pF grid 2 to all other electrodes 4.5 pF Cq2 < 2200 pF anode to external conductive coating, including rim band $C_{a(m+m')}$ > 1600 pF Resistance between rimband and external conductive coating 50 MΩ

2. OPTICAL

Screen

Screen finish

Useful screen dimensions

diagonal

horizontal axis

vertical axis

area

Positional accuracy of the screen with

respect to the glass contour

Phosphors

red

green

blue

Persistence

Colour co-ordinates

red green blue metal-backed vertical phosphor stripes; phosphor lines follow glass contour

high polish

min. 510,0 mm (20,08 in)

min. 409,3 mm (16,11 in)

min. 309,6 mm (12,19 in) min. 1253 cm² (194,22 in²)

min. 1253 cm² (194,22 m²)

see Figure on the next page

pigmented europium activated

rare earth

sulphide type

pigmented sulphide type

medium short

x 0,635 0,340 0,315 0,600 0,150 0,060

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

A51EBD00X

A51EBD10X

3. MECHANICAL (see also the figures on pages 12, 13 and 14)

Overall length

Neck diameter

Bulb dimensions

diagonal

width

height

Base designation

Anode contact designation

Bulb

funnel

panel

Implosion protection

Mass

Mounting position

approx. 0,69 mm (0,027 in)

64,5%

52,3%

--/---

443,7 ± 5 mm (17,47 ± 0,20 in)

 $29,1^{+1,4}_{-0,7}$ mm (1,15 $^{+0,06}_{-0,03}$ in) *

max. 546,1 mm (21,5 in)

max. 455,6 mm (17,9 in)

max. 359,6 mm (14,16 in)

JEDEC B10-277

recessed small cavity cap (JEDEC no. J1-21; IEC 67-III-2)

EIAJ-J540F1

to be established

shrink system, UL approved

15 kg (33 lbs)

anode contact on top

^{*} In the region of 78,5 mm (3,09 in) from the neck end, the maximum diameter is 30 mm (1,18 in).

RATINGS AND ELECTRICAL DATA

1. LIMITING VALUES (Design maximum rating system unless otherwise stated)

Unless otherwise specified, voltage values are for each gun and values are positive with respect to grid 1.

Anode voltage	$V_{a,g4}$	max. min.		kV kV	notes 1 and note 3	2
Long-term average current for three guns	la	max.	1000	μΑ	note 4	
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV		
Grid 2 voltage	V _{g2}	max.	1200	V	note 5	
Cathode voltage positive positive operating cut-off negative negative peak	V _k V _k -V _k -V _{kp}	max. max. max. max.	400 200 0 2	V		
Cathode to heater voltage positive positive peak negative negative peak	Vkf Vkfp -Vkf -Vkfp	max. max. max. max.	250 300 135 180	V V	note 1	
Heater voltage	V_{f}	6,3	V + 5		notes 1 and	6

Notes

- 1. Absolute maximum rating system.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
- 4. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 5. During adjustment on the production line max. 1500 V is permitted.
- 6. For maximum cathode life it is recommended that the heater supply be designed for 6,3 V at zero beam current.

2. EQUIPMENT DESIGN RANGES

blue to green

Unless otherwise specified, values are for each gun and voltage values are positive with respect to

grid 1.							
For anode voltages between 20 kV and 30 kV Grid 3 (focusing electrode) voltage	: V _{g3}	29%	6 to 33 %	of anod	le voltage		
Grid 2 voltage and cathode voltage for visual extinction of undeflected focused spot	V _{g2} ,V	k see	cut-off d	esign ch	art, page	19; note 1	
Maximum ratio of cathode voltage highest gun to lowest gun in any tube		1,25	ō				
Video drive characteristics		see	graphs or	n page 2	0; note 2	2	
Grid 3 current Grid 2 current Grid 1 current, under cut-off condition	lg3 lg2 lg1	-2	to + 2 μ A to + 2 μ A to + 2 μ A	4			
		hite D + 7 M.	P.C.D	93001	< + 27 M	.P.C.D.	
To produce white of the following CIE co-ordinates	x y	0,313 0,329			0,281 0,311		
Percentage of total anode current supplied by each gun (typical)	red 38,3	green 35,8	blue 25,9%	red 27,9	green 39,1	blue 33,0%	
Ratio of anode current red to blue red to green	min. 1,1 0,8	typ. 1,5 1,1	max. 1,9 1,4	min. 0,6 0,5	typ. 0,9 0,7	max. 1,2 1,0	

0,5

0,7 1,0

1,2

0,6

Notes

- 1. The common V_{g2} should be adjusted as follows: Set the cathode voltage, V_K, for each gun at 130 V. Increase the V_{q2} from about 575 V to the value at which the raster of one of the guns becomes just visible. Now decrease the Vk of the remaining guns so that the rasters of these guns also become visible.
- 2. For optimum picture performance it is recommended that the cathodes are not driven below +1 V.

3. EXAMPLE OF USE OF DESIGN RANGES

Unless otherwise specified, voltage values are for each gun and are positive with respect to grid 1.

Anode voltage Grid 3 (focusing electrode) voltage Grid 2 voltage when circuit design utilizes	V _{a,} g V _g 3	27,5 kV 8,0 to 9,1 kV	
cathode voltage of 130 V for visual extinction of focused spot	V _{g2}	575 to 825 V	
Heater voltage, under operating conditions	Vf	6,3 V	note 1
_	A51EBD00X	A51EBD10X	-
Luminance at the centre of the screen L	204 cd/m ² (59,64 foot lambert) 198 cd/m ² (57,89 foot lambert)	165 cd/m ² (48,24 foot lambert) 160 cd/m ² (46,78 foot lambert)	note 2 note 3

4. BEAM CORRECTIONS

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

4 mm (0,16 in)

5. LIMITING CIRCUIT VALUES

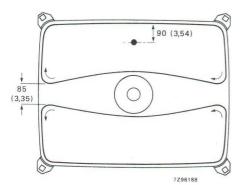
High voltage circuits

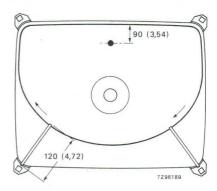
To minimize the possibility of damage to the circuit caused by a momentary internal arc, it is recommended that the high-voltage power supply and the grid 3 power supply be of the limited energy type.

Grid 3 circuit resistance	R _g 3	max.	70 MΩ
Grid 1 to cathode circuit resistance (each gun)	Ralk	max.	$0.75~\mathrm{M}\Omega$

Notes

- 1. The tube has quick-heating cathodes; if standby conditions are still required operate at 5,0 V.
- Tube settings adjusted to produce white of 9300K + 27 M.P.C.D. (x = 0,281, y = 0,311), focused raster, current density 0,4 μA/cm².
- 3, Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329), focused raster, current density 0,4 μ A/cm².

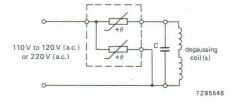

6. DEGAUSSING


The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.

For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns* is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils (≤ 0.3 ampere-turns**).

If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.



Position of degaussing coils on the picture tube.

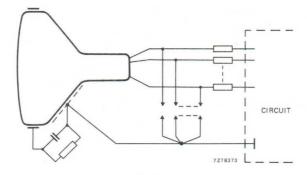
Degaussing circuit using dual PTC thermistor 2322 662 98009; C = 100 nF, for double-coil system, optional for single-coil system.

Data of degaussing coil

Circumference Number of turns Copper-wire diameter Aluminium-wire diameter Resistance

doub	ole-coil system	singl	e-coil system
125	cm (49 in)	139	cm (54 in)
60		140	
0,4	mm (0,016 in)	0,4	mm (0,016 in)
0,5	mm (0,02 in)	0,5	mm (0,02 in)
22	Ω (two coils	27	Ω
	in series)		

^{*} For double-coil system; 700 ampere-turns for single-coil system.


^{**} For double-coil system; ≤ 0,6 ampere-turns for single-coil system.

7. FLASHOVER PROTECTION

With the high voltage used with this tube (max. 30 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 13,5 kV (1,5 x V_{g3} max. at $V_{a,g4}$ = 27,5 kV), and at the other electrodes of 1.5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

X-RADIATION LIMIT

Maximum anode voltage at which the X-radiation emitted will not exceed 0,5 mR/h at an anode current of 300 μ A

entire tube face-plate only 35,5 kV *

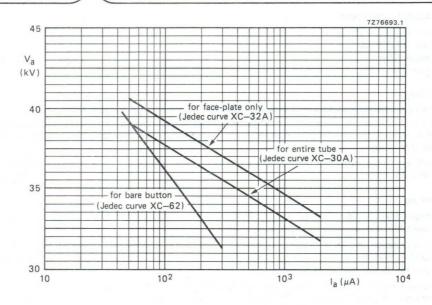
Warning:

If the value for the tube face only is used as design criterion, adequate shielding must be provided in the receiver for the anode contact and/or certain portions of the tube funnel and panel skirt to insure that the X-radiation from the receiver is attenuated to a value equal to or lower than that specified for the face of the tube.

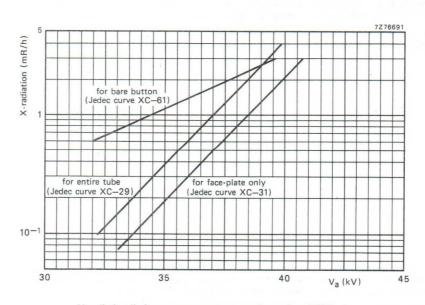
Maximum voltage difference between anode and focus electrode at which the X-radiation will not exceed 0.5 mR/h 30 kV

Warning:

If the voltage value above can be exceeded in the receiver, additional attenuation of the X-radiation through the tube neck may be required.


The X-radiation emitted from this picture tube, as measured in accordance with the procedure of JEDEC Publication No. 64D, will not exceed 0,5 mR/h throughout the useful tube life when operated within the 'Design maximum ratings'.

The tube should not be operated beyond its 'Design maximum ratings' stated above, but its X-radiation will not exceed 0,5 mR/h for anode voltage and current combinations given by the isoexposure-rate limits characteristics shown on the next page.


Operation above the values shown by the curve may result in failure of the television receiver to comply with the Federal Performance Standard of the U.S. for Television Receivers, Section 1020-10 of Part 1020 of Title 21, Code of Federal Regulation (PL90-602) as published in the Federal Register Volume 38, No. 198, Monday, October 15, 1973.

Maximum X-radiation as a function of anode voltage at 300 μ A anode current is shown by the curve on the next page. X-radiation at a constant anode voltage varies linearly with anode current.

^{*} This rating applies only if the anode connector used by the set maker provides the necessary attenuation to reduce the X-radiation from the anode contact by a factor equal to the difference between the anode button isoexposure-rate limit curve and the isoexposure-rate limit curve for the entire tube.

0,5 mR/h isoexposure-rate limit curve.

X-radiation limit curve at a constant anode current of 300 μ A.

WARNINGS

X-radiation

Operation of this colour picture tube at abnormal conditions which exceed the 0,5 mR/h iso-dose rate curve shown on the preceding page may produce soft X-rays which may constitute a health hazard on prolonged exposure at close range unless adequate external screening is provided. Precautions must therefore be exercised during servicing of TV receivers employing this tube to assure that the anode voltage and other tube voltages are adjusted to the recommended values so that the 'Design maximum ratings' will not be exceeded.

Tube replacement

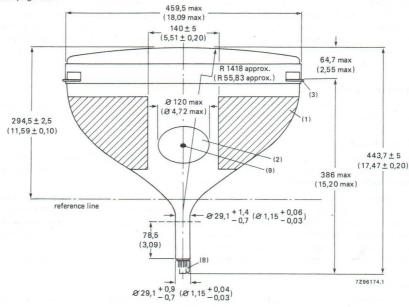
This picture tube employs integral X-radiation and implosion protection and must be replaced with a tube of the same type number or a recommended replacement to assure continued safety.

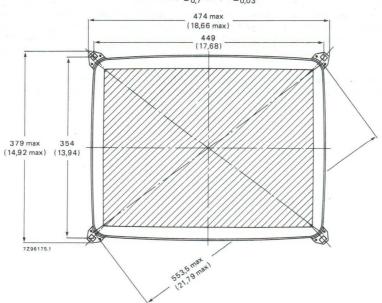
Shock hazard

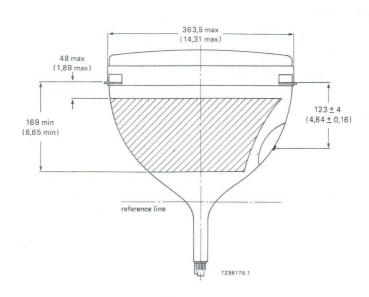
The high voltage at which the tube is operated may be very dangerous. The design of the TV receiver should include safeguards to prevent the user from coming in contact with the high voltage. Extreme care should be taken in the servicing or adjustment of any high-voltage circuit.

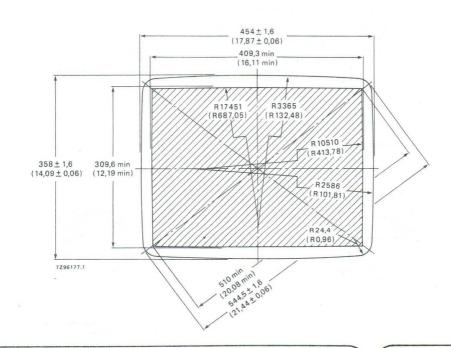
Caution must be exercised during the replacement or servicing of the picture tube since a residual electrical charge may be contained on the high-voltage capacitor formed by the external and internal conductive coatings of the picture tube funnel. To remove any residual high-voltage charges from the picture tube, 'bleed-off the charge by shorting the anode contact button, located in the funnel of the picture tube, to the external conductive coating before handling the tube. Discharging the high voltage to isolated metal parts such as cabinets and control brackets may produce a shock hazard.

Tube handling

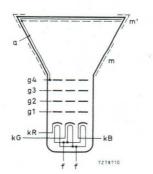

Picture tubes should be kept in the shipping box or similar protective container until just prior to installation. Wear heavy protective clothing, including gloves and safety goggles with side shields, in areas containing unpacked and unprotected tubes to prevent possible injury from flying glass in the event a tube breaks. Handle the picture tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal area.

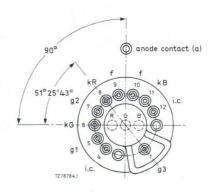

The receiver mounting system should incorporate sufficient cushioning so that under normal conditions of shipment or handling an impact acceleration of more than 35g is never applied to the tube.


MECHANICAL DATA


The dimensions are given in mm, and in inches between brackets.

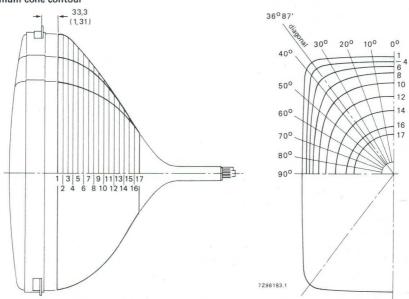
Notes are on page 15.





MECHANICAL DATA (continued) 516,4 22,2 ± 0,5 (20,33) (0.87 ± 0.02) 3,5 min 50 (0,14 min) 12 ± 0.2 $(0,47 \pm 0,01)$ 3 min 3 ± 0.5 (0,12 min) $(0,12 \pm 0,02)$ 37,7 ± 1,8 32,5 max R12,5 $(1,48 \pm 0,07)$ (R0,49) 37,5 max (1,28 max) (1,48 max) 35 max 30±0,5 12 (1,38 max) (1,18 ± 0,02) (0,47)2,5 (0,1) 7296178.1 13,4 8 (0,53)(0,31) 7296179.1 516,4 (20,33)415,7 (10)(16,37)14,7 ± 0,8 316 (0.58 ± 0.03) (12,44)24±2 $(0,94 \pm 0,08)$ 7Z96181.1 8,7 ± 0,8 $(0,34 \pm 0,03)$

i.c. = internally connected (not to be used)

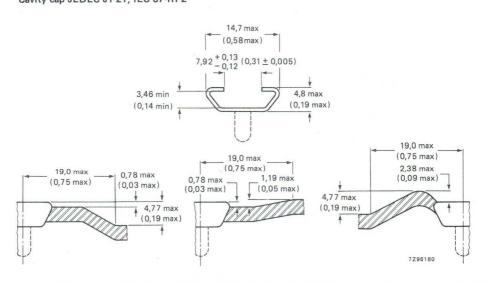

Notes to outline drawings on the preceding pages

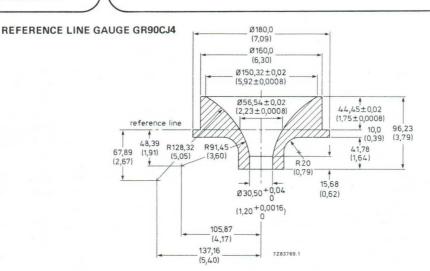
- Configuration of outer conductive coating may be different but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. The displacement of any lug with respect to the plane through the three other lugs is max. 1,3 mm (0,05 in). This deviation is incorporated in the tolerance of ± 1,8 mm (0,07 in).
- 4. Minimum space to be reserved for mounting lug.
- The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 354 mm (13,94 in) x 449 mm (17,68 in).
- 6. Not applicable.
- 7. Not applicable.
- The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed
 to move freely. After mounting of the tube in the cabinet note that the position of the base can
 fall within a circle, having a diameter of max. 50 mm (1,968 in), concentric with an imaginary
 tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate 3,2 mm (0,13 in) beyond the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

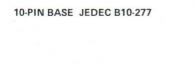
Sagittal heights with reference to screen centre at the edge of the minimum useful screen

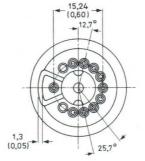
coordi	nates	sagittal	coord	dinates	sagittal
x mm	y mm	height mm	x inch	y inch	height inch
0	154,8	8,9	0	6,09	0,35
20	154,8	9,0	0,79	6,09	0,35
40	154,8	9,3	1,57	6,09	0,37
60	154,7	10,0	2,36	6,09	0,39
80	154,6	10,9	3,15	6,09	0,43
100	154,5	12,1	3,94	6,08	0,48
120	154,4	13,6	4,72	6,08	0,54
140	154,2	15,4	5,51	6,07	0,61
160	154,1	17,5	6,30	6,07	0,69
180	153,9	20,0	7,09	6,06	0,79
200	153,7	22,8	7,87	6,05	0,90
203,5	153,6	23,4	8,01	6,05	0,92
203,6	150	23,0	8,02	5,91	0,91
203,7	140	21,9	8,02	5,51	0,86
204,0	120	20,0	8,03	4,72	0,79
204,2	100	18,4	8,04	3,94	0,72
204,4	80	17,1	8,05	3,15	0,67
204,5	60	16,1	8,05	2,36	0,63
204,6	40	15,4	8,06	1,57	0,61
204,6	20	15,0	8,06	0,79	0,59
204,7	0	14,9	8,06	0	0,59

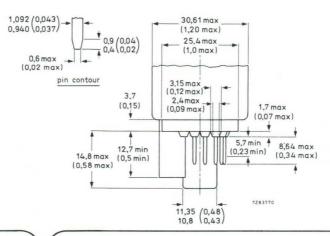
Maximum cone contour

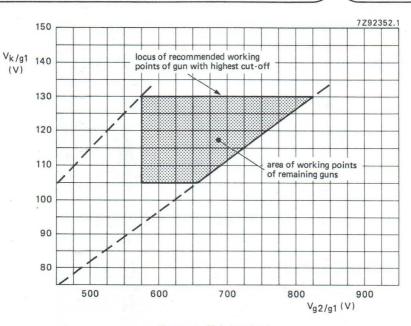

Dimensions in mm

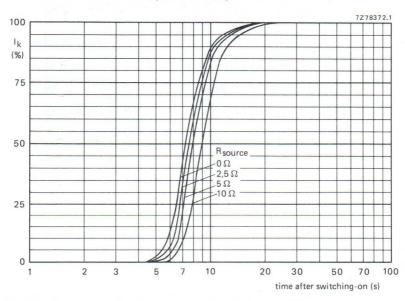

sec-	nom. distance		max. distance from centre									
tion	from section 1	00	100	200	300	diag.	400	500	60°	700	800	900
1	0	225,7	228,9	239,1	257,6	271,8	267,2	227,9	203,1	187,9	179,6	177,0
2	10	224,6	227,7	237,7	255,9	270,0	265,3	226,7	201,9	186,8	178,6	175,9
3	20	221,8	224,8	234,3	251,1	264,3	259,6	222,9	198,9	184,2	176,1	173,5
4	30	218,1	220,9	229,6	244,5	254,7	250,6	217,9	195,1	180,9	173,1	170,6
5	40	213,8	216,4	224,1	236,5	243,1	239,6	212,0	190,9	177,3	169,9	167,5
6	50	208,7	211,0	217,7	227,5	231,3	228,4	205,6	186,3	173,6	166,5	164,2
7	60	202,6	204,5	210,0	217,5	219,5	217,0	198,5	181,0	169,3	162,6	160,5
8	70	195,1	196,8	201,3	206,9	207,6	205,4	190,3	175,1	164,4	158,3	156,3
9	80	186,2	187,6	191,4	195,6	195,4	193,5	181,3	168,4	158,9	153,3	151,5
10	90	175,6	176,9	180,1	183,3	182,8	181,1	171,4	160,7	152,5	147,6	146,0
11	100	163,6	164,6	167,4	169,9	169,2	167,9	160,4	151,9	145,2	141,0	139,6
12	110	150,3	151,3	153,8	155,7	154,7	153,6	147,9	141,7	136,6	133,4	132,3
13	120	136,4	137,3	139,3	140,4	139,5	138,6	134,5	130,3	126,8	124,6	123,9
14	130	122,1	122,8	124,4	124,9	124,0	123,3	120,7	118,2	116,1	114,7	114,3
15	140	107,5	107,7	108,2	108,6	108,4	108,2	107,0	105,7	104,5	103,8	103,5
16	150	92,6	92,3	92,3	92,6	92,8	92,9	92,9	92,6	92,1	91,6	91,4
17	159,5	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1

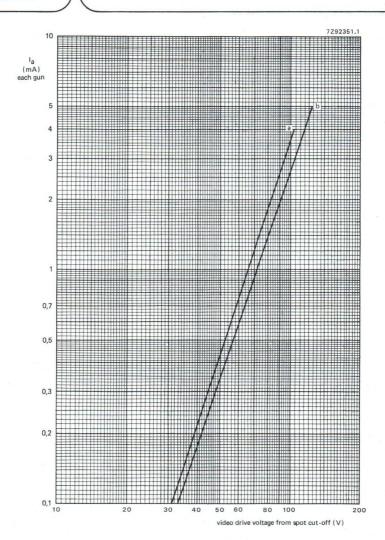

Dimensions in inches


sec-	nom.		max. distance from centre									
tion	distance from section 1	00	100	200	300	diag.	400	500	60°	700	800	900
1	0	8,89	9,01	9,41	10,14	10,70	10,52	8,97	8,00	7,40	7,07	6,97
2	0,39	8,84	8,96	9,36	10,07	10,63	10,44	8,93	7,95	7,35	7,03	6,93
3	0,79	8,73	8,85	9,22	9,89	10,41	10,22	8,78	7,83	7,25	6,93	6,83
4	1,18	8,59	8,70	9,04	9,63	10,03	9,87	8,58	7,68	7,12	6,81	6,72
5	1,57	8,42	8,52	8,82	9,31	9,57	9,43	8,35	7,52	6,98	6,69	6,59
6	1,97	8,22	8,31	8,57	8,96	9,11	8,99	8,09	7,33	6,83	6,56	6,46
7	2,36	7,98	8,05	8,27	8,56	8,64	8,54	7,81	7,13	6,67	6,40	6,32
8	2,76	7,68	7,75	7,93	8,15	8,17	8,09	7,49	6,89	6,47	6,23	6,15
9	3,15	7,33	7,39	7,54	7,70	7,69	7,62	7,14	6,63	6,26	6,04	5,96
10	3,54	6,91	6,96	7,09	7,22	7,20	7,13	6,75	6,33	6,00	5,81	5,75
11	3,94	6,44	6,48	6,59	6,69	6,66	6,61	6,31	5,98	5,72	5,55	5,50
12	4,33	5,92	5,96	6,06	6,13	6,09	6,05	5,82	5,58	5,38	5,25	5,21
13	4,72	5,37	5,41	5,48	5,53	5,49	5,46	5,30	5,13	4,99	4,91	4,88
14	5,12	4,81	4,83	4,90	4,92	4,88	4,85	4,75	4,65	4,57	4,52	4,50
15	5,51	4,23	4,24	4,26	4,28	4,27	4,26	4,21	4,16	4,11	4,09	4,07
16	5,91	3,65	3,63	3,63	3,65	3,65	3,66	3,66	3,65	3,63	3,61	3,60
17	6,28	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07


Cavity cap JEDEC J1-21, IEC 67-III-2



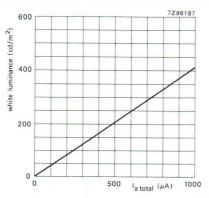


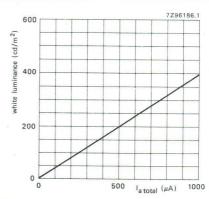


Spot cut-off design chart.

Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.

A51EBD00X A51EBD10X


Typical cathode drive characteristic.


 $V_f = 6.3 V;$

 $V_{a,g4} = 30 \text{ kV};$

V_{g3} adjusted for focus;

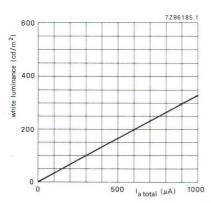
 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 105 V (curve a) and V_k = 130 V (curve b).

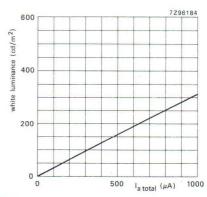
A51EBD00X

Luminance at the centre of the screen as a function of Itotal.

 $V_{a,g4} = 30 \text{ kV}$; $V_f = 6.3 \text{ V}$; V_{g3} adjusted for optimum focus.

White-light output = 9300 K + 27 M.P.C.D.; CIE co-ordinates x = 0.281, y = 0.311.


Raster size = $409,3 \times 309,6 \text{ mm}^2$ $(16,11 \times 12,19 \text{ in}^2)$.


Luminance at the centre of the screen as a function of Itotal.

 $V_{a,g4} = 30 \text{ kV}; V_f = 6,3 \text{ V}; V_{g3} \text{ adjusted for}$ optimum focus.

White-light output = 6500 K + 7 M.P.C.D.; CIE co-ordinates x = 0.313, y = 0.329.

Raster size = $409,3 \times 309,6 \text{ mm}^2$ $(16,11 \times 12,19 \text{ in}^2).$

A51EBD10X

Luminance at the centre of the screen as a function of Itotal.

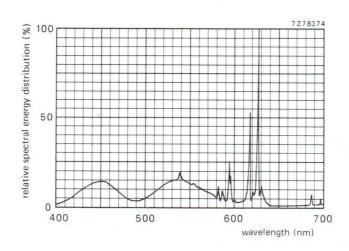
 $V_{a,q4} = 30 \text{ kV}$; $V_f = 6.3 \text{ V}$; V_{g3} adjusted for optimum focus.

White-light output = 9300 K + 27 M.P.C.D.; CIE co-ordinates x = 0,281, y = 0,311.

Raster size = $409,3 \times 309,6 \text{ mm}^2$ (16,11 x 12,19 in²).

 $V_{a,q4} = 30 \text{ kV}$; $V_f = 6.3 \text{ V}$; V_{q3} adjusted for optimum focus. White-light output = 6500 K + 7 M.P.C.D.;

Luminance at the centre of the screen as a


CIE co-ordinates x = 0.313, y = 0.329.

Raster size = $409,3 \times 309,6 \text{ mm}^2$

(16,11 x 12,19 in2).

function of Itotal.

A51EBD00X A51EBD10X

Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.281, y = 0.311. Exact shape of the peaks depends on the resolution of the measuring apparatus.

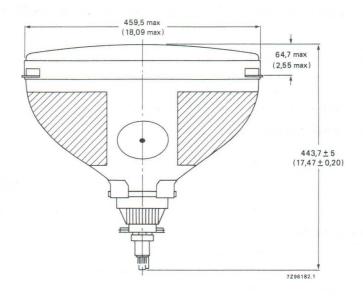
Colour co-ordinates:	X	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

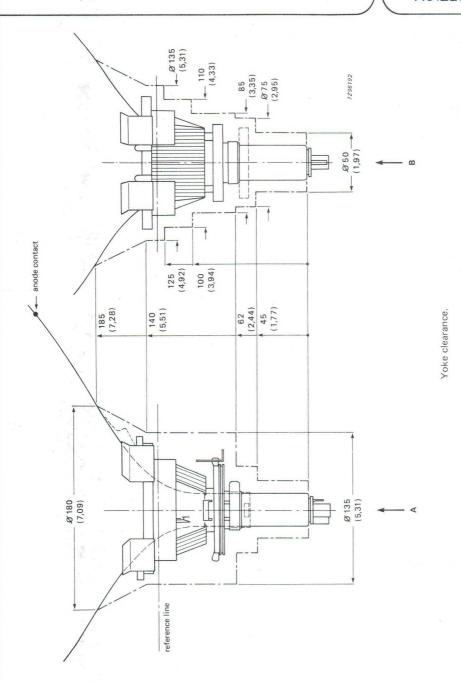
90° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- · Self-converging and raster correction free
- 51 cm, 90° colour picture tube A51EBD . . X
- Hybrid saddle toroidal deflection unit of the AT6030 series

QUICK REFERENCE DATA

Deflection angle	900
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	29,1 mm


AVAILABLE ASSEMBLIES


assembly type	assembly components
A51EBD00X40	tube A51EBD00X + deflection unit AT6030, type 1
A51EBD10X40	tube A51EBD10X + deflection unit AT6030, type 1

A51EBD00X40 A51EBD10X40

MECHANICAL DATA

Dimensions in mm

A51EBD00X40 A51EBD10X40

ELECTRICAL DATA OF DEFLECTION UNIT

Line deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C magnetic flux

Line deflection current, edge to edge, at 25 kV

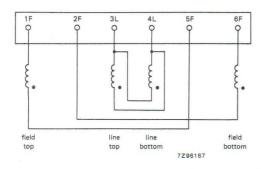
Field deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C

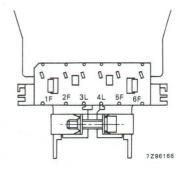
Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp

2,0 mH \pm 4% 2,35 Ω \pm 10% 5,70 mWb \pm 2,5%


2,85 A (p-p)


19,5 mH ± 10% 9,7 Ω ± 7%

1,09 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

 $> 500 M\Omega$ $> 500 M\Omega$ $> 10 M\Omega$

Connection diagram and top view of terminals of deflection unit AT6030, type 1. The beginning of the windings is indicated with ullet.

FLAT SQUARE HIBRICON COLOUR PICTURE TUBES

- Flat and square screen
- 90º deflection
- In-line, hi-bi potential A R T* gun
- 29,1 mm neck diameter
- Mask with corner suspension
- Hibricon screen with pigmented phosphors featuring high brightness and increased contrast performance
- · Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 525 lines system
- Internal magnetic shield
- Internal multipole
- · Reinforced envelope for push-through mounting
- The tube is supplied with a matched hybrid saddle toroidal deflection unit of the AT6030 series; it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

900
51 cm
444 mm
29,1 mm
6,3 V, 310 mA
31% of anode voltage

Types A51EBS00X and A51EBS10X are identical, except for the light transmission of the face glass at centre: 64.5% for A51EBS00X, and 52.3% for A51EBS10X.

^{*} Aberration Reducing Triode.

GENERAL DATA

1. ELECTRICAL

Electron guns unitized triple-aperture electrodes; aberration reducing triode Heating heater voltage 6.3 V Vf heater current 310 mA If Focusing method electrostatic Focus lens hi-bi-potential Convergence method magnetic Deflection method magnetic Deflection angles (approx.) diagonal 90 dea horizontal 78 deg vertical 60 deg Direct interelectrode capacitances (approx.) grid 1 to all other electrodes Cq1 17 pF all cathodes to all other electrodes Ck 15 pF each cathode to all other electrodes CkR, CkG, CkB 5 pF grid 3 to all other electrodes 6 pF C_g3 grid 2 to all other electrodes 4,5 pF Ca2 < 2200 pF anode to external conductive coating, including rim band $C_{a(m+m')}$

2. OPTICAL

Screen

Screen finish Useful screen dimensions

diagonal horizontal axis

vertical axis area

Positional accuracy of the screen with respect to the glass contour

Resistance between rimband and external conductive coating

Phosphors red

green blue

Persistence Colour co-ordinates

red green 1600 pF 50 MΩ

metal-backed vertical phosphor

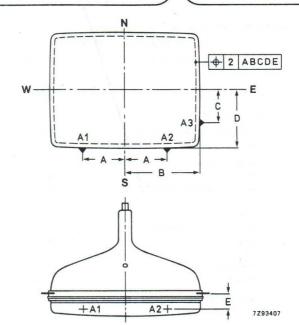
stripes; phosphor lines follow glass contour

high polish

min. 510,0 mm (20,08 in)

min. 409,3 mm (16,11 in) min. 309,6 mm (12,19 in) min. 1253 cm² (194,22 in²)

see Figure on the next page


pigmented europium activated rare earth sulphide type pigmented sulphide type

medium short 0.635

0,340 0,315 0,600 0,150 0,060

blue

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

3. MECHANICAL (see also the figures on pages 12, 13 and 14)

Light transmission of face glass at centre A51EBS00X

A51EBS10X

Overall length

Neck diameter

Bulb dimensions

diagonal width

height
Base designation
Anode contact designation

Bulb

funnel

Implosion protection
Mass

Mounting position

approx. 0,69 mm (0,027 in)

64,5%

52,3%

443,7 ± 5 mm (17,47 ± 0,20 in)

 $29,1^{+1,4}_{-0,7}$ mm (1,15 $^{+0,06}_{-0,03}$ in) *

max. 546,1 mm (21,5 in)

max. 455,6 mm (17,9 in) max. 359,6 mm (14,16 in)

JEDEC B10-277

recessed small cavity cap (JEDEC no. J1-21; IEC 67-III-2)

EIAJ-J540F1 to be established reinforced envelope for push-through 15 kg (33 lbs) anode contact on top

^{*} In the region of 78,5 mm (3,09 in) from the neck end, the maximum diameter is 30 mm (1,18 in).

RATINGS AND ELECTRICAL DATA

LIMITING VALUES (Design maximum rating system unless otherwise stated)
 Unless otherwise specified, voltage values are for each gun and values are positive with respect to grid 1.

Anode voltage	V _{a,g4}	max. min.		kV kV	notes 1 and 2 note 3
Long-term average current for three guns	la	max.	1000	μΑ	note 4
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage	V_{g2}	max.	1200	V	note 5
Cathode voltage positive positive operating cut-off negative negative peak	V _k V _k -V _k -V _{kp}	max. max. max.			
Cathode to heater voltage positive positive peak negative negative peak	Vkf Vkfp -Vkf -Vkfp	max. max. max.	250 300 135 180	V	note 1
Heater voltage	Vf	6,3 V	+ 5 -10		notes 1 and 6

Notes

- 1. Absolute maximum rating system.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
- 4. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 5. During adjustment on the production line max. 1500 V is permitted.
- For maximum cathode life it is recommended that the heater supply be designed for 6,3 V at zero beam current.

2. EQUIPMENT DESIGN RANGES

Unless otherwise specified, values are for each gun and voltage values are positive with respect to grid 1.

For anode voltages between 20 kV and 30 kV: Grid 3 (focusing electrode) voltage	V _{g3}	29% to 33%	of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of undeflected focused spot	V_{g2},V_{k}	see cut-off of	design chart, page 19; note 1
Maximum ratio of cathode voltage highest gun to lowest gun in any tube		1,25	
Video drive characteristics		see graphs o	n page 20; note 2
Grid 3 current Grid 2 current Grid 1 current, under cut-off condition	lg3 lg2 lg1	$-2 \text{ to } + 2 \mu$ $-2 \text{ to } + 2 \mu$ $-2 \text{ to } + 2 \mu$	A
	***	nite D + 7 M.P.C.D	9300K + 27 M.P.C.D.
To produce white of the following CIE co-ordinates	x y	0,313 0,329	0,281 0,311
Percentage of total anode current supplied			

CIE co-ordinates	X	0,313	3		0,281		
	У	0,329	9		0,311		
Percentage of total anode current supplied by each gun (typical)	red 38,3	green 35,8	blue 25,9%	red 27,9	green 39,1	blue 33,0%	
Ratio of anode current	min.	typ.	max.	min.	typ.	max.	
red to blue	1,1	1,5	1,9	0,6	0,9	1,2	
red to green	0,8	1,1	1,4	0,5	0,7	1,0	
blue to green	0,5	0,7	1,0	0,6	0,9	1,2	

Notes

- 1. The common V_{g2} should be adjusted as follows: Set the cathode voltage, V_k , for each gun at 130 V. Increase the V_{g2} from about 575 V to the value at which the raster of one of the guns becomes just visible. Now decrease the V_k of the remaining guns so that the rasters of these guns also become visible.
- 2. For optimum picture performance it is recommended that the cathodes are not driven below +1 V.

3. EXAMPLE OF USE OF DESIGN RANGES

Unless otherwise specified, voltage values are for each gun and are positive with respect to grid 1.

Anode voltage Grid 3 (focusing electrode) voltage Grid 2 voltage when circuit design utilizes cathode voltage of 130 V for visual	V _a , V _{g3}	g4 27,5 k 8,0 to 9,1 k	
extinction of focused spot	V _{g2}	575 to 825 V	
Heater voltage, under operating conditions	Vf	6,3 V	note 1
_	A51EBS00X	A51EBS10X	
Luminance at the centre of the screen L	204 cd/m ² (59,64 foot lambert)	165 cd/m ² (48,24 foot lambert)	note 2

198 cd/m²

160 cd/m²

(57,89 foot lambert) (46,78 foot lambert)

note 3

4. BEAM CORRECTIONS

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 4 mm (0,16 in)

5. LIMITING CIRCUIT VALUES

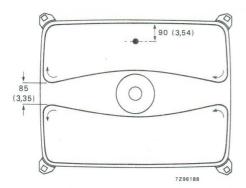
High voltage circuits

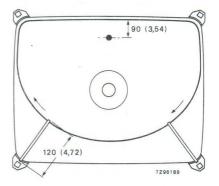
To minimize the possibility of damage to the circuit caused by a momentary internal arc, it is recommended that the high-voltage power supply and the grid 3 power supply be of the limited energy type.

Grid 3 circuit resistance	R _{g3}	max.	$70~{\rm M}\Omega$
Grid 1 to cathode circuit resistance (each gun)	R _{g1k}	max.	0,75 M Ω

Notes

- 1. The tube has quick-heating cathodes; if standby conditions are still required operate at 5,0 V.
- 2. Tube settings adjusted to produce white of 9300K + 27 M.P.C.D. (x = 0,281, y = 0,311), focused raster, current density 0,4 μ A/cm².
- 3. Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329), focused raster, current density 0,4 μ A/cm².

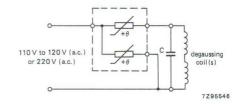

6. DEGAUSSING


The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.

For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns* is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils (≤ 0.3 ampere-turns**).

If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.



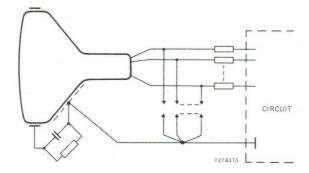
Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor 2322 662 98009; C = 100 nF, for double-coil system, optional for single-coil system.

Data of degaussing coil

Circumference
Number of turns
Copper-wire diameter
Aluminium-wire diameter
Resistance

doub	ole-coil system	singl	e-coil system
double-coil system 125 cm (49 in) 60 0,4 mm (0,016 in) 0,5 mm (0,02 in) 22 Ω (two coils		139	cm (54 in)
60		140	
0,4	mm (0,016 in)	0,4	mm (0,016 in)
0,5	mm (0,02 in)	0,5	mm (0,02 in)
22	Ω (two coils	27	Ω
	in series)		


- * For double-coil system; 700 ampere-turns for single-coil system.
- ** For double-coil system; ≤ 0,6 ampere-turns for single-coil system.

7. FLASHOVER PROTECTION

With the high voltage used with this tube (max. 30 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 13,5 kV (1,5 x V_{g3} max. at $V_{a,g4}$ = 27,5 kV), and at the other electrodes of 1.5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

X-RADIATION LIMIT

Maximum anode voltage at which the X-radiation emitted will not exceed 0,5 mR/h at an anode current of 300 μ A

entire tube face-plate only

35,5 kV *

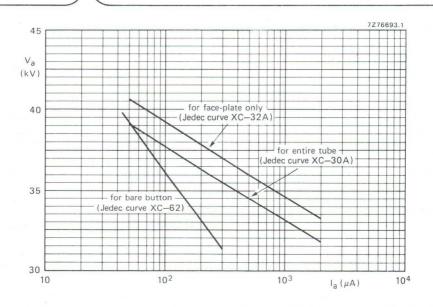
Warning:

If the value for the tube face only is used as design criterion, adequate shielding must be provided in the receiver for the anode contact and/or certain portions of the tube funnel and panel skirt to insure that the X-radiation from the receiver is attenuated to a value equal to or lower than that specified for the face of the tube.

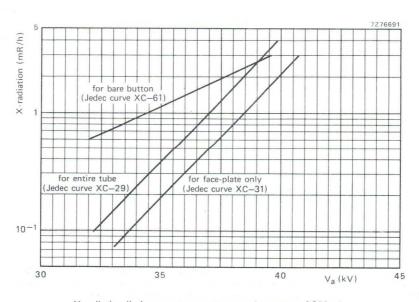
Maximum voltage difference between anode and focus electrode at which the X-radiation will not exceed 0,5 mR/h 30 kV

Warning:

If the voltage value above can be exceeded in the receiver, additional attenuation of the X-radiation through the tube neck may be required.


The X-radiation emitted from this picture tube, as measured in accordance with the procedure of JEDEC Publication No. 64D, will not exceed 0,5 mR/h throughout the useful tube life when operated within the 'Design maximum ratings'.

The tube should not be operated beyond its 'Design maximum ratings' stated above, but its X-radiation will not exceed 0,5 mR/h for anode voltage and current combinations given by the isoexposure-rate limits characteristics shown on the next page.


Operation above the values shown by the curve may result in failure of the television receiver to comply with the Federal Performance Standard of the U.S. for Television Receivers, Section 1020-10 of Part 1020 of Title 21, Code of Federal Regulation (PL90-602) as published in the Federal Register Volume 38, No. 198, Monday, October 15, 1973.

Maximum X-radiation as a function of anode voltage at 300 μ A anode current is shown by the curve on the next page. X-radiation at a constant anode voltage varies linearly with anode current.

^{*} This rating applies only if the anode connector used by the set maker provides the necessary attenuation to reduce the X-radiation from the anode contact by a factor equal to the difference between the anode button isoexposure-rate limit curve and the isoexposure-rate limit curve for the entire tube.

0,5 mR/h isoexposure-rate limit curve.

X-radiation limit curve at a constant anode current of 300 μ A.

WARNINGS

X-radiation

Operation of this colour picture tube at abnormal conditions which exceed the 0,5 mR/h iso-dose rate curve shown on the preceding page may produce soft X-rays which may constitute a health hazard on prolonged exposure at close range unless adequate external screening is provided. Precautions must therefore be exercised during servicing of TV receivers employing this tube to assure that the anode voltage and other tube voltages are adjusted to the recommended values so that the 'Design maximum ratings' will not be exceeded.

Tube replacement

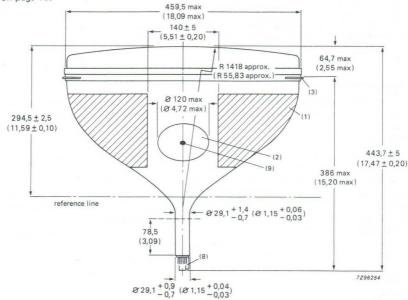
This picture tube employs integral X-radiation and implosion protection and must be replaced with a tube of the same type number or a recommended replacement to assure continued safety.

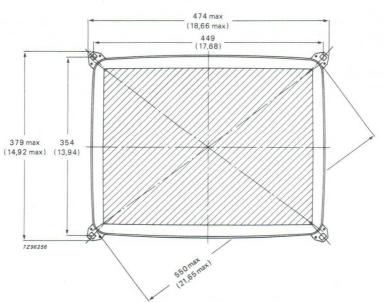
Shock hazard

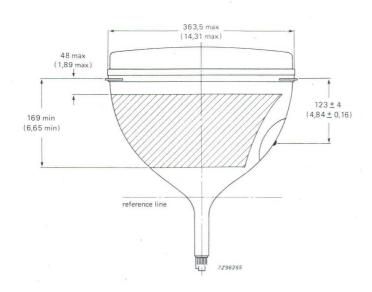
The high voltage at which the tube is operated may be very dangerous. The design of the TV receiver should include safeguards to prevent the user from coming in contact with the high voltage. Extreme care should be taken in the servicing or adjustment of any high-voltage circuit.

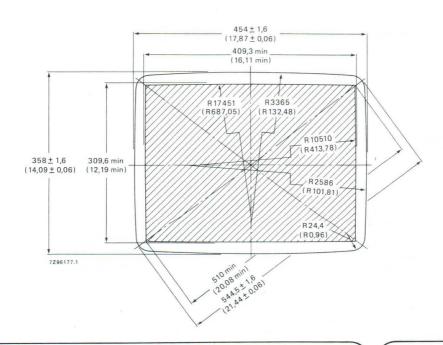
Caution must be exercised during the replacement or servicing of the picture tube since a residual electrical charge may be contained on the high-voltage capacitor formed by the external and internal conductive coatings of the picture tube funnel. To remove any residual high-voltage charges from the picture tube, 'bleed-off the charge by shorting the anode contact button, located in the funnel of the picture tube, to the external conductive coating before handling the tube. Discharging the high voltage to isolated metal parts such as cabinets and control brackets may produce a shock hazard.

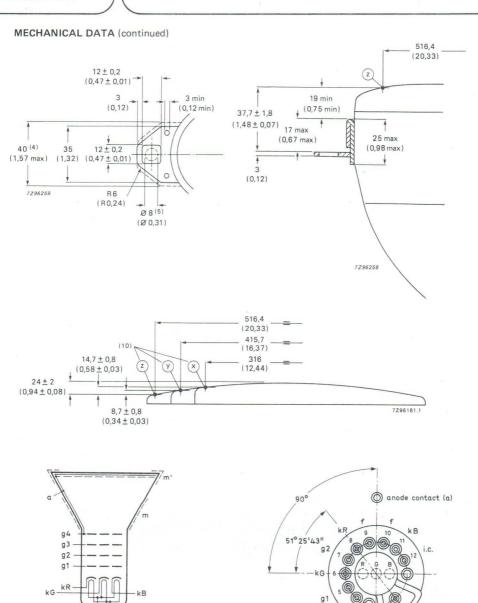
Tube handling


Picture tubes should be kept in the shipping box or similar protective container until just prior to installation. Wear heavy protective clothing, including gloves and safety goggles with side shields, in areas containing unpacked and unprotected tubes to prevent possible injury from flying glass in the event a tube breaks. Handle the picture tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal area.


The receiver mounting system should incorporate sufficient cushioning so that under normal conditions of shipment or handling an impact acceleration of more than 35g is never applied to the tube.


MECHANICAL DATA


The dimensions are given in mm, and in inches between brackets.

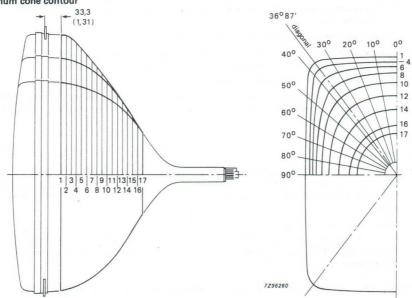

Notes are on page 15.

i.c. = internally connected (not to be used)

7278784.1

g3

7278710

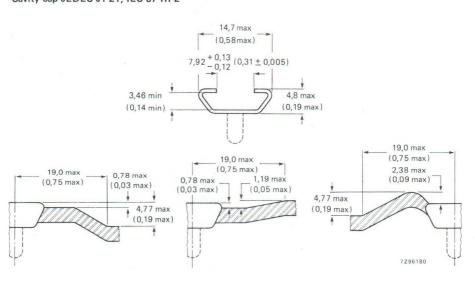

Notes to outline drawings on the preceding pages

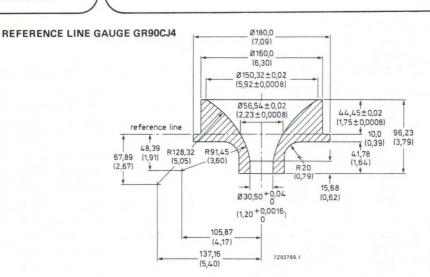
- Configuration of outer conductive coating may be different but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. The displacement of any lug with respect to the plane through the three other lugs is max. 1,3 mm (0,05 in). This deviation is incorporated in the tolerance of ± 1,8 mm (0,07 in).
- 4. Minimum space to be reserved for mounting lug.
- The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 354 mm (13,94 in) x 449 mm (17,68 in).
- 6. Not applicable.
- 7. Not applicable.
- The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed
 to move freely. After mounting of the tube in the cabinet note that the position of the base can
 fall within a circle, having a diameter of max. 50 mm (1,968 in), concentric with an imaginary
 tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate 3,2 mm (0,13 in) beyond the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

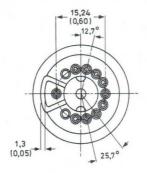
coordir	nates	sagittal	coord	linates	sagittal
×	У	height	×	У	height
mm	mm	mm	inch	inch	inch
0	154,8	8,9	0	6,09	0,35
20	154,8	9,0	0,79	6,09	0,35
40	154,8	9,3	1,57	6,09	0,37
60	154,7	10,0	2,36	6,09	0,39
80	154,6	10,9	3,15	6,09	0,43
100	154,5	12,1	3,94	6,08	0,48
120	154,4	13,6	4,72	6,08	0,54
140	154,2	15,4	5,51	6,07	0,61
160	154,1	17,5	6,30	6,07	0,69
180	153,9	20,0	7,09	6,06	0,79
200	153,7	22,8	7,87	6,05	0,90
203,5	153,6	23,4	8,01	6,05	0,92
203,6	150	23,0	8,02	5,91	0,91
203,7	140	21,9	8,02	5,51	0,86
204,0	120	20,0	8,03	4,72	0,79
204,2	100	18,4	8,04	3,94	0,72
204,4	80	17,1	8,05	3,15	0,67
204,5	60	16,1	8,05	2,36	0,63
204,6	40	15,4	8,06	1,57	0,61
204,6	20	15,0	8,06	0,79	0,59
204,7	0	14,9	8,06	0	0,59

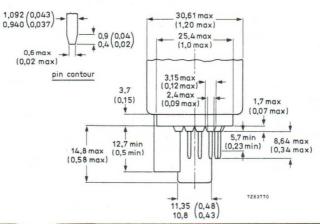
Maximum cone contour

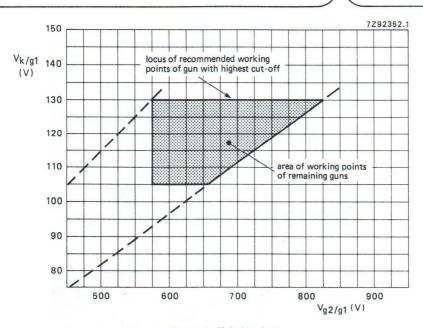

Dimensions in mm

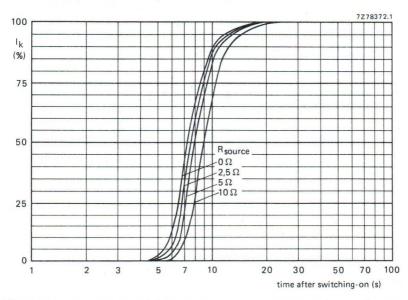

sec-	nom. distance		max. distance from centre									
tion	from section 1	00	100	200	300	diag.	400	500	60°	700	800	900
1	0	225,7	228,9	239,1	257,6	271,8	267,2	227,9	203,1	187,9	179,6	177,0
2	10	224,6	227,7	237,7	255,9	270,0	265,3	226,7	201,9	186,8	178,6	175,9
3	20	221,8	224,8	234,3	251,1	264,3	259,6	222,9	198,9	184,2	176,1	173,5
4	30	218,1	220,9	229,6	244,5	254,7	250,6	217,9	195,1	180,9	173,1	170,6
5	40	213,8	216,4	224,1	236,5	243,1	239,6	212,0	190,9	177,3	169,9	167,5
6	50	208,7	211,0	217,7	227,5	231,3	228,4	205,6	186,3	173,6	166,5	164,2
7	60	202,6	204,5	210,0	217,5	219,5	217,0	198,5	181,0	169,3	162,6	160,5
8	70	195,1	196,8	201,3	206,9	207,6	205,4	190,3	175,1	164,4	158,3	156,3
9	80	186,2	187,6	191,4	195,6	195,4	193,5	181,3	168,4	158,9	153,3	151,5
10	90	175,6	176,9	180,1	183,3	182,8	181,1	171,4	160,7	152,5	147,6	146,0
11	100	163,6	164,6	167,4	169,9	169,2	167,9	160,4	151,9	145,2	141,0	139,6
12	110	150,3	151,3	153,8	155,7	154,7	153,6	147,9	141,7	136,6	133,4	132,3
13	120	136,4	137,3	139,3	140,4	139,5	138,6	134,5	130,3	126,8	124,6	123,9
14	130	122,1	122,8	124,4	124,9	124,0	123,3	120,7	118,2	116,1	114,7	114,3
15	140	107,5	107,7	108,2	108,6	108,4	108,2	107,0	105,7	104,5	103,8	103,5
16	150	92,6	92,3	92,3	92,6	92,8	92,9	92,9	92,6	92,1	91,6	91,4
17	159,5	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1

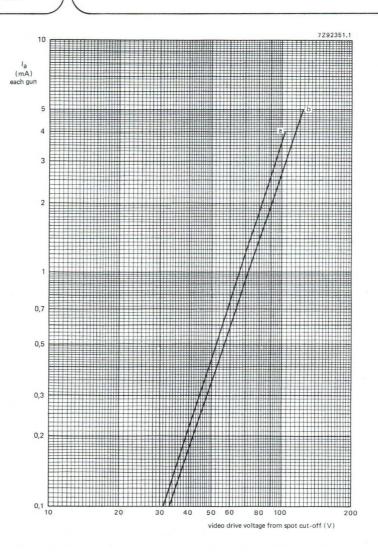
Dimensions in inches


sec-	nom.			×	ma	x. dista	nce fror	n centre	9			
tion	distance from section 1	00	100	200	300	diag.	400	500	600	700	800	900
1	0	8,89	9,01	9,41	10,14	10,70	10,52	8,97	8,00	7,40	7,07	6,97
2	0,39	8,84	8,96	9,36	10,07	10,63	10,44	8,93	7,95	7,35	7,03	6,93
3	0,79	8,73	8,85	9,22	9,89	10,41	10,22	8,78	7,83	7,25	6,93	6,83
4	1,18	8,59	8,70	9,04	9,63	10,03	9,87	8,58	7,68	7,12	6,81	6,72
5	1,57	8,42	8,52	8,82	9,31	9,57	9,43	8,35	7,52	6,98	6,69	6,59
6	1,97	8,22	8,31	8,57	8,96	9,11	8,99	8,09	7,33	6,83	6,56	6,46
7	2,36	7,98	8,05	8,27	8,56	8,64	8,54	7,81	7,13	6,67	6,40	6,32
8	2,76	7,68	7,75	7,93	8,15	8,17	8,09	7,49	6,89	6,47	6,23	6,15
9	3,15	.7,33	7,39	7,54	7,70	7,69	7,62	7,14	6,63	6,26	6,04	5,96
10	3,54	6,91	6,96	7,09	7,22	7,20	7,13	6,75	6,33	6,00	5,81	5,75
11	3,94	6,44	6,48	6,59	6,69	6,66	6,61	6,31	5,98	5,72	5,55	5,50
12	4,33	5,92	5,96	6,06	6,13	6,09	6,05	5,82	5,58	5,38	5,25	5,21
13	4,72	5,37	5,41	5,48	5,53	5,49	5,46	5,30	5,13	4,99	4,91	4,88
14	5,12	4,81	4,83	4,90	4,92	4,88	4,85	4,75	4,65	4,57	4,52	4,50
15	5,51	4,23	4,24	4,26	4,28	4,27	4,26	4,21	4,16	4,11	4,09	4,07
16	5,91	3,65	3,63	3,63	3,65	3,65	3,66	3,66	3,65	3,63	3,61	3,60
17	6,28	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07


Cavity cap JEDEC J1-21, IEC 67-III-2

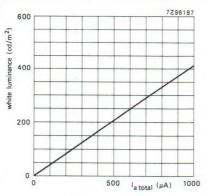


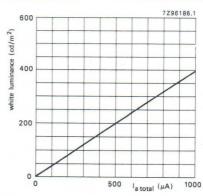




Spot cut-off design chart.

Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.


Typical cathode drive characteristic.


$$V_f = 6,3 V;$$

 $V_{a,g4} = 30 \text{ kV};$

V_{q3} adjusted for focus;

 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 105 V (curve a) and V_k = 130 V (curve b).

A51EBS00X

Luminance at the centre of the screen as a function of Itotal.

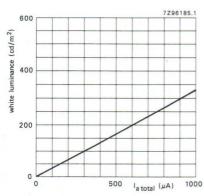
 $V_{a,q4} = 30 \text{ kV}$; $V_f = 6.3 \text{ V}$; V_{q3} adjusted for optimum focus.

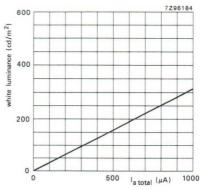
White-light output = 9300 K + 27 M.P.C.D.;

CIE co-ordinates x = 0.281, y = 0.311.

Raster size = 409,3 x 309,6 mm²

(16,11 x 12,19 in2).


Luminance at the centre of the screen as a function of Itotal.


 $V_{a,g4} = 30 \text{ kV}$; $V_f = 6,3 \text{ V}$; V_{g3} adjusted for optimum focus.

White-light output = 6500 K + 7 M.P.C.D.;

CIE co-ordinates x = 0,313, y = 0,329. Raster size = $409,3 \times 309,6 \text{ mm}^2$

(16,11 x 12,19 in²).

A51EBS10X

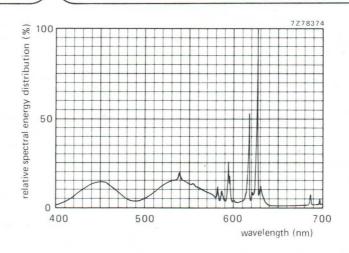
Luminance at the centre of the screen as a function of Itotal.

 $V_{a,q4} = 30 \text{ kV}$; $V_f = 6.3 \text{ V}$; V_{q3} adjusted for optimum focus.

White-light output = 9300 K + 27 M.P.C.D.; CIE co-ordinates x = 0.281, y = 0.311.

Raster size = 409,3 x 309,6 mm²

(16,11 x 12,19 in2).


Luminance at the centre of the screen as a function of Itotal.

 $V_{a,q4} = 30 \text{ kV}; V_f = 6,3 \text{ V}; V_{g3} \text{ adjusted for}$ optimum focus.

White-light output = 6500 K + 7 M.P.C.D.;

CIE co-ordinates x = 0,313, y = 0,329. Raster size = 409,3 x 309,6 mm²

(16,11 x 12,19 in2).

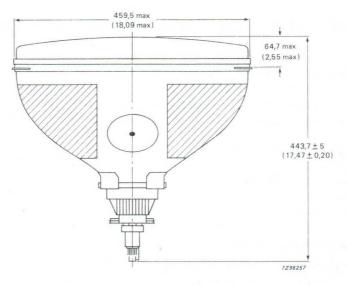
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.281, y = 0.311. Exact shape of the peaks depends on the resolution of the measuring apparatus.

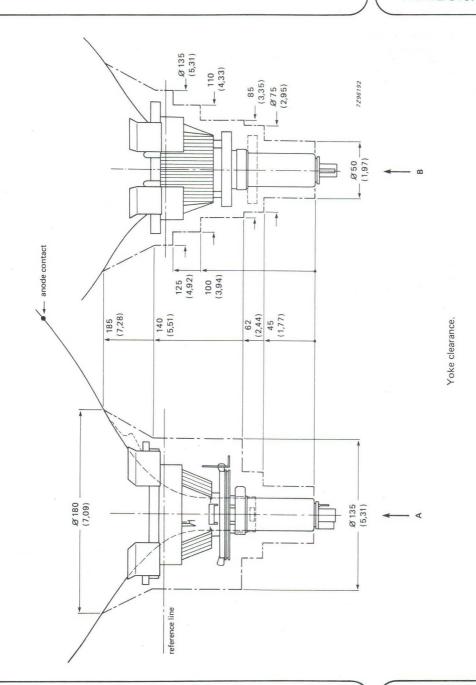
Colour co-ordinates:	X	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

90° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- Self-converging and raster correction free
- 51 cm, 90° colour picture tube A51EBS . . X
- Hybrid saddle toroidal deflection unit of the AT6030 series

QUICK REFERENCE DATA


Deflection angle	900
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	29,1 mm


AVAILABLE ASSEMBLIES

assembly type	assembly components
A51EBS00X40	tube A51EBS00X + deflection unit AT6030, type 1
A51EBS10X40	tube A51EBS10X + deflection unit AT6030, type 1

MECHANICAL DATA

Dimensions in mm

ELECTRICAL DATA OF DEFLECTION UNIT

Line deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C magnetic flux

Line deflection current, edge to edge, at 25 kV

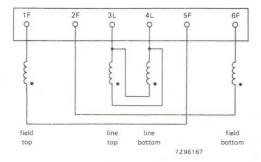
Field deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C

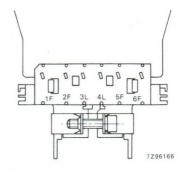
Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp

2,0 mH \pm 4% 2,35 Ω \pm 10% 5,70 mWb \pm 2,5%


2,85 A (p-p)


19,5 mH ± 10% 9,7 Ω ± 7%

1,09 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω > 500 M Ω > 10 M Ω

Connection diagram and top view of terminals of deflection unit AT6030, type 1. The beginning of the windings is indicated with ullet.

FLAT SQUARE HIBRICON COLOUR PICTURE TUBES

- Flat and square screen
- 900 deflection
- In-line, hi-bi potential A R T* gun
- 29,1 mm neck diameter
- Mask with corner suspension
- Hibricon screen with pigmented phosphors featuring high brightness and increased contrast performance
- Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 525 lines system
- Internal magnetic shield
- Internal multipole
- · Reinforced envelope for push-through mounting
- The tube is supplied with a matched hybrid saddle toroidal deflection unit of the AT6030 series; it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	900
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	29,1 mm
Heating	6,3 V, 310 mA
Focusing voltage	31% of anode voltage

Types A51EBS20X and A51EBS30X are identical, except for the light transmission of the face glass at centre: 64,5% for A51EBS20X, and 52,3% for A51EBS30X.

^{*} Aberration Reducing Triode.

A51EBS20X A51EBS30X

GENERAL DATA

1	FI	FCT	B	ICAL	
1 .			п	ICAL	

Electron guns	unitized triple-ape aberration reduci			odes;	
Heating					
heater voltage	Vf		6,3	V	
heater current	If		310	mA	
Focusing method	electrostatic				
Focus lens	hi-bi-potential				
Convergence method	magnetic				
Deflection method	magnetic				
Deflection angles (approx.)					
diagonal			90	deg	
horizontal			78	deg	
vertical			60	deg	
Direct interelectrode capacitances (approx.)					
grid 1 to all other electrodes	C _{g1}		17	pF	
all cathodes to all other electrodes	Ck		15	pF	
each cathode to all other electrodes	CkR, CkG, CkB		5	pF	
grid 3 to all other electrodes	C _{g3}		6	pF	
grid 2 to all other electrodes	Cg2		4,5	pF	
anode to external conductive coating, including rim band	-	<	2200	pF	
and to external conductive country, melading rim band	$C_{a(m + m')}$	>	1600	pF	

2. OPTICAL

C	2	00	n

Screen	finish	

Useful screen dimensions

diagonal

horizontal axis

vertical axis

area

Positional accuracy of the screen with

Resistance between rimband and external conductive coating

respect to the glass contour

Phosphors

red

green

blue

Persistence

Colour co-ordinates

red

green blue metal-backed vertical phosphor stripes; phosphor lines follow glass contour

50 MΩ

high polich

high polish

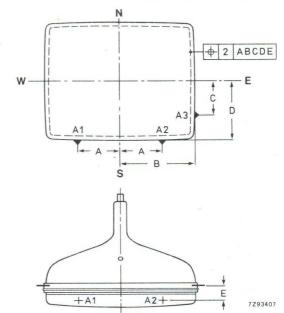
min. 510,0 mm (20,08 in)

min. 409,3 mm (16,11 in)

min. 309,6 mm (12,19 in) min. 1253 cm² (194,22 in²)

see Figure on the next page

pigmented europium activated rare earth


sulphide type

pigmented sulphide type

medium short

X	у
0,635	0,340
0,315	0,600
0.150	0.060

Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre A51EBS20X

A51EBS30X

3. MECHANICAL (see also the figures on pages 12, 13 and 14)

Overall length
Neck diameter

Bulb dimensions diagonal width

height

Base designation
Anode contact designation

Bulb funnel panel Implosion protection Mass Mounting position approx. 0,69 mm (0,027 in)

64,5% 52,3%

443,7 ± 5 mm (17,47 ± 0,20 in)

 $29,1^{+1,4}_{-0,7}$ mm (1,15 $^{+0,06}_{-0,03}$ in) *

max. 546,1 mm (21,5 in) max. 455,6 mm (17,9 in) max. 359,6 mm (14,16 in)

max. 359,6 mm (14,16 in JEDEC B10-277

recessed small cavity cap (JEDEC no. J1-21; IEC 67-III-2)

EIAJ-J540F1 to be established reinforced envelope for push-through 15 kg (33 lbs) anode contact on top

^{*} In the region of 78,5 mm (3,09 in) from the neck end, the maximum diameter is 30 mm (1,18 in).

RATINGS AND ELECTRICAL DATA

1. LIMITING VALUES (Design maximum rating system unless otherwise stated)

Unless otherwise specified, voltage values are for each gun and values are positive with respect to grid 1.

Anode voltage	V _{a,g4}	max. min.		kV kV	notes 1 and 2 note 3
Long-term average current for three guns	la	max.	1000	μΑ	note 4
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage	V _{g2}	max.	1200	V	note 5
Cathode voltage positive positive operating cut-off negative negative peak	V _k V _k -V _k -V _{kp}	max. max. max. max.			
Cathode to heater voltage positive positive peak negative negative peak	V _{kf} V _{kfp} –V _{kf} –V _{kfp}	max. max. max. max.	250 300 135 180	V	note 1
Heater voltage	Vf	6,3 V	+ 5 -10		notes 1 and 6

Notes

- 1. Absolute maximum rating system.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
- 4. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 5. During adjustment on the production line max. 1500 V is permitted.
- For maximum cathode life it is recommended that the heater supply be designed for 6,3 V at zero beam current.

2. EQUIPMENT DESIGN RANGES

Unless otherwise specified, values are for each gun and voltage values are positive with respect to grid 1.

For anode voltages between 20 kV and 30 kV; Grid 3 (focusing electrode) voltage	V _{q3}	29%	% to 33%	of anoc	le voltage	
Grid 2 voltage and cathode voltage for visual extinction of undeflected focused spot	V _{g2} ,V _l	< see	cut-off d	esign ch	nart, page	19; note 1
Maximum ratio of cathode voltage highest gun to lowest gun in any tube		1,2	5			
Video drive characteristics		see	graphs or	n page 2	20; note 2	2
Grid 3 current Grid 2 current Grid 1 current, under cut-off condition	lg3 lg2 lg1	-2	to + 2 μ A to + 2 μ A to + 2 μ A	4		
		hite D + 7 M.	P.C.D	93001	< + 27 M	.P.C.D.
To produce white of the following CIE co-ordinates	x y	0,31			0,281 0,311	
Percentage of total anode current supplied by each gun (typical)	red 38,3	green 35,8	blue 25,9%	red 27,9	green 39,1	blue 33,0%
Ratio of anode current red to blue red to green blue to green	min. 1,1 0,8 0,5	typ. 1,5 1,1 0,7	max. 1,9 1,4 1,0	min. 0,6 0,5 0,6	typ. 0,9 0,7 0,9	max. 1,2 1,0 1,2

Notes

- 1. The common V_{g2} should be adjusted as follows: Set the cathode voltage, V_k , for each gun at 130 V. Increase the V_{g2} from about 575 V to the value at which the raster of one of the guns becomes just visible. Now decrease the V_k of the remaining guns so that the rasters of these guns also become visible.
- 2. For optimum picture performance it is recommended that the cathodes are not driven below +1 V.

3. EXAMPLE OF USE OF DESIGN RANGES

Unless otherwise specified, voltage values are for each gun and are positive with respect to grid 1.

Anode voltage	$V_{a,g4}$	27,5 k\	/
Grid 3 (focusing electrode) voltage	V _{g3}	8,0 to 9,1 kV	,
Grid 2 voltage when circuit design utilizes cathode voltage of 130 V for visual	30		
extinction of focused spot	V_{g2}	575 to 825 V	
Heater voltage, under operating conditions	Vf	6,3 V	note 1
A F 4 F	DOGGOV		

| A51EBS20X | A51EBS30X | A51E

4. BEAM CORRECTIONS

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 4 mm (0,16 in)

5. LIMITING CIRCUIT VALUES

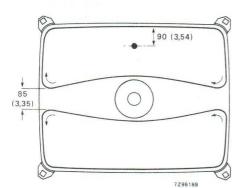
High voltage circuits

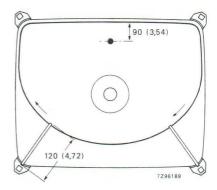
To minimize the possibility of damage to the circuit caused by a momentary internal arc, it is recommended that the high-voltage power supply and the grid 3 power supply be of the limited energy type.

Grid 3 circuit resistance	R _{g3}	max.	70 MΩ
Grid 1 to cathode circuit resistance (each gun)	R _{g1k}	max.	$0,75~\mathrm{M}\Omega$

Notes

- 1. The tube has quick-heating cathodes; if standby conditions are still required operate at 5,0 V.
- 2. Tube settings adjusted to produce white of 9300K + 27 M.P.C.D. (x = 0,281, y = 0,311), focused raster, current density $0.4 \mu A/cm^2$.
- 3. Tube settings adjusted to produce white of 6500K + 7 M.P.C.D. (x = 0,313, y = 0,329), focused raster, current density 0,4 μ A/cm².

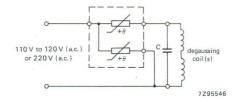

6. DEGAUSSING


The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.

For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns* is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils (≤ 0.3 ampere-turns**).

If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.



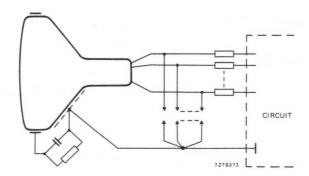
Position of degaussing coils on the picture tube,

Degaussing circuit using dual PTC thermistor 2322 662 98009; C = 100 nF, for double-coil system, optional for single-coil system.

Data of degaussing coil

Circumference Number of turns Copper-wire diameter Aluminium-wire diameter Resistance

doul	ole-coil system	single-coil system				
125	cm (49 in)	139	cm (54 in)			
60		140				
0,4	mm (0,016 in)	0,4	mm (0,016 in)			
0,5	mm (0,02 in)	0,5	mm (0,02 in)			
22	Ω (two coils	27	Ω			
	in series)					


- * For double-coil system: 700 ampere-turns for single-coil system.
- ** For double-coil system; ≤ 0,6 ampere-turns for single-coil system.

7. FLASHOVER PROTECTION

With the high voltage used with this tube (max. 30 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 13,5 kV (1,5 x V_{g3} max. at V_{a,g4} = 27,5 kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

X-RADIATION LIMIT

Maximum anode voltage at which the X-radiation emitted will not exceed 0,5 mR/h at an anode current of 300 μ A

entire tube face-plate only 35,5 kV *

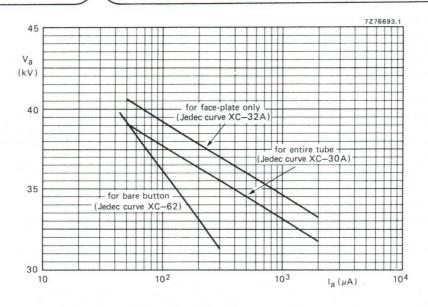
Warning:

If the value for the tube face only is used as design criterion, adequate shielding must be provided in the receiver for the anode contact and/or certain portions of the tube funnel and panel skirt to insure that the X-radiation from the receiver is attenuated to a value equal to or lower than that specified for the face of the tube.

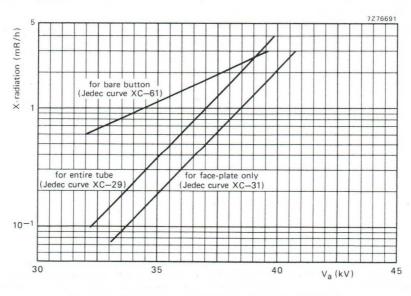
Maximum voltage difference between anode and focus electrode at which the X-radiation will not exceed 0,5 mR/h 30 kV

Warning:

If the voltage value above can be exceeded in the receiver, additional attenuation of the X-radiation through the tube neck may be required.


The X-radiation emitted from this picture tube, as measured in accordance with the procedure of JEDEC Publication No. 64D, will not exceed 0,5 mR/h throughout the useful tube life when operated within the 'Design maximum ratings'.

The tube should not be operated beyond its 'Design maximum ratings' stated above, but its X-radiation will not exceed 0,5 mR/h for anode voltage and current combinations given by the isoexposure-rate limits characteristics shown on the next page.


Operation above the values shown by the curve may result in failure of the television receiver to comply with the Federal Performance Standard of the U.S. for Television Receivers, Section 1020-10 of Part 1020 of Title 21, Code of Federal Regulation (PL90-602) as published in the Federal Register Volume 38, No. 198, Monday, October 15, 1973.

Maximum X-radiation as a function of anode voltage at 300 μ A anode current is shown by the curve on the next page. X-radiation at a constant anode voltage varies linearly with anode current.

^{*} This rating applies only if the anode connector used by the set maker provides the necessary attenuation to reduce the X-radiation from the anode contact by a factor equal to the difference between the anode button isoexposure-rate limit curve and the isoexposure-rate limit curve for the entire tube.

0,5 mR/h isoexposure-rate limit curve.

X-radiation limit curve at a constant anode current of 300 μ A.

WARNINGS

X-radiation

Operation of this colour picture tube at abnormal conditions which exceed the 0,5 mR/h iso-dose rate curve shown on the preceding page may produce soft X-rays which may constitute a health hazard on prolonged exposure at close range unless adequate external screening is provided. Precautions must therefore be exercised during servicing of TV receivers employing this tube to assure that the anode voltage and other tube voltages are adjusted to the recommended values so that the 'Design maximum ratings' will not be exceeded.

Tube replacement

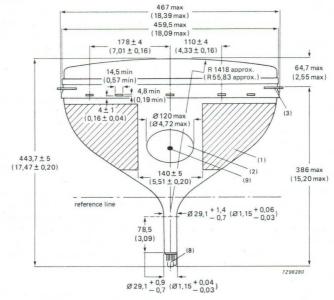
This picture tube employs integral X-radiation and implosion protection and must be replaced with a tube of the same type number or a recommended replacement to assure continued safety.

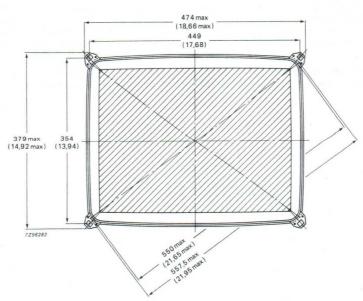
Shock hazard

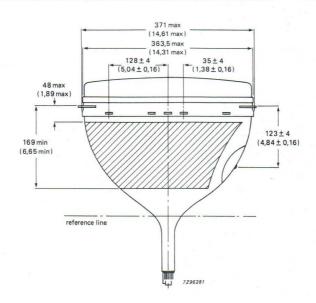
The high voltage at which the tube is operated may be very dangerous. The design of the TV receiver should include safeguards to prevent the user from coming in contact with the high voltage. Extreme care should be taken in the servicing or adjustment of any high-voltage circuit.

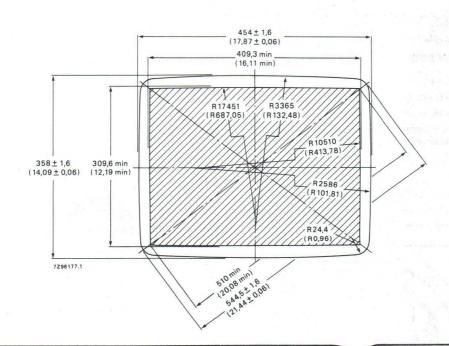
Caution must be exercised during the replacement or servicing of the picture tube since a residual electrical charge may be contained on the high-voltage capacitor formed by the external and internal conductive coatings of the picture tube funnel. To remove any residual high-voltage charges from the picture tube, 'bleed-off the charge by shorting the anode contact button, located in the funnel of the picture tube, to the external conductive coating before handling the tube. Discharging the high voltage to isolated metal parts such as cabinets and control brackets may produce a shock hazard.

Tube handling

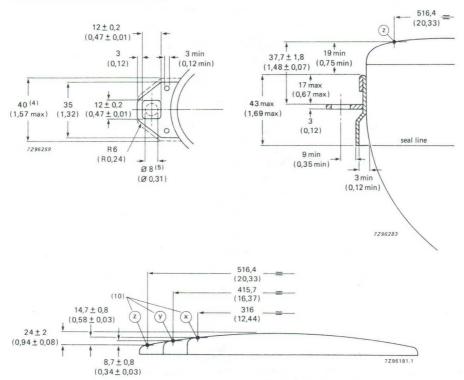

Picture tubes should be kept in the shipping box or similar protective container until just prior to installation. Wear heavy protective clothing, including gloves and safety goggles with side shields, in areas containing unpacked and unprotected tubes to prevent possible injury from flying glass in the event a tube breaks. Handle the picture tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal

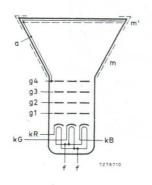

The receiver mounting system should incorporate sufficient cushioning so that under normal conditions of shipment or handling an impact acceleration of more than 35g is never applied to the tube.

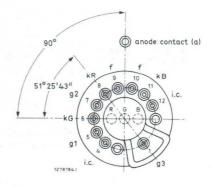

MECHANICAL DATA


The dimensions are given in mm, and in inches between brackets.

Notes are on page 15.

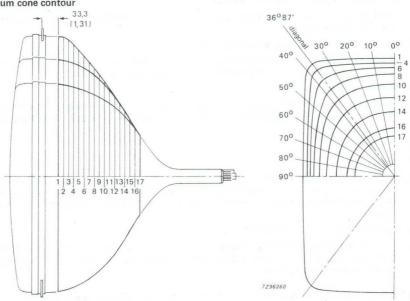






MECHANICAL DATA (continued)

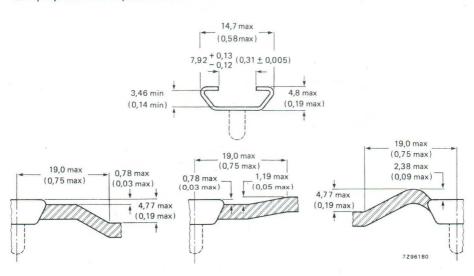
i.c. = internally connected (not to be used)

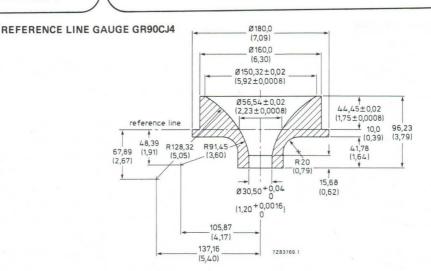

Notes to outline drawings on the preceding pages

- Configuration of outer conductive coating may be different but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- 3. The displacement of any lug with respect to the plane through the three other lugs is max. 1,3 mm (0,05 in). This deviation is incorporated in the tolerance of ± 1,8 mm (0,07 in).
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 354 mm (13,94 in) x 449 mm (17,68 in).
- 6. Not applicable.
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm (1,968 in), concentric with an imaginary tube axis.
- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate 3,2 mm (0,13 in) beyond the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

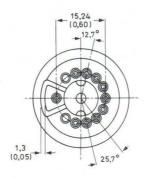
Sagittal heights with reference to screen centre at the edge of the minimum useful screen

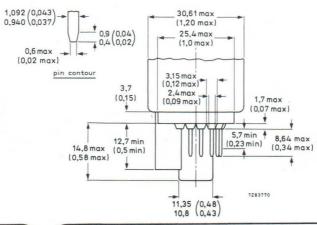
coordi	nates	sagittal	coord	linates	sagittal
x mm	y mm	height mm	x inch	y inch	height inch
0	154,8	8,9	0	6,09	0,35
20	154,8	9,0	0,79	6,09	0,35
40	154,8	9,3	1,57	6,09	0,37
60	154,7	10,0	2,36	6,09	0,39
80	154,6	10,9	3,15	6,09	0,43
100	154,5	12,1	3,94	6,08	0,48
120	154,4	13,6	4,72	6,08	0,54
140	154,2	15,4	5,51	6,07	0,61
160	154,1	17,5	6,30	6,07	0,69
180	153,9	20,0	7,09	6,06	0,79
200	153,7	22,8	7,87	6,05	0,90
203,5	153,6	23,4	8,01	6,05	0,92
203,6	150	23,0	8,02	5,91	0,91
203,7	140	21,9	8,02	5,51	0,86
204,0	120	20,0	8,03	4,72	0,79
204,2	100	18,4	8,04	3,94	0,72
204,4	80	17,1	8,05	3,15	0,67
204,5	60	16,1	8,05	2,36	0,63
204,6	40	15,4	8,06	1,57	0,61
204,6	20	15,0	8,06	0,79	0,59
204,7	0	14,9	8,06	0	0,59

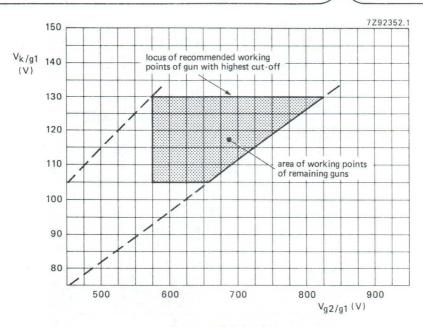

Dimensions in mm

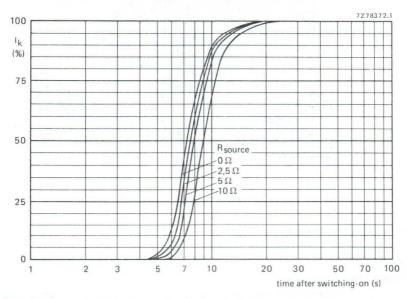

sec-	nom.	max. distance from centre										
tion	from section 1	00	100	200	300	diag.	400	500	600	700	800	900
1	0	225,7	228,9	239,1	257,6	271,8	267,2	227,9	203,1	187,9	179,6	177,0
2	10	224,6	227,7	237,7	255,9	270,0	265,3	226,7	201,9	186,8	178,6	175,9
3	20	221,8	224,8	234,3	251,1	264,3	259,6	222,9	198,9	184,2	176,1	173,5
4	30	218,1	220,9	229,6	244,5	254,7	250,6	217,9	195,1	180,9	173,1	170,6
5	40	213,8	216,4	224,1	236,5	243,1	239,6	212,0	190,9	177,3	169,9	167,5
6	50	208,7	211,0	217,7	227,5	231,3	228,4	205,6	186,3	173,6	166,5	164,2
7	60	202,6	204,5	210,0	217,5	219,5	217,0	198,5	181,0	169,3	162,6	160,5
8	70	195,1	196,8	201,3	206,9	207,6	205,4	190,3	175,1	164,4	158,3	156,3
9	80	186,2	187,6	191,4	195,6	195,4	193,5	181,3	168,4	158,9	153,3	151,5
10	90	175,6	176,9	180,1	183,3	182,8	181,1	171,4	160,7	152,5	147,6	146,0
11	100	163,6	164,6	167,4	169,9	169,2	167,9	160,4	151,9	145,2	141,0	139,6
12	110	150,3	151,3	153,8	155,7	154,7	153,6	147,9	141,7	136,6	133,4	132,3
13	120	136,4	137,3	139,3	140,4	139,5	138,6	134,5	130,3	126,8	124,6	123,9
14	130	122,1	122,8	124,4	124,9	124,0	123,3	120,7	118,2	116,1	114,7	114,3
15	140	107,5	107,7	108,2	108,6	108,4	108,2	107,0	105,7	104,5	103,8	103,5
16	150	92,6	92,3	92,3	92,6	92,8	92,9	92,9	92,6	92,1	91,6	91,4
17	159,5	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1

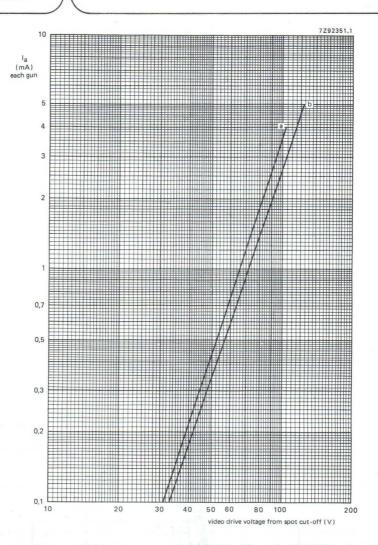
Dimensions in inches


sec-	nom.		max. distance from centre									
tion	distance from section 1	00	100	200	300	diag.	400	500	600	700	800	900
1	0	8,89	9,01	9,41	10,14	10,70	10,52	8,97	8,00	7,40	7,07	6,97
2	0,39	8,84	8,96	9,36	10,07	10,63	10,44	8,93	7,95	7,35	7,03	6,93
3	0,79	8,73	8,85	9,22	9,89	10,41	10,22	8,78	7,83	7,25	6,93	6,83
4	1,18	8,59	8,70	9,04	9,63	10,03	9,87	8,58	7,68	7,12	6,81	6,72
5	1,57	8,42	8,52	8,82	9,31	9,57	9,43	8,35	7,52	6,98	6,69	6,59
6	1,97	8,22	8,31	8,57	8,96	9,11	8,99	8,09	7,33	6,83	6,56	6,46
7	2,36	7,98	8,05	8,27	8,56	8,64	8,54	7,81	7,13	6,67	6,40	6,32
8	2,76	7,68	7,75	7,93	8,15	8,17	8,09	7,49	6,89	6,47	6,23	6,15
9	3,15	7,33	7,39	7,54	7,70	7,69	7,62	7,14	6,63	6,26	6,04	5,96
10	3,54	6,91	6,96	7,09	7,22	7,20	7,13	6,75	6,33	6,00	5,81	5,75
11	3,94	6,44	6,48	6,59	6,69	6,66	6,61	6,31	5,98	5,72	5,55	5,50
12	4,33	5,92	5,96	6,06	6,13	6,09	6,05	5,82	5,58	5,38	5,25	5,21
13	4,72	5,37	5,41	5,48	5,53	5,49	5,46	5,30	5,13	4,99	4,91	4,88
14	5,12	4,81	4,83	4,90	4,92	4,88	4,85	4,75	4,65	4,57	4,52	4,50
15	5,51	4,23	4,24	4,26	4,28	4,27	4,26	4,21	4,16	4,11	4,09	4,07
16	5,91	3,65	3,63	3,63	3,65	3,65	3,66	3,66	3,65	3,63	3,61	3,60
17	6,28	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07


Cavity cap JEDEC J1-21, IEC 67-III-2





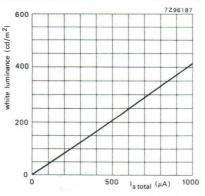


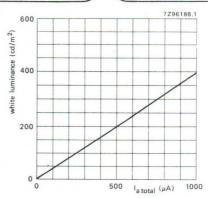
Spot cut-off design chart.

Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.

Typical cathode drive characteristic.

 $V_f = 6,3 V;$


 $V_{a,g4} = 30 \text{ kV};$

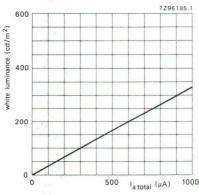

V_g3 adjusted for focus;

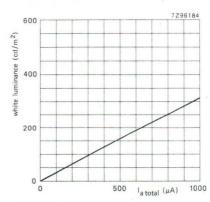
 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 105 V (curve a) and V_k = 130 V (curve b).

Flat square Hibricon colour picture tubes

A51EBS20X A51EBS30X

A51EBS20X


Luminance at the centre of the screen as a function of I_{total} .


 $V_{a,g4}=30$ kV; $V_f=6,3$ V; V_{g3} adjusted for optimum focus. White-light output = 9300 K + 27 M.P.C.D.; CIE co-ordinates x=0,281, y=0,311. Raster size = 409,3 \times 309,6 mm² (16,11 \times 12,19 in²).

Luminance at the centre of the screen as a function of I_{total}.

 $V_{a,g4} = 30 \text{ kV}$; $V_f = 6,3 \text{ V}$; V_{g3} adjusted for optimum focus. White-light output = 6500 K + 7 M.P.C.D.; CIE co-ordinates x = 0,313, y = 0,329. Raster size = 409,3 x 309,6 mm²

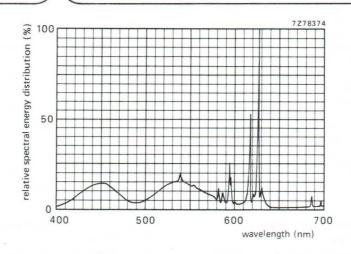
 $(16,11 \times 12,19 \text{ in}^2)$.

A51EBS30X

Luminance at the centre of the screen as a function of ltotal.

 $V_{a,g4} = 30 \text{ kV}$; $V_f = 6.3 \text{ V}$; V_{g3} adjusted for optimum focus. White-light output = 9300 K + 27 M.P.C.D.; CIE co-ordinates x = 0,281, y = 0,311.

Raster size = $409,3 \times 309,6 \text{ mm}^2$ (16,11 x 12,19 in²).


Luminance at the centre of the screen as a function of I_{total} .

 $V_{a,g4} = 30 \text{ kV}$; $V_f = 6.3 \text{ V}$; V_{g3} adjusted for optimum focus.

White-light output = 6500 K + 7 M.P.C.D.,

CIE co-ordinates x = 0.313, y = 0.329.

Raster size = $409.3 \times 309.6 \text{ mm}^2$ (16.11 x 12.19 in²).

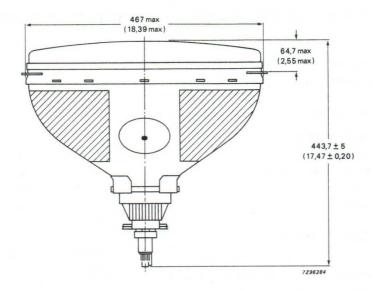
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.281, y = 0.311. Exact shape of the peaks depends on the resolution of the measuring apparatus.

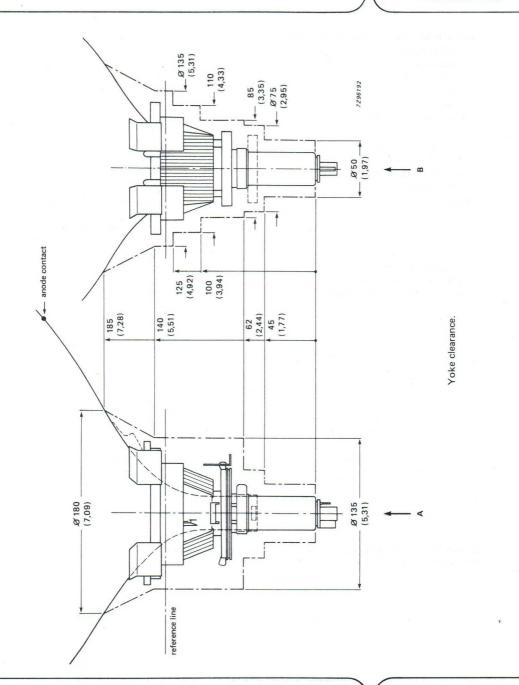
Colour co-ordinates:	x	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060
	,	

90° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- Self-converging and raster correction free
- 51 cm, 90° colour picture tube A51EBS . . X
- Hybrid saddle toroidal deflection unit of the AT6030 series

QUICK REFERENCE DATA


Deflection angle	900
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	29,1 mm


AVAILABLE ASSEMBLIES

assembly type	assembly components
A51EBS20X40	tube A51EBS20X + deflection unit AT6030, type 1
A51EBS30X40	tube A51EBS30X + deflection unit AT6030, type 1

MECHANICAL DATA

Dimensions in mm

ELECTRICAL DATA OF DEFLECTION UNIT

Line deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C magnetic flux

Line deflection current, edge to edge, at 25 kV

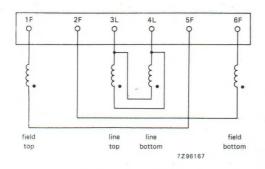
Field deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 °C

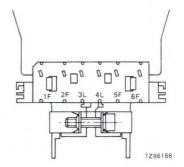
Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp

2,0 mH \pm 4% 2,35 Ω \pm 10% 5,70 mWb \pm 2,5%


2,85 A (p-p)


19,5 mH ± 10% 9,7 Ω ± 7%

1,09 A (p-p)

a voltage of 10 V, 15625 Hz applied to the line coils causes no more than 0,2 V across the field coils (damping resistors included)

> 500 M Ω > 500 M Ω > 10 M Ω

Connection diagram and top view of terminals of deflection unit AT6030, type 1. The beginning of the windings is indicated with ullet.

COLOUR PICTURE TUBE

QUICK REFERENCE DATA

Temperature compensated shadow-mask designed for minimum moiré

High white luminance at unity current ratio

Face diagonal ·56 cm

1100 Deflection angle Neck diameter 36,5 mm

reinforced; suitable for push-through Envelope

Magnetic shield internal

bi-potential Focusing Deflection magnetic

Convergence magnetic

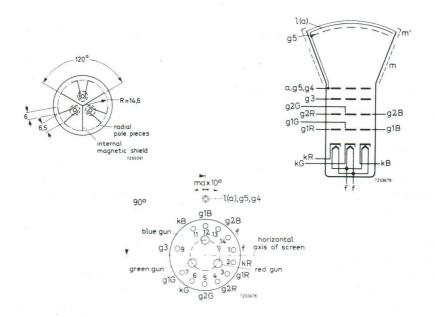
6,3 V, 730 mA Heating 54,5 % Light transmission of face glass

Quick heating cathode with a typical tube a legible picture

will appear within approx. 5 s

MECHANICAL DATA

Anode contact


Overall length 387,3 to 400,3 mm Neck diameter 36,5 mm max. 566,2 mm Diagonal of bulb max. 486,3 mm Horizontal axis max. 381,8 mm Vertical axis

Useful screen min. 533 mm diagonal horizontal axis min. 447 mm

337 mm vertical axis 12 pin base IEC 67-1-47a, type 2 Base

Small cavity contact J1-21,

IEC 67-111-2

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	V _{a,g5,g4}	25 k	V
Grid 3 (focusing electrode) voltage	V_{g3}	4,2 to 5 k	(V
Grid 2 voltage for a spot cut-off at $V_{g1} = -105 \text{ V}$	V_{g2}	212 to 495 V	/
Grid 1 voltage for spot cut-off at $V_{g2} = 300 \text{ V}$	V_{g1}	−70 to −140 V	/

20AX COLOUR PICTURE TUBE

Replacement type A56-510X.

Replaces A56-500X

20AX Hi-Bri COLOUR PICTURE TUBE

QUICK REFERENCE DATA

Deflection angle	110°
Face diagonal	56 cm
Overall length	37 cm
Neck diameter	36,5 mm

Envelope reinforced; suitable for push-through

Magnetic shield internal

Focusing bi-potential

Deflection magnetic

Heating 6,3 V, 720 mA

Light transmission of face glass 68%

Quick heating cathode with a typical tube a legible picture will

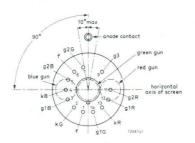
appear within approx. 5 s

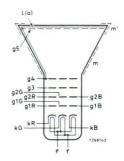
Inherently self-converging system with deflection unit AT1083/01

MECHANICAL DATA

Overall length	373,8 ± 6,5 mm		
Neck diameter	36,5 ^{+ 1,6} mm		

Bulb dimensions


diagonal max.566,2 mm width max.486,3 mm height max.381,8 mm


Useful screen dimensions

diagonal min. 530,6 mm horizontal axis min. 444,2 mm vertical axis min. 334,2 mm

Base 12-pin base IEC 67-I-47a, type 2

Anode contact small cavity contact J1-21, IEC 67-III-2

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Final accelerator voltage Grid 3 (focusing electrode) voltage Grid 2 voltage for a spot-cut-off voltage $V_k = 140 \text{ V}$ Cathode voltage for spot cut-off at $V_{g2} = 555 \text{ V}$

Va,g5,g4	25	kV
V_{g3}	4,0 to 4,8	kV
V_{g2}	465 to 705	V
V/.	110 to 165	1/

30AX COLOUR PICTURE TUBE

- Automatic snap-in raster orientation
- Push-on axial purity positioning
- Internal magneto-static beam alignment
- Hi-Bi gun with guadrupole cathode lens
- 1100 deflection
- Hi-Bri screen
- · Pigmented phosphors: enhanced contrast
- Phosphor lines follow glass contour
- In-line gun
- Standard 36.5 mm neck
- Soft-Flash technology
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- · Quick-heating cathodes
- Internal magnetic shield
- Anti-crackle coating
- Reinforced envelope for push-through mounting
- Self-aligning, self-converging assembly with low power consumption, when combined with deflection unit AT 1860
- North-south pin-cushion distortion-free

QUICK REFERENCE DATA

Deflection angle Face diagonal

Overall length Neck diameter

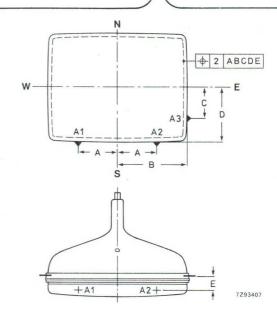
Heating

Focusing voltage

1100

56 cm

38 cm


36,5 mm

6,3 V, 720 mA

28% of anode voltage

	ELECTRON-OPTICAL DATA				
	Electron gun system	in line with separa	te grid	ds	
	Focusing method	electrostatic			
	Focus lens	hi-bi potential			
	Deflection method	magnetic			
	Deflection angles				
	diagonal	1100			
	horizontal vertical	97° 77°			
	vertical	110			
	ELECTRICAL DATA				
	Capacitances			1000	
	anode to external conductive coating			1800 1300	
	anode to metal rimband	Ca, g5, g4/m'		250	•
	grid of any gun to all other electrodes	Cg 1R, Cg 1G, Cg	1B	7	pF
	cathodes of all guns (connected in parallel)				
	to all other electrodes	Ck			pF
	cathode of any gun to all other electrodes	CkR, CkG, CkB		4	pF
	grid 3 (focusing electrode) to all other electrodes	C _{g3}		7	pF
	Resistance between rimband and external conductive coating		min.	50	MΩ
	Heating: indirect by a.c. (preferably mains or line frequency) o	r d.c.			
	heater voltage	V _f		6,3	
	heater current	If		720	mA
	OPTICAL DATA				
	Screen	metal-backed verti	cal ph	nospho	r
		stripes; phosphor I	ines f	ollow	
		glass contour			
	Screen finish	satinized			
	Useful screen dimensions				
	diagonal horizontal axis	min. 530,6 mm min. 444,2 mm			
	vertical axis	min. 334,2 mm			
100	→ area	min. 1458 cm ²			
	Positional accuracy of the screen with				
	respect to the glass contour	see Figure on the r	ext p	age	
	Phosphors	-i			
	red	pigmented europiu rare earth	m act	tivated	
	green	sulphide type			
	blue	pigmented sulphide	e type	е	

Colour co-ordinates red green blue Centre-to-centre distance of identical

colour phosphor stripes Light transmission of face glass

Luminance at the centre of the screen

	X	У
į	0,635	0,340
	0,315	0,600
	0,150	0,060

approx. 0,8 mm 64%

160 cd/m2 *

MECHANICAL DATA (see also the figures on the following pages)

Overall length

Neck diameter

Anode contact

Base

Mounting position

Rimband

Net mass

383.8 ± 6 mm

36,5 + 1,3 mm - 0

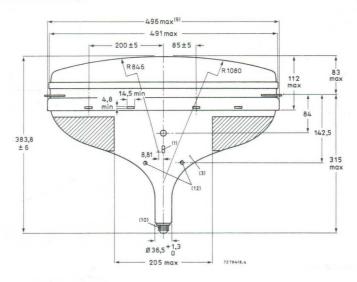
12-pin base IEC 67-I-47a, type 2

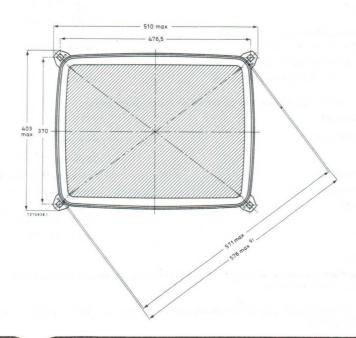
cavity cap JEDEC J1-21, IEC 67-III-2

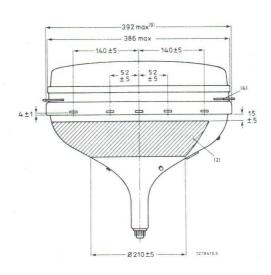
anode contact on top provided with 18 slots to accommodate clips for mounting of degaussing coils

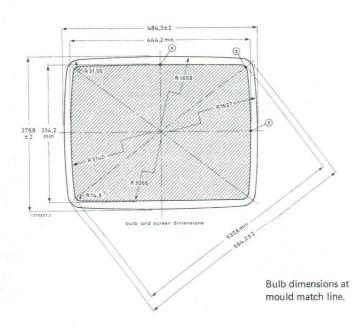
approx. 14,5 kg

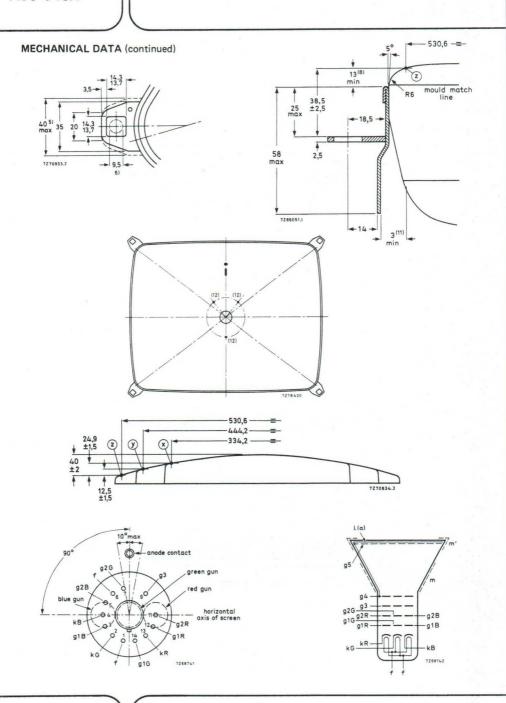
Handling


During shipment and handling the tube should not be subjected to accelerations greater than 350 m/s2 in any direction.


Tube settings adjusted to produce white D (x = 0.313, y = 0.329), focused raster, current density $0.4 \, \mu A/cm^2$.

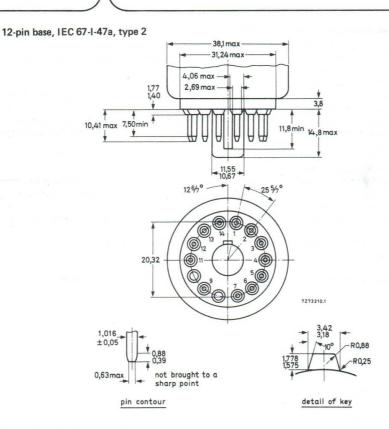

MECHANICAL DATA (continued)


Notes are given after the drawings.

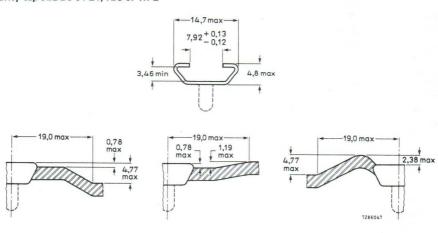

Dimensions in mm

Notes to outline drawings on the preceding pages

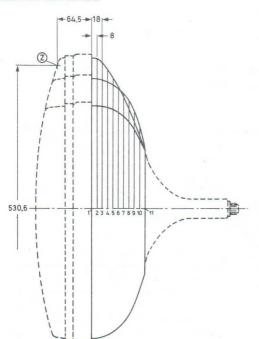
- 1. This ridge can be used as an orientation for the deflection unit.
- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 3. To clean this area wipe only with a soft lintless cloth.
- 4. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm.
- 5. Minimum space to be reserved for mounting lug.
- 6. The position of the mounting screw in the cabinet must be within a circle of 9,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 476,5 mm x 370 mm.
- 7. Co-ordinates for radius R = 14.8 mm: x = 203.9 mm, y = 145.5 mm.
- 8. Distance from point z to any hardware.
- 9. Maximum dimensions in plane of lugs.
- 10. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of the base will fall within a circle concentric with the tube axis and having a diameter of 55 mm.
 - The mass of the mating socket with circuitry should not be more than 150 g; maximum permissible torque is 40 mNm.
- 11. Minimum distance between glass and rimband in plane of centre line of the apertures.
- 12. Centring bosses for deflection unit.

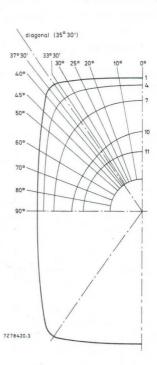

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordi	nates	sagitta		
X	У	height		
mm	mm	mm		
0*	166,9	16,1		
20	166,9	16,3		
40	166,7	16,9		
60	166,3	18,0		
80	165,9	19,4		
100	165,3	21,3		
120	164,5	23,6		
140	163,7	26,4		
160	162,7	29,6		
180	161,6	33,3		
200	160,3	37,5		
215,9**	153,8	40,2		
216,0	140	37,7		
217,6	120	35,0		
219,9	100	32,8		
220,0	80	31,0		
220,8	60	29,6		
221,4	40	28,6		
221,8	20	28,0		
221,94	0	27,0		


^{*} Point (x).

^{**} Diagonal.


Point (y).



Cavity cap JEDEC J1-21, IEC 67-III-2

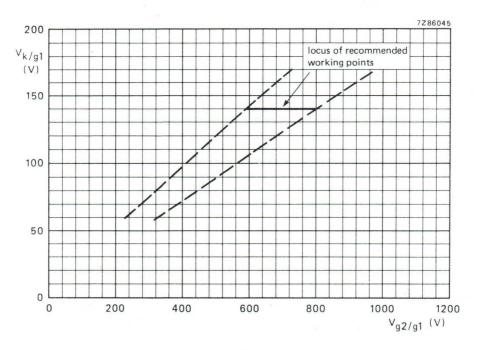
Maximum cone contour

sec- tion	distance from centre (max. values)															
	nom. distance from section 1	00	100	200	250	300	330 30'	diag.	370 30'	400	450	500	600	700	800	900
1		248,0	251,2	261,3	269,3	279,5	286,8	288,0	286,8	281,7	262,3	245,9	222,0	207,0	198,7	196,
2	8	244,4	247,6	257,6	265,4	275,3	282,3	283,3	282,0	276,8	257,8	241,6	218,0	203,2	195,0	192,
3	18	240,5	243,6	252,9	259,6	267,0	271,2	271,3	269,7	265,3	250,6	236,6	214,2	199,6	191,4	188,
4	28	235,0	237,8	245,5	250,2	254,4	255,7	255,0	253,3	249,9	239,5	228,3	208,6	194,8	186,9	184,
5	38	227,7	229,9	235,2	237,8	239,1	238,7	237,6	236,0	233,3	225,8	217,3	201,0	188,8	181,6	179,
6	48	218,2	219,6	222,2	222,9	222,3	220,8	219,6	218,1	215,8	210,1	203,6	190,9	180,9	174,7	172,
7	58	206,4	206,8	206,8	205,9	204,0	202,2	200,9	199,5	197,5	193,2	188,4	179,2	171,6	166,8	165,
8	68	191,6	190,9	188,5	186,6	184,1	182,2	181,0	179,8	178,2	175,0	171,7	165,7	160,8	157,7	156,
9	78	172,5	170,9	166,8	164,4	161,9	160,1	159,1	158,2	157,0	154,8	152,9		145,6		
10	88	147,0	144,8	140,5	138,3	136,3	135,0	134,3	133,6	132,9	131,7	130,8	130,0	130,3	131,3	132,
11	97,1	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110

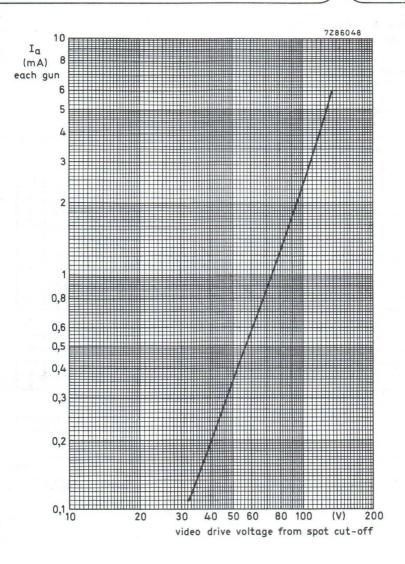
RECOMMENDED OPERATING CONDITIONS (cathode drive)

The voltages are specified with respect to grid 1.

Anode voltage


V_{a, g5, g4} 25 kV

Grid 3 (focusing electrode) voltage


V_{g3} 6,5 to 7,45 kV

A. Operation at equal spot cut-off voltage V_k = 140 V

Grid 2 voltage (V $_{g2}$) adjusted for each gun separately; V $_{g2}$ range 590 to 800 V.

Spot cut-off design chart.

Typical cathode drive characteristic.

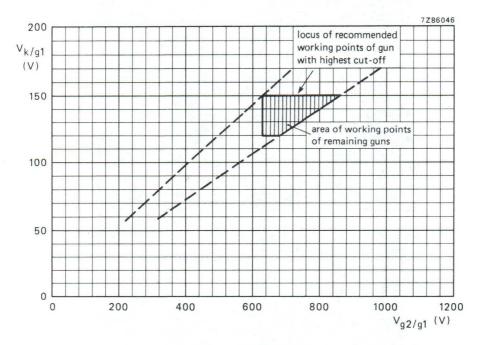
 $V_f = 6,3 V;$

 $V_{a, g5, g4} = 25 \text{ kV};$

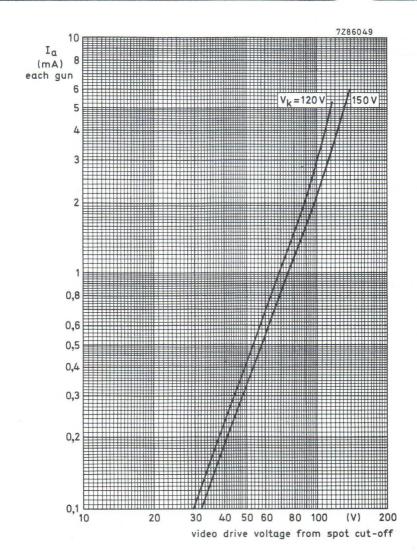
V_{g3} adjusted for focus;

 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 140 V.

B. Operation at equal grid 2 voltage


Grid 2 voltage (V_{g2}) adjusted for highest gun spot cut-off voltage V_k = 150 V.

Remaining guns adjusted for spot cut-off by means of cathode voltage.


 $\rm V_{g2}$ range 630 to 860 V. $\rm V_{k}$ range 120 to 150 V.

Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 150 V; increase the grid 2 voltage (V_{g2}) from approx. 600 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

Spot cut-off design chart.

Typical cathode drive characteristic.

$$V_f = 6,3 V;$$

 $V_{a, g5, g4} = 25 \text{ kV};$

V_{q3} adjusted for focus;

 V_{g2}° (each gun) adjusted to provide spot cut-off for V_k = 120 V and 150 V.

EQUIPMENT DESIGN VALUES (each gun if applicable)

The values are valid for anode voltages between 22,5 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage	V_{g3}	26 to 29,8% of
		anode voltage

Difference in cut-off voltage between guns in one tube

guns in one tube	ΔV_{k}	lowest value is min. 80% of highest value
Heater voltage	V_{f}	6,3 V at zero beam current
Grid 3 (focusing electrode) current	I _{g3}	$-5 \text{ to } + 5 \mu A$
Grid 2 current	102	$-5 \text{ to} + 5 \mu A$

lg2

 $-5 \text{ to } + 5 \mu A$

Grid 1 current at $V_k = 140 \text{ V}$ la1 To produce white D, CIE co-ordinates x = 0.313, y = 0.329.

Percentage of the tota	I anode current supplied by each gun (typical)
rad aux	

red gun	38,3%
green gun	35,8%
blue gun	25,9%

Ratio of anode current	min.	av.	max.
red gun to green gun	0,7	1,1	1,4
red gun to blue gun	. 1,1	1,5	2,0
blue gun to green gun	0.5	0.7	10

BEAM CENTRING

Maximum centring error in any direction	4,5 mm
---	--------

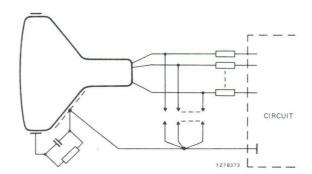
LIMITING VALUES (each gun if applicable)

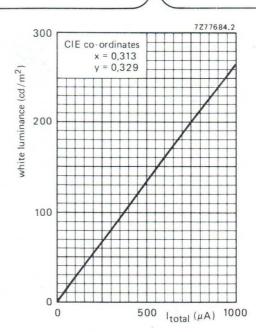
Design maximum rating system unless otherwise stated.

The voltages are specified with respect to grid 1.

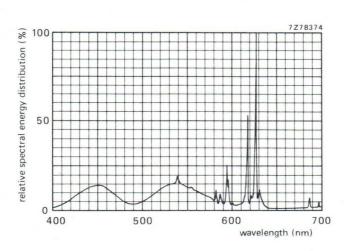
Anode voltage	V _a , g5, g4	max. min.	27,5 22,5		notes 1, 2, 3 note 4
Long-term average current for three guns	la	max.	1000	μA	note 5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	9	kV	
Grid 2 voltage	V_{g2}	max.	1200	V	note 6
Cathode voltage	3				
positive	\vee_k	max.	400	V	
positive operating cut-off	Vk	max.	200	V	
negative	$-V_{k}$	max.	0	V	
negative peak	$-V_{kp}$	max.	2	V	
Cathode to heater voltage					
positive	Vkf	max.	250	V	
positive peak	Vkfp	max.	300	V	note 1
negative	$-V_{kf}$	max.	135	V	
negative peak	$-V_{kfp}$	max.	180	V	note 1
Heater voltage	Vf	6,3	+5	%	notes 1, 7
Tieater voltage	v †	0,3	10	0/_	110163 1, 7

Notes

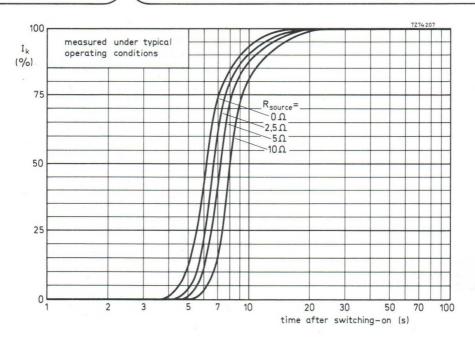

- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 36 pA/kg (0,5 mR/h), measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is
 therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 6. During adjustment on the production line max. 1500 V is permitted.
- For maximum cathode life and optimum performance it is recommended that the heater supply be designed for 6,3 V at zero beam current.


FLASHOVER PROTECTION

High electric field strengths are present between the gun electrodes of picture tubes. Voltages between gun electrodes may reach values of 20 kV over approx. 1 mm. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.


Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage and damage to the circuitry which is directly connected to the tube socket. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 10,5 kV, and at the other electrodes of 1,5 to 2 kV. The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.

Additional information is available on request.

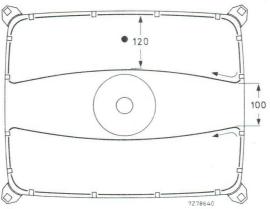


Luminance at the centre of the screen as a function of I $_{total}$. Scanned area 444,2 mm x 334,2 mm.

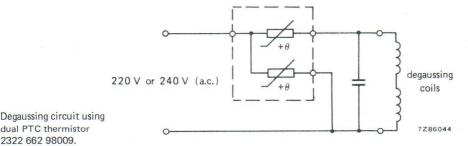
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	X	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.


DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts.


For proper degaussing an initial magnetomotive force (m.m.f.) of 250 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils (≤ 0,25 ampere-turns).

If single-phase power rectification is employed in the TV circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

To ease the mounting of the coils, the rimband is provided with rectangular holes. An example is given below.

Position of degaussing coils on the picture tube.

Data of each degaussing coil

2322 662 98009.

120 cm
50
0,35 mm
0,45 mm
11 Ω

.

Replaced by AT1860

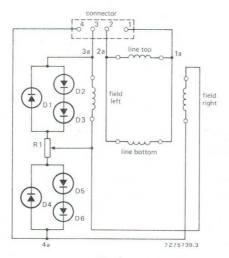
DEFLECTION UNIT

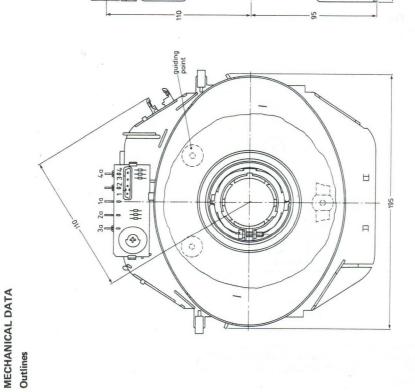
QUICK REFERENCE DATA

Picture tube	A56-540X	
gun arrangement	in line	
diagonal	56 cm (22 in)	
neck diameter	36,5 mm	
Deflection angle	110°	
Line deflection current, edge to edge at 25 kV	5,0 A(p-p)	
Inductance of line coils	1,5 mH	
Field deflection current, edge to edge at 25 kV	1,95 A(p-p)	
Resistance of field coils		
(potentiometer R1 included)	5,9 Ω	

CONNECTIONS

(See also Fig. 2).




Fig. 1.

Notes:

- Contacts 1 and 1a must be connected to the live side of the line circuitry, contacts 3 and 3a must be connected to the life side of the field circuitry.
- Matching female Stocko connector: MKF 804-1-0-404.
- D1 to D6 = BAS11, BAX18, BAX18A, BAV10 or BAW62.
- R1 = 180 Ω .

20

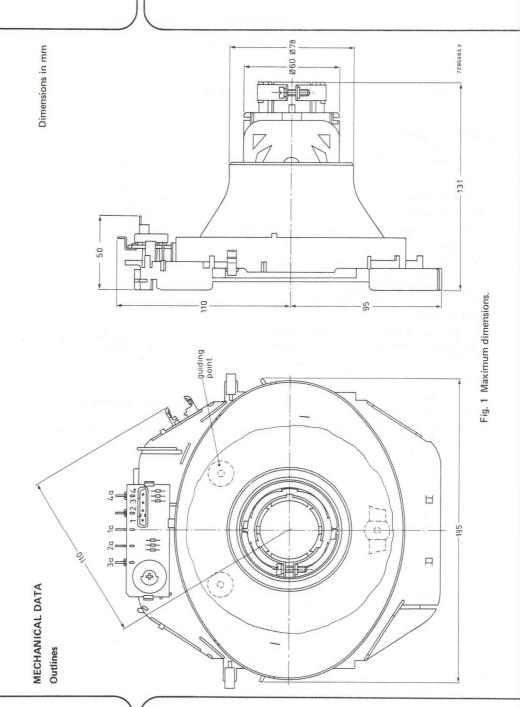
7285683,2

654

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube gun arrangement diagonal neck diameter	A56-540X in line 56 cm (22 in) 36,5 mm
Deflection angle	1100
Line deflection current, edge to edge at 25 kV	5,0 A(p-p)
Inductance of line coils	1,5 mH
Field deflection current, edge to edge at 25 kV	1,95 A(p-p)
Resistance of field coils (potentiometer R1 included)	5,9 Ω


APPLICATION

This deflection unit is for use with $110^{\rm o}$ in-line colour picture tube A56-540X, in conjunction with e.g.: diode-split line output transformer AT2076/70A and linearity control unit AT4042/42 or AT4042/30.

DESCRIPTION

The deflection unit consists of flangeless line and field deflection coils, a one piece ferrite ring and a one piece coil carrier.

Connection to the deflection coils can be made via a connector (contact pins 1 to 4) or solder tags 1a to 4a, see Fig. 1.

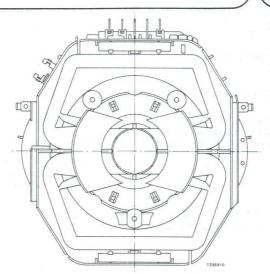


Fig. 1b. Front view.

The deflection unit fits a tube with a neck diameter of $36,5^{+1,3}$ mm.

Maximum operating temperature (average copper

temperature measured with resistance method)

-20 to +90 °C Storage temperature range

Flame retardent according to UL1413, category 94, V-1

+ 90 °C

Mounting

The deflection unit can simply be pushed on the neck of a picture tube.

Both on the neck of the tube and on the deflection unit, there are 3 reference surfaces to establish angular and axial positioning.

Once the unit is mounted the combination is perfectly aligned and requires no further adjustment for static convergence, colour purity and raster orientation.

The unit must be pressed against the reference surfaces on the cone of the picture tube with a force of 20 ± 5 N and fixed by tightening teh screw in the clamping ring at the rear with a torque of $1.0^{+0.4}_{-0.2}$ Nm.

Maximum axial force exerted on the screw is 20 N.

ENVIRONMENTAL TEST SPECIFICATIONS

Change of temperature

Vibration	IEC 68-2-6 (test Fc)
Shock	IEC 68-2-27 (test Ea; 35g)
Bump	IEC 68-2-29 (test Eb; 25g
Cold	IEC 68-2-1 (test Ab)
Dry heat	IEC 68-2-2 (test Bb)
Damp heat, steady state	IEC 68-2-3 (test Ca)
Cyclic damp heat	IEC 68-2-30 (test Db)
Change of temperature	IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C (potentiometer R1 included)

Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance

between line and field coils, at 3 kV (d.c.)

between field coils and ferrite ring, at 300 V (d.c.)

1,5 mH \pm 4% 1.3 Ω \pm 10%

 $7,6 \text{ mWb} \pm 5\%$

5,0 A(p-p)

10,0 mH ± 10%

 $5.9 \Omega \pm 7\%$ 1.95 A(p-p)

 $> 10 M\Omega$

 $> 10 \text{ M}\Omega$

a voltage of 1 V, 15 kHz applied to the line coils causes no more than 20 mV

across the field coils

Connections

(See also Fig. 1).

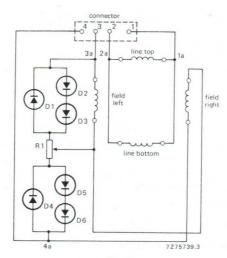


Fig. 2.

Notes:

658

- Contacts 1 and 1a must be connected to the live side of the line circuitry, contacts 3 and 3a must be connected to the live side of the field circuitry.
- Matching female Stocko connector: MKF 804-1-0-404.
- D1 to D6 = BAS11, BAX18, BAX18A, BAV10 or BAW62.
- R1 = 180 Ω .

FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- 1100 deflection
- In-line, hi-bi potential A R T* gun with quadrupole cathode lens
- 29,1 mm neck diameter
- Mask with corner suspension
- Hi-Bri technology
- Pigmented phosphors
- · Quick-heating low-power cathodes
- Soft-flash
- Slotted shadow mask optimized for minimum moiré at 625 lines systems
- Internal magnetic shield
- Internal multipole
- · Reinforced envelope for push-through mounting
- · Anti-crackle coating

QUICK REFERENCE DATA

Deflection angle	1100
Minimum useful screen diagonal	59 cm
Overall length	39 cm
Neck diameter	29,1 mm
Heating	6,3 V, 310 mA
Focusing voltage	31% of anode voltage

^{*} Aberration Reducing Triode.

A59EAK00X

ELECTRON-OPTIC	AL DATA
-----------------------	---------

unitized triple-aperture electrodes;
aberration reducing triode
electrostatic

970

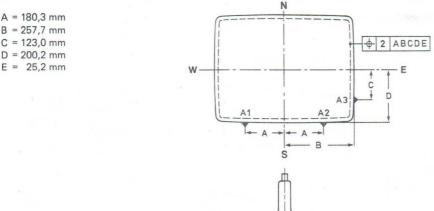
770

Focus lens hi-bi-potential

Deflection method magnetic Deflection angles diagonal 1100

ELECTRICAL DATA

horizontal


vertical

Capacitances	,			_
anode to external conductive coating	C _{a, g5, g4/m}	max. min.	2000 1600	
anode to metal rimband	Ca, g5, g4/m'		300	pF
cathodes of all guns (connected in parallel)				
to all other electrodes	c_k		15	pF
cathode of any gun to all other electrodes	CkR, CkG, CkB		5	pF
grid 3 (focusing electrode) to all other electrodes	C _{g3}		6	pF
grid 1 to all other electrodes	C _{g1}		17	pF
grid 2 to all other electrodes	C _{g2}		4,5	pF
Resistance between rimband and external				
conductive coating		min.	50	Ω M
Heating: indirect by a.c. (preferably mains or line frequence	y) or d.c.			
heater voltage	Vf		6,3	V
heater current	If		310	mA

OPTICAL DATA	
Screen	metal-backed vertical phosphor stripes; phosphor lines follow glass contour
Screen finish	satinized
Useful screen dimensions	
diagonal	min. 590 mm
horizontal axis	min. 478 mm
vertical axis	min. 363 mm
area	min. 1722 cm ²
Desiries and the second second	

Positional accuracy of the screen with	
respect to the glass contour	see Figure on the next page

red	pigmented europium activ	ated
green blue	sulphide type pigmented sulphide type	
Persistence	medium short	

Colour co-ordinates red green blue

Centre-to-centre distance of identical colour phosphor stripes

Light transmission of face glass at screen centre

Luminance at the centre of the screen

	A3	c l	E
A1 S	A → B	<u> </u>	
		\	
+A1	A2+	E	7Z93407

approx. 0,8 mm 67%

29,1^{+1,4}_{-0,7} mm

JEDEC B10-277

degaussing coils

approx. 19 kg

anode contact on top

small cavity contact J1-21, IEC 67-III-2

rimband provided with skirt and slots

to accommodate clips for mounting of

0,600

0,060

165 cd/m2 *

0.315

0,150

MECHANICAL DATA (see also the figures on the following pages) 392 ± 6 mm

Overall length

Neck diameter

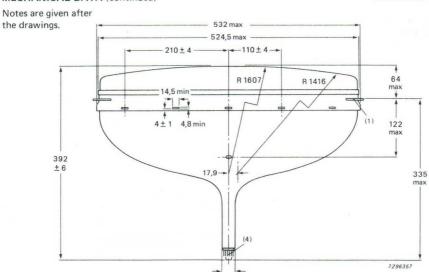
Base

Anode contact

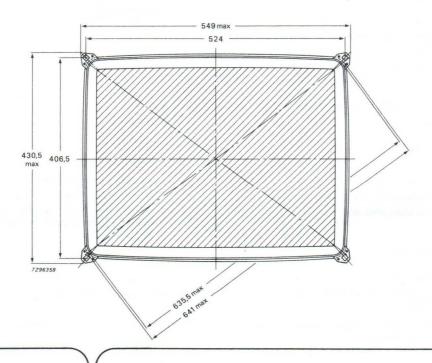
Mounting position

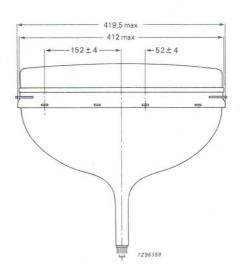
Implosion protection

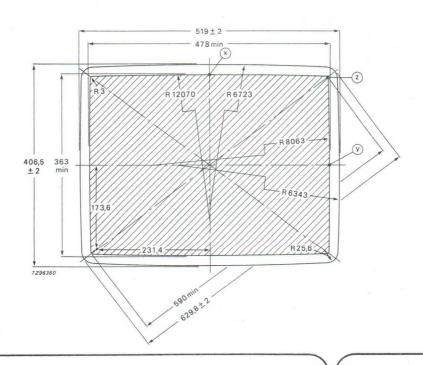
Net mass

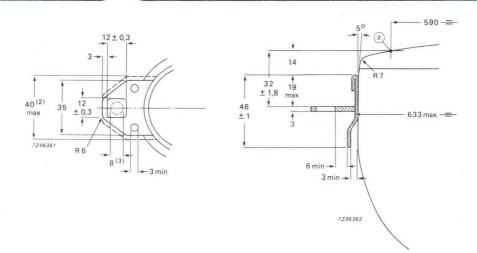

Handling

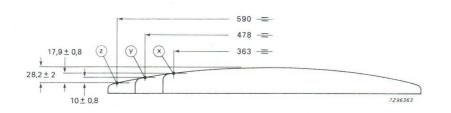
During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

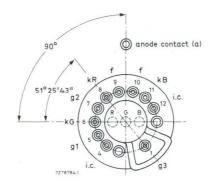

 Tube setting adjusted to produce white D (x = 0,313, y = 0,329), focused raster, current density 0,4 µA/cm2.




Dimensions in mm


Ø29,1 + 0,9 - 0,7



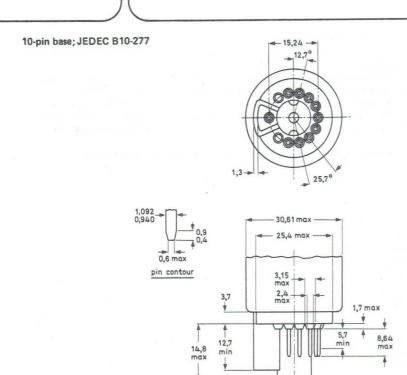


A59EAK00X

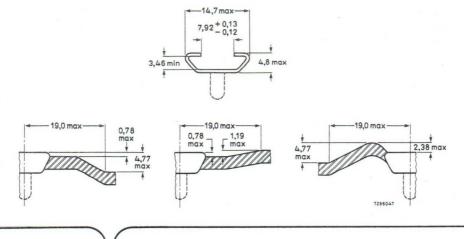
Notes to outline drawings on the preceding pages

- 1. The displacement of any lug with respect to the plane through the three other lugs is max. 1,5 mm.
- 2. Minimum space to be reserved for mounting lug.
- 3. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $524 \text{ mm} \times 406,5 \text{ mm}$.
- 4. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen


coordinates		sagittal		
X	У	height		
mm	mm	mm		
0 *	181,5	10,3		
20	181,5	10,4		
40	181,4	10,8		
60	181,3	11,5		
80	181,2	12,5		
100	181,0	13,5		
120	180,8	14,9		
140	180,6	16,6		
160	180,3	18,5		
180	180,0	20,7		
200	179,6	23,2		
220	179,3	26,0		
235,9**	177,1	28,2		
237,3	160	26,5		
237,7	140	24,5		
238,0	120	22,8		
238,3	100	21,4		
238,6	80	20,3		
238,8	60	19,4		
238,9	40	18,7		
239,0	20	18,3		
239,04	0	18,2		

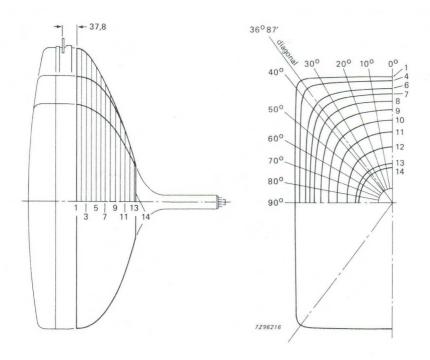
^{*} Point X


^{**} Diagonal.

[▲] Point (y).

A59EAK00X

Cavity cap JEDEC J-21, IEC 67-III-2

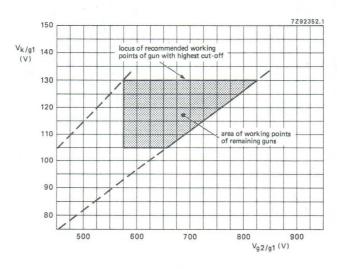


11,35

10,8

7278783.1

Maximum cone contour



sec- tion from section 1	distance					distan	ce from	centre				
		00	10°	20°	30°	36,87°	40°	50°	60°	70°	80°	90°
1	0,00	257,6	261,5	273,7	296,3	314,1	307,9	260,3	231,0	213,3	203,7	200,6
2	10,00	256,9	260,7	272,8	294,9	311,7	305,1	258,6	229,7	212,1	202,6	199,6
3	20,00	254,8	258,5	270,2	291,3	304,7	297,9	254,5	226,3	209,2	199,8	196,9
4	30,00	250,9	254,5	265,5	284,7	293,0	286,6	248,0	221,0	204,5	195,5	192,6
5	40,00	245,1	248,4	258,5	274,1	277,4	271,6	239,0	213,9	198,3	189,7	187,0
6	50,00	237,0	239,9	248,7	260,3	260,0	254,9	228,1	205,4	190,7	182,7	180,1
7	60,00	225,8	228,3	235,6	243,3	241,1	236,7	214,8	194,8	181,5	174,0	171,7
8	70,00	210,7	212,9	218,6	223,2	220,3	216,6	199,0	181,9	170,0	163,2	161,1
9	80,00	191,7	193,4	197,8	200,5	197,6	194,6	180,4	166,1	155,8	149,8	147,9
10	90,00	170,1	171,5	174,6	175,9	173,0	170,4	159,1	147,5	138,8	133,6	131,9
11	100,00	145,8	146,7	148,5	148,4	145,6	143,5	135,0	126,2	119,3	115,1	113,7
12	110,00	115,2	115,8	116,7	116,2	114,4	113,3	108,4	103,0	98,4	95,5	94,4
13	120,00	79,9	80,1	80,3	80,1	79,8	79,6	78,7	77,5	76,4	75,5	75,1
14	121,4	74,4	74,5	74,5	74,5	74.4	74,3	73,9	73,4	72,9	72,5	72,3

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	V _{a,g4}	25 kV
Grid 3 (focusing electrode) voltage	V_{g3}	7,25 to 8,25 kV
Grid 2 voltage for a spot cut-off voltage V_k = 130 V	V_{g2}	see below
Heater voltage under operating conditions	Vf	6,3 V

Spot cut-off design chart.

Grid 2 voltage (V_{g2}) adjusted for highest gun spot cut-off voltage V_{k} = 130 V.

Remaining guns adjusted for spot cut-off by means of cathode voltage

V_{q2} range 575 to 825 V;

Vk range 105 to 130 V.

Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 130 V; increase the grid 2 voltage (V_{g2}) from approx. 550 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

29 to 33% of anode voltage

Grid 2 voltage and cathode voltage for visual extinction of focused spot $V_{\rm d2}$ and $V_{\rm k}$ see cut-off design chart

Difference in cut-off voltages between

guns in any tube ΔV_{k} lowest value > 80% of highest value

Heater voltage V_f 6,3 V at zero beam current Video drive characteristics see graphs*

Video drive characteristics see graphs* Grid 3 (focusing electrode) current l_{a3} —2 to +2 μ A

Grid 2 current l_{g3} $-2 \text{ to } + 2 \mu \text{A}$

Grid 2 current I_{g2} $-2 \text{ to } + 2 \mu A$ Grid 1 current under cut-off conditions I_{q1} $-2 \text{ to } + 2 \mu A$

To produce white of 6500K + 7 M.P.C.D. (CIE-co-ordinates x = 0.313, y = 0.329)

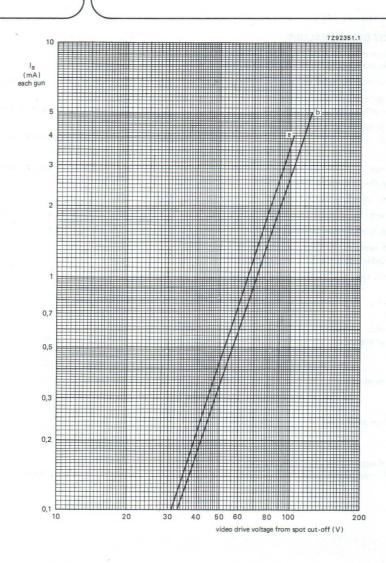
Percentage of the total anode current supplied by each gun (typical) red gun 38,3%

green gun 35,8% blue gun 25,9%

Ratio of anode currents
red gun to green gun
min. 0,8

average 1,1 max. 1,4

red gun to blue gun min. 1,1


average 1,5 max, 1,9

blue gun to green gun min. 0,5

average 0,7 max. 1,0

Insulation resistance between each cathode and grid 1 and heater min. 50 M Ω

^{*} For optimum picture performance it is recommended that the cathodes are not driven below + 1 V.

Typical cathode drive characteristic.

$$V_f = 6,3 V;$$

$$V_{a,g4} = 25 \text{ kV};$$

V_{q3} adjusted for focus;

 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 105 V (curve a) and V_k 130 V (curve b).

LIMITING VALUES (Design maximum rating system	n unless otherwise sta	ited)		notes
The voltages are specified with respect to grid 1.				
Anode voltage	V _{a,g4}	max. min.	27,5 kV 20 kV	1, 2, 3 1, 4
Long-term average current for three guns	la	max.	1000 μA	5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11 kV	
Grid 2 voltage	V_{g2}	max.	1200 V	6
Cathode voltage positive		max.	400 V	
positive positive operating cut-off	${\sf v}_{\sf k}$	max.	200 V	
negative	$-v_k$	max.	0 V	
negative peak	$-V_{kp}$	max.	2 V	
Cathode to heater voltage				
positive	V_{kf}	max.	250 V	
positive peak	V_{kfp}	max.	300 V	1
negative	$-V_{kf}$	max.	135 V	
negative peak	$-V_{kfp}$	max.	180 V	1
Heater voltage	V_{f}	6,3	V + 5 % -10 %	1, 7
LIMITING CIRCUIT VALUES				
Grid 3 circuit resistance	Ras	max.	70 MΩ	

Notes

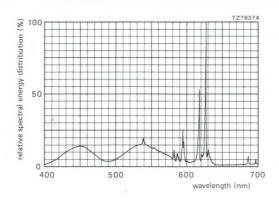
BEAM CENTRING

1. Absolute maximum rating system

Grid 1 to cathode circuit resistance (each gun)

Maximum centring error in any direction

- 2. The X-ray dose rate remains below the acceptable value of 36 pA/kg (0,5 mR/h), measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation withoutput picture tube.
- Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 6. During adjustment on the production line max. 1500 V is permitted.
- 7. For maximum cathode life it is recommended that the heater supply be designed for 6,3 V at zero beam current.


0,75 MΩ

4 mm

max.

Ra1k

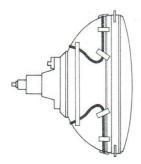
A59EAK00X

Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colo	ur co-o	rdinates	:

olour co-ordinates.	X	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

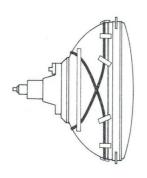
DEGAUSSING

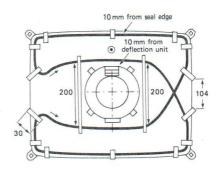

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.

For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils (≤ 0,15 ampere-turns).

If single-phase power rectification is employed in the TV circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

To ease the mounting of the coils, the rimband is provided with rectangular holes.


A59EAK00X



length of degaussing coil: 1,35 m

Double-coil system.

length of degaussing coil: 2,77 m

Single-coil system.

7291928

Degaussing circuit using dual PTC thermistor 2322 662 98009; C = 100 nF.

Data of each degaussing coil

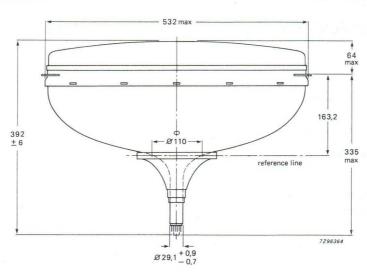
Circumference Number of turns Copper-wire diameter Aluminium-wire diameter Resistance

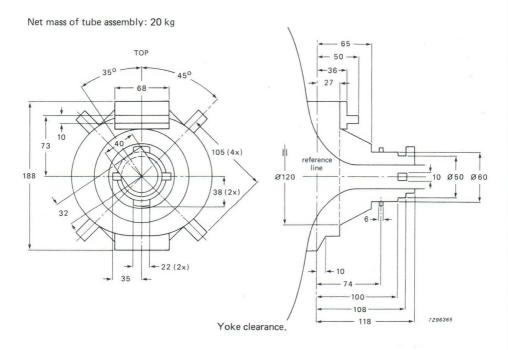
0	→		}
220 V or 240 V (a.c.)	+++++++++++++++++++++++++++++++++++++++	+ !	degaussing
0			7286044

double-coil system	single-coil system
135 cm	277 cm
60	60
0,4 mm	0,4 mm
0,5 mm	0,5 mm
11 Ω	22 Ω

110° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- 59 cm, 1100 colour picture tube A59EAK00X
- Double saddle deflection unit AT6010


QUICK REFERENCE DATA


Deflection angle	1100
Minimum useful screen diagonal	59 cm
Overall length	39 cm
Neck diameter	29,1 mm

A59EAK00X01

MECHANICAL DATA

Dimensions in mm

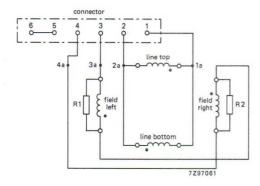
ELECTRICAL DATA OF DEFLECTION UNIT

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

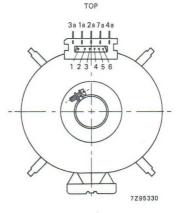
Resistance at 25 °C

Magnetic flux


Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz


Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

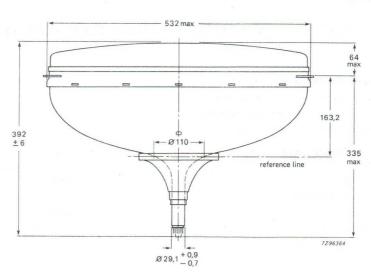
Electrical diagram. The beginning of the windings is indicated with \bullet . R1 = R2 = 100 Ω , 0,25 W. Matching Stocko connector MKF 806-1-0-606.

parallel connected 1,85 mH 1,85 Ω 7,6 mWb \pm 5% 4,1 A (p-p) series connected 11 mH 6,5 Ω 1,7 A (p-p)

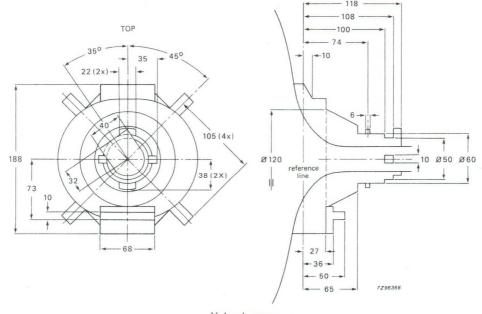
Terminal location.

110° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- 59 cm, 1100 colour picture tube A59EAK00X
- Double saddle deflection unit AT6010


QUICK REFERENCE DATA

Deflection angle	1100
Minimum useful screen diagonal	59 cm
Overall length	39 cm
Neck diameter	29,1 mm


A59EAK00X02

MECHANICAL DATA

Dimensions in mm

Net mass of tube assembly: 20 kg.

Yoke clearance.

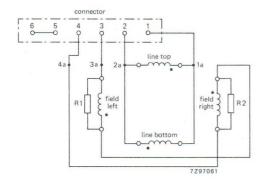
ELECTRICAL DATA OF DEFLECTION UNIT

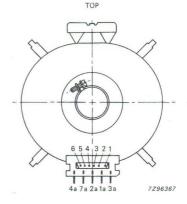
Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C Magnetic flux

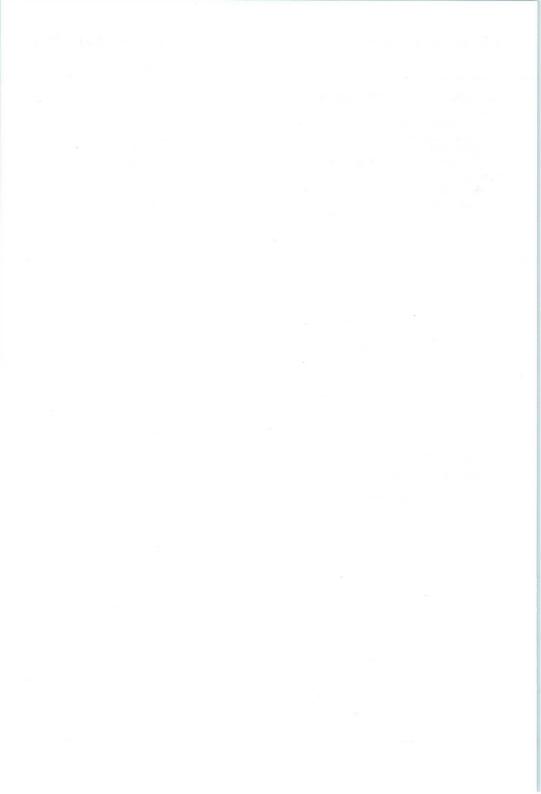
Line deflection current, edge to edge, at 25 kV


Field coils


Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

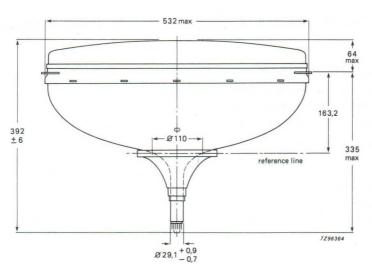

parallel connected 1,85 mH 1,85 Ω 7,6 mWb \pm 5% 4,1 A (p-p) series connected 11 mH 6,5 Ω 1,7 A (p-p)

Electrical diagram. The beginning of the windings is indicated with \bullet . R1 = R2 = 100 Ω , 0,25 W. Matching Stocko connector MKF806-1-0-606.

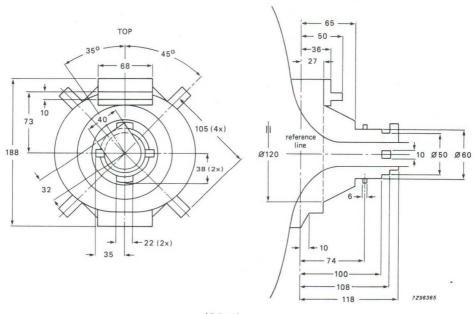
Terminal location,

110° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- 59 cm, 1100 colour picture tube A59EAK00X
- Double saddle deflection unit AT6010/11


QUICK REFERENCE DATA

Deflection angle	1100
Minimum useful screen diagonal	59 cm
Overall length	39 cm
Neck diameter	29,1 mm


A59EAK00X03

Dimensions in mm

Net mass of tube assembly: 20 kg

ELECTRICAL DATA OF DEFLECTION UNIT

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux Line deflection current, edge to edge, at 25 kV

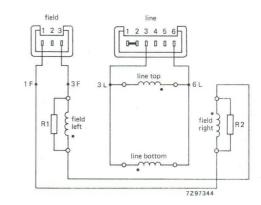
Field coils

Inductance at 1 V (r.m.s.), 1 kHz

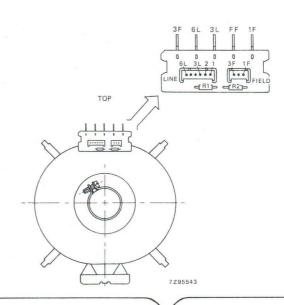
Resistance at 25 °C

Field deflection current, edge to edge, at 25 kV

parallel connected


1,85 mH 1,85 Ω

7,6 mWb ± 5% 4,1 A (p-p)


series connected

11 mH

6,5 Ω 1,7 A (p-p)

Electrical diagram. The beginning of the windings is indicated with \bullet . R1 = R2 = 100 Ω , 0,25 W. Matching connectors: 572201340 (field) 572201370 (line).

Terminal location.

COLOUR PICTURE TUBE

QUICK REFERENCE DATA

Temperature compensated shadow-mask designed for minimum moiré

High white luminance at unity current ratio

Face diagonal

Deflection angle Neck diameter

Envelope

Magnetic shield

Focusing

Deflection

Convergence Heating

Light transmission of face glass

of bulb

Quick heating cathode

66 cm

1100

36,5 mm

internal

bi-potential magnetic

magnetic

6,3 V, 730 mA

52,5 % with a typical tube a legible picture

will appear within approx. 5 s

reinforced; suitable for push-through

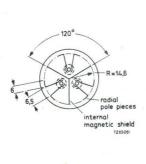
MECHANICAL DATA

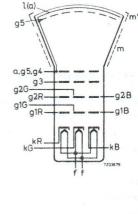
Overall length Neck diameter Diagonal

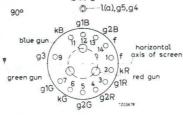
Horizontal axis

Vertical axis
Useful screen
diagonal
horizontal axis

vertical axis
Base
Anode contact


425,1 to 438,1 mm 36,5 mm


max. 657,6 mm max. 556,4 mm max. 435,3 mm


min. 617,8 mm min. 518 mm

min. 390 mm 12 pin base JEDEC B12-246 Small cavity contact J1-21,

IEC 67-111-2

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	V _{a,g5,g4}	25	kV
Grid 3 (focusing electrode) voltage	V_{g3}	4,2 to 5	kV
Grid 2 voltage for a spot cut-off at $V_{g1} = -105 \text{ V}$	V_{g2}	212 to 495	٧
Grid 1 voltage for spot cut-off at V_{g2} = 300 V	V_{g1}	-70 to -140	٧

20AX COLOUR PICTURE TUBE

Replacement type A66-510X.

391-5

...

1

Replaces A66-500X

20AX Hi-Bri COLOUR PICTURE TUBE

QUICK REFERENCE DATA

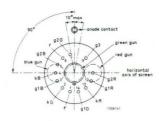
Deflection angle	1100
Face diagonal	66 cm
Overall length	41 cm
Neck diameter	36,5 mm
Envelope	reinforced; suitable for push-through
Magnetic shield	internal
Focusing	bi-potential
Deflection	magnetic
Heating	6,3 V, 720 mA

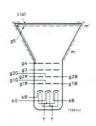
Light transmission of face glass 68%

Inherently self-converging system with deflection unit AT1080

Quick heating cathode with a typical tube a legible picture will

appear within approx. 5 s


MECHANICAL DATA


Overall length	411,6 ± 6,5 mm
Neck diameter	36,5 ^{+ 1,6} mm
Bulb dimensions	

diagonal max. 657,6 mm
width max. 556,4 mm
height max. 435,3 mm
Useful screen dimensions

diagonal min. 617,8 mm
horizontal axis min. 518,0 mm
vertical axis min. 390,0 mm

Base 12-pin base IEC 67-I-47a, type 2
Anode contact small cavity contact J1-21, IEC 67-III-2

TYPICAL OPERATING CONDITIONS

Va,g5,g4	25	kV
V_{g3}	4,0 to 4,8	kV
V_{g2}	465 to 705	V
V_k	110 to 165	V

30AX COLOUR PICTURE TUBE

- Automatic snap-in raster orientation
- Push-on axial purity positioning
- Internal magneto-static beam alignment
- Hi-Bi gun with quadrupole cathode lens

- Self-aligning, self-converging assembly with low power consumption, when combined with deflection unit AT 1870
- North-south pin-cushion distortion-free

- 1100 deflection
- Hi-Bri screen
- Pigmented phosphors: enhanced contrast
- Phosphor lines follow glass contour
- In-line gun
- Standard 36,5 mm neck
- Soft-Flash technology
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Quick-heating cathodes
- Internal magnetic shield
- Anti-crackle coating
- Reinforced envelope for push-through mounting

OUICK REFERENCE DATA

Deflection angle
Face diagonal
Overall length
Neck diameter
Heating
Focusing voltage

1100

66 cm

42 cm

36,5 mm

6,3 V, 720 mA

28% of anode voltage

FLECTRON-OPTICAL DATA	

Electron gun system	in-line with separate grids
Focusing method	electrostatic
Focus lens	hi-bi potential
Deflection method	magnetic
Deflection angles diagonal horizontal vertical	110° 97° 77°

ELECTRICAL DATA

Capacitances anode to external conductive coating	C _{a, g5, g4/m}	max. min.	2000 1500	
anode to metal rimband	Ca, g5, g4/m'		300	pF
grid of any gun to all other electrodes	Cg 1R, Cg 1G, (Cq 1B	7	pF
cathodes of all guns (connected in parallel)				
to all other electrodes	Ck		12	pF
cathode of any gun to all other electrodes	CkR, CkG, CkB		4	pF
grid 3 (focusing electrode) to all other electrodes	C _{g3}		7	pF
Resistance between rimband and external				
conductive coating		min.	50	$M\Omega$
Heating: indirect by a.c. (preferably mains or line frequence	y) or d.c.			
heater voltage	Vf		6,3	V
heater current	If		720	mA

OPTICAL DATA

	re	

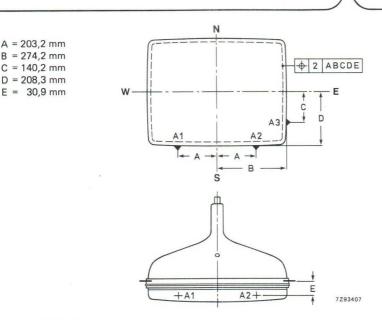
Screen finish

Useful screen dimensions diagonal horizontal axis

vertical axis

Positional accuracy of the screen with respect to the glass contour

Phosphors


red

green blue metal-backed vertical phosphor stripes; phosphor lines follow glass contour satinized

min. 617,8 mm min. 518 mm min. 390 mm

see Figure on the next page

pigmented europium activated rare earth sulphide type pigmented sulphide type

Colour co-ordinates red

green blue

Centre-to-centre distance of identical colour phosphor stripes

Luminance at the centre of the screen

Light transmission of face glass

0.635 0.340 0.600 0.315 0,150 0.060

> approx. 0,8 mm 69% 170 cd/m² *

Overall length

Neck diameter

Base

Anode contact

Mounting position

Rimband

Net mass

MECHANICAL DATA (see also the figures on the following pages)

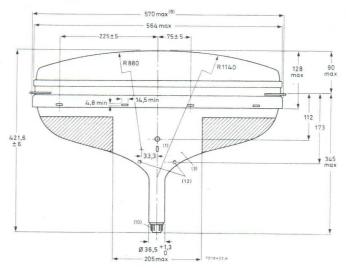
421,6 ± 6 mm 36,5 + 1,3 mm

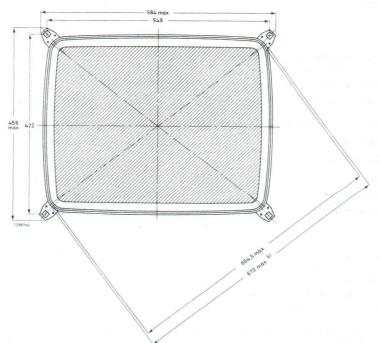
> 12-pin base IEC 67-I-47a, type 2 cavity cap JEDEC J1-21, IEC 67-III-2

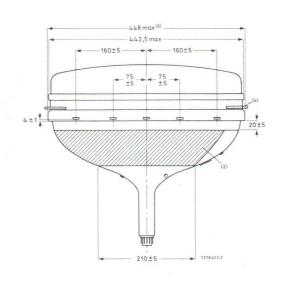
anode contact on top provided with 18 slots to accommodate

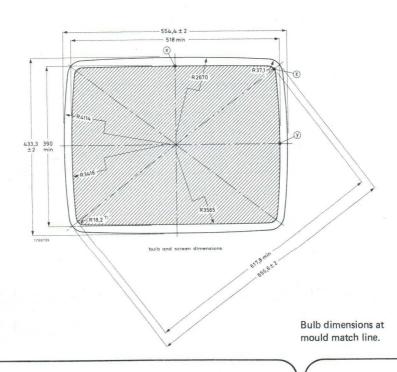
clips for mounting of degaussing coils approx. 20 kg

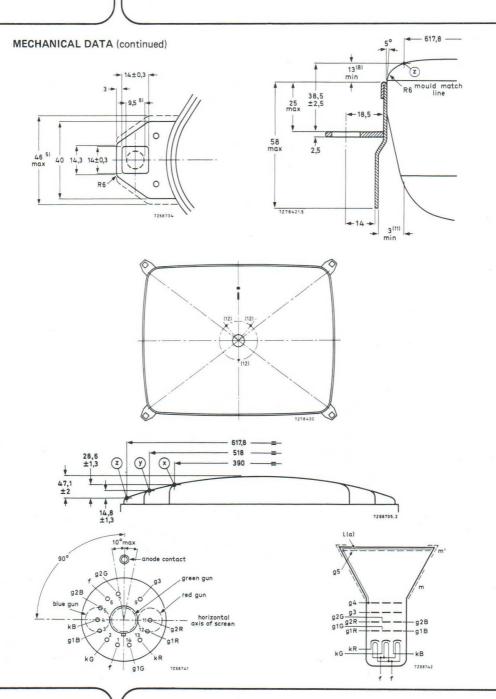
Handling


During shipment and handling the tube should not be subjected to accelerations greater than 350 m/s2 in any direction.


* Tube settings adjusted to produce white D (x = 0,313, y = 0,329), focused raster, current density $0.4 \, \mu A/cm^2$.


MECHANICAL DATA (continued)


Notes are given after the drawings.


Dimensions in mm

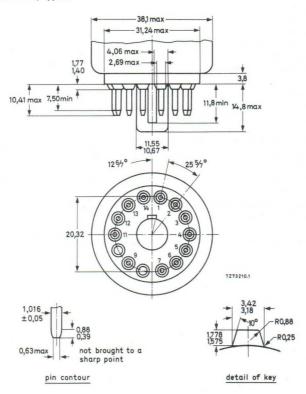
698

Notes to outline drawings on the preceding pages

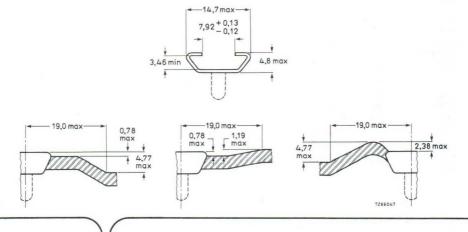
- 1. This ridge can be used as an orientation for the deflection unit.
- Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
- 3. To clean this area, wipe only with a soft lintless cloth.
- 4. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm.
- 5. Minimum space to be reserved for mounting lug.
- 6. The position of the mounting screw in the cabinet must be within a circle of 9,5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 549 mm x 422 mm.
- 7. Co-ordinates for radius R = 18,2 mm: x = 236,6 mm, y = 168,9 mm.
- 8. Distance from point z to any hardware.
- 9. Maximum dimensions in plane of lugs.
- 10. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of the base will fall within a circle concentric with the tube axis and having a diameter of 55 mm.

The mass of the mating socket with circuitry should not be more than 150 g; maximum permissible torque is 40 mNm.

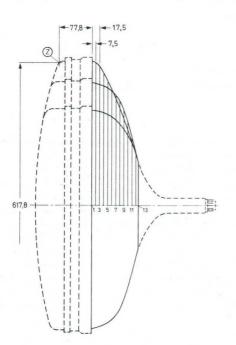
- 11. Minimum distance between glass and rimband in plane of the apertures.
- 12. Centring bosses for deflection unit.

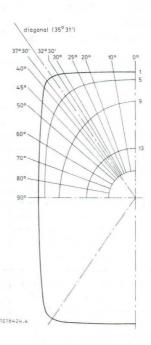

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		sagitta
×	У	height
mm	mm	mm
0*	195,0	18,7
20	194,9	18,9
40	194,8	19,4
60	194,5	20,3
80	194,1	21,6
100	193,6	23,3
120	193,0	25,3
140	192,2	27,7
160	191,4	30,5
180	190,5	33,6
200	189,4	27,2
220	188,2	41,2
230	187,6	43,4
251,4**	179,5	47,1
255,3	160	44,7
256,1	140	41,8
256,9	120	39,3
257,5	100	37,3
258,1	80	35,6
258,6	60	34,2
258,8	40	33,3
258,9	20	32,7
259,0▲	0	32,5


^{*} Point (x).

^{**} Diagonal.


12-pin base, IEC 67-I-47a, type 2



Cavity cap JEDEC J1-21, IEC 67-III-2

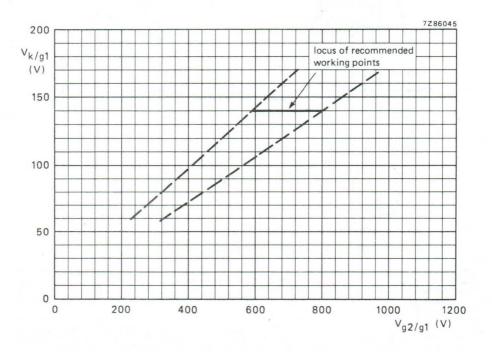
Maximum cone contour

sec- tion	distance from centre (max. values)															
	nominal distance from section 1	00	100	200	250	300	32º 30'	diag.	370 30'	400	450	500	60°	700	800	900
1	0	279,0	283,0	295,4	305,2	318,0	325,4	329,0	327,5	320,7	296,5	276,7	248,3	230,7	221,1	218,0
2	7,5	276,4	280,3	292,5	302,0	313,8	320,4	323,1	321,3	314,8	292,5	273,5	245,6	228,1	218,5	215,5
3	17,5	273,4	277,1	288,2	296,2	304,8	308,7	309,2	307,0	301,9	285,1	268,8	242,5	225,3	215,8	212,8
4	27,5	268,8	272,1	281,5	287,4	292,7	294,3	293,4	291,3	287,1	274,6	261,1	237,5	221,3	212,1	209,1
5	37,5	262,3	265,1	272,0	275,7	277,9	278,0	276,4	274,4	270,9	261,4	250,5	230,4	215,7	207,2	204,3
6	47,5	254,0	255,9	260,0	261,4	261,2	260,2	258,1	256,2	253,2	245,8	237,4	221,1	208,5	201,0	198,4
7	57,5	243,5	244,5	245,3	244,6	242,7	241,2	238,8	237,0	234,4	228,5	222,1	209,6	199,7	193,4	191,3
8	67,5	230,1	229,8	227,8	225,7	222,8	221,0	218,6	217,0	214,8	210,1	205,3	196,2	188,9	184,3	184,6
9	77,5	213,3	211,9	207,8	204,9	201,7	199,9	197,7	196,3	194,5	190,9	187,4	181,2	176,4	173,4	172,4
10	87,5	194,0	191,4	185,6	182,3	178,9	177,3	175,4	174,2	172,8	170,1	167,8	164,3	162,1	161,1	161,0
11	97,5	172,8	168,1	161,4	158,0	154,9	153,5	152,0	151,1	150,0	148,2	146,9	145,7	146,0	147,3	148,2
12	107,5	142,1	139,1	133,9	131,5	129,4	128,4	127,5	126,9	126,3	125,4	124,9	125,2	126,9	129,5	131,1
13	117,5	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0

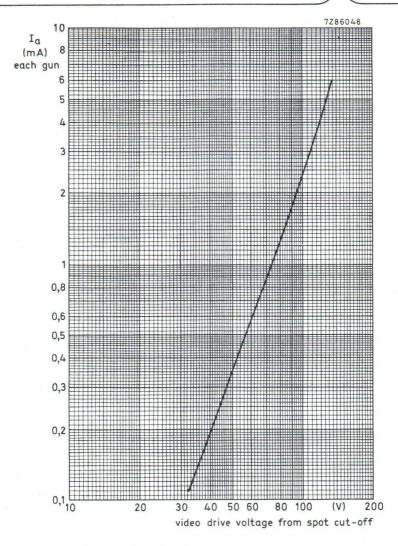
RECOMMENDED OPERATING CONDITIONS (cathode drive)

The voltages are specified with respect to grid 1.

Anode voltage


Va, g5, g4 25 kV

Grid 3 (focusing electrode) voltage


V_{q3} 6,5 to 7,45 kV

A. Operation at equal spot cut-off voltage V_k = 140 V

Grid 2 voltage (V $_{g2}$) adjusted for each gun separately; V $_{g2}$ range 590 to 800 V.

Spot cut-off design chart.

Typical cathode drive characteristic.

 $V_f = 6,3 V;$

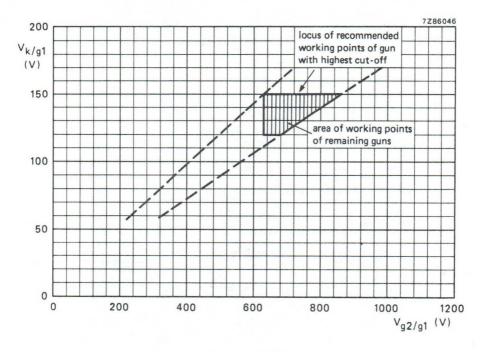
 $V_{a, g5, g4} = 25 \text{ kV};$

V_{g3} adjusted for focus;

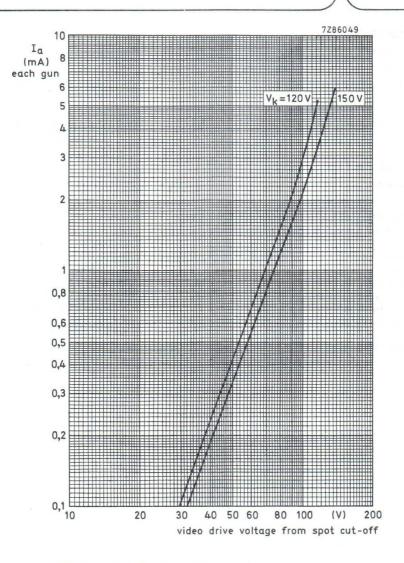
 V_{g2} (each gun) adjusted to provide spot cut-off for $V_k = 140 \text{ V}$.

B. Operation at equal grid 2 voltage

Grid 2 voltage (V_{q2}) adjusted for highest gun spot cut-off voltage $V_k = 150 \text{ V}$.


Remaining guns adjusted for spot cut-off by means of cathode voltage.

V_{g2} range 630 to 860 V.


Vk range 120 to 150 V.

Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 150 V; increase the grid 2 voltage (V_{g2}) from approx. 600 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

Spot cut-off design chart.

Typical cathode drive characteristic.

 $V_f = 6,3 V;$

 $V_{a, g5, g4} = 25 \text{ kV};$

V_{q3} adjusted for focus;

 V_{g2} (each gun) adjusted to provide spot cut-off for V_k =120 V and 150 V.

EQUIPMENT DESIGN VALUES (each gun if applicable)

The values are valid for anode voltages between 22,5 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage	V _{a3}	26 to 29,8% of anode
	5	voltage

Difference in cut-off voltage between

guns in one tube	ΔV_{k} lowest value is min. of highest value	80%
Heater voltage	V _f 6,3 V at zero beam	current
Grid 3 (focusing electrode) current	I_{g3} $-5 \text{ to } + 5 \mu A$	
Grid 2 current	$_{g2}$ -5 to +5 μ A	

Grid 1 current at V_k = 140 V To produce white D, CIE co-ordinates x = 0,313, y = 0,329.

Percentage of the total anode current supplied by each gun (typ.)
red qun 38.3%

 red gun
 38,3%

 green gun
 35,8%

 blue gun
 25,9%

Ratio of anode current min. max. av. red gun to green gun 0,7 1,1 1,4 red gun to blue gun 1,1 1,5 2,0 blue gun to green gun 0,5 0,7 1,0

BEAM CENTRING

Maximum centring error in any direction

5 mm

 $-5 \text{ to } + 5 \mu \text{A}$

Iq1

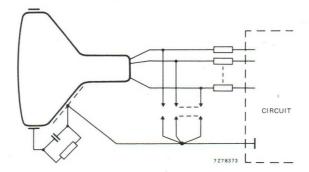
LIMITING VALUES (each gun if applicable)

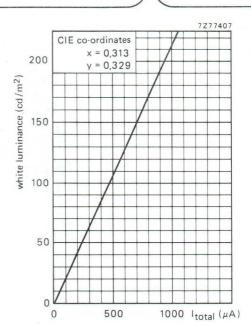
Design maximum rating system unless otherwise stated.

The voltages are specified with respect to grid 1.

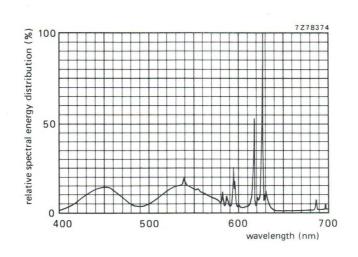
Anode voltage		Va, g5, g4	max. min.	27,5 22,5		notes 1, 2, 3 note 4
Long-term average current	for three guns	la	max.	1000	μΑ	note 5
Grid 3 (focusing electrode	e) voltage	V_{g3}	max.	9	kV	
Grid 2 voltage		V_{g2}	max.	1200	V	note 6
Cathode voltage positive positive operating cut-o negative negative peal	ff	V _k V _k -V _k -V _{kp}	max. max. max.	400 200 0 2	100	
Cathode to heater voltage positive positive peak negative negative peak		V _{kf} V _{kfp} -V _{kf} -V _{kfp}	max. max. max.	250 300 135 180	V V	note 1
Heater voltage		V _f	6,3 V	+ 5	%	notes 1, 7

Notes

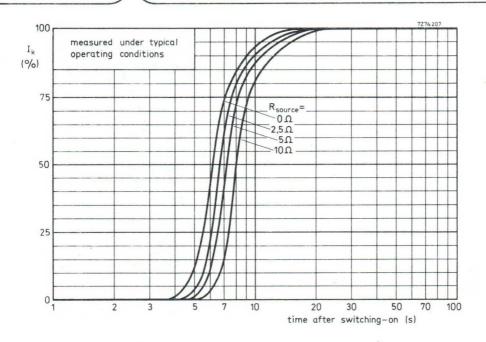

- 1. Absolute maximum rating system.
- 2. The X-ray dose rate remains below the acceptable value of 36 pA/kg (0,5 mR/h), measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 6. During adjustment on the production line max. 1500 V is permitted.
- 7. For maximum cathode life and optimum performance it is recommended that the heater supply be designed for 6,3 V at zero beam current.


FLASHOVER PROTECTION

High electric field strengths are present between the gun electrodes of picture tubes. Voltages between gun electrodes may reach values of 20 kV over approx. 1 mm. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.


Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage and damage to the circuitry which is directly connected to the tube socket. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 10,5 kV, and at the other electrodes of 1,5 to 2 kV. The values of the series isolation resistors should be as high as possible (min 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.

Additional information is available on request.

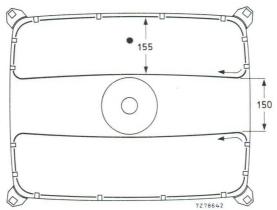


Luminance at the centre of the screen as a function of I_{total} . Scanned area 518 mm x 390 mm.

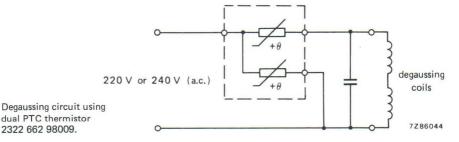
Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	×	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.


DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts.


For proper degaussing an intial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils (≤ 0,3 ampere-turns).

If single-phase power rectification is employed in the TV circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

To ease the mounting of the coils, the rimband is provided with rectangular holes. An example is given below

Position of degaussing coils on the picture tube.

Data of each degaussing coil

2322 662 98009.

Circumference Number of turns Copper-wire diameter Aluminium-wire diameter Resistance

135 cm 60 0.4 mm 0.5 mm 11Ω

1 1 1 1 1 1 1 1 1 1 1 1 1

Replaced by AT1870

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube	A66-540X
gun arrangement	in line
diagonal	66 cm (26 in)
neck diameter	36,5 mm
Deflection angle	110º
Line deflection current, edge to edge at 25 kV	5,1 A(p-p)
Inductance of line coils	1,5 mH
Field deflection current, edge to edge at 25 kV	2,0 A(p-p)
Resistance of field coils	
(potentiometer R1 included)	5,85 Ω

CONNECTIONS

(See also Fig. 2).

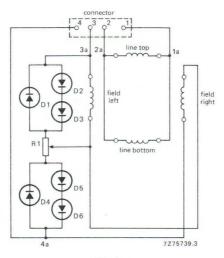


Fig. 1.

Notes:

- Contacts 1 and 1a must be connected to the live side of the line circuitry, contacts 3 and 3a must be connected to the live side of the field circuitry.
- Matching female Stocko connector: MKF 804-1-0-404.
- D1 to D6 = BAS11, BAX18, BAX18A, BAV10 or BAW62.
- R1 = 180Ω .

Outlines

MECHANICAL DATA

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube	A66-540X
gun arrangement	in line
diagonal	66 cm (26 in)
neck diameter	36,5 mm
Deflection angle	1100
Line deflection current, edge to edge at 25 kV	5,1 A(p-p)
Inductance of line coils	1,5 mH
Field deflection current, edge to edge at 25 kV	2,0 A(p-p)
Resistance of field coils	
(potentiometer R1 included)	5,85 Ω

APPLICATION

This deflection unit is for use with 110° in-line colour picture tube A66-540X, in conjunction with e.g.: diode-split line output transformer AT2076/70A and linearity control unit AT4042/42 or AT4042/30.

DESCRIPTION

The deflection unit consists of flangeless line and field deflection coils, a one piece ferrite ring and a one piece coil carrier.

Connection to the deflection coils can be made via a connector (contact pins 1 to 4) or solder tags 1a to 4a, see Fig. 1.

AT1870

Deflection unit

The deflection unit fits a tube with a neck diameter of 36.5 + 1.3 mm.

Maximum operating temperature (average copper temperature measured with resistance method)

+ 90 °C

Storage temperature range

-20 to +90 °C

Flame retardent

according to UL 1413, category 94, V-1

Mounting

The deflection unit can simply be pushed on the neck of a picture tube.

Both on the neck of the tube and on the deflection unit, there are 3 reference surfaces to establish angular and axial positioning.

Once the unit is mounted the combination is perfectly aligned and requires no further adjustment for static convergence, colour purity and raster orientation.

The unit must be pressed against the reference surfaces on the cone of the picture tube with a force of 20 ± 5 N and fixed by tightening the screw in the clamping ring at the rear with a torque of $1.0^{+0.4}_{-0.2}$ Nm.

Maximum axial force exerted on the screw is 20 N.

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration IEC 68-2-6 (test Fc)

Shock IEC 68-2-27 (test Ea; 35g)

Bump IEC 68-2-29 (test Eb; 25g)

Cold IEC 68-2-1 (test Ab)

Dry heat IEC 68-2-2 (test Bb)

Damp heat, steady state IEC 68-2-3 (test Ca)

Cyclic damp heat IEC 68-2-30 (test Db)

Change of temperature IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C (potentiometer R1 included)

Field deflection current, edge to edge, at 25 kV

Cross-talk

a voltage of 1 V, 15 kHz applied to the line coils causes no more than 20 mV across the field coils

1,5 mH ± 4% $1.3 \Omega \pm 10\%$

7,6 mWb ± 5%

9.7 mH ± 10%

 $5.85 \Omega \pm 7\%$

2,0 A(p-p)

 $> 10 M\Omega$

5,1 A(p-p)

Insulation resistance

between line and field coils; at 3 kV (d.c.)

between field coils and ferrite ring, at 300 V (d.c.) $> 10 M\Omega$

Connections

(See also Fig. 1).

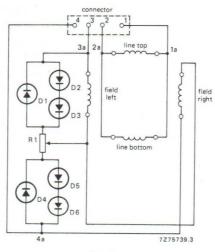


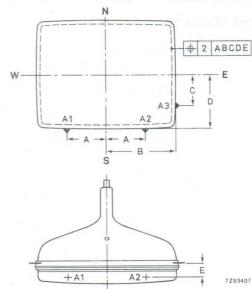
Fig. 2.

Notes:

- Contacts 1 and 1a must be connected to the live side of the line circuitry, contacts 3 and 3a must be connected to the live side of the field circuitry.
- Matching female Stocko connector: MKF 804-1-0-404.
- D1 to D6 = BAS11, BAX18, BAX18A, BAV10 or BAW62.
- R1 = 180 Ω.

FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- 1100 deflection
- In-line, hi-bi potential A R T* gun with quadrupole cathode lens
- 29,1 mm neck diameter
- Mask with corner suspension
- Hi-Bri technology
- Pigmented phosphors
- · Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 625 lines systems
- Internal magnetic shield
- Internal multipole
- · Reinforced envelope for push-through mounting
- Anti-crackle coating


QUICK REFERENCE DATA

Deflection angle	110 ^o
Minimum useful screen diagonal	66 cm
Overall length	42 cm
Neck diameter	29,1 mm
Heating	6,3 V, 310 mA
Focusing voltage	31% of anode voltage

^{*} Aberration Reducing Triode.

ELECTRON-OPTICAL DATA				
Electron gun system	unitized triple-aperture electrodes; aberration reducing triode		;	
Focusing method	electrostatic			
Focus lens	hi-bi-potential			
Deflection method	magnetic			
Deflection angles				
diagonal	1100			
horizontal vertical	97º 77º			
vertical	//-			
ELECTRICAL DATA				
Capacitances		max.	2200	pF
anode to external conductive coating	C _a , g5, g4/m	min.	1800	
anode to metal rimband	Ca, g5, g4/m'		300	pF
cathodes of all guns (connected in parallel)	4, 30, 3 ,,			
to all other electrodes	Ck		15	pF
cathode of any gun to all other electrodes	CkR, CkG, CkB		5	pF
grid 3 (focusing electrode) to all other electrodes	C _{q3}		6	pF
grid 1 to all other electrodes	C _{q1}		17	pF
grid 2 to all other electrodes	C _{g2}		4,5	pF
Resistance between rimband and external	3-			
conductive coating		min.	50	MΩ
Heating: indirect by a.c. (preferably mains or line frequen	STATE OF THE PARTY		0.0	
heater voltage heater current	Vf		6,3 310	
neater current	If		310	1117-
OPTICAL DATA				
Screen	metal-backed vertice phosphor lines follows:			
Screen finish	satinized			
Useful screen dimensions				
diagonal	min. 660 mm			
horizontal axis	min. 534,5 mm			
vertical axis	min. 406 mm			
area	min. 2152 cm ²			
Positional accuracy of the screen with respect to the glass contour	see Figure on the n	out non		
Phosphors	see Figure on the n	ext page	3	
red	pigmented europiu	m activa	ted	
	rare earth	iii decive	itou	
green	sulphide type			
blue	pigmented sulphide	e type		
Persistence	medium short			

Colour co-ordinates red green blue

Centre-to-centre distance of identical colour phosphor stripes

Light transmission of face glass at screen centre

Luminance at the centre of the screen

X 0,635 0,340 0,315 0.600 0.150 0,060

> approx. 0,8 mm 65%

160 cd/m2 *

422 ± 6 mm

29,1⁺1,4 mm

JEDEC B10-277

degaussing coils

approx. 24,5 kg

anode contact on top

small cavity contact J1-21, IEC 67-III-2

rimband provided with skirt and slots to accommodate clips for mounting of

MECHANICAL DATA (see also the figures on the following pages)

Overall length

Neck diameter

Base

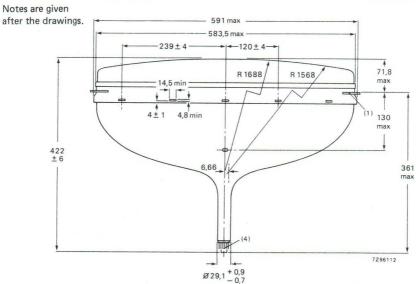
Anode contact

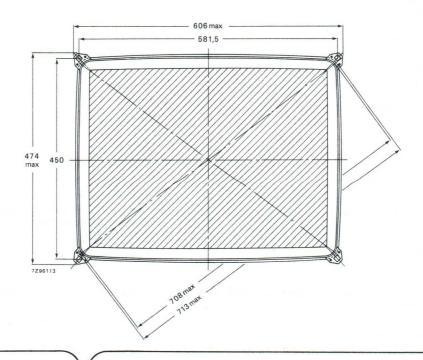
Mounting position

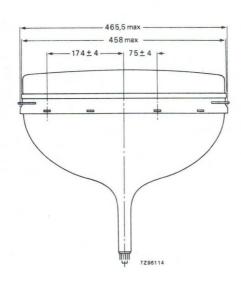
Implosion protection

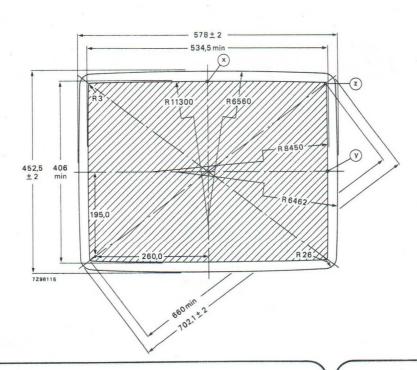
Net mass

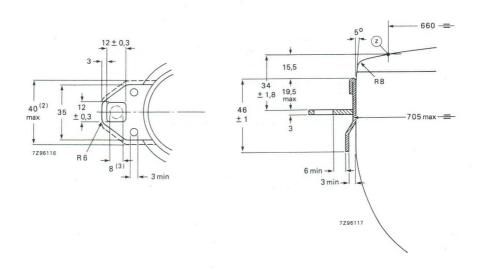
Handling

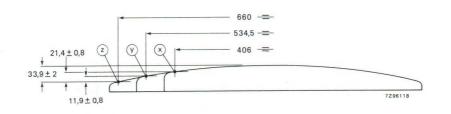

During shipment and handling the tube should not be subjected to accelerations greater than 35g in any direction.

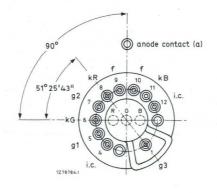

* Tube settings adjusted to produce white D (x = 0,313, y = 0,329), focused raster, current density 0,4 µA/cm2.


A66EAKOOX


MECHANICAL DATA (continued)


Dimensions in mm

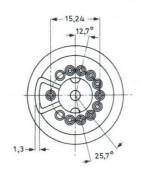


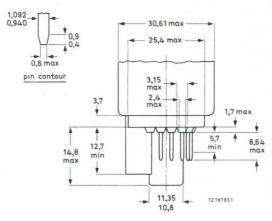


Notes to outline drawings on the preceding pages

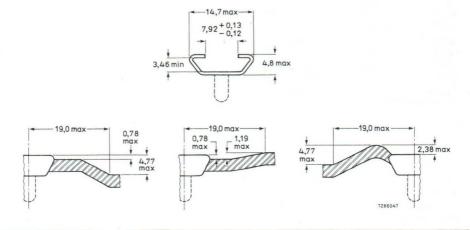
- 1. The displacement of any lug with respect to the plane through the three other lugs is max. 1,5 mm.
- 2. Minimum space to be reserved for mounting lug.
- 3. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 581.5 mm x 450 mm.
- 4. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm, concentric with an imaginary tube axis.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

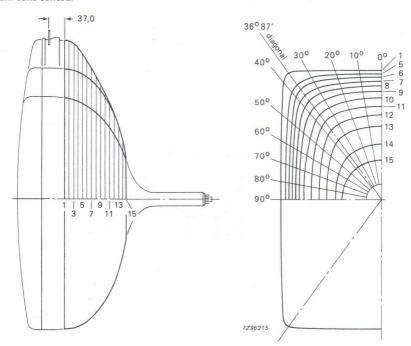

coordi	inates	sagitta
X	У	height
mm	mm	mm
0*	203,0	12,5
20	203,0	12,6
40	202,9	13,0
60	202,8	13,6
80	202,7	14,5
100	202,6	15,6
120	202,4	16,9
140	202,1	18,5
160	201,9	20,4
180	201,6	22,5
200	201,2	24,9
220	200,9	27,5
240	200,4	30,3
260	200,0	33,5
264,0**	198,0	33,9
265,3	180	31,9
265,7	160	29,8
266,1	140	28,0
266,4	120	26,4
266,7	100	25,1
266,9	80	23,9
267,1	60	23,1
267,2	40	22,5
267,2	20	22,1
267,2▲	0	22,0


^{*} Point 🗴 .

^{**} Diagonal.

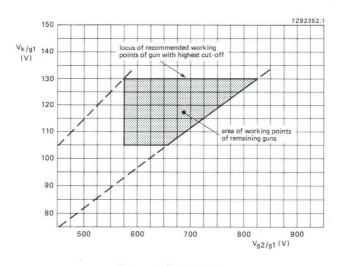

A Point(y).

10-pin base; JEDEC B10-277



Cavity cap JEDEC J1-21, IEC 67-III-2

Maximum cone contour



sec-	nom. distance					dista	nce from	centre				
tion	from section 1	00	10°	20°	30°	36,87°	400	50°	60°	70°	80°	90°
1	0,00	287,2	291,4	304,9	329,6	349,8	341,6	289,2	257,0	237,4	226,8	223,5
2	10,00	286,6	290,8	304,2	328,8	348,1	339,9	288,4	256,2	236,7	226,1	222,8
3	20,00	285,0	289,2	302,4	326,4	342,6	334,6	285,6	253,8	234,5	224,1	220,8
4	30,00	282,1	286,1	298,9	321,2	332,5	324,7	279,7	249,2	230,5	220,3	217,1
5	40,00	277,7	281,5	293,5	313,3	319,6	312,1	271,7	242,7	224,8	215,1	212,0
6	50,00	271,6	275,2	286,3	302,8	305,1	298,2	262,4	235,2	218,2	208,9	205,9
7	60,00	263,8	267,1	276,9	287,8	289,2	283,0	252,1	227,0	211,0	202,1	199,3
8	70,00	253,9	256,8	265,2	274,3	271,9	266,6	240,6	217,8	202,9	194,6	192,0
9	80,00	241,4	243,9	250,9	257,0	253,7	249,1	227,2	207,0	193,2	185,6	183,1
10	90,00	225,6	227,8	233,6	237,8	234,3	230,2	211,4	193,4	180,9	173,9	171,6
11	100,00	207,1	209,1	214,0	217,4	213,8	210,0	192,9	176,7	165,4	159,0	157,0
12	110,00	186,8	188,4	192,6	195,1	191,4	187,7	172,1	157,5	147,5	141,8	139,9
13	120,00	163,7	165,0	168,0	169,0	165,3	162,1	149,2	137,1	128,6	123,7	122,1
14	130,00	126,3	126,7	126,8	125,3	123,2	121,9	117,1	112,0	107,7	104,7	103,7
15	137,12	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

The vertages are specified with respect to give 1.		
Anode voltage	$V_{a,g4}$	25 kV
Grid 3 (focusing electrode) voltage	V_{g3}	7,25 to 8,25 kV
Grid 2 voltage for a spot cut-off voltage $V_k = 130 \text{ V}$	V_{g2}	see below
Heater voltage under operating conditions	Vf	6,3 V

Spot cut-off design chart.

Grid 2 voltage (V_{g2}) adjusted for highest gun spot cut-off voltage V_k = 130 V.

Remaining guns adjusted for spot cut-off by means of cathode voltage

V_{q2} range 575 to 825 V;

Vk range 105 to 130 V.

Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 130 V; increase the grid 2 voltage (V_{g2}) from approx. 550 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaning guns so that the other colours also become visible.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage V_{g3} 29 to 33% of anode

voltage

Grid 2 voltage and cathode voltage for visual extinction of focused spot V_{q2} and V_k see spot cut-off design chart

Difference in cut-off voltages between guns in any tube ΔV_{k} lowest value > 80% of

highest value

Heater voltage V_f 6,3 V at zero beam current Video drive characteristics see graphs*

Video drive characteristics see graphs* Grid 3 (focusing electrode) current l_{g3} —2 to +2 μ A

Grid 2 current $I_{g2} = -2 \text{ to } + 2 \, \mu \text{A}$ Grid 1 current under cut-off conditions $I_{g1} = -2 \text{ to } + 2 \, \mu \text{A}$

To produce white of 6500K + 7 M.P.C.D. (CIE co-ordinates x = 0,313, y = 0,329)

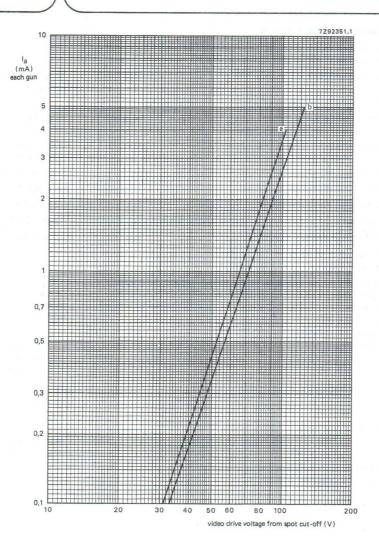
Percentage of the total anode current supplied by each gun (typical)
red gun
green gun
38,3%
35,8%

 green gun
 35,8%

 blue gun
 25,9%

Ratio of anode currents
red gun to green gun
min. 0,8
average 1,1

red gun to blue gun max. 1,4
red gun to blue gun min. 1,1
average 1,5


blue gun to green gun min. 0,5 average 0,7

max. 1,0
Insulation resistance between each cathode

and grid 1 and heater min. 50 $M\Omega$

^{*} For optimum picture performance it is recommended that the cathodes are not driven below + 1 V.

A66EAKOOX

Typical cathode drive characteristic.

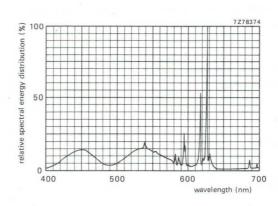
 $V_f = 6,3 V;$

 $V_{a,q4} = 25 \text{ kV};$

V_{g3} adjusted for focus;

 V_{g2} (each gun) adjusted to provide spot cut-off for V_k = 105 V (curve a) and V_k = 130 V (curve b).

LIMITING VALUES (Design maxis	mum rating system unless otherwise stated)
-------------------------------	--


The voltages are specified with respect to grid 1.					notes
Anode voltage	$V_{a,g4}$	max. min.			1, 2, 3 1, 4
Long-term average current for three guns	la	max.	1000	μΑ	5
Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
Grid 2 voltage	V_{g2}	max.	1200	V	6
Cathode voltage positive positive operating cut-off negative negative peak	V _k V _k -V _k -V _{kp}	max. max. max.			
Cathode to heater voltage positive	V_{kf}	max.	250		
positive peak negative	V_{kfp} $-V_{kf}$	max.	300 135		1
negative peak	$-V_{kfp}$	max.	180		1
Heater voltage	V _f	6,3	v + 5 -10	%	1, 7
LIMITING CIRCUIT VALUES					
Grid 3 circuit resistance	R_{g3}	max.	70	$M\Omega$	
Grid 1 to cathode circuit resistance (each gun)	R _{g1k}	max.	0,75	$M\Omega$	

BEAM CENTRING

Maximum centring error in any direction 4 mm

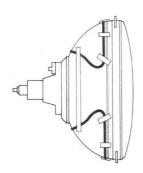
Notes

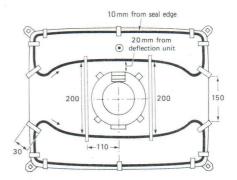
- 1. Absolute maximum rating system.
- The X-ray dose rate remains below the acceptable value of 36 pA/kg (0,5 mR/h), measured with ionization chamber when the tube is used within its limiting values.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
- Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
- 5. The short-term average anode current should be limited by circuitry to 1500 μ A.
- 6. During adjustment on the production line max, 1500 V is permitted.
- 7. For maximum cathode life it is recommended that the heater supply be designed for 6,3 V at zero beam current.

Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.313, y = 0.329. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Co	Our	co-ordinates	
CO	oui	CO Ol Ulliates	

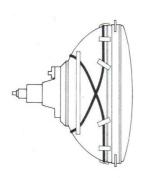
Joiour Co-ordinates.	X	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

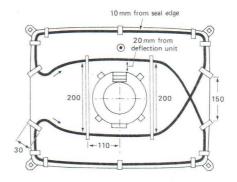

DEGAUSSING


The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or on large coil.

For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils (≤ 0.15 ampere-turns).

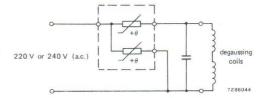
If single-phase power rectification is employed in the TV circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.


To ease the mounting of the coils, the rimband is provided with rectangular holes.



length of degaussing coil: 1,48 m

Double-coil system.



length of degaussing coil: 3,13 m

Single-coil system.

7Z91928

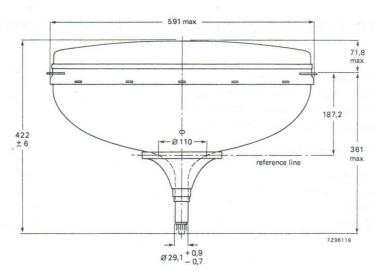
Degaussing circuit using dual PTC thermistor 2322 662 98009; C = 100 nF.

Data of each degaussing coil

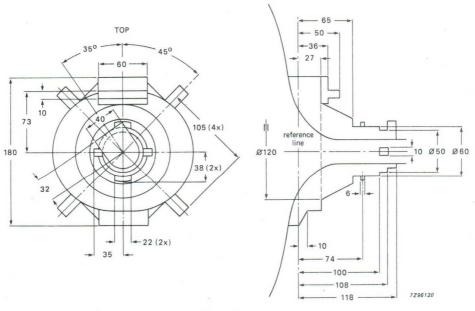
Circumference
Number of turns
Copper-wire diameter
Aluminium-wire diameter
Resistance

double-coil system	single-coil system
148 cm	313 cm
60	60
0,4 mm	0,4 mm
0,5 mm	0,5 mm
12 Ω	25 Ω

110° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY


- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- 66 cm, 110° colour picture tube A66EAK00X
- Double saddle deflection unit AT6000/01

QUICK REFERENCE DATA


Deflection angle	110°
Minimum useful screen diagonal	66 cm
Overall length	42 cm
Neck diameter	29,1 mm

MECHANICAL DATA

Dimensions in mm

Net mass of tube assembly: 25,5 kg.

Yoke clearance.

ELECTRICAL DATA OF DEFLECTION UNIT

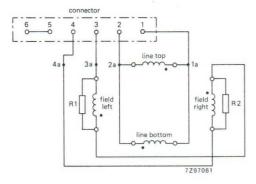
Line coils

Inductance at 1 V (r.m.s.), 1 kHz

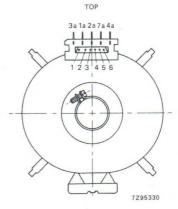
Resistance at 25 °C

Magnetic flux

Line deflection current, edge to edge, at 25 kV


Field coils

Inductance at 1 V (r.m.s.), 1 kHz


Resistance at 25 °C

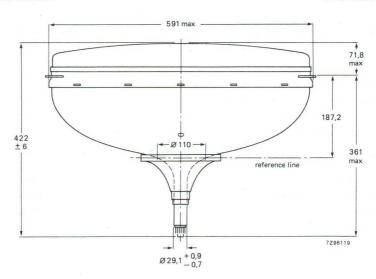
Field deflection current, edge to edge, at 25 kV

parallel connected 1,85 mH 1,85 Ω 7,6 mWb \pm 5% 4,1 A (p-p) series connected 11 mH 6,5 Ω 1,7 A (p-p)

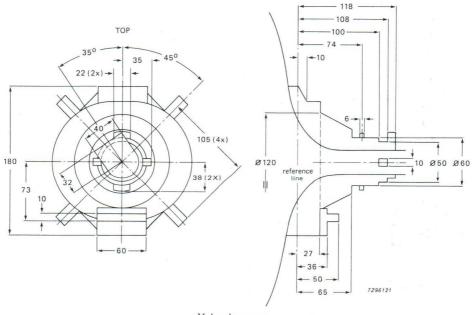
Electrical diagram. The beginning of the windings is indicated with \bullet . R1 = R2 = 100 Ω , 0,25 W. Matching Stocko connector MKF806-1-0-606.

Terminal location.

110° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY


- Factory preset tube/coil assembly
- · Self-converging and north-south raster correction free
- 66 cm, 1100 colour picture tube A66EAK00X
- Double saddle deflection unit AT6000/01

QUICK REFERENCE DATA


Deflection angle	110°
Minimum useful screen diagonal	66 cm
Overall length	42 cm
Neck diameter	29,1 mm

MECHANICAL DATA

Dimensions in mm

Net mass of tube assembly: 25,5 kg

Yoke clearance.

ELECTRICAL DATA OF DEFLECTION UNIT

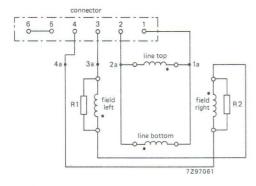
Line coils

Inductance at 1 V (r.m.s.), 1 kHz

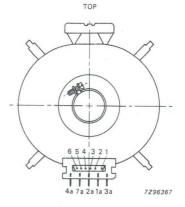
Resistance at 25 °C

Magnetic flux

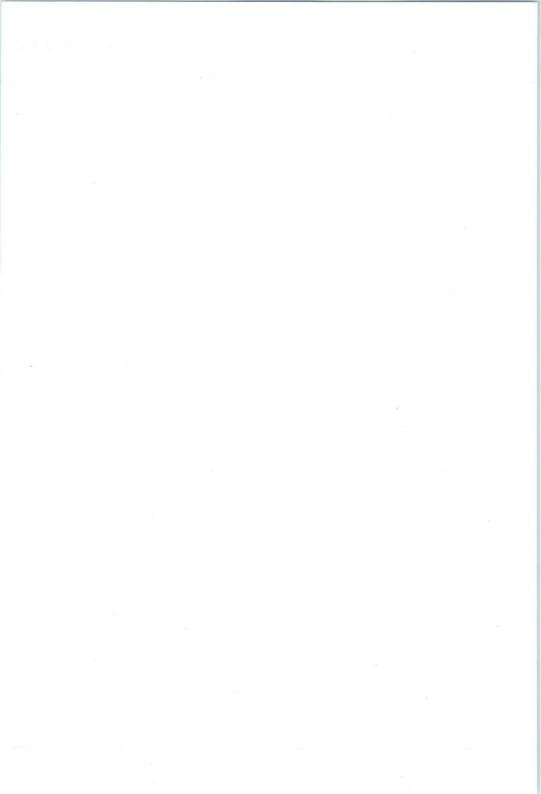
Line deflection current, edge to edge, at 25 kV


Field coils

Inductance at 1 V (r.m.s.), 1 kHz


Resistance at 25 °C

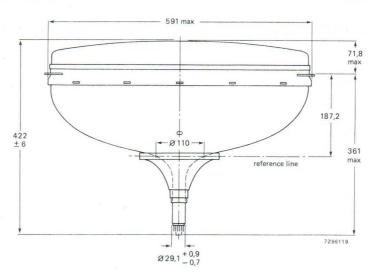
Field deflection current, edge to edge, at 25 kV


parallel connected 1,85 mH 1,85 Ω 7,6 mWb \pm 5% 4,1 A (p-p) series connected 11 mH 6,5 Ω 1,7 A (p-p)

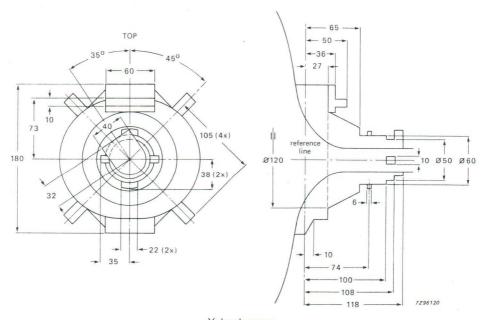
Electrical diagram. The beginning of the windings is indicated with \bullet . R1 = R2 = 100 Ω , 0,25 W. Matching Stocko connector MKF806-1-0-606.

Terminal location.

110° FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY


- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- 66 cm, 1100 colour picture tube A66EAK00X
- Double saddle deflection unit AT6000/11

QUICK REFERENCE DATA


1100
66 cm
42 cm
29,1 mm

Dimensions in mm

Net mass of tube assembly: 25,5 kg.

Yoke clearance.

ELECTRICAL DATA OF DEFLECTION UNIT

Line coils

Inductance at 1 V (r.m.s.), 1 kHz

Resistance at 25 °C

Magnetic flux

Line deflection current, edge to edge, at 25 kV

Field coils

Inductance at 1 V (r.m.s.), 1 kHz

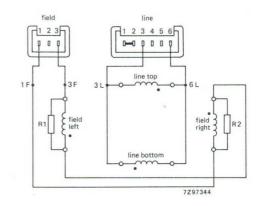
Resistance at 25 °C

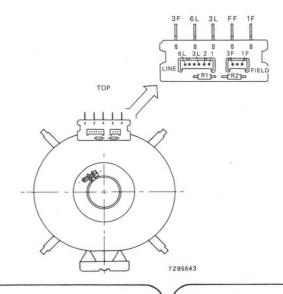
Field deflection current, edge to edge, at 25 kV

parallel connected

1.85 mH

1,85 Ω


7,6 mWb ± 5% 4,1 A (p-p)


series connected

11 mH 6.5 Ω

1,7 A (p-p)

Electrical diagram. The beginning of the windings is indicated with \bullet . R1 = R2 = 100 Ω , 0,25 W. Matching connectors: 572201340 (field) 572201370 (line).

Terminal location.

COLOUR DATA GRAPHIC DISPLAY TUBE ASSEMBLIES

MEDIUM RESOLUTION COLOUR DISPLAY TUBE ASSEMBLIES

- 90° deflection angle
- In-line gun, thermally stable; electrostatic hi-bi-potential for improved focus
- 29,1 mm neck diameter
- Pigmented phosphors
- Dark glass featuring extra high contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moire
- 0,42 mm phosphor pitch
- Phosphor lines follow glass contour
- Quick-heating cathodes
- · Internal magnetic shield
- Rimband type implosion protection
- Supplied as a pre-aligned, self-converging and raster correction free tube-coil assembly; dynamic convergence is not required
- M34EAQ00X . .: assembly with display tube with etched screen
- M34EAQ10X . .: assembly with display tube with high gloss screen

QUICK REFERENCE DATA

Deflection angle	900
Face diagonal	37 cm (14 inch)
Overall length	341,5 mm
Neck diameter	29,1 mm
Resolution: number of displayable pixels*	480 × 360
Heating	6,3 V, 685 mA
Focusing voltage	28% of anode voltage

^{*} Pixel = picture element.

ELECTRON-OPTICAL DATA

Electron gun system Focusing method Focus lens

Convergence method

Deflection method Deflection angles

> diagonal horizontal vertical

ELECTRICAL DATA

Tube

Capacitances anode to external conductive coating including rimband grid 1 of any gun to all other

electrodes cathodes of all guns, connected in parallel, to all other electrodes

cathode of any gun to all other electrodes focusing electrode to all other electrodes

Heating heater voltage

heater current

Deflection unit

Line deflection coils, Fig. 1 inductance resistance Line deflection current,

edge to edge, at 25 kV

Field deflection coils, Fig. 2 inductance resistance

Field deflection current, edge to edge, at 25 kV unitized in-line electrostatic

> magnetic magnetic

bi-potential

approx. 600

approx. 900 approx. 780

max. 1600 pF $C_{a(m+m')}$ min. 800 pF

17 pF

Ck 15 pF

Cq1

 C_{a3}

CkR, CkG, CkB 5 pF

indirect by a.c. or d.c. Vf 6.3 V

6 pF

If 685 mA

3,0 A(p-p)

1.89 mH

 $2,0 \Omega$

in series in parallel 29 mH 116 mH 54 Ω

parallel connected

 13.5Ω 0,83 A (p-p) 0,41 A (p-p) Maximum permissible voltage between line and field coils between field coils and core

at 1000 V (d.c.)

Insulation resistance
between line and field coils, at 1 kV (d.c.)
between line coil and core clamping ring,
at 500 V (d.c.)
between field coil and core clamping ring,

Cross-talk

3000 V (d.c.) 300 V (d.c.)

500 MΩ

30 MΩ

 $100~\mathrm{M}\Omega$

a voltage of 1 V, 15625 Hz applied to a the line coils causes no more than 20 mV across the field coils

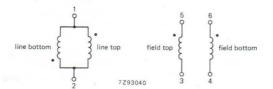


Fig. 1 Line coils.

Fig. 2 Field coils.

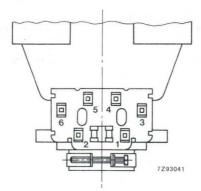


Fig. 3 Terminal location of deflection coils.

OPTICAL DATA

Screen

metal-backed phosphor stripes;

phosphor lines follow glass contour

Screen finish

M34EAQ00X

etched high gloss

M34EAQ10X

Useful screen dimensions

diagonal

min, 335,4 mm (13,20 in)

horizontal axis

min, 280,8 mm (11,06 in)

vertical axis area

min. 210,6 mm (8,29 in) min. 580 cm² (89,90 in²)

Recommended useful screen dimensions for alphanumeric display

diagonal

307 mm (12,09 in)

horizontal axis vertical axis

244 mm (9.61 in) 186 mm (7,32 in)

Phosphors

red

green

blue

rare earth, europium activated, pigmented sulphide type

sulphide type, pigmented

Phosphor colour co-ordinates

red

green

blue

x = 0.635; y = 0.340x = 0.315; y = 0.600x = 0.150; y = 0.060

Centre-to-centre distance of vertical identical

colour phosphor stripes, at screen centre

Light transmission of face glass at centre

Number of displayable pixels

0,42 mm (0,016 in)

46%

480 x 360

MECHANICAL DATA (see also the figures on the following pages)

Overall length

 $341,6 \pm 5 \text{ mm} (13,45 \pm 0,20 \text{ in})$

Neck diameter

29.1 mm (1.15 in)

Bulb dimensions

diagonal width height max. 368 mm (max. 14,49 in) max. 317 mm (max. 12,48 in) max. 248 mm (max. 9,76 in)

Bulb

funnel panel

EIAJ-J370AG1/JEDEC J365C18 EIAJ-J370CF1

Implosion protection

shrink type (UL approved)

Anode contact designation
Base designation

JEDEC J1-21; IEC 67-III-2 10-pin base JEDEC B10-277

Basing designation

see Fig. 10

Mass

approx. 6 kg (13,2 lbs)

Mounting position

anode contact on top

Notes to outline drawings on the following pages

- Configuration of outer conductive coating may be different but will contain the contact area as shown in the drawing.
- 2. To clean this area, wipe only with a soft lintless cloth.
- One of the four mounting lugs may deviate 1 mm (0,04 in) max. from the plane of the other three lugs. This deviation is incorporated in the tolerance of ± 1,8 mm (0,07 in).
- 4. Minimum space to be reserved for mounting lug.
- 5. The position of the mounting screw in the cabinet must be within a circle of 9,5 mm (0,37 in) diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 311,4 × 243.2 mm (12.26 × 9.57 in).
- 6. Co-ordinates for radius R = 11.6 mm (0.46 in); x = 126.98 mm (4.999 in); y = 90.76 mm (3.573 in).
- 7. Not applicable.
- 8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm (1,968 in), concentric with an imaginary tube axis.
 The most of the meting scalet with circuitry should not be more than 150 a maximum permissible.

The mass of the mating socket with circuitry should not be more than 150 g, maximum permissible torque is 40 mNm.

- 9. Small cavity contact J1-21, IEC 67-III-2.
- 10. The X, Y and Z reference points are located on the outside surface of the face plate 3,2 mm (0,13 in) beyond the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

MECHANICAL DATA (continued)

The dimensions are given in mm, and in inches between brackets.

Notes are on the preceding page.

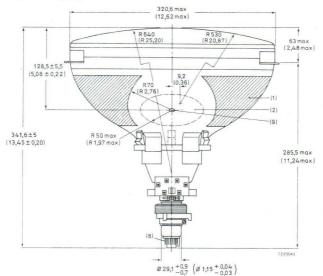


Fig. 4a.

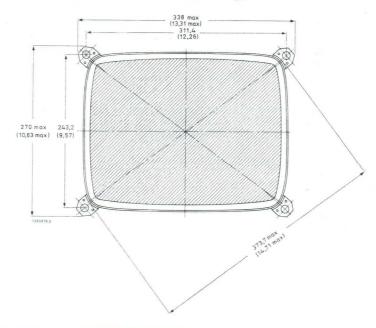


Fig. 4b.

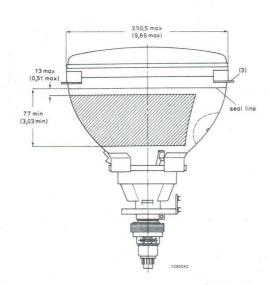


Fig. 4c.

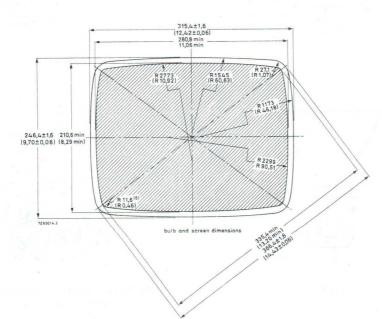
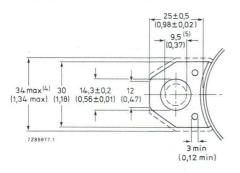



Fig. 5.

MECHANICAL DATA (continued)

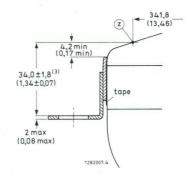


Fig. 6.

Fig. 7.

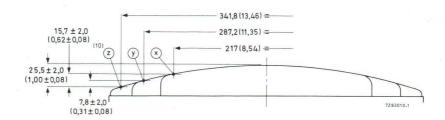


Fig. 8.

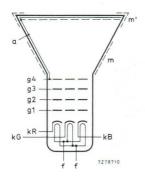


Fig. 9.

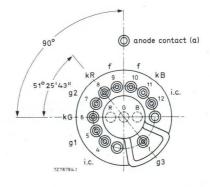


Fig. 10 i.c. = internally connected (not to be used).

Maximum cone contour

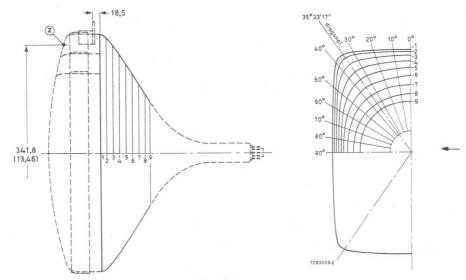


Fig. 11.

sec-	nom. distance						distanc	e from	centre (m	nax. val	ues)					
tion	from section 1	00	10°	20°	25°	300	32º 30'	diag. axes	37º 30′	40°	450	50°	60°	70°	80°	90°
Dime	ensions in I	mm					1			15						
1	0	157,2	159,4	166,3	171,7	178,2	181,2	183,6	183,3	180,0	167,9	156,5	140,0	129,8	124,2	122,4
2	10	154,7	156,9	163,5	168,5	174,1	176,6	178,1	177,7	174,8	164,4	153,7	137,8	127,9	122,4	120,7
3	20	148,8	150,7	156,3	160,0	163,5	164,6	165,0	164,4	162,6	156,0	147,7	133,6	124,4	119,3	117,7
4	30	140,4	142,1	146,2	148,6	150,5	151,0	151,1	150,7	149,6	145,6	140,0	128,6	120,3	115,7	114,2
5	40	130,3	131,3	134,0	135,4	136,5	136,8	136,8	136,6	136,1	134,1	130,8	122,7	115,9	111,7	110,3
6	50	118,2	118,8	120,1	120,9	121,6	121,8	122,0	122,0	121,9	121,2	119,8	115,4	110,5	107,0	105,8
7	60	104,9	104,7	105,1	105,5	106,0	106,2	106,5	106,7	106,9	107,1	107,0	105,6	103,1	100,8	99,8
8	70	90,6	89,9	89,8	90,0	90,4	90,6	90,9	91,1	91,4	91,9	92,3	92,5	91,7	90,4	89,7
9	77	79,9	79,1	79,0	79,1	79,4	79,6	79,9	80,1	80,4	80,9	81,4	81,8	81,4	80,5	79,9
Dim	ensions in i	inches														
1	0	6,19	6,28	6,55	6,76	7,02	7,13	7,23	7,22	7,09	6,61	6,16	5,51	5,11	4,89	4,82
2	0,39	6,09	6,18	6,44	6,63	6,85	6,95	7,01	7,00	6,88	6,47	6,05	5,43	5,04	4,82	4,75
3	0,79	5,86	5,93	6,15	6,29	6,44	6,48	6,50	6,47	6,40	6,14	5,81	5,26	4,90	4,70	4,63
4	1,18	5,53	5,59	5,76	5,85	5,92	5,94	5,95	5,93	5,89	5,73	5,51	5,06	4,74	4,56	4,50
5	1,57	5,13	5,17	5,28	5,33	5,37	5,39	5,39	5,38	5,36	5,27	5,15	4,83	4,56	4,40	4,34
6	1,97	4,65	4,68	4,73	4,76	4,79	4,80	4,80	4,80	4,80	4,77	4,72	4,54	4,35	4,21	4,17
7	2,36	4,13	4,12	4,14	4,15	4,17	4,18	4,19	4,20	4,21	4,22	4,21	4,16	4,06	3,97	3,94
8	2,76	3,57	3,54	3,54	3,54	3,56	3,57	3,58	3,59	3,60	3,62	3,63	3,64	3,61	3,56	3,53
9	3,03	3,15	3,11	3,11	3,11	3,13	3,13	3,15	3,15	3,17	3,19	3,20	3,22	3,20	3,17	3,15

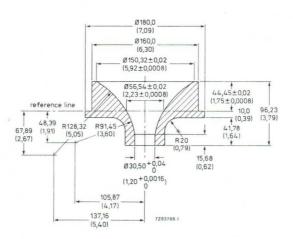


Fig. 12.

15,24 (0,60)

10-PIN BASE JEDEC B10-277

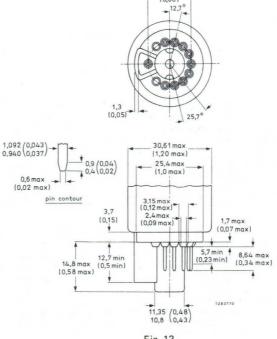


Fig. 13.

RECOMMENDED OPERATING CONDITIONS (cathode drive)

The voltages are specified with respect to grid 1.

Anode voltage $V_{a,g4}$ 25 kV Grid 3 (focusing electrode) voltage V_{g3} 6,6 to 7,5 kV Grid 2 voltage V_{g2} see Fig. 14

Luminance at the centre of the screen* L 80 cd/m² (23,2 foot lambert)

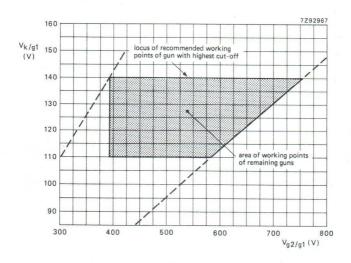


Fig. 14 Spot cut-off design chart.

Grid 2 voltage (V_{q2}) adjusted for highest gun spot cut-off voltage V_k = 140 V.

Remaining guns adjusted for spot cut-off by means of cathode voltage.

V_{a2} range 390 to 760 V

Vk range 110 to 140 V.

Adjustment procedure:

Set the cathode voltage (V_k) for each gun at 140 V; increase the grid 2 voltage (V_{g2}) from approx. 400 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

^{*} Tube setting adjusted to produce white of 9300K + 27 M.P.C.D. (x = 0,281, y = 0,311), focused raster, current density $0.4 \,\mu\text{A/cm}^2$.

EQUIPMENT DESIGN VALUES (each gun if applicable)

The values are valid for anode voltages between 20 and 27,5 kV.

The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage	V_{g3}	26,6 to 29,8% of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot	V_{g2} and V_{k}	see Fig. 14
Difference in cut-off voltages between guns in any tube	$\Delta V_{\mathbf{k}}$	lowest value ≥ 80% of highest value
Cathode drive characteristic		see Fig. 15
Grid 3 (focusing electrode) current	lg3	-5 to $+5 \mu A$
Grid 2 current	lg2	$-5 \text{ to} + 5 \mu \text{A}$
Grid 1 current at V _k = 100 V	la1	-5 to $+5 \mu A$

To produce white of 9300 K + 2700 M.P.C.D. (CIE co-ordinates x = 0.281, y = 0.311):

percentage of total anode current supplied by each gun

red gun green gun

red gun to blue gun

blue gun to green gun

blue gun ratio of anode currents red gun to green gun 27,9% 39.1% 33,0%

min. av. max. 0,5 1,0 0,7 0,6 0,9 1,2 0.6 0,9 1,2

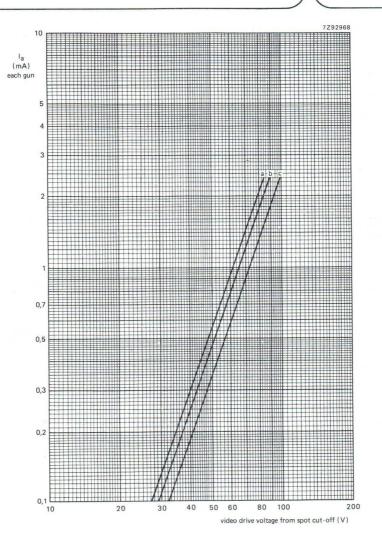


Fig. 15 Typical cathode drive characteristics. V_{g2} adjusted to provide spot cut-off for $V_k = 90 \text{ V}$ (curve a), $V_k = 110 \text{ V}$ (curve b), $V_k = 140 \text{ V}$ (curve c).

 $V_f = 6.3 \text{ V}.$ $V_{g4} = 25 \text{ kV}.$ V_{g3} adjusted for focus.

LIMITING VALUES (each gun if applicable)

•		
Ε'n	h	0

Design maximum rating system unless otherwise stated.

	The voltages are specified with respect to grid 1.					notes
	Anode voltage	V _{a,g4}	max. min.	27,5 20	kV kV	1 and 2 3
-	Anode current for each gun, peak value	lap	max.	400	μΑ	
	Long term average anode current for each gun	la	max.	200	μΑ	
	Long term average anode current for three guns	la	max.	450	μΑ	4
	Grid 3 (focusing electrode) voltage	V_{g3}	max.	11	kV	
	Grid 2 voltage, peak, including video signal voltage	V _{g2p}	max.	1000	V	
	Cathode voltage positive positive operating cut-off negative negative peak	V _k V _k -V _k -V _{kp}	max. max. max.			
	Cathode to heater voltage positive positive positive peak negative negative peak	V _{kf} V _{kfp} –V _{kf} –V _{kfp}	max. max. max.	250 300 0 200	V	1
	Heater voltage	Vf		6,3	v ^{+5%} -10%	1 and 5

95 °C

30 MΩ

max.

Deflection unit

Maximum operating temperature

LIMITING CIRCUIT VALUES

Grid 3 circuit resistance

Grid 1 to cathode circuit resistance (each gun) $$R_{\mbox{\scriptsize g1k}}$$ max. 0,75 M Ω

R_{q3}

Notes

- 1. Absolute Maximum rating system.
- During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended first to make the necessary adjustments for normal operation.
- 3. Operation of the tube at lower voltages impairs the luminance and resolution.
- 4. The short term average anode current should be limited by circuitry to 600 μ A.
- For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. 27,5 kV) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV (1,5 x V_{g3} max. at $V_{a,g4} = 25$ kV), and at the other electrodes of 1,5 to 2 kV.

The values of the series isolation resistors should be as high as possible (min. 1,5 k Ω) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.

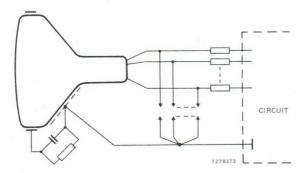


Fig. 16.

X-RADIATION LIMIT

Maximum anode voltage at which the X-radiation emitted will not exceed 0,5 mR/h at an anode current of 300 μ A

entire tube face-plate only 31 kV* 33 kV

Warning:

If the value for the tube face only is used as design criterion, adequate shielding must be provided in the monitor for the anode contact and/or certain portions of the tube funnel and panel skirt to insure that the X-radiation from the monitor is attenuated to a value equal to or lower than that specified for the face of the tube.

Maximum voltage difference between anode and focus electrode at which the X-radiation will not exceed 0.5 mR/h $\,$

30 kV

Warning:

If the voltage value above can be exceeded in the monitor additional attenuation of the X-radiation through the tube neck may be required.

The X-radiation emitted from this display tube, as measured in accordance with the procedure of JEDEC Publication No. 64D, will not exceed 0,5 mR/h throughout the useful tube life when operated within the 'Design maximum ratings'.

The tube should not be operated beyond its 'Design maximum ratings' stated above, but its X-radiation will not exceed 0,5 mR/h for anode voltage and current combinations given by the isoexposure-rate limits characteristics shown on the next page.

Operation above the values shown by the curve may result in failure of the monitor to comply with the Federal Performance Standard of the U.S. for Television Receivers, Section 1020. 10 of Part 1020 of Title 21, Code of Federal Regulation (PL90-602) as published in the Federal Register Volume 38, No. 198, Monday, October 15, 1973.

Maximum X-radiation as a function of anode voltage at 300 μ A anode current is shown by the curve on the next page. X-radiation at a constant anode voltage varies linearly with anode current.

^{*} This rating applies only if the anode connector used by the set maker provides the necessary attenuation to reduce the X-radiation from the anode contact by a factor equal to the difference between the anode button isoexposure-rate limit curve and the isoexposure-rate limit curve for the entire tube.

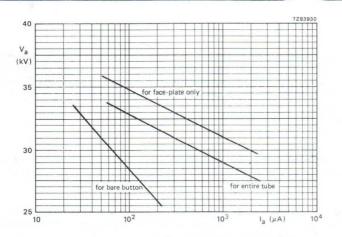


Fig. 17 0,5 mR/h isoexposure-rate limit curve.

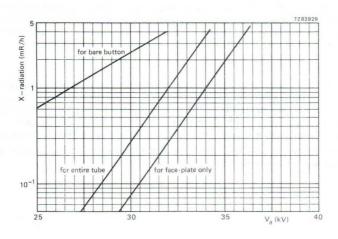


Fig. 18 X-radiation limit curve at a constant anode current of 300 μ A.

WARNINGS

X-radiation

Operation of this colour display tube under abnormal conditions which exceed the 0,5 mR/h iso-dose rate curve shown on the preceding page may produce soft X-rays which may constitute a health hazard on prolonged exposure at close range unless adequate external screening is provided. Precautions must therefore be exercised during servicing of monitors using this tube to ensure that the anode voltage and other tube voltages are adjusted to the recommended values so that the 'Design maximum ratings' are not exceeded.

Replacement

This display tube incorporates integral X-radiation and implosion protection and must be replaced with a tube of the same type number or a recommended replacement to assure continued safety.

Shock hazard

The high voltage at which the tube is operated may be very dangerous. The monitor should include safeguards to prevent the user from coming in contact with the high voltage. Extreme care should be taken in servicing or adjustment of any high-voltage circuit.

Caution must be exercised during the replacement or servicing of the display tube since a residual electrical charge may be held by the high-voltage capacitor formed by the external and internal conductive coatings of the display tube funnel. To remove any residual charge, short the anode contact button, located in the funnel of the tube, to the external conductive coating before handling the tube.

Discharging the high voltage to isolated metal parts such as cabinets and control brackets may produce a shock hazard.

Handling

Assemblies should be kept in the shipping box or similar protective container will just prior to installation. Wear heavy protective clothing, including gloves and safety goggles with side shields, in areas containing unpacked and unprotected tubes to prevent possible injury from flying glass in the event a tube breaks. Handle the tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal area.

The packing should incorporate sufficient cushioning so that under normal conditions of shipment or handling an impact acceleration of more than 35g is never applied to the tube.

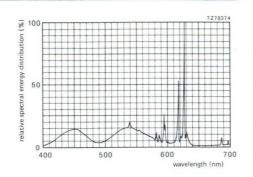
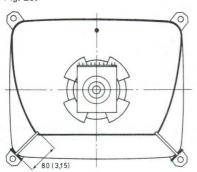



Fig. 19 Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of x = 0.281, y = 0.311. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	X	У
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

DEGAUSSING

The display tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be automatically degaussed by a coil mounted on the cone of the picture tube as shown in Fig. 20.

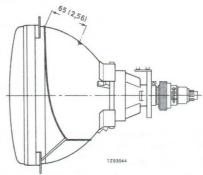


Fig. 20 Position of degaussing coil on the display tube; dimensions are given in mm, and in inches between brackets.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased. In the steady state, no significant m.m.f. should remain in the coil (\leq 0,6 ampere-turns).

If single-phase power rectification is used, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

An example of a degaussing circuit and coil data for various mains voltages are given below.

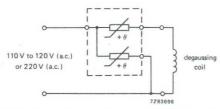


Fig. 21 Degaussing circuit using dual PTC thermistor.

Data of degaussing coil

Circumference
Number of turns
Copper-wire diameter
Resistance
Catalogue number of dual
PTC thermistor

110 to 120 V (a.c.)	220 V (a.c.)
90 cm (35,4 in) 70	90 cm (35,4 in) 120
0,45 mm (0,018 in) 6,7 Ω	0,3 mm (0,012 in) 25,9 Ω
8222 298 73091	2322 662 98009

CONVERGENCE AND RASTER SPECIFICATION

The maximum misconvergence after 15 min operation is given in Table 1.

Heater voltage	V_{f}	6,3 V
Grid 2 voltage	V_{g2}	525 V
Grid 3 voltage	V_{g3}	to be adjusted for focus at screen centre, using cross-hatch pattern or characters H, at anode current of 300 μA (peak) per gun
Anode voltage	V_a	25 kV
Test pattern		cross-hatch pattern
Ambient temperature	Tamb	25 ± 5 °C

Notes

- Misconvergence is the distance between centres of the red, green, blue lines at the screen using rectangular co-ordinates.
- 2. Anode and/or focusing voltage and terrestrial magnetism affect the static convergence performance.

Table 1 Maximum misconvergence after 15 min operation

location (see Fig. below)	type or error	max. error between any colour
centre area A area B		0,3 mm
	red-green-blue line separation in either the horizontal or vertical direction	0,5 mm
	the norizontal or vertical direction	0,8 mm

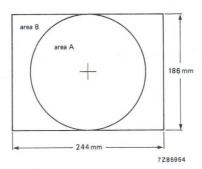


Fig. 22 Convergence test areas.

max. 4 mm max. 4 mm max. 0,4°

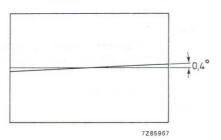
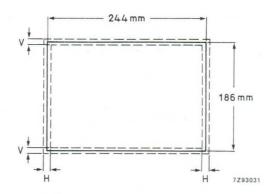
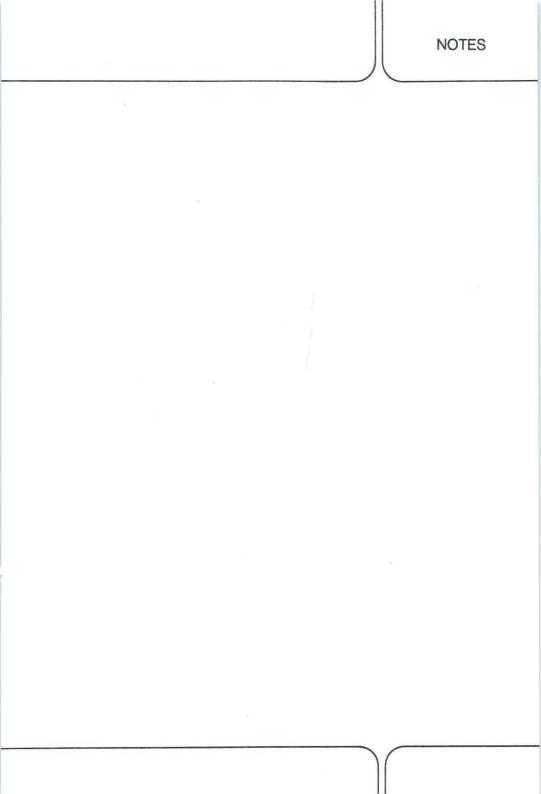
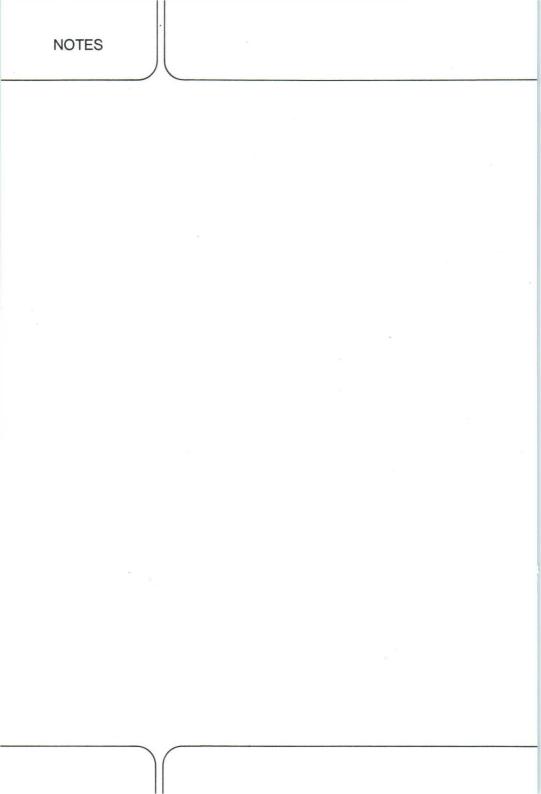
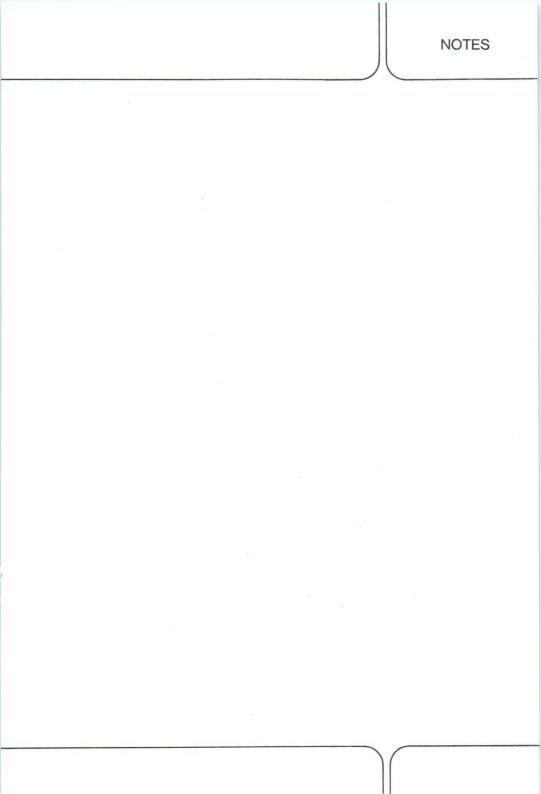
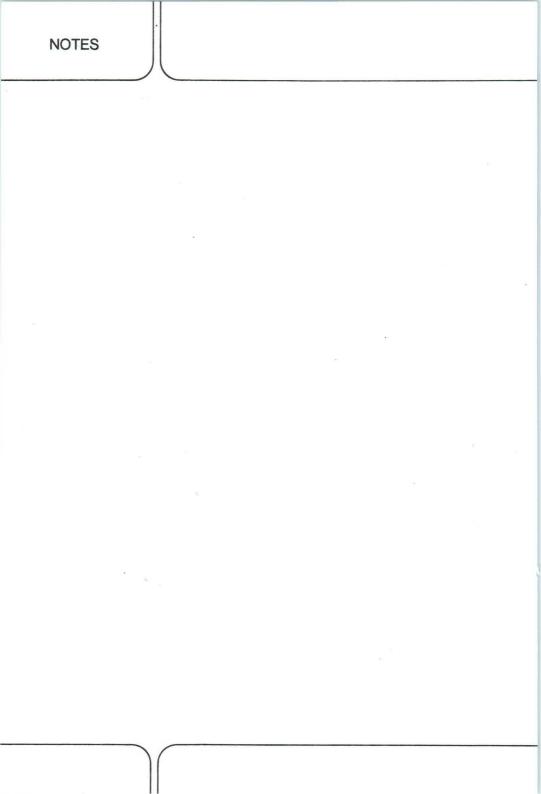


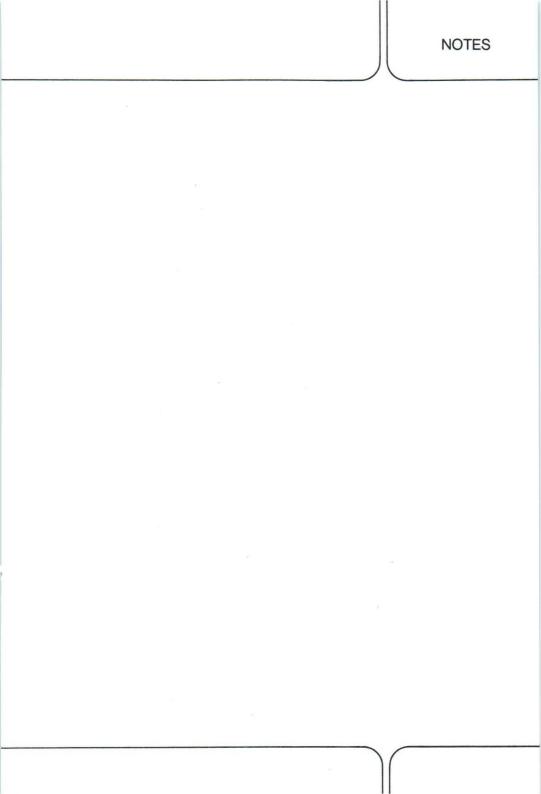
Fig. 23 Raster rotation.

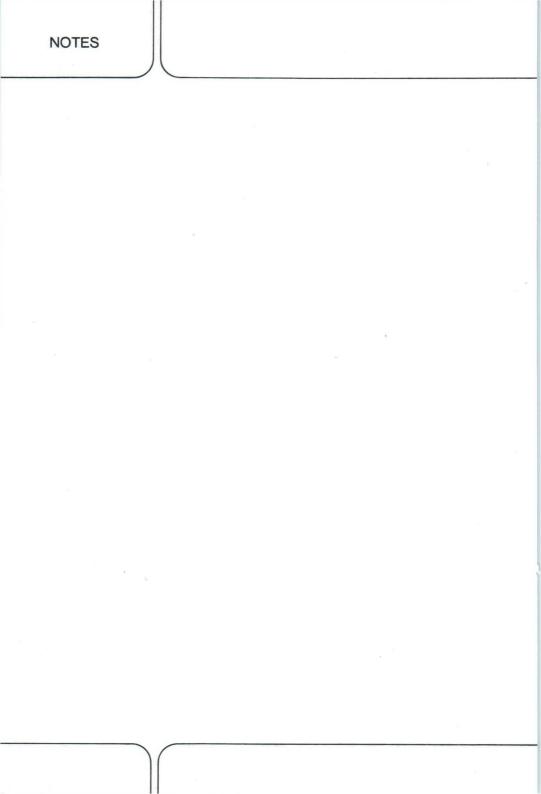
Pattern distortion, measured without east-west and north-south correction

— east-west H max. 3,0 mm

— north-south V max. 2,1 mm


Fig. 24 Pattern distortion.



Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545.

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 439 3322.

Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111-0.

Belgium: N.V. PHILIPS & MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400.

Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.

Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.

Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624.

Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.

France: RTC-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 43388000.

Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.

Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, 54, Syngru Av., ATHENS 11742, Tel. 9215311/319.

Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121.

India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box Building,

254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. 4930311/4930590.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA – Selatan, Tel. 512 572.

Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.

Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.

(IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.

Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. 794-5011.

Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 774411.

Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.

Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 793333.

New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914.

Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200.

Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070.

Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59.

Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121.

 $\textbf{Singapore:} \ PHILIPS \ PROJECT \ DEV. \ (Singapore) \ PTE \ LTD., \ Elcoma \ Div., \ Lorong \ 1, \ Toa \ Payoh, \ SINGAPORE \ 1231, \ Tel. \ 3502000.$

South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9.

Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12.

Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000.

Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211.

Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. 7120500.

Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.

Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad, No. 78-80, P.K.504, 80074 ISTANBUL, Tel. 435910.

United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.

United States: (Active Devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

(Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.

(Passive Devices & Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380.

(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 991-2000.

Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 91 4321.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl

AS52

© Philips Export B.V. 1986

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands 9398 142 40011