PHILIPS
 DATA HANDBOOK

ELECTRON TUBES

PART 5 MAY 1967

Cathode-Ray Tubes Camera Tubes

Photo Tubes
 Photoconductive Devices

Photomultiplier Tubes Scintillators.

ELECTRON TUBES

 PART 5

 PART 5}

Cathode-ray tubes
Camera tubes
Photo tubes
Photoconductive devices
Photomultiplier tubes
Scintillators

z384 mormat
a7m
\qquad

Cathode-ray tubes

Camera tubes
Photo tubes
Photoconductive devices

Photomultiplier tubes

Scintillators

INTR ODUCTION

The Data Handbook ELECTRON TUBES contains data on current types of tubes. It comprises a number of bound parts and a loose-leaf binder: the blue binder.

The bound parts contain both the final and the tentative publishing data which are available at a certain closing date. These parts will be re-issued at regular intervals in order to provide continuously for sufficient information to all those who are professionally engaged in the field of electronics, but for whom it is of secondary importance to have the disposal of the very latest additions.

For those who do need the latest information the loose-leaf binder will be useful, as it contains all data which have become available after the latest issues of the bound part. The binder is kept up-to-date by the regular appearance of supplements.

When a bound part is re-issued, the pertinent contents of the binder are transferred to this part, thus preventing the binder from becoming overcrowded.

The present part 5 of the Handbook ELECTRON TUBES contains the data on Cathode-ray tubes, Camera tubes, Phototubes, Photoconductive devices, Photomultiplier tubes and Scintillators.

For owners of the loose-leaf binder on tubes it may be advisable to make sure that the data on a particular type in the bound part have not been rendered out of date by a later issue in the binder. This applies especially to tentative data.

Cathode-ray tubes

GENERAL OPERATIONAL RECOMMENDATIONS CATHODE-RAY TUBES

GENERAL

Unless otherwise stated the data are given for a nominal tube.

LIMITING VALUES

Unless otherwise stated the tubes are rated according to the absolute maximum rating system.

HEATER

Parallel operation

The heater voltage must be within $\pm 7 \%$ of the nominal value when the supply voltage is at its nominal value, and when a tube having the published heater characteristics is employed.
This figure is permissible only if the voltage variation is dependent upon more than one factor. In these circumstances the total tolerance may be taken as the square root of the sum of the squares of the individual deviations arising from the effect of the tolerances of the separate factors, providing no one of these deviations exceeds $\pm 5 \%$. Should the voltage variation depend on one factor only, the voltage variation must not exceed $\pm 5 \%$.

Series operation

The heater current must be within $\pm 5 \%$ of the nominal value when the supply voltage is at its nominal value and a tube having the published heater characteristics is employed. This figure is permissible only if the current variation is dependent upon more than one factor. In these circumstances the total tolerance may be taken as the square root of the sum of the squares of the individual deviations arising from the effects of the tolerances of the separate factors, providing no one of these deviations exceeds $\pm 3.5 \%$. Should the total current variation depend upon one factor only, the current variation must not exceed $\pm 3.5 \%$.
When calculating the tolerances of associated components, the ratio of the change of heater voltage to the change of heater current in typical series chain including a cathode ray tube is taken as 1.8 , both deviations being expressed as percentages.

HEATER (continued)

With certain combinations of valves and tube, differences in the thermal inertia may result in particular heaters being run at exceedingly high temperature during the warming up period. During this period unless otherwise stated in the published data, it is permissible for the heater voltage of the tube to rise to a maximum value of 50% in excess of the nominal rated value when using a tube with the published heater characteristics. A surge limiting device may be necessary in order to meet this requirement. When measuring the surge value of heater voltage, it is important to employ a peak reading device, such as an os cilloscope.
In addition to the quoted above, fluctuations in the mains supply voltage not exceeding $\pm 10 \%$ are permissible. These conditions are, however, the worst which are acceptable and it is better practise to maintain the heater as close to its published ratings as possible. Furthermore in all types of equipment closer adjustment of heater voltage or current will react favourably upon tube life and performance.

CATHODE

The potential difference between cathode and heater should be as low as possible and in any case must not exceed the limiting value given on the data sheets for individual tubes. Operation with the heater positive with respect to cathode is not recommended. In order to avoid excessive hum the A.C. component of the heater-to-cathode voltage should be as low as possible e.g. less than $20 \mathrm{~V}_{\text {rms }}$. When the heater is in a series chain or earthed, the $50 \mathrm{c} / \mathrm{s}$ impedance between heater and cathode should not exceed $100 \mathrm{k} \Omega$. If the heater is supplied from separate transformer windings the resistance between heater and cathode must not exceed $1 \mathrm{M} \Omega$.

ELECTRODES

In no circumstances should the tube be operated without a D.C. connection between each electrode and the cathode. The total effective impedance between any electrode and the cathode should be as low as possible and must never be allowed to exceed the published maximum value.

ELECTRODE VOLTAGES

Reference point for electrode voltages is the cathode. For cathode drive service the reference point is grid No.l.

Grid cut-off voltages

Values are given for the limits of grid cut-off voltage per unit of the first accelerator voltage. The brightness control voltage should be arranged so that it can handle any tube within the limits shown, at the appropriate first accelerator voltage.

7Z2 5880

First accelerator voltage

The first accelerator electrode of a so called unipotential lens provides by applying a fixed voltage independent focus and brightness controls. Care should be taken not to exceed the maximum and minimum limits for reasons of reliability and performance.

Deflection blanking electrode voltage

The mean potential of the deflection blanking electrode should be equal to that of the first accelerator.
If applicable the voltage difference $\left(\Delta \mathrm{V}_{\mathrm{g}_{3}}\right)$ given in the data should be applied to the beam blanking electrode to obtain beam blanking of a stated beam current for all tubes of the relevant type.

Focusing voltage

The focusing electrode voltage limits are given in the data. The focus voltage supply should be arranged such that it can handle these limits, so that in any tube the cross-sectional area of the electron-beam on the screen can be optimally displayed. As the focus current is very limited a high resistance series chain may be used.

Astigmatism control electrode voltage

To achieve optimum performance under all conditions it is desirable to apply a voltage for control of astigmatism (a difference in potential of this electrode and the y plates). The required range to cover any tube is given in the relevant data

Beam centring electrode voltage

The beam centring electrode facilitates the possibility to centre the scan in x direction with respect to the geometric centre of the faceplate by applying a voltage, the limits of which are given in the relevant data, to this electrode. Optimum condition is obtained when the brightness at both left and right edges of the scan are equal.

Deflection plate shield voltage
It is essential that the deflection plate shield voltage equals the mean y plates voltage.

Geometry control electrode voltage

By varying the potential of this electrode the necessary range of which is given in the relevant data the possible occurrence of pin-cushion and barrel-pattern distortion can be controlled.

Deflection voltages
For optimum performance it is essential that true symmetrical voltages are applied. It should further be noted that the mean x and y plate potentials must be equal. Moreover the deflection plate shield voltage, the mean astigmatism control voltage, if applicable the mean beam centring electrode voltage and the geometry electrode voltage should also be equal to the mean x and y plate potentials. If use is made of the full deflection capabilities of the tube, the deflection plates will intercept part of the electron beam near the edge of the scan. Therefore a low impedance deflection plate drive is necessary.

Raster distortion and its determination
Limits of raster distortion are given for most tubes.
A graticule, consisting of concentric rectangles is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

Measuring procedure:
a) Shift the x-trace to the centre of the graticule.
b) Align horizontal centre line of graticule with the centre line of the x-trace.
c) Shift x-trace vertically between resp. upper and lower two horizontal lines of graticule.
The centre of the x-trace now will not fall outside the area bounded by the horizontal graticule lines.
d) Without moving the graticule, switch to a vertical trace and shift this trace horizontally (resp. left and right) between the pairs of vertical lines of the graticule, and also now the centre of the y-trace will not fall outside the area bounded by the vertical graticule lines.
e) Focus and astigmatism will be adjusted for optimum performance.
f) Pattern geometry correction will be adjusted for optimum performance in the sense of minimizing simultaneously the deviation of the centre of x-respectively y-trace.

Linearity

The linearity is defined as the sensitivity at a deflection of 75% of the useful scan with respect to differ from the sensitivity at a deflection of 25% of the useful scan. These sensitivities will not differ by more than the indicated value.

Post deflection shield voltage

In order to optimize contrast in mesh tubes a fixed negative voltage with respect to the geometry control electrode voltage should be applied. The range is given in the data.

Helix resistance

In order to calculate the high tension supply a minimum resistance is given in the data.

Final accelerator voltage

Tubes with PDA are designed for a given final accelerator voltage to astigmatism control electrode voltage ratio. Operation at higher ratio may result in changes in deflection uniformity and pattern distortion.

High tension supply

In order to avoid damage of the screen it is important that prior to the high tension a deflection voltage e.g. the time base voltage is applied.

LINE WIDTH

Shrinking raster method. Conditions as given in the relevant data.
Focus and astigmatism potentials should be adjusted for optimum performance. Optimum performance is that adjustment which will simultaneously minimize the horizontal and vertical trace widths at the centre of the useful scan.
The raster shall be compressed until the line structure first disappears or begins to overlap or show reverse line structure.
The line width is equal to the quotient of the width of the compressed pattern transverse to the line structure divided by the number of lines which are being scanned.
In older types the line width is measured on a circle with the aid of a microscope.

CAPACITANCES

Unless otherwise stated the values given are nominal values measured on a cold tube on the tube contacts. The contacts and measuring leads or sockets being screened.

MOUNTING

Unless otherwise stated the mounting position is any. However, the tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.
To avoid dangerous glass strain care should be taken when installing the tube.

Shielding

The tubes must be shielded against electrical and magnetic fields.
Special attention should be paid to the mounting of transformers, coils etc.

SCREEN

To prevent screen burn stationary or slow moving spots together with high screen currents should be avoided.
If measurements are to be made under high ambient light conditions it is advis able to use a contrast improving filter and or a light hood.

TRACKING ERROR

Tracking is the ability of a multigun tube to superimpose simultaneously information from each gun.
Tracking error is the maximum allowable distance between the displays of any two guns.

RATING SYSTEMS
 (in accordance with I.E.C. publication 134)

Abstract

Absolute maximum rating system Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

Design-maximum rating system

Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

Design-centre rating system

Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in aver age applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply-voltage.

NOMENCLATURE

Two type nomenclature systems are currently in existance for our C.R. tubes. All future tubes will have numbers in the "new system", earlier tubes will retain numbers in the "old system".

NEW CODE SYSTEM

The type number consists of a single letter followed by two sets of figures ending with one or two letters.

The first letter indicates the prime appplication of the tube.
A - Television display tube for domestic application
D - Oscilloscope tube - single trace
E - Oscilloscope tube - multiple trace
F - Radar display tube - direct view
L - Display storage tube
M - T.V. display tube for professional application - direct view
P - Display tube for professional application - projection
Q - Flying spot scanner

The first group of figures indicates the diameter or diagonal of the luminescent screen in cm.

The second group of figures is a two-figure serial number indicating a particular design or development.

The second group of letters indicates the properties if the phosphor screen.
The first letter denotes the colour of the fluorescence or phosphorescence in the case of long or very long afterglow screens.

The second letter of this group is a serial letter to denote other specific differences in screen properties.

A - Purple - reddish purple - bluish purple
B - Blue - purplish blue - greenish blue
D - Blue green
G - Green - bluish green - yellowish green
K - Yellow - green
L - Orange - Orange pink
R - Red - reddish orange - red purple - purplish red - pink - purplish pink
Y - Yellow - greenish yellow - yellowish orange
W - White screen for T.V. display tubes
X - Three-colour screen for T.V. display tubes

OLD SYSTEM

The type number consists of two letters followed by two sets of figures.
The first letter indicates the method of focusing and deflection:
A - Electrostatic focusing and electromagnetic deflection
B - Electrostatic focusing and electrostatic deflection
M - Electromagnetic focusing and electromagnetic deflection
The second letter indicates the properties of the phosphor screen.
See also section "Screen Phosphors"
The first group of figures:
for round tubes: screen diameter in cm
for rectangular tubes: screen diagonal in cm
The second group of figures denotes the serial number

LIST OF SYMBOLS

Symbols denoting electrodes and electrode connections
Heater or filament f
Cathode k
Grid gGrids are distinguished by means of an additionalnumeral; the electrode nearest to the cathodehaving the lowest number.
Deflection plates intended for deflection in horizon- $\mathrm{x}_{1}, \mathrm{x}_{2}$ tal direction.
Deflection plates intended for deflection in vertical $\mathrm{y}_{1}, \mathrm{y}_{2}$direction.Sectioned deflection plates are indicated by anadditional decimal e.g. $\mathrm{y}_{1} .1 \mathrm{y}_{1.2}$ and $\mathrm{y}_{2} .1 \mathrm{y}_{2} .2$
External conductive coating m
Fluorescent screen ℓ
Tube pin which must not be connected externally i.c.
Tube pin which may be connected externally n.c.
Symbols denoting voltages
Symbol for voltage, followed by an index denoting the relevant electrode. V
Heater or filament voltage v_{f}
Peak value of a voltage V_{p}
Peak to peak value of a voltageV_{pp}

Symbols denoting currents

Remark I The positive electrical current is directed opposite to the direction of the electron current.

Remark II The symbols quoted represent the average values of the concerning currents unless otherwise stated.

Symbol for current followed by an index denoting the relevant electrode.

Heater or filament current

Symbols denoting powers
Dissipation of the fluorescent screen
Grid dissipation

Symbols denoting capacitances
See I.E.C. Publication 100.

Symbols denoting resistances
Symbol for resistance followed by an index for the relevant electrode pair. When only one index is given the second electrode is the cathode.

When R is replaced by Z the "resistance should read "impedance"

Symbols denoting various quantities
Brightness B
Frequency f
Magnetic field strength H
Deflection factor M

SCREEN PHOSPHORS AND

INDUSTRIAL CATHODE-RAY TUBES

CHOICE OF SCREEN

When a cathode ray tube is chosen for a particular application, the designer of the apparatus bases his choice on a number of factors; for example, screen shape and size, the operating potentials that will be available, and the screen characteristics. He may find that the required physical and electrical configuration is provided by a number of tube types which employ different screen phosphors, so that he will have to choose between one phosphor and another. In any event, the performance obtainable from the screen is of major importance, since the purpose of any cathode ray tube application is the provision of a suitable display.

Here the relationship between screen characteristics and the requirements of the main groups of applications will be discussed. The suitability of particular screen types is considered in terms of operating conditions that will be met and the performance that must be achieved.

The ultimate choice is determined by the detailed requirements of each specific application; therefore, in addition to general guidance, the methods of calculating the performance that will be obtained under given conditions are included. The calculations take into account the characteristics of the screen, the operational requirements, the nature of the viewing device, and the effect (where the screen is viewed by the eye) of the external viewing conditions.

GENERAL REQUIREMENTS

The three major screen properties - energy conversion efficiency, persistence, and spectral distribution - should be those most suitable for the application. Where there is any degree of conflict between one requirement and another, the best compromise must be achieved. The performance of the screen should be reasonably constant throughout the range of beam currents that is likely to be met.

These general requirements will be discussed in relation to the main groups of cathode ray tube applications. These are:

1. Raster type applications, in which the writing speed is generally constant but the beam current is modulated to produce variation of light and shade.
2. Oscilloscope applications, in which the beam current is usually constant during a trace but the writing speed may vary.

7Z2 5898

3. Radar applications

4. Flying-spot scanners
5. Storage applications

SCREENS FOR RASTER TYPE APPLICATIONS

A number of different screens are available for raster type displays. Those which are most suitable for the main sub-groups of this group of applications are indicated in the following notes.

Monitors and Viewfinders

Monitoring and viewfinding systems in television studios operate at the same field repetition frequency and timebase speed as the broadcast channel, and their screen requirements are substantially the same as those of domestictelevision tubes. The repetition frequencies are such that persistence of vision and the persistence of the screen obviate flicker. The persistence must not be sufficiently great to smear the images of moving objects.

In monochrome television systems, white fluorescence is used, for aesthetic reasons. The W type screen is widely established for domestic viewing tubes and studio monitors and viewfinders.

Closed Circuit Systems

Where closed circuit monochrome television systems make use of normal television field and line speeds, screens with W phosphor are suitable.

In some systems, however, other speeds are used. If the scanning speed is low, the screen must have a persistence which is long enough to minimise flicker, and a long-persistence screen such as type LA, LD or LC must be used in order to maintain a complete picture.

Data Transmission

Since the images to be transmitted are, in general, stationary, the information does not need to be modified at the same rate as television picture information. The field repetition frequency and the bandwidth can be reduced, and transmission over lines is relatively simple. At repetition frequencies down to five fields per second a tolerable freedom from flicker is achieved with the cadmium chlo-ro-phosphate phosphors that are used, for example, in the LA screen. For even lower frequencies, the LD screen is recommended. This screen, it should be noted, has a relatively low power-loading limit, and care must be taken to avoid burning.

Telerecording

A major limitation to the quality of telerecording is the difficulty of both pulling the film through the camera gate and operating the shutter in the field flyback time. In early systems, the first field of the interlaced picture was used for these operations; therefore only half the information was recorded.

To overcome this limitation, the information from the first field is stored in the screen of the cathode ray tube during the time that the shutter is closed. The film is pulled through the gate and the shutter is opened. The second field is then imposed on the stored field on the screen. The stored information of the first field will, of course, have lost some of its initial luminance; therefore the second field is written on the screen at a correspondingly reduced luminance level. The full interlaced information is then photographed.

The application is obviously a critical one, and the screen must meet a number of special requirements. The persistence must be defined within narrow limits, and it must be substantially constant throughout the life of the tube, otherwise the timing of the system will be inaccurate. There must not be a sharp peak of light output ("flash") at the moment of excitation, otherwise the second field will appear brighter than the first. And the light output from the first field must not have decayed to an unusably low level by the time that the second field has to be written.

These special requirements are met by screen type LA.

SCREENS FOR RASTER TYPE APPLICATIONS

The range of frequencies for which oscilloscopes are designed is extremely wide, and even in a single instrument a wide range may have to be covered. The requirements of light output and persistence at high speeds conflict with the requirements at low speeds, therefore a compromise is usually necessary. If the screen that is used has a good luminous efficiency, a satisfactory compromise can be attained.

General Purpose Applications

The screens in the G group are widely used in general purpose oscilloscopy. They have a high efficiency and a reasonably fast build-up, so that they are suitable for use at fairly high writing speeds. The GH screen has two spectral distribution peaks, one in the green and one in the blue region. The blue peak provides a high actinic efficiency for use with panchromatic film or, in some instances, with orthochromatic film. However, the effective visual persistence is rather short, so that at slow scan speeds very little information is obtained from the trace.

The lack of visual persistence in the GH screen has led to the introduction of the GL and GP types. The high efficiency of the GH screen is largely retained, but the persistence is of the order of one to five seconds, depending on the operating conditions. Slow scan speeds can therefore be used.

The GM screen has a purplish-blue flash and a yellowish-green persistence. For normal oscilloscopic work, and especially at voltages between 1 kV and 10 kV , this is the recommended screen if a long persistence is the main requirement. The luminous efficiency is about one-fourth of that of the GH type, so that for this reason, as well as the long persistence, the GM screen is not suitable for high-speed applications.

Non-recurrent High-speed Applications

When a rapid non-recurrent phenomenon is to be observed, a long-persistence screen with a slow build-up is not suitable. The usual technique is to use a fast screen and photographic recording. A timebase, triggered by the incoming signal, is applied to the X deflectors, and the signal itself to the Y deflectors.

The choice of screen for the single-shot type of application is dictated by the recording material that is to be used. For panchromatic and some orthochromatic film, the GH screen provides the fastest writing speed. If the trace is visible on this screen, then, in general, it can also be photographed if good photographic materials and techniques are used. For blue-sensitive film or recording paper the BE screen is preferable. Its luminous efficiency is low, but its spectral characteristic matches that of the emulsion.

Moving Film Applications

When a moving film technique is employed for the recording of recurrent phenomena, the persistence of the screen must be short if smearing of the image is to be avoided. With orthochromatic film, the BE screen is recommended. Smearing is negligible in the majority of applications, and appears only under certain unusual and extreme conditions. Equally good results may be obtained with panchromatic film and the GH screen.

Slow-scan Applications

Visual observations of slowly-varying functions is often unsatisfactory with general purpose screens. The eye does not easily appreciate the path of a moving spot, since the spot tends to attract most of the observer's attention. This difficulty is overcome, to some extent, by the use of a long-persistence screen. The spot leaves a trace which persists long enough for the waveform to be examined.

The useful persistence of any screen is dependent on the ambient illumination. If the screen is provided with a hood, a dark-adapted eyecan see the trace down to quite low levels of light output. Writing speed also affects the persistence, to a certain limit which depends on the screen type which is used. In single-shot
applications an increase in spot velocity will reduce the persistence, and vice versa. The observation of information which recurs only a few times per second can be improved by the use of a long-persistence screen; but, in general, the length of the persistence obtained will not be great.
For most long-persistence applications the GM screen is recommended. The GL and GP screens are also useful.
For very long persistence the LC or LD screens are used. They have orange luminescence. Care should be taken to avoid overloading these screens, since they are prone to burning.

SCREENS FOR RADAR APPLICATIONS

A long persistence is usually of primary importance in radar applications, because the aerial sweep is slow and the picture must be retained for relatively long periods. The choice of a screen is complicated if the display is to be viewed where there is much ambient light. A long-persistence screen with a relatively low light output may be less suitable than a screen with shorter persistence but greater light output.

The build-up characteristic is of particular interest in radar applications. It can be exploited, under conditions of repeated excitation, to differentiate between the desired "permanent" echoes and noise such as sea clutter. The echo from a target is repeatedly displayed on successive scans, and full brightness is built up; whereas transitory echoes are not additive, and produce less than peak brightness. The published build-up curves for radar-type screens are presented in a way that simulates p.p.i. conditions. Points on the curve, as shown in "Screen data", represent the light output from the screen immediately before each excitation pulse.

Radar requirements, when examined in detail, are found to be exacting. For instance, in general purpose marine navigational systems the performance must be satisfactory throughout a wide variety of aerial sweep speeds, pulse repetition frequencies, and target ranges (say from 0.5 to 50 miles). In a single installation, a diversity of operating conditions must be catered for, therefore the choice of screen for the display tube is-necessarily a compromise. A number of screen types are available.
The LD screen has found extensive use in medium-range marine navigational systems. It has a very long persistence which provides a good display over a large variety of aerial rotation speeds and pulse repetition frequencies.
In river radar systems with short ranges and fast-moving targets, a rather shorter persistence is required, since it is only necessary to maintain good brightness between sweeps. Also, if the range has to be changed when navigating at close quarters, the trace from the earlier scan must clear quickly if it is not to clutter the first traces of the later scan. The LB screen meets these requirements.

7Z2 5902

In long-range navigational radar, and particularly in marine true-motion installations, the LC very long-persistence screen is widely used. It is also suitable where successive traces of a moving target are required for comparison, so that paths and speeds can be seen directly. The LC screen is also used in meteorological work, in airfield control, and in military radar systems. In many instances it is used in conjunction with interscan and data-handling techniques.

The GM long-persistence screen is sometimes used in marine radar. Its persistence is considerably shorter than that of the LC and LD screens. It has a disadvantage in that it does not provide the resolution capabilities possessed by tubes which use LC or LD screens. The reason for the lower resolution is that the screen is of the double-layer type; and, in order to obtain the desired decay characteristic, it is thicker than the LC and LD screens. The first layer is excited by electrons. This layer re-emits energy in the ultraviolet region, which then excites the second layer from which the luminous output is obtained. Resolution is lost during this process because of the scattering of the ultraviolet through the thickness of the second layer.

The GB screen is, like the GM screen, of the double-layer variety. It is used successfully in weather warning systems in aircraft cockpits. The main requirement is the ability to withstand the high accelerating voltages used in tubes for this type of application. Its long persistence is similar to that of the GM screen. With the aerial scanning speeds that occur in this type of equipment it displays complete cloud formations during the aerial sweep.

One of the main uses of the GJ medium-persistence screen is in airborne radar systems, where the scan rate is high enough to overcome the limited persistence of the screen. Its spectral emission makes it suitable for visual observation at the high ambient light levels normally encountered in this type of application.

For large radar displays a projection system may be used. For this purpose the BC screen, which has a killed persistence, provides a purplish-blue and ultraviolet output which is projected, by optical means, on to a large secondary screen which has suitable long-persistence characteristics.

SCREENS FOR FLYING-SPOT SCANNERS

In flying-spot scanners the energy conversion efficiency of the screen, throughout the spectral range that corresponds to the colour response of the detecting device, must be as high as possible.

Very short persistence is essential where high-definition scans are used, but the requirement is less stringent for slow-speed facsimile reproduction. For example, if a 625 -line raster of $5 \mathrm{Mc} / \mathrm{s}$ definition is required, then there must be no effective light output after $0.3 \mu \mathrm{~s}$; but for a slow-speed system of comparable definition and a line speed of one second, the persistence can be as long as 2 ms .

7Z2 5903

The BA very short-persistence screen is widely used for monochrome rastertype applications. Its peak output is at 400 to $420 \mathrm{~m} \mu \mathrm{~m}$, in the ultraviolet region. It is therefore particularly suitable for use with photomultipliers having conventional caesium-antimony photocathodes. The persistence enables a good overall signal-to-noise ratio to be achieved.

The GE short-persistence screen has been developed for flying-spot applications in colour television systems. Its persistence is sufficiently short. It has an adequate light output in the red region of the visible spectrum, with a peak at $510 \mathrm{~m} \mu \mathrm{~m}$ in the green region.

SCREENS FOR STORAGE APPLICATIONS

In some applications it is an advantage if a trace can be stored for future examination or for direct comparison with later traces. The GN screen provides storage for periods up to several hours.

A back layer emits energy in the blue and ultraviolet region when it is bombarded with electrons. The front layer, excited by the ultraviolet radiation, has blue fluorescence and green phosphorescence, with a persistence of the same order as that of the GM screen.

If the screen is subsequently exposed to infrared radiation, a second light output is obtained, with an intensity and a persistence which are functions of the original writing conditions and of the intensity of the infrared irradiation. The stored trace, or a succession of superimposed traces, can thus be made available. The stored traces, when they are made visible by irradiation, have a brightness related to that at which they were written, and they all decay at the same rate as one another. Erasure is effected by prolongedinfrared irradiation.

Ambient ultraviolet radiation should be excluded, since it will activate the front layer and produce background light which reduces contrast. Stray infrared should also, of course, be excluded, since it will dissipate the stored trace. The GN screen has a rather low maximum writing speed.

INTERPRETATION OF PUBLISHED SCREEN CHARACTERISTICS

INTERPRETATION OF PUBLISHED SCREEN CHARACTERISTICS

The field of c.r.t. applications is very extensive. For this reason it is impossible to provide published data covering all conceivable requirements. The measurements for published data are taken under conditions as close as possible to those at which the given screen is expected to operate. In some applications, the nature of the display does not readily lend itself to measurement purposes, and a resort has to be made to a more suitable type of display.

Where a given application departs from the conditions specified in published data, some valuable information can be extracted by means of simple calculations. Inevitably, some errors will be introduced; but in view of the approximately logarithmic response of the eye, the answers obtained are reasonably valid.

Much of the information presented in published data is based on a raster type of display, using - for measurement purposes - a non-interlaced raster of 200 lines and 50 fields per second. Whenever possible, the raster is defocused so that the lines just begin to merge together. This produces reasonably uniform screen loading. The quoted values of screen loading apply to the loading while the screen is under electron bombardment, and the effect of flyback is taken into account. The values of screen luminance given in published data are in terms of photometric units. This implies that the results are intended to represent the appearance of the display as seen by the eye.

In the following discussions, small letters are used for general considerations and for quantities in published data, while capital letters represent quantities involved in a particular case under consideration.

SCREEN LUMINANCE

The user can control four factors which affect screen luminance as seen by the eye. They are the area of excitation, the beam current, the applied potential, and the duration of excitation. A brief review of the effect of these factors on luminance will be made. In the first instance it will be assumed that only one of the factors is varied at a time.

The relationship between the luminance b and the current i reaching the screen can be written as

$$
\begin{equation*}
\mathrm{b}=\mathrm{k}_{1} \mathrm{i} \gamma \tag{1}
\end{equation*}
$$

where k_{1} is a constant and the index γ at small values of current is, for most screens, slightly less than unity. It decreases in value with increase in beam current.

The relationship between the potential vapplied to the screen and the luminance is more complex, and is often written in the form

$$
\begin{equation*}
b=k_{2}\left(v-v_{o}\right)^{n} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{k}_{2}=\mathrm{a} \text { constant } \\
& \mathrm{v}_{\mathrm{O}}=\text { a threshold potential } \\
& \mathrm{n}=\text { an index, greater than unity. }
\end{aligned}
$$

Both v_{O} and n are functions of the phosphor and of the manner in which it is deposited on the tube face. For this reason the relationship may vary from one tube type to another, although the same screen type may be used.

When a screen is operated at a current density well below the saturation level, it may be assumed that the luminance increases with increase of the duration of excitation. Thus,

$$
\begin{equation*}
b=k_{3} t \tag{3}
\end{equation*}
$$

This holds only within the maximum limit for t , which is set by the time resolution of the eye and is about 0.1 s .

Over reasonably small variations in size of the excited area, the luminance can be considered as inversely proportional to the area, or

$$
\begin{equation*}
\mathrm{b}=\mathrm{k}_{4} / \mathrm{a} \tag{4}
\end{equation*}
$$

Experimental results seem to indicate that the luminance of the screen produced by all the factors can be represented as:

$$
\begin{equation*}
b=\frac{k}{a} i \gamma\left(v-v_{o}\right) n_{t} \tag{5}
\end{equation*}
$$

Thus, to a first approximation, the luminance is a function of the energy applied to the screen. The range over which the beam current and the duration of excitation may vary is considerable. However, the amount of energy the screen can handle is limited; therefore the screen can deal with an increase in one of these quantities at the expense of the other. A large increase in both the beam current and the excitation time will lead to saturation and eventually to permanent screen damage in the form of burn.

The published data are normally given in the form of average luminance b as a function of average screen loading u, or

$$
\begin{equation*}
b=f(u) \tag{6}
\end{equation*}
$$

for several values of potential applied to the screen.
The raster itself is formed by scanning a spot progressively over a specified area. Thus an elementary screen area can be considered as that covered by the area of the electron beam. For the purpose of calculation let us assume this elementary area to be w cm wide and w cm long. If the current in the beam is i $\mu \mathrm{A}$, then as the beam is passing the elementary area, the real screen loading is given by

$$
\begin{equation*}
\mathrm{u}_{(\mathrm{pk})}=\frac{1}{\mathrm{w}^{2}} \tag{7}
\end{equation*}
$$

The duration of the loading is t_{w}, that is the transit time of the spot over the elementary area.

The amplitude of the waveform of peak luminance is a function of the build-up and decay characteristics of the particular screen under consideration. For screens with extremely short characteristics, the luminance is in the form of a pulse of light of amplitude $\mathrm{b}(\mathrm{pk})$ and duration t_{w}. On the other hand, a screen having long characteristics will produce luminance which follows the build-up characteristic during the excitation time t_{W}, and afterwards the decay characteristic. Two screens operating under identical conditions and having the same conversion efficiency, but differing in build-up and decay characteristics, should have the same $\mathrm{b}(\mathrm{pk}) \mathrm{t}_{\mathrm{w}}$ product. However, their instantaneous luminance will follow their build-up characteristics, and therefore may differ considerably.

Thus the $\mathrm{b}(\mathrm{pk})$ used in these calculations is largely a fictitious quantity. It is equal to the area embraced by the build-up and persistence characteristic of a given screen, divided by the time of excitation. As an absolute quantity it is of little value. However, since it is derived from the screen characteristics, it is useful in comparing screen operating conditions.
Let the raster repetition frequency be $f_{r}=\frac{1}{t_{r}}$. Then: the aver age screen loading
is

$$
\begin{equation*}
u=\frac{i}{w^{2}} \frac{t_{w}}{t_{r}} \tag{8}
\end{equation*}
$$

and the aver age screen luminance

$$
\begin{equation*}
\mathrm{b}=\mathrm{b}(\mathrm{pk}) \frac{\mathrm{t}_{\mathrm{w}}}{\mathrm{t}_{\mathrm{r}}} \tag{9}
\end{equation*}
$$

Both equations contain the term t_{w} / t_{r}. Since the raster is scanned linearly,

$$
\begin{equation*}
\mathrm{t}_{\mathrm{W}}=\mathrm{t}_{1} \frac{\mathrm{w}}{\mathrm{l}} \tag{10}
\end{equation*}
$$

where 1 is the length of scanned line and t_{1} is the time required to scan the line, therefore

$$
\begin{equation*}
\frac{t_{W}}{t_{r}}=\frac{t_{l}}{t_{r}} \frac{w}{l} \tag{11}
\end{equation*}
$$

Let us assume that the raster produced for preparation of published data is so defocused that the lines are touching each other. If the raster height is h, its width is 1 , and the number of lines is n, then

$$
\mathrm{w}=\frac{\mathrm{h}}{\mathrm{n}}
$$

therefore

$$
\begin{equation*}
\frac{t_{W}}{t_{r}}=\frac{t_{1}}{t_{r}} \frac{h}{n l} \tag{12}
\end{equation*}
$$

Furthermore,

$$
\mathrm{t}_{1}=\frac{\mathrm{t}_{\mathrm{r}}}{\mathrm{n}}
$$

therefore

$$
\begin{equation*}
\frac{\mathrm{t}_{\mathrm{w}}}{\mathrm{t}_{\mathrm{r}}}=\frac{\mathrm{h}}{\mathrm{n} 21}=\frac{\mathrm{w}^{2}}{\mathrm{hl}} \tag{13}
\end{equation*}
$$

Substituting in Eqs (8) and (9) we obtain

$$
\begin{equation*}
\mathrm{u}=\frac{\mathrm{i}}{\mathrm{hl}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{b}=\mathrm{b}(\mathrm{pk}) \frac{\mathrm{w}^{2}}{\mathrm{hl}} \tag{15a}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{b}=\mathrm{b}(\mathrm{pk}) \frac{\mathrm{h}}{\mathrm{n}^{2} 1} \tag{15b}
\end{equation*}
$$

when the lines just touch.
The published data provide the values of average screen luminance b as a function of average screen loading u. Thus, if one of the quantities is known, it is possible to determine the other. In many cases allowances have been made for flyback times, so i is the actual current and b the actual luminance during excitation.

In all cases the published data provide information at several values of potential applied to the screen. In this way all the factors in $\mathrm{Eq}(5)$ are taken into account.

The derived formulas enable investigation of the effect of various screen operating conditions on the screen luminance to be made. For instance, it has been shown in Eq (15) that the peak luminance is inversely proportional to the square of spot size. Thus, with the raster size and the number of lines maintained constant, halving of the spot diameter increases the screen loading by a factor of 4 . If the efficiency characteristics were linear, no change in light output would be obtained. Any possible reduction in average light output can be found approximately from published data as a ratio of

$$
\frac{\text { screen luminance at } 4 \times \text { operating current }}{4 \times \text { screen luminance at the operating current }}
$$

But there would be an increase in peak luminance in accordance with Eq (15a). It should be noted that Eq(15b) will not apply in this case, as the lines would not be touching (that is, nw $\neq \mathrm{h}$); this equation is relevant only for luminance changes of a raster in which the lines are just touching

In oscilloscope work, especially at high writing speeds, it is of importance to obtain as high a spot luminance as possible. Consequently, the value of beam current is pushed to the limit. Unfortunately, as the beam current is increased there is some increase in beam diameter. Since the spot luminance is proportional to $\mathrm{i} / \mathrm{w}^{2}$, the optimum conditions are occurring when the quotient is at a maximum.

In slow-scan applications, let us assume that the tube operating conditions and the number of lines used are the same as for the published data. For the same length of scanned line, let the scanning time be T_{1} (where $T_{1}>t_{1}$). The increase in screen loading is in the ratio $\mathrm{T}_{1} / \mathrm{t}_{1}$.

In consequence, one would expect only a slight drop in light output for a small value of the quotient; but for large values there would be not only a drop in average screen luminance but also some distortion of spot shape caused by screen saturation.

Let us now assume that the raster repetition frequency is constant and the number of lines is varied. On the whole, not much change will be expected when the lines are overlapping. When the lines are well separated, a reduction in the number of lines will produce higher screen loading and a reduction in light output. The converse will happen when the number of lines is increased.

In the following sections an attempt will be made to evaluate various applications in terms of published data information.

DATA INTERPRETATION FOR RASTER TYPE APPLICATIONS

From the preceding argument, the average screen loading in a practical case is

$$
\begin{equation*}
\mathrm{U}=\frac{\mathrm{I}}{\mathrm{~W}^{2}} \cdot \frac{\mathrm{~T}_{\mathrm{w}}}{\mathrm{~T}_{\mathrm{r}}} \tag{16}
\end{equation*}
$$

where T_{W} is the time taken to traverse one spot width, and T_{r} is the time taken to scan one raster.

The average screen luminance is

$$
\begin{equation*}
\mathrm{B}=\mathrm{B}(\mathrm{pk}) \frac{\mathrm{T}_{\mathrm{W}}}{\mathrm{~T}_{\mathrm{r}}} \tag{17}
\end{equation*}
$$

Let us assume that the height of the scanned raster is H , the width is L , the active line scanning time. is T_{1}, the raster repetition period is T_{r}, the number of lines is N , and the number of active lines is N_{a}. Then

$$
\mathrm{T}_{\mathrm{w}}=\mathrm{Tl} \frac{\mathrm{~W}}{\mathrm{~L}}
$$

and

$$
\begin{equation*}
\frac{\mathrm{T}_{\mathrm{W}}}{\mathrm{~T}_{\mathrm{r}}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{r}}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \tag{18}
\end{equation*}
$$

For any scan, if

$$
\begin{aligned}
\tau_{\mathrm{s}} & =\text { duration of scan } \\
\tau_{\mathrm{f}} & =\text { duration of flyback } \\
\tau & =\text { duration of whole cycle }
\end{aligned}
$$

then

$$
\tau=\tau_{S}+\tau_{f} .
$$

If we write

$$
\frac{\tau_{f}}{\tau_{\mathrm{s}}+\tau_{\mathrm{f}}}=\mathrm{p} \text { (the flyback fraction) }
$$

then

$$
\begin{equation*}
\tau_{s}=\tau(1-p) \tag{19}
\end{equation*}
$$

In the case under consideration, T_{1} is the active scanning time, and T_{m} is the interval between lines, therefore

$$
\mathrm{T}_{1}=\mathrm{T}_{\mathrm{m}}\left(1-\mathrm{P}_{1}\right)
$$

where P_{1} is the flyback fraction in the line direction. Similarly

$$
N_{a}=N\left(1-P_{v}\right)
$$

where P_{V} is the vertical flyback factor.

Substitution for T_{1} in Eq (18) gives

$$
\begin{equation*}
\frac{\mathrm{T}_{\mathrm{w}}}{\mathrm{~T}_{\mathrm{r}}}=\frac{1-\mathrm{P}_{1}}{\mathrm{~T}_{\mathrm{r}}} \cdot \mathrm{~T}_{\mathrm{m}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \tag{20}
\end{equation*}
$$

But $\mathrm{T}_{\mathrm{r}}=\mathrm{NT}_{\mathrm{m}}$ and $\mathrm{N}=\mathrm{N}_{\mathrm{a}} /\left(1-\mathrm{P}_{\mathrm{V}}\right)$ therefore

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=\frac{\mathrm{T}_{\mathrm{r}}}{\mathrm{~N}_{\mathrm{a}}}\left(1-\mathrm{P}_{\mathrm{V}}\right) \tag{21}
\end{equation*}
$$

If we assume that the lines are touching, then $N_{a}=H / W$, therefore

$$
\begin{equation*}
\frac{\mathrm{T}_{\mathrm{W}}}{\mathrm{~T}_{\mathrm{r}}}=\left(1-\mathrm{P}_{1}\right)\left(1-\mathrm{P}_{\mathrm{V}}\right) \frac{\mathrm{W}^{2}}{\mathrm{HL}} \tag{22}
\end{equation*}
$$

Finally, substituting in Eqs (16) and (17) we have

$$
\begin{equation*}
\mathrm{U}=\frac{\mathrm{I}}{\mathrm{HL}}\left(1-\mathrm{P}_{\mathrm{l}}\right)\left(1-\mathrm{P}_{\mathrm{v}}\right) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{B}=\mathrm{B}(\mathrm{pk}) \frac{\mathrm{W}^{2}}{\mathrm{HL}}\left(1-\mathrm{P}_{1}\right)\left(1-\mathrm{P}_{\mathrm{V}}\right) \tag{24}
\end{equation*}
$$

Since $\mathrm{W}=\mathrm{H} / \mathrm{N}_{\mathrm{a}}$ and $\mathrm{N}_{\mathrm{a}}=\mathrm{N}\left(1-\mathrm{P}_{\mathrm{V}}\right)$, then

$$
\begin{equation*}
B=B(p k) \frac{H\left(1-P_{1}\right)}{N^{2} L\left(1-P_{V}\right)} . \tag{25}
\end{equation*}
$$

Now

$$
\begin{equation*}
\mathrm{I}\left(1-\mathrm{P}_{\mathrm{l}}\right)\left(1-\mathrm{P}_{\mathrm{V}}\right)=\mathrm{I}_{\mathrm{av}} \tag{26}
\end{equation*}
$$

where $I_{a v}$ represents an average current flowing through the cathode ray tube in presence of line and field blanking. For the 405 -line and 625 -line television systems, $\mathrm{P}_{1}=0.185$ and $\mathrm{P}_{\mathrm{V}}=0.07$. Thus in these systems the current I present in the raster exceeds the aver age current by a factor of 1.31 .

In the above calculations it has been assumed that the lines of the raster are touching each other. This is rather an exception than a rule. When considering this problem it is necessary to define more accurately the screen luminance. In most cases it is a mean value for the whole raster. For these considerations the calculations are acceptable in their present form.

Frequently, the published data for television tubes are given in terms of beam current for a quoted raster size. From these values the aver age screen loading $\mathrm{u}=\mathrm{i} / \mathrm{hl}$ may be readily obtained. Alternatively, we have from Eqs (23) and (26)

$$
\frac{\mathrm{i}}{\mathrm{hl}}=\frac{\mathrm{I}}{\mathrm{HL}}
$$

or

$$
\begin{equation*}
\mathrm{i}=\mathrm{I} \frac{\mathrm{hl}}{\mathrm{HL}} . \tag{27}
\end{equation*}
$$

Example

It is intended to operate a tube with a W screen as a television monitor at a screen potential of 14 kV and with a raster 20 cm by 15 cm . What luminance can be expected if the aver age beam current is $50 \mu \mathrm{~A}$.

As the tube is intended for operation in a television system,

$$
\begin{aligned}
& I_{\mathrm{av}}=\mathrm{I}\left(1-\mathrm{P}_{1}\right)\left(1-\mathrm{P}_{\mathrm{v}}\right)=\mathrm{I} \times 0.76 \\
& \mathrm{I}=\frac{50}{0.76}=66 \mu \mathrm{~A}
\end{aligned}
$$

The current density is therefore

$$
\frac{\mathrm{i}}{\mathrm{hl}}=\frac{66}{300}=0.22 \mu \mathrm{~A} / \mathrm{cm}^{2} .
$$

At this current density and at a screen potential of 14 kV , the luminance, as can be seen from the relevant curve, is 280 nt .

DATA INTERPRETATION FOR OSCILLOSCOPE APPLICATIONS

The requirements of repetitive and single-pulse applications must be considered.

Repetitive Excitation

An oscilloscope display is essentially a single trace display. In any particular situation, let us assume that the length of trace is L , the duration T_{1}, and the repetition frequency $\mathrm{F}_{\mathrm{r}}=1 / \mathrm{T}_{\mathrm{r}}$. For a line width W , let the transit time be T_{W}, then from Eq (8) the screen loading is

$$
\mathrm{U}=\frac{\mathrm{I}}{\mathrm{~W}^{2}} \frac{\mathrm{~T}_{\mathrm{W}}}{\mathrm{~T}_{\mathrm{r}}}
$$

Since

$$
\mathrm{T}_{\mathrm{w}}=\mathrm{T}_{1} \frac{\mathrm{~W}}{\mathrm{~L}}
$$

then

$$
\begin{equation*}
\mathrm{U}=\frac{\mathrm{I}}{\mathrm{WL}} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{\mathrm{r}}} \tag{28}
\end{equation*}
$$

The aver age screen loading obtained from the above formula may be used to find the corresponding average trace luminance from the published data.

Single-Pulse Excitation

It is possible to estimate, from the published data, the trace luminance under single-pulse excitation. Since the trace is not repetitive, let us take a repetition frequency at which the eye resolves light modulation, say about $10 \mathrm{c} / \mathrm{s}$.

Let this repetitive time be T_{r}, then the average screen loading is

$$
\begin{equation*}
\mathrm{U}=\frac{\mathrm{I}}{\mathrm{~W}^{2}} \frac{\mathrm{~T}_{\mathrm{W}}}{\mathrm{~T}_{\mathrm{r}}} \tag{29}
\end{equation*}
$$

and the corresponding average screen luminance B can be found from the published data.

From Eq (9) the peak luminance is

$$
\begin{equation*}
\mathrm{B}_{(\mathrm{pk})}=\mathrm{B} \frac{\mathrm{~T}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{w}}} \tag{30}
\end{equation*}
$$

and its duration is T_{w}.
The $\mathrm{B}(\mathrm{pk}) \mathrm{T}_{\mathrm{w}}$ product is equal to the area under the build-up and decay characteristic of a given screen. For fast- and medium-persistence screens, most of this area will be within time $\mathrm{T}_{\mathrm{r}}(<0.1 \mathrm{~s})$. Hence the luminance perceived by the eye will be

$$
\begin{equation*}
\frac{\mathrm{B}(\mathrm{pk}) \mathrm{T}_{\mathrm{w}}}{\mathrm{~T}_{\mathrm{r}}}=\mathrm{B} \tag{31}
\end{equation*}
$$

Example

In a particular application a scan of 4 cm and a duration of $10 \mu \mathrm{~s}$ are produced at a repetition frequency of $400 \mathrm{c} / \mathrm{s}$. The tube has a GH type screen. It is operated at 10 kV , and the current reaching the screen during the trace is $10 \mu \mathrm{~A}$. What trace luminance can be expected at a line width of 0.2 mm .

$$
\begin{array}{ll}
\mathrm{I}=10 \mu \mathrm{~A} & \mathrm{~T}_{1}=\frac{10}{106} \mathrm{~s} \\
\mathrm{~W}=\frac{2}{100} \mathrm{~cm} & \mathrm{~T}_{\mathrm{r}}=\frac{1}{400} \mathrm{~s} \\
\mathrm{~L}=4 \mathrm{~cm} &
\end{array}
$$

Substitution in Eq (28) gives

$$
\mathrm{U}=10 \frac{100}{2 \times 4} \frac{10}{106} \frac{400}{1}=0.5 \mu \mathrm{~A} / \mathrm{cm}^{2}
$$

From the published data for the GH screen the trace luminance at 10 kV and this screen current density is seen to be 300 nt .

DATA INTERPRETATION FOR RADAR APPLICATIONS

For radar type applications, persistence is of primary importance. For this reason the published information on persistence characteristics of radar screens is more extensive than that provided for other types. The data are prepared from measurements made with a non-interlaced raster. Care is taken to defocus the raster uniformly, so that the individual lines of the raster touch each other. The whole raster is considered as a single pulse, since any given area is excited only once during any one field.

To cover a variety of situations, several sets of data are published. Single raster excitations simulate the case of moving targets, when the screen area is excited only once. For permanent echoes and marker pips, there are curves showing persistence with repeated raster excitation. The persistence is measured from the end of excitation. From this information can be derived the variation in trace luminance during normal operation and the screen persistence when changing from one range to another.
The build-up characteristic is important during range-changing. The required information is given by a separate build-up characteristic which shows the luminance of the trace just before the next pulse arrives.

Screen Loading

Consider a small portion of screen under published data conditions. As in previous considerations, the raster area is hl, but only one field of n lines is applied. The current reaching the screen is i, with suitable corrections for flyback times. The spot is defocused so that the lines are touching each other. The charge per unit area reaching the screen is

$$
\begin{equation*}
q=\frac{i}{w^{2}} t_{w} \tag{32}
\end{equation*}
$$

and this is proportional to screen luminance Eq (5).
Since

$$
\begin{align*}
& \mathrm{t}_{\mathrm{w}}=\mathrm{t}_{1} \frac{\mathrm{w}}{\mathrm{l}} \\
& \mathrm{q}=\frac{\mathrm{i}}{\mathrm{wl}} \mathrm{t} \mathrm{l} \tag{33}
\end{align*}
$$

also

$$
\mathrm{w}=\frac{\mathrm{h}}{\mathrm{n}} \text { and } \mathrm{nt}_{\mathrm{l}}=\mathrm{t}_{\mathrm{r}}
$$

therefore

$$
\begin{equation*}
\mathrm{q}=\frac{\mathrm{i}}{\mathrm{hl}} \mathrm{t}_{\mathrm{r}} \tag{34}
\end{equation*}
$$

Under p.p.i. conditions Eq (33) is also applicable. In order to express it in terms of p.p.i. constants, let
$D=$ diameter of p.p.i. display
$R=$ range corresponding to the radius of display.
Consider a portion of the display at a distance $\frac{1}{2} D^{\prime}$ from the centre, so that

$$
\frac{\mathrm{D}^{\prime}}{\mathrm{D}}=\mathrm{x} \text { and } \mathrm{x}<1
$$

Then the length of considered scan is

$$
\mathrm{L}=\frac{1}{2} \mathrm{D}^{\prime} .
$$

With a signal velocity of 12.3μ s per loop nautical mile,

$$
\mathrm{T}_{\mathrm{x}}=12.3 \times \mathrm{RK} 10^{-6} \mathrm{~s}
$$

It was necessary to include a constant K in the equation for T_{X} in order to take into account overlap of scanning lines of the p.p.i. display. The overlap can be calculated as the ratio of the number of scans per aerial rotation to the number of lines that can be placed on the circumference of the considered portion of display. In terms of p.p.i. data, at a point distant $\frac{1}{2} D^{\prime}$ from the centre.

$$
\mathrm{K}_{\mathrm{x}}=\frac{\mathrm{Fp}_{\mathrm{p}} \mathrm{~T}_{\mathrm{a}} \mathrm{~W}}{\pi \times \mathrm{D}}
$$

where

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{p}}=\text { pulse repetition frequency } \\
& \mathrm{T}_{\mathrm{a}}=\text { time of one aerial revolution. }
\end{aligned}
$$

Substitution of the above data in Eq (33) gives

$$
\mathrm{Q}_{\mathrm{x}}=\frac{2 \mathrm{I}}{\pi \mathrm{x} \mathrm{D}^{2}} 12.3 \mathrm{RF}_{\mathrm{p}} \mathrm{~T}_{\mathrm{a}} 10^{-6}
$$

The screen luminance of the p.p.i. display is the same as that in published data if the above equation is equal to Eq (34). Equating and rearranging gives a screen loading of

$$
\mathrm{u}_{\mathrm{x}}=\frac{\mathrm{i}}{\mathrm{hl}}=\frac{2 \mathrm{I}}{\pi \times \mathrm{D}^{2}}=12.3 \mathrm{RF} \frac{\mathrm{~T}_{\mathrm{a}}}{\mathrm{t}_{\mathrm{r}}} 10^{-6}
$$

For published data, $\mathrm{t}_{\mathrm{r}}=\frac{1}{50} \mathrm{~s}$, therefore

$$
\begin{equation*}
\mathrm{u}_{\mathrm{x}}=\frac{\mathrm{i}}{\mathrm{hl}}=\frac{3.91}{\mathrm{x} \mathrm{D}^{2}} \mathrm{IRF}_{\mathrm{p}} \mathrm{~T}_{\mathrm{a}} 10^{-4} \mu \mathrm{~A} / \mathrm{cm}^{2} \tag{35}
\end{equation*}
$$

Now i / hl is the screen loading used in the presentation of published data, therefore the value of screen persistence can be determined.

It should be noted that u_{x} varies over the screen. If a constant value of u is required, then a bright-up circuit must be incorporated, so that I / x will be constant.

Single-pulse Excitation:

Moving Target Conditions

For fast-moving objects a situation can exist where within one aerial rotation the echo moves on the display a distance greater than the spot diameter of the tube. The persistence curve resulting from such an excitation is given in published data by graphs for single-pulse excitation. The screen loading can be calculated from Eq (35).

7Z2 5915

Repeated-pulse Excitation:

Permanent Echoes

The luminance produced by a permanent echo is a result of excitation received from a succession of aerial sweeps. The persistence is given in the published data by graphs for repeated-pulse excitation. Therepetition interval t_{a} of pulses in the published data is 1 s . In practical applications, the aerial rotation frequency may be different, and for that reason the equation for screen loading needs adjustment. Experimental evidence indicates that under the conditions shown in the published data, the screen luminance is a function u of the product of the current and the number of pulses. Thus the necessary adjustment can be effected by multiplying $\mathrm{Eq}(35)$ by $\mathrm{t}_{\mathrm{a}} / \mathrm{T}_{\mathrm{a}}$. With $\mathrm{t}_{\mathrm{a}}=1 \mathrm{~s}$, the modified equation becomes

$$
\begin{equation*}
\mathrm{U}_{\mathrm{x}}=\frac{3.91}{\mathrm{x} \mathrm{D}^{2}} \mathrm{IRF}_{\mathrm{p}} 10^{-4} \mu \mathrm{~A} / \mathrm{cm}^{2} \tag{36}
\end{equation*}
$$

Build-up

The rate at which persistence luminance builds up for a permanent echo is shown in published data by means of build-up characteristics. Since these characteristics are given as a function of the number of pulses, the screen loading can be calculated from Eq (36).

Example

A tube with an LD screen is employed in a p.p.i. display. It is operated at 10 kV , and the peak current at the end of the trace is $150 \mu \mathrm{~A}$. If the pulse repetition frequency is $3 \mathrm{kc} / \mathrm{s}$ and the aerial rotational frequency is $20 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , determine the luminance of the persistence trace at the edge of the display when the display is set to operate at a range of one nautical mile for the full useful screen radius of 10 cm .
(a) Moving targets

Screen loading is calculated from Eq (35):
$\mathrm{U}_{\mathrm{X}}=\frac{3.91}{\mathrm{xD} \mathrm{D}^{2}} \mathrm{IRF}_{\mathrm{p}} \mathrm{T}_{\mathrm{a}} 10^{-4} \mu \mathrm{~A} / \mathrm{cm}^{2}$

$\mathrm{D}=20 \mathrm{~cm}$	$\mathrm{~F}_{\mathrm{p}}=3 \mathrm{kc} / \mathrm{s}$
$\mathrm{I}=150 \mu \mathrm{~A}$	$\mathrm{~T}_{\mathrm{a}}=3 \mathrm{~s}$
$\mathrm{R}=1$ nautical mile	$\mathrm{x}=1$

so that

$$
\mathrm{U}_{\mathrm{X}}=1.32 \mu \mathrm{~A} / \mathrm{cm}^{2}
$$

The persistence characteristics of the LD screen (pages 68 and 69) gives persistence luminance for single-pulse excitation at an e.h.t. of 10 kV . The required persistence can be read off the graph for a screen loading of $1.32 \mu \mathrm{~A} / \mathrm{cm}^{2}$. This screen loading is higher than any shown on the graph, but the results can be deduced by extrapolation.
(b) Permanent echoes

Screen loading is calculated from Eq (36):

$$
\mathrm{U}_{\mathrm{x}}=\frac{3.91}{\mathrm{x} \mathrm{D}^{2}} \mathrm{IRF}_{\mathrm{p}} 10^{-4} \mu \mathrm{~A} / \mathrm{cm}^{2}
$$

Substitution gives

$$
\mathrm{U}_{\mathrm{x}}=0.44 \mu \mathrm{~A} / \mathrm{cm}^{2}
$$

This lower value has no actual meaning in terms of current; but it indicates which curve in the graphs on pages 68 or 69 is to be used. The result will apply for a fully built-up condition - say after 60 or more pulses.
(c) Build-up

For any intermediate number of pulses down to about ten, the small variation in the starting point of the decay curves can be obtained from the build-up curve on page 70. The value of $U_{x}=0.44 \mu \mathrm{~A} / \mathrm{cm}^{2}$, and the persistence curves for multiple pulse excitation on pages 68 and 69 can then be used.

AMBIENT ILLUMINATION

In the discussion of the requirements of different applications it has been as sumed that the only light to be considered is that produced by the display. Background illumination has been altogether neglected. Under practical conditions the background illumination is of the greatest importance. In fact, it determines the luminance that the tube must produce if the display is to be usable.

There are three sources of stray illumination:
Light from the back of the screen is reflected by the tube walls. It returns to the screen in a diffuse form and reduces the contrast between the trace and the unexcited parts of the screen.

Light from the front of the screen is reflected back to the screen from surrounding surfaces. Again the effect is to illuminate the unexcited areas.

Ambient illumination, especially in lighted rooms and in daylight situations, is obviously a major factor in the reduction of contrast.

The minimum contrast perceptible by the eye is about 2 per cent. If the luminance of the trace in the absence of background illumination is B, and the luminance of the rest of the tube face is b, then the luminance of the trace in the presence of the background illumination is $B+b$. The change in luminance from trace to background is B. For limit perception,

$$
\frac{B}{B+b} 100=2
$$

so that

$$
\mathrm{B}=\frac{\mathrm{b}}{49} .
$$

This is practically the absolute minimum that can be tolerated. For comfortable viewing the contrast should be about 80 per cent; that is, $B=4 \mathrm{~b}$. For an oscilloscope display a lower contrast is acceptable than for a raster display.

A laboratory during hours of daylight may have an illumination of about 250 lx. In this illumination a perfectly diffusing surface will have a luminance of $250 / \pi$ $\simeq 80 \mathrm{nt}$. With transmission and reflection losses of 30 per cent, the tube surface will have a luminance of 56 nt .

For the examples calculated in this chapter we have

Television monitor tube	280 nt
Oscilloscope display	300 nt
P.P.I. display (permanent echo at 1 s)	1.3 nt

The contrast for the last case in the presence of a 250 lx background illumination is

$$
\frac{1.3}{56} 100=2.3 \%
$$

which is just about perceptible.
At night an average laboratory will have a lower illumination. If this is, say, 50 lx , the luminance of the radar display quoted will improve, for the contrast will be

$$
\frac{1.3}{11.2} 100=11.6 \%
$$

When the decay characteristic is taken into consideration, the effect of ambient illumination is even more serious. If the persistence of the p.p.i. display which has been discussed is plotted in the presence of laboratory illumination as above, the resulting curve will be entirely different from that given on pages 68 and 69 for a current density of $0.2 \mu \mathrm{~A} / \mathrm{cm}^{2}$. After about seven seconds the display will be lost in the background.

USE OF FILTERS

Contrast can be improved by placing a filter in front of the tube. Light from outside has to pass through the filter twice before reaching the eye, whereas the light from the trace passes through only once.
For maximum contrast the filter should be as dense as possible; but if the luminance of the trace is already low, it will be attenuated to an unusable level if the filter is too dense. However, a filter whose transmission characteristic is matched to the spectral distribution of the screen will provide differential filtering. The light output from the screen will be transmitted with minimum loss, while external light from other parts of the spectrum will be suppressed.

The GM double-layer screen has a purplish-blue fluorescence and a yellowishgreen phosphorescence. As the blue component is subjectively brighter than the yellow, it is advantageous in some applications to filter it out with a suitable filter if maximum use is to be made of the yellow persistence period. The Chance C2 glass filter is suitable; or, for combination with a graticule, a sheet of amber Perspex may be used.

Exclusion of ambient ultraviolet radiation from the GN storage screen is provided by filters such as the Ilford 108. The infrared radiation for reading can be obtained from low-power tungsten lamps. They should be provided with filters to suppress the visible light which would reduce contrast. A combination of the Ilford filters 207 and 813 is suitable. A composite viewing hood can be used, containing the lamps, filters, and ultraviolet stop filter.

GENERAL DATA

The information given in this reference section is obtained from measurements of phosphors settled in typical cathode ray tubes. The tube used is, of course, of a type appropriate for the screen in question.

For each screen type there is a spectral response curve. The relative response is plotted against the wavelength of the light output, the peak light output being shown as 100 per cent. No absolute values of light output can be read off; and no comparisons of the luminance of different screen types can be made from these curves.

On each response curve is quoted the subjective colour sensation in terms of the $x-y$ co-ordinates of the C.I.E. system. These points are also indicated on the diagram.

For two or three screen types, the diagram shows two points: one refers to the initial "flash" or fluorescence, while the other point refers to the persistence (phosphorescence) colour. Thus, the GM screen has a purplish-blue flash and a yellowish-green persistence, and it is classified as a screen of the G group. The two linked points shown for the GH screen are those pertaining to highbrilliance and low-brilliance operation.
For comparison of the spectral response of the screens available for each of the main groups of application, collective response curves, are given. Here again, the response curves are normalised, and they provide no information about the comparative light outputs of different screens.

The Kelly charts are marked - in accordance with general colorimetric practice - with the wavelengths in milli-micrometres ($\mathrm{m} \mu \mathrm{m}$) that correspond to the saturated spectral colours lying on the perimeter.

The persistence and efficiency curves, and the special curves relating to radar screens, should be read in conjunction with the relevant parts of the text.

PERSISTENCE NOMOGRAPHS FOR OSCILLOSCOPE SCREENS

Although the persistence curves give a good indication of the differences between screens under typical conditions, it is found in practice that the operation of the screen is often far removed from the published conditions. This is especially so for oscilloscope applications. With this as a prime consideration, the screens most used for oscilloscope work have been investigated in rather more detail than, say, the screens used in television monitors.

Radar screens, although subjected to some changes in operation conditions, are limited in their applicational range, and in most cases the published curves give adequate information. The flying spot screen BA has only a small dynamic characteristic change, and once again requires no elaboration.

Most oscilloscope screens have a persistence dependent on current density, electron energy, excitation time, and repetition frequency. The exception to this is the GJ screen which has a decay law of the form $\exp (-80 t)$ which is independent of the above characteristics and is therefore specified by the published decay curve. The dynamic range of the other oscilloscope screens has been evaluated empirically.

The BE and GH screens have a common decay law:

$$
L_{t} \propto t_{p}^{-1}
$$

where L_{t} is the light output at a time t_{p} during the decay. Experiment has shown that modification to the form

$$
\frac{L_{t}}{L_{0}}=\frac{k}{t_{p}+k}
$$

where

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{o}}=\text { initial light output at } \mathrm{t}_{\mathrm{p}}=0 \\
& \mathrm{k}=\mathrm{a} \text { constant }
\end{aligned}
$$

produces a good approximation to the practical persistence curve.
Incorporation of some of the relevant screen characteristics gives

$$
\mathrm{t}_{\mathrm{p}}=\left[\gamma\left(\mathrm{I}_{\mathrm{b}} / \mathrm{a}\right) \beta \mathrm{t}_{\mathrm{e}} \alpha\left(\mathrm{k}-\tan ^{-1} \mathrm{~s} \log \frac{\mathrm{I} \mathrm{~b} / \mathrm{a}}{\mathrm{q}}\right)\right]\left(\frac{\mathrm{L}_{\mathrm{o}}}{\mathrm{~L}_{\mathrm{t}}}-1\right)
$$

where

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{e}}=\text { excitation time } \\
& \mathrm{I}_{\mathrm{b} / \mathrm{a}}=\text { beam current density }
\end{aligned}
$$

and the constants $\alpha, \beta, \gamma, k, s$, and q have been evaluated for each screen type.
Voltage and repetition frequency are not included in this formula. The voltage has little effect on persistence if it exceeds 3 kV . Below 3 kV the persistence increases. The repetition frequency has a pronounced effect; but, because of the complexity of interrelating occupance and build-up time limits, the formula in its present form applies only for single or low-occupance occurrences.

To simplify the use of the equation, nomographs have been constructed in which the variables are light output (as a percentage of flash), excitation time, and persistence. Current density is introduced as a parameter. Nomographs for the BE and GH screens are given.

Each nomograph consists of three main scales: t_{e} (excitation time), t_{p} (decay time), and L_{t} / L_{0} per cent (decay percentage). The t_{e} and t_{p} scales are split into three, for various current densities. As the current density has a secondorder effect, the range over which the scales may be used is denoted at the foot of the scale.

To use the nomograph, a straight edge is placed across the sheet against the two known variables, and the third variable is read off. For example:

What is the persistence of the GH screen at 0.5 per cent of flash under the following conditions.

$$
\begin{aligned}
& \text { Excitation time }=10 \mu \mathrm{~s} \\
& \text { Current density }=0.8 \mu \mathrm{~A} / \mathrm{mm}^{2}
\end{aligned}
$$

A straight-edge placed against $L_{t} / L_{0}=0.5$ per cent and $t_{e}=10 \mu \mathrm{~s}$ on the $>0.8 \mu \mathrm{~A} / \mathrm{mm}^{2}$ scale will intersect the $>0.8 \mu \mathrm{~A} / \mathrm{mm}^{2} \mathrm{t}_{\mathrm{p}}$ scale at 0.9 ms . Thus the persistence is 0.9 ms to 0.5 per cent under this condition.
Excitation time is determined, in practice, by dividing the spot diameter by the spot velocity. That is,

$$
\mathrm{t}_{\mathrm{e}}=\frac{\mathrm{d}}{\mathrm{v}}
$$

where

$$
\begin{aligned}
& \mathrm{d}=\text { spot diameter }(\mathrm{mm}) \\
& \mathrm{v}=\text { spot velocity }(\mathrm{mm} / \mathrm{s})
\end{aligned}
$$

A maximum limit for t_{e} occurs when build-up is accomplished by steady excitation, or when the time occupance approaches unity. This maximum limit is indicated by the discontinuation of the t_{e} scale at its top end. Thus for excitation times greater than the limit value, the limit value should be used.

The reading accuracy of the nomographs has been reduced by including only the scale intervals of 5 and 10 on the logarithmic t_{p} and t_{e} scales. The reasons for this are that the nomograph includes several approximations, and, secondly, unavoidable spreads in screen production may cause significant deviations. This spread has less significance when the wide dynamic range covered by the logarithmic characteristics is being considered.
No nomograph is given for the GM screen, since the interdependent characteristics of the two phosphor layers are too complex for this kind of presentation.

	1	1	1	$\stackrel{-1}{2}$	，	مٌ	む	®゙	\square	1	ก	N	1	ก	1	1	1	セ	む	กิ	，
$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 . \end{aligned}$	$\begin{aligned} & \stackrel{y}{0} \\ & \frac{0}{6} \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	즐 \vec{z}	$\begin{aligned} & H \\ & 0 \\ & \frac{1}{n} \\ & \text { 2 } \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & \text { E0 } \end{aligned}$	$\begin{aligned} & \stackrel{H}{O} \\ & \text { 首 } \end{aligned}$	$\begin{aligned} & \stackrel{H}{0} \\ & \text { 弟 } \\ & \vdots \\ & \vdots \\ & \ddot{Z} \\ & \ddot{a} \end{aligned}$		$\begin{aligned} & \text { E } \\ & \text { Zु } \\ & \text { © } \end{aligned}$		－			$\begin{aligned} & \text { E } \\ & \text { g } \\ & \text { O } \\ & \text { E } \end{aligned}$	En -1	$\begin{aligned} & \infty \\ & \text { E } \\ & \text { in } \\ & \text { iे } \\ & \gg \end{aligned}$		1		E 光 光 E
	1	1	1	$\stackrel{0}{\beth}$	${ }^{1}$	யəə.ธ8-чS!̣MOIIəК	5 0 0 0		$\begin{aligned} & \text { g } \\ & 0 \\ & \text { H0 } \\ & \frac{1}{6} \\ & \frac{1}{3} \\ & 0 \\ & \frac{0}{0} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { g } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & \text { 80 } \\ & \text { त్రै } \\ & \stackrel{0}{0} \end{aligned}$	0 菏 $\stackrel{0}{0}$	0 感 ̈ㅜㅇ		＇		
$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned} 0$	0 $\frac{3}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ 2 0		$\begin{aligned} & \text { D } \\ & \text { an } \end{aligned}$	$\begin{aligned} & 0 \\ & \beth \Omega \end{aligned}$		$\begin{aligned} & 0 \\ & \frac{3}{0} \\ & \frac{1}{1} \\ & \frac{1}{6} \\ & \frac{1}{2} \\ & 07 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ㄷ } \\ & 0 \\ & \text { 50 } \end{aligned}$	$\begin{aligned} & \text { ㅍ } \\ & \ddot{y}_{0} \end{aligned}$				purplish-blue	$\begin{aligned} & \text { き } \\ & \text { In } \end{aligned}$	$\begin{gathered} \text { 5 } \\ 0 \\ 0 \\ 5 \\ 1 \\ \frac{5}{5} \\ 3 \\ 3 \\ 3 \end{gathered}$	$\begin{aligned} & 0 \\ & \text { b0 } \\ & \text { त్రీ } \end{aligned}$	$$		$\begin{aligned} & 0 \\ & \text { M0 } \\ & \underset{\sim}{0} \end{aligned}$	\％	\％	yellowish－orange
	U	$>$	4	∞		Σ	\checkmark	士		$\widehat{0}$	Z	0	\leftharpoondown	1	－	［1］	［	\dagger	3		$>$
	岕	U	ค	（19	品	๗゙	凹	J	ঢ゙	V	0	\sum_{0}	Z	ठิ	4	m	$\xrightarrow{0}$	$\stackrel{\sim}{\square}$	3		$\stackrel{<}{\nearrow}$

[^0]

15

BC

 Current density ($\mu \mathrm{A} / \mathrm{cm}^{2}$)

\qquad

$\vec{H} \mid$

LD

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with 10 cm diameter flat face-plate and post deflection acceleration by means of a helical electrode. The low heater consumption together with the high sensitivity and short overall length render this tube suitable for transistorised equipment.

QUICK REFERENCE DATA			
Final accelerator voltage		$=4$	kV
Display area horizontal		full scan	
vertical		$=6$	cm
Deflection factor, horizontal	M_{x}	$=27.5$	V / cm
vertical	M_{y}	$=9.8$	V / cm

SCREEN

	Colour	Persistence
D10-11BE	blue	medium short
D10-11GH	green	medium short
D10-11GM	yellowish green	long
D10-11GP	bluish green	medium short

Useful screen diameter
min. 85 mm
Useful scan at $\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=4$

$$
\begin{array}{ll}
\text { horizontal } & \text { full scan } \\
\text { vertical } & \mathrm{min} . \quad 60 \mathrm{~mm}
\end{array}
$$

The useful scan may be shifted vertically to a max. of 4 mm with respect to the geometric centre of the faceplate.

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current

$V_{f}=6.3 \mathrm{~V}$	
$I_{f}=95 \mathrm{~mA}$	
	7 Z 27719

7 Z 27719

D10-11..

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
14 pin all glass

Dimensions and connections

| Overall length (also inclusive socket type 55566) | \max. | 320 mm |
| :--- | :--- | :--- | :--- |
| Face diameter | \max. | 102 mm |
| Net weight | approx. | 480 g |

Accessories
Socket (supplied with the tube) type 55566
Final accelerator contact connector
Mu-metal shield
type 55560
type 55541

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}=3.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)=3.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}=2.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}=3.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=2.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=4.5 \mathrm{pF}$
C_{k}

FOCUSING

DEFLECTION
x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

$$
90^{\circ} \pm 10
$$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen

Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

$\mathrm{V}_{\mathrm{g}_{6}(\ell)}$	$=4000 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{g}_{4}}$	$\left.=1000 \mathrm{~V}^{2}\right)$
$\mathrm{V}_{\mathrm{g}_{2}}$	$=1000 \mathrm{~V}$
$\mathrm{I}(\ell)$	$=10 \mu \mathrm{~A}$
1.w.	$=0.35 \mathrm{~mm}$

HELIX

Post deflection accelerator helix resistance
$=\min .50 \mathrm{M} \Omega$

[^1]7Z2 7721

TYPICAL OPERATING CONDITIONS
Final accelerator voltage
Geometry control electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage

$$
\begin{aligned}
\mathrm{V}_{6(\ell)} & =4000 \mathrm{~V} \\
\mathrm{~V}_{5} & \left.=1000 \pm 100 \mathrm{~V}^{1}\right) \\
\mathrm{V}_{4} & \left.=1000 \pm 50 \mathrm{~V}^{2}\right) \\
\mathrm{V}_{\mathrm{g}_{3}} & =50 \text { to } 200 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{2}} & =1000 \mathrm{~V} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =25 \text { to } 67 \mathrm{~V}
\end{aligned}
$$

Deflection factor

| horizontal | M_{x} | $=24$ to $31 \mathrm{~V} / \mathrm{cm}$ |
| :--- | :--- | :--- | :--- | :--- |
| vertical | M_{y} | $=8.6$ to $11 \mathrm{~V} / \mathrm{cm}$ |
| Deviation of linearity of deflection | | |

Geometry distortion
See note 4
Useful scan

horizontal	full scan
vertical	$=\min . \quad 60 \mathrm{~mm}$

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}_{3}} & =50 \text { to } 200 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =25 \text { to } 67 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{2}}
\end{aligned}
$$

Deflection factor at

$$
\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=4
$$

horizontal $\quad \mathrm{M}_{\mathrm{x}}=24$ to $31 \mathrm{~V} / \mathrm{cm}$ per kV of V_{4}
vertical $\quad \mathrm{M}_{\mathrm{y}}=8.6$ to $11 \mathrm{~V} / \mathrm{cm}$ per kV of V_{4}
Control grid circuit resistance
Focusing electrode current

$$
\mathrm{I}_{\mathrm{g}_{3}}=-30 \text { to }+30 \mu \mathrm{~A}^{5} \text {) }
$$

$\overline{\left.\left.\left.\left.\left.{ }^{1}\right)^{2}\right)^{3}\right)^{4}\right)^{5}\right)}$ See page 5

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\mathrm{l}$)	$\begin{aligned} & =\max \\ & =\min \end{aligned}$	$\begin{aligned} & 5000 \\ & 1500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Geometry control electrode voltage	V_{g}	$=\max$.	2200	V
Astigmatism control electrode voltage	V_{4}	$\begin{aligned} & =\max \\ & =\min \end{aligned}$	$\begin{array}{r} 2200 \\ 900 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Focusing electrode voltage	V_{g}	$=\max$.	1500	V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	$=\max$.	2200	V
Control grid voltage negative	$-\mathrm{V}_{\mathrm{g}_{1}}$	$=\max$.	200	V
	V_{g}	$=\max$.	0	V
Cathode to heater voltage cathode positive	V+k/f -	$=\max$.	100	V
cathode negative	V-k/f+	$=\max$.	15	V
Voltage between astigmatism control electrode and any deflection plate	$\mathrm{V}_{4 / \mathrm{x}}$	$=\max$.	500	V
	$\mathrm{V}_{4} / \mathrm{y}$	$=\max$.	500	V
Cathode current, average	I_{k}	$=\max$.	300	$\mu \mathrm{A}$
Screen dissipation	W_{ℓ}	$=\max$.	3	$\mathrm{mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{V}_{66}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}$	$\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}$	$=\max$.	4	
Ratio $\mathrm{V}_{\mathrm{g}} / \mathrm{V}_{\mathrm{g}_{4}}$	$\mathrm{Vg}_{2} / \mathrm{V}_{\mathrm{g} 4}$	$=\max$. $=\min$.	1	

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g} 6(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=4$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
3) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
4) A graticule, consisting of concentric rectangles of $50 \mathrm{~mm} \times 60 \mathrm{~mm}$ and 48.4 mm x 58.4 mm is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
5) Values to be taken into account for the calculation of the focus potentiometer. 7Z2 5500

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with 10 cm diameter flat faceplate and post deflection acceleration by means of a helical electrode. The tube is intended for small compact oscilloscopes.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{6}(\ell)}$	$=4000 \mathrm{~V}$	
Display area	horizontal		
		$=1 \mathrm{full} \mathrm{scan}$	
vertical		6 cm	
Deflection factor, horizontal			
vertical	M_{x}	$=27.5 \mathrm{~V} / \mathrm{cm}$	
	M_{y}	$=9.8 \mathrm{~V} / \mathrm{cm}$	

SCREEN

	Colour	Persistence
D10-12BE	blue	medium short
D10-12GH	green	medium short
D10-12GP	bluish green	medium short
D10-12GM	yellowish green	long

Useful screen diameter
Useful scan at $\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=4$
horizontal
vertical
min. 85 mm
full scan
min. 60 mm

The useful scan may be shifted vertically to a max. of 4 mm with respect to the geometric centre of the faceplate.

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current

$$
\begin{array}{r}
\mathrm{V}_{\mathrm{f}}=63 \mathrm{~V} \\
\mathrm{I}_{\mathrm{f}}=\frac{300 \mathrm{~mA}}{7 \mathrm{Z2} 5501}
\end{array}
$$

MECHANICAL DATA (Dimensions in mm)

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
14 pin all glass
Dimensions and connections
$\begin{array}{llll}\text { Overall length (inclusive socket 55566) } & \max . & 320 \mathrm{~mm} \\ \text { Face diameter } & \max . & 102 \mathrm{~mm}\end{array}$

Net weight

approx. 480 g
Accessories
$\begin{array}{lll}\text { Socket (supplied with the tube) } & \text { type } & 55566 \\ \text { Final accelerator contact connector } & \text { type } & 55560 \\ \text { Mu-metal shield } & \text { type } & 55541\end{array}$

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

FOCUSING

DEFLECTION
x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $90^{\circ} \pm 1^{\circ}$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen
Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

HELIX

Post deflection accelerator helix resistance
$\min .50 \mathrm{M} \Omega$
2) See page 6

7 Z 27723

TYPICAL OPERATING CONDITIONS
Final accelerator voltage
Geometry control electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection factor

horizontal
vertical
Deviation of linearity of deflection
Geometry distortion

$\mathrm{V}_{\mathrm{g}_{6}(\ell)}$	$=4000 \mathrm{~V}$	
$\mathrm{~V}_{\mathrm{g}_{5}}$	$\left.=1000 \pm 100 \mathrm{~V}^{1}\right)$	
$\mathrm{V}_{\mathrm{g}_{4}}$	$\left.=1000 \pm 50 \mathrm{~V}^{2}\right)$	
$\mathrm{V}_{g_{3}}$	$=50$ to 200 V	
$\mathrm{~V}_{g_{2}}$	$=$	1000 V
$-\mathrm{V}_{\mathrm{g}_{1}}$	$=25$ to 67 V	

Useful scan
horizontal
vertical

$$
\begin{aligned}
\mathrm{M}_{\mathrm{x}} & =24 \text { to } 31 \mathrm{~V} / \mathrm{cm} \\
\mathrm{M}_{\mathrm{y}} & =8.6 \text { to } 11 \mathrm{~V} / \mathrm{cm} \\
& \left.=\max . \quad 2 \%^{3}\right)
\end{aligned}
$$

See note 4
$=$ full scan
$=$ min. 60 mm

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot

Deflection factor at

$$
\begin{gathered}
\mathrm{V}_{6}(\ell) / \mathrm{V}_{4}=4 \\
\text { horizontal } \\
\text { vertical }
\end{gathered}
$$

Control grid circuit resistance
Focusing electrode current
$\mathrm{V}_{3}=50$ to $200 \quad \mathrm{~V}$ per kV of V_{4}
$-\mathrm{V}_{\mathrm{g}_{1}}=25$ to 67 V per kV of $\mathrm{V}_{\mathrm{g}_{2}}$
$\mathrm{M}_{\mathrm{X}}=24$ to $31 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}$
$\mathrm{M}_{\mathrm{y}}=8.6$ to $11 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}$
$\mathrm{R}_{\mathrm{g}}=\max . \quad 1.5 \mathrm{M} \Omega$
$\mathrm{I}_{3}=-30$ to $+30 \mu \mathrm{~A}^{5}$)
$\overline{\left.\left.\left.1)^{2}\right)^{3}\right)^{4}\right)^{5} \text {) See page } 6}$

LIMITING VALUES (Absolute max rating system)

Final accelerator voltage	$\mathrm{Vg}_{6}(\ell)$	$\begin{aligned} & =\max \\ & =\min . \end{aligned}$	$\begin{aligned} & 5000 \\ & 1500 \end{aligned}$	V
Geometry control electrode voltage	Vg_{5}	$=\max$	2200	V
Astigmatism control electrode voltage	Vg_{4}	$\begin{aligned} & =\max \\ & =\min . \end{aligned}$	$\begin{array}{r} 2200 \\ 900 \end{array}$	V
Focusing electrode voltage	Vg_{3}	$=\max$	1500	V
First accelerator voltage	Vg_{2}	$=\mathrm{ma}$	2200	V

Control grid voltage
negative
positive

$-\mathrm{V}_{1}$	$=\max$.	$200 \quad \mathrm{~V}$	
Vg_{1}		$=\max$.	$0 \quad \mathrm{~V}$

Cathode to heater voltage
cathode positive
cathode negative
Voltage between astigmatism control electrode and any deflection plate

Screen dissipation
Ratio $\mathrm{V}_{6}(\ell) / \mathrm{V}_{\mathrm{g}}$
Ratio $\mathrm{V}_{2} / \mathrm{V}_{\mathrm{g}}$
$\begin{array}{llll}\mathrm{V}+\mathrm{k} / \mathrm{f}- & =\max . & 200 \mathrm{~V} \\ \mathrm{~V}-\mathrm{k} / \mathrm{f}+ & =\max . & 125 \mathrm{~V}\end{array}$
$\mathrm{V}_{4} / \mathrm{x}=\max . \quad 500 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} / \mathrm{y}} \quad=\max . \quad 500 \mathrm{~V}$
$\mathrm{W}_{\ell} \quad=\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathrm{V}_{6}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}=\max . \quad 4$
$\begin{array}{rlr}\mathrm{V}_{2} / \mathrm{V}_{\mathrm{g}} & =\max . & 1 \\ & =\min . & 1\end{array}$

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g}_{6}}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}=4$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
3) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
4) A graticule, consisting of concentric rectangles of 50 mm x 60 mm and $48.4 \mathrm{~mm} \times 58.4 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
${ }^{5}$) Values to be taken into account for the calculation of the focus potentiometer.

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced oscilloscope tube with thin metal backing and post deflection acceleration by means of a helical electrode.

QUICK REFERENCE DATA		
Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7}(\ell)$	$=4000 \mathrm{~V}$
Display area		$=6 \times 10 \mathrm{~cm}$
Deflection factor, horizontal	M_{X}	$=22.9 \mathrm{~V} / \mathrm{cm}$
	vertical	M_{y}
	$=5.9 \mathrm{~V} / \mathrm{cm}$	

SCREEN

	Colour	Persistence
D13-15BE	blue	medium short
D13-15GH	green	medium short
D13-15GP	bluish green	medium short
D13-15GM	yellowish green	long

Useful screen diameter
min. 114 mm
Useful scan at $V_{g_{7}(\ell)} / V_{g_{4}}=2$
horizontal
vertical
min. 100 mm
min. 60 mm
The useful scan may be shifted vertically to a max. of 4 mm with respect to the geometric centre of the faceplate.

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current
$V_{f}=6.3 \mathrm{~V}$
$I_{f}=300 \mathrm{~mA}$

7Z2 5507

MECHANICAL DATA (Dimensions in mm)

1) Straight part of the bulb.
2) Location of the recessed cavity button contact with respect to the x -trace.

Mounting position : any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.
Base
Diheptal medium shell
Dimensions and connections

Overall length
Face diameter
Net weight
Accessories

Socket	type	$5914 / 20$
Final accelerator contact connector	type	55560
Side contact connector	type	55561
Mu-metal shield	type	55551

7Z2 7726

CAPACITANCES

x_{1} to all other elements except x_{2}
$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{X}_{1} \mathrm{x}_{2}}=1.9 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=105.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{k}}=3.5 \mathrm{pF}$

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.
Angle between x and y traces $90^{\circ} \pm 1^{\circ}$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen
Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width
$\mathrm{V}_{\mathrm{g7}(\mathrm{l})}=4000 \mathrm{~V}$
$\left.\mathrm{~V}_{\mathrm{g}_{4}}=2000 \mathrm{~V}^{3}\right)$
$\mathrm{V}_{\mathrm{g}_{2}}=2000 \mathrm{~V}$
$\mathrm{I}(\ell)=10 \mathrm{\mu A}$
l.w.

HELIX

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection factor
horizontal
vertical
Deviation of linearity of deflection
Geometry distortion
Useful scan

| horizontal | $=\min$. | 100 mm |
| :--- | :--- | ---: | :--- |
| vertical | $=\min$. | 60 mm |

CIRCUIT DESIGN VALUES

Focusing voltage

$$
\mathrm{V}_{\mathrm{g}_{3}}=110 \text { to } 355 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}}
$$

Control grid voltage for visual extinction of focused spot
Deflection factor at

$$
\mathrm{V}_{7}(\ell) / \mathrm{V}_{4}=2
$$

horizontal $\quad \mathrm{M}_{\mathrm{x}} \quad=11.9$ to $15.6 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}$
vertical $\quad \mathrm{M}_{\mathrm{y}}=3.3$ to $4.0 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}$
Control grid circuit resistance
Deflection plate circuit
resistance
Focusing electrode current
$\left.\left.\left.\left.\overline{1})^{2}\right)^{3}\right)^{4}\right)^{5}\right)^{6}$) See page 6

LIMITING VALUES (Absolute max. rating system)

Control grid voltage
negative
positive
positive peak
Cathode to heater voltage
cathode positive
cathode negative
Voltage between astigmatism control electrode and any deflection plate

Screen dissipation
Ratio $\mathrm{V}_{7}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}$
Ratio $V_{g_{2}} / V_{g_{4}}$

$-\mathrm{Vg}_{1}$	$=\max$.	200	V
Vg_{1}		\max.	0
$\mathrm{Vg}_{1 \mathrm{p}}$		V	
	\max.	2	V

| $\mathrm{V}+\mathrm{k} / \mathrm{f}-$ | $=\max$. | 200 V |
| :--- | :--- | :--- | :--- |
| $\mathrm{~V}-\mathrm{k} / \mathrm{f}+$ | $=\max$. | 125 V |

$\mathrm{V}_{\mathrm{g}} / \mathrm{x} \quad=\max . \quad 500 \mathrm{~V}$
$V_{g} / \mathrm{y}=\max . \quad 500 \mathrm{~V}$
$\mathrm{W}_{\ell} \quad=\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathrm{V}_{\mathrm{g} 7}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}=\max . \quad 4$
$\mathrm{V}_{\mathrm{g}_{2}} / \mathrm{V}_{\mathrm{g}_{4}}=\max . \quad 1$
${ }^{1}$) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g} 7}(\ell) / \mathrm{V}_{\mathrm{g}_{2}}=2$. Operation at higher ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
${ }^{2}$) This voltage should be equal to the mean x - and y plates potential.
3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5) A graticule, consisting of concentric rectangles of 60 mm x 100 mm and $58.5 \mathrm{~mm} \times 98 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these ractangles with optimum correction potentials applied.

6) Values to be taken into account for the calculation of the focus potentiometer.
7 Z 25512

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with flat 13 cm diameter face, post deflection acceleration by means of a helical electrode, metal backed screen, deflection blanking and sectioned y deflector plates. The tube is designed to display high frequencies combined with a high writing speed.

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\ell)$	$=$	10	kV
Display area		$=$	6×10	cm
Deflection factor, horizontal	M_{X}	\max.	18	$\mathrm{~V} / \mathrm{cm}$
vertical	M_{y}	$=$	6	$\mathrm{~V} / \mathrm{cm}$

SCREEN

	Colour	Persistence
D13-16BE	blue	medium short
D13-16GH	green	medium short
D13-16GP	bluish green	medium short

Useful screen diameter
Useful scan at $\mathrm{V}_{9}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=6$

horizontal
vertical

HEATING

Indirect by A. C. or D. C.; parallel supply

Heater voltage	$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
current	$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

MECHANICAL DATA

Mounting position: any

The socket should under no circumstances be used to support the tube.

Base
Dimensions and connections
Overall length (inclusive socket 55566)
Face diameter
Net weight:
Accessories

\max.	600	mm
max.	134.5	mm
approx.	1300	g

Socket (supplied with tube)

Final accelerator contact connector
Side contact connector
Mu-metal shield

1) Straight part
2) The tolerance of the position of the neck pins with respect to the x-trace is $\pm 2^{\circ}$.
3) The tolerance of the position of the base pins with respect to the x-trace is $\pm 10^{\circ}$.

7Z2 7860
4) See page 6 .

CAPACITANCES

x_{1} to all other elements except x_{2}

$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$	$=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	$=2.8 \mathrm{pF}$

y1.1 to all other elements except $\mathrm{y}_{2}, \mathrm{y}_{1.2}, \mathrm{y}_{1.3}, \mathrm{y}_{1.4}$
$\mathrm{C}_{\mathrm{y}_{1.1}\left(\mathrm{y}_{2}, \mathrm{y}_{1.2}, \mathrm{yl}_{1.3}, \mathrm{y}_{1.4}\right)}=1.6 \mathrm{pF}$
$y_{2.1}$ to all other elements except

$$
\mathrm{y}_{1}, \mathrm{y}_{2.2}, \mathrm{y}_{2.3}, \mathrm{y}_{2.4}
$$

x_{1} to x_{2}
$y_{1.1}$ to $y_{2.1}$
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{y}_{2.1}}\left(\mathrm{y}_{1}, \mathrm{y}_{2.2}, \mathrm{y}_{2.3}, \mathrm{y}_{2.4}\right)$	$=1.6 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	$=2.3 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1.1}, \mathrm{y}_{2.1}}$	$=0.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}$	$=5.0 \mathrm{pF}$
C_{k}	$=3.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{3}}$	$=9 \mathrm{pF}$

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam near the edge of the scan, hence a low impedance deflection plate drive is desirable.

Angle between x and y traces 90° See "Correction Coils"

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen

Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

$\mathrm{V}_{9}(\ell)$	$=$	10000 V
$\mathrm{~V}_{5}$	$=$	$\left.1670 \mathrm{~V}^{5}\right)$
$\mathrm{V}_{\mathrm{g}_{2}}$	$=$	1670 V
$\mathrm{I}_{9}(\ell)$	$=$	$10 \mathrm{\mu A}$
$1 . \mathrm{w}$.	$=$	0.35 mm

HELIX

Post deflection acc. helix resistance
$\min .300 \mathrm{M} \Omega$
The helix is connected between $g_{9}(\ell)$ and g_{8}
5) See page 6

7Z2 7946

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Deflection plate shield voltage
Beam centring electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Deflection blanking electrode voltage
Deflection blanking control voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

$\mathrm{V}_{9}(\ell)$	$=10000 \mathrm{~V}$	
$\mathrm{~V}_{\mathrm{g}_{8}}$	$=$	$\left.1670+100 \mathrm{~V}^{1}\right)$
$\mathrm{V}_{\mathrm{g}_{7}}$	$=$	$\left.1670 \mathrm{~V}^{2}\right)$
$\mathrm{V}_{\mathrm{g}_{6}}$	$=$	$\left.1670+20 \mathrm{~V}^{3}\right)$
V_{5}	$=$	$\left.1670+100 \mathrm{~V}^{5}\right)$
V_{4}	$=$	230 to 500 V
$\mathrm{~V}_{\mathrm{g}_{3}}$	$=$	1670 V
$\Delta \mathrm{~V}_{\mathrm{g}_{3}}$	$=$	\max.
V_{2}	$=$	$\left.160 \mathrm{~V}^{6}\right)$
$-\mathrm{V}_{\mathrm{g}_{1}}$	$=$	50 to 120 V

Deflection factor
horizontal
vertical
Deviation of linearity of deflection
Geometry distortion
Useful scan horizontal
vertical
$=\quad 100 \mathrm{~mm}$
$=$

LIMITING VALUES (Absolute limits)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 9}(\ell)$	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{array}{r} 16000 \\ 9000 \end{array}$
Geometry control electrode voltage	V_{g}	$=$ max.	2500
Deflection plate shield voltage	$\mathrm{V}_{\mathrm{g} 7}$	$=\max$.	2500
Beam centring electrode voltage	$\mathrm{V}_{\mathrm{g}_{6}}$	$=\max$.	2500
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g}_{5}}$	$=\max$.	2500
Focusing electrode voltage	V_{4}	$=\max$.	2500
Deflection blanking electrode voltage	V_{g}	$=\max$.	2500
First accelerator voltage	V_{g}	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{aligned} & 2500 \\ & 1250 \end{aligned}$
Control grid voltage			
negative	$-\mathrm{V}_{\mathrm{g}_{1}}$	$=\max$.	200
positive	V_{g}	$=\max$.	0
positive peak	$\mathrm{V}_{\mathrm{g}_{1} \mathrm{p}}$	$=\max$.	2

Voltage between cathode and heater cathode positive
cathode negative
Ratio $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{5}$
Ratio $\mathrm{V}_{\mathrm{g}} / \mathrm{V}_{\mathrm{g}_{5}}$
Screen dissipation
Average cathode current

CIRCUIT DESIGN VALUES

Focusing electrode voltage

$$
\begin{array}{llr}
\mathrm{V}_{+\mathrm{k} / \mathrm{f}-} & =\max \cdot & 200 \mathrm{~V} \\
\mathrm{~V}_{-\mathrm{k} / \mathrm{f}+} & =\max \cdot & 125 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{9}(\ell)} / \mathrm{V}_{\mathrm{g}_{5}} & =\max . & 10 \\
\mathrm{~V}_{\mathrm{g}_{2}} / \mathrm{V}_{\mathrm{g}_{5}} & =\max . & 1 \\
\mathrm{~W}_{\ell} & =\max \cdot & 3 \mathrm{~mW} / \mathrm{cm}^{2} \\
\mathrm{I}_{\mathrm{k}} & & \max .
\end{array} \quad 300 \mathrm{\mu A}
$$

Control grid voltage for visual extinction of focused spot
Deflection factor at $\mathrm{V}_{\mathrm{g}_{9}(\ell)} / \mathrm{V}_{\mathrm{g}_{5}}=6$
horizontal
vertical
Focusing electrode current
Control grid circuit resistance
Deflection plate circuit resistance
$\mathrm{M}_{\mathrm{X}}=\max \cdot 10.8 \quad \mathrm{~V} / \mathrm{cm}$ per kV of V_{5}
$M_{y}=3.4$ to $4.0 \mathrm{~V} / \mathrm{cm}$ per kV of V_{5}
$\mathrm{I}_{4}=-10$ to $+15 \mu \mathrm{~A}$
$\mathrm{R}_{\mathrm{g}_{1}}=\max . \quad 1.5 \mathrm{M} \Omega$
$=\max . \quad \mathrm{k} \Omega$

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{9}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=6$
Operation at other ratio may result in changes in deflection uniformity and geometry distortion.
The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) This voltage should be equal to the mean x and y plates potential.
3) The beam centring electrode voltage should be adjusted for equal brightness in the x direction with respect to the electrical centre of the tube.
${ }^{4}$) When putting the tube into the mu-metal shield care should be taken not to damage the side contacts.
4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{6}$) For beam blanking of a beam current $\mathrm{Ig}_{9}(\ell)$ of $10 \mu \mathrm{~A}$.
5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
${ }^{8}$) A graticule, consisting of concentric rectangles of 100 mm x 60 mm and $98 \mathrm{~mm} \times 58.2 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

7Z2 7863

CORRECTION COILS

The D13-16. . is provided with a coil unit consisting of a pair of coils for:
a. Correction of the orthogonality of the x and y traces (which means that at the centre of the screen the angle between the x and y traces can be made exactly 90°).
b. Vertical shift of the scanned area.

DETAIL DRAWING OF COIL UNIT

The currents required under typical operating conditions, the tube being screened by a mu-metal shield closely surrounding the coils (e.g. 55554), are max. 2.5 mA per degree of angle correction and max. 2 mA per mm of shift. If not such shield is used these values have to be multiplied by a factor k $(1<\mathrm{k}<2)$, the value of which depends on the diameter of the shield and approaches 2 for the case no shield is present.
The D.C. resistance is approx. 180Ω per coil.
When designing the supply circuit for these coils it should be considered that the maximum current required in either coil can be 15 mA .

Circuit diagrams

A suitable circuit permitting independent controls of orthogonality correction and vertical shift is given in fig. 1 .

$\mathrm{P}_{1}, \mathrm{P}_{4}$	$:$ Potentiometers $220 \Omega, 1$ Watt, ganged
$\mathrm{P}_{2}, \mathrm{P}_{3}$	$:$ Potentiometers $100 \Omega, 0,5$ Watt, ganged
$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}$	$:$ Resistors

Fig. 1
The dissipation in the potentiometers can be reduced considerably if the requirement of independent controls is dropped (see fig. 2).

$\mathrm{P}_{1}, \mathrm{P}_{2}$: Potentiometers, $220 \Omega, 0,5 \mathrm{Watt}$, ganged $\mathrm{P}_{3}, \mathrm{P}_{4}$: Potentiometers, $220 \Omega, 0,5 \mathrm{Watt}$, ganged

Fig. 2

A further reduction of the dissipation can be obtained by inserting a commutator for each coil (see fig.3).
The procedure of adjustment will then become more complicated, but it should be kept in mind that a readjustment is necessary only when the tube has to be replaced.

$\mathrm{P}_{1}, \mathrm{P}_{2}$: Potentiometers, $500 \Omega, 0,5 \mathrm{Watt}$.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$: Commutators
Fig. 3
For the adjustment of the currents the following procedure is recommended:
a. With the tube fully scanned in the vertical direction the scanned area must be shifted so that the useful vertical scan on either side of the geometric centre of the screen meets the published value of 30 mm min.
With the circuit according to fig. 1 this is done by means of the ganged potentiometers P_{1} and P_{4}.
b. Adjustment of orthogonality by means of the ganged potentiometers P_{2} and P_{3}, in fig.1. A slight readjustment of P_{1} and P_{4} may be necessary afterwards.

With a circuit according to fig. 2 or 3 these corrections have to be performed by means of successive adjustments of the currents in the coils.
The most convenient deflection signal is a square waveform permitting an easy and fairly accurate check of orthogonality.

$\frac{6}{3}+2$

INSTRUMENT CATHODE-RAY TUBE

The D13-16../01 is equivalent to the D13-16.. but features an internal graticule. This graticule can be illuminated.

MECHANICAL DATA

Dimensions in mm

Maximum angle between x-trace and
x-axis of the graticule
$\pm 5^{0}$

ALIGNMENT

In order to align the x-trace and the x-axis of the graticule an image rotating coil may be used. This coil should be positioned at one third of the cone length, seen from the face end, and can be attached to the inner surface of the mumetal shield.
Under typical operating conditions maximum 50 ampere-turns are required for alignment.

ILLUMINATION

To illuminate the internal graticule the use of a light conductor (e.g. of Perspex) is obligatory. The following design considerations should be observed:

In order to achieve the most efficient light conductance the holes for the light bulb as well as the contact area with the front plate should be polished. The contact with the edges of the front plate should be as close as possible and the edges of the front plate and the corresponding hole in the light conductor should be parallel to achieve light beams perpendicular to the edges. It is advised to apply reflective material to the outer circumference of the conductor and if possible also to both planes (see drawing).

[^2]2) Polished.
3) Close and constant distance to front plate of tube.

It is essential that the light conductor and the front plate of the tube are in plane.
4) If possible reflective material.

INSTRUMENT CATHODE-RAY TUBE

SCREEN

	colour	persistence
D13-17BE	blue	medium short
D13-17GH	green	medium short
D13-17GP	bluish green	medium short

HEATING: Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

MECHANICAL DATA

Base: 14 pin all-glass

Accessories

Socket (supplied with tube)

V_{f}	6.3	V
I_{f}	300	mA

Dimensions in mm

type 55566

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam near the edge of the scan, hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

$$
90^{\circ} \pm 1^{0}
$$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\mathrm{l}$)	10000	V
Geometry control electrode voltage	V_{g}	1670 ± 100	V
Deflection plate shield voltage	V_{g}	1670	V
Beam centring electrode voltage	V_{6}	1670 ± 20	V
Astigmatism electrode voltage	V_{5}	1670 ± 100	V
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	230 to 500	V
Deflection blanking electrode voltage	V_{3}	1670	V
Deflection blanking control voltage	$\Delta \mathrm{V}_{3}$	max. 60	V
First accelerator voltage	V_{2}	1670	V
Control grid voltage for visual extinction of focused spot	$-\mathrm{V}_{\mathrm{g}}$	50 to 120	V
Deflection factor, horizontal	M_{X}	$\max .18$	V / cm
vertical	M_{y}	4.5 to 5.5	V / cm
Deviation of linearity of deflection		\max. 2	\%

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage

First accelerator voltage

$$
\begin{array}{llrl}
& \text { max. } & 16000 & \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}(\ell)} & \text { min. } & 9000 & \mathrm{~V} \\
& \text { max. } & 2500 & \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{2}} & \text { min. } & 1250 & \mathrm{~V}
\end{array}
$$

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with flat face post deflection acceleration by means of a helical electrode, side contacts, metal backed screen, 6 cm scan for high frequency and high writing speed applications.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{7}(\ell)$	$=10 \mathrm{kV}$	
Display area		$=6 \times 10$	cm
Deflection factor, horizontal	M_{X}	$=10.9 \mathrm{~V} / \mathrm{cm}$	
vertical	M_{y}	$=10 . \mathrm{Vm}$	

SCREEN

	colour	persistence
D13-19BE	blue	medium short
D13-19GH	green	medium short
D13-19GP	bluish green	medium short
D13-19GM	yellowish green	long

Useful screen diameter

$$
\min . \quad 114 \mathrm{~mm}
$$

Useful scan at $\mathrm{V}_{7}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}=6$

horizontal	min.	100	mm
vertical	min	60	mm

The useful scan may be shifted vertically to a max. of 3 mm with respect to the geometric centre of the faceplate.

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current
$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$

$\mathrm{I}_{\mathrm{f}}=$| 300 mA |
| :--- |
| $7 \mathrm{Z2} 2519$ |

MECHANICAL DATA

Dimensions in mm

1) Straight part of the bulb
2) Location of the recessed cavity button contact with respect to the x -trace.

Mounting position: any
The tube should not be supported by the base alone.and under no circumstances should the socket be allowed to support the tube.

Base

Diheptal

Dimensions and connections

See also outline drawing

Overall length
Face diameter

Net weight:
Accessories

Socket	type	$5914 / 20$
Final accelerator contact connector	type	55563
Side contact connector	type	55561
Mu-metal shield	type	55551

7Z2 7728

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces .

$$
90^{\circ} \pm 1^{0}
$$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.
Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

$\mathrm{V}_{7}(\ell)$	$=10 \mathrm{kV}$
V_{4}	$\left.=1670 \mathrm{~V}^{3}\right)$
V_{2}	$=1670 \mathrm{~V}$
$\mathrm{I}(\ell)$	$=10 \mathrm{\mu A}$
l.w.	$=10.4 \mathrm{~mm}$

HELIX

Post deflection accelerator helix resistance $=\min .200 \mathrm{M} \Omega$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection factor, horizontal

vertical

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal
vertical

$$
\begin{aligned}
\mathrm{V}_{7}(\ell) & =10 \mathrm{kV} \\
\mathrm{~V}_{6} & \left.=1670 \pm 170 \mathrm{~V}^{\mathrm{l}}\right) \\
\mathrm{V}_{5} & \left.=1670 \pm 85 \mathrm{~V}^{2}\right) \\
\mathrm{V}_{\mathrm{g}_{4}} & \left.=1670 \pm 85 \mathrm{~V}^{3}\right) \\
\mathrm{V}_{3} & =320 \text { to } 500 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{2}} & =1670 \mathrm{~V}
\end{aligned}
$$

$$
-\mathrm{V}_{1}=53 \text { to } 82 \mathrm{~V}
$$

$$
\mathrm{M}_{\mathrm{X}} \quad=27 \text { to } 33 \mathrm{~V} / \mathrm{cm}
$$

$$
\mathrm{M}_{\mathrm{y}}=9.5 \text { to } 12.4 \mathrm{~V} / \mathrm{cm}
$$

$$
\left.=\max . \quad 2 \%^{4}\right)
$$

$$
\text { See note }{ }^{5} \text {) }
$$

$$
=\min . \quad 100 \mathrm{~mm}
$$

$$
=\min . \quad 60 \mathrm{~mm}
$$

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot

$$
-\mathrm{V}_{\mathrm{g}_{1}}=32 \text { to } 49 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{2}
$$

Deflection factor at

$$
\mathrm{V}_{7(\ell)^{\prime} / \mathrm{V}_{4}}=6
$$

$$
\text { horizontal } \quad \mathrm{M}_{\mathrm{x}}=16 \text { to } 20 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{4}
$$

$$
\text { vertical } \quad \mathrm{M}_{\mathrm{y}}=5.7 \text { to } 7.4 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}}
$$

Control grid circuit resistance

$$
\mathrm{R}_{\mathrm{g}_{1}}=\max . \quad 1.5 \mathrm{M} \Omega
$$

Deflection plate circuit

> resistance

Focusing electrode current

$$
\mathrm{V}_{3}=190 \text { to } 300 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}}
$$

$\mathrm{R}_{\mathrm{X}}, \mathrm{R}_{\mathrm{y}}=\max . \quad 1 \mathrm{M} \Omega$

$$
\left.\mathrm{I}_{\mathrm{g}_{3}}=-15 \text { to }+10 \quad \mu \mathrm{~A}{ }^{6}\right)
$$

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{77}(\ell)$	$\begin{aligned} & =\max \\ & =\min \end{aligned}$	12 6
Geometry control electrode voltage	V_{g}	max.	2200
Deflection plate shield voltage	$\mathrm{V}_{\mathrm{g}_{5}}$	$=\max$.	2100
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g}}^{4}$	$\begin{aligned} & =\max \\ & =\min \end{aligned}$	$\begin{aligned} & 2100 \\ & 1000 \end{aligned}$
Focusing electrode voltage	Vg_{3}	$=\max$.	1500
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	$\begin{aligned} & =\max \\ & =\min \end{aligned}$	$\begin{aligned} & 2100 \\ & 1000 \end{aligned}$

Control grid voltage
negative
positive
positive peak

Cathode to heater voltage
cathode positive
cathode negative
Voltage between astigmatism control electrode and any deflection plate

Screen dissipation
Ratio $\mathrm{V}_{7}(\ell) / \mathrm{V}_{4}$

$-\mathrm{V}_{g_{1}}$	$=\max$.	$200 \quad \mathrm{~V}$	
Vg_{1}	$=\max$.	0	V
$\mathrm{~V}_{\mathrm{g}_{1 p}}$	$=\max$.	$2 \quad \mathrm{~V}$	

$$
\begin{array}{ll}
\mathrm{V}+\mathrm{k} / \mathrm{f}- & =\max . \quad 200 \mathrm{~V} \\
\mathrm{~V}-\mathrm{k} / \mathrm{f}+ & =\max . \quad 125 \mathrm{~V}
\end{array}
$$

$$
W_{\ell}
$$

$\mathrm{V}_{7(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=\max . \quad 6$
${ }^{1}$) This tube is designed for optimum performance when operating at the ratio $\mathrm{Vg}_{7(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=6$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) This voltage should be equal to the mean x - and y plates potential.
3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5) A graticule, consisting of concentric rectangles of 100 mm x 60 mm and $98 \mathrm{~mm} \times 58.2 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these ractangles with optimum correction potentials applied.
6) Values to be taken into account for the calculation of the focus potentiometer.

INSTRUMENT CATHODE-RAY TUBE

SCREEN

	colour	persistence
D13-20BE	blue	medium short

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	300 mA	

MECHANICAL DATA

Dimensions in mm
Base: Diheptal 12 pins

1) Straight part of the bulb.
2) Location of the recessed cavity button contact with respect to the X -trace.

Accessories

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $\quad 90^{\circ} \pm 1^{\circ}$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\ell)$		24	kV
Geometry control electrode voltage	V_{g}	4000	+400 -200	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Deflection plate shield voltage	V_{5}		4000	V
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}}$	4000	± 200	V
Focusing electrode voltage	V_{g}	770 to	1200	V
Control grid voltage for visual extinction of focused spot	$-\mathrm{V}_{\mathrm{g}}$	120 to	192	V
Deflection factor, horizontal	M_{X}	67 to	80	V / cm
vertical	M_{y}	13.5 to	18.5	V / cm
Deviation of linearity of deflection		max.	2	\%

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage

Astigmatism control electrode voltage

	max.	24	kV
$\mathrm{V}_{\mathrm{g}}(\ell)$	min.	4	kV
	max.	4200	V
$\mathrm{~V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}}$	min.	1000	V

X-Ray warning

X-ray shielding is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 16 kV .

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with flat face post deflection acceleration by means of a helical electrode, side contacts, metal backed screen, 4 cm scan for high frequency and high writing speed applications.

QUICK REFERENCE DATA			
Final accelerator voltage		10	kV
Display area		4×10	cm
Deflection factor, horizontal	M_{X}	30	V / cm
vertical	M_{y}	6.4	V / cm

SCREEN

	colour	persistence
D13-21BE	blue	medium short
D13-21GH	green	medium short
D13-21GP	bluish green	medium short
D13-21GM	yellowish green	long

Useful screen diameter
Useful scan at $\mathrm{V}_{7(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=6$
$\begin{array}{llrl}\text { horizontal } & \min . & 100 & \mathrm{~mm} \\ \text { vertical } & \min . & 40 & \mathrm{~mm}\end{array}$
The useful scan may be shifted vertically to a max. of 3 mm with respect to the geometric centre of the faceplate.

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

MECHANICAL DATA

1) Straight part of the bulb.
2) Location of the recessed cavity button contact with respect to the x -trace.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{X}_{2}}\left(\mathrm{x}_{1}\right)=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{X}_{1} \mathrm{x}_{2}}=1.9 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=6.0 \mathrm{pF}$
C_{k}

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

$$
90^{\circ} \pm 10
$$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.
Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

HELIX

Post deflection accelerator helix resistance $=\min .200 \mathrm{M} \Omega$

[^3]7Z2 7731

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection factor, horizontal
vertical
Deviation of linearity deflection
$\begin{array}{ll}\text { horizontal } & =\max . \\ \text { vertical } & =\max . \\ & 1.0\end{array} \%^{4}$) $)$

Geometry distortion
Useful scan, horizontal

vertical

See note 5
$=\min .100 \mathrm{~mm}$
$=\min .40 \mathrm{~mm}$

CIRCUIT DESIGN VALUES

Focusing electrode
Control grid voltage for visual extinction of focused spot $-\mathrm{V}_{\mathrm{g}_{1}}=30$ to 48 V per kV of V_{2}
Deflection factor at

$$
\mathrm{V}_{\mathrm{g}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=6
$$

[^4]LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{77(\ell)}$	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	12 6
Geometry control electrode voltage	$\mathrm{V}_{\mathrm{g} 6}$	$=\max$.	2200
Deflection plate shield voltage	V_{5}	$=\max$.	2100
Astigmatism control electrode voltage	V_{4}	$=\max$. $=\min$.	$\begin{aligned} & 2100 \\ & 1000 \end{aligned}$
Focusing electrode voltage	V_{g}	$=\max$.	1500
First accelerator voltage	V_{g}	$=\max$. $=\min$.	$\begin{aligned} & 2100 \\ & 1000 \end{aligned}$

Control grid voltage

negative	$-\mathrm{V}_{g_{1}}$	$=\max$.	200	V
positive	V_{1}	$=\max$.	0	V
positive peak	$\mathrm{V}_{\mathrm{g}_{1 p}}$	$=\max$.	2	V

Cathode to heater voltage
cathode positive
cathode negative
een astigmatism control

Voltage between astigmatism control electrode and any deflection plate

Screen dissipation
Ratio $\mathrm{V}_{7}(\ell) / \mathrm{V}_{\mathrm{g} 4}$
${ }^{1}$) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g}_{7}(\ell)} / \mathrm{V}_{\mathrm{g} 4}=6$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) This voltage should be equal to the mean x - and y plates potential.
3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{4}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5) A graticule, consisting of concentric rectangles of $100 \mathrm{~mm} \times 40 \mathrm{~mm}$ and $98.8 \mathrm{~mm} \times 39 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
${ }^{6}$) Values to be taken into account for the calculation of the Vg_{3}-potentiometer.

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced oscilloscope tube, with metal-backed screen, helical PDA and side connections to the x and y plates. The y plates are intended to be included in a resonant circuit tunable to frequencies from 300 MHz to 900 MHz by means of adapter units outside the tube. This tube incorporates deflection blanking and is intended for high frequency, narrow bandwidth displays.

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 9}(\ell)$	$=$	6	kV
Display area		$=$	5×10	cm
Deflection factor, horizontal		M_{X}	$=$	\max.
	14	$\mathrm{~V} / \mathrm{cm}$		
vertical	M_{y}		See note 1	

SCREEN

	colour	persistence
D13-23GH	green	medium short

Useful screen diameter
min. 114 mm
Useful scan at $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=5$

horizontal	min.	100	mm
vertical	min.	50	mm

The useful scan may be shifted vertically to a max. of 5 mm with respect to the geometric centre of the faceplate.

HEATING

Indirect by A C. or D.C.; parallel supply
Heater voltage
Heater current
$V_{f}=6.3 \mathrm{~V}$
$I_{f}=300 \mathrm{~mA}$

7Z2 7794

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base

Dimensions and connections

14 pins all glass

Overall length (inclusive socket 55566)
Face diameter

Net weight:

Accessories:

Socket (supplied with the tube)	type	55566
Final accelerator contact connector	type	55563
Side contact connector	type	55561
Mu-metal shield	type	55554

1) Straight part
${ }^{2}$) The tolerance of the position of the neck pins with respect to the x-trace is $\pm 2^{\circ}$.
2) The tolerance of the position of the base pins with respect to the x-trace is $\pm 10^{\circ}$.
3) When putting the tube into the mu-metal shield care should be taken not to damage the side contacts.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
x_{1} to x_{2}
Control grid to all other elements
Cathode to all other elements
Deflection blanking electrode to all other elements
$\mathrm{C}_{\mathrm{X}_{1}\left(\mathrm{x}_{2}\right)}=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{X}_{1} \mathrm{x}_{2}}=2.3 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=5.0 \mathrm{pF}$
C_{k}
$\mathrm{C}_{\mathrm{g}_{3}}=3.5 \mathrm{pF}$

FOCUSING electrostatic

DEFLECTION double electrostatic
x plates symmetrical
y plates symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y plates $90^{\circ} \pm 1^{\circ}$

HELIX

Post deflection accelerator helix resistance
$\min .300 \mathrm{M} \Omega$

CIRCUIT DESIGN VALUES

Focusing voltage

$$
\mathrm{V}_{\mathrm{g}_{4}}=138 \text { to } 300 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{2}}
$$

Control grid voltage for visual extinction of focused spot $-\mathrm{Vg}_{1}=24$ to 72 V per kV of V_{2}
Deflection factor at $\mathrm{V}_{9}(\ell) / \mathrm{V}_{5}=5$
horizontal
vertical
Control grid circuit resistance
$\mathrm{M}_{\mathrm{X}}=\max \cdot 10.8 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{5}}$
$M_{y} \quad$ See note 1
$\mathrm{R}_{\mathrm{g}}=\max . \quad 1.5 \mathrm{M} \Omega$
Deflection plate circuit resistance $\mathrm{R}_{\mathrm{X}}, \mathrm{R}_{\mathrm{y}}=\max .50 \mathrm{k} \Omega$
Focusing electrode current $\quad \mathrm{I}_{\mathrm{g}_{4}}=+15$ to $-10 \mu \mathrm{~A} \quad{ }^{2}$)

[^5]
TYPICAL OPERATING CONDITIONS

Final accelerator voltage

Geometry control electrode voltage
Deflection plate shield voltage
Beam centring electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Deflection blanking electrode voltage
Deflection blanking control voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection factor
horizontal
vertical
Geometry distortion
Useful scan
horizontal
vertical
$\left.\begin{array}{rlrll}V_{g_{9}(\ell)} & = & 6000 & \mathrm{~V} \\ \mathrm{~V}_{8} & = & 1300 \pm 100 & \mathrm{~V} & 1\end{array}\right)$
$\mathrm{M}_{\mathrm{X}}=\max . \quad 14 \mathrm{~V} / \mathrm{cm}$
See note 7
See note 6
$=\min . \quad 100 \mathrm{~mm}$
$=\min . \quad 50 \mathrm{~mm}$

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g} 9}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=5$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) This voltage should be equal to the mean x - and y plates potential.
3) The beam centring electrode voltage should be adjusted for equal brightness in the x direction with respect to the electrical centre of the tube.
4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
5) For beam blanking of a beam current of $10 \mu \mathrm{~A}$.
6) A graticule, consisting of concentric rectangles of $100 \mathrm{~mm} \times 50 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 48.2 \mathrm{~mm}$ is aligned with the electrical x aixs of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
${ }^{7}$) Depends on the frequency and the adaptors being used.

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\mathrm{l}$)	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{array}{r} 10000 \\ 5000 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Geometry control electrode voltage	V_{8}	$=\max$.	2000	V
Deflection plate shield voltage	V_{g}	$=\max$.	2000	V
Beam centring electrode voltage	$\mathrm{V}_{\mathrm{g}_{6}}$	$=\max$.	2000	V
Astigmatism control electrode voltage	V_{5}	$=\max$.	2000	V
Focusing electrode voltage	V_{4}	$=\max$.	2000	V
Deflection blanking electrode voltage	V_{3}	$=\max$.	2000	V
First accelerator voltage	V_{g}	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{aligned} & 2000 \\ & 1200 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Control grid voltage				
negative	$-\mathrm{V}_{\mathrm{g}_{1}}$	$=\max$.	200	V
positive	V_{g}	$=\max$.	0	V
- positive peak	$\mathrm{V}_{\mathrm{g}}^{1 \mathrm{p}}$	$=\max$.	2	V
Cathode to heater voltage				
cathode positive	$\mathrm{V}_{+\mathrm{k} / \mathrm{f}-}$	$=\max$.	200	V
cathode negative	$\mathrm{V}_{-k / f+}$	$=\max$.	125	V
Voltage between astigmatism electrode and any deflection plate	$\begin{gathered} \mathrm{v}_{\mathrm{g}_{5} / \mathrm{x}} \\ \mathrm{v}_{\mathrm{g}_{5} / \mathrm{y}} \end{gathered}$	$=\max$. $=\max$.	500 500	V
Cathode current (average)	I_{k}	$=\max$.	300	mA
Screen dissipation	W_{ℓ}	$=\max$.	3	$\mathrm{mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{V}_{\mathrm{g} 9}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}$	$\mathrm{V}_{\mathrm{g}_{9}(\ell)} / \mathrm{V}_{\mathrm{g}_{5}}$	$=\max$.	10	
Ratio $\mathrm{V}_{\mathrm{g}} / \mathrm{V}_{\mathrm{g}_{5}}$	$\mathrm{V}_{\mathrm{g}_{2}} / \mathrm{V}_{\mathrm{g}_{5}}$	$=\max$.	1	

APPLICATION DATA

The D13-23GH is intended for use at ultra high frequencies as a monitor of transmitter output.
To achieve the necessary sensitivity the y-deflection plates are designed to form part of a tuned circuit, resonant at the carrier frequency of the transmitter. Details of the coupling units and tuning arrangements are given below.

Mechanical construction of the coupling units

	$\begin{gathered} \text { Unit 1 } \\ (475 \text { to } 575 \mathrm{MHz}) \end{gathered}$	$\begin{gathered} \text { Unit } 2 \\ \text { (} 500 \text { to } 775 \mathrm{MHz} \text {) } \end{gathered}$	$\begin{gathered} \text { Unit } 3 \\ (675 \text { to } 900 \mathrm{MHz}) \end{gathered}$
Coil former			
Length	20	20	18 mm
Diameter	9	9	3 mm
Primary			
No. of turns	4	1.5	1.5
Wire diameter	0.9	0.9	0.9 mm
Approx. coil length	14	10	7 mm
Secondary			
No. of turns	4	2	2
Wire diameter	0.5	1.5	0.9 mm
Approx. coil length	14	10	7 mm
Trimming capacitance	0.6 to 12	0.5 to 6	0.5 to 6 pF

Copper wire is used for all primary windings and enamelled copper wire is used for the secondaries.
The secondary turns are wound between the primary turns.
The trimmer capacitors of units 1 and 2 are connected between the secondary transformer windings in order to obtain good symmetry.
For unit 3 the trimmer is connected between secondary transformer windings and one connecting pin of the deflection system in order not to reduce the coupling factor.

APPLICATION DATA (continued)

Unit 1 and 2
fig. 1

Unit 3
fig. 2

Ct = trimmer capacitance
$\mathrm{Cp}=$ plate capacitance
$\mathrm{L}=$ inductivity of the strips between deflection system and pins in the neck of the tube

Measurement of vertical sensitivity as a function of frequency

1. Adjust the trimmer so that the trimming capacitance is a minimum, to enaable resonance at the highest frequency to be obtained.
2. Change the frequency of the signal generator and adjust the trimming capacitance successively until a maximum deflection is obtained on the tube face. Some care must be taken with these adjustments because several spurious resonances will be observed.
3. When the resonance frequency has been found, the input impedance of the tube must be transformed to exactly 50Ω to obtain a well defined signal voltage. For this purpose a transforming circuit is needed as shown in fig.3, and any reflectometer would be suitable. The impedance is matched when no reflection is measured and zero reflection can be obtained by the successive adjustment of the stubs, 1 and 2 shown in fig. 3 .
4. The tube should now be connected to the generator and the output power regulated for a scan of 5 cm .
5. Replace the tube by a Watt-meter to measure the output power, see fig. 4 .

The signal voltage can be calculated from:

$$
\mathrm{V}_{\mathrm{RMS}}=\mathrm{WxR}=7.07 \mathrm{~W}
$$

The above procedure must be repeated for matching, each time the operating frequency of the tube is altered.

```
APPLICATION DATA (continued)
Typical power and sensitivity values
Unit Frequency ( MHz ) Power (mW) Sensitivity (VRMS/5 cm)
```

1
1
1
2
2
3
3
3
3
3

445
480
540
565
680
680 750
800
850
900

37
39
55
46
69
91
110
195
240 390
1.36
1.40
1.66
1.52
1.86
2.14
2.35
3.12
3.47
4.43

All measurements: $\left.\quad \begin{array}{lll}V_{g} \\ \mathrm{~V}_{2+5} & =1300 & \mathrm{~V} \\ \mathrm{~V}_{9}\end{array}\right)$, 6000 V) with respect to cathode
It should be noted that an increase in acceleration voltage will cause a loss of sensitivity at the lowest frequencies. At the higher frequencies this loss will partly be compensated by the decrease of the transit-time so that at 900 MHz the acceleration voltage can be increased to 2000 V , without changing the sensitivity.

adjustable stubs 50Ω
Set-up for transformation to 50Ω

A: to adjust 50 mm scan
B: to measure output power

Suathon

INSTRUMENT CATHODE-RAY TUBE

The D13-24BE is a wide-band oscilloscope tube especially designed for observation and measurement of high frequency (1000 MHz) phenomena.

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{V}_{9}{ }^{(l)}$		24	kV
Display area				cm
Deflection factor, horizontal	M_{X}	max.	32	V / cm
vertical	M_{y}	max.	8	V / cm

SCREEN

	colour	persistence
D13-24BE	blue	medium short

Useful screen diameter
Useful scan at $V_{g_{9}}(\ell) / V_{g_{5}}=8$

| horizontal | min. | 60 mm |
| :--- | :--- | :--- | :--- |
| vertical | min. | 20 mm |

The useful scan may be shifted vertically to a max. of 10 mm with respect to the geometric centre of the faceplate. The vertical useful scan will be at least 8 mm in either direction from the position of the undeflected spot, with a total of at least 20 mm . A positive voltage on the vertical deflection system will deflect the beam towards pin no. 7 .

DESCRIPTION

The D13-24BE is a wide-band oscilloscope tube especially designed for observation and measurement of high frequency (1000 MHz) phenomena.
The high-frequency performance of conventional oscilloscope tubes is limited by transit-time effects and by resonance phenomena occurring in the circuit consisting of the deflection plates and their connection leads.

In order to overcome these limitations a travelling-wave deflection system is used in the D13-24BE. This deflection system consists of a metal tape wound in the shape of a flattened helix and the electron beam is deflected in the region between the flat part of the helix and a metal plate inserted into the helix. This metal plate is interconnected to the shield surrounding the system.
The mechanical dimensions of the helix have so been chosen that the signal delay per turn is equal to the electron transit-time per turn. This means that the tran-sit-time effects are determined by the width of one turn only, whereas the defelction sensitivity is determined by the sum of the deviations of the beam due to the field of all the turns.
As for the transmissions of wide band signals containing ultra-high frequencies coaxial lines are most suitable. The deflection system has been designed for asymmetrical deflection (helix and plate are connected to inner and outer conductor respectively).
For the connection between the deflection system and coaxial plugs a three strip transmission-line is used which is brought out through the tube neck by means of pins sealed into the glass. The transition to coaxial plugs is made outside the tube. The characteristic impedance of the tube is 100 Ohms, and a modified version of the well-known General Radio type 874 coaxial connector is used (The diameter of the inner conductor has been reduced so as to obtain 100 Ohm impedance). Both input and output of the deflection system have been brought out through the tube neck so that it is possible to pick up the signal which is being observed at the output and to use it for other purposes, if desired. The performance of the deflection system may be expressed in terms of bandwidth (min. 1000 MHz for 3 dB down with respect to D.C.) or in terms of rise time of the display of a step-function signal (max. 0.35 nanoseconds for 10% to 90% of the final value).
Great care has been taken in the design to avoid phase distortion which would introduce overshoot in the display of such a signal. The extent to which a constant input impedance has been realized is indicated by the voltage standingwave ratio (maximum 1.25 up to 1000 MHz). In order to be able to shift the display in vertical direction the deflection system shield is not directly connected but capacitively coupled to the outer connector of the coaxial plugs.
A D.C. shift voltage can be applied to the shield.
The useful vertical scan has been limited to 2 cm in order to obtain the highest possible sensitivity. This is important as in most cases the signal to be observed will be applied directly to the deflection system without any amplification.
The horizontal deflection plates giving 6 cm useful scan, are of conventional design and, of course, also brought out through the neck.

The typical acceleration voltage is 3 kV . Deviations from this value will cause deterioration of band-width and rise time, since the electron velocity will then not be equal to the velocity of signal propagation of the vertical deflection system. However this adjustment is not very critical. The electron gun features apart from astigmatism and geometry control electrodes auxiliary electrodes such as deflection blanking electrodes and a beam centring electrode. The latter can be used to center the beam with respect to the x plates.
Post deflection acceleration is achieved by a helical resistive coating in the innerside of the envelope which allows a P.D.A. to acceleration electrode voltage ratio of 10 . The maximum P.D.A. voltage is 24 kV . This high voltage, the metalbacked screen and the small linewidth $(0.12 \mathrm{~mm})$ assure a high writingspeed.
In order to make use of the full capabilities of this tube some precautions have to be taken in the way the signal is applied to the tube. First, a good termination at the output of the deflection system is essential when pulse signals are to be observed, otherwise reflections from a mismatch at the output may distort the displayed wave-form.
A coaxial resistor is the most suitable termination.
For signal delays in oscilloscopes a high-quality delay-line should be used in order to avoid deterioration of performance due to band-width limitations of the delay-line.

heating

Indirect by A.C. or D. C.; parallel supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	300 mA	

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
x_{1} to x_{2}
Control grid to all other elements
Cathode to all other elements
Deflection blanking electrode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$	3.0	pF
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	3.0	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	2.7	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5.0	pF
C_{k}	3.5	pF
$\mathrm{C}_{\mathrm{g}_{3}}$	9.0	pF

7Z2 7799
uư u! suoṭsuəu!̣

7Z2 7800

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base

Dimensions and connections

Overall length (mu-metal shield included)		642	mm
Face diameter	max.	134.5	mm
Net weight	approx.	g	

Accessories

Socket	supplied with tube
Final accelerator contact connector	type 55563
Side contact connector	supplied with tube
Mu-metal shield	supplied with tube

electrostatic

DEFLECTION

Horizontal electrostatic symmetrical
Vertical delay-line system, asymmetrical
Characteristic impedance of delay-line system $\quad 100 \Omega$
VSWR
Bandwidth
Rise time
Angle between x and y traces
$\max . \quad 1.25$ up to 1000
$1000 \mathrm{MHz}{ }^{2}$)
$0.35 \mathrm{nsec}^{3}$)
90 ± 2^{0}

D13-24..

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.

Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

HELIX

Post deflection accelerator helix resistance

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Vertical deflection system shield voltage
Beam centring electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Deflection blanking electrode voltage
Deflection blanking control voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection factor, horizontal
vertical
Useful scan, horizontal
vertical

$\mathrm{V}_{9}(\ell)$	24000 V	
$\mathrm{~V}_{5}$	3000	$\left.\mathrm{~V}^{6}\right)$
V_{2}	3000 V	
$\mathrm{I}(\ell)$	0.5	$\mu \mathrm{~A}$
l.w.	0.12 mm	

$\mathrm{V}_{\mathrm{g}}(\ell)$	24000	V
Vg_{8}	3000 ± 200	V
Vg_{7}	3000	$\left.\mathrm{V}^{4}\right)$
V_{g}	3000 ± 40	V^{5}
Vg_{5}	3000 ± 200	V^{6}
Vg_{4}	400 to 900	V
Vg_{3}	3000	V
$\Delta V_{g_{3}}$	110	V^{7})
Vg_{2}	3000	V^{8})
$-\mathrm{V}_{1}$	60 to 250	V
M_{X}	max. 32	V / cm
M_{y}	\max. 8	V / cm
	min. 60	mm
	min. 20	mm

[^6]
LIMITING VALUES

Final accelerator voltage	$\mathrm{Vg}_{9}(\mathrm{l})$	\max. min.	$\begin{aligned} & 25000 \\ & 10000 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Geometry control electrode voltage	V_{g}	max.	4400	V
Vertical deflection system shield voltage	V_{7}	max.	4400	V
Beam centring electrode voltage	V_{6}	max.	4400	V
Astigmatism control electrode voltage	Vg_{5}	\max. min.	$\begin{aligned} & 4400 \\ & 2500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	max.	1500	V
Deflection blanking electrode voltage		max.	4400	V
First accelerator voltage	V_{g}	\max.	4400	V
Control grid voltage,				
negative	$-\mathrm{V}_{1}$	max.	350	V
positive	V_{g}	max.	0	V
positive peak	$\mathrm{Vg}_{1 p}$	max.	2	V
Cathode to heater voltage				
cathode positive	$\mathrm{V}+\mathrm{k} / \mathrm{f}-$	max.	200	V
cathode negative	V-k/f+	max.	125	V
Cathode current average	$\mathrm{I}_{\mathrm{k}_{\text {eff }}}$	\max.	300	mA
Screen dissipation	W_{ℓ}	max.	3	$\mathrm{mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{V}_{\mathrm{g}}(\mathrm{l}) / \mathrm{Vg}_{5}$	$\mathrm{Vg}_{9}(\mathrm{l}) / \mathrm{Vg}_{5}$	\max.	10	
Ratio $\mathrm{Vg}_{2} / \mathrm{Vg}_{5}$	$\mathrm{Vg}_{2} / \mathrm{Vg}_{5}$	\max.	1	

WARNING

This tube, when in operation, produces X -rays which may constitute a health hazard unless the tube is adequately shielded.

NOTES

1. Measured with coaxial 50 to 100Ω quarter wavelength transformers with a 50Ω coaxial precision resistance from Rohde and Schwarz, type RMD 33526/50 as reference standard.
2. The bandwidth is defined as the frequency at which the yertical sensitivity is 3 dB down with respect to that at D.C.
3. The risetime is defined to be the time interval between 10% and 90% of the final value of deflection, when a stepfunction signal is applied to the vertical deflection system.
The signal source will be built-in step function generator of a Tektronix type 519 oscilloscope with the built-in delay-line included in the signal path and an abrupt 125 to 100Ω transition between the output of the delay-line and the input of the oscilloscope tube. The output connector of the tube will be terminated with a 100Ω coaxial resistor type BB 1241 . In order to avoid errors due to the angle of traces, two measurements are taken using a positive going and a negative going step function of equal amplitude and the risetime will be taken to be the arithmetic mean of the two values.
4. If the external conductors of the coaxial input and output connectors are not directly connected but capacitively coupled to this electrode, a vertical shift of the display can be obtained by varying the potential of this electrode.
5. The beam centring electrode voltage should be adjusted for equal deflection defocusing and deflection linearity in the x -direction with respect to the electrical centre of the tube.
6. The astigmatism electrode voltage should be corrected for optimum spot shape.
7. For visual extinction of a beam current of $10 \mu \mathrm{~A}$ its potential will not exceed 110 V with respect to Vg_{2}.
8. The delay-line deflection system has been designed for an accelerator voltage of about 3000 V . Deviation from this value will cause deterioration of bandwidth and risetime. The potential of g2 should not vary within the duration of the brightness of the display may occur.

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with flat face, side connections to the deflector plates. The high sensitivities of this mesh tube render it suitable for transistorized equipment. The phosphor screen is metal backed.

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{Vg}_{9}(\ell)$	15	kV	
Display area		6×10	cm	
Deflection factor, horizontal	M_{X}	\max.	11.5	
		$\mathrm{~V} / \mathrm{cm}$		
vertical	M_{y}	$=$	2.9	
		$\mathrm{~V} / \mathrm{cm}$		

SCREEN

	Colour	Persistence
D13-26GH	green	medium short D13-26GP
bluish green	medium short	

Useful screen diameter
Useful scan at $\mathrm{V}_{9}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}=10$
horizontal
vertical
min. 114 mm
min. 100 mm
min. 60 mm

HEATING

Indirect by A. C. or D. C.; parallel supply
Heater voltage
Heater current
$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Dimensions and connections
Overall length
Face diameter
Net weight
Accessories
Socket
Final accelerator contact connector
Side contact connector
Mu-metal shield

14 pin all-glass
max. 460 mm
max. 134.5 mm
approx. 925 g
type
55566
type 55563
type 55561
type 55555^{1})

[^7]
CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}$		4.5	pF
$\mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}$		4.5	pF
$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}$		3.8	pF
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)$		3.8	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$		2.7	pF
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$	=	1.8	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	=	5.5	pF
C_{k}	$=$	3.0	F

FOCUSING electrostatic

DEFLECTION
x plates
y plates
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces 90° See "Correction coils"

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen
Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current

$\mathrm{V}_{\mathrm{g}_{9}(\ell)}$	$=$	15000	15000	V
$\mathrm{~V}_{\mathrm{g}_{4}}$	$=$	2400	1500	$\left.\mathrm{~V}^{4}\right)$
$\mathrm{V}_{\mathrm{g}_{2}}$	$=$	2400	1500	V
$\mathrm{I}(\ell)$	$=$	10	10	$\mu \mathrm{~A}$

Line width $1 . \mathrm{w}$. $=0.30 .4 \mathrm{~mm}$

[^8]7Z2 8241

TYPICAL OPERATING CONDITIONS
Final accelerator voltage

Deflection factor
horizontal

vertical

Deviation of linearity of deflection
Geometry distortion
Useful scan
horizontal $\quad=\min . \quad 100 \mathrm{~mm}$
vertical

$$
=\min . \quad 60 \mathrm{~mm}
$$

CIRCUIT DESIGN VALUES

Focusing voltage $\quad \mathrm{V}_{\mathrm{g}_{3}}=250$ to 417 V per kV of V_{4}
Control grid voltage for visual extinction of focused spot $-\mathrm{V}_{\mathrm{g}_{1}}=30$ to 56.7 V per kV of $\mathrm{V}_{\mathrm{g}_{2}}$ Deflection factor at $\mathrm{V}_{\mathrm{g}}(\ell) \mathrm{V}_{\mathrm{g}_{4}}=10$
horizontal
vertical
Control grid circuit resistance
Deflection plate circuit resistance

$$
\begin{array}{lll}
\mathrm{M}_{\mathrm{X}} & =6.3 \text { to } & 8.4 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}} \\
\mathrm{M}_{\mathrm{y}} & =1.53 \text { to } 2.33 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{g_{4}} \\
\mathrm{R}_{\mathrm{g}_{1}}=\max . & 1 & \mathrm{M} \Omega \\
\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}} & =\max . & 50 \mathrm{k} \Omega
\end{array}
$$

Focusing electrode current at a beam current of max. $25 \mu \mathrm{~A} \quad \mathrm{I}_{3}=-25$ to $+25 \mu \mathrm{~A}{ }^{7}$) $\overline{\left.\left.\left.\left.2)^{3}\right)^{4}\right)^{5}\right)^{6}\right)^{7}}$ See page 6 .

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\mathrm{l}$ ($)$	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{array}{r} 16500 \\ 9000 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Post deflection shield voltage	V_{g}	$\begin{aligned} & =\max \\ & =\min . \end{aligned}$	$\begin{aligned} & 2500 \\ & 1350 \end{aligned}$	V
Geometry control electrode voltage	V_{g}	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{aligned} & 2500 \\ & 1350 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Interplate shield voltage	V_{g}	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{aligned} & 2500 \\ & 1350 \end{aligned}$	V
Deflection plate shield voltage	V_{5}	$\begin{aligned} & =\max \\ & =\min \end{aligned}$	$\begin{aligned} & 2500 \\ & 1350 \end{aligned}$	V
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g}}{ }^{\text {l }}$	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{aligned} & 2500 \\ & 1350 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Focusing electrode voltage	V_{g}	$=\max$.	2500	V
First accelerator voltage	V_{g}	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{aligned} & 2500 \\ & 1350 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Control grid voltage				
negative	$-\mathrm{V}_{\mathrm{g}_{1}}$	$=\max$.	200	V
positive	$\mathrm{V}_{\mathrm{g}_{1}}$	$=\max$.	0	V
Voltage between astigmatism electrode and any deflection plate	$\begin{gathered} \mathrm{v}_{\mathrm{g}_{4} / \mathrm{x}} \\ \mathrm{v}_{\mathrm{g}_{4} / \mathrm{y}} \end{gathered}$	$\begin{aligned} & =\max . \\ & =\max . \end{aligned}$	500 500	V
Cathode to heater voltage				
cathode positive	$\mathrm{V}_{+\mathrm{k} / \mathrm{f}-}$	$=\max$.	200	V
cathode negative	$\mathrm{V}_{-\mathrm{k} / \mathrm{f}+}$	$=\max$.	125	V
Screen dissipation	W_{ℓ}	$=\max$.	3	$\mathrm{mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}$	$\mathrm{V}_{\mathrm{g}_{9}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}$	$=\max$.	10	
Cathode current, average	I_{k}	$=\max$.	300	$\mu \mathrm{A}$

1) When putting the tube into the mu-metal shield care should be taken not to damage the side contacts.
2) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g} 9(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=10$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
${ }^{3}$) This voltage should be equal to the mean x - and y plates potential.
3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5) A graticule, consisting of concentric rectangles of 100 mm x 60 mm and $98 \mathrm{~mm} \times 58.2 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
6) Values to be taken into account for the calculation of the focus potentiometer.

CORRECTION COILS

The D13-26. . is provided with a coil unit consisting of a pair of coils for:
a. Correction of the orthogonality of the x and y traces (which means that at the centre of the screen the angle between the x and y traces can be made exactly 90°).
b. Vertical shift of the scanned area.

DETAIL DRAWING OF COIL UNIT

Dimensions in mm

1-2 coil no. 1 3-4 coil no. 2

The currents required under typical operating conditions, the tube being screened by a mu-metal shield closely surrounding the coils (e.g. 55555), are max. 7 mA per degree of angle correction and max. 4 mA per mm of shift. If no such shield is used these values have to be multiplied by a factor k $(1<\mathrm{k}<2)$, the value of which depends on the diameter of the shield and approaches 2 for the case no shield is present.
The D. C. resistance is approx. 180Ω per coil.
When designing the supply circuit for these coils it should be considered that the maximum current required in either coil can be 34 mA .

Circuit diagrams

A suitable circuit permitting independent controls of orthogonality correction and vertical shift is given in fig.l.

$\mathrm{P}_{1}, \mathrm{P}_{4}$	$:$ Potentiometers 220Ω,	3 Watt, ganged
$\mathrm{P}_{2}, \mathrm{P}_{3}$	$:$ Potentiometers 150Ω,	2 Watt, ganged
$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}:$ Resistors	$33 \Omega, 0,5$ Watt	

Fig. 1
The dissipation in the potentiometers can be reduced considerably if the requirement of independent controls is dropped (see fig. 2).

P_{1}, P_{2} : Potentiometers, $220 \Omega, 1$ Watt, ganged $\mathrm{P}_{3}, \mathrm{P}_{4}$: Potentiometers, $220 \Omega, 1 \mathrm{Watt}$, ganged

Fig. 2

A further reduction of the dissipation can be obtained by inserting a commutator for each coil (see fig.3).
The procedure of adjustment will then become more complicated, but it should be kept in mind that a readjustment is necessary only when the tube has to be replaced.

$\mathrm{P}_{1}, \mathrm{P}_{2}$: Potentiometers, $500 \Omega, 0,5$ Watt
$\mathrm{S}_{1}, \mathrm{~S}_{2}$: Commutators
Fig. 3
For the adjustment of the currents the following procedure is recommended:
a. With the tube fully scanned in the vertical direction the scanned a rea must be shifted so that the useful vertical scan on either side of the geometric centre of the screen meets the published value of 30 mm min.
With the circuit according to fig. 1 this is done by means of the ganged potentiometers P_{1} and P_{4}.
b. Adjustment of orthogonality by means of the ganged potentiometers P_{2} and P_{3} in fig.1. A slight readjustment of P_{1} and P_{4} may be necessary afterwards.

With a circuit according to fig. 2 or 3 these corrections have to be performed by means of successive adjustments of the currents in the coils.
The most convenient deflection signal is a square waveform permitting an easy and fairly accurate check of orthogonality.

INSTRUMENT CATHODE-RAY TUBE

The D13-26../01 is equivalent to the D13-26.. but features an internal graticule. This graticule can be illuminated.

MECHANICAL DATA

Maximum angle between x-trace and
x-axis of the graticule
$\pm 5^{\circ}$

D13-26../01

ALIGNMENT

In order to align the x-trace and the x-axis of the graticule an image rotating coil may be used. This coil should be positioned at one third of the cone length, seen from the face end, and can be attached to the inner surface of the mumetal shield.
Under typical operating conditions maximum 90 ampere-turns are required for alignment.

ILLUMINATION

To illuminate the internal graticule the use of a light conductor (e.g. of Perspex) is obligatory. The following design considerations should be observed:

In order to achieve the most efficient light conductance the holes for the light bulb as well as the contact area with the front plate should be polished. The contact with the edges of the front plate should be as close as possible and the edges of the front plate and the corresponding hole in the light conductor should be parallel to achieve light beams perpendicular to the edges. It is advised to apply reflective material to the outer circumference of the conductor and if possible also to both planes (see drawing).

1) Reflective material.
2) Polished.
3) Close and constant distance to front plate of tube. It is essential that the light conductor and the front plate of the tube are in plane.
${ }^{4}$) If possible reflective material. 7Z2 7878

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced short oscilloscope tube (max. 35 cm) with post-deflection acceleration by means of a helical electrode. The tube is provided with deflection blanking.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{8}(\ell)$	$=3000$	V
Display area	$8 \mathrm{~cm} \times$ full scan		
Deflection factor, horizontal	M_{X}	$=24$	V / cm
vertical	M_{y}	$=11.5$	V / cm

SCREEN

	Colour	Persistence
D13-27GH	green	medium short

Useful screen diameter
min. $\quad 114 \mathrm{~mm}$
Useful scan at $\mathrm{V}_{\mathrm{g}_{8}}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=2$
horizontal
vertical
full scan
min. $\quad 80 \mathrm{~mm}$

The useful scan may be shifted vertically to a max. of 4 mm with respect to the geometric centre of the faceplate.

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current
$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

7Z2 7804

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube .

Base
14 pin all glass
Dimensions and connections

Overall length (also with socket type 55566)	max.	350	mm
Face diameter	\max.	135	mm
Net weight	approx. 680	g	

Accessories

Socket (supplied with tube)	type	55566
Final accelerator contact connector	type	55563
Mu metal shield	type	55557

D13-27..

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Grid No. 1 to all other elements
Cathode to all other elements
Grid No. 3 to all other elements

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $\quad 90^{\circ} \pm 1^{\circ}$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.

Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

$$
\begin{aligned}
\mathrm{V}_{8}(\ell) & =3000 \mathrm{~V} \\
\mathrm{~V}_{5} & \left.=1500 \mathrm{~V}^{3}\right) \\
\mathrm{V}_{\mathrm{g}_{2}} & =1500 \mathrm{~V} \\
\mathrm{I}_{\mathrm{g}_{8}(\ell)} & =10 \mu \mathrm{~A} \\
1 . \mathrm{w} . & =0.25 \mathrm{~mm}
\end{aligned}
$$

HELIX

Post deflection accelerator helix resistance $\min .50 \mathrm{M} \Omega$
The helix is connected between $\mathrm{g}_{8}(\ell)$ and g

[^9]7Z2 7806

D13-27..

TYPICAL OPERATING CONDITIONS
Final accelerator voltage
Geometry control electrode voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Deflection blanking electrode voltage
Deflection blanking control voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection factor
horizontal
vertical
Deviation of linearity of deflection
Geometry distortion

$$
\begin{array}{rlr}
\mathrm{V}_{\mathrm{g}_{8}(\ell)} & =3000 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{7}} & \left.=1500 \pm 75 \mathrm{~V}^{1}\right) \\
\mathrm{V}_{6} & = & \left.1500 \mathrm{~V}^{2}\right) \\
\mathrm{V}_{5} & \left.=1500 \pm 75 \mathrm{~V}^{3}\right) \\
\mathrm{V}_{\mathrm{g}_{4}} & =300 \text { to } 550 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{3}} & = & 1500 \mathrm{~V} \\
\Delta \mathrm{~V}_{\mathrm{g}_{3}} & =\max . & \left.-60 \mathrm{~V}^{4}\right) \\
\mathrm{V}_{2} & = & 1500 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{1}} & =-38 \text { to }-135 \mathrm{~V}
\end{array}
$$

Useful scan

horizontal
vertical
full scan
$=\min . \quad 80 \mathrm{~mm}$

CIRCUIT DESIGN VALUES

 horizontal $\quad \mathrm{M}_{\mathrm{x}}=14$ to $18 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{5}}$Focusing voltage
Control grid voltage for visual extinction of focused spot

Deflection factor at
$\mathrm{V}_{\mathrm{g}_{8}(\ell)} / \mathrm{V}_{\mathrm{g}_{5}}=2$ vertical

Control grid circuit resistance
Deflection plate circuit
resistance
Focusing electrode current

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}_{4}} & =200 \text { to } 370 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{5}} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =25 \text { to } 90 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{2}}
\end{aligned}
$$

$\mathrm{M}_{\mathrm{y}}=6.5$ to $8.2 \mathrm{~V} / \mathrm{cm}$ per kV of Vg_{5}
$R_{g_{1}}=\max . \quad 1.5 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}=\max . \quad 50 \mathrm{k} \Omega$
$\mathrm{I}_{\mathrm{g}_{4}} \quad=-15$ to $+10 \quad \mu \mathrm{~A}^{7}$)

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{88}(\ell)$	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{aligned} & 3300 \\ & 1800 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Geometry control electrode voltage	V_{7}	$=\max$.	1700	V
Deflection plate shield voltage	V_{6}	$=\max$.	1700	V
Astigmatism control electrode voltage	V_{g}	$=\max$. $=\min$.	$\begin{aligned} & 1700 \\ & 1200 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	$=\max$.	1200	V
Deflection blanking electrode voltage	Vg_{3}	$=\max$.	1700	V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	$=\max$.	1700	V
Control grid voltage				
negative	$-\mathrm{V}_{\mathrm{g}}$	$=\max$.	200	V
positive	$-\mathrm{V}_{1}$	$=\min$.	0	V
Voltage between astigmatism control electrode and any deflection plate	$\mathrm{V}_{\mathrm{g}} / \mathrm{x}$	$=\max$.	500	V
	$\mathrm{V}_{5} / \mathrm{y}$	$=\max$.	500	V
Screen dissipation	W_{ℓ}	$=\max$.	3	$\mathrm{mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{V}_{\mathrm{g}} \mathrm{g}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}$	$\mathrm{V}_{\mathrm{g}_{8}(\ell)} / \mathrm{V}_{\mathrm{g}_{5}}$	$=\max$.	2	
Cathode current, average	I_{k}	$=\max$.	300	$\mu \mathrm{A}$

${ }^{1}$) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g} 5}=2$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) This voltage should be equal to the mean x - and y plates potential.
3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4) For beam blanking of a beam current of $10 \mu \mathrm{~A}$.
5) The sensitivity at a deflection of less than 75% of the usefull scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
6) A graticule, consisting of concentric rectangles of $100 \mathrm{~mm} \times 60 \mathrm{~mm}$ and $97 \mathrm{~mm} \times 58 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
7) Values to be taken into account for the calculation of the focus potentiometer.

INSTRUMENT CATHODE-RAY TUBE

Low accelerator voltage cathode-ray tube for monitoring purpose

QUICK REFERENCE DATA				
Accelerator voltage	$\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}, \mathrm{y}_{2}(\ell)=500 \mathrm{~V}$			
Display area	Both directions full scan			
Deflection factor, horizontal	M_{X}	$=56.5 \mathrm{~V} / \mathrm{cm}$		
vertical	M_{y}	$=49 \mathrm{~V} / \mathrm{cm}$		

SCREEN

	Colour	Persistence
DH3-91	green	medium short

Useful screen diameter
min. 28 mm
Useful scan

horizontal	full scan
vertical	full $s c a n$

HEATING:

Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current
$V_{f}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

D. 3-91

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube

Base

English Loctal 8 pins
Dimensions and connections
See also outline drawing
Overall length
Face diameter
max. 105 mm
$\max . \quad 30 \mathrm{~mm}$

Net weight:
approx. 39 g

Accessories
$\begin{array}{lll}\text { Socket } & \text { type } & 5902 / 20 \text { or } 40213\end{array}$
Mu-metal shield
type 55525

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
x_{1} to x_{2}
Control grid to all other elements

FOCUSING electrostatic self focusing

DEFLECTION double electrostatic
x plates symmetrical
y plates asymmetrical

LINE WIDTH

Measured on a circle of 25 mm diameter
Accelerator voltage
Beam current
Line width

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}, \mathrm{y}_{2}(\ell) & =500 \mathrm{~V} \\
\mathrm{I}(\ell) & =0.5 \mu \mathrm{~A} \\
\text { l.w. } & =0.6 \mathrm{~mm}
\end{aligned}
$$

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Control grid voltage for visual extinction of focused spot $\quad-V_{g_{1}}$ $=8$ to 27 V

Deflection factor
horizontal
vertical
Useful scan
horizontal
vertical

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)=4.5 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)=4.5 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)=3.5 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=1.0 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{g}_{1}}=5.6 \mathrm{pF}
\end{aligned}
$$

LIMITING VALUES (Absolute max. rating system)
Accelerator voltage

$$
\begin{aligned}
\mathrm{V}_{4}, \mathrm{~g}_{2}, \mathrm{y}_{2}(\ell) & =\max \cdot 1000 \mathrm{~V} \\
& =\min \cdot \quad 350 \mathrm{~V}
\end{aligned}
$$

Control grid voltage

negative	$-\mathrm{V}_{\mathrm{g}_{1}}$	$=\max$.	200	V
positive	V_{g}		$=\max$.	0
positive peak	$\mathrm{V}_{\mathrm{g}_{\mathrm{p}}}$	$=\max$.	2	V

Cathode to heater voltage

cathode positive	$\mathrm{V}_{+\mathrm{k} / \mathrm{f}-}$	$=\max .200 \mathrm{~V}$
cathode negative	$\mathrm{V}_{-\mathrm{k} / \mathrm{f}+}$	$=\max .125 \mathrm{~V}$
dissipation	W_{ℓ}	$=\max$.
		$3 \mathrm{~mW} / \mathrm{cm}^{2}$

CIRCUIT DESIGN VALUES

Control grid voltage for visual extinction of focused spot $-V_{g_{1}}=16$ to $54 \quad \mathrm{~V}$ per kV of $\mathrm{V}_{4}, \mathrm{~g}_{2}, \mathrm{y}_{2}$
Deflection factor
horizontal $\quad \mathrm{M}_{\mathrm{X}}=90$ to $120 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}, \mathrm{y}_{2}$
vertical $\quad M_{y}=38.5$ to $52.5 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}, \mathrm{y}_{2}$
Control grid circuit
resistance $\quad \mathrm{R}_{\mathrm{g}}=\max . \quad 1 \mathrm{M} \Omega$
Deflection plate circuit

$$
\text { resistance } \quad \mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}=\max . \quad 5 \mathrm{M} \Omega
$$

REMARK

A contrast improving transparent conductive coating connected to the accelerator electrode is present between glass and fluorescent layer. This enables the application of a high potential with respect to earth to the accelerator electrode, without the risk of picture distortion by touching the face (electrostatic bodyeffect).

INSTRUMENT CATHODE-RAY TUBE

Cathode-ray tube for monitoring purposes.

QUICK REFERENCE DATA			
Accelerator voltage	$\mathrm{V}_{g_{3}}(\ell)=800 \mathrm{~V}$		
Display area	Both directions full scan		
Deflection factor, horizontal	M_{x}	$=62.5 \mathrm{~V} / \mathrm{cm}$	
	vertical	M_{y}	
	$=40 \mathrm{~V} / \mathrm{cm}$		

SCREEN

	colour	persistence
DB7-5	blue	medium short
DG7-5	yellowish green	medium short
DP7-5	yellowish green	long

Useful screen diameter
Useful scan

> horizontal
vertical
min. 65 mm
full scan
full scan

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

$$
\frac{\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}}{\mathrm{I}_{\mathrm{f}}=310 \mathrm{~mA}}
$$

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
English Loctal 9 pins
Dimensions and connections
See also outline drawing
Overall length
Face diameter

Net weight:
approx. 140 g

Accessories

Socket	type	$5906 / 20$ or 40212
Mu-metal shield	type	55530

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{X}_{2}}\left(\mathrm{x}_{1}\right)=2.8 \mathrm{pF}$
$C_{y_{1}}\left(y_{2}\right)=3.0 \mathrm{pF}$
$C_{y_{2}}\left(y_{1}\right)=3.3 \mathrm{pF}$
$\mathrm{C}_{\mathrm{X}_{1} \mathrm{x}_{2}}=0.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1 \mathrm{y}_{2}}}=0.6 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=7.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{k}}=3.2 \mathrm{pF}$

FOCUSING electrostatic

DEFLECTION

x plates symmetrical
y plates symmetrical
Angle between x and y traces $\quad 90^{\circ} \pm 1.5^{\circ}$

LINE WIDTH

Measured on a circle of 50 mm diameter

Accelerator voltage
Beam current
Line width

$\mathrm{V}_{\mathrm{g}_{3}(\ell)}$	$=$	800 V
$\mathrm{I}(\ell)$	$=$	$0.5 \mu \mathrm{~A}$
l.w.	$=$	0.4 mm

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection factor, horizontal
vertical
Geometry distortion
Useful scan, horizontal
vertical
$V_{g_{3}(\ell)}=800 \mathrm{~V}$
$\mathrm{V}_{2}=200$ to 300 V
$\begin{aligned}-\mathrm{V}_{\mathrm{g}_{1}} & =0 \text { to } 50 \mathrm{~V} \\ \mathrm{M}_{\mathrm{X}} & =53 \text { to } 72 \mathrm{~V} / \mathrm{cm} \\ \mathrm{M}_{\mathrm{y}} & =33 \text { to } 45 \mathrm{~V} / \mathrm{cm}\end{aligned}$
See note 1 page 4
full scan
full scan
7Z2 5574

LIMITING VALUES (Absolute max. rating system)

Accelerator voltage
Focusing electrode voltage
Control grid voltage

negative	$-\mathrm{V}_{g_{1}}$	$=\max$.	200 V
positive	$\mathrm{V}_{g_{1}}$	$=\max$.	0

Cathode to heater voltage
cathode positive
cathode negative
Voltage between accelerator electrode and any deflection plate

Screen dissipation

	$=\max . \quad 1000$	V	
$\mathrm{~V}_{3}(\ell)$	$=\min$.	800	V
	$=\max$.	400	V
$\mathrm{~V}_{2}$			
$-\mathrm{V}_{g_{1}}$	$=\max$.	200	V
$\mathrm{~V}_{1}$	$=\max$.	0	V
$\mathrm{~V}_{1}$		\max.	2
	V		

$\mathrm{V}+\mathrm{k} / \mathrm{f}-$	$=\max$.	200 V	
$\mathrm{~V}-\mathrm{k} / \mathrm{f}+$	$=\max$.	125	V

$$
\mathrm{V}_{\mathrm{g} 3 / \mathrm{x}}=\max . \quad 500 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{g} 3 / \mathrm{y}}=\max . \quad 500 \mathrm{~V}
$$

$$
\mathrm{W}_{\ell} \quad=\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}
$$

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot
Deflection factor
vertical
Control grid circuit resistance
Deflection plate circuit
resistance
horizontal $\quad \mathrm{M}_{\mathrm{X}}=66$ to $90 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{3}}$
$\mathrm{Vg}_{2}=250$ to 375 V per kV of $\mathrm{V}_{\mathrm{g}_{3}}$
$-\mathrm{Vg}_{1}=0$ to 62.5 V per kV of Vg_{3}
$\mathrm{M}_{\mathrm{X}}=66$ to $90 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{3}}$
$\mathrm{M}_{\mathrm{y}}=41$ to $56 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{3}}$
$\mathrm{R}_{\mathrm{g}_{1}}=\max .0 .5 \mathrm{M} \Omega$
$R_{x}, R_{y}=\max . \quad 5 \mathrm{M} \Omega$

[^10]
INSTRUMENT CATHODE-RAY TUBE

Cathode-ray tube for monitoring purposes.

QUICK REFERENCE DATA			
Accelerator voltage	$\mathrm{V}_{\mathrm{g}_{3}(\ell)}=800 \mathrm{~V}$		
Display area	Both directions full scan		
Deflection factor, horizontal	M_{X}	$=62.5 \mathrm{~V} / \mathrm{cm}$	
vertical	M_{y}	$=40 \mathrm{~V} / \mathrm{cm}$	

SCREEN

	colour	persistence
DB7-6	blue	medium short
DG7-6	yellowish green	medium short
DP7-6	yellowish green	long

Useful screen diameter
Useful scan
horizontal
vertical
$\min .65 \mathrm{~mm}$
full scan
full scan

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
English Loctal 9 pins
Dimensions and connections
See also outline drawing

Overall length
Face diameter

Net weight:

Accessories
Socket type $5906 / 20$ or 40212
Mu-metal shield
max. $\quad 160 \mathrm{~mm}$
\max. 71 mm
approx. 140 g
type 55530

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
$\mathrm{C}_{\mathrm{X}_{1}}\left(\mathrm{x}_{2}\right)=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)=3.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)=3.3 \mathrm{pF}$
$\mathrm{C}_{\mathrm{X}_{1} \mathrm{X}_{2}}=0.8 \mathrm{pF}$
$\mathrm{C}_{1} \mathrm{y}_{2}=0.6 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=7.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{k}}=3.2 \mathrm{pF}$

FOCUSING electrostatic
DEFLECTION double electrostatic
x plates asymmetrical x_{1} has to be connected to the accelerator electrode. Earthing of the accelerator electrode is recommended.

Angle between x and y traces $\quad 90^{\circ} \pm 1.5^{\circ}$

LINE WIDTH

Measured on a circle of 50 mm diameter

Accelerator voltage
Beam current
Line width

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot
Deflection factor, horizontal

> vertical

Geometry distortion
Useful scan, horizontal
vertical

| $\mathrm{V}_{\mathrm{g}_{3}(\ell)}$ | $=$ | 800 V |
| :--- | :--- | :--- | :--- |
| $\mathrm{I}(\ell)$ | $=$ | $0.5 \mu \mathrm{~A}$ |
| l.w. | $=$ | 0.4 mm |

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}_{3}(\ell)} & =800 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{2}} & =200 \text { to } 300 \mathrm{~V} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =0 \text { to } 50 \mathrm{~V} \\
\mathrm{M}_{\mathrm{x}} & =53 \text { to } 72 \mathrm{~V} / \mathrm{cm} \\
\mathrm{M}_{\mathrm{y}} & =33 \text { to } 45 \mathrm{~V} / \mathrm{cm}
\end{aligned}
$$

$$
\text { See note } 1 \text { page } 4
$$

full scan
full scan

$$
7 \mathrm{Z} 25578
$$

LIMITING VALUES (Absolute max. rating system)

Accelerator voltage
Focusing electrode voltage
Control grid voltage
negative
positive
positive peak
Cathode to heater voltage
cathode positive
cathode negative
Voltage between accelerator electrode
and any deflection plate

Screen dissipation

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot
Deflection factor
horizontal
vertical
Control grid circuit resistance Deflection plate circuit
resistance

$$
\begin{array}{rlrl}
& =\max . & 1000 & \mathrm{~V} \\
\mathrm{~V}_{3}(\ell) & =\min . & 800 & \mathrm{~V} \\
& =\max . & 400 & \mathrm{~V} \\
\mathrm{~V}_{2} & \\
& =\max . & 200 & \mathrm{~V} \\
-\mathrm{V}_{\mathrm{g}_{1}} & & \\
\mathrm{~V}_{\mathrm{g}_{1}} & =\max . & 0 & \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{1 \mathrm{p}}} & =\max . & 2 & \mathrm{~V}
\end{array}
$$

$$
\mathrm{V}+\mathrm{k} / \mathrm{f}-\quad=\max . \quad 200 \mathrm{~V}
$$

$$
\mathrm{V}-\mathrm{k} / \mathrm{f}+=\max . \quad 125 \mathrm{~V}
$$

$$
\mathrm{V}_{3} / \mathrm{x}=\max . \quad 500 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{g}_{3} / \mathrm{y}}=\max . \quad 500 \mathrm{~V}
$$

$$
\mathrm{W}_{\ell} \quad=\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}
$$

$$
\begin{aligned}
\mathrm{Vg}_{2} & =250 \text { to } 375 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{3}} \\
-\mathrm{V}_{1} & =0 \text { to } 62.5 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{3}
\end{aligned}
$$

$$
\mathrm{M}_{\mathrm{X}}=66 \text { to } 90 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{3}}
$$

$$
\mathrm{M}_{\mathrm{y}}=41 \text { to } 56 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{3}}
$$

$$
\mathrm{R}_{\mathrm{g}_{1}}=\max \cdot 0.5 \mathrm{M} \Omega
$$

$$
\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}=\max . \quad 5 \mathrm{M} \Omega
$$

[^11]
INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with 7 cm diameter flat face plate and post deflection acceleration by means of a helical electrode. The low heater consumption together with the high sensitivity render this tube suitable for transistorized equipment.

| QUICK REFERENCE DATA | | |
| :--- | :--- | :--- | :--- |
| Final accelerator voltage | $\mathrm{V}_{6}(\ell)$ | $=1200 \mathrm{~V}$ |
| Display area | | $=4.5 \times 6 \mathrm{~cm}$ |
| Deflection factor, horizontal | M_{x} | $=10.7 \mathrm{~V} / \mathrm{cm}$ |
| vertical | M_{y} | $=3.65 \mathrm{~V} / \mathrm{cm}$ |

SCREEN

	Colour	Persistence
DB7-11	blue	medium short
DH7-11	green	medium short
DN7-11	bluish green	medium short
DP7-11	yellowish green	long

Useful screen diameter
Useful scan at $\mathrm{V}_{6}(\ell) / \mathrm{V}_{4}=4$
horizontal
vertical
min. 68 mm
min. 60 mm
min. 45 mm

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current
$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=95 \mathrm{~mA}$

D. 7-11

MECHANICAL DATA (Dimensions in mm)

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube

Base $\quad 14$ pins all glass
Dimensions and connections

Overall length
Face diameter

Net weight
Accessories
Socket (supplied with tube)
Final accelerator contact connector
Mu-metal shield
max. 296 mm
$\max .77 .8 \mathrm{~mm}$
approx. 370 g
type 40467
type 55563
type 55532

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)=4.0 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)=4.0 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)=3.5 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)=3.5 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=1.9 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.7 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{g}_{1}}=5.7 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{k}}=3.0 \mathrm{pF}
\end{aligned}
$$

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $\quad 90^{\circ} \pm 1^{\circ}$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.
Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

$\mathrm{V}_{6}(\ell)$	$=1200 \mathrm{~V}$
$\mathrm{~V}_{4}$	$\left.=300 \mathrm{~V}^{2}\right)$
V_{2}	$=1200 \mathrm{~V}$
$\mathrm{I}(\ell)$	$=10 \mathrm{\mu A}$
1.w.	$=0.65 \mathrm{~mm}$

HELIX

Post deflection accelerator helix resistance
min. $40 \mathrm{M} \Omega$
2) See page 6

7Z2 7701

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection factor
horizontal

$$
\mathrm{M}_{\mathrm{X}} \quad=9.4 \text { to } 12 \mathrm{~V} / \mathrm{cm}
$$

vertical

$$
\mathrm{M}_{\mathrm{y}}=3.2 \text { to } 4.1 \mathrm{~V} / \mathrm{cm}
$$

Deviation of linearity of deflection

$$
\left.=\max . \quad 2 \%^{3}\right)
$$

Geometry distortion

$$
\text { See note }{ }^{4} \text {) }
$$

Useful scan

horizontal	$=\min$.	60 mm
vertical	$=\min$.	40 mm

CIRCUIT DESIGN VALUES

Focusing voltage

$$
\mathrm{V}_{3}=35 \text { to } 165 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}}
$$

Control grid valtage for visual extinction of focused spot

Deflection factor at

$$
\mathrm{V}_{6}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}=4
$$

$$
\begin{aligned}
-\mathrm{V}_{\mathrm{g}} & =30 \text { to } 60 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{g_{2}} \\
\mathrm{M}_{\mathrm{x}} & =31.3 \text { to } 40.0 \quad \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \\
\mathrm{M}_{\mathrm{y}} & =10.7 \text { to } 13.7 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \\
\mathrm{R}_{\mathrm{g}} & =\max . \quad 1.5 \mathrm{M} \Omega
\end{aligned}
$$

$$
\text { horizontal } \quad \mathrm{M}_{\mathrm{X}}=31.3 \text { to } 40.0 \quad \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{4}
$$

$$
\text { vertical } \quad \mathrm{M}_{\mathrm{y}}=10.7 \text { to } 13.7 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}}
$$

Control grid circuit resistance
Deflection plate circuit
resistance

Focusing electrode current
min. 40 mm

LIMITING VALUES (Absolute max. rating system)
Final accelerator voltage
Geometry control electrode voltage
Astigmatism control electrode

$\mathrm{V}_{6}(\ell)$	$=\max .5000 \mathrm{~V}$
	$=\min . \quad 1200 \mathrm{~V}$

voltage
Focusing electrode voltage
First accelerator voltage
$\mathrm{V}_{5} \quad=\max .2200 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g}}=\max .2100 \mathrm{~V}$

$=\min .300 \mathrm{~V}$
V_{g}
$=\max .1000 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g}}=\max .1600 \mathrm{~V}$

Control grid voltage
negative
positive
positive peak
Cathode to heater voltage
cathode positive
cathode negative
Voltage between astigmatism control
electrode and any deflection plate

Screen dissipation
Ratio $\mathrm{V}_{\mathrm{g} 6}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}$

$\mathrm{V}+\mathrm{k} / \mathrm{f}-$	$=\max$.	100 V
$\mathrm{~V}-\mathrm{k} / \mathrm{f}+$	$=\max$.	15 V
$\mathrm{~V}_{\mathrm{g}_{4} / \mathrm{x}}$	$=\max$.	500 V
$\mathrm{~V}_{4} / \mathrm{y}$	$=\max$.	500 V
$\mathrm{~W}_{\ell}$	$=\max$.	$3 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathrm{~V}_{6}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}$	$=\max$.	4

${ }^{1}$) This tube is designed for optimum performance when operating at the ratio $V_{g_{6}(\ell)} / V_{g_{4}}=4$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{3}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
4) A graticule, consisting of concentric rectangles of $40.8 \mathrm{~mm} \times 40.8 \mathrm{~mm}$ and $39.2 \mathrm{~mm} \times 39.2 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
5) Values to be taken into account for the calculation of the focus potentiometer.

INSTRUMENT CATHODE-RAY TUBE

Low accelerator voltage cathode-ray tube for monitoring purposes.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}(\ell)}=$	500 V	
Display area	Both directions full scan		
Deflection factor, horizontal	M_{x}	$=37 \mathrm{~V} / \mathrm{cm}$	
	M_{y}	$=21 \mathrm{~V} / \mathrm{cm}$	

SCREEN

	Colour	Persistence
DG7-31	yellowish green	medium

Useful screen diameter
Useful scan
horizontal
vertical
min. 65 mm
full scan
full scan

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

Dimensions in mm

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Duodecal 12 pins
Dimensions and connections
See also outline drawing
Overall length
Face diameter

Net weight:

Accessories

Socket
Mu-metal shield
$\max .172 \mathrm{~mm}$
\max. 71 mm
approx. 120 g
type
5912/20
type 55530

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

FOCUSING

DEFLECTION

x plates y plates symmetrical
Angle between x and y traces

$$
90^{\circ} \pm 1.5^{\circ}
$$

LINE WIDTH

Measured on a circle of 50 mm diameter
Accelerator voltage
Beam current
Line width

electrostatic

double electrostatic
asymmetrical

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot
Deflection factor, horizontal vertical

Geometry distortion
Useful scan, horizontal vertical

$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)=3.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{X}_{2}}\left(\mathrm{x}_{1}\right)=3.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)=2.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)=2.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=1.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=7.6 \mathrm{pF}$
C_{k}

LIMITING VALUES (Absolute max. rating system)
Accelerator voltage
Focusing electrode voltage
Control grid voltage

negative	$-\mathrm{Vg}_{1}$	$=\max$.	200	V
positive	V_{g}	$=\max$.	0	V
positive peak	$\mathrm{Vg}_{1 \mathrm{p}}$	$=\max$.	$2 \quad \mathrm{~V}$	

Cathode to heater voltage cathode positive
cathode negative
Voltage between accelerator electrode and any deflection plate

Screen dissipation

$$
\begin{array}{llll}
\mathrm{V}+\mathrm{k} / \mathrm{f}- & =\max . & 200 \mathrm{~V} \\
\mathrm{~V}-\mathrm{k} / \mathrm{f}+ & =\max . & 125 \mathrm{~V}
\end{array}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}_{4} / \mathrm{x}} & =\max . \quad 500 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{4} / \mathrm{y}} & =\max .500 \mathrm{~V}
\end{aligned}
$$

$$
\mathrm{W}_{\ell} \quad=\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}
$$

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot

$$
\begin{aligned}
\mathrm{V}_{3} & =0 \text { to } 240 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =100 \text { to } 200 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{2}}
\end{aligned}
$$

Deflection factor at $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g}}$

$$
\begin{array}{ll}
\text { horizontal } & M_{x}=67 \text { to } 83 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}} \\
\text { vertical } & \mathrm{M}_{\mathrm{y}}=37.6 \text { to } 46.4 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}}
\end{array}
$$

Control grid circuit resistance $\quad \mathrm{R}_{\mathrm{g}}=\max . \quad 0.5 \mathrm{M} \Omega$
Deflection plate circuit

$$
\text { resistance } \quad \mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}=\max . \quad 5 \mathrm{M} \Omega
$$

Focusing electrode current

1) A graticule, consisting of concentric rectangles of $43.2 \mathrm{~mm} \times 43.2 \mathrm{~mm}$ and $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
2) Values to be taken into account for the calculation of the focus potentiometer.

Remark: A contrast improving transparent conductive coating connected to $\mathrm{g}_{4}, \mathrm{~g}_{2}$ is present between glass and fluorescent layer. This enables the application of a high potential to $\mathrm{g}_{4}, \mathrm{~g}_{2}$ with respect to earth, without the risk of picture distortion by touching the face (electrostatic body-effect)

INSTRUMENT CATHODE-RAY TUBE

Low accelerator voltage cathode-ray tube for monitoring purposes.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\ell)=500 \mathrm{~V}$		
Display area	Both directions full scan		
Deflection factor, horizontal	M_{x}	$=37 \mathrm{~V} / \mathrm{cm}$	
vertical	M_{y}	$=21 \mathrm{~V} / \mathrm{cm}$	

SCREEN

	Colour	Persistence
DG7-32	yellowish green	medium

Useful screen diameter
Useful scan
horizontal
vertical

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Duodecal 12 pins

Dimensions and connections

See also outline drawing
Overall length
Face diameter
max. 172 mm
max. $\quad 71 \mathrm{~mm}$

Net weight:
approx. 120 g

Accessories

Socket
Mu-metal shield

type	$5912 / 20$
type	55530

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{X}_{1}}\left(\mathrm{x}_{2}\right)=3.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{X}_{2}}\left(\mathrm{x}_{1}\right)=3.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)=2.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}=2.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=1.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=7.6 \mathrm{pF}$
C_{k}

FOCUSING

DEFLECTION
x plates
y plates symmetrical
Angle between x and y traces $\quad 90^{\circ} \pm 1.5^{\circ}$

electrostatic

double electrostatic
symmetrical

LINE WIDTH

Measured on a circle of 50 mm diameter

Accelerator voltage
Beam current
Line width

D. 7-32

LIMITING VALUES (Absolute max. rating system)
Accelerator voltage

$\mathrm{V}_{\mathrm{g} 4}, \mathrm{~g}_{2}(\ell)$	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \end{aligned}$
$\mathrm{V}_{\mathrm{g}}{ }$	$=\max$.	200
$-\mathrm{Vg}_{1}$	$=\max$.	200
V_{g}	$=\max$.	0
$\mathrm{Vg}_{1 \mathrm{p}}$	$=\max$	2

Cathode to heater voltage cathode positive cathode negative

| $\mathrm{V}+\mathrm{k} / \mathrm{f}-$ | $=\max$. | 200 V |
| :--- | :--- | :--- | :--- |
| $\mathrm{~V}-\mathrm{k} / \mathrm{f}+$ | $=\max . \quad 125 \mathrm{~V}$ | |

Voltage between accelerator electrode and any deflection plate

Screen dissipation

$$
\begin{aligned}
\mathrm{V}_{4} / \mathrm{x} & =\max \cdot 500 \mathrm{~V} \\
\mathrm{~V}_{4} / \mathrm{y} & =\max \cdot 500 \cdot \mathrm{~V} \\
\mathrm{~W}_{\ell} & =\max \cdot \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}
\end{aligned}
$$

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot
Deflection factor at $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g}}$

Control grid circuit resistance $\quad \mathrm{R}_{\mathrm{g}}=\max . \quad 0.5 \mathrm{M} \Omega$
Deflection plate circuit
resistance
Focusing electrode current

$$
\begin{array}{llll}
& \mathrm{V}_{\mathrm{g} 3} & =0 \text { to } 240 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}} \\
\text { e for visual } \\
\text { ocused spot } \\
\mathrm{V}_{\mathrm{g}(\ell)}\left(\ell / \mathrm{V}_{\mathrm{g}}\right.
\end{array} \quad-\mathrm{V}_{\mathrm{g} 1}=100 \text { to } 200 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{2}} .
$$

1) A graticule, consisting of concentric rectangles of $43.2 \mathrm{~mm} \times 43.2 \mathrm{~mm}$ and $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
2) Values to be taken into account for the calculation of the focus potentiometer.

Remark: A contrast improving transparent conductive coating connected to $\mathrm{g}_{4}, \mathrm{~g}_{2}$ is present between glass and fluorescent layer. This enables the application of a high potential to g_{4}, g_{2} with respect to earth, without the risk of picture distortion by touching the face (electrostatic body -effect)

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with 7 cm diameter flat face-plate. The tube is intended for small service oscilloscopes.

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\ell)$	$=$	1500	V
Display area		$=5.7 \times 6.8$	cm	
Deflection factor, horizontal	M_{X}	$=$	$27.3 \mathrm{~V} / \mathrm{cm}$	
vertical	M_{y}	$=$	$18.8 \mathrm{~V} / \mathrm{cm}$	

SCREEN

	Colour	Persistence
DB7-36	blue	medium short
DG7-36	yellowish green	medium DN7-36
bluish green	medium short	

Useful scan
horizontal
vertical
min. 68 mm
min. 57 mm

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current
$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

7Z2 5620

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Duodecal 12 pins

Dimensions and connections

See also outline drawing

Overall length
Face diameter
Net weight:

Accessories

Socket
Mu-metal shield
max. 296 mm
$\max \quad 77.8 \mathrm{~mm}$
approx. 370 g
type 5912/20
type 55531

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)=6.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{X}_{2}}\left(\mathrm{x}_{1}\right)=6.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)=4.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)=4.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=1.9 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=5.7 \mathrm{pF}$
C_{k}

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $\quad 90^{\circ} \pm 1^{\circ}$

LINE WIDTH

Measured on a circle of 50 mm diameter
Final accelerator voltage
Beam current
Line width
$\mathrm{V}_{4}, \mathrm{~g}_{2}(\ell)=1500 \mathrm{~V}$
$I_{(\ell)}=0.5 \mu \mathrm{~A}$
l.w. $=0.4 \mathrm{~mm}$

D. 7-36

TYPICAL OPERATING CONDITIONS
Accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection factor

horizontal	M_{x}	$=24.5$ to $30 \mathrm{~V} / \mathrm{cm}$
vertical	M_{y}	$=17.0$ to $20.5 \mathrm{~V} / \mathrm{cm}$
iation of linearity of deflection		$=\max . \quad 2 \%^{1}$)

Geometry distortion

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}_{4}, g_{2}(\ell)} & =1500 \mathrm{~V} \\
\mathrm{~V}_{3} & =247 \text { to } 397 \mathrm{~V} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =40 \text { to } 80 \mathrm{~V}
\end{aligned}
$$

Useful scan
horizontal $=\min .68 \mathrm{~mm}$
vertical
See note 2
vertical $=\min . \quad 57 \mathrm{~mm}$

LIMITING VALUES (Absolute max. rating system)
Final accelerator voltage
Focusing electrode voltage

$$
\begin{aligned}
\mathrm{V}_{4}, \mathrm{~g}_{2}(\ell) & =\max \cdot 2500 \mathrm{~V} \\
& =\min \cdot 1000 \mathrm{~V} \\
& =\max \cdot 1000 \mathrm{~V}
\end{aligned}
$$

Control grid voltage
negative
positive
positive peak

$-\mathrm{Vg}_{1}$	$=\max$.	200	V
Vg_{1}		\max.	0
V			
$\mathrm{~V}_{\mathrm{l}}$		\max.	2 V

Cathode to heater voltage
cathode positive
cathode negative
Voltage between final accelerator and any deflection plate

Screen dissipation
$\mathrm{V}_{+\mathrm{k} / \mathrm{f}-}=\max .200 \mathrm{~V}$
$\mathrm{V}_{-\mathrm{k} / \mathrm{f}+}=\max .125 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g}_{4}, \mathrm{~g}_{2} / \mathrm{x}_{\mathrm{p}}}=\max . \quad 500 \mathrm{~V}$
$\mathrm{Vg}_{4}, \mathrm{~g}_{2} / \mathrm{yp}_{\mathrm{p}}=\max .500 \mathrm{~V}$
$\mathrm{W}_{\ell} \quad=\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot

$$
\begin{aligned}
\mathrm{V}_{3} & =165 \text { to } 265 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2} \\
-\mathrm{V}_{1} & =27 \text { to } 53 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}
\end{aligned}
$$

Deflection factor
horizontal
vertical
Control grid circuit
resistance
Deflection plate circuit
resistance
Focusing electrode current
$M_{x}=16.3$ to $20.0 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}$
$\mathrm{M}_{\mathrm{y}}=11.2$ to $13.7 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{4}, \mathrm{~g}_{2}$
$\mathrm{R}_{\mathrm{g}}=\max . \quad 1.5 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{X}}, \mathrm{R}_{\mathrm{y}}=\max . \quad 5 \mathrm{M} \Omega$
$\mathrm{I}_{\mathrm{g} 3}=-15$ to $+10 \mu \mathrm{~A}^{3}$)
${ }^{1}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
${ }^{2}$) A graticule, consisting of concentric rectangles of $40.8 \mathrm{~mm} \times 40.8 \mathrm{~mm}$ and $39.2 \mathrm{~mm} \times 39.2 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
${ }^{3}$) Values to be taken into account for the calculation of the focus potentiometer.

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with 7 cm diameter flat faceplate and post deflection acceleration by means of a helical electrode. The tube is intended for small service oscilloscopes.

| QUICK REFERENCE DATA | | |
| :--- | :--- | :--- | :--- |
| Final accelerator voltage | $\mathrm{V}_{\mathrm{g}_{6}(\ell)}$ | $=1200 \mathrm{~V}$ |
| Display area | | $=4.5 \times 6 \mathrm{~cm}$ |
| Deflection factor, horizontal | M_{x} | $=10.7 \mathrm{~V} / \mathrm{cm}$ |
| | M_{y} | $=3.65 \mathrm{~V} / \mathrm{cm}$ |

SCREEN

	Colour	Persistence
DB7-78	blue	medium short
DH7-78	green	medium short
DN7-78	bluish green	medium short
DP7-78	yellowish green	long

Useful screen diameter
Useful scan at $\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=4$
horizontal
vertical
min. 68 mm
min. 60 mm
min. 45 mm

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

| $\mathrm{V}_{\mathrm{f}}=6.3$ | V |
| :--- | :--- | :--- |
| $\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$ | |

D. 7-78

MECHANICAL DATA

Dimensions in mm

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Dimensions and connections

Overall length
Face diameter

Net weight

Accessories
Socket (supplied with the tube)
Final accelerator contact connector
Mu-metal shield

14 pins all glass
max. 296 mm
\max. 77.8 mm
approx. 370 g
type
40467
type 55563
type 55532

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}=3.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}=3.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}=3.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}=3.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=1.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.6 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=103.5 \mathrm{pF}$
C_{k}

FOCUSING electrostatic

DEFLECTION double electrostatic
x plates symmetrical
y plates symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $90 \pm 1^{\circ}$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.

Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

HELIX

Post deflection accelerator helix resistance

[^12]TYPICAL OPERATING CONDITIONS
Final acceler ator voltage
Geometry control electrode voltage

Astigmatism control
electrode voltage
Focusing electrode voltage
First acceler ator voltage

$$
V_{g_{6}(\ell)}=\quad 1200 \quad 4000 \mathrm{~V}
$$

$\left.\mathrm{V}_{\mathrm{g}_{5}}=300 \pm 30 \quad 1000 \pm 100 \mathrm{~V} \quad{ }^{1}\right)$
$\mathrm{V}_{\mathrm{g}}{ }=300 \pm 40 \quad 1000 \pm 50 \mathrm{~V}^{2}$)
$\mathrm{V}_{3}=20$ to $150^{15} \quad 35$ to 165 V
$\mathrm{V}_{\mathrm{g} 2}$
12001000 V
Control grid voltage for
visual extinction of focused spot $-V_{g_{1}}=36$ to 7230 to 60 V
Modulation voltage for

$$
\mathrm{I}(\ell)=10 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{g}_{1}}=\max . \quad 25 \quad \max . \quad 25 \mathrm{~V}
$$

Deflection factor

horizontal	M_{x}	$=9.4$ to	12	31.3 to 40.0	$\mathrm{~V} / \mathrm{cm}$
vertical	M_{y}	$=3.2$ to	4.1	10.7 to 13.7	$\mathrm{~V} / \mathrm{cm}$

Deviation of linearity of deflection

Geometry distortion See note 4

Useful scan

horizontal	$=\min$.	60	60 mm
vertical	$=\min$.	45	45 mm

CIRCUIT DESIGN VALUES

Focusing voltage
$\mathrm{V}_{\mathrm{g}}=35$ to 165 V per kV of $\mathrm{V}_{\mathrm{g}_{4}}$
Control grid voltage for visual extinction of focused spot
$-\mathrm{V}_{1}=30$ to 60 V per kV of V_{g}
Deflection factor at $\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=4$
horizontal
vertical
Control grid circuit resistance
y
$\begin{array}{lll}R_{g_{1}}=\max . & 1.5 & M \Omega\end{array}$
Deflection plate circuit

$$
\text { resistance } \quad R_{X}, R_{y}=\max . \quad 50 \mathrm{k} \Omega
$$

Focusing electrode current

$$
\left.\mathrm{I}_{\mathrm{g}_{3}}=-15 \text { to }+10 \quad \mu \mathrm{~A}^{5}\right)
$$

7Z2 5628

LIMITING VALUES (Absolute max. rating system)

${ }^{1}$) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g} 6}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}=4$. Oper ating at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
3) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
4) A graticule, consisting of concentric rectangles of $40.8 \mathrm{~mm} \times 40.8 \mathrm{~mm}$ and $39.2 \mathrm{~mm} \times 39.2 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
5) Values to be taken into account for the calculation of the focus potentiometer.
D. 7-78

INSTRUMENT CATHODE-RAY TUBE

SCREEN

	colour	persistence
DB10-6	blue	medium short
DG10-6	yellowish green	medium
DP 10-6	yellowish green	long

HEATING: Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

V_{f}	6.3	V
I_{f}	300	mA

MECHANICAL DATA

Base: Magnal

Accessories
Socket
type $5911 / 20$

Dimensions in mm

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

Angle between x and y traces

Final accelerator voltage
First accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection factor, horizontal
vertical

LIMITING VALUES

Final accelerator voltage
First accelerator voltage

TYPICAL OPERATING CONDITIONS

$90+1.5^{0}$

$\mathrm{V}_{\mathrm{g}_{5}(\ell)}$	4000	V
$\mathrm{~V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}}$	2000	V
$\mathrm{~V}_{3}$	400 to	720

$-\mathrm{V}_{\mathrm{g}}$	45 to 100	V
M_{X}	40 to 52.5	$\mathrm{~V} / \mathrm{cm}$
M_{y}	32 to 40	$\mathrm{~V} / \mathrm{cm}$

$$
\begin{array}{llll}
\mathrm{V}_{5}(\ell) & \max . & 5000 & \mathrm{~V} \\
\mathrm{~V}_{4}, \mathrm{~g}_{2} & \max . & 2500 & \mathrm{~V}
\end{array}
$$

INSTRUMENT CATHODE-RAY TUBE

SCREEN

	colour	persistence
DB 10-74	blue	medium short
DG10-74	yellowish green	medium
DP 10-74	yellowish green	long

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current

MECHANICAL DATA

V_{f}	6.3	V
I_{f}	300	mA

Dimensions in mm
Base: Magnal

Accessories

$$
\text { type } 5911 / 20
$$

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical
$90+1.50$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
First accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection factor, horizontal
vertical

$\mathrm{V}_{5}(\ell)$		4000	V
$\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}$		2000	V
V_{g}	400 to	720	V
$-\mathrm{V}_{\mathrm{g}}$	45 to	100	V
M_{X}	40 to	52.5	V / cm
M_{y}	32 to	40	V / cm

LIMITING VALUES

Final accelerator voltage
First accelerator voltage
$\mathrm{V}_{5}(\ell) \quad \max .5000 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g}}, \mathrm{g}_{4} \max .2500 \mathrm{~V}$

D. 10-78

INSTRUMENT CATHODE-RAY TUBE

General purpose cathode-ray tube with flat face and post deflection acceleration by means of a helical electrode.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}(\ell)}$	$=1$	4 kV
Display area		$=55 \times 75$	cm
Deflection factor, horizontal	M_{X}	$=$	34
	M_{y}	$=$	V / cm
vertical		$11 \mathrm{~V} / \mathrm{cm}$	

SCREEN

	Colour	Persistence
DB10-78	blue	medium short
DH10-78	green	medium short
DN10-78	bluish green	medium short
DP10-78	yellowish green	long

Useful scan diameter
Useful scan at $\mathrm{V}_{\mathrm{g}_{6}}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}=4$
horizontal vertical
min. 90 mm
min. 75 mm
min. 55 mm

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current
$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

D.10-78

MECHANICAL DATA

Dimensions in mm

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base

Dimensions and connections
Overall length
Face diameter
Net weight
max. 305 mm
\max. 102 mm
approx. 660 g
Accessories
Socket
Final accelerator contact connector
Mu-metal shield
Diheptal 12 pins
type $5914 / 20$
type 55560
type 55541

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{X}_{1}\left(\mathrm{x}_{2}\right)}$	$=4$
$\mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}$	$=4$
$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}$	$=3.5$
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}$	$=3.5$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	$=2.1$
$\mathrm{C}_{\mathrm{y}_{1}} \mathrm{y}_{2}$	$=1.7$
C_{1}	$=5.0$
C_{k}	$=3.4$

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

Is use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

$$
90 \pm 1^{0}
$$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.
Final accelerator voltage
Astigmatism control electrode voltage
Beam current
Line width

HELIX

Post deflection accelerator helix resistance

$\mathrm{V}_{\mathrm{g}_{6}(\ell)}$	4000
$\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}$	1000
I(ℓ)	10
1.w.	$=0.35$

[^13]
TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot
Deflection factor
horizontal
vertical
Deviation of linearity of deflection
Geometry uistortion

$$
\left.\begin{array}{rlrl}
\mathrm{V}_{g_{6}}(\ell) & = & 4000 & \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{5}} & =1000 & \pm 100 & \mathrm{~V} \\
\left.\mathrm{I}^{1}\right) \\
\mathrm{V}_{g_{4}, \mathrm{~g}_{2}} & =1000 & \pm 50 & \mathrm{~V}
\end{array}{ }^{2}\right)
$$

Useful scan
horizontal
vertical
$\mathrm{M}_{\mathrm{X}}=29$ to $39 \mathrm{~V} / \mathrm{cm}$
$\mathrm{M}_{\mathrm{y}}=9.4$ to $12.6 \mathrm{~V} / \mathrm{cm}$
$=\max .2 \%{ }^{3}$)
$=$ See note 4
$=\min .75 \mathrm{~mm}$
$=\min .55 \mathrm{~mm}$

LIMITING VALUES (Absolute max. rating system)

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot
Deflection factor at

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}_{3}} & =150 \text { to } 350 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =22.5 \text { to } 37.5 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}=4$
horizontal
vertical
Control grid circuit resistance
Deflection plate circuit
resistance
Deflection plate circuit
resistance
Focusing electrode
current
$\mathrm{M}_{\mathrm{X}}=29$ to $39 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}$
$M_{y}=9.4$ to $12.6 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}$
$\mathrm{R}_{\mathrm{g}_{1}}=\max . \quad 1.5 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{X}}, \mathrm{R}_{\mathrm{y}}=\max . \quad 1 \mathrm{M} \Omega$
$\mathrm{I}_{\mathrm{g}} \quad=\quad+15$ to $\left.-30 \mu \mathrm{~A}^{5}\right)$

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}=4$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
3) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
4) A graticule, consisting of concentric rectangles of $51 \mathrm{~mm} \times 51 \mathrm{~mm}$ and $49 \mathrm{~mm} \times 49 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
${ }^{5}$) Values to be taken into account for the calculation of the focus potentiometer. 7Z2 5648

INSTRUMENT CATHODE-RAY TUBE

The DG13-2 is a 13 cm spherical faced cathode ray tube primarily intended for inexpensive service oscilloscopes.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{5}}(\mathrm{l})$	4	kV
Display area	Both directions full scan		
Deflection factor, horizontal	M_{X}	31	$\mathrm{~V} / \mathrm{cm}$
vertical	M_{y}	26.5	$\mathrm{~V} / \mathrm{cm}$

SCREEN

	colour	persistence
DB 13-2	blue	medium short
DG13-2	yellowish green	medium
DP 13-2	yellowish green	long

Useful screen diameter
Useful scan, horizontal
vertical
min. 114 mm
full scan
full scan

HEATING

Indirect by A. C. or D. C. ; parallel supply

Heater voltage
Heater current

| V_{f} | 6.3 V |
| :--- | ---: | :--- |
| I_{f} | 300 mA |

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Dimensions and connections

Overall length
Face diameter

Accessories

Socket	type	$5914 / 20$
Final accelerator contact connector	type	55560
Mu-metal shield	type	55550

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
$\mathrm{C}_{\mathrm{X}_{1}}\left(\mathrm{x}_{2}\right)$
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)$
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$
$\mathrm{C}_{\mathrm{y}_{1}} \mathrm{y}_{2}$
C_{g}
C_{k}
electrostatic
double electrostatic
symmetrical
symmetrical

Angle between x and y traces
90 ± 1^{0}

LINE WIDTH

Measured on a circle of 50 mm diameter

Final accelerator voltage
First accelerator voltage
Beam current
Line width

$\mathrm{V}_{\mathrm{g}_{5}}(\ell)$	4000	V
$\mathrm{~V}_{4}, \mathrm{~g}_{2}$	2000	V
$\mathrm{I}(\ell)$	0.5	$\mu \mathrm{~A}$
l.w.	0.3	mm

D.13-2

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
First accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection factor, horizontal

vertical

Useful scan, horizontal

vertical

LIMITING VALUES

Final accelerator voltage
Final accelerator voltage
Focusing electrode voltage
Control grid voltage,
negative
positive
positive peak
Cathode to heater voltage,
cathode positive
cathode negative
Voltage between accelerator and any deflection plate

Screen dissipation

$\mathrm{V}_{5}(\ell)$	4000	V
$\mathrm{~V}_{4}, \mathrm{~g}_{2}$	2000	V
$\mathrm{~V}_{\mathrm{g}_{3}}$	400 to 720	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	45 to 100	V
M_{X}	27 to $35 \mathrm{~V} / \mathrm{cm}$	
M_{y}	24 to 29 full scan full scan	

$\mathrm{V}_{5}(\ell)$	max.	5000	V
$\mathrm{~V}_{4}, \mathrm{~g}_{2}$	\max.	2500	V
$\mathrm{~V}_{3}$	\max.	1000	V

$-V_{g_{1}}$	\max.	200	V
$V_{g_{1}}$	\max.	0	V
$V_{g_{1 p}}$	\max.	2	V

| $V_{+k / f-}$ | \max. | 200 V |
| :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{-k / f+}$ | \max. | 125 V |

$\mathrm{V}_{\mathrm{g}}^{4} / \mathrm{x}$		max.	500
$\mathrm{~V}_{4} / \mathrm{y}$	max.	500	V
$\mathrm{~W}_{\ell}$	max.	3	$\mathrm{~mW} / \mathrm{cm}^{2}$

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter oscilloscope tube for inexpensive oscilloscopes.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}(\ell)}$	2	kV
Display area	Both directions full scan		
Deflection factor, horizontal	M_{X}	26	$\mathrm{~V} / \mathrm{cm}$
	vertical	M_{y}	21
		$\mathrm{~V} / \mathrm{cm}$	

SCREEN

	colour	persistence
DG13-32	yellowish green	medium

Useful screen diameter
Useful scan
horizontal
vertical
min.
114 mm
full scan
full scan

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Dimensions and connections

Overall length
Face diameter

Net weight

Accessories

Socket

Final accelerator contact connector
Mu-metal shield

Duodecal 12 p
$\max \quad 384.5 \mathrm{~mm}$
\max. $\quad 135.4 \mathrm{~mm}$
approx. 790 g
type 5912/20
type 55560
type 55550

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}$	9.3 pF
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	5.0 pF
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)$	4.6 pF
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}$	4.6 pF
$\mathrm{C}_{\mathrm{X}_{1} \mathrm{x}_{2}}$	2.0 pF
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$	1.5 pF
$\mathrm{C}_{\mathrm{g}_{1}}$	4.3 pF
C_{k}	6.5 pF

FOCUSING electrostatic

DEFLECTION

x plates
y plates
double electrostatic
symmetrical
symmetrical

Angle between x and y traces $\quad 90 \pm 1^{\circ}$

LINE WIDTH

Measured on a circle of 50 mm diameter.
Accelerator voltage
Beam current

$\mathrm{V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}(\ell)}$	2000	V
$\mathrm{I}(\ell)$	0.5	$\mu \mathrm{~A}$
l.w.	0.4	mm

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection factor, horizontal
vertical
Useful scan, horizontal
vertical

$\mathrm{V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}}(\ell)$	2000	V	
$\mathrm{~V}_{\mathrm{g}_{3}}$	340 to $\quad 640$	V	
$-\mathrm{V}_{\mathrm{g}_{1}}$	max.	90	V
M_{x}	22 to $\quad 30$	$\mathrm{~V} / \mathrm{cm}$	
M_{y}	18.2 to 24.2	$\mathrm{~V} / \mathrm{cm}$	
	full scan		
	full scan		

7Z2 5997

LIMITING VALUES

Final accelerator voltage
Focusing electrode voltage
Control grid voltage,
negative
positive
positive peak
Cathode to heater voltage,
cathode positive
cathode negative
Voltage between
and any deflection plate

Screen dissipation

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot

Deflection factor
horizontal
vertical
M_{X}
M_{y}
Control grid circuit resistance R_{g}
Deflection plate circuit

Focusing electrode current
resistance
$\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}} \quad \max . \quad 5 \mathrm{M} \Omega$ $\mathrm{I}_{3} \quad-15$ to $+15 \mu \mathrm{~A}^{1}$)

$\mathrm{V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}}(\ell)$	\max.	2500	V
$\mathrm{~V}_{\mathrm{g}_{3}}$	\max.	1000	V

$-V_{g_{1}}$	\max.	200	V
$\mathrm{~V}_{\mathrm{g}_{1}}$	\max.	0	V
$\mathrm{~V}_{\mathrm{g}_{\mathrm{p}}}$	\max.	2	V

$V_{+k / f-}$	\max	200	V
$\mathrm{~V}_{-k / f+}$	\max.	125	V

$\mathrm{V}_{4} / \mathrm{x}$	\max	500	V
$\mathrm{~V}_{4} / \mathrm{y}$	\max.	500	V

$W_{\ell} \quad \max \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathrm{V}_{\mathrm{g}}{ } \quad 170$ to $320 \quad \mathrm{~V}$ per kV of V_{g}.
$-\mathrm{V}_{\mathrm{g}_{1}} \quad \max . \quad 45 \quad \mathrm{~V}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}$

11 to $15 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{4}, \mathrm{~g}_{2}$
9.1 to $12.1 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}$
$\max . \quad 1.5 \mathrm{M} \Omega$

1) Values to be taken into account for the calculation of the focus potentiometer.

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced oscilloscope tube for general purpose oscilloscopes.

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{V}_{5}(\ell)$	4	kV	
Display area		10.2×10.2	cm	
Deflection factor, horizontal	M_{x}	23.7	$\mathrm{~V} / \mathrm{cm}$	
	vertical	M_{y}	17.7	
	$\mathrm{~V} / \mathrm{cm}$			

SCREEN

	colour	persistence
DB 13-34	blue	medium short
DG13-34	yellowish green	medium short
DP 13-34	yellowish green	long

Useful screen diameter
min. 114 mm
Useful scan at $\mathrm{V}_{5}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}=2$
horizontal
vertical
min. 102 mm
min. 102 mm

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage	V_{f}	6.3	V
	I_{f}	600	mA

MECHANICAL DATA

Dimensions in mm

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Dimensions and connections

Overall length

Face diameter
Net weight
Accessories

Socket

Final accelerator contact connector
Mu-metal shield
l) Lower side of straight part.

Diheptal 12 p

$$
\begin{array}{lrl}
\max . & 430 \mathrm{~mm} \\
\max . & 134.5 \mathrm{~mm}
\end{array}
$$

approx. 1100 g
type $5914 / 20$
type 55560
type 55550

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$	4	pF
$\mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}$	4	pF
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)$	4	pF
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}$	4	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	2.5	pF
$\mathrm{C}_{\mathrm{y}_{1}} \mathrm{y}_{2}$	1.1	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5	pF
C_{k}	4	pF

FOCUSING electrostatic

DEFLECTION

x plates
double electrostatic
symmetrical
symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angel between x and y traces

$$
90 \pm 1^{0}
$$

LINE WIDTH

Measured on a circle of 50 mm diameter.

Final accelerator voltage
First accelerator voltage
Beam current
Line width

$\mathrm{V}_{5}(\ell)$	4000	V
$\mathrm{~V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}$	2000	V
$\mathrm{I}(\ell)$	0.5	$\mu \mathrm{~A}$
l.w.	0.3	mm

7Z2 6001

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
First accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection factor, horizontal

vertical

Deviation of linearity of deflection
Geometry distortion

$\mathrm{V}_{\mathrm{g}_{5}}(\ell)$	4000	V
$\mathrm{~V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}}$	2000	V
$\mathrm{~V}_{\mathrm{g}_{3}}$	400 to	690
	V	

$-\mathrm{V}_{1} \quad .45$ to 75 V
15.8 to $19.6 \mathrm{~V} / \mathrm{cm}$
$2 \%^{1}$)
see note 2

Useful scan, horizontal
vertical
min.
\min.
$\mathrm{V}_{\mathrm{g}_{5}(\ell)}$
$\mathrm{V}_{g_{4}, g_{2}}$
$\mathrm{~V}_{\mathrm{g}_{3}}$
$-\mathrm{V}_{\mathrm{g}_{1}}$
$\mathrm{~V}_{g_{1}}$
$\mathrm{~V}_{\mathrm{g}_{\mathrm{p}}}$

Cathode to heater voltage, cathode positive
cathode negative
Voltage between
and any deflection plate

Cathode current
Screen dissipation
Ratio $\mathrm{V}_{\mathrm{g}_{5}}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}$
$\mathrm{V}_{+\mathrm{k} / \mathrm{f}-}$
$\mathrm{V}_{-k / f+}$
$\mathrm{V}_{\mathrm{g}_{4} / \mathrm{x}}$
$\mathrm{V}_{\mathrm{g}} / \mathrm{y}$
$\mathrm{I}_{\mathrm{k}_{\text {eff }}}$
W_{ℓ}
$\mathrm{V}_{5}(\ell) / \mathrm{V}_{\mathrm{g} 4}, \mathrm{~g}_{2}$
max. 6000 V
min. 1000 V
max. 2600 V
$\max .1000 \mathrm{~V}$
min. 1000 V
\max. 200 V
max. $0 \quad \mathrm{~V}$
max. 2 V
max. 200 V
max. 125 V
$\max .500 \mathrm{~V}$
max. 500 V
\max mA
$\max \quad 3 \mathrm{~W} / \mathrm{cm}^{2}$
$\max \quad 2.3$

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot $\quad-V_{g_{1}}$ 22.5 to 37.5 V per kV of $\mathrm{V}_{4}, \mathrm{~g}_{2}$

Deflection factor at $\mathrm{V}_{\mathrm{g}_{5}}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}=2$ horizontal $\quad \mathrm{M}_{\mathrm{X}}$ vertical

Control grid circuit resistance $\quad \mathrm{M}_{1} \quad \max . \quad 1.5 \quad \mathrm{M} \Omega$
Deflection plate circuit resistance $\mathrm{R}_{\mathrm{X}}, \mathrm{R}_{\mathrm{y}} \max .1 \mathrm{M} \Omega$
Focusing electrode current

$$
\mathrm{I}_{3}
$$

$$
\left.-15 \text { to }+15 \mu \mathrm{~A}^{3}\right)
$$

1) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
${ }^{2}$) A graticule, consisting of concentric rectangles of $81.6 \mathrm{~mm} \times 81.6 \mathrm{~mm}$ and $78.4 \mathrm{~mm} \times 78.4 \mathrm{~mm}$ is aligned with the electrical \times axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
${ }^{3}$) Values to be taken into account for the calculation of the focus potentiometer. 7Z2 6003

INSTRUMENT CATHODE-RAY TUBE

10 cm diameter flat faced double gun oscilloscope tube, post-deflection acceleration by means of a helical electrode and low interaction between traces. The tube features beam-blanking.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{9}}(\ell)$	3000	V
Display area	horizontal full scan		
Deflection factor, horizontal	vertical	7	cm
	M_{X}	15	$\mathrm{~V} / \mathrm{cm}$
vertical	M_{y}	7	$\mathrm{~V} / \mathrm{cm}$

SCREEN

	colour	persistence
E10-12BE	blue	medium short
E10-12GH	green	medium short
E10-12GM	yellowish green	long
E10-12GP	bluish green	medium short

Useful screen diameter

min. 85 mm
Useful scan (each gun) at $\mathrm{V}_{9}(\ell) / \mathrm{V}_{5}=3$
horizontal
vertical min. 70 mm
full scan

The useful scan may vertically be shifted to a max. of 5 mm with respect to the geometric centre of the face plate.

HEATING

Indirect by A.C. or D. C.; parallel supply

Heater voltage
Heater current
each gun

MECHANICAL DATA

Dimensions in mm

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Dimensions and connections

Overall length
Face diameter
Net weight

Accessories

Socket, supplied with tube	type	55566
Final accelerator contact connector	type	55563
Side contact connector	type	55561
Mu-metal shield ${ }^{8}$)	type	55545

[^14]CAPACITANCES (each gun)
x_{1} to all other elements except x_{2}

$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$	3 pF
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	4.5 pF
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)$	3.5 pF
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)$	3.5 pF
$\mathrm{C}_{\mathrm{X}_{1} \mathrm{x}_{2}}$	2 pF
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$	1.5 pF
$\mathrm{C}_{\mathrm{g}_{1}}$	6 pF
C_{k}	5 pF

FOCUSING

DEFLECTION

x plates
y plates
Angle between x and y traces
Corresponding traces of each gun align within
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.
Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

$\mathrm{V}_{\mathrm{g}_{9}}(\ell)$	3000	V
$\mathrm{~V}_{5}$	1000	$\left.\mathrm{~V}^{3}\right)$
V_{2}	1000	V
$\mathrm{I}_{\mathrm{g}_{9}}(\ell)$	10	$\mu \mathrm{~A}$
1.w.	0.50	mm

HELIX

Post deflection accelerator helix resistance: min. $100 \mathrm{M} \Omega$

[^15]7Z2 7810

TYPICAL OPERATING CONDITIONS(each gun)

Final accelerator voltage
Intergun shield voltage
Geometry control electrode voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Deflection blanking electrode voltage
Deflection blanking control voltage for beam blanking of a current $\mathrm{I}_{9}(\ell)=10 \mu \mathrm{~A} \quad \Delta \mathrm{~V}_{\mathrm{g}_{3}}$
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection factor, horizontal

vertical

Deviation of linearity of deflection
Geometry distortion
Interaction factor
Tracking error
$\mathrm{V}_{\mathrm{g}}(\ell)$
V_{8}
V_{7}
V_{g}
Vg_{5}
V_{4}
V_{3}
V_{2}
$\mathrm{Vg}_{1} \quad-25$ to -90 V
M_{X}
M_{y}
$\max .40 \mathrm{~V}$
1000 V

10 to $20 \mathrm{~V} / \mathrm{cm}$
6 to $8 \mathrm{~V} / \mathrm{cm}$
$\max .2 .5 \%{ }^{4}$)
See note 5
$2 \cdot 10^{-3} \mathrm{~mm} / \mathrm{Vdc}^{6}$)
$1.5 \mathrm{~mm}^{7}$)

[^16]LIMITING VALUES (each gun, if applicable) (Absolute max. rating system)

Final accelerator voltage
Intergun shield voltage
Geometry control electrode voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Beam blanking electrode voltage
First accelerator voltage
Control grid voltage, negative
positive
positive peak
Cathode to heater voltage,
cathode positive
cathode negative
Average cathode current
Screen dissipation
Ratio $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{5}$
V_{g}
max. 3300 V
min. 2700 V
$\max .1200 \mathrm{~V}$
$\max .1200 \mathrm{~V}$
$\max .1200 \mathrm{~V}$
max. 1200 V
min. 800 V
max. 1200 V
\max. 1200 V
$\max .1200 \mathrm{~V}$
min. 200 V

$$
\begin{gathered}
-\mathrm{Vg}_{1} \\
\mathrm{~V}_{1} \\
\mathrm{~V}_{\mathrm{g}_{1 \mathrm{p}}}
\end{gathered}
$$

$\max .200$ V
$\max \quad 0 \quad \mathrm{~V}$
$\max \quad 2$ V
$\mathrm{V}_{\mathrm{tk} / \mathrm{f}-} \max .200 \mathrm{~V}$
V-k/f+ max. 125 V
I_{k}
W_{l}
$\mathrm{V}_{9}(\ell) / \mathrm{V}_{\mathrm{g}_{5}} \max . \quad 3$

CIRCUIT DESIGN VALUES (each gun, if applicable)

Focusing voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	180 to 380	V / kV of $\mathrm{V}_{\mathrm{g}_{2}}$
Control grid voltage for visual cut-off focused spot	V_{g}	25 to -90	V / kV of Vg_{2}
Deflection factor $\mathrm{V}_{\mathrm{g}_{9}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=3}$			
horizontal	M_{X}	10 to 20	V / cm per kV of V_{5}
vertical	M_{y}	6 to 8	V / cm per kV of V_{5}
Focusing electrode current	Ig_{4}	-15 to +10	$\mu \mathrm{A}$
Control grid circuit resistance	Rg_{1}	max. 1.5	$\mathrm{M} \Omega$

[^17]2) This voltage should be equal to the mean x - and y plates potential.
3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{4}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5) A graticule consisting of concentric rectangles of $60 \mathrm{~mm} \times 60 \mathrm{~mm}$ and 57 mm x 57 mm is aligned with electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum potentials applied.
${ }^{6}$) The deflection of one beam when balanced dc voltage are applied to the deflection plates of the other beam, will not be greater than the indicated value.
7) With 50 mm vertical traces superimposed at the tube face centre and deflected horizontally $\pm 4 \mathrm{~cm}$ by voltages proportional to the relative deflection factors, horizontal separation of the corresponding points of the traces shall not be greater than the indicated value.
${ }^{8}$) Due to the maximum length of side contacts the inner diameter of the mumetal shield at the smaller end is advised not to be leṣs than 100 mm .

MONITOR TUBE

21 cm rectangular television tube with metal-backed screen primarily intended for use as a precision monitor.

	QUICK REFERENCE DATA	
Deflection angle	90	0
Focusing	electrostatic	
Resolution	min. 650	lines
Overall length	max. 222	mm

SCREEN

Metal backed phosphor

Lumenescence
Useful diagonal
Useful width
Useful height
white
min. 195 mm
min .180 mm
min. 135 mm

HEATING

Indirect by A.C. or D.C.; parallel supply heater voltage
heater current
$\mathrm{Vf}_{\mathrm{f}}=11 \mathrm{~V} \pm 10 \%$
$\mathrm{I}_{\mathrm{f}}=70 \mathrm{~mA}$

CAPACITANCES

Final accelerator to external conductive coating
Cathode to all other elements
Grid No. 1 to all other elements

$\mathrm{C}_{\mathrm{g} 3, \mathrm{~g} 5(\ell) / \mathrm{m}}$	$=\max .375 \mathrm{pF}$	
C_{k}	$=$	5.0 pF
$\mathrm{C}_{\mathrm{g}_{1}}$	$=$	9.0 pF

MECHANICAL DATA

Mounting position: any
Except vertical with the screen downward and the axis of the tube making an angle of less than 20° with the vertical.

7Z2 7813

MECHANICAL DATA (continued)

Base:
Cavity contact
Accessories
Final accelerator connector

Neo Eightar (B8H)
CT8
type 55563

FOCUSING

electrostatic

The range of focus voltage shown under "Typical operating conditions" results in optimum focus at a beam current of $100 \mu \mathrm{~A}$.

DEFLECTION magnetic

Diagonal deflection angle

$$
90^{\circ}
$$

REFERENCE LINE GAUGE

Dimensions in mm

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid No. 1 voltage for visual extinction of focused raster (grid drive service)

Cathode voltage for visual extinction of focused raster (cathode drive service)

$$
\begin{array}{rlr}
\mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell)} & = & 12 \mathrm{kV} \\
\mathrm{~V}_{\mathrm{g}_{4}} & =0 \text { to } 400 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{2}} & = & 400 \mathrm{~V} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =32 \text { to } 69 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{k}} & =29 \text { to } 62 \mathrm{~V}
\end{array}
$$

[^18]
RESOLUTION

Resolution at screen centre
min. 650 lines
Measured at:

| $\mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell)}$ | $=$ | 12 kV |
| :--- | :--- | ---: | :--- |
| $\mathrm{V}_{\mathrm{g}_{2}}$ | $=$ | 400 V |

This tube will resolve 650 lines measured at a brightness of 340 Nits based on a picture height of 135 mm .
The focus voltage is adjusted to obtain the smallest roundest spot. For optimum overall resolution an external centring magnet may be required.

LIMITING VALUES (Absolute max. rating system)
Final accelerator voltage

$$
\begin{array}{rlrr}
\mathrm{V}_{\mathrm{g}_{3}, g_{5}(\ell)} & =\max . & 16 \mathrm{kV} \\
& =\min . & 9 \mathrm{kV}
\end{array}
$$

Focus voltage
positive
negative
First accelerator voltage
Grid No. 1 voltage
positive
positive peak
negative
Cathode to heater voltage positive
positive peak
Focusing electrode current
Accelerator current

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater	$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	$=\max$.	1	$\mathrm{M} \Omega$
Impedance between cathode and heater	$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	max.	500	$k \Omega$
Impedance between cathode and earth	$\mathrm{Z}_{\mathrm{k}} \quad(50 \mathrm{~Hz})$	$=\max$.	100	$k \Omega$
Grid No. 1 circuit resistance	R_{g}	max.	1.5	$\mathrm{M} \Omega$
Grid No. 1 circuit impedance	$\mathrm{Z}_{1}(50 \mathrm{~Hz})$	$=\max$.	500	$k \Omega$
Accelerator circuit resistance	R_{2}	$=\max$.	1	$\mathrm{M} \Omega$
Focusing electrode circuit resistance	$\mathrm{R}_{\mathrm{g}_{4}}$	$=\max$.	3	$\mathrm{M} \Omega$ 7815

MONITOR TUBE

21 cm rectangular television tube with metal backed screen primarily intended for use as a picture monitor tube.

	QUICK REFERENCE DATA	
Deflection angle	110	0
Focusing	electrostatic	
Resolution	625	lines
Overall length	max. 205	mm

SCREEN

Metal backed phosphor

Lumenescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage

Heater current white
min. 200 mm
min. 190.5 mm
min. 149.2 mm

CAPACITANCES

Final accelerator to external conductive coating
Cathode to all other elements
Grid No. 1 to all other elements

$\mathrm{C}_{3}, \mathrm{~g}_{5}(\ell) / \mathrm{m}$	$=250 \mathrm{pF}$
C_{k}	$=4.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}$	$=7.0 \mathrm{pF}$

M21-12W

MECHANICAL DATA

MECHANICAL DATA (continued)

Mounting position: any
Except vertical with the screen downward and the axis of the tube making an angle of less than 20° with the vertical.

Base:
Cavity contact
Accessories
Final accelerator connector

Neo Eightar (B8H)
CT8
type 55563

1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge JEDEC 126 when the gauge is resting on the cone.
2) The maximum dimension is determined by the reference line gauge.

7Z2 7817

FOCUSING

'The range of focus voltage shown under "Typical operating conditions" results in optimum focus at a beam current of $100 \mu \mathrm{~A}$.

DEFLECTION

 magneticDiagonal deflection angle

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $79.6 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Adjustment of the centring magnet should not be such that a general reduction in brightness or shading of the raster occurs.

TYPICAL OPERATION

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid No. 1 voltage for extinction of focused raster

$\mathrm{V}_{3}, \mathrm{~g}_{5}(\ell)$	$=$	16 kV	
V_{4}	$=$	0 to $\left.400 \mathrm{~V}^{\mathrm{l}}\right)$	
V_{2}			300 V

$\mathrm{V}_{\mathrm{l}} \quad=-35$ to -72 V

RESOLUTION

Resolution at screen centre measured

$$
\text { at } \mathrm{Vg}_{3}, \mathrm{~g}_{5}(\ell)=16 \mathrm{kV}, \mathrm{~V}_{2}=300 \mathrm{~V}
$$

BRIGHTNESS

Brightness at $\mathrm{V}_{\mathrm{g}_{3}}, \mathrm{~g}_{5}(\ell)=16 \mathrm{kV}$,
$\mathrm{I}_{3}, \mathrm{~g}_{5}(\ell)=80 \mu \mathrm{~A}$ measured with a raster of $14 \times 14 \mathrm{~cm}^{2}$

450 Nit

[^19]LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage

Focusing electrode voltage

First accelerator voltage
Cathode to heater voltage

Grid No. 1 voltage
positive
positive peak
negative
Focusing electrode current
First accelerator current

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell)} & =\max \cdot 20 \mathrm{kV} \\
& =\min \cdot 13 \mathrm{kV} \\
& =\max \cdot 1 \mathrm{kV} \\
\mathrm{~V}_{\mathrm{g}_{4}} & =\max \cdot 500 \mathrm{~V} \\
-\mathrm{V}_{\mathrm{g}_{4}} & =\max \cdot 450 \mathrm{~V} \\
& =\min \cdot 200 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{2}} & \\
\mathrm{~V}_{+\mathrm{k} / \mathrm{f}-} & =\max \cdot 200 \mathrm{~V} \\
\mathrm{~V}_{+\mathrm{k} / \mathrm{f}-\mathrm{p}} & =\max \cdot 300 \mathrm{~V} 1) \\
\mathrm{V}_{-\mathrm{k} / \mathrm{f}+} & =\max \cdot 125 \mathrm{~V} \\
\mathrm{~V}_{-\mathrm{k} / \mathrm{f}+\mathrm{p}} & =\max \cdot 250 \mathrm{~V}
\end{aligned}
$$

ㄹ

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}} & \left.=\max \cdot 0 \mathrm{~V}^{2}\right) \\
\mathrm{V}_{\mathrm{Ip}} & =\max \cdot 2 \mathrm{~V} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =\max \cdot 150 \mathrm{~V} \\
\mathrm{I}_{g_{4}} & =\max \cdot \pm 25 \mu \mathrm{~A} \\
\mathrm{I}_{g_{2}} & =\max \cdot \pm 5 \mu \mathrm{~A}
\end{aligned}
$$

CIRCUIT DESIGN VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Impedance between cathode and earth
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
First acceler ator circuit resistance
Focusing electrode circuit resistance

R_{kf}	$=\max \cdot 1 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{kf}}(50 \mathrm{~Hz})$	$=\max \cdot 0.5 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k}}(50 \mathrm{~Hz})$	$=\max \cdot 0.1 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$	$=\max \cdot 1.5 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz})$	$=\max \cdot 0.5 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{2}}$	$=\max .1 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{4}}$	$=\max .3 \mathrm{M} \Omega$

1) During a warm-up period not exceeding 45 s the heater may be 410 V negative with respect to the cathode.
2) The d.c. value of bias must not be such as to allow the grid to become positive with respect to the cathode, except during the period immediately after switching the receiver on or off when it may be allowed to rise to +1 V . The maximum positive excursion of the video signal must not exceed +2 V , and at this voltage the grid current may be expected to be approximately 2 mA .

MONITOR TUBE

The M28-12W is a rectangular $28 \mathrm{~cm} .90^{\circ}$ deflection angle direct viewing picture tube primarily intended as a monitor tube.

QUICK REFERENCE DATA		
Face diagonal	28	cm (11 inch)
Deflection angle	90°	
Overall length	245	mm
Neck length	105.5	mm
Neck diameter	20	mm
Light transmission of face glass	50	\%
Focusing		electrostatic
Bulb		reinforced
Heating	$11 \mathrm{~V}, 68$	mA
Resolution	min. 850	lines

SCREEN

Metal backed phosphor

Luminescence white
Light transmission of face glass
Useful diagonal
Useful width
Useful height

50 \%
min. 262.5 mm
min. 228 mm
min. 171 mm

HEATING

Indirect by A.C. or D.C.

Heater voltage
Heater current

V_{f}	11	V
I_{f}		68
		mA
	7 Z 2	7979

MECHANICAL DATA (continued)

Mounting position: any
Base $\quad: 7$ pins miniature, with pumping stem
Net weight : approx. 2.2 kg
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

	$\underset{\text { © }}{\substack{0}}$	Distance from centre (max. values)												
$\begin{aligned} & 5 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { E } \\ & \text { E } \\ & 0 \\ & \text { Z } \end{aligned}$	Long axis 0^{0}	10°	20°	25°	30°	$\begin{aligned} & 34^{\circ} 40^{\circ} \\ & \text { Diag. } \end{aligned}$	40°	45°	50°	00°	70°	80°	Short axis 90°
1	27.5	130.00	131.62	136.64	140.59	145.50	147.50	144.87	136.81	127.80	114.90	106.84	102.41	101.00
2	37.5	127.35	128.90	133.85	137.70	142.40	144.90	141.80	133.30	124.85	112.60	105.15	101.15	99.90
3	47.5	121.10	122.60	126.85	130.45	134.70	137.55	133.90	125.55	118.45	108.25	102.00	98.95	97.90
4	57.5	114.05	115.15	118.70	121.65	125.25	127.30	124.50	117.50	111.55	103.10	98.10	95.75	95.20
5	67.5	106.35	107.20	110.00	112.25	114.85	116.40	114.25	108.85	104.00	97.20	93.50	92.00	41.75
6	77.5	97.60	98.25	100.05	101.45	103.30	104.45	102.80	98.80	95.10	90.00	87.45	86.85	86.95
7	87.5	87.40	87.75	88.85	89.70	90.70	91.40	90.25	87.70	85.15	81.70	80.40	80.50	81.00
8	97.5	75.05	75.35	76.15	76.70	76.95	76.85	76.05	74.90	73.85	72.45	72.15	72.75	73.40
9	107.5	60.65	60.65	60.65	60.65	60.65	60.65	60.65	60.55	60.35	60.20	60.60	61.00	61.35
10	117.5	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00

CAPACITANCES

Final accelerator to external		
conductive coating	$\mathrm{C}_{\mathrm{a}, g_{3}, g_{5} / \mathrm{m}}$	$>850 \mathrm{pF}$
Final accelerator to metal band	$\mathrm{C}_{\mathrm{a}}, g_{3}, g_{5} / \mathrm{m}$	150 pF
Cathode to all	C_{k}	3 pF
Grid No. 1 to all	$\mathrm{C}_{\mathrm{g}_{1}}$	7 pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle	90°
Horizontal deflection angle	80°
Vertical deflection angle	63°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 55 mm . The centring magnet should be mounted as close to the deflection coils as possible.

NOTES TO OUTLINE DRAWING

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
2. The configuration of the external conductive coating is optional but contains the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge.
4. This area must be kept clean.
5. Recessed cavity contact.
6. Maximum unflatness of the rim is 1 mm .
7. The mounting screws in the cabinet must be situated inside a circle with a diameter of 5 mm drawn around the corner points of a geometrical rectangle of $240 \mathrm{~mm} \times 182.5 \mathrm{~mm}$.

FACE PLATE CONTOUR

Dimensions of the outer contour of the face plate on the mold match line.

REFERENCE LINE GAUGE

Dimensions in mm

The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.

M28-12W

TYPICAL OPERATING CONDITIONS

Grid drive service
Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage

Cathode drive service
Voltages are specified with respect to grid No.l

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g}_{5}$	11	13	kV	
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	0 to 350	50 to 400	V	$1)$
Grid No.2 voltage	V_{2}	200 to 350	350	V	

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	V , $\mathrm{g}_{3}, \mathrm{~g}_{5}$	max. min.	$\begin{array}{r} 14 \\ 7.5 \end{array}$	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
Grid No. 4 voltage	V_{g}			
positive	$\mathrm{V}_{\mathrm{g}}{ }$	max	500	V
negative	$-\mathrm{V}_{\mathrm{g}_{4}}$	max.	50	V
Grid No. 2 voltage	V_{g}	max. min.	350 200	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Grid No. 2 to grid No. 1 voltage	$\mathrm{V}_{2} / \mathrm{V}_{\mathrm{g}}$	max.	450	V
Grid No. 1 voltage				
positive	V_{g}	max.	0	V
positive peak	$\mathrm{V}_{\mathrm{g}} \mathrm{p}$	max.	2	V
negative	$-\mathrm{V}_{g_{1}}$	max.	100	V
negative peak	$-\mathrm{V}_{\mathrm{g}_{1} \mathrm{p}}$	\max.	350	V^{2})

[^20]
LIMITING VALUES (continued)

Cathode to grid No. 1 voltage
positive
positive peak
negative
negative peak
Cathode to heater voltage
positive
positive peak

CIRCUIT DESIGN VALUES

Grid No. 4 current
positive
negative
Grid No. 2 current
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
Resistance between external conductive coating and rimband
$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$
$\mathrm{~V}_{\mathrm{k} / \mathrm{g}_{1 \mathrm{p}}}$
$-\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1}$
$-\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1 \mathrm{p}}$
$\max .100$ V
$\max .350 \mathrm{~V}^{1}$)
$\max . \quad 0 \mathrm{~V}$
$\max .2 \mathrm{~V}$
$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$
$\mathrm{V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$
$\max .110 \mathrm{~V}$
$\max .130 \mathrm{~V}$
$\max .25 \mu \mathrm{~A}$
$\max .25 \mu \mathrm{~A}$
max. $5 \mu \mathrm{~A}$
$\max . \quad 5 \mu \mathrm{~A}$
I_{4}
$-\mathrm{I}_{\mathrm{g}_{4}}$

$\mathrm{R}_{\mathrm{k} / \mathrm{f}} \quad \max .1 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz}) \max .0 .1 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}} \quad \max .1 .5 \mathrm{M} \Omega$
$Z_{g_{1}}(50 \mathrm{~Hz}) \max \cdot 0.5 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{m} / \mathrm{m}^{\prime}} \quad \max .2 \mathrm{M} \Omega$

[^21]

MONITOR TUBE

36 cm rectangular television tube with metal backed screen primarily intended for use as a precision monitor.

	QUICK REFERENCE DATA	
Deflection angle	90	0
Focusing	electrostatic	
Resolution	min. 650 lines	
Overall length	max. 317	mm

SCREEN

Metal backed phosphor

Lumenescence
Useful diagonal
Useful width
Useful height
white
min. $\quad 330 \mathrm{~mm}$
min. 306.5 mm
min. 241 mm

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current

CAPACITANCES

Final accelerator to external conductive coating

Cathode to all other elements
Grid No. 1 to all other elements
$\mathrm{C}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell) / \mathrm{m}}=800 \mathrm{pF}$
$\mathrm{C}_{\mathrm{k}}=5.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}} \quad=9.0 \mathrm{pF}$

MECHANICAL DATA

1) Reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
${ }^{2}$) The maximum dimension is determined by the reference line gauge.
7Z2 782A

MECHANICAL DATA (continued)
Dimensions in mm

Mounting position: any
Except vertical with the screen downward and the axis of the tube making an angle of less than 20° with the vertical.

Base:
Cavity contact

Accessories:

Socket
Final accelerator connector type 55563
FOCUSING electrostatic
The range of focus voltage shown under typical operating conditions results in optimum focus at a beam current of $100 \mu \mathrm{~A}$.

DEFLECTION

Diagonal deflection angle
magnetic
90°

M36-11W

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $79.6 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Adjustment of the centring magnet should not be such that a general reduction in brightness or shading of the raster occurs.

REFERENCE LINE GAUGE

TYPICAL OPERATION

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid No. 1 voltage for extinction of focused raster (grid drive service)

Cathode voltage for extinction of focused raster (cathode drive service)

| $V_{g_{3}, g_{5}(\ell)}$ | $=$ | 16 kV |
| ---: | :--- | ---: | :--- |
| $\mathrm{V}_{\mathrm{g}_{4}}$ | $=$ | 0 to $500 \mathrm{~V} \quad 1)$ |
| $\mathrm{V}_{\mathrm{g}_{2}}$ | $=$ | 600 V |
| $-\mathrm{V}_{\mathrm{g}_{1}}$ | $=43$ to 98 V | |
| $\mathrm{~V}_{\mathrm{k}}$ | $=40$ to 90 V | |

RESOLUTION

Resolution at screen centre
Measured at:
min. 650 lines
$\begin{array}{llrl}\mathrm{V}_{\mathrm{g} 3}, \mathrm{~g}_{5}(\ell) & = & 16 \mathrm{kV} \\ \mathrm{V}_{\mathrm{g}_{2}} & = & 600 \mathrm{~V}\end{array}$

This tube will resolve 650 lines measured at a brightness of 340 Nits based on a picture height of 237 mm .
The focus voltage is adjusted to obtain the smallest roundest spot. For optimum overall resolution an external centring magnet may be required.

1) With the small change in focus spot size with variation of focus voltage, the limit of 0 to 500 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus, a voltage of at least -100 V to +600 V will be required.

7Z2 6444

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage

Focusing electrode voltage

First accelerator voltage
Grid No. 1 voltage
positive
positive peak
negative
Cathode to heater voltage
Cathode to heater peak voltage
Focusing electrode current
First accelerator current

$\mathrm{V}_{\mathrm{g}_{3,} \mathrm{~g}_{5}(\ell)}$	$=\max \cdot 18 \mathrm{kV}$
	$=\min . \quad 12 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g}_{4}}$	$=\max . \quad 1 \mathrm{kV}$
$-\mathrm{V}_{4}$	$=\max \cdot 500 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{g}_{2}}$	$=\max .800 \mathrm{~V}$

$\mathrm{V}_{\mathrm{g}_{1}}$	$\left.=\max . \quad 0 \quad \mathrm{~V}{ }^{1}\right)$
$\mathrm{V}_{\mathrm{g} 1_{\mathrm{p}}}$	$=\max . \quad 2 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{g}_{1}}$	$=\max \cdot 180 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	$=\max \cdot 80 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	$=\max \cdot 130 \mathrm{~V}$
$\mathrm{I}_{\mathrm{g}_{4}}$	$=\max \cdot \pm 25 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g}_{2}}$	$=\max \cdot \pm 5 \mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Impedance between cathode and earth
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
First accelerator circuit resistance
Focusing electrode circuit resistance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	$=\max \cdot \quad 1 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	$=\max \cdot 500 \mathrm{k} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	$=\max \cdot 100 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$	$\max \cdot 1.5 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz})$	$=\max \cdot 500 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{g}_{2}}$	$=\max .1 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{4}}$	$=\max$.
	$3 \mathrm{M} \Omega$

[^22]
EXTERNAL CONDUCTIVE COATING

This tube has an external conductive coating, m, which must be earthed and the capacitance of this to the final electrode is used to provide smoothing for the e.h.t. supply. The tube marking and warning labels are on the side of the cone opposite the final electrode connector and this side should not be used for making contact to the external conductive coating.

WARNING

X-ray shielding is advisable to give protection against danger of personal injury arising from prolonged exposure at close range to this tube,

M36-11W

MONITOR TUBE

The M36-13W is a 36 cm diameter rectangular television tube with metal backed screen primarily intedned for use as a monitor tube.

	QUICK REFERENCE DATA	
Deflection angle		110°
Focusing	electrostatic	
Resolution	min. 625	lines
Overall length	max. 268.5	mm

SCREEN

Metal backed

Colour	white	
Useful screen diagonal	min. 333.4	mm
Useful screen width	min. 314.3 mm	
Useful screen height	min. 250.8 mm	

HEATING

Indirect by A.C. or D.C.; parallel or series supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	300	mA

CAPACITANCES

Control grid to all other elements	Cg_{1}	7.0	pF
Cathode to all other elements	C_{k}	4.0	pF
Final accelerator to external conductive coating	$\mathrm{Cg}_{3}, \mathrm{~g}_{5}(\ell) / \mathrm{m}$	800	pF

M36-13W

MECHANICAL DATA
Dimensions in mm

Mounting position: any, except vertical with the screen downward and the axis of the tube making an angle of less than 20° with the vertical.

Base
$\underline{\text { Cavity contact }}$
Accessories
Final accelerator contact connector

Neo eightar (B8H)
CT8
type 55563

FOCUSING electrostatic

The range of focus voltage shown under "Typical operating conditions" results in optimum focus at a beam current of $100 \mu \mathrm{~A}$.

DEFLECTION
double magnetic
diagonal deflection angle 110°
$\left.\left.\left.\overline{1})^{2}\right)^{3}\right)^{4}\right)^{5}$) See page 6.
7Z2 7826

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $79.6 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt). Adjustment of the centring magnet should not be such that a general reduction in brightness or shading of the raster occurs.

REFERENCE LINE GAUGE
 Dimensions in mm

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid No. 1 voltage for visual extinction of a focused raster

Resolution at screen centre

$\mathrm{V}_{3}, \mathrm{~g}_{5}(\ell)$	16	kV
V_{4}	$0-400$	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
V_{2}	400	V

Measured at

$-\mathrm{V}_{\mathrm{g}_{1}}$	40 to 85	V
	min.	625
$\mathrm{~V}_{3}, \mathrm{~g}_{5}(\ell)$	lines	
$\mathrm{V}_{\mathrm{g}_{2}}$	16	kV
	400	V

This tube will resolve 625 lines measured at a brightness of 340 Nits based on a picture height of 237 mm .
The focus voltage is adjusted to obtain the smallest roundest spot. For optimum overall resolution an external centring magnet may be required.

7Z2 7952

LIMITING VALUES (Absolute max. rating system)
Measured with respect to cathode

Final accelerator voltage	$\mathrm{V}_{3}, \mathrm{~g}_{5}(\ell)$	\max. min.	18
Focusing electrode voltage	$\begin{array}{r} \mathrm{Vg}_{4} \\ -\mathrm{Vg}_{4} \end{array}$	\max \max.	1 500
First accelerator voltage	Vg_{2}	\max. \min.	$\begin{aligned} & 550 \\ & 350 \end{aligned}$

Control grid voltage,
negative
positive
Focusing electrode current
Grid No. 2 current

$-\mathrm{V}_{1}$	max.	150	V
$\mathrm{~V}_{1}$	\max.	0	V
I_{1}	\max.	± 25	$\mu \mathrm{~A}$
I_{4}	\max	± 5	$\mu \mathrm{~A}$

Cathode to heater voltage,
cathode positive
cathode negative
Resistance between heater and cathode
Resistance between grid No. 1 and earth
Impedance between heater and cathode ($\mathrm{f}=50 \mathrm{~Hz}$)

Impedance between cathode and earth (f = 50 Hz)

[^23]
WARNING

X-ray shielding is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 16 kV .

EXTERNAL CONDUCTIVE COA TING
This tube has an external conductive coating (m), which must be earthed and capacitance of this to the final electrode is used to provide smoothing for the EHT supply. The tube marking and warning labels are on the side of the cone opposite the final electrode connector and this side should not be used for making contact to the external conductive coating.

NOTES TO OUTLINE DRAWING

${ }^{1}$) The reference line is determined by the plane of the upper edge of the flange of the reference line gauge, (JEDEC 126) when the gauge is resting on the cone.
2) Bulge at splice-line seal may increase the indicated maximum value for envelope width, diagonal and height by not more than 6.4 mm , but at any point around the seal, the bulge will not protrude more than 3.2 mm beyond the envelope surface at the location specified for dimensioning the envelope width, diagonal and height.
${ }^{3}$) The tube should be supported on both sides of the bulge. The mechanism used should provide clearance for the maximum dimensions of the bulge.
${ }^{4}$) Measured $12+1 \mathrm{~mm}$ from the centre-line of the screen-cone seal.
${ }^{5}$) The maximum dimension is determined by the reference line gauge.

FLYING SPOT SCANNER TUBE

The M.13-36 is a 13 cm diameter cathode-ray tube intended for flying spot applications.

	QUICK REFERENCE DATA	
Accelerator voltage	25	kV
Deflection angle	40°	
Resolution	1000	lines

SCREEN

Metal backed

	Colour	Persistence
MC13-16	Purplish blue	Very short
MK13-16	Green	Short

Useful screen diameter
min. 108 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	300	mA

CAPACITANCES

Grid No. 1 to all other electrodes
Cathode to all other electrodes
Accelerator to outer conductive coating
C_{g}
C_{k}
$\mathrm{C}_{2}(\ell) / \mathrm{m}$
250 to 450 pF

MECHANICAL DATA

Mounting position: any, except with screen downwards and the axis of the tube making an angle of less than 500 with the vertical.

Base
Duodecal 7p.

[^24]
FOCUSING

Focusing coil
magnetic
type AT1997

DEFLECTION magnetic

REFERENCE LINE GAUGE
Dimensions in mm

OPERATING CHARACTERISTICS

Accelerator voltage

$\mathrm{V}_{\mathrm{g}_{2}(\ell)}$	25	kV
I_{ℓ}	50 to 150	$\mu \mathrm{~A}$
$-\mathrm{V}_{\mathrm{g}_{1}}\left(\mathrm{I}_{\ell}=0\right)$	50 to 100	V

LIMITING VALUES (Absolute max. rating system)

Accelerator voltage
Grid No. 1 voltage, negative value
positive value
peak positive value
Cathode current
$\mathrm{V}_{2}(\ell)$

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{g}_{1}} \\
+ & \mathrm{V}_{\mathrm{g}_{1}} \\
+ & \mathrm{V}_{\mathrm{g}_{1 \mathrm{p}}}
\end{aligned}
$$

I_{k}
Voltage between heater and cathode ${ }^{1}$)
cathode negative
cathode positive
peak value, cathode positive
External resistance between heater and cathode

External grid No. 1 resistance
External grid No. 1 impedance at a frequency of 50 Hz
V_{kf} (kneg.) max. 125 V
V_{kf} (kpos.) max. 200 V
V_{kf} (kpos.) $\max .410 \mathrm{~V} 2$
$\mathrm{R}_{\mathrm{kf}} \quad \max .1 \mathrm{M} \Omega$
R_{g}
\max. $1.5 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}}(\mathrm{f}=50 \mathrm{~Hz}) \quad \max .0 .5 \mathrm{M} \Omega$

REMARKS

Measures should be taken for the beam current to be switched off immediately when one of the time-base circuits becomes defective.

An X-ray radiation shielding with an equivalent lead thickness of 0.5 mm is required to protect the observer.

[^25]

PROJECTION TUBE

SCREEN

Metal backed

Type	MG6-2	MU6-2	MY6-2
Colour	green	blue	yellow
Colour point	$\mathrm{x}=0.19 \quad \mathrm{y}=0.72$	$\mathrm{x}=0.17 \quad \mathrm{y}=0.13$	$\mathrm{x}=0.54 \quad \mathrm{y}=0.46$

The MY6-2 should be used in conjunction with a suitable filter (e.g. Wratten filter No.25).
Colour points of MY in combination with Wratten No. 25 filter $x=0.67 \quad y=0.33$
Useful screen diameter
min. 55 mm
HEATING: Indirect by A.C. or D.C.; parallel or series supply
Heater voltage
Heater current

V_{f}	6.3	V
I_{f}	300	mA

MECHANICAL DATA

Dimensions in mm
Base: V

${ }^{1}$) Inner radius of curvature of the face plate.
The deviation of the centre of the outer radius of curvature with respect to the centre line of the neck is max. 2 mm .
2) Eccentricity of the face plate with respect to the centre line of the neck max. 0.9 mm .
3) Reference line, determined by the diameter of $30.28 \pm 0.005 \mathrm{~mm}$.
4) Spark trap and outer coating. This connection must be earthed.
5) The distance from deflection centre to reference line should not exceed 35 mm .

FOCUSING

DEFLECTION
magnetic
double magnetic
deflection angle 67.5^{0}

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Negative grid No. 1 voltage for visual extinction of a focused spot

$$
\begin{array}{cr}
\mathrm{V}_{2}(\ell) & 25 \mathrm{kV} \\
-\mathrm{V}_{1} & 40 \text { to } 90 \mathrm{~V}
\end{array}
$$

LIMITING VALUES (Absolute max. rating system)
Measured with respect to cathode
Accelerator voltage $\quad \mathrm{V}_{\mathrm{g}_{2}(\ell)} \max .25 \mathrm{kV}$
Control grid voltage
negative
positive

$-V_{g_{1}}$	max.	200	V
$V_{g_{1}}$	\max.	0	V

Cathode to heater voltage,
cathode positive
Resistance between heater and cathode
Resistance between grid and earth
$V_{+k / f}-\max .125 \mathrm{~V}$
$R_{k f} \quad \max .20 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$
max. $1.5 \mathrm{M} \Omega$
General observations
Measures should be taken for the anode current to be switched off immediately when one of the time-base circuits becomes defective. An X-ray radiation shielding with an equivalent lead thickness of 0.5 mm is required to protect the observer. When the tube is used in an optical box, the screening by the box will in general be sufficient.

PROJECTION TUBE

The M. 13-38 are 13 cm diameter projection tubes.
The tubes are designed for large screen projection of colour TV displays.

QUICK REFERENCE DATA		
Final accelerator voltage	50	kV
Deflection angle	47°	
Focusing	magnetic	

SCREEN

Type
Colour
Colour point
Useful diameter

MG13-38
green
$x=0.19 \quad y=0.72$
min. $69 \times 92 \mathrm{~mm}^{2}$

Brighti ess

```
MG1 3-38
MU1:1-38
MY1&-38
```

MU13-38
blue
$x=0.17 \quad y=0.13$
$x=() .661 \quad y=() .331$
MY13-38
yellow

MECHANICAL DATA

Dimensions in mm

${ }^{1}$) Reference line is determined by position where a gauge $38.1_{-0.00}^{+0.05} \mathrm{~mm}$ dia meter and 50 mm long will rest on bulb cone.
${ }^{2}$) Socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base shell will fall within circle concentric with cone axis and having a diameter of 50 mm .
${ }^{3}$) Distance reference line - top centre of grid.
${ }^{4}$) This pin must be connected to earth.

MECHANICAL DATA (continued)

Mounting position: any, except with screen downwards with the axis at an angle of less than 50° to the vertical.
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Dimensions and connections
Overall length
Face diameter

Net weight
Accessories
Socket
Final accelerator contact connector

Duodecal 7 p
$\max .374 \mathrm{~mm}$
\max. 132.5 mm
approx. 950 g
type 5912/20
supplied with tube

CAPACITANCES

Control grid to all other elements $\quad \mathrm{C}_{\mathrm{g}_{1}} \max .10 \mathrm{pF}$
Cathode to all other elements
$\mathrm{C}_{\mathrm{k}} \max .9 \mathrm{pF}$

FOCUSING magnetic

Distance from the centre of the air gap of the focusing coil to the front of the screen 240 mm

DEFLECTION double magnetic
 deflection angle 47°

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Negative grid No. 1 voltage for visual extinction of focused raster

Peak accelerator current

$\mathrm{V}_{2}(\ell)$	50 kV
$-\mathrm{V}_{\mathrm{g}_{1}}$	100 to 170 V
$\mathrm{I}_{2 \mathrm{p}}$	min. 2500 mA

7Z2 6399

LIMITING VALUES (Absolute max. rating system)
Measured with respect to cathode

Accelerator voltage
Control grid voltage, negative
positive
positive peak
Grid No. 2 current
Cathode to heater voltage,
cathode positive
cathode negative
Resistance between heater and cathode
Resistance between grid and earth
Impedance between grid and earth $(\mathrm{f}=50 \mathrm{~Hz})$
$\begin{array}{llrl}\mathrm{V}_{2}(\ell) & \max . & 55 & \mathrm{kV} \\ \min . & 40 & \mathrm{kV}\end{array}$

$-\mathrm{V}_{\mathrm{g}_{1}}$	\max.	200	V
$\mathrm{~V}_{1}$	\max.	0	V
$\mathrm{~V}_{1 \mathrm{p}}$	\max.	0	V
$\mathrm{I}_{\mathrm{g}_{2}}$	\max.	500	$\left.\mu \mathrm{~A}^{\mathrm{l}}\right)$

V+k/f- max. 100 V
$\mathrm{V}-\mathrm{k} / \mathrm{f}+\quad \max .50 \mathrm{~V}{ }^{2}$)
$R_{k f} \quad \max .20 \mathrm{k} \Omega$
$R_{g} \max .1 .5 \mathrm{M} \Omega$
Z_{g}
$\max .0 .5 \mathrm{M} \Omega$

1) In order to prevent the possible occurrence of cracked faces, for images with concentrated bright areas (high screen loads) the g2 current should be kept lower than the indicated value. This is especially the case as for as stationary pictures are concerned.
2) In order to avoid excessive hum, the A.C. component of the heater to cathode voltage should be as low as possible and must not exceed 20 VRMS.

GENERAL OBSERVATIONS

It is essential that means be provided for the instantaneous removal of the beam current in the event of a failure of either one or both of the time bases. Unless such a safety device is incorporated a failure of this type will result in the immediate destruction of the screen of the tube.

Shielding equivalent to a lead thickness of 1 mm is required to protect the observer against X radiation.
The raster dimensions should not come below the minimum of $69 \times 72 \mathrm{~mm}^{2}$. The screen shall be given adequate cooling by applying a continuous airblast onto the screen of approx. $0.06 \mathrm{~m}^{3} / \mathrm{sec}$.

In order to prevent damage of the tube caused by a momentary internal arc a resistor of $50 \mathrm{k} \Omega$ has to be connected between anode contact and the power supply.
Before removing the tube, the screen and the cone should be discharged.
The spark trap and the outer coating of the tube must be connected to earth.
It is necessary to centre the focusing coil to get optimum sharpness.
It is recommended to use the E.H.T. connector, which is delivered with each tube.

\qquad

 .t.

 Na

PROJECTION TUBE

SCREEN

Metal backed

Colour	white
Useful screen diameter	min. 55 mm

HEATING: Indirect by A.C. or D.C.; parallel or series supply
Heater voltage

V_{f}	6.3	V
I_{f}	300	mA

MECHANICAL DATA

Dimensions in mm
Base: V

1) Inner radius of curvature of the face plate.

The deviation of the centre of the outer radius of curvature with respect to the centre line of the neck is max. 2 mm .
2) Eccentricity of the face plate with respect to the centre line of the neck max. 0.9 mm .
3) Reference line, determined by the diameter of $30.28 \pm 0.005 \mathrm{~mm}$.
4) Spark trap and outer coating. This connection must be earthed.
5) The distance from deflection centre to reference line should not exceed 35 mm .

7Z2 7564

FOCUSING

DEFLECTION
magnetic
double magnetic
deflection angle 67.5°

TYPICAL OPERATING CONDITIONS
Accelerator voltage
Negative grid No. 1 voltage for visual extinction of a focused spot

$\mathrm{V}_{2}(\ell)$	25 kV
$-\mathrm{V}_{1}$	40 to 90 V

LIMITING VALUES (Absolute max. rating system)
Measured with respect to cathode
Accelerator voltage $\quad \mathrm{V}_{2}(\ell) \quad \max .25 \mathrm{kV}$
Control grid voltage

negative	$-\mathrm{V}_{\mathrm{g}}$	\max	200	V
positive	V_{g}	\max	0	V

Cathode to heater voltage,
cathode positive
Resistance between heater and cathode
Resistance between grid and earth
$\mathrm{V}_{+\mathrm{k} / \mathrm{f}-\quad \max .125 \mathrm{~V}}$
$R_{k f} \quad \max .20 \mathrm{k} \Omega$
$\mathrm{Rg}_{1} \quad \max . \quad 1.5 \mathrm{M} \Omega$

General observations

Measures should be taken for the anode current to be switched off immediately when one of the time-base circuits becomes defective. An X-ray radiation shielding with an equivalent lead thickness of 0.5 mm is required to protect the observer When the tube is used in an optical box, the screening by the box will in general be sufficient.

PROJECTION TUBE

The MW 13-38 is a 13 cm diameter projection tube.
The brightness of the tube is such that it can be used for large screen projection of TV displays.

QUICK REFERENCE DATA	
Final accelerator voltage	50 kV
Deflection angle	47°
Focusing	magnetic

SCREEN

Metal backed

Colour
Useful screen diameter
Brightness
measured at $\mathrm{V}_{\mathrm{g}_{2}}=50 \mathrm{kV}$

$$
\mathrm{I}_{1}=500 \mu \mathrm{~A}
$$

raster size $92 \times 69 \mathrm{~mm}^{2}$
white
$69 \times 92 \mathrm{~mm}^{2}$
min. $870 \mathrm{mcd} / \mathrm{cm}^{2}$

HEATING

Indirect by A.C. or D.C.; parallel or series supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	300	mA

CAPACITANCES

Control grid to all other elements
Cathode to all other elements
C_{1} max. 10 pF
$\mathrm{C}_{\mathrm{k}} \quad \max .9 \mathrm{pF}$

MW13-38

MECHANICAL DATA

${ }^{1}$) Reference line is determined by position where a gauge $38.1_{-0.0}^{+0.05} \mathrm{~mm}$ diameter and 50 mm long will rest on bulb cone.
${ }^{2}$) Socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base shell will fall within circle concentric with cone axis and having a diameter of 50 mm .
${ }^{3}$) Distance reference line - top centre of grid.
${ }^{4}$) This pin must be connected to earth.

MECHANICAL DATA (continued)

Mounting position: any, except screen downwards with the axis at an angle of less than 50° to the vertical.
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base

Duodecal 7 p
Dimensions and connections
Overall length
Face diameter
Net weight
$\max .374 \mathrm{~mm}$
$\max .132 .5 \mathrm{~mm}$

Accessories
Socket type 5912/20
Final accelerator contact connector
supplied with tube

FOCUSING magnetic

Distance from the centre of the air gap of the focusing coil to the front of the screen 240 mm

DEFLECTION	double magnetic
	deflection angle 47°

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Negative grid No. 1 voltage for visual extinction of a focused raster

Peak accelerator current

$\mathrm{V}_{2}(\ell)$	50	kV
$-\mathrm{V}_{1}$	100 to 170	V
$\mathrm{I}_{2 \mathrm{p}}$	min. 2500	$\mu \mathrm{~A}$

MW13-38

LIMITING VALUES (Absolute max. rating system)
Measured with respect to cathode
Accelerator voltage

| | |
| :--- | :--- | :--- | :--- |
| Vg_{2} | $(\ell) \quad$max. 55
 kV
 min. 40 kV |

Control grid voltage,
negative
positive
positive peak
Grid No. 2 current
Cathode to heater voltage, cathode positive
cathode negative
Magnification maximum
Resistance between heater and cathode
Resistance between grid and earth
Impedance between grid and earth $(\mathrm{f}=50 \mathrm{~Hz})$

$-\mathrm{V}_{\mathrm{g}_{1}}$	\max.	200	V
$\mathrm{~V}_{1}$	\max.	0	V
$\mathrm{~V}_{\mathrm{g}_{1 \mathrm{p}}}$	\max.	0	V
I_{2}	\max.	500	$\left.\mu \mathrm{~A}^{1}\right)$

$\mathrm{V}_{+\mathrm{k} / \mathrm{f}-} \max .100 \mathrm{~V}^{2}$)
V-k/f+ max. 50 V
$\mathrm{R}_{\mathrm{kf}} \quad \max .20 \mathrm{k} \Omega$
$\mathrm{R}_{1} \max . \quad 1.5 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}} \quad \max .0 .5 \mathrm{M} \Omega$
${ }^{1}$) In order to prevent the possible occurrence of cracked faces, for images with concentrated bright areas (high screen loads) the g_{2} current should be kept lower than the indicated value. This is especially the case as for as stationary pictures are concerned.
${ }^{2}$) In order to avoid excessive hum, the A.C. component of the heater to cathode voltage should be as low as possible and must not exceed 20 VRMS.

GENERAL OBSERVATIONS

It is essential that means be provided for the instantaneous removel of the beam current in the event of a failure of either one or both of the time bases. Unless such a safety device is incorporated a failure of this type will result in the immediate destruction of the screen of the tube.

Shielding equivalent to a lead thickness of 1 mm is required to protect the ob server against X radiation.
The raster dimensions should not come below the minimum of $69 \times 72 \mathrm{~mm}^{2}$. The screen shall be given adequate cooling by applying a continuous airblast onto the screen of approx. $0.06 \mathrm{~m}^{3} / \mathrm{sec}$.
In order to prevent damage of the tube caused by a momentary internal arca resistor of $50 \mathrm{k} \Omega$ has to be connected between anode contact and the power supply.

Before removing the tube, the screen and the cone should be discharged.
The spark trap and the outer coating of the tube must be connected to earth.
It is recommended to use the E.H.T. connector, which is delivered with each tube.

It is necessary to centre the focusing coil to get optimum sharpness.

Camera tubes

RATING SYSTEM

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

CAMERA TUBE

Vidicon with low heater current intended for use in black-and-white or colour TV cameras in industrial, medical and broadcast applications.

	QUICK REFERENCE DATA	
Resolution	600 to 900	TV lines
Focusing	magnetic	
Deflection	magnetic	
Diameter	25.4	$\mathrm{~mm}(1$ inch $)$
Length	158	$\mathrm{~mm}\left(6_{4}^{\frac{1}{4}}\right.$ inch)
Heater	$6.3 \mathrm{~V}, 90$	mA

The 55850 has 5 grades:

55850 AM: low cost tube for experiments, amateur use etc.
55850 F : for use in film scanners
55850 N : for normal industrial applications
55850 S : for industrial and broadcast applications in which a higher picture quality is required
55850 SR : for use in X-ray medical equipment
The electrical and mechanical properties of the 5 grades are identical, main differences being found in the degree of uniformity and freedom of blemishes of the photoconductive layers.

OPTICAL

Diagonal of quality rectangle on photoconductive layer (aspect ratio 3:4) $\max .16 \mathrm{~mm}$

Orientation of image on photoconductive layer:
horizontal scan should be essentially parallel to the plane passing through tube axis and short index pin. The masking is for orientation only and does not define the proper scanned area of the photoconductive layer.

Spectral response
See page A

7Z2 7682

HEATING

Indirect by A.C. or D.C., series or parallel supply

| Heater voltage | V_{f} | $6.3 \mathrm{~V}+10 \%$ |
| :--- | :--- | ---: | :--- |
| Heater current | I_{f} | 90 mA |

When the tube is used in a series heater chain the heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

CAPACITANCES

Signal electrode to all $\left.\quad \mathrm{C}_{\mathrm{a}_{\mathrm{S}}} \quad 4.5 \mathrm{pF}{ }^{1}\right)$

MECHANICAL DATA

Base: JEDEC No. E8-11

FOCUSING
DEFLECTION
magnetic magnetic

MOUNTING POSITION : any
NET WEIGHT
approx.
65 g

1) This capacitance, which effectively is the output impedance of the 55850 , is increased by about 3 pF when the tube is inserted into the deflection and focusing coil-assembly. The resistive component of the output impedance is in the order of $100 \mathrm{M} \Omega$.

ACCESSORIES

Socket

Cinch No. 54A18088 or equivalent
Fo€using and deflection coil assembly: AT1101, AT1102 or equivalent.

LIMITING VALUES (Absolute max. rating system)
for scanned area of $\left.9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}\left(3 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}\right){ }^{1}\right)$

Signal electrode voltage	$\mathrm{V}_{\mathrm{a}_{\mathrm{S}}}$	\max.	100	V
2)				
Grid No. 4 and grid No. 3 voltage	$\mathrm{V}_{g_{4}, g_{3}}$	\max.	800	V
Grid No. 2 voltage	$\mathrm{V}_{\mathrm{g}_{2}}$	\max.	350	V

Grid No. 1 voltage, negative
positive
Signal electrode current, peak

Faceplate illumination
Faceplate temperature

$-V_{g_{1}}$	\max.	125	V
$+\mathrm{V}_{\mathrm{g}_{1}}$	\max.	0	V
I_{as}	max.	0.6	$\left.\mu \mathrm{~A}^{3}\right)$

Cathode to heater voltage, peak
cathode positive
cathode negative
Dark current, peak

V_{kf}	max.	125	V
$\mathrm{~V}_{\mathrm{kf}}$	\max.	10	V
I_{p}	\max.	0.25	$\mu \mathrm{~A}$

1) "Full-size scanning", i.e. scanning of a $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ area of the photoconductive layer should always be applied. The use of a mask having these dimensions is recommended. Underscanning, i.e. scanning of an area less than $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ may cause permanent damage to the specified fullsize area.
2) The signal-electrode voltage should never exceed 100 V , either during heat-ing-up or stand-by, or during operation. An excessive signal-electrode voltage may cause permanent damage to the photoconductive layer.
3) Video-amplifiers should be capable of handling signal-electrode currents of this magnitude without amplifier overload or picture distortion.
4) Absolute maximum for shelf-life and operation. Under difficult environmental conditions a flow of cooling air directed at the faceplate is recommended. When televising flames and furnaces appropriate infra-red filters should be applied.

7Z2 7683

OPERATING CONDITIONS AND PERFORMANCE

For scanned area of $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ and faceplate temperature of $25-35{ }^{\circ} \mathrm{C}$

A. PICK-UP FROM LIMITED-MOTION LIVE SCENES

Conditions

Grid No. 3 and grid No. 4 (beam focus electrode) voltage	250-300
Grid No. 2 voltage /	300

Grid No. 1 voltage adjusted for sufficient beam currents to stabilise highlights

Minimum peak-to-peak blanking voltage
when applied to grid No. 1
when applied to the cathode
Field strength at centre of focusing coil
Field strength of adjustable alignments coils

	75	V
approx.	20	$\mathrm{~V}^{2}$)
40	Oerstedt ${ }^{3}$)	
	$0-4$	Oerstedt 4)

${ }^{1}$) Beam focus is obtained by the combined effect of the grid No. 3 voltage, which should be adjustable over the indicated range and a focusing coil having an average field strength of 40 Oerstedt.
Definition, focus uniformity and picture quality decrease with decreasing grid No. 3 voltage. In general, grid No. 3 should be operated above 250 V .
${ }^{2}$) In transistorized cameras cathode blanking will be preferable. The cathode impedance is in the order of $30 \mathrm{k} \Omega$.
${ }^{3}$) The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
${ }^{4}$) The alignment coil assembly should be located on the tube so that its centre is at a distance of approx. $94 \mathrm{~mm}\left(311 / 16^{\prime \prime}\right)$ from the face of the tube and be positioned so that its axis coincides with the axis of the tube, the deflecting yoke and the focusing coil.

7Z2 5677

OPERATING CONDITIONS AND PERFORMANCE (continued)

Performance

Signal-electrode voltage for dark current of $0.02 \mu \mathrm{~A}$,

Grid No. 1 voltage for picture cut-off
Signal output current, faceplate illumination 8 lux

range	$20-100$	$\left.V^{1}\right)$
typical	40	V
	-30 to -100	$\left.V^{2}\right)$

typical	0.150	$\mu \mathrm{~A}^{3}$)
minimum	0.075	$\mu \mathrm{~A}$

Resolution capability in picture centre (see page B)

600 TV lines ${ }^{4}$)
Decay: 8 lux on layer, $\mathrm{V}_{\mathrm{a}_{\mathrm{S}}}$ adjusted for dark current of $0.02 \mu \mathrm{~A}$, residual signal after dark pulse of 200 msec
typical
10 \%
Average gamma of transfer characteristic for signal output currents between 0.01 and $0.3 \mu \mathrm{~A}$

Visual equivalent signal-to-noise ratio
0.6
approx. $300: 1{ }^{5}$)
${ }^{1}$) The deflection circuits must provide sufficiently linear scanning for good black-level reproduction. The dark-current signal being proportional to the velocity of scanning, any change in this velocity will produce a black-level error.
2) With no blanking voltage on grid No.l.
3) Defined as the component of the signal-electrode current after the dark current has been subtracted.
${ }^{4}$) With a video-amplifier system having $7.5 \mathrm{Mc} / \mathrm{s}$ bandwidth (-3 dB points).
5) Measured with a peak signal output current of $0.2 \mu \mathrm{~A}$ into a high-gain, cas-code-input type of amplifier with an own noise of $0.002 \mu \mathrm{Ar} . \mathrm{m} . \mathrm{s}$. and a bandwidth of $5 \mathrm{Mc} / \mathrm{s}$. Because the noise in such a system is predominantly of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to the r.m.s. noise current multiplied by a factor of 3 .

7Z2 5678

55850

OPERATING CONDITIONS AND PERFORMANCE (continued)

B. PICK-UP FROM FILM (MINIMUM-LAG OPERATION)

Conditions

As under "Pick-up from limited-motion live scenes" with the exception of:
Faceplate illumination (highlight) 500 lux

Performance

As under "Pick-up from limited-motion live scenes" with the exception of:
Signal-electrode voltage for a dark current
of $0.005 \mu \mathrm{~A}$

Signal output current
Decay: peak white signal of $0.3 \mu \mathrm{~A}$, residual signal after dark pulse of 200 msec
C. OPERATION FOR MAX. RESOLUTION

Conditions

As under "Pick-up from limited-motion live scenes" or "Pick-up from film" with the exception of:

Grid No. 3 and grid No. 4 voltage 750 V
Field strength at centre of focusing coil
approx. 70 Oerstedt $\left.{ }^{1}\right)^{2}$)

Performance

As in "Pick-up from limited-mottion live scenes" or "Pick-up from film", with the exception of:

Resolution capability in picture centre approx. 900 TV lines
For further details see text and pages B and C

[^26]
55850

PRINCIPLE OF OPERATION

SCHEMATIC ARRANGEMENT

The schematic arrangement of the vidicon 55850 with its accessories is shown in Fig. 1.

The vidicon may be assumed to consist of three sections, namely the electron gun, the scanning section, and the target section.

Fig. 1 Schematic electrode and coil arrangement
The electron gun contains a thermionic cathode, a grid g_{1} controlling the amount of beam, and a limiter anode g_{2} which accelerates the electrons and releases them in a fine beam through its diaphragm.

The scanning section. The electron beam released by g_{2} enters the space enclosed by the cylindrical anode g_{3}. By means of the combined action of the adjustable electrical field of g3 (beam focus control) and a fixed axial magnetic field produced by the focusing coil, the electrons are focused in one loop on to the target.

The far end of the g_{3} cylinder is closed with a fine metal mesh, g_{4}, electrically connected to g_{3}, which produces a uniform, decelerating field in front of the target. The focused beam is magnetically deflected by two pairs of deflection coils so that it-scans the target. Proper alignment of the beam with the axial magnetic field is achieved by either an adjustable magnet, or, as shown in Fig.1, by two sets of alignment coils producing an adjustabletransverse magnetic field.

The target section is illustrated in Fig. 2. It consists of:

- an optically flat glass faceplate,
- a transparent conductive film on the inner surface of the faceplate, connected electrically to the external signal-electrode ring.
- a thin layer of photoconductive material deposited on the conductive film. In the dark this material has a high specific resistance, which decreases with increasing illumination.

7Z2 5680

55850

PRINCIPLE OF OPERATION (continued)

The optical image to be televised is focused on the conductive film by means of a lens system.

Fig. 2 Target section

OPERATING

The external signal-electrode ring is connected via a load resistor to a positive voltage in the order of 30 V (see Fig. 3).

The target may be assumed to consist of a large number of target elements, corresponding to the number of picture elements, each consisting of a small capacitor (C_{e}), connected on one side to the signal electrode via the transparent conductive film and shunted by a light-dependent resistor ($\mathrm{R}_{1 \mathrm{~d}}$, see Fig. 3) .

When the target is scanned by the beam its surface will be stabilised at approximately the cathode potential (low-velocity stabilisation) and a potential difference will be established across the photoconductive layer, in other words, each elementary capacitor will be charged to nearly the same potential as applied to the electrode ring.

In the dark, the photoconductive material is a fairly good insulator, so that only a minute fraction of the charge of the elementary ca-

Fig. 3 pacitors will leak away between successive scans. This charge will be restored by the beam; the resulting current to the signal electrode is termed "dark current".

When an optical image is focused on to the target, those target elements which are illuminated will become more conductive and will be partly discharged. As a consequence a pattern of positive charges corresponding to the optical image will be produced on the side of target facing the gun section.

7Z2 7684

OPERATION (continued)

When scanning this charge pattern the electron beam will deposit electrons on the positive elements until the latter are restored to their original cathode potential, causing a capacitive current to the signal electrode and hence a voltage across the load resistor R_{L}. This voltage, negative going for the highlights, is the video signal and is fed to the pre-amplifier.

A vidicon is called "stabilised" when the magnitude of the beam current applied is just sufficient to restore the scanned surface to cathode potential, so that all elementary capacitors, including those at the highlights in the image, are recharged successively.

During the retrace times the beam electrons should be prevented from landing on the target since otherwise the scan retraces will appear as dark lines in the picture obtained on the monitor. This may be achieved either by cutting off the beam with suitable negative blanking pulses on the control grid or by cutting off the target with adequate positive blanking pulses applied to the cathode.

EQUIPMENT DESIGN AND OPERATING CONSIDERATIONS

The signal-electrode connection is made by a spring contact, whichbears against the metal ring at the face end of the tube. The spring contact may be provided as part of the focusing coil design.
The deflection yoke and the focus coil used with the 55850 must be so designed that the beam lands perpendicularly to the target at all points of the scanned area, to ensure high uniformity of sensitivity and focus.

The deflection circuits must provide constant scanning speeds in order to obtain good black-level reproduction. The dark-current signal being proportional to the velocity of scanning, any change in this velocity will produce a black-level error.

The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.

The alignment coil assembly should be located on the tube so that its centre is at a distance of approx. $94 \mathrm{~mm}\left(311 / 16^{\prime \prime}\right)$ from the face of the tube and be positioned so that its axis coincides with the axis of the tube, the deflecting yoke and the focusing coil.

The temperature of the faceplate should never exceed $80^{\circ} \mathrm{C}$, either during operation or storage of the 55850 . Operation at a faceplate temperature of 25 to $35^{\circ} \mathrm{C}$ is recommended.

The effect of the faceplate temperature on sensitivity and dark current of a typical 55850, measured with illumination level and signal-electrode voltage as fixed parameters, is illustrated on page D.

7Z2 5682

55850

EQUIPMENT DESIGN AND OPERATING CONSIDERATIONS (continued)

The temperature of the faceplate is determined by the heating effects of the incident illumination, the associated components, the environmental conditions and to a minor extent by the tube itself.
To reduce these heating effects and to permit operation in the preferred temperature range under conditions of high light levels, respectively high ambient temperatures, the use of an infra-red filter between object and camera lens, or a flow of cooling air directed across the faceplate, is recommended.

As the signal-electrode voltage is increased, the dark current and the sensitivity also increase. See page E.

Signal output and light-transfer characteristics

The typical signal output as a function of a uniform $2870^{\circ} \mathrm{K}$ tungsten illumination on the photoconductive layer is shown on page F .

The average "gamma" of the light-transfer characteristic is approx. 0.6. This value is relatively constant over a signal output range of 0.01 to $0.3 \mu \mathrm{~A}$.

Sufficient uniformity in the value of gamma is maintained to ensure satisfactory performance of colour cameras, in which the signal output currents of three 55850 's, with the aud of y-correcting circuitry, must match closely over a wide range of scene illumination.

The spectral response of a typical 55850 is shown on page A.
The resolution capability of the 55850 is illustrated on page B.
In general the resolution decreases with decreasing grid No. 3 voltage. The volt age range will depend on the design of the focusing coil, which should be such as to provide a field strength within the range of 36 to 44 Oerstedt. Definition, focus uniformity and picture quality decrease with decreasing grid No. 3 and No. 4 voltage. In general grid No. 3 and grid No. 4 should be operated above 250 V .

As shown on pages B and C, a substantial increase in both limiting resolution and amplitude response of the 55850 may be obtained by increasing the operating voltage of grids No. 3 and No. 4 to 750 V . With this mode of operation, the focusing field strength must be increased to approx. 70 Oerstedt.
Since beam-landing errors increase with increasing grid No. 3 and grid No. 4 voltage, such operation will show a reduced signal output in the corners of the scanned area. When the 55850 is operated in this manner, the deflecting and focusing coils employed must be designed to eliminate beam-landing errors.
Compensation of beam-landing errors can be obtained by supplying modulating voltages of parabolic shape and of both horizontal and vertical scanning frequencies to the cathode and additionally, in order to prevent beam-modulation, to grid No.1, No. 2, No. 3 and No. 4.

EQUIPMENT DESIGN AND OPERATING CONSIDERATIONS (continued)

A suitable amplitude for this mixed parabolic waveform is approximately 4 V peak-to-peak. The polarity should be chosen such that the potential of the cathode is lowered as the beam approaches the edges of the scanned area. The use of this modulating waveform also improves the centre-to-edge focus of the vidicon.

Care must be taken that identical waveforms are applied to the relevant electrodes of each of the three tubes when using the 55850 in 3 -colour vidicon cameras to ensure good registration of all signals over the entire scanned area.

Operation with grid No. 3 and grid No. 4 voltage at 750 V and a field strength of 70 Oerstedt demands increased-power requirements for the deflecting and focusing coils, which will increase tube temperature unless adequate provisions for cooling are made.

Scanning amplitude

Full-size scanning of the $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ area of the photoconductive layer should always be applied. To obtain this condition, first adjust the deflection circuits to overscan the photoconductive layer sufficiently so that the edges of the sensitive area can just be seen on the monitor, which itself should not be overscanned.

Then, after centring the image on the sensitive area (see Fig.4), reduce the scanning amplitudes in both directions with 15%.

In this way, the maximum signal-to-noise ratio and maximum resolution can be obtained. It should be noted that overscanning of the photoconductive layer produces a picture on the monitor that is smaller than normal.

Underscanning of the photoconductive layer, i.e. scanning of an area of less than $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ or failure of scanning for even the shortest duration should always be avoided, since this may cause permanent damage to the specified full-size area.

Fig. 4 Positioning of the image on the sensitive area

55850

A: Spectral sensitivity of 55850
Scanned area $=12.8 \mathrm{~mm} \times 9.6 \mathrm{~mm}$
Signal current $I_{S}=0.02 \mu \mathrm{~A}$
B: Relative spectral sensitivity of the human eye (N).

Horizontal square-wave response in picture centre of a typical 55850.
Highlight signal current $=0.3 \mu \mathrm{~A}$.
Test pattern: transparent square-wave resolution wedge.
A 1 : Uncompensated $\quad \mathrm{V}_{3}, \mathrm{~g}_{4}=$ approx. 285 V ,
A_{2} : Compensated
focusing field strength $=40$ Oerstedt
B: Uncompensated;
$\mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{4}}=750 \mathrm{~V}$, focusing
field strength $=$ approx. 70 Oerstedt

55850

Uncompensated horizontal square-wave response at 400 TV lines as a function of the focusing magnetic field strength of an average 55850 .

Curve A: Highlight signal current $=0.1 \mu \mathrm{~A}$

$$
\text { Dark current } \quad=0.02 \mu \mathrm{~A}
$$

Curve B: Highlight signal current $=0.3 \mu \mathrm{~A}$

$$
\text { Dark current } \quad=0.02 \mu \mathrm{~A}
$$

Signal current, dark current and ratio signal current: dark current as a function of the faceplate temperature.

Typical tube

Signal-electrode voltage and illumination level adjusted for a dark current $\left(\mathrm{I}_{\mathrm{d}}\right)$ of $0.02 \mu \mathrm{~A}$ and a signal current $\left(\mathrm{I}_{\mathrm{S}}\right)$ of $0.15 \mu \mathrm{~A}$ at a faceplate temperature of $30^{\circ} \mathrm{C}$.

55850

Signal current and dark current as a function of the signal-electrode voltage.

Average signal current as a function of the illumination on the photoconductive layer.

CAMERA TUBE

Vidicon, television camera tube with low heater consumption, magnetic focusing, magnetic deflection and $1^{\prime \prime}$ diameter for low-cost industrial cameras, experiments in camera development and for amateur use.

	QUICK REFERENCE DATA	
Resolution	600 to 900	TV lines
Focusing	magnetic	
Deflection	magnetic	
Diameter	25.4	mm (1 inch)
Length	158	$\mathrm{~mm}\left(6 \frac{1}{4}\right.$ inch)
Heater	$6.3 \mathrm{~V}, 90$	mA

OPTICAL

Diagonal of quality rectangle on photoconductive layer (aspect ratio 3:4)
$\max .16 \mathrm{~mm}$
Orientation of image on photoconductive layer:
horizontal scan should be essentially parallel to the straight sides of the masked portions of the faceplate. The masking is for orientation only and does not define the proper scanned area of the photo-conductive layer.

CAPACITANCE

Signal electrode to all

$$
\left.\mathrm{C}_{\mathrm{a}_{\mathrm{s}}} \quad 4.5 \mathrm{pF}^{1}\right)
$$

[^27]
HEATING

Indirect by A. C. or D. C. , series or parallel supply

Heater voltage	V_{f}	6.3	$\mathrm{~V} \pm 10 \%$
Heater current	I_{f}	90	mA

When the tube is used in a series heater chain the heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

MECHANICAL DATA

Base: JEDEC No. E8-11 Dimensions in mm

FOCUSING

DEFLECTION
magnetic
magnetic

MOUNTING POSITION :any

NET WEIGHT

ACCESSORIES

Socket
Focusing and deflection coil assembly
approx. 65 g

Cinch No. 54A18088 or equivalent AT1101, ATl102 or equivalent

LIMITING VALUES (Absolute max. rating system)
for scanned area of $\left.9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}\left(3 / 8^{\prime \prime} \times \frac{1^{\prime \prime}}{2}\right){ }^{1}\right)$
Grid No. 3 and grid No. 4 voltage
Grid No. 2 voltage

$\mathrm{V}_{\mathrm{g}}, \mathrm{g}_{4}$	\max.	800	V
Vg_{2}	\max.	350	V

Grid No. 1 voltage
Negative bias $\quad{ }^{-} \mathrm{V}_{1} \quad \max .125 \mathrm{~V}$
Positive bias
Peak heater-cathode voltage
Heater neg. with respect to cathode
Heater pos. with respect to cathode
Signal-electrode voltage
Peak signal-electrode current
Faceplate illumination
Faceplate temperature
Dark current, peak

$\mathrm{V}_{\mathrm{kf}}^{\mathrm{p}}$	\max.	125	V
$\mathrm{V}_{\mathrm{kf}} \mathrm{p}$	\max.	10	V
V_{a}	\max.	100	V ${ }^{2}$)
$\mathrm{I}_{\mathrm{s}} \mathrm{p}$	max.	0.6	$\mu \mathrm{A}{ }^{3}$)
	\max.	5000	lux
	\max.	80	${ }^{\circ} \mathrm{C}{ }^{4}$)
$\mathrm{I}_{\mathrm{d}_{\mathrm{p}}}$	\max.	0.25	$\mu \mathrm{A}$

${ }^{1}$) "Full-size scanning", i.e. scanning of a $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ area of the photoconductive layer should always be applied. The use of a mask having these dimensions is recommended. Underscanning, i.e. scanning of an area less than $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ may cause permanent damage to the specified fullsize area.
${ }^{2}$) The signal-electrode voltage should never exceed 100 V , either during heat-ing-up or stand-by, or during operation. An excessive signal-electrode voltage may cause permanent damage to the photoconductive layer.
${ }^{3}$) Video-amplifiers should be capable of handling signal-electrode currents of this magnitude without amplifier overload or picture distortion.
${ }^{4}$) Absolute maximum for shelf-life and operation. Under difficult environmental conditions a flow of cooling air directed at the faceplate is recommended. When televising flames and furnaces appropriate infra-red filters should be applied.
$7 Z 27711$

OPERATING CONDITIONS AND PERFORMANCE

For scanned area of $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ and faceplate temperature of $25-35^{\circ} \mathrm{C}$

PICK -UP FROM LIMITED-MOTION LIVE SCENES

Conditions

Grid No. 3 and grid No. 4 (beam focus electrode) voltage

$250-300$	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
300	V

Grid No. 2 voltage
Grid No. 1 voltage adjusted for sufficient
beam current to stabilise highlights
Peak-to-peak blanking voltage
Grid No. 2 voltage
Grid No. 1 voltage adjusted for suffici
beam current to stabilise highlights
Peak-to-peak blanking voltage
Grid No. 2 voltage
Grid No. 1 voltage adjusted for
beam current to stabilise hig
Peak-to-peak blanking voltage
when applied to grid No. 1
when applied to the cathode
$>75 \mathrm{~V}$

Field strength at centre of focusing coil
Field strength of adjustable alignment coils
$>20 \mathrm{~V}^{2}$)
300 V

40 Oerstedt ${ }^{3}$)
0-4 Oerstedt ${ }^{4}$)

[^28]
55850 AM

OPERATING CONDITIONS AND PERFORMANCE (continued)

Performance

Signal-electrode voltage for dark current of $0.02 \mu \mathrm{~A}$

range	20 to 100	V
typical	40	$\left.\mathrm{~V}^{1}\right)$

Negative grid No. 1 voltage for picture cut-off

Signal output current, faceplate illumination 10 lux

Resolution capability in picture centre
Decay: 10 lux on layer, $\mathrm{V}_{\text {as }}$ adjusted for dark
current of $0.02 \mu \mathrm{~A}$, residual signal after dark pulse of 200 msec

Average gamma of transfer characteristic for signal output currents between 0.01 and $0.3 \mu \mathrm{~A}$

Visual equivalent signal-to-noise ratio
Spurious signals: Shading
Spots and blemishes
the +ithe
$0.075 \mu \mathrm{~A}^{3}$)
600 lines $\left.{ }^{4}\right)^{5}$)
< 20%
$=\quad 0.6$
$300: 1 \quad 6$
see note 7
see note 8

1) The deflection circuits must provide sufficiently linear scanning for good black-level reproduction. The dark-current signal being proportional to the velocity of scanning, any change in this velocity will produce a black-level error.
2) With no blanking voltage on grid No.1.
${ }^{3}$) Defined as the component of the signal-electrode current after the dark current has been subtracted.
3) With a video-amplifier system having $7.5 \mathrm{Mc} / \mathrm{s}$ bandwidth (-3 dB points).
${ }^{5}$) A resolution capability of approx. 900 TV lines can be achieved with the grid No. 3 and grid No. 4 voltage adjusted to 750 V and a focusing field strength of approx. 70 Oerstedt.
With this mode of operation beam-landing errors, resulting in parabolic shading and dark corners, increase.

7Z2 5761
(Note 5 continued)
The deflecting and focusing coils should be designed to eliminate these errors. Since higher power requirements for these coils will increase the tube temperature, adequate provisions for cooling should be made.
6)

Measured with a peak signal output current of $0.2 \mu \mathrm{~A}$ into a high-gain, cascodeinput type of amplifier with an own noise of $0.002 \mu \mathrm{Ar} . \mathrm{m} . \mathrm{s}$. and a bandwidth of $5 \mathrm{Mc} / \mathrm{s}$. Because the noise in such a system is predominantly of the high frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to the r.m.s. noise current multiplied by a factor of 3 .
7) Target voltage adjusted to obtain a dark current of $0.02 \mu \mathrm{~A}$. Camera directed towards a uniformly illuminated white background, light level adjusted to produce a signal output current (note 3, page 5) of $0.2 \mu \mathrm{~A}$. The composite video signal when viewed at horizontal rate on a waveform oscilloscope will fall within an envelope having a width of 50% of the peak signal.
${ }^{8}$) Target voltage adjusted to obtain a dark current of $0.02 \mu \mathrm{~A}$. Camera focused at a uniformity illuminated two-zone test pattern with the centre zone (1) diameter equal to raster height. Light level adjusted to produce a signal output current of $0.2 \mu \mathrm{~A}$. Scanning amplitudes of rectangular monitor adjusted to obtain a raster with aspect ratio of $3: 4$. Monitor set-up and contrast control adjusted for faint raster when lens of camera is capped, and for non-blooming bright raster when lens of camera is uncapped.
Under the above conditions number and size of the spots observable in the monitor picture will not exceed the limits stated below:

Spot size in \% of raster height	Max. number of spots		To be considered as a black or as a white spot, its contrast ratio must
$>1 \%$	zone 1	zone 2	
be greater than 2 to 1.			
$1-0.6 \%$	1	3	Black spots as well as $0.6-0.2 \%$
$<0.2 \%$	4	6	white ones must be
counted as spots.			

${ }^{9}$) Do not count spots of this size unless concentration causes a smudgy appearance.

CAMERA TUBE

Vidicon provided with separate mesh intended for industrial, medical and broadcast applications.

QUICK REFERENCE DATA			
Resolution	up to 1000	TV lines	
Focusing	magnetic		
Deflection	magnetic		
Diameter	25.4	mm (1 inch)	
Length		158	mm ($6 \frac{1}{4}$ inch)
Provided with particle trap			
Heater	55851	6.3	V,
		90	mA

GENERAL

Advantages of vidicons with separate grid No. 4 connection over conventional vidicons like 55850:

- Increased resolution - up to 1000 T. V. lines
- Higher amplitude response at 400 T. V. lines
- More uniform resolution over whole picture area
- Stabilisation for peaked highlights possible without appreciable loss in resolution

55851 Target properties identical to 55850. Provided with low power heater of 0.6 W , primarily intended for transistorized camera's, in which heat dissipation should be kept at a minimum.

55852 Target properties identical to 55850 . Provided with 2 W heater.
Both types will be available in 5 grades, namely:
N - for normal industrial applications
S - for industrial and broadcast applications in which a higher picture quality is required
SR - for use in X-ray medical equipment
F - for use in film-scanners
AM - low cost tube for experiments, amateur use etc.
The electrical and mechanical properties of the five grades are essentially identical, main differences being found in the degree of uniformity and freedom of blemishes of the photoconductive layers.

7Z2 7712

OPTICAL

Diagonal of quality rectangle on
photoconductive layer (aspect ratio 3:4)
$\max .16 \mathrm{~mm}$
Orientation of image on photoconductive layer:
horizontal scan should be essentially parallel to plane passing through tube axis and short index pin.

Spectral response See data 55850

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater voltage		V_{f}	6.3	$\mathrm{~V} \pm 10 \%$
Heater current	55851	I_{f}	90	mA
	55852	I_{f}	300	mA

When the tube is used in a series heater chain the heater voltage must not exceed 9.5 $\mathrm{V}_{\mathrm{rms}}$ when the supply is switched on.

CAPACITANCES

Signal electrode to all

$$
\left.\mathrm{C}_{\mathrm{a}_{\mathbf{s}}} \quad 4.5 \mathrm{pF}^{1}\right)
$$

MECHANICAL DATA

Dimensions in mm
Base: JEDEC No. E8-11

1) This capacitance, which effectively is the output impedance, is increased by about 3 pF when the tube is inserted into the deflection and focusing coil assembly. The resistive component of the output impedance is in the order of $100 \mathrm{M} \Omega$. 7Z2 6079

FOCUSING

DEFLECTION
magnetic
magnetic

MOUNTING POSITION: any

NET WEIGHT approx. 75 g

ACCESSORIES

Socket
Cinch No. 54A18088 or equivalent
Focusing and deflection coil assembly: AT1101, AT1102 or equivalent
LIMITING VALUES (Absolute max. rating system)
for scanned area of $\left.9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}\left(3 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}\right) 1\right)$
Signal electrode voltage
Grid No. 4 voltage
Grid No. 3 voltage
Grid No. 2 voltage
Grid No. 1 voltage, negative bias positive bias

Signal electrode current, peak
Faceplate illumination
Faceplate temperature

Va_{s}	\max.	100	$\left.V^{2}\right)$
Vg_{4}	max.	1000	V
V_{3}	\max.	850	V
V_{g}	max.	450	V
$-\mathrm{Vg}_{1}$	\max.	125	V
$+\mathrm{V}_{\mathrm{g}}$	\max.	0	V
$\mathrm{Ias}_{\mathrm{p}}$	max.	0.6	$\mu \mathrm{A}{ }^{3}$)
	\max.	5000	lux
t	max.	80	${ }^{\circ} \mathrm{C}{ }^{4}$)
$\mathrm{V}_{\mathrm{kf}}{ }_{\mathrm{p}}$	\max.	125	V
$\mathrm{V}_{\mathrm{kf}} \mathrm{p}$	\max.	10	V
I_{d}	max.	0.25	$\mu \mathrm{A}$

Dark current, peak cathode
cathode
nt, peak

1) "Full-size scanning", i.e. scanning of a $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ area of the photoconductive layer should always be applied. The use of a mask having these dimensions is recommended. Underscanning, i.e. scanning of an area less than $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ may cause permanent damage to the specified fullsize area.
2) The signal electrode voltage should never exceed 100 V , either during heatingup or stand-by, or during operation. An excessive signal electrode voltage may cause permanent damage to the photoconductive layer.
3) Video amplifiers should be capable of handling signal-electrode currents of this magnitude without amplifier overload or picture distortion.
${ }^{4}$) Absolute maximum for shelf-life and operation. Under difficult environmental conditions a flow of cooling air directed at the faceplate is recommended, when televising flames and furnaces appropriate infra-red filters should be applied.

7Z2 7713

TYPICAL OPERATION AND PERFORMANCE

CONDITIONS

V_{4} (mesh) voltage
$\mathrm{V}_{\mathrm{g}_{3}}$ (beam focus) voltage
V_{2} voltage
V_{g}, grid No. 1 voltage, adjusted for sufficient beam current to stabilize highlights
P.t.p. blanking voltage when applied to grid No. 1 when applied to cathode

Field strength at centre of focus-coil

Field strength of adjustable alignments coils

PERFORMANCE

Signal-electrode voltage for dark-current of $0.02 \mu \mathrm{~A}$ typical

Grid No. 1 voltage for picture cut-off

Signal output current, faceplate illumination 8 lux, typical

Resolution capability in picture centre

Mod. depth at 400 T.V. lines in picture centre

Decay: 8 lux on faceplate, $\mathrm{V}_{\text {as }}$ adjusted for dark current of $0.02 \mu \mathrm{~A}$, residual signal after dark pulse of 200 msec typical

Average gamma of transfer characteristics for signal currents between 0.01 and $0.3 \mu \mathrm{~A}$

Visual equivalent S / N ratio

NOTES

1. Under no circumstances should grid No. 4 (field mesh) be allowed to operate at a voltage level below the actual grid No. $3, \mathrm{~V}_{\mathrm{g}_{3}}$, level as needed for beam focus, since this may damage the target.
Minimum voltage difference between $\mathrm{V}_{\mathrm{g}_{4}}$ and $\mathrm{V}_{\mathrm{g}_{3}}$ (g_{4} positive to g_{3}) to produce an attractive gain in resolution: 15 Volts. The optimal voltage of grid No. 4 for maximum resolution and optimal uniformity of resolution and white level will depend on the type of coil unit used and will be within the range 1.05 to 1.3 times the actual grid No. 3 voltage.

It should be noted that with increasing Vg_{4} voltage also an increase in deflecting power will be needed.
2. The higher voltage operation will necessitate an increase in focusing and deflecting power. Provisions should be made for proper cooling of the tube in these increased power conditions.
3. With a video amplifier system having flat response to $10 \mathrm{Mc} / \mathrm{s}$.
4. Typical values, measured under conditions of peak-signal current $I_{S}=0.15 \mu \mathrm{~A}$ and beam current sufficient to stabilize $0.5 \mu \mathrm{~A}$ of signal current.

CAMERA TUBE

Plumbicon, sensitive high definition pick-up tube with photoconductive target and low velocity stabilisation.
The 55875 is intended for use in black and white-, the 55875 R , G, B for use in colour studio cameras.

	QUICK REFERENCE DATA	
Focusing	magnetic	
Deflection	magnetic	
Diameter	30 mm	

OPTICAL

Dimensions of quality rectangle on
photoconductive layer (aspect ratio 3:4)
Orientation of image on photoconductive layer
Sensitivity at colour temperature of illumination $=2850{ }^{\circ} \mathrm{K}$
type: 55875 55875R

55875G
55875B
Gamma of transfercharacteristic
Spectral response; max. response at

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current
$\left.\left.\overline{1})^{2}\right)^{3}\right)^{4}$) See page 5
12.12.1965

MECHANICAL DATA

Dimensions in mm

When indium seal technique is employed, faceplate thickness will be increased to 2.3 mm .
At some date to be indicated by the manufacturer the faceplate thickness maybe increased with a 6 mm glass stud to reduce internal reflections.

MOUNTING POSITION any

WEIGHT

Socket
Focusing and deflection coil assembly
for 55875
Socket
Focusing and deflection coil assembly
for 55875
Socket
Focusing and deflection coil assembly
for 55875
for $55875 \mathrm{R}, \mathrm{G}, \mathrm{B}$

CAPACITANCES

Signal electrode to all

FOCUSING

DEFLECTION
56) See page 5
magnetic ${ }^{6}$)
magnetic 6

Net weight

ACCESSORIES

approx.
100 g
type 56020
type
AT 1132
type
AT 1112

$$
\left.\mathrm{C}_{\mathrm{a}_{\mathrm{s}}} \quad 4 \text { to } 6 \mathrm{pF}^{5}\right)
$$

CHARACTERISTICS

Grid No. 1 voltage for cut-off
at $\mathrm{V}_{\mathrm{g}_{2}}=300 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{g}} \quad{ }^{4} \quad-30$ to -100 V 7)
Blanking voltage, peak to peak
on grid No. 1
on cathode
Grid No. 2 current at normally required beam currents

Dark current at $\mathrm{V}_{\mathrm{a}_{\mathrm{s}}}=45 \mathrm{~V}$
LIMITING VALUES (Absolute max. rating system)
Signal electrode voltage
Grid No. 4 and No. 3 voltage
Grid No. 2 voltage
Grid No. 1 voltage
positive
negative
Cathode current
Cathode to heater voltage
positive peak
negative peak
Ambient temperature
(storage and operation)
Face plate illumination
Face plate temperature
(storage and operation)
V_{s}
$\mathrm{V}_{\mathrm{g}_{4}, \mathrm{~g}_{3}}$
$\mathrm{~V}_{\mathrm{g}_{2}}$
$\mathrm{V}_{\mathrm{g}_{1}}$
$-\mathrm{V}_{\mathrm{g}_{1}}$
I_{k}
min. $\quad 40 \mathrm{~V}$
$\min . \quad 15 \mathrm{~V}$
$\max \quad 1 \mathrm{~mA}$
$\max .0 .003 \mu \mathrm{~A}$
max. $\quad 50 \quad V^{8}$)
$\max .750 \quad \mathrm{~V}$)
max. $450 \mathrm{~V}^{8}$)
$\begin{array}{lrl}\max . & 0 & \mathrm{~V}^{8} \text {) } \\ \max . & 125 & \left.\mathrm{~V}^{8}\right) \\ \max . & 3 \mathrm{~mA}\end{array}$
$\mathrm{V}_{+\mathrm{k} / \mathrm{f}-\mathrm{p}} \max .125 \mathrm{~V}$
$\mathrm{V}-\mathrm{k} / \mathrm{H}_{\mathrm{fp}} \quad \max .10 \mathrm{~V}$
tamb max. $50{ }^{\circ} \mathrm{C}$
min. $\quad-30 \quad{ }^{\circ} \mathrm{C}$
$\max .500$ lux 9)
$\max .50{ }^{\circ} \mathrm{C}$
min. $\quad-30{ }^{\circ} \mathrm{C}$

OPERATING CONDITIONS AND PERFORMANCE

Cathode voltage
Grid No. 2 voltage
Signal electrode voltage
Beam current
Focusing coil current
Line- resp. frame deflection coil current
Face-plate illumination
Face plate temperature
V_{k}
V_{2}
V_{S}
Ibeam

Resolution

Modulation depth, i.e. uncompensated horizontal amplitude response at 400 TV lines, in picture centre.
See note 15 .

	55875	55875R	55875G	55875B	
Highlight signal current $\mathrm{I}_{\text {S }}$	0.3	0.15	0.3	0.15	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{g}_{3}}, \mathrm{~V}_{\text {See }} \mathrm{g}_{4}=250 \text { to } 300 \mathrm{~V}$	35	30	35	45	\%
$\begin{aligned} & \mathrm{V}_{3}, \mathrm{~V}_{\mathrm{g}_{4}}=550 \text { to } 650 \mathrm{~V} \\ & \text { See note } 16 \end{aligned}$	40	35	40	50	\%

Limiting resolution
>600 TV lines
Signal to noise ratio ${ }^{17}$)
at a signal current of $0.15 \mu \mathrm{~A}$
approx. $200: 1$
Persistence (or lag)
Low persistence renders tube very suitable
for live studio monochrome and colour applications.
Persistence is basically independent of illumination level.

Decay

Measured with 100% signal current of $0.1 \mu \mathrm{~A}$ and with a light source with a c.t. of $2850^{\circ} \mathrm{K}$.
Appropriate filter inserted in light-path for tubes 55875R, G, B.
Residual signal after dark pulse of $60 \mathrm{~ms} \quad \max .5 \%$
Residual signal after dark pulse of 200 ms
$\max .2 \%$
$\left.\left.\overline{10})^{11}\right)^{12}\right)^{13}, 14,15,16,17$) See pages 5 and 6
7Z2 5929

NOTES

1. a) Underscanning of the specified useful target-area of $12.0 \mathrm{~mm} \times 16.0 \mathrm{~mm}$ or failure of scanning, should be avoided since this may cause damage to the photo-conductive layer.
b) The area beyond the $12.0 \mathrm{~mm} \times 16.0 \mathrm{~mm}$ optical image preferably to be covered by a mask to reduce the effects of internal reflections in the faceplate.
2. For proper orientation of the image on the photo-conductive layer the vertical scan should be essentially parallel to the plane passing through the tube axis and the mark on the tube base.
3. As measured under following conditions:

Tubes are exposed to 5.2 lux illumination of black body colour temperature of $2850^{\circ} \mathrm{K}$. The appropriate filter is inserted in the light path. The signal current obtained in nano-amperes denotes the colour sensitivity expressed in terms of micro-amperes per lumen of white light before the filter. Filters used:

55875R	Schott	OG2	thickness	3 mm
55875G	Schott	VG9	thickness	1 mm
55875B	Schott	BG12	thickness	3 mm

4. a) Gamma is, to a certain extent, dependent on the wavelength of the illumi nation applied.
b) The use of gamma-stretching circuitry is recommended.
5. Cap. Cas to all, which effectively is the output impedance, increases by approx. 5 pF when the tube is inserted into the deflecting/focusing assembly.
6. For focusing/deflection coil assembly, see under "Accessories".
7. With no blanking voltage on gl .
8. At $\mathrm{V}_{\mathrm{k}}=0 \mathrm{~V}$.
9. For short intervals. During storage and idle periods of camera the tube-face shall be covered with plastic hood provided, respectively lens be capped.
10. The signal electrode voltage should be adjusted to 45 V unless otherwise indicated by the tube manufacturer on the test-sheet as delivered with each individual tube.
11. The beam current shall be adjusted for correct stabilisation for the highlight signal currents stated in the tabel.
Operation of the tube with beam currents I_{b} not sufficient to stabilize the brightest highlight picture-elements should be avoided in order to prevent loss of highlight-detail and/or "sticking" effects. Operation at excessively high beam currents will result in loss of resolution. Operation in the high voltage mode will permit the use of beam current of twice the minimum amount as needed for stabilisation without appreciable loss of resolution.
12. Black/white coil assembly AT 1132
\(\left.$$
\begin{array}{ccc}\begin{array}{c}\text { focus } \\
\text { current }\end{array} & \begin{array}{c}\text { line } \\
\text { current } \\
\text { mApp }\end{array} & \begin{array}{c}\text { frame } \\
\text { current } \\
\text { mApp }\end{array}
$$

\hline 17 \& 160 \& 25

25 \& 235 \& 35

75 \& 160 \& 25

100 \& 235 \& 35\end{array}\right\}\)| approx |
| :---: |
| values |

13. Faceplate illumination level for the 55875 typically needed to produce $0.3 \mu \mathrm{~A}$ signal current will be approx. 5 lux. The signal currents stated for the colour tubes 55875 R , G and B respectively will be obtained with an incident white light-level ($2850^{\circ} \mathrm{K}$) on the filter of approx. 12 lux.
These figures are based on the use of the filters described in note 3, for filter BG12 however a thickness of 1 mm is chosen.
14. Illumination on the photo-conductive layer, B_{ph}, in the case of a black/white camera is related to scene-illumination, B_{SC}, by the formula:

$$
B_{\mathrm{ph}}=\mathrm{B}_{\mathrm{Sc}} \frac{\text { R.T. }}{4 \mathrm{~F}^{2}(\mathrm{~m}+1)^{2}}
$$

in which R represents the scene-reflexivity (average or the object under consideration, whichever is relevant), T the lens transmissionfactor, F the lens aperture and m the linear magnification from scene to target.
A similar formula may be derived for the illumination level on the photoconductive layers of the respective R, G, and B tubes in which the effects of the various components of the complete optical system have been taken into account.
15. The figures shown represent the typical horizontal amplitude responses of the tubes proper after correction for faults introduced by the optical system. Horizontal amplitude response can be raised by the application of suitable correction circuits. Such compensation, however, does not affect vertical resolution, nor does it influence the limiting resolution.
16. Grid No. 3 and No. 4 voltage adjusted for optimum focus. See also note 12 .
17. The stated ratio represents the "visual equivalent signal-to-noise ratio", which is taken as the ratio of highlight vidio-signal current to R.M.S. noise-current, multiplied by a factor of 3 . (Assuming an R.M.S. noisecurrent of the video pre-amplifier of $2 \cdot 10^{-9} \mathrm{~A}$, bandwidth $5 \mathrm{Mc} / \mathrm{s}$).

55875

 55875R,G,B
GENERAL RECOMMENDATIONS AND INSTRUCTIONS FOR USE

TRANSPORT, HANDLING, STORAGE
During transport, handling or storage the longitudinal axis must either be in a horizontal position or be kept vertically with the face-plate of the tube up.

GENERAL

1. Signal-electrode connection is made by a suitable spring-contact, executed as part of the focusing coil, against the metallic coating at the face end of the tube.
2. Electrostatic shielding of the signal-electrode is required in order to avoid interference effects in the picture. Effective shielding is provided by grounding shields on the inside of the face-plate end of the focusing coil and on the inside of the deflecting yoke.
3. The Plumbicon as described in these data has been provided with tungsten base pins. It is recommended to avoid mechanical force and shocks to these pins and to insert the tube into its socket, type 56020 , with care.
4. In some cases the properties of the photo-conductive layer as used in the Plumbicon maybe found to have slightly deteriorated during long idle periods, such as encountered between the last test in our works and actual delivery to the user.
It is therefore recommended to operate the tube directly after receipt under normal voltage settings, in overscanned position with evenly illuminated target and a signal current of $0.15 \mu \mathrm{~A}$ for some hours after which the initial properties will have been fully restored.
5. The light-transfer characteristic of the Plumbicon being characterized by a gamma near unity, it may be desirable for broadcast applications to incorporate a gamma correcting circuitry in the video-amplifier system with an adjustable gamma of 0.5 to 1 .
It is suggested to design this gamma correcting circuitry such that an extra compression can be introduced by manual control in the video signal range of 75 to 100% of normal peak white level.
This provision will prevent the video amplifier system from becoming overloaded when the Plumbicon with its near unity gamma transfer-characteristic is exposed to scenes containing small peaked highlights as caused by reflections of shiny objects.
6. The Plumbicon not generating own noise to any noticeable extent, the signal to noise ratio will mainly be determined by the entrance noise of the video amplifier system.
The high sensitivity of the Plumbicon warrants pictures with excellent sig-nal-to-noise ratio under normal studio lighting conditions provided its output is fed into a well-designed input stage of the video-amplifier system. In such a system an aperture correction may be incorporated to ensure an attractive gain in resolving power without visually impairing the signal-to-noise ratio.

INSTRUCTIONS FOR USE

1. Insert the tube in the deflection unit in such a way that the mark at the base of the tube is uppermost.
2. Clean the face-plate of the tube and press the socket gently onto the basepins.
3. Cap lens and close iris.
4. Set: a) Grid No. 1 basis-control at max. negative bias (beam cut-off)
b) Signal electrode voltage to the value as indicated on the tube's test sheet.
c) Scanning amplitudes to max. scan.
5. Switch on camera equipment and monitor, allow a few minutes for heating up.
6. Adjust monitor to produce a faint - non overscanned - raster.
7. Direct camera to the scene to be televised and uncap lens.
8. Turn grid No. 1 bias-control slowly till a picture is produced on the monitor. If the picture is too faint, increase lens aperture.
9. Adjust grid No. 3 and grid No. 4 voltage control (beam focus) and optical focus alternately for max. focus.
10. Align the beam of the Plumbicon by either of the two following methods:
a) Adjust the alignment fields in such a way that the centre of the picture on the monitor does not move when grid No. 3 and No. 4 voltage (beam focus) is varied.
b) Reduce signal-electrode potential to a few tenths of a volt only. Adjust alignment fields till most uniform picture is obtained as observed on monitor or waveform oscilloscope.
11. Adjust scanning amplitudes:
a) By means of a mask of $12.0 \mathrm{~mm} \times 16.0 \mathrm{~mm}$, which is in contact with and centred at the face-plate. Decrease horizontal and vertical deflecting currents till the periphery of this mask is just outside the raster on the monitor. This procedure may be facilitated by small adjustments of the centring controls.
12. b) If no mask available direct the camera to a test chart having correct aspect ratio of $3: 4$ and adjust the centring controls in such a way that the target ring is just visible in the corners of the picture.

Adjust distance from camera to test chart and optical focus alternately till the picture of the test chart positioned on the faceplate as indicated on the adjoining figure.
Decrease both scanning amplitudes till the picture of the test chart completely fills the scanned raster on the monitor.
12. Adjust iris for a picture of sufficient contrast and adjust the beam current to such a value that all highlights are stabilized.
13. Check alignment, beam focus and optical focus.

ALWAYS:

- use full size ($12.0 \times 16.0 \mathrm{~mm}$) scanning of the target and avoid underscanning.
- adjust sufficient beam current to stabilize the picture highlights.
- make sure that the deflection circuits are operative before adjusting beam current.
- avoid focusing camera directly to the sun.
- keep lens capped when transporting camera.

CAMERA TUBE

Plumbicon, pick-up tube with photoconductive target and low velocity stabilisation exclusively intended for use with X -ray image intensifier in medical equipment.

	QUICK REFERENCE DATA	
Focusing	magnetic	
Deflection	magnetic	
Diameter	30 mm	

OPTICAL

Image dimensions on photoconductive layer
Sensitivity, measured with a fluorescent light source having P20 distribution

Gamma of transfer characteristic
Spectral response, region of max. response
circle of 17.0 mm diameter $\left.{ }^{1}\right)^{2}$)
min. $\quad 175 \mu \mathrm{~A} /$ lumen

$$
0,9 \pm 0.1
$$

3)

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage	V_{f}	6.3	$\mathrm{~V} \pm 10 \%$
Heater current	I_{f}	90	mA

1) All underscanning of the specified useful target-area of 17.0 mm diameter or failure of scanning, for even the shortest duration, should be carefully avoided, since this may cause permanent damage to the photoconductive layer.
${ }^{2}$) The area beyond the 17.0 mm circular optical image preferably to be covered by a mask.
2) The near unity gainma of the 55876 ensures good contrast when televising low contrast X -ray image-intensifier pictures as encountered in radiology. Further contrast improvement may be obtained when an adjustable gamma expansion circuitry is incorporated in the video amplifier system.

7 Z 25666

CAPACITANCES

Signal electrode to all

MECHANICAL DATA

When Indium seal technique is used, face plate thickness will be increased to 2.3 mm

FOCUSING
DEFLECTION
MOUNTING POSITION
magnetic magnetic
any

ACCESSORIES

Socket	type	56020
Focusing and deflection coil assembly	type	AT1122
NET WEIGHT	approx.	100 g

1) Cap. a_{s}-rest, which effectively is the output impedance, increases by approx. 5 pF when the tube is inserted into the deflection/focusing coil assembly.

55876

CHARACTERISTICS

Grid No. 1 voltage for cut-off

$$
\text { at } \mathrm{V}_{\mathrm{g}_{2}}=300 \mathrm{~V}
$$

V_{g}
-30 to $-100 \mathrm{~V}^{1}$)
Blanking voltage, peak to peak on grid No. 1
on cathode
Grid No. 2 current at normally required beam current

Dark current

$\mathrm{V}_{\mathrm{g}_{1 \mathrm{p}-\mathrm{p}}}$	min.	40	V
$\mathrm{~V}_{\mathrm{kp}-\mathrm{p}}$	\min.	15	V

I_{2}	\max.	mA	
I_{S}	\max.	0.003	$\left.\mu \mathrm{~A}^{2}\right)$

LIMITING VALUES (Absolute max. rating system)

Signal electrode voltage	$\mathrm{V}_{\mathrm{a}_{\mathrm{s}}}$	max.	50	V^{3})
Grid No. 4 and grid No. 3 voltage	$\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~V}_{\mathrm{g}_{3}}$	max.	750	V^{3})
Grid No. 2 voltage	V_{g}	max.	450	V^{3})
Grid No. 1 voltage positive	Vg_{1}	max.	0	V^{3})
negative	$-\mathrm{Vg}_{1}$	max.	125	V^{3})
Cathode current	I_{k}	\max.	3	mA
Cathode to heater voltage				
positive peak	$\mathrm{V}_{\mathrm{kf}} \mathrm{p}$	max.	125	V
negative peak	$\mathrm{V}_{\mathrm{kf}}{ }_{\mathrm{p}}$	max.	10	V
Ambient temperature - (storage and operation)	$t_{\text {amb }}$	\max. min.	50 -30	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\mathrm{o}} \mathrm{C} \end{aligned}$
Face-plate illumination		\max.	100	lux
Face-plate temperature (storage and operation)	t	max. \min.	$\begin{array}{r} 50 \\ -30 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

${ }^{1}$) With no blanking voltage on g_{1}
${ }^{2}$) The target voltage should be adjusted to the value indicated by the tube man-' ufacturer on the test sheet as delivered with each individual tube.
${ }^{3}$) At $V_{k}=0 \mathrm{~V}$
7Z2 5668

Cathode voltage	V_{k}	0	V
Grid No. 2 voltage	Vg_{2}	300	V
Grid No. 4 and grid No. 3 voltage	$\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~V}_{\mathrm{g}_{3}}$	250 to 300	V^{1})
Signal electrode voltage	$\mathrm{Va}_{\text {s }}$	15 to 45	V ${ }^{2}$)
Beam current	Ibeam	See note 3	
Focusing coil current		(AT1122)	
Highlight signal electrode current	$\mathrm{Ia}_{\text {S }}$	0.1 to 0.6	$\mu \mathrm{A}{ }^{4}$)
Average signal output		rox. 0.06	$\mu \mathrm{A}{ }^{4}$)
Face-plate temperature	t	25 to 40	${ }^{\circ} \mathrm{C}$
Face-plate illumination		rox. 2	lux ${ }^{5}$)

I) Grid No. 4 and No. 3 voltage adjusted for optimum picture focus. Preferred focus-coil current approx. 17 mA .
${ }^{2}$) The target voltage should be adjusted to the value indicated by the tube manufacturer on the test sheet as delivered with each individual tube.
3) Operation of the tube with beam currents I_{b} not sufficient to stabilize the brightest highlight picture elements must be carefully avoided in order to prevent loss of highlight-detail and/or "sticking" effects.
Operation at excessively high beam currents will result in loss of resolution.
4) Substraction of dark current is unnecessary because of the extremely small value.
${ }^{5}$) Illumination on the photoconductive layer, B_{ph}, is related to scene-illumination, B_{SC}, by the formula:

$$
\mathrm{B}_{\mathrm{ph}}=\mathrm{B}_{\mathrm{Sc}} \frac{\mathrm{R} \cdot \mathrm{~T}}{4 \cdot \mathrm{~F}^{2} \cdot(\mathrm{~m}+1)^{2}}
$$

in which R represents the scene-reflexivity (average or of the object under consideration, whichever is relevant), T the lens transmissionfactor, F the lens aperture and m the linear magnification from scene to target.

7Z2 5669

OPERATING CONDITIONS AND PERFORMANCE (continued)

Resolution

Modulation depth, i.e. uncompensated horizontal amplitude response (see note 1) at $5 \mathrm{Mc} / \mathrm{s}$ in picture centre (625 lines, 50 fields system)

$$
>30 \%^{2} \text {) }
$$

Signal to noise ratio
at a signal current of $0.15 \mu \mathrm{~A}$
approx. 200 : 1

Persistence (or lag)

Low persistence renders tube very suitable for medical X-ray applications in combination with X -ray image intensifier
Persistence is basically independent of illumination level

Decay

Measured with 100% video signal current of $0.1 \mu \mathrm{~A}$ to zero signal after 5 s peak video signal. Fluorescent light source having P20 distribution.
Residual signal after dark pulse of 100 ms
Residual signal after dark pulse of 500 ms

\max.	10	$\%$
\max.	1	$\%$

1) With a signal current of $0.10 \mu \mathrm{~A}$ and a beam current of $0.20 \mu \mathrm{~A}$.
${ }^{2}$) Horizontal amplitude response can be raised by the application of suitable phase-and-aperture correction circuits. Such compensation, however, does not affect vertical resolution, nor does.it influence the limiting resolution.
3) The specified ratio represents the "visual equivalent signal-to-noise ratio", which is taken as the ratio of highlight video-signal current to R.M.S. noisecurrent, multiplied by a factor of 3 . (Assuming an R.M.S. noise-current of the video pre-amplifier of $2 \cdot 10^{-9} \mathrm{~A}$, bandwidth $5 \mathrm{Mc} / \mathrm{s}$.)

7Z2 5670

GENERAL RECOMMENDATIONS AND INSTRUCTIONS FOR USE

MOUNTING, WORKING POSITION:

1. Any

2. During transport, handling or storage the longitudinal axis must either be in a horizontal position or be kept vertically with the face-plate of the tube up.

GENERAL

1. Signal-electrode connection is made by a suitable spring-contact which is executed as part of the focusing coil.
2. Electrostatic shielding of the signal-electrode is required in order to avoid interference effects in the picture. Effective shielding is provided by grounding shields on the inside of the face-plate end of the focusing coil and on the inside of the deflecting yoke.
3. The Plumbicon as described in these data has been provided with tungsten base pins. It is recommended to avoid mechanical force and shocks to these pins and to insert the tube into its socket with care.
4. In some cases the properties of the photoconductive layer as used in the Plumbicon may be found to have slightly deteriorated during long idle periods, such as encountered between the last test in our works and actual delivery to the user.
It is therefore recommended to operate the tube directly after receipt under normal voltage settings, in overscanned position with evenly illuminated target and a signal current of $0.15 \mu \mathrm{~A}$ for some hours after which the initial properties will have been fully restored.
5. The Plumbicon not generating own noise to any noticeable extent, the signal to noise ratio will mainly be determined by the entrance noise of the video amplifier system.
The high sensitivity of the Plumbicon warrants pictures with excellent signal-to-noise ratio, provided its output is fed into a well-designed input stage of the video-amplifier system. In such a system an aperture correction may be incorporated to ensure an attractive gain in resolving power without impairing the visual signal-to-noise ratio.

INSTRUCTIONS FOR USE

1. Clean face-plate.
2. Insert tube into deflection unit.
3. Place mask with 17.0 mm diameter aperture in front of and in close contact with face-plate.
4. Press socket gently onto the base pins.
5. Set a) grid No. 1 bias control at max. neg. bias (beam cut-off)
b) signal electrode voltage at zero volts
c) scanning amplitudes to max. scan.
6. Switch on camera equipment and monitor and allow to heat up for a minimum of 30 seconds.
7. Adjust monitor to produce a faint - non overscanned - raster.
8. Remove camerahead from image-intensifier unit.
9. Direct camera to lightbox or place suitable lightbox on objective holder. Switch on light and adjust illumination level to correspond to appr. $0.3 \mathrm{ft} . \mathrm{cdl}$ for the whites of the testchart on the face-plate.
10. Adjust signal-electrode voltage to the value as indicated on the tube's testsheet.
11. Turn grid No. 1 control slowly till a picture is produced on the monitor, increase beam-current in order to fully discharge the picture highlights.
12. Adjust grid No. 3 and grid No. 4 voltage control (beam focus) and optical focus for best picture detail.
13. Align the beam of the plumbicon by either of the two following methods:
A) Adjust the alignment fields in such a way that the centre of the picture on the monitor does not move when grid No. 3 and No. 4 voltage (beam focus) is varied.
B) Reduce signal-electrode potential to a few tenths of a volt only. Adjust alignment field till most uniform picture is obtained as observed on monitor or waveform oscilloscope. Restore signal-electrode voltage to value as indicated on the tube's testsheet.
14. Decrease scanning amplitudes till perfect circular picture is produced on monitor, with diameter equal to height of monitor raster. This procedure may be facilitated by small adjustment of the vertical centring control. Adjust horizontal centring control till circular picture is properly centred at centre of monitor raster.
15. Remove lightbox and attach camera head to image intensifier unit.
16. Place suitable image-intensifier testchart in front of image-intensifier. Switch on image-intensifier and X-ray source.
17. Adjust optical focus and beam focus for max. picture detail.

ALWAYS:

- keep face-plate capped during transport and shelf-life
- avoid underscanning
- apply sufficient beam current to stabilize picture whites
- make certain that the deflection circuits are operative before applying beam current
- avoid focusing camera head directly to the sun or to reflecting objects
- keep lens capped when transporting camera head

Photo tubes

PHOTOTUBES APPLICATION DIRECTIONS

1. GENERAL

1.1 Photo tubes are photo-electric devices of the emissive type, as distinct from the barrier-layer and photo-conductive cells. They may be divíded into two groups:

1. High-vacuum photo tubes,
2. Gas-filled photo tubes

Each of these groups can be subdivided into red sensitive and blue sensitive photo tubes; the spectral response depending upon the photocathode material. For the blue sensitive photo tubes the " A " type of cathode is used (caesiumantimony).
For the red sensitive photo tubes the " C " type of cathode is used (caesiumoxidised silver).
Spectral response curves for each type of cathode are given at the end of these recommendations.

2. OPERATING CHARACTERISTICS

For a vacuum photo tube, the anode current for a fixed quantity of light, is reasonably constant at anode voltages above a certain low value known as the "saturation voltage".
The gas-filled photo tube contains a quantity of inert gas, the ionising potential of which is generally somewhat higher than the saturation voltage of an equivalent vacuum photo tube so that the anode current is substantially constant between the saturation voltage and the voltage at which ionisation commences. Above this voltage range, ionisation increases, resulting in a progressive increase in anode current.
Since a gas-filled photo tube operates at a higher voltage than the ionising potential it will have a greater sensitivity than a similar vacuum photo tube. Within the operating ranges of both groups of photo tubes the anode current is directly proportional to the quantity of light incident on the cathode surface.
2.1 Luminous sensitivity. The response of a photo tube to light falling on its cathode is termed its luminous sensitivity; this is expressed in micro-amperes per lumen.
The sensitivity of all types is dependent upon the colour temperature of the light source and in some cases upon the portion of the cathode that is illuminated.

7 Z2 5201

The sensitivity of gas-filled photo tubes moreover is dependent upon the anode voltage; the sensitivity of vacuum photo tubes in the "saturation region" in which region the tube mainly operates, is practically independent of the anode voltage.
Unless otherwise stated, the values given in the data sheets have been obtained by illuminating the total useful cathode area with an incandescent lainp having a colour temperature of $2700^{\circ} \mathrm{K}$.
The values given for sensitivity on the data sheets are the initial values for average photo tubes. The ratio between the maximum and minimum initial sensitivity of photo tubes of a given type will not exceed 3 to 1 .
2.2 Dark current. This is the current which flows between photocathode and anode when the photo tube is in total darkness. The tube is in total darkness when no radiation within the spectral sensitivity curve of the photocathode is present. This current is caused mainly by electrical leakage and thermionic emission from the photocathode and will therefore increase with temperature and voltage.
2.3 Frequency response. The sensitivity of a vacuum photo tube is constant for frequencies of light modulation up to those generally met in practice. Only at very high frequencies, at which transit time limitations occur, the sensitivity becomes dependent upon the frequency.
The sensitivity of gas-filled photo tubes, however, decreases with the frequency. At a frequency of 15000 Hz this decrease is about 3 dB , as is shown in the accompanying curve.

3. THERMAL DATA

Ambient temperature. The temperature of the photocathode may not be too high otherwise evaporation of the emissive cathode layer may result, with consequent reduction in sensitivity and life. As it is difficult to measure this temperature a limiting value for the ambient temperature is given on the published data sheets.
It must be considered, however, that even in case the ambient temperature in the immediate vicinity of the photo tube is not beyond the limit, an excessive temperature rise of the photocathode can be caused e.g. by infrared heat radiation. If the possibility of this radiation exists, a suitable filter should be inserted in the optical path to minimize this effect.

4. OPERATIONAL NOTES

Stability during life. Where a gas-filled photo tube is continuously operated at its maximum rated voltage its sensitivity may fall by as much as 50%, during 500 hours.
Vacuum photo tubes on the other hand are inherently more stable.

The stability of both types of photo tubes will be improved if the current density of the photocathode is reduced (e.g. by reducing the incident light or enlarging the illuminated area of the photocathode).
Particularly in the case of gas-filled photo tubes reduction of the anode voltage will improve the stability.

Also in the inoperative periods photo tubes must not be exposed to strong radiation such as direct sunlight.

A loss of sensitivity of both vacuum and gas-filled photo tubes during operation will be wholly or partially restored during the inoperative periods.

Prevention of glow discharge. Gas-filled photo tubes must not be operated above the published maximum voltage since a glow discharge, indicated by a faint blue glow in the bulb, may occur which adversely affects the good operation of the photo tube and even can result in rapid destruction of the photocathode. If accidental over-running can be expected the anode resistance should have a value of at least $0.1 \mathrm{M} \Omega$.
Where it is necessary to use the maximum operating voltage a stabilized supply is recommended.

5. MOUNTING

If no restrictions are made on the individual published data sheets photo tubes may be mounted in any position.
6. STORAGE

It is necessary that phototubes be always stored in the dark.

7. LIMITING VALUES

The limiting values of photo tubes are given in the absolute max. rating system.

8. OUTLINE DIMENSIONS

The outline dimensions are given in mm .

Relative spectral response curve type A

Relative spectral response curve type C

Frequency response curve

LIST OF SYMBOLS

Supply voltage V_{b}
Cathode current I_{k}
Anode series resistance Ra_{a}
Sensitivity N
Capacitance, anode to cathode Cak
Ambient temperature t_{amb}Envelope temperature${ }^{t}$ env

58CG

GAS FILLED PHOTOTUBE

Gas-filled phototube particularly sensitive to incandescent light sources, and to near infra-red radiation.

QUICK REFERENCE DATA				
Anode supply voltage	V_{b}	max.	90	V
Luminous sensitivity	N		100	$\mu \mathrm{~A} /$ lumen
Spectral response curve		type	C	
Outline dimensions		max. 16 dia.	x 30	mm

MECHANICAL DATA

The arrows show the direction of the incident radiation
Photocathode
Surface
Caesium on oxidised silver
Projected sensitive area
$1.1 \mathrm{~cm}^{2}$

[^29]
ELECTRICAL DATA

Operating characteristics

Anode supply voltage	V_{b}	85	V
Anode series resistor	R_{a}	1	$\mathrm{M} \Omega$

Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature $2700{ }^{\circ} \mathrm{K}$

Dark current
$I_{\text {dark }} \max .0 .1 \mu \mathrm{~A}$
Capacitance
Anode to cathode
C_{ak}
3.0 pF

LIMITING VALUES (Absolute max. rating system)

Anode supply voltage
Cathode current
Ambient temperature
V_{b}
I_{k}
t_{amb}

VACUUM PHOTOTUBE

Vacuum phototube particularly sensitive to incandescent light sources, and to near infra-red radiation

QUICK REFERENCE DATA				
Anode supply voltage	V_{b}	max.	250	V
Luminous sensitivity	N		20	$\mu \mathrm{~A} / \mathrm{lumen}$
Spectral response curve		type	C	
Outline dimensions		\max.	16 dia. $\times 30$	mm

MECHANICAL DATA

Dimensions in mm

The arrows show the direction of the incident radiation
Photocathode

Surface
Projected sensitive area
Ceasium on oxidised silver
$1.1 \mathrm{~cm}^{2}$

1) Red
2) Black
${ }^{3}$) Sensitive cathode area shown shaded
7Z2 5207

ELECTRICAL DATA

Operating characteristics

Anode supply voltage
Vb
Anode series resistor
Luminous sensitivity measured with the whole cathode illuminated by a lamp of colour temperature $2700{ }^{\circ} \mathrm{K}$
Dark current (at $\mathrm{V}_{\mathrm{a}}=100 \mathrm{~V}$)

Capacitance
Anode to cathode
C_{ak}
3.0 pF

LIMITING VALUES (Absolute max. rating system)

Anode supply voltage
Cathode current
Ambient temperature
V_{b} max. 250 V
$\mathrm{I}_{\mathrm{k}} \quad \max . \quad 3 \mu \mathrm{~A}$
$t_{\text {amb }}$ max. $100{ }^{\circ} \mathrm{C}$

VACUUM PHOTOTUBE

Vacuum phototube, particularly sensitive to daylight and to light radiation with a blue predominance.

QUICK REFERENCE DATA				
Anode supply voltage	V_{b}	\max.	100	V
Luminous sensitivity	N		45	$\mu \mathrm{~A} / \mathrm{lumen}$
Spectral response curve		type	A	
Outline dimensions		\max.	19 dia. $\times 54$	mm

MECHANICAL DATA

Dimensions in mm
Base: Miniature

The arrows show the direction of the incident radiation
The cathode connection should be made to pins $1,2, .6$ and 7 connected together and the anode connection to pins 3,4 and 5 together

Photo cathode

Surface
Projected sensitive area
caesium antimony
$4 \mathrm{~cm}^{2}$

90AV

ELECTRICAL DATA

Operating characteristics

Anode supply voltage
Anode series resistor
v_{b}
R_{a}
Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour
temperature $2700{ }^{\circ} \mathrm{K}$
Dark current

100 V
1 M Ω

Capacitance

Anode to cathode

$$
\mathrm{C}_{\mathrm{ak}}
$$

$$
0.7 \mathrm{pF}
$$

LIMITING VALUES (Absolute max. rating system)

Anode supply voltage	V_{b}	\max.	100	V
Cathode current	I_{k}	\max.	5	$\mu \mathrm{~A}$
Ambient temperature	$\mathrm{t}_{\mathrm{amb}}$	\max.	70	${ }^{\circ} \mathrm{C}$

GAS FILLED PHOTOTUBE

Gas filled phototube particularly sensitive to incandescent light sources, and to near infra-red radiation.

QUICK REFERENCE DATA				
Anode supply voltage	V_{b}	\max.	90	V
Luminous sensitivity	N		125	$\mu \mathrm{A} /$ lumen
Spectral response curve		type		
Outline dimensions		max.	$\times 54$	mm

MECHANICAL DATA

Dimensions in mm
Base: Miniature

The arrows show the direction of the incident radiation
The cathode connection should be made to pins $1,2,6$ and 7 connected together and the anode connection to pins 3,4 and 5 connected together.

Photocathode

Surface
Projected sensitive area

Caesium on oxidized silver
$3.1 \mathrm{~cm}^{2}$

ELECTRICAL DATA

Operating characteristics

Anode supply voltage
V_{b}
Anode series resistor
R_{a}
90 V
$1 \mathrm{M} \Omega$
Luminous sensitivity measured with the whole cathode area illuminated
by a lamp of colour temperature $2700{ }^{\circ} \mathrm{K}$
Dark current
N
$I_{\text {dark }} \max$.
125. $\mu \mathrm{A}$ /lumen
$0.1 \mu \mathrm{~A}$
Capacitance
Anode to cathode
$C_{a k}$
1.1 pF

LIMITING VALUES (Absolute max. rating system)
Anode supply voltage
Cathode current
Ambient temperature

V_{b}	\max.	90	V
I_{k}	\max.	2.0	$\mu \mathrm{~A}$
$\mathrm{t}_{\mathrm{amb}}$	\max.	100	${ }^{\circ} \mathrm{C}$

VACUUM PHOTOTUBE

Vacuum phototube, particularly sensitive to incandescent light sources, and to near infra-red radiation.

	QUICK REFERENCE DATA			
Anode supply voltage	V_{b}	\max.	250	V
Luminous sensitivity	N		20	$\mu \mathrm{~A} /$ lumen
Spectral response curve		type	C	
Outline dimensions		max. 19 dia. $\times 54$	mm	

MECHANICAL DATA

Dimensions in mm
Base: Miniature

The arrows show the direction of the incident radiation.
The cathode connection should be made to pins 1, 2, 6 and 7 connected together and the anode connection to pins 3,4 and 5 connected together.

Photo cathode

Surface
Projected sensitive area

Ceasium on oxidised silver
$3.0 \mathrm{~cm}^{2}$

ELECTRICAL DATA

Operating characteristics

Anode supply voltage	V_{b}	50	V
Anode series resistor	R_{a}	1	$\mathrm{M} \Omega$

Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature $2700{ }^{\circ} \mathrm{K}$

Dark current (at $\mathrm{V}_{\mathrm{a}}=100 \mathrm{~V}$)

N	20	$\mu \mathrm{~A} /$ lumen
$\mathrm{I}_{\text {dark }}$	$\max \cdot$	0.05

Capacitance

Anode to cathode
Cak
0.8 pF

LIMITING VALUES (Absolute max. rating system)

Anode supply voltage	V_{b}	\max.	250	V
Cathode current	I_{k}	\max.	10	$\mu \mathrm{~A}$
Ambient temperature	$\mathrm{t}_{\mathrm{amb}}$	\max.	100	${ }^{\circ} \mathrm{C}$

GAS FILLED PHOTOTUBE

Gas-filled phototube particularly sensitive to daylight and to radiation having a blue predominance.

QUICK REFERENCE DATA				
Anode supply voltage	V_{b}	\max.	90	V
Luminous sensitivity	N		130	$\mu \mathrm{~A} /$ lumen
Spectral response curve		type A		
Outline dimensions		$\max .19$ dia. x 54	mm	

MECHANICAL DATA

Base: Miniature

Dimensions in mm

The arrows show the direction of the incident radiation
The cathode connection should be made to pins 1, 2, 6 and 7 connected together and the anode connection to pins 3,4 and 5 connected together.

Photocathode

Surface

Projected sensitive area

Caesium antimony
$2.1 \mathrm{~cm}^{2}$

ELECTRICAL DATA

Operating characteristics
Anode supply voltage
Anode series resistor

V_{b}	85	V
R_{a}	1	$\mathrm{M} \Omega$

Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature $2700{ }^{\circ} \mathrm{K}$
$\mathrm{N} \quad 130 \quad \mu \mathrm{~A} /$ lumen
Dark current
$\max .0 .1 \mu \mathrm{~A}$

Capacitance

Anode to cathode
C_{ak}
0.9 pF

LIMITING VALUES (Absolute max. rating system)

| Anode supply voltage | V_{b} | $\max . \quad 90 \quad \mathrm{~V}$ |
| :--- | :--- | :--- | :--- |
| Cathode current | I_{k} | $\max \cdot 0.0125 \mu \mathrm{~A} / \mathrm{mm}^{2}$ |
| Ambient temperature | $\mathrm{t}_{\mathrm{amb}}$ | $\max . \quad 70 \quad{ }^{\circ} \mathrm{C}$ |

VACUUM PHOTOTUBE

Vacuum phototube particularly sensitive to daylight and to light radiation with a blue predominance.

QUICK REFERENCE DATA				
Anode supply voltage	V_{b}	\max.	100	V
Luminous sensitivity	N		45	$\mu \mathrm{~A} /$ lumen
Spectral response curve		type A		
Outline dimensions		$\max .19$ dia. $\times 54$	mm	

MECHANICAL DATA

Dimensions in mm
Base: Miniature

The arrows show the direction of the incident radiation.
The cathode connection should be made to pins 1, 2, 6 and 7 connected together and the anode connection to pins 3, 4 and 5 connected together.

Photocathode
Surface
caesium antimony
Projected sensitive area
$2.1 \mathrm{~cm}^{2}$

7Z2 5217

ELECTRICAL DATA

Operating characteristics

Anode supply voltage
Anode series resistor

V_{b}	85	V
R_{a}	1	$\mathrm{M} \Omega$

Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature $2700{ }^{\circ} \mathrm{K}$

LIMITING VALUES (Absolute max. rating system)

Anode supply voltage	V_{b}	\max.	100	V
Cathode current	I_{k}	\max.	$0.0125 \mu \mathrm{~A} / \mathrm{mm}^{2}$	
Ambient temperature	$\mathrm{t}_{\mathrm{amb}}$	\max.	70	${ }^{\circ} \mathrm{C}$

PHOTO TUBE

Vacuum phototube with high stability and linearity intended for use in high precision photometry (maximum intensity 1 lux) and for measurements of quickly changing light phenomena (maximum light intensity approx. 1000 lux).

QUICK REFERENCE DATA			
Anode voltage	V_{a}	6 to 90	V ${ }_{\text {D.C. }}$
Average current	I_{a}	$\max .50 \times 10^{-9}$	A
Peak current	I_{ap}	$\max .35 \times 10^{-6}$	A
Sensitivity	N	60×10^{-6}	A/lumen
Rise time		14	ns
Spectral response		type A	
Outline, dimensions		max. $\quad 52 \times 82$	mm

MECHANICAL DATA
 Dimensions in mm

Mounting position: any

Photocathode

Cathode material
Caesium-antimony
The cathode material has been deposed on the inner surface of the window. This window is optically plane and polished.
It therefore allows the luminous source to be at close and narrowly reproducable distance from the cathode.

Useful cathode area dia. 30 mm

Spectral response

type A
The spectral response curve shown is a nominal curve and considerable variation between individual tubes may be expected.

Sensitivity measured with a tungsten ribbon lamp having a c.t. of $2850{ }^{\circ} \mathrm{C}$
typical 60×10^{-6} A/lumen min. $35 \times 10^{-6} \mathrm{~A} /$ lumen

Each tube is marked with its sensitivity
An angle of 15° between the axis of the tube and the direction of the incident light decreases the sensitivity not more than 5%.

CAPACITANCE

Anode to cathode
$\mathrm{C}_{\mathrm{ak}} \quad 13 \mathrm{pF}$

TYPICAL CHARACTERISTICS

Saturation voltage, luminous flux 0.05 lumen luminous flux 1 lumen

Anode voltage
Dark current

		$\begin{array}{r} <6 \\ <70 \end{array}$	VD.C. V.C.
V_{a}		6 to 90	V.C.
$\mathrm{I}_{\mathrm{a}_{0}}$	max.	10^{-12}	A
		0.1	\%
$\mathrm{r}_{\text {ins }}$	min.	10^{15}	Ω
T_{r}		14	ns

[^30]
150AV

LIMITING VALUES (Absolute max. rating system)

Anode voltage
Cathode current per mm^{2} of
cathode area, peak
average $\left(\mathrm{T}_{\mathrm{a}_{\mathrm{V}}}=1 \mathrm{~s}\right)$
Cathode current, peak ${ }^{1}$)
average ($\mathrm{T}_{\mathrm{a}_{\mathrm{V}}}=1 \mathrm{~s}$)
Envelope temperature
$\mathrm{V}_{\mathrm{a}} \max . \quad 100$ VD.C.

$\mathrm{I}_{\mathrm{k}_{\mathrm{p}}}$	$\max .50 \times 10^{-9}$	$\mathrm{~A} / \mathrm{mm}^{2}$
I_{k}	$\max .70 \times 10^{-12}$	$\mathrm{~A} / \mathrm{mm}^{2}$

$\mathrm{I}_{\mathrm{k}} \quad \max .35 \times 10^{-6} \mathrm{~A}$
$\max .50 \times 10^{-9} \mathrm{~A}$
$t_{\text {bulb }}$ min. $\quad-90{ }^{\circ} \mathrm{C}$
$t_{\text {bulb }} \max . \quad+60{ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY

With an average cathode current of $50 \times 10^{-9} \mathrm{~A}$, the sensitivity will not decrease more than 10% of its initial value between zero and 500 operating hours.

At lower cathode currents a higher stability may be expected.

REMARKS

- The cathode should not be exposed to direct sunlight.
- In cases where low frequency noise influences the measuring results, this source of noise may be reduced by cooling the tube to $-90^{\circ} \mathrm{C}$.

APPLICATION

The currents allowed through 150AV are so low that amplification will always be necessary. To maintain the precision of the signal coming from the phototube is often the main problem.

This problem may be divided into four parts:

1. Distortion due to capacitive shunting:

The signal on the input of the amplifier is

$$
v=\frac{i}{\sqrt{\frac{1}{R} 2+\omega^{2} C^{2}}}
$$

in which $\mathrm{v}=$ signal in V
i $=$ current through phototube in A
$\mathrm{R}=$ part of series-resistance (in Ω) from which the signal is taken
$=$ frequency of the signal in Hz
$C=$ total capacitance of cathode of phototube + input-capacitance of amplifier + stray capacitance of wiring in F. The value of C will not easily be kept below 20 pF .
$\overline{1)}$ With the cathode uniformly illuminated.
7Z2 6811

If a certain distortion only is accepted the maximum frequency of the signal to be transferred will limit the value of the resistance from which the signal will be taken and by this limit the value of the signal on the input of the amplifier.
2. Noise:

The level of the signal on the input of the amplifier shall be above the noise level.
The 3 main sources of noise are:
a. Shot noise in the phototube which follows the formula:

$$
\begin{aligned}
& \mathrm{I}_{\text {noise }}=\sqrt{2 \mathrm{ei} \times \mathrm{B}} \text { in } A_{\mathrm{R}} . \mathrm{M} . \mathrm{S} . \\
& \mathrm{V}_{\text {noise }}=\mathrm{RxI}_{\text {noise }}
\end{aligned}
$$

in which $\mathrm{e}=1.6 \times 10^{-19}$ in As
$\mathrm{i}=$ the current through the phototube in A
$B=$ the bandwidth in Hz
$\mathrm{R}=$ value of resistor from which signal is taken in Ω
b. Resistance noise of that part of the series-resistor from which the input signal for the amplifier is taken.
This part of the noise follows the formula:

$$
\mathrm{V}_{\text {noise }}=\sqrt{4 \mathrm{kTRB}}
$$

in which $\mathrm{k}=1.35 \times 10^{-23}$
$\mathrm{T}=$ temperature in ${ }^{\circ} \mathrm{K}$
$\mathrm{R}=$ value of resistor in Ω
$\mathrm{B}=$ bandwidth in Hz
c. Input-noise of the amplifier

In such cases where an electron tube is used in the input of the amplifier, the noise-voltage follows the formula

$$
V_{\text {noise }}=\sqrt{\Sigma \mathrm{V}^{2} \text { eq } \Delta \mathrm{B}}
$$

The value of $V_{e q}$ as a function of frequency is different for each type of tube, but for frequencies above $1000 \mathrm{~Hz} \mathrm{~V}_{\text {eq }}$ does not change much with the frequency allowing the formula to be reduced to

$$
v_{\text {noise }}=v_{\text {eq }} \sqrt{B}
$$

In that case $V_{\text {eq }}$ can be approximated within a factor 2 to 3 by

$$
V_{e q}=\frac{3 \times 10^{-9} \sqrt{I_{a}}}{S}
$$

in which I_{a} is the anode current of the tube in A and S is the transconductance in A/V.

Bringing the formulas shown in items 1 and 2 together gives:
The square of the signal to noise ratio on the input of the amplifier will be:

$$
\left\{\frac{\text { signal }}{\text { noise }}\right\}^{2}=\frac{1}{2 \text { ei } B+4 T \frac{1}{R} B+V_{e q}^{2} B\left(\frac{1}{R^{2}}+\omega^{2} C^{2}\right)}
$$

in which i is the current through the phototube in Amperes
3. Input current of the amplifier
\longrightarrow The input-current of the amplifier should be low compared with the signal current through the phototube.

4. Linearity of the amplifier

The amplifier should have a feedback so that the stability and the distortion of the signal is not impaired.

If the circumstances are such that the signal to noise ratio cannot be kept within acceptable limits - usually there where low incident illumination levels combine with high frequencies - use of this type of phototube should be abandoned in preference to photomultipliers where the distortion due to capacitive shunting and noise sources other than shot noise are of smaller relative importance.

Examples:

An example for a simple circuit which is useful for many purposes of static light measurements is shown in fig.l.

In this circuit the $\mu \mathrm{A}$ meter with $50 \mu \mathrm{~A}$ f.s.d. may be calibrated in milli-lumen or - if the whole of the cathode is illuminated - in lux. Assuming that the pointer of the $\mu \mathrm{A}$ meter will not move with frequencies above 20 Hz , for calculation of the noise level frequencies below 20 Hz are of interest only.
For currents of 5×10^{-9} A through the phototube the signal on the input of the amplifier is of a level of 5 V , the shot noise on a level of $10^{-4} \mathrm{~V}$, the resistance noise on a level of $10^{-5} \mathrm{~V}$, the equivalent noise voltage on the input of EC1000 on a level of $10^{-6} \mathrm{~V}$.

The feedback of this system is about 1000 times, so the accuracy is solely determined by the accuracy of the $\mu \mathrm{A}$ meter, all other sources being small.

Mains voltage variations of $+10 \%$ and -15% are of no influence on the measuring result.

The circuit of Fig. 1 is calibrated as follows:
Adjust P_{2} so that the total cathode resistance of the EC1000 is $\frac{\mathrm{A} \times \mathrm{R}_{1}}{50 \times 1000} \Omega$
in which R_{1} is the value of the series resistance of the 150 AV and
A is the actual sensitivity in $\mu \mathrm{A} /$ lumen of the 150 AV as marked on the tube.
Disconnect the connection between the phototube and the grid of the EC1000 and connect the grid of EC1000 to earth. Connect the circuit to the mains and adjust P_{1} so that the $\mu \mathrm{A}$ meter indicates zero.

The circuit is now restored and has been calibrated for 0.02 mlumen per $\mu \mathrm{A}$ deflection of the $\mu \mathrm{A}$ meter.

For measurements of rapidly changing phenomena the series-resistor in Fig. 1 of 150 AV should be adapted for an acceptable signal to noise ratio and accept able distortion while the $\mu \mathrm{A}$ meter should be replaced by a resistor shunted by the input of an oscilloscope.

Depending on the frequency further adaptations of the circuit may be necessary, e.g. further smoothing of the D.C. voltages and a D.C. heater supply for the EC1000.

Remark $\quad P_{1}$ and P_{2} should be wirewound resistors.

For extremely rapid changes when all time constants of the circuit have to be reduced as far as possible a circuit as shown in fig. 2 may be used on which laser light flashes can be recorded with a rise time of the signal on the oscilloscope of 20 ns .

fig. 2

PHOTO TUBE

Vacuum phototube with high stability and linearity intended for use in high precision/ photometry (maximum intensity 1 lux) and for measurements of quickly changing light phenomena (maximum light intensity approx. 1000 lux).

QUICK REFERENCE DATA				
Anode voltage	V_{a}		6 to 90	VD.C.
Average current	I_{a}		35×10^{-9}	A
Peak current	I_{ap}	max.	25×10^{-6}	A
Sensitivity	N		20×10^{-6}	A/lumen
Rise time			14	ns
Spectral response			type C	
Outline dimensions		max.	52×85	mm

MECHANICAL DATA

Dimensions in mm

Mounting position: any

Photocathode

Cathode material
Caesium on oxidized silver
The cathode material has been deposed on the inner surface of the window. This window is optically plane and polished.
It therefore allows the luminous source to be at close and narrowly reproducable distance from the cathode.

Useful cathode area dia. 26 mm

Spectral response type C

The spectral response curve shown is a nominal curve and considerable variation between individual tubes may be expected.

Sensitivity measured with a tungsten ribbon
lamp having a c.t. of $2850^{\circ} \mathrm{K}$
typical $20 \times 10^{-6} \quad$ A/lumen
min. $14 \times 10^{-6} \mathrm{~A} /$ lumen

Each tube is marked with its sensitivity.
An angle of 15° between the axis of the tube and the direction of the incident light decreases the sensitivity not more than 5%.

CAPACITANCE

Anode to cathode

$$
\mathrm{C}_{\mathrm{ak}} \quad 13 \mathrm{pF}
$$

TYPICAL CHARACTERISTICS

Saturation voltage, luminous flux 0.05 lumen
luminous flux 1 lumen

Anode voltage
Dark current
Linearity ${ }^{1}$)
Insulation resis̀stance
Rise time

		$\begin{aligned} & <6 \\ & <70 \end{aligned}$	VD.C. VD.C.
V_{a}		6 to 90	V ${ }^{\text {d.C. }}$
$\mathrm{I}_{\mathrm{a}_{0}}$	\max.	10^{-9}	A
		0.1	\%\%0
$\mathrm{r}_{\text {ins }}$	min.	10^{15}	Ω
T_{r}		14	ns

[^31]LIMITING VALUES (Absolute max. rating system)

Anode voltage
Cathode current per mm^{2} of cathode area, peak

$$
\text { average }\left(\mathrm{T}_{\mathrm{av}}=1 \mathrm{~s}\right)
$$

Cathode current, peak ${ }^{1}$)

$$
\text { average }\left(\mathrm{T}_{\mathrm{av}}=1 \mathrm{~s}\right)
$$

Envelope temperature
$\mathrm{V}_{\mathrm{a}} \max . \quad 100 \quad \mathrm{~V}_{\mathrm{D} . \mathrm{C}}$.

LIFE EXPECTANCY

With an average cathode current of $35 \times 10^{-9} \mathrm{~A}$, the sensitivity will not decrease more than 10% of its initial value between zero and 500 operating hours. At lower cathode currents a higher stability may be expected.

REMARKS

- The cathode should not be exposed to direct sunlight.
- In cases where low frequency noise influences the measuring results, this source of noise may be reduced by cooling the tube to $-90^{\circ} \mathrm{C}$.

APPLICATION

Please refer to data of 150 AV .

PHOTO TUBE

Vacuum phototube with high stability and linearity intended for use in high precision photometry (maximum intensity 1 lux) and for measurements of quickly changing light phenomena (maximum light intensity approx. 1000 lux).

QUICK REFERENCE DATA			
Anode voltage	V_{a}	6 to 90	$V_{\text {D. }}$ C.
Average current	I_{a}	$\max .50 \times 10^{-9}$	A
Peak current	I_{ap}	$\max .35 \times 10^{-6}$	A
Sensitivity	N	35×10^{-6}	A/lumen
Rise time		14	ns
Spectral response		type U	
Outline dimensions		max. 53×110	mm

MECHANICAL DATA
 Dimensions in mm

Mounting position: any

Photocathode

Cathode material
Caesium-antimony
The cathode material has been deposed on the inner surface of the quartz window. This window is optically plane and polished.
It therefore allows the luminous source to be at close and narrowly reproducable distance from the cathode.
Useful cathode area
dia.
30 mm
Spectral response
type U

The spectral response curve shown is a nominal curve and considerable variation between individual tubes may be expected.

Sensitivity measured with a tungsten ribbon
lamp having a c.t. of $2850^{\circ} \mathrm{K}$
Each tube is marked with its sensitivity.
An angle of 15° between the axis of the tube and the direction of the incident light decreases the sensitivity not more than 5%.

CAPACITANCE

Anode to cathode

$$
\mathrm{C}_{\mathrm{ak}} \quad 13 \mathrm{pF}
$$

TYPICAL CHARACTERISTICS

Saturation voltage, luminous flux 0.05 lumen luminous flux 1 lumen

Anode voltage
Dark current
Linearity ${ }^{1}$)
Insulation resistance
Rise time
typical $60 \times 10^{-6} \quad$ A/lumen min. 35×10^{-6} A/lumen

150UV

LIMITING VALUES (Absolute max. rating system)
Anode voltage
V_{a}
\max.
100 V.C.
Cathode current per mm^{2} of cathode area, peak
average $\left(T_{a v}=1 \mathrm{~s}\right)$
Cathode current, peak ${ }^{\text {l }}$)
average $\left(\mathrm{T}_{\mathrm{av}}=1 \mathrm{~s}\right)$
Envelope temperature
$\mathrm{I}_{\mathrm{kp}} \mathrm{I}_{\mathrm{k}}$

${ }^{t_{\text {bulb }}}$
$\max .50 \times 10^{-9}$
$\max .70 \times 10^{-12}$
$\mathrm{A} / \mathrm{mm}^{2}$
$\mathrm{A} / \mathrm{mm}^{2}$
$\max .35 \times 10^{-6} \mathrm{~A}$
$\max .50 \times 10^{-9} \mathrm{~A}$
min. $\quad-90$
$+60{ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY

With an average cathode current of $50 \times 10^{-9} \mathrm{~A}$, the sensitivity will not decrease more than 10% of its initial value between zero and 500 operating hours. At lower cathode currents a higher stability may be expected.

REMARKS

- The cathode should not be exposed to direct sunlight.
- In cases where low frequency noise influences the measuring results, this source of noise may be reduced by cooling the tube to $-90^{\circ} \mathrm{C}$.

APPLICATION

Please refer to data of 150 AV .

PHOTOCELL

Top sensitive gas-filled phototube, sensitive to ultra-violet radiation, intended for use as an on-off device in flame failure circuits.

	QUICK REFERENCE DATA			
Supply voltage		V_{b}	220	$\mathrm{~V}_{\mathrm{RMS}}$

OPERATING PRINCIPLE

When photons of sufficient energy strike the cathode of the device electrons may be released. Provided the tube voltage is sufficiently high, these electrons may initiate a discharge. The probability that this will occur is dependent amongst other things on the value of the supply voltage and the ultra-violet radiation intensity.
The discharge will extinguish as soon as the instantaneous value of the tube voltage falls below the maintaining voltage.
It should be noted that most sources of visible light (e.g. the sun, fluorescent lamps) are at the same time sources of U.V. radiation.
Where the level of such radiation affects the reliable operation of the circuit, adequate shielding or filtering should be provided.

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: Noval 4 pins

The arrows show the required direction of incident radiation for highest sensitivity.
Mounting position: any
7Z2 8043

MOUNTING

A noval socket with a centre hole diameter of at least 5.4 mm should be used. Pins 1 and 6 should be connected to pins 9 and 4 respectively on the socket.

CHARACTERISTICS

Spectral response

Maintaining voltage
0.2 to $0.29 \mu \mathrm{~m}$ (2000 to 2900 R)

See also page A
$\mathrm{V}_{\mathrm{m}} \quad 180$ to 220 V

RECOMMENDED CIRCUITS

I. DIRECT RELAY CIRCUIT ($\mathrm{t}_{\mathrm{amb}}=\max \cdot 70^{\circ} \mathrm{C}$)

Fig. 1
$\mathrm{R}_{1} \quad 100 \Omega \pm 10 \%$
$\mathrm{R}_{2} \quad 220 \mathrm{k} \Omega \pm 10 \%$
$\mathrm{R}_{3} \quad 270 \Omega \pm 10 \%$
D 4 diodes
$\mathrm{C}_{1} \quad 12 \mathrm{nF} \pm 15 \%$
$\mathrm{C}_{2} \quad 25 \mu \mathrm{~F} \pm 15 \%$

Relay:
R $\quad 12 \mathrm{k} \Omega \pm 10 \%$
$\mathrm{I}_{\text {On }}<3 \mathrm{~mA}$
$\mathrm{I}_{\text {off }} \quad 0.5$ to 1.5 mA
$\mathrm{W}_{\max }>1.2 \mathrm{~W}$

Notes

1. The filter $R_{1} C_{1}$ reduces the effects of high voltage transients on the mains.
2. Incidental discharges of the tube will not activate the relay for any value of the mains voltage within the range $220 \mathrm{~V}+10 \%$ to -15%.

Sensitivity

Under the worst probable conditions of supply voltage (190 V) component variation and characteristic variation of the tube during 10.000 hours, the tube will activate the relay when a "standard radiation source" (candle, see fig.4) is at a distance $<50 \mathrm{~mm}$ from the tube.

RECOMMENDED CIRCUITS (continued)

II. INDIRECT RELAY CIRCUITS ($t_{a m b}=\max .100^{\circ} \mathrm{C}$)

IIa

Fig. 2

R_{1}	100Ω	$\pm 10 \%$
R_{2}	100Ω	$\pm 10 \%$
R_{3}	$120 \mathrm{k} \Omega \pm 10 \%$	
R_{4}	$120 \mathrm{k} \Omega \pm 10 \%$	
R_{5}	$470 \mathrm{k} \Omega \pm 10 \%$	

C_{1}	$12 \mathrm{nF} \pm 15 \%$
C_{2}	$12 \mathrm{nF} \pm 15 \%$
C_{3}	$2.2 \mu \mathrm{~F} \pm 15 \%$
$\mathrm{D}_{1}, \mathrm{D}_{2}$	diodes

Note
The filter $R_{1} C_{1}$ reduces the effects of high voltage transients on the mains.
Sensitivity
The curve on page B shows the relationship between the output voltage V_{O} and the distance between the tube and the "standard radiation source" (see fig.4) under the worst probable conditions of supply voltage (198 V) and component variation for the least sensitive new tube.
After the first 10000 hours of operation the sensitivity will have decreased, but will in all cases be better than indicated by the curve on page B provided the radiation source is doubled (two candles according to fig.4).

RECOMMENDED CIRCUITS (continued)

LIb

Fig. 3

R_{1}	100Ω	$\pm 10 \%$
R_{2}	100Ω	$\pm 10 \%$
R_{3}	$330 \mathrm{k} \Omega \pm 10 \%$	
R_{4}	$150 \mathrm{k} \Omega \pm 10 \%$	
R_{5}	$470 \mathrm{k} \Omega \pm 10 \%$	

$\mathrm{C}_{1} \quad 12 \mathrm{nF} \pm 15 \%$
$\mathrm{C}_{2} \quad 12 \mathrm{nF} \pm 15 \%$
$\mathrm{C}_{3} \quad 2.2 \mu \mathrm{~F} \pm 15 \%$
D_{1} diode

Note

The filter $\mathrm{R}_{1} \mathrm{C}_{1}$ reduces the effects of high voltage transients on the mains.
Sensitivity
The curve on page B shows the relationship between the output voltage V_{O} and the distance between the tube and the "standard radiation source" (see fig.4) under the worst probable conditions of supply voltage (198 V) and component variation for the least sensitive new tube.
After the first 10000 hours of operation the sensitivity will have decreased, but will in all cases be better than indicated by the curve on page B provided the radiation source is doubled (two candles according to fig.4).

LIMITING VALUES

Ambient temperature, operating storage
t_{amb}
$\max .100$
${ }^{\circ} \mathrm{C}$
min. $-50{ }^{\circ} \mathrm{C}$
$\max .+50{ }^{\circ} \mathrm{C}$
$\max . \quad 70{ }^{\circ} \mathrm{C}$ when used in cir-
cult fig. 1
when used in circlits fig. 2 and 3 (
min. $-25 \quad{ }^{\circ} \mathrm{C}$

W arning

Designers of flame failure detectors are strongly advised not to depart from the recommended circuits. Any such departure may result in an unsafe operating mode which is likely to cause an internal short in the tube before its rated useful life has expired.

Application notes

To ensure that the intensity of radiation incident on the built-in tube will be sufficient throughout its service life (10000 hours in the case of a new tube) the following procedure should be observed:

For circuit fig. 1

Place a "standard radiation source" at a distance of 50 mm from the tube and measure the average voltage across the relay.
In actual operation the same tube should be mounted at a distance from the flame such that the average voltage across the relay is at least equal to that obtained under irradiation from the "standard radiation source" at 50 mm .
Care should be taken that the value of the mains voltage is the same during both measurements.
The flame used during this measurement should be the minimum flame which has to be detected. No further readjustment of the distance between tube and flame will be necessary when the tube has to be replaced.

For circuits fig. 2 and fig. 3

The output power from the circuits in fig. 2 and 3 is too low for direct tripping of a relay. For effective discrimination, the voltage on the input of the added amplifier must attain a certain threshold value when the U.V. energy emitted by the flame attains a certain critical intensity.
The implication is that steps must be taken to ensure that the output voltage V_{O} from the recommended circuit will remain above this threshold value throughout the life of the tube. This is done in the following way.
Read from the dotted curve on page B the distance d corresponding to the required minimum output voltage V_{O}.
Place two "standard radiation sources" at the distance drom the tube and connect the circuit output to a d.c. voltmeter with a high input resistance; observe the average output voltage V_{O}. (The mean value around which the needle swings.)
In actual operation the same tube should be mounted at a distance from the flame such that the average output voltage V_{0} is at least equal to that obtained under irradiation from the two "standard irradiation sources" at the distance d.

Care should be taken that the value of the mains voltage is the same during both measurements.
The flame used during this measurement should be the minimum flame which has to be detected.
No further readjustment of the distance between tube and flame is necessary when the tube has to be replaced.

Above procedures do of course not include allowance for dirt deposited on the tube during life.

Fig. 4
"Standard radiation source"

The output voltage as a function of the distance between radiation source and the least sensitive tube in the circuit of fig. 3 .
The curve is valid at 0 hours when the tube is irradiated by one "standard radiation source" and at 10000 hours when irradiated by two "standard radiation sources".

The output yoltage as a function of the distance between radiation source and the least sensitive tube in the circuit of fig. 2 .
The curve is valid at 0 hours when the tube is irradiated by one "standard radiation source" and at 10000 hours when irradiated by two "standard radiation sources".

Photoconductive devices

PHOTOCONDUCTIVE DEVICES APPLICATION DIRECTIONS

1. GENERAL

1.1 These application directions are valid for all types of photoconductive cells, unless otherwise stated on the individual technical data sheets.
1.2 A photoconductive device is a light-sensitive device whose resistance varies with the illumination on the device.
1.3 Where the term illumination is used in the following sections it shall be taken to mean the radiant energy which is normally used to excite the device.
1.4 Also in the following sections, history is taken to mean the duration of the specified conditions plus a sufficient description of previous conditions.

2. OPERATING CHARACTERISTICS

2.1 The data given on the individual technical data sheets are based on the devices being uniformly illuminated.
2.2 The illumination resistance is the ratio of the voltage across the device to the current through the device when illumination is applied to the device.
2.2.1 For a particular set of conditions the equilibrium illumination resistance is the illumination resistance after such a time under these conditions that the rate of change of the illumination resistance is less than 1% per 5 minutes.
2.2.2 For a particular set of conditions the initial illumination resistance is the first virtually constant value of the illumination resistance after a period of storage or other operating conditions.
The initial illumination resistance usually occurs after a few seconds under the specified conditions.
2.3 The illumination current is the current which passes when a voltage and illumination are applied to the device.
2.3.1 For a particular set of conditions the equilibrium illumination current is the illumination current after such a time under these conditions that the rate of change of the illumination current is less than 1% per 5 minutes.
2.3.2 For a particular set of conditions the initial illumination current is the first virtually constant value of the illumination current after a period of storage or other operating conditions.
The initial illumination current usually occurs after a few seconds under the specified conditions.

2.4 The dark resistance is the resistance of the device in the absence of illumination.
2.4.1 For a particular set of conditions the equilibrium dark resistance is the dark resistance after such a time under these conditions that the rate of change of the dark resistance is less than 2% per 5 minutes.
2.4.2 For a particular set of conditions the initial dark resistance is the dark resistance after a specified time under these conditions following a specified history.
2.5 The dark current is the current which passes when a voltage is applied to the device in the absence of illumination.
2.5.1 For a particular set of conditions the equilibrium dark current is the dark current after such a time under these conditions that the rate of change of the dark current is less than 2% per 5 minutes.
2.5.2 For a particular set of conditions the initial dark current is the dark current after a specified time under these conditions immediately following a specified history.
2.6.1 For a particular set of conditions and history the resistance decay time is the time taken for the resistance of the device to fall to a specified value measured from the instant of starting the illumination.
2.6.2 For a particular set of conditions and history the resistance rise time is the time taken for the resistance of the device to rise to a specified value measured from the instant of stopping the illumination.
2.7.1 For a particular set of conditions and history the current rise time is the time taken for the current through the device to rise to 90% ot its initial illumination current measured from the instant of starting the illumination.

2.7.2 For a particular set of conditions and history the current decay time is the time takenfor the current through the device to fall to 10% of its value at the instant of stopping the illumination, measured from that instant.

2.8 The illumination sensitivity is the quotient of illumination current by the incident illumination.
2.9 The illumination resistance (current) temperature response is the relationship between the illumination resistance (current) and the ambient temperature of the device under constant illumination and voltage conditions.
2.10 For a particular set of conditions the initial drift is the difference between the equilibrium and initial illumination current, expressed as a percentage of the initial illumination current.
2.11 The illumination response is the relationship between the initial illumination resistance and the illumination, defined as $\frac{\Delta \log r_{10}}{\Delta \log E}$

3. THERMAL DATA

3.1 Ambient temperature. The ambient temperature of a device is the temperature of the surrounding air of that device in its practical situation, which means that other elements in the same space or apparatus must have their normal maximum dissipation and that the same apparatus envelope must be used. This ambient temperature can normally be measured by using a mercury thermometer the mercury container of which has been blackened, placed at a distance of 5 mm from the envelope in the horizontal plane through the centre of the effective area of the CdS tablet.
It shall be exposed to substantially the same radiant energy as that incident on the CdS tablet.
3.2 The thermal resistance of a device is defined as the temperature difference between the hottest point of the device and the dissipating medium, divided by the power dissipated in the device.

4. OPERATIONAL NOTES

4.1 When a photoconductive device is subjected to a change of operating conditions there may be a transient change of current in excess of that due to the difference between the equilibrium illumination currents. This transient change is called overshoot.

4.2 Direct sunlight irradiation should be avoided.

5. MOUNTING

5.1 If no restrictions are made on the individual published data sheets, the device may be mounted in any position.
5.2 Most of the photoconductive devices may be soldered directly into the circuit, which is indicated on the individual published data sheets. However, the heat conducted to the seal of the device should be kept to a minimum by the use of a thermal shunt. If not otherwise indicated, the device may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 sec onds up to a point 5 mm from the seals.

6. STORAGE

It is recommended that the devices be stored in the dark. At any rate direct sunlight irradiation should be avoided.

7. LIMITING VALUES

The limiting values of photoconductive devices are given in the absolute maximum rating system.

8. OUTLINE DIMENSIONS

The outline dimensions are given in mm .

9. SHOCK AND VIBRATION

The conditions for shock and vibration given on the individual data sheets are intended only to give an indication of the mechanical quality of the device. It is not advisable to subject the device to such conditions.

TYPE D

CADMIUM SULPHIDE PHOTOCONDUCTIVE DEVICES

LIST OF SYMBOLS

Cell voltage V
Cell currentI
Illumination current I_{1}
Initial illumination current Ilo
Equilibrium illumination current Ile
Dark current I_{d}
Initial dark current $\mathrm{I}_{\text {do }}$
Equilibrium dark current $I_{\text {de }}$
Illumination resistance r_{1}
Initial illumination resistance rlo
Equilibrium illumination resistance rle
Dark resistance r_{d}
Initial dark resistance rdo
Equilibrium dark resistance rde
Current rise time tri
Current decay time t_{fi}
Resistance rise time t_{rr}
Resistance decay time tfr
Pulse time $t_{\text {imp }}$
Averaging time tav
Pulse repetition rate p_{rr}
Illumination sensitivity N
Illumination response γ
Voltage response α
Ambient temperature Tamb
Thermal resistance K
Temperature of CdS tablet Ttablet
Colour temperatureT_{K}
Dissipation P
Illumination E
Initial drift Do

RATING SYSTEM

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with top sensitivity intended for use in flame failure, smoke detection circuits and general industrial applications.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	400	mW
Cell voltage, d.c. and repetitive peak	V	\max.	300	V
Cell resistance at 50 lux,				
$\quad 2700$ oK colour temperature	r		1700	Ω
Spectral response curve		type D		
Outline dimensions		$\max .17$ dia. $\times 58$	mm	

MECHANICAL DATA

Dimensions in mm

Sensitive area $1.25 \mathrm{~cm}^{2}$.

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery. ${ }^{1}$)

Equilibrium dark resistance measured with $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance measured at $10 \mathrm{~V} \mathrm{d.c} .\mathrm{and} \mathrm{illumi-}$ nation $=50$ lux, after 16 hrs in darkness. $\left.{ }^{2}\right)^{3}$)
Equilibrium illumination resistance measured at $10 \mathrm{~V} \mathrm{d.c} .\mathrm{and} \mathrm{illumi-}$ nation $=50$ lux, after 15 minutes under the measuring conditions. 3)

Resistance decay time
Resistance rise time

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {de }}$	8			
$\mathrm{r}_{\text {lo }}$	750	1500	3000	Ω
r_{le}		1700		Ω
t_{fr}	see sheet C			
t_{rr}	see sheet B			

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak

Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) see also	P	\max.	400	mW
	P	max.	100	mW
Ambient temperature, storage and operating	Tamb	min.	-40	${ }^{0} \mathrm{C}$
operating (<1 lux)	Tamb	\max.	+50	${ }^{0} \mathrm{C}$
operating (≥ 1 lux)	$\mathrm{T}_{\mathrm{amb}}$	\max.	+70	${ }^{0} \mathrm{C}{ }^{4}$)

1) For sources of illumination other than a lamp of colour temperature $2700{ }^{\circ} \mathrm{K}$, the cell resistance should be multiplied by the following approximate factors.

Source of illumination
Incandescent radiation at colour temperature of:

$1500^{\circ} \mathrm{K}$	$1 / 2$
$2000^{\circ} \mathrm{K}$	$2 / 3$
Sunlight	$4 / 3$
White fluorescent	2

${ }^{2}$) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
${ }^{3}$) For a.c. conditions, the nominal and limit resistance values are approximately 1.1 times those for d.c. The a.c. values are taken to be r.m.s.
4) The cell should not be subjected to high relative humidity levels above an ambient temperature of $50^{\circ} \mathrm{C}$.

7Z2 5155

ORP11

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with top sensitivity intended for use in flame control, smoke detection and industrial on-off switching applications.

QUICK REFERENCE DATA				
Power dissipation at T amb $=25^{\circ} \mathrm{C}$	P	\max.	1.2	W
Cell voltage, d.c. and repetitive peak	V	\max.	350	V
Cell resistance at 50 lux,				
$\quad 2700^{\circ} \mathrm{K}$ colour temperature	r		330	Ω
Spectral response curve		type D		
Outline dimensions		$\max .38$ dia. $\times 75$	mm	

MECHANICAL DATA

Dimensions in mm

Total area to be illuminated
Sensitive part of this area

Base: Octal
$7.5 \mathrm{~cm}^{2}$
$4.5 \mathrm{~cm}^{2}$

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

7Z2 5156

ORP30

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery

Equilibrium dark current measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 15$ minutes after switching off the illumination

Initial illumination current measured at $10 \mathrm{~V} \mathrm{d.c} .\mathrm{and} \mathrm{illu-}$ mination = 50 lux, after 16 hrs in darkness ${ }^{1}$)

Initial illumination current measured at $10 \mathrm{~V} \mathrm{d.c.}, \mathrm{illumi-}$ nation $=50$ lux and colour temper ature $=1500{ }^{\circ} \mathrm{K}$, after 16 hrs in darkness

Current rise time
Current decay time
Sensitivity at 50 lux, with $10 \mathrm{Vd.c}$. applied.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak

V	max.	350	V
P	max.	1.2	W
P	\max.	0.35	W
$\mathrm{~T}_{\text {amb }}$	\min.	-40	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	\max.	+50	${ }^{\circ} \mathrm{C}{ }^{2}$)
$\mathrm{T}_{\text {amb }}$	\max.	+70	${ }^{\circ} \mathrm{C}$

1) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
2) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum stor age temperature.

ORP30

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with top and side sensitivity.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	0.4	W
Cell voltage, d.c. and repetitive peak	V	\max.	300	V
Cell resistance at 50 lux,				
$\quad 2700^{\circ} \mathrm{K}$ colour temperature	r		2700	Ω
Spectral response curve		type	D	
Outline dimensions		max. 16 dia. $\times 44$	mm	

MECHANICAL DATA

Dimensions in mm

Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 10 mm from the seals.

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $\underline{2700} \mathrm{OK}$ and at delivery.

Equilibrium dark resistance measured with $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance measured at 20 V d.c. and illumination $=50$ lux, after 16 hrs in darkness ${ }^{1}$)

Equilibrium illumination resistance measured at $20 \mathrm{~V} \mathrm{d.c}$. and illumination $=50$ lux, after 15 minutes under the measuring conditions

Resistance decay time
Time to reach $7 \mathrm{k} \Omega$ measured from the instant of starting the illumination of 50 lux, after 16 hrs in darkness

Resistance rise time
Time to reach $25 \mathrm{k} \Omega$ measured from the instant of stopping the illumination, after 15 minutes or longer illumination of 50 lux

symbol	min.	typical	\max.	unit
$\mathrm{r}_{\text {de }}$	8			$\mathrm{M} \Omega$
r_{10}	1300	2700	6200	Ω
$\mathrm{r}_{1 \mathrm{e}}$		3400		Ω
t_{fr}		350		ms
${ }^{\text {r }}$ r		75		ms

[^32]
DESIGN CONSIDERATIONS

Apparatus with CdS devices should be designed so that changes in resistance values of the CdS cells during life from -30% to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak	V	\max.	300	V
$\left.\begin{array}{l}\text { Power dissipation at } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ \text { Power dissipation at } \mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}\end{array}\right\}$ See also	P	\max.	0.4	W
sheet A	P	\max.	0.1	W
Ambient temperature, storage and operating	$\mathrm{T}_{\mathrm{amb}}$	\min.	-40	${ }^{\circ} \mathrm{C}$
storage	$\mathrm{T}_{\mathrm{amb}}$	\max.	+50	${ }^{\circ} \mathrm{C}$
operating $(<1$ lux $)$	$\mathrm{T}_{\mathrm{amb}}$	\max.	+50	${ }^{\circ}{ }^{\circ} \mathrm{C}$
operating $(\geq 1$ lux)	$\mathrm{T}_{\mathrm{amb}} \max$.	+70	${ }^{\circ} \mathrm{C}$	

7Z2 8028

ORP50

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with top sensitivity intended for use in flame control and other industrial applications as well as for automatic brightness and contrast control in TV receivers. The cell is shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	70	mW
Cell voltage, d.c. and repetitive peak	V	\max.	350	V
Cell resistance at 50 lux,				
$\quad 2700^{\circ} \mathrm{K}$ colour temperature	r		60	$\mathrm{k} \Omega$
Spectral response curve		type D		
Outline dimensions		max. 6 dia. $\times 16.5$	mm	

MECHANICAL DATA

Dimensions in mm

Sensitive area
$0.25 \mathrm{~mm}^{2}$

Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240{ }^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

[^33]
ORP60

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temper ature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery

Initial dark current
measured at $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Initial illumination current measured at $30 \mathrm{Vd.c}$. and illumination = 50 lux, after 16 hrs in darkness ${ }^{1}$)

Sensitivity at 50 lux, with 30 V d.c. applied

symbol	min.	typical	max.	unit
$I_{\text {do }}$				
			1.5	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {lo }}$	200	500	800	$\mu \mathrm{~A}$
N		10		$\mu \mathrm{~A} / \mathrm{lux}$

End of life characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Life test conditions: Illumination 50 to 100 lux, colour temperature about $2500^{\circ} \mathrm{K}, \mathrm{P}=60 \mathrm{~mW}, \mathrm{~T} \mathrm{amb}=35^{\circ} \mathrm{C}$
None of the end of life values stated under this heading are expected to be reached before 2500 operating hours under the following conditions:

Initial dark current measured at 300 V d.c., 20 s after switching off the illumination $\quad \mathrm{I}_{\text {do }} \max .3 \mu \mathrm{~A}$

Change of initial illumination current during life measured at $30 \mathrm{~V} \mathrm{d.c.} \mathrm{illumination}=$, 50 lux and colour temperature $=2700^{\circ} \mathrm{K}$, after 16 hrs in darkness

$$
\Delta \mathrm{I}_{10} \quad \max .60 \%
$$

${ }^{1}$) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

SHOCK AND VIBRATION

An indication for the ruggedness of the device is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than 95% of the devices pass these tests without perceptible damage.

Shock
25 gpeak, 3000 shock in one of the three positions of the cell.

Vibration

2.5 gpeak, 50 Hz during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Power dissipation at $\left.\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}\right\}$ sheet B

Ambient temperature, storage and operating storage operating

V
P max. 70 mW
P
1
$\max .350 \mathrm{~V}$
\max. 20 mW
$\max .7 .5 \mathrm{~mA}$
$\mathrm{T}_{\mathrm{amb}} \min .-40{ }^{\circ} \mathrm{C}$
Tamb
$\mathrm{T}_{\mathrm{amb}}$
$\max .+50{ }^{\circ} \mathrm{C}^{1}$)
$\max .+70{ }^{\circ} \mathrm{C}$

[^34]ORP60

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in flame control and other industrial applications as well as for automatic brightness and contrast control in TV receivers.
The cell is shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	70	mW
Cell voltage, d.c. and repetitive peak	V	\max.	350	V
Cell resistance at 50 lux,				
$\quad 2700^{\circ} \mathrm{K}$ colour temper ature	r		60	$\mathrm{k} \Omega$
Spectral response curve		type D		
Outline dimensions		$\max .6$ dia. $\times 16.5$	mm	

MECHANICAL DATA

Sensitive area

Dimensions in mm

Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

1) Not tin plated
2) Centre of sensitive area
${ }^{3}$) Brown dot

ORP 61

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as iHumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery

Initial dark current measured at 300 V d.c. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Initial illumination current measured at $30 \mathrm{Vd.c}$. and illumination = 50 lux, after 16 hrs in darkness ${ }^{1}$)

Sensitivity at 50 lux, with 30 V d.c. applied

symbol	min.	typical	max.	unit
$\mathrm{I}_{\text {do }}$				
I_{10}	200	500	800	$\mu \mathrm{~A}$
N		1.5	$\mu \mathrm{~A}$	
		10		$\mu \mathrm{~A} / \mathrm{lux}$

End of life characteristics at $\mathrm{T} a \mathrm{mb}=25^{\circ} \mathrm{C}$
Life test conditions: Illumination 50 to 100 lux, colour temperature about $2500{ }^{\circ} \mathrm{K}, \mathrm{P}=60 \mathrm{~mW}, \mathrm{~T}_{\mathrm{amb}}=35^{\circ} \mathrm{C}$
None of the end of life values stated under this heading are expected to be reached before 2500 operating hours under the following conditions:

Initial dark current measured at 300 V d.c., 20 s after switching off the illumination $\mathrm{I}_{\mathrm{do}} \max .3 \mu \mathrm{~A}$

Change of initial illumination current during life measured at 30 V d.c., illumination $=$ 50 lux and colour temperature $=2700^{\circ} \mathrm{K}$, after 16 hrs in darkness
$\Delta I_{10} \quad \max .60 \%$

[^35]
SHOCK AND VIBRATION

An indication for the ruggedness of the device is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than 95% of the devices pass these tests without perceptible damage.

Shock

25 gpeak, 3000 shocks in one of the three positions of the cell.

Vibration

2.5 geak, 50 Hz during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak V
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) See also $\quad \mathrm{P} \quad \max .70 \mathrm{~mW}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C} \int_{\text {sheet }} \mathrm{B} \quad \mathrm{P} \quad \max .20 \mathrm{~mW}$
Cell current, d.c. and repetitive peak
Ambient temperature, storage and operating storage operating

1
$\mathrm{T}_{\mathrm{amb}} \quad \min .-40 \quad{ }^{\circ} \mathrm{C}$
Tamb
Tamb
$\max .7 .5 \mathrm{~mA}$
$\max .+50 \quad{ }^{\circ} \mathrm{C}^{1}$)
$\max .+70{ }^{\circ} \mathrm{C}$
$\max .350 \mathrm{~V}$

[^36]

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in flame control and other industrial on off applications. The cell is shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	100	mW
Cell voltage, d.c. and repetitive peak	V	\max.	350	V
Cell resistance at 50 lux,				
$2700^{\circ} \mathrm{K}$ colour temperature	r		46	$\mathrm{k} \Omega$
Spectral response curve		type D		
Outline dimensions		$\max .6$ dia. $\times 16.5$	mm	

MECHANICAL DATA

7203499

Total area to be illuminated
Sensitive part of this area

Dimensions in mm

Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

1) Not tin plated
2) Centre of sensitive are
3) Red dot

ELECTRICAL DATA

General
The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.
$\underline{\text { Basic characteristics at }} \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery.

Initial dark current

measured with $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Initial illumination current measured at 30 V d.c. and illumination $=50$ lux, after 16 hrs in darkness. ${ }^{1}$)

Current rise time
Current decay time
Sensitivity at 50 lux, with $30 \mathrm{~V} \mathrm{d.c}$. applied

End of life characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Life test conditions: Illumination 50 to 100 lux, colour temperature about $2500^{\circ} \mathrm{K}, \mathrm{P}=85 \mathrm{~mW}, \mathrm{~T}$ amb $=35^{\circ} \mathrm{C}$
None of the end of life values stated under this heading are expected to be reach ed before 2500 operating hours under the following conditions:

Initial dark current measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination $\quad \mathrm{I}_{\mathrm{do}} \max .5 \mu \mathrm{~A}$
Change of initial illumination current during life measured at 30 V d.c., illumination $=50$ lux and colour temperature $=2700$ oK, after 16 hrs in darkness $\quad \mathrm{I}_{\mathrm{lo}} \quad \max .50 \%$

1) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

7Z2 5168

SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than 95% of the devices pass these tests without perceptible damage.

Shock

25 geak, 3000 shocks in one of the three positions of the cell.
Vibration
2,5 gpeak , 50 Hz , during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak
V max. 350 V
Cell voltage, pulse, $\mathrm{t}_{\mathrm{imp}}=\max .1 \mathrm{~ms}$ prr $=$ a few times per 24 hrs
Power dissipation at $\left.\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right\}$ See also
V_{p} max. 1000 V

Power dissipation at $\left.\mathrm{T}_{\mathrm{amb}}=70{ }^{\circ} \mathrm{C}\right\}$ sheet B
Ambient temperature, storage and operating storage
operating

[^37]

ORP62

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity. The cell is tropic proof, shock- and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation	P	\max.	75	mW
Cell voltage, d.c. and repetitive peak	V	max.	100	V
Cell resistance at 50 lux, $2700{ }^{\circ} \mathrm{K}$ colour temperature	r		1600	Ω
Spectral response		type D		
Outline dimensions			x 26	mm

MECHANICAL DATA

Total area to be illuminated
Sensitive part of this area

Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dipsoldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seal.

1) Centre of sensitive area.
${ }^{2}$) Not tin plated.
Care should be taken not to bend the leads nearer than 1.5 mm to the seal.
7Z2 8029

ORP63

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature $=2700^{\circ} \mathrm{K}$ and at delivery

Initial dark resistance
measured with 100 V d.c. applied via $1 \mathrm{M} \Omega 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with 100 V d.c. applied via $1 \mathrm{M} \Omega, 30 \mathrm{~min}$. after switching off the illumination

Initial illumination resistance measured at $\mathrm{V}=10 \mathrm{~V}$, illumination 50 lux, after 16 hours in darkness ${ }^{2}$) $r_{l o}$

Equilibrium illumination resistance measured at $\mathrm{V}=10 \mathrm{~V}$, illumination 50 lux, after 15 minutes under the measuring conditions

Symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	9		$\left.{ }^{1}\right)$	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {de }}$	250		${ }^{1}$)	$\mathrm{M} \Omega$
${ }^{1} 10$	750	1600	2500	Ω
$\mathrm{r}_{1 \mathrm{e}}$	750	1920	3250	Ω
$\mathrm{t}_{\text {ri }}$		1000		ms

Current rise time
Time to reach 90% of its initial illumination current, measured from the instant of starting the illumination of 50 lux, at $V=10 \mathrm{~V}$, after 16 hours in darkness
${ }^{1}$) The spread of the dark resistance is large and values higher than $30 \mathrm{M} \Omega$ and $2000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
2) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

7Z2 8030

ELECTRICAL DATA (continued)

Current decay time
Time to reach 10% of its initial illumination current, measured from the instant of stopping the illumination of 50 lux, at $V=10 \mathrm{~V}$, after 16 hours in darkness

Sensitivity at 50 lux, with $V=10 \mathrm{~V}$ d.c. applied

Negative temperature response of the illumination resistance

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V}}{\mathrm{r} \text { at } 10 \mathrm{~V}}$

Symbol	min.	typical	max.	unit
t_{fi}				
N		75		ms
α		0.15		$\mathrm{~mA} / \mathrm{lux}$
α		1.5		

ORP63

DESIGN CONSIDERATIONS

It should be noted that this cell is designed for very high typical sensitivity with respect to its sensitive area, but that it may be expected that a high sensitivity will only be maintained if the dissipation averaged over 2 s is kept below 20 mW at $25^{\circ} \mathrm{C}$. Higher dissipations will accelerate the aging process which lowers sensitivity.

SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below: More than 95% of the devices pass these tests without perceptible damage.

Shock

$25 \mathrm{~g}_{\text {peak }}, 10000$ shocks in one of the three positions of the cell.
Vibration
2.5 geak, 50 Hz , during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak
Power dissipation, $\mathrm{t}_{\mathrm{av}}=2 \mathrm{~s}$
Ambient temperature, storage and operating
Storage
Operating

P see sheet A

Tamb
Tamb

$$
\max . \quad 100 \mathrm{~V}
$$

see sheet A
$\mathrm{T}_{\mathrm{amb}} \min .-40{ }^{\circ} \mathrm{C}$

$$
\min . \quad-40 \quad{ }^{\circ} \mathrm{C}
$$

$$
\left.\max .+40 \quad{ }^{\circ} \mathrm{C}^{1}\right)
$$

$\max .+70{ }^{\circ} \mathrm{C}$

[^38]

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in flame control, smoke detector or industrial on-off switching applications. The cell is shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	1	W
Cell voltage, d.c. and repetitive peak	V	\max.	350	V
Cell resistance at 50 lux,				
$\quad 2700^{\circ} \mathrm{K}$ colour temperature	r		1000	Ω
Spectral response curve		type D		
Outline dimensions		max. 19 dia. $\times 60.3$	mm	

MECHANICAL DATA

Dimensions in mm

Base: 7 p. miniature
Total area to be illuminated $1.1 \times 2.9 \mathrm{~cm}^{2}$

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery.

Initial dark current
measured with $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark current measured with $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 15$ minutes after switching off the illumination
Initial illumination current measured at 10 V d.c. and illumination $=50$ lux, after 16 hrs in darkness ${ }^{1}$)
Initial illumination current measured at $10 \mathrm{~V} \mathrm{d.c.}, \mathrm{illumina-}$ tion $=50$ lux and colour tempera ture $=1500{ }^{\circ} \mathrm{K}$, after 16 hrs in darkness

Sensitivity at 50 lux, with $10 \mathrm{~V} \mathrm{d.c}$. applied

Current rise time
Current decay time

symbol	min.	typical	\max.	unit
$\mathrm{I}_{\text {do }}$			70	$\mu \mathrm{A}$
$\mathrm{I}_{\text {do }}$			2.5	$\mu \mathrm{A}$
I_{10}	3	10	15	mA
I_{10}	6	20	31	mA
N		0.2		mA/lux
${ }^{\text {r }}$ ri		see she	B	
t_{fi}		see she		

[^39]LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak	V	\max.	350	V
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, See also	P	\max.	1.0	W
Power dissipation at $\mathrm{Tamb}^{\text {a }}=70{ }^{\circ} \mathrm{C}$, sheet C	P	max.	0.3	W
Ambient temperature, storage and operating	$\mathrm{T}_{\mathrm{amb}}$	min.	-40	${ }^{0} \mathrm{C}$
storage	$\mathrm{T}_{\mathrm{amb}}$	\max.	+50	${ }^{0} \mathrm{C}{ }^{1}$)
operating	$\mathrm{T}_{\mathrm{amb}}$	\max.	+70	${ }^{0} \mathrm{C}$

[^40]
50

RPY13

CdS CELLS-LAMP COMBINATION

Combination of four cadmium sulphide photoconductive cells and a small incandescent lamp in a Noval envelope for use in relais circuits with low output resistance, control circuits and logic circuits.

QUICK REFERENCE DATA				
Power dissipation, each cell, at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	150	mW
Cell voltage, d.c. and repetitive peak	V	max.	200	V
Cell resistance	r		15	Ω
Outline dimensions		max. 22	55.6	mm
MECHANICAL DATA Dimensions in mm				
Base: Noval				

ELECTRICAL DATA

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, and at delivery

Lamp filament voltage
Lamp filament current at $\mathrm{V}_{\mathrm{f}}=24 \mathrm{~V}$
Initial dark current measured in the circuit of fig. 1
symbol min. typical max. unit
V_{f}
I_{f}
54
$I_{\text {do }}$
$15 \mu \mathrm{~A}$

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, and at delivery (continued)

Initial illumination resistance measured in the circuit of fig. 1 after 16 hrs in darkness ${ }^{1}$)
Resistance decay time
Time to reach 400Ω in circuit of fig. 2 , measured from the instant of starting the illumination after 16 hrs in darkness
Resistance rise time
Time to reach $300 \mathrm{k} \Omega$ in circuit of fig. 2, measured from the instant of stopping the illumination after 5 minutes or longer illumination

Insulation resistance between two cells or between cell and filament measured at 300 V d.c.

symbol	min.	typical	max.	unit
r_{lo}		15	25	Ω
t_{fr}				
t_{rr}				
			ms	
$\mathrm{r}_{\mathrm{ins}}$	200			
				s

CAPACITANCES measured at filament voltage $\mathrm{V}_{\mathrm{f}}=0 \mathrm{~V}$
Between the terminals of each cell

$$
\begin{array}{lll}
\mathrm{C}_{\mathrm{r}} & 9.5 \mathrm{pF}
\end{array}
$$

Between any cell terminal and the filament (except pins 4 and 6) $\mathrm{C}_{\mathrm{rf}} \max .1 \mathrm{pF}$

REMARK

Shock and vibration should be avoided.

LIMITING VALUES (Absolute max. rating system)

Filament voltage (d.c. or r.m.s.)	V_{f}	$\max .25 .2$	V	${ }^{2}$)	
Cell voltage, d.c. and repetitive peak	V	\max.	200	V.	
Power dissipation of each cell at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	150	$\mathrm{~mW}{ }^{3}$)	
Power dissipation of each cell at $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$	P	\max.	85	$\mathrm{~mW}^{3}$)	
Voltage between any pair of cells	$\mathrm{V}_{\mathrm{ri}}-\mathrm{V}_{\mathrm{rj}}$	\max.	350	V	
Ambient temperature, operating	$\mathrm{T}_{\mathrm{amb}}$	\min.	-40	${ }^{\circ} \mathrm{C}$	
		\max.	+55	${ }^{\circ} \mathrm{C}$	${ }^{3}$)

Measuring circuit for r_{10} and $\mathrm{I}_{\text {do }}$

Fig. 1

Measuring circuit t_{fr} and $\mathrm{trr}^{\text {r }}$

Fig. 2

1) After 16 hours in darkness changes in the CdS material are still occurring,
but have only insignificant effect on the illumination resistance and on the
resistance decay time.
2) It is recommended to ensure that during operation the filament voltage V_{f}
exceeds as little as possible the nominal value of 24 V . The life expectancy
is considerably longer with lower values of V_{f}.
3) For $\mathrm{V}_{\mathrm{f}}=24 \mathrm{~V}$.

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in general control circuits. The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	0.5	W
Power dissipation, with a heatsink with $\mathrm{K}=5^{\circ} \mathrm{C} / \mathrm{W}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	max.	2	W
Cell voltage, d.c. and repetitive peak	V	\max.	100	V
Cell resistance at 5000 lux, $2700^{\circ} \mathrm{K}$ colour temperature	r		25	Ω
Spectral response curve		type		
Outline dimensions		max.	$\times 6$	mm

MECHANICAL DATA

Dimensions in mm

The centre distance of the leads is compatible with the IEC standard raster for printed wiring (0.1 inch).

7Z2 7963

Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dipsoldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of $10 \mathrm{~s} u p$ to a point 5 mm from the seals.

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery.

Initial dark resistance
measured with $100 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with $100 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance (1) measured at $10 \mathrm{~V} \mathrm{d.c.}, \mathrm{illumina-}$ tion $=50$ lux, after 16 hrs in darkness. ${ }^{2}$)

Initial illumination resistance (2) measured at 1 V d.c., illumination $=5000 \mathrm{lux}$, after 16 hrs in darkness 2) ${ }^{3}$)

1) The spread of the dark resistance is large and values higher than $15 \mathrm{M} \Omega$ and $2000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
${ }^{2}$) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
2) Maximum during life 40Ω.

7Z2 7964

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with, colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery. (continued)

Equilibrium illumination resistance (1) measured at 10 V d.c., illumination = 50 lux, after 15 minutes under the measuring conditions

symbol	min.	typical	max.	unit
1)				
$\mathrm{rl}_{\mathrm{l}_{\mathrm{e}}}(1)$	235	480	1560	Ω
)				
$\mathrm{r}_{\text {le }}(2)$			35	Ω
${ }^{\text {ffr }}$		5	25	ms
t_{rr}		40	200	ms
N		0.5		mA/lux
		0.2	0.5	\%/ ${ }^{\circ} \mathrm{C}$
α		1.1		

Resistance decay time
Time to reach 50Ω, measured from the instant of starting the illumination of 5000 lux, after 16 hrs in darkness. ${ }^{1}$)

Resistance rise time
Time to reach $2 \mathrm{k} \Omega$, measured from the instant of stopping the illumination after 5 minutes or longer illumination of 5000 lux

Sensitivity at 50 lux, with $10 \mathrm{Vd.c}$. applied

Negative temperature response of illumination resistance

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V} \mathrm{d.c.}}{\mathrm{r} \text { at } 10 \mathrm{~V} \mathrm{d.c.}}$

THERMAL DATA

Continuous temperature of CdS tablet
Thermal resistance from CdS tablet to ambient, device free in air
$\mathrm{T}_{\text {tablet }} \max .+85 \quad{ }^{\circ} \mathrm{C}$

Thermal resistance from CdS tablet to heatsink (temperature of heatsink measured near the centre of the cell), when the cell is properly clamped on a heatsink as described on sheet 5

K
$120^{\circ} \mathrm{C} / \mathrm{W}$

1) After 16 hours in darkness changes in the CdS material are still occurring,
but have only insignificant effect on the illumination resistance and on the re-
sistance decay time.
2) Maximum during life 40Ω.
7 Z 27965

RPY18

DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from -30% to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than 95% of the devices pass these tests without perceptible damage.

Shock
25 gpeak, 10000 shocks in one of the three positions of the cell.

Vibration

$2,5 \mathrm{~g}_{\text {peak }}$, 50 Hz , during 32 hours in each of the three positions of the cell.
N.B. These conditions are used solely to assess the mechanical quality of the cell. It is not advisable to subject the cell to such conditions.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak

V	\max.	100	V
V_{p}	\max.	250	V
P	see sheet C		
P_{p}	max.	$5 \times \mathrm{P}$	
1	max.	250	mA
E	max.	50000	lux
Ttablet	max.	+85	${ }^{0} \mathrm{C}{ }^{1}$)
Tamb	min.	-40	${ }^{0} \mathrm{C}$
Tamb	max.	+50	$\left.{ }^{0} \mathrm{C}{ }^{2}\right)$
Tamb	max.	+70	${ }^{\circ} \mathrm{C}$

${ }^{1}$) If no forced air cooling is used, the envelope temperature opposite the centre of the sensitive area is about $83^{\circ} \mathrm{C}$ when the CdS tablet temperature is $85^{\circ} \mathrm{C}$. This temperature can be determined e.g. with a thermocouple fastened on the envelope.
${ }^{2}$) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.

7Z2 7966

Dimensions in mm RPY18 MOUNTED ON HEATSINK

Detail: Clamping strip tombac 0.3 mm

$$
\begin{array}{lll}
\text { With } \mathrm{a} & =50 \mathrm{~mm} & \mathrm{~K}=19{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\text { With a }=100 \mathrm{~mm} & \mathrm{~K}=7.5{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{array}
$$

Mounting instructions

1. Mount one clamp on the heatsink, using the side with round holes.
2. Push the RPY18 under than clamp.
3. Press the second clamp firmly against the RPY18, using the slot holes.

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in general control circuits.
The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	max.	0.5	W
Power dissipation, with a heatsink with $\mathrm{K}=5^{\circ} \mathrm{C} / \mathrm{W} \text { and } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	max.	2	W
Cell voltage, d.c. and repetitive peak	V	max.	400	V
Cell resistance at 50 lux, $2700{ }^{\circ} \mathrm{K}$ colour temperature	r		3000	Ω
Sbectral response curve		type		
Outline dimensions		max.	3×6	mm

MECHANICAL DATA

Dimensions in mm

Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

7Z2 7967

RPY19

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $\underline{2700^{\circ} \mathrm{K} \text { and at delivery }}$

Initial dark resistance

measured with 300 V d.c. applied via $1^{\circ} \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance
measured at 10 V d.c.
illumination = 50 lux , after 16 hrs in darkness ${ }^{2}$)

Equilibrium illumination resistance measured at 10 V d.c.
illumination $=50$ lux, after 15 minutes under the measuring conditions

Resistance decay time
Time to reach $20 \mathrm{k} \Omega$, measured from the instant of starting the illumination of 50 lux , at $10 \mathrm{~V} \mathrm{d.c}$. after 16 hours in darkness

[^41]Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery (continued)

Resistance rise time
Time to reach $1 \mathrm{M} \Omega$, measured from the instant of stopping the illumination after 5 minutes or longer illumination of 50 lux, at $10 \mathrm{~V} \mathrm{d.c}$.

Sensitivity

Negative temperature response of illumination resistance

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V} \mathrm{d.c.}}{\mathrm{r} \text { at } 10 \mathrm{~V} \mathrm{d.c.}}$

symbol	min.	typical	max.	unit
t_{rr}				
N		0.6	1.25	s
α		0.07		$\mathrm{~mA} / \mathrm{lux}$
		1.1		

THERMAL DATA

Continuous temperature of CdS tablet
Thermal resistance from CdS tablet to ambient, device free in air

Ttablet max. $+85{ }^{\circ} \mathrm{C}$

K
$120^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance from CdS tablet to heatsink (temperature of heatsink measured near the centre of the cell), when the cell is properly clamped on a heatsink as described on sheet 5

$$
\mathrm{K}
$$

$$
25^{\circ} \mathrm{C} / \mathrm{W}
$$

DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from -30% to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than 95% of the devices pass these tests without perceptible damage.

Shock

25 gpeak, 10000 shocks in one of the three positions of the cell.

Vibration

2.5 gpeak, 50 Hz , during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak V
Cell voltage, pulse, $T_{i m p}=\max .5 \mathrm{~ms}$ $\mathrm{p}_{\mathrm{rr}}=\max$. once per minute $\quad \mathrm{V}_{\mathrm{p}}$
Power dissipation, $\mathrm{t}_{\mathrm{av}}=1 \mathrm{~s}$
P
Power dissipation, pulse
Cell current, d.c. and repetitive peak
Illumination
V
V_{p}
P
P_{p}
1
E
$T_{\text {tablet }}$
$T_{\text {amb }}$
$T_{\text {amb }}$
$T_{a m b}$
$\max .400 \mathrm{~V}$

Temperature CdS tablet, operating
Ambient temperature, storage and operating $\begin{array}{ll}\text { storage } & \mathrm{T}_{\mathrm{amb}} \\ \text { operating } & \mathrm{T}_{\mathrm{amb}}\end{array}$
$\max .1000$ V
See sheet C
max. $5 x P$
\max. 250 mA
$\max .50000$ lux
$\max . \quad+85 \quad{ }^{\circ} \mathrm{C}{ }^{1}$)
min. $\quad-40{ }^{\circ} \mathrm{C}$
$\max . \quad+50 \quad{ }^{\circ} \mathrm{C} 2$)
$\max . \quad+70{ }^{\circ} \mathrm{C}$

[^42]RPY19 MOUNTED ON HEATSINK

Detail: Clamping strip tombac 0.3 mm

The heat resistance K of the heatsink is defined as the temperature difference between the point Q at the backside of the heatsink, and ambient at point P, per Watt dissipation in the device, the heatsink being placed in an enclosure as given below.

Enclosure: cubical with internal edges 5 x a mm.
Place : point Q in the centre of the cubic, plane of heatsink vertical, top upside.

Determined according to the above rules a heatsink as given in the drawing has a heat resistance $\mathrm{K}=19^{\circ} \mathrm{C} / \mathrm{W}$ when $\mathrm{a}=50 \mathrm{~mm}$ and $\mathrm{a} \mathrm{K}=7.5^{\circ} \mathrm{C} / \mathrm{W}$ when $\mathrm{a}=$ 100 mm .

With smaller enclosure dimensions a higher value for K may be expected.

Mounting instructions

To reach the above mentioned Kvalues it is essential that the RPY19 be installed in the following manner:

1. Mount one clamp on the heatsink, using the side with round holes.
2. Push the RPY19 under that clamp.
3. Press the second clamp firmly against the RPY19, using the slot holes.

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in general control circuits such as twilight switches and flame failure equipment. The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	1	W
Power dissipation, with a heatsink with $\mathrm{K}=5^{\circ} \mathrm{C} / \mathrm{W}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	3	W
Cell voltage, d.c. and repetitive peak	V	\max.	400	V
Cell resistance at 50 lux,				
$2700^{\circ} \mathrm{K}$ colour temperature	r		1500	Ω
Spectral response curve Outline dimensions		type D		

MECHANICAL DATA Dimensions in mm

The centre distance of the leads is compatible with the standard raster for printed wiring (0.1 inch)

Soldering

The cell may be soldered directly into the circuit but heat conducted to the tablet should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery

Initial dark resistance
measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance measured at $10 \mathrm{~V}, \mathrm{~d} . \mathrm{c}$.
illumination $=50$ lux, after 16 hrs in darkness 2)

Equilibrium illumination resistance measured at 10 V , d.c.
illumination = 50 lux, after 15 minutes under the measuring conditions

symbol	min.	typical	max.	unit
$r_{\text {do }}$	6.5		$1)$	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {de }}$	120		$1)$	$\mathrm{M} \Omega$
r_{lo}	700	1500	3300	Ω
$\mathrm{r}_{\text {le }}$	700	1900	4500	Ω

1) The spread of the dark resistance is large and values higher than $100 \mathrm{M} \Omega$ and $10000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
2) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

7Z2 7917

Basic characteristics at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700{ }^{\circ} \mathrm{K}$ and at delivery (continued)

Resistance decay time
Time to reach $10 \mathrm{k} \Omega$, measured from the instant of starting the illumination of 50 lux , at 10 V d.c. after 16 hours in darkness 2)

Resistance rise time
Time to reach $1 \mathrm{M} \Omega$, measured from the instant of stopping the illumination after 5 minutes or longer illumination of 50 lux, at 10 V d.c.

Sensitivity at 50 lux, with 10 V d.c. applied

Negative temperature response of illumination resistance

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V} \text { d.c. }}{\mathrm{r} \text { at } 10 \mathrm{~V} \text { d.c. }}$

symbol	min.	typical	max.	unit
tfr				
t_{rr}				
N		0.9	s	
		1.5	s	
α	0.15		$\mathrm{~mA} / \mathrm{lux}$	
		0.2	0.5	$\% /{ }^{\circ} \mathrm{C}$

THERMAL DATA

Continuous temperature of CdS tablet
Thermal resistance from CdS tablet to ambient, device free in air
$\mathrm{T}_{\text {tablet }}$ max. $+85{ }^{\circ} \mathrm{C}$

K
$60^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance from CdS tablet to heatsink (temperature of heatsink measured near the centre of the cell), when the cell is properly clamped on a heatsink as described on sheet 6 .

K
15 º C / W

OPERATING CONDITIONS in a typical twilight switching circuit.

C = CdS cell RPY20
$R=D . C$. Relay $20 \mathrm{k} \Omega$ with $I_{e}<2.7 \mathrm{e} . \mathrm{g}$. energizing current I_{e} of 2 mA and release current I_{r} of 0.8 mA .

VDR $=$ voltage dependent resistor 10 mA at $180 \mathrm{~V}, 2 \mathrm{~W}$ e.g. type E299DG/P248
$\mathrm{F}=$ Absorption filter to be used to correct spread of the circuit and to adjust the switching level (10 to 70 lux).
Light transmission 5 to 20%.
$\mathrm{D}=$ Diode $\mathrm{V}_{\text {inv }_{\mathrm{p}}}>500 \mathrm{~V}$

DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from -30% to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than 95% of the devices pass these tests without perceptible damage.

Shock

$25 g_{\text {peak }}, 10000$ shocks in one of the three positions of the cell.

Vibration

2.5 gpeak, 50 Hz , during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak V
Cell voltage, pulse, $t_{i m p}=\max .5 \mathrm{~ms}$
$p_{r r}=\max$. once per minute
Power dissipation, $\mathrm{t}_{\mathrm{av}}=2 \mathrm{~s}$
Power dissipation, pulse
Cell current, d.c. and repetitive peak
Illumination
Temperature CdS tablet, operating
Ambient temperature, storage and operating storage
operating

V_{p}	$\max .1000$	V
P	See sheet B	
P_{p}	max. 5 xP	
I	max. 500	mA
E	max. 50000	lux
Ttablet	max. +85	${ }^{0} \mathrm{C}{ }^{1}$)
$\mathrm{T}_{\mathrm{amb}}$	min. $\quad-40$	${ }^{\circ} \mathrm{C}$
Tamb	max. +50	${ }^{\circ} \mathrm{C}{ }^{2}$)
Tamb	$\max .+70$	${ }^{\circ} \mathrm{C}$

[^43]RPY20 MOUNTED ON HEATSINK

Detail: clamping strip
tombac 0.3 mm

The heat resistance K of the heatsink is defined as the temperature difference between the point Q at the backside of the heatsink, and ambient at point P, per Watt dissipation in the device, the heatsink being placed in an enclosure as given below.

Enclosure: cubical with internal edges 5 x a mm
Place : point Q in the centre of the enclosure, plane of heatsink vertical, "top" up

Determined according to the above rules a heatsink as given in the drawing has a heat resistance $\mathrm{K}=19^{\circ} \mathrm{C} / \mathrm{W}$ when $\mathrm{a}=50 \mathrm{~mm}$ and $\mathrm{K}=7.5^{\circ} \mathrm{C} / \mathrm{W}$ when $\mathrm{a}=$ 100 mm .

With smaller enclosure dimensions a higher value for K may be expected.

Mounting instructions

To reach the above mentioned K values it is essential that the RPY20 be installed in the following manner:

1. Mount one clamp on the heatsink, using the side with round holes.
2. Push the RPY20 under that clamp.
3. Press the second clamp firmly against the RPY20, using the slot holes.

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with top sensitivity intended for use in general control circuits such as twilight switches and flame failure equipment. The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{Tamb}=25{ }^{\circ} \mathrm{C}$	P	max	1	W
Cell voltage, d.c. and repetitive peak	V	max	400	V
Cell resistance at 50 lux, $2700{ }^{\circ} \mathrm{K}$ colour temperature	r		650	Ω
Spectral response curve		type		
Outline dimensions		max	. 25	mm

MECHANICAL DATA

Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25 \mathrm{oC}$, illumination with colour temperature of $2700{ }^{\circ} \mathrm{K}$ and at delivery

Initial dark resistance
measured with $400 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with 400 V d.c. applied via $1 \mathrm{M} \Omega, 30$ minutes after switching of the illumination

Initial illumination resistance measured at 10 V d.c. after 16 hrs in darkness ${ }^{2}$) illumination 50 lux

Equilibrium illumination resistance measured at 10 V d.c.
after 15 minutes under the measuring conditions illumination 50 lux

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	6.0		$1)$	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {de }}$	100		$1)$	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {lo }}$	380	650	1900	Ω
$\mathrm{r}_{\text {le }}$	380	820	2600	Ω

[^44]Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery (continued)

Resistance decay time
Time to reach $10 \mathrm{k} \Omega$, measured from the instant of starting the illumination of 50 lux, at 10 V d.c. after 16 hours in darkness ${ }^{2}$)

Resistance rise time
Time to reach $1 \mathrm{M} \Omega$, measured from the instant of stopping the illumination after 5 minutes or longer illumination with 50 lux, at 10 V d.c.
Sensitivity at 50 lux, with 10 V d.c. applied

Negative temperature response of illumination resistance

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V} \mathrm{d.c.}}{\mathrm{r} \text { at } 10 \mathrm{~V} \mathrm{d.c.}}$

symbol	\min.	typical	\max	unit
tfr				
t_{rr}				
N		1.0	1.5	s
α		0.3	s	
		0.2	0.5	$\% /{ }^{\circ} \mathrm{C}$

THERMAL DATA

Continuous temperature of CdS tablet
Thermal resistance from CdS tablet to ambient, device free in air
$\mathrm{T}_{\text {tablet }} \max .+85{ }^{\circ} \mathrm{C}$

K
$60{ }^{\circ} \mathrm{C} / \mathrm{W}$

DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from -30% to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than 95% of the devices pass these tests without perceptible damage.

Shock

$25 \mathrm{~g}_{\text {peak }}, 10000$ shocks in one of the three positions of the cell.

Vibration

2.5 gpeak, 50 Hz , during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak

V	max. 400	V
V_{p}	max. 1000	V
P	See sheet B	
P_{p}	max. 5xP	
I	max. 250	mA
E	$\max .50000$	lux
Ttablet	max. +85	${ }^{\circ} \mathrm{C}$
Tamb	min. -40	${ }^{\circ} \mathrm{C}$
Tamb	$\max .+50$	${ }^{0} \mathrm{C}^{1}$)
Tamb	$\max .+70$	${ }^{\circ} \mathrm{C}$

[^45]

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in general control circuits.
The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	225	mW
Cell voltage, d.c. and repetitive peak	V	\max.	100	V
Cell resistance at 50 lux,				
$\quad 2700$ oK colour temperature	r			
Spectral response curve		type D		$\mathrm{k} \Omega$
Outline dimensions		$\max .22 \times 9.8 \times 4.3$	mm	

MECHANICAL DATA

Dimensions in mm

Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell maybe dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

RPY41

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery

Initial dark resistance measured with $100 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with 100 V d.c. applied via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance measured at $\mathrm{V}=10 \mathrm{~V}$ d.c., illumination 50 lux, after 16 hours in darkness ${ }^{2}$) $r_{l o}$
Equilibrium illumination resistance measured at $\mathrm{V}=10 \mathrm{~V}$ d.c., illumination 50 lux, after 15 minutes under the measuring conditions

Resistance decay time
Time to reach $20 \mathrm{k} \Omega$ at $\mathrm{V}=10 \mathrm{~V}$ d.c. measured from the instant of starting the illumination of 50 lux, after 16 hours in darkness. 2)

Resistance rise time
Time to reach $1 \mathrm{M} \Omega$ at $\mathrm{V}=10 \mathrm{~V}$ d.c. measured after 5 minutes or longer illumination of 50 lux

Sensitivity, at V $=10 \mathrm{~V}$ d.c. and 50 lux
Negative temperature response of
illumination resistance
Voltage response $\frac{\mathrm{r}}{\mathrm{r}}$ at $0.5 \mathrm{~V} \mathrm{d.c}.$. $\overline{\left.1)^{2}\right) \text { See page } 4}$

mbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	9		1)	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {de }}$	100		1)	$\mathrm{M} \Omega$
r_{10}	950	1600	4800	Ω
$\mathrm{r}_{1 \mathrm{l}}$	950	1900	6200	Ω
${ }^{i f} \mathrm{r}$			0.2	S
${ }^{\text {trr }}$		1.0	1.5	s
${ }^{\circ} \mathrm{N}$		0.12		mA/lux
		0.2	0.5	$\% /{ }^{\circ} \mathrm{C}$
α		1.1		

THERMAL DATA

Continuous temperature of CdS tablet
Thermal resistance from CdS tablet to ambient, device free in air
$\mathrm{T}_{\text {tablet }}+85{ }^{\circ} \mathrm{C}$
K $265{ }^{\circ} \mathrm{C} / \mathrm{W}$

DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the CdS cells during life from -30% to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than 95% of the devices pass these tests without perceptible damage.
Shock
25 gpeak, 10000 shocks in one of the three positions of the cell.
Vibration
2.5 gpeak, 50 Hz , during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak	V	max.	100	V
Cell voltage, pulse, $T_{i m p}=\max .5 \mathrm{~ms}$ $P_{r r}=\max$. once per minute	V_{p}	max.	250	V
Power dissipation, $\mathrm{t}_{\mathrm{av}}=2 \mathrm{~s}$	P	See s	heet B	
Power dissipation, pulse	P_{p}	max.	$5 \times \mathrm{P}$	W
Cell current, d.c. and repetitive peak	I	max.	100	mA
Illumination	E	max.	50000	lux
Temperature CdS tablet, operating	Ttablet	\max.	+85	${ }^{0} \mathrm{C}{ }^{3}$)
Ambient temperature, storage and operating storage operating	$\mathrm{T}_{\mathrm{amb}}$ Tamb $\mathrm{T}_{\mathrm{amb}}$	min. max. max.	$\begin{aligned} & -40 \\ & +50 \\ & +70 \end{aligned}$	$\begin{aligned} & { }^{{ }^{\mathrm{C}} \mathrm{C}} \\ & \left.{ }^{\mathrm{o}} \mathrm{C}^{4}\right) \\ & { }^{\mathrm{o}} \mathrm{C} \end{aligned}$

[^46]
NOTES

1. The spread of the dark resistance is large and values higher than $30 \mathrm{M} \Omega$ and $2000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
2. After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
3. If no forced air cooling is used, the envelope temperature opposite the centre of the sensitive area is about $83^{\circ} \mathrm{C}$ when the CdS tablet temperature is $85^{\circ} \mathrm{C}$. This temperature can be determined e.g. with a thermocouple fastened on the envelope.
4. Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity.
The device satisfies Test C: Damp heat test (long term exposure), severity IV (56 days exposure) of Publication 68-2 of the International Electrotechnical Commission (IEC).

QUICK REFERENCE DATA					
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	\max.	0.75	W	
Cell voltage, d.c. and repetitive peak	V	\max.	400	V	
Cell resistance at 50 lux,					
$2700^{\circ} \mathrm{K}$ colour temperature	r		1500	Ω	
Spectral response.curve		type D			
Outline dimensions		$\max .30 .5 \times 13.5 \times 2$	mm		

MECHANICAL DATA Dimensions in mm

Soldering

The cell may be soldered directly into the circuit but heat conducted to the tablet should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seal.

Mounting

The cell is not insulated electrically and should be mounted accordingly.

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery

Initial dark resistance measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with $400 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination
Initial illumination resistance measured at 10 V d.c. illumina tion $=50$ lux, after 16 hrs in darkness ${ }^{2}$)
Equilibrium illumination resistance measured at 10 V d.c. illumination $=50$ lux, after 15 minutes under the measuring conditions

symbol	min.	typical	max	unit
r_{do}	10		1	
				$\mathrm{M} \Omega$
r_{de}	200		$1)$	$\mathrm{M} \Omega$
r_{lo}	700	1500	3300	Ω
r_{le}	700	1900	4500	Ω

[^47]Basic characteristics at $\mathrm{Tamb}_{\mathrm{am}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700{ }^{\circ} \mathrm{K}$ and at delivery (continued)

Resistance decay time
Time to reach $10 \mathrm{k} \Omega$, measured from the instant of starting the illumination of 50 lux at 10 V d.c. after 16 hrs in darkness ${ }^{2}$)

Resistance rise time
Time to reach $1 \mathrm{M} \Omega$, measured from the instant of stopping the illumination after 5 minutes or longer illumination of 50 lux, at 10 V d.c.

Sensitivity at 50 lux, with 10 V d.c. applied

Negative temperature response of illumination resistance

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V} \mathrm{d.c.}}{\mathrm{r} \text { at } 10 \mathrm{Vd.c} .}$

symbol	min.	typical	max.	unit
t_{fr}				
t_{rr}			0.2	s
N		0.9	1.5	s
α				
		0.15		$\mathrm{~mA} / \mathrm{lux}$
		0.5	$\% /{ }^{\mathrm{o}} \mathrm{C}$	

THERMAL DATA

Continuous temperature of CdS tablet
Ttablet $\quad+85{ }^{\circ} \mathrm{C}$

CLIMATIC DATA

The device satisfies test C: Damp heat test (long term exposure), severity IV (56 days exposure) of Publication 68-2 of the International Electrotechnical Commission (IEC).
$\overline{2) \text { After } 16}$ hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

7Z2 7980

LIMITING VALUES (Absolute maximum rating system)

DESIGN CONSIDERATIONS

Apparatus with CdS, cells should be designed so that changes in resistance values of the cells during life from -30% to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than 95% of the devices pass these tests without perceptible damage.

Shock

$25 \mathrm{~g}_{\text {peak }}, 10000$ shocks in one of the three positions of the cell.

Vibration

2.5 g peak , 50 Hz , during 32 hours in each of the three positions of the cell.

1) Operating of the cell counteracts the deteriorating effect of long periods at
high temperature. The maximum operating temperature is therefore higher
than the maximum storage temperature

Photomultiplier tubes

PHOTOMULTIPLIER TUBES

 APPLICATION DIRECTIONS
1. GENERAL

1.1 A photomultiplier is a photosensitive vacuum device comprising a photoemissive cathode, a photo-electron collection system and one or more stages of current multiplication utilizing secondary emission electrodes (dynodes), plus an anode.
1.2 A photocathode consists of a light-sensitive film (the emission layer) and a supporting layer on which the emission layer is deposited.
Two types of cathode may be distinguished:
a. the opaque photocathode
b. the semi-transparent photocathode.

In the first type, the emission layer is deposited on a metal surface. In the second type the light quanta must pass through the wall of the tube and the transparent carrjer layer before penetrating the photosensitive film. Although opaque photocathodes can be made more easily, semi-transparent photocathodes are most widely used, since they can be placed in the front of the tube, which has many advantages for the construction and use of the photomultipliers.
1.3 The photo-electron collection system (electron-optical input system) is that part of the photomultiplier which focuses the photo-electrons on the first dynode. This mainly determines the spread of the electron transit times. The quality of the input optics can be measured not only by the spread of the electron transit times, but also by the collection efficiency, i.e. the percentage of electrons emitted by the photocathode which land on the first dynode.
Because of the variation in magnitude and direction of the initial velocity of the electrons, each point on the cathode corresponds to a small image area on the dynode. In practice, it is sufficient to ensure that the first dynode is large enough to capture all electrons.
It is possible to improve the input optics by adding other electrodes, or by making an accelerating electrode separate from the first dynode, and one or more focusing electrodes separate from the cathode, but the improvement is only noticeable in very high-quality fast tubes such as the 56AVP, XP1020, etc.
1.4 The dynode system consists of a number of secondary-emission electrodes (dynodes). Several dynode constructions are possible. All tubes mentioned in this book have a dynode structure of the linear-focused type, which is built up from dynodes of caesium-coated silver magnesium, excepted the windowless types which are equipped with copper-beryllium dynodes. Every electron which lands on a dynode does not produce the same number of secondary electrons: this number depends on the angle of incidence and velocity of the electron. Usually, however, it is sufficient to consider the mean secondary-emission factor δ_{p} of the $p^{\text {th }}$ dynode, which is equal to the total number of secondary electrons emitted by that dynode divided by the number of electrons falling on to it. As a rule it is also permissible to assume that all dynodes have the same value of this factor, δ, so that the amplification produced by the tube is given by

$$
\mathrm{G}=\delta^{\mathrm{n}}
$$

where n is the number of dynodes.
1.5 The anode is usually made of wire mesh in order to ensure a low anode capacitance, and is placed directly in front of the last dynode. Although the secondary-emission factor of the anode material is very small, it cannot be ignored completely, since the number and velocity of the electrons landing on the anode is relatively large.
The ions, possibly formed in the anode space, are mainly attracted to the last dynode. Since the distance between the anode and this dynode is relatively small, the ions do not acquire enough energy to give rise to any secondary electrons.

2. INTERPRETATION OF CHARACTERISTICS

The characteristics given in the Data section are typical values which indicate the performance of the device under certain operating conditions.
Characteristic curves represent an average tube; individual tubes may have characteristics that deviate from the values given in the characteristic curves. All tubes are accompanied by a test-card which indicates the test conditions of the tube.
The more important characteristics for photomultipliers are discussed below.

2.1 Spectral response

The materials employed to make the photocathode are of great importance to obtain the desired response. Many substances show photo-emission, but often differ greatly in their spectral sensitivity and quantum yield.
Usually the spectral response of a photosensitive device is given as a function of wavelength in per cent of the maximum response.
As to the spectral response our range of photomultipliers can be subdivided into the following categories:

7Z2 8228
2.1.1 the A-types (S11), which are equipped with a semi-transparent cesiumantimony photocathode precipitated on the inner side of a polished B40glass end window; these types are sensitive to light in the visible region, and have their maximum sensitivity in the blue region (see fig. 1).
2.1.2 the U-types (S13), which have the same photocathodes as the A-types, but are provided with a polished optical quartz window, which gives them a sensitivity that extends into the ultraviolet region(see fig. 2), and guarantees the absence of K^{40} radiation.
2.1.3 the C-types (S1), which have a semi-transparent caesium-on-silver oxide photocathode on a polished B40-glass window. Its sensitivity lies mainly in the red and near-infrared region, with a maximum at about $8000 \AA$ (see fig. 3).
2.1 .4 the T-types (S20), which have a trialkali semi-transparent photocathode on a polished B40-glass window. This photocathode is the most sensitive known for the region from the ultraviolet to the red end of the spectrum (see fig.4).
2.1.5 the TU-types, which have the same photocathode as the T-types, but are provided with a polished optical quartz window, which gives them a sensitivity that extends into the ultraviolet region (see fig. 5).
2.1.6 the SB (solar blind)-types, which are provided with a semi-transparent cesium-tellurium photocathode on a polished optical quartz window. These types have an ultraviolet response with exclusion of light in the visible region (see fịg.6).

2.2 Cathode luminous sensitivity

The cathode luminous sensitivity is defined as the photocurrent emitted per lumen of incident light flux, generally expressed in $\mu \mathrm{A} / \mathrm{lm}$. For the measurement the multiplier is connected as a diode. The cathode current (corrected for dark current) I_{k} is of the order of 100 nano amperes. The voltage must be chosen so high that the tube is surely operating in the saturation range. The sensitivity is given by

$$
\mathrm{N}_{\mathrm{k}}=\mathrm{I}_{\mathrm{k}} / \Phi ;
$$

where Φ is the luminous flux in lumens of $2850{ }^{\circ} \mathrm{K}$ tungsten light.
2.3 Cathode radiant sensitivity

The cathode radiant sensitivity is defined as the photocurrent emitted per watt of incident light flux, generally expressed in mA / W at the wavelength of maximum response. For the measurement the same procedure is used as for the luminous sensitivity. The value of incident radiant flux is measured by a thermocouple.

2.4 Cathode quantum efficiency

The cathode quantum efficiency (η) is defined as the number of photo-electrons per incident light photon, usually expressed in per cent at a certain wavelength.
Quantum efficiency at any given wavelength can be easily calculated from the following formula:

$$
\eta=\mathrm{N}_{\mathrm{kr}} \cdot \mathrm{y}\left(\lambda_{\mathrm{X}}\right) \cdot\left(\frac{12.395}{\lambda_{\mathrm{x}}}\right)
$$

where $\mathrm{N}_{\mathrm{kr}}=$ the cathode radiant sensitivity at max. response in mA / W.

$$
\begin{aligned}
& \mathrm{y}\left(\lambda_{\mathrm{x}}\right)=\text { is the relative spectral response in } \% \text { at } \lambda_{\mathrm{x}} \\
& \lambda_{\mathrm{x}}=\text { wavelength in } \mathrm{A}
\end{aligned}
$$

Lines of constant quantum efficiency are shown in fig. 7 .

2.5 Current amplification (gain) and anode sensitivity

The current amplification (G) is the ratio of the anode signal current to the cathode signal current at stated electrode voltages.
The anode sensitivity $\left(\mathrm{N}_{\mathrm{a}}\right)$ is related to the gain (G) and the cathode sensitivity $\left(\mathrm{N}_{\mathrm{k}}\right)$ by the formula

$$
\mathrm{N}_{\mathrm{a}}=\mathrm{G} \cdot \mathrm{~N}_{\mathrm{k}}
$$

Since the gain is so high $\left(>10^{6}\right)$, it is not possible, to measure both the anode and the cathode currents under the same conditions. The anode current is normally below 1 mA , so the cathode current is thus a few tenths of a nano amp.
Since the cathode current, dynode currents and anode current are practically proportional to the incident luminous flux, the following method can be used to get over this difficulty:
First the photomultiplier is connected as a diode, and the cathode is illuminated so strongly that it gives a cathode current of about $0.1 \mu \mathrm{~A}$. This current is measured, and then the luminous flux falling on the photocathode is reduced to a fraction $\left(1 / a_{1}\right)$ of its original value by means of e.g. a neutral filter of known transmittance, the appropriate voltage is applied to the photomultiplier, and the anode current measured. The gain is then given by

$$
\mathrm{G}=\frac{\mathrm{I}_{\mathrm{a}}}{\mathrm{a}_{1} \cdot \mathrm{I}_{\mathrm{k}}}
$$

The attenuation factor a_{1} can also be measured with the aid of the tube, as the ratio of the currents flowing to one dynode after and before the reduction of the luminous flux. If the gain is very high, it is advisable to measure it in a number of steps: e.g. from the cathode to the pth dynode and from the $\mathrm{p}^{\text {th }}$ dynode to the anode.

2.6 Dark current

Even when the cathode is not illuminated, a certain current flows through the anode lead. This is known as the anode dark current $\left(\mathrm{I}_{\mathrm{a}_{0}}\right)$.
Anode dark current is measured at stated electrode voltages, or at electrode voltages required to provide a stated anode luminous sensitivity. Possible causes of anode dark current are electrical leakage, thermionic emission, field emission, residual gas ionization and tube fluorescence. At low operating voltages its major components are normally electrical leakage and thermionic emission. Thermionic emission can be recognized by its temperature dependence. At high values of applied voltage the other dark current components may become an appreciable part of the total dark current.

2.7 Linearity and saturation

The cathode and dynode currents should always be in the region of saturation so as to guarantee the proportionality between the current and the cathode illumination over the whole operating range. Fig. 8 shows the cathode current as a function of the voltage for a number of different luminous fluxes. The resistance of the photocathode plays an important role in determining these characteristics. Even if the transparent, conductive supporting layer is applied with great care, the cathode resistance will be of the order of some hundreds of kilo-ohms. The voltage between the cathode and the first dynode must therefore be chosen higher than the voltage between successive dynodes if the current is to be saturating throughout the working range.

Fig. 8 The cathode as a function of the voltage between the photocathode and the first dynode at various values of the luminous flux.

The saturation current of the dynodes, on the other hand, is always reached under normal operating conditions even at the highest permissible luminous flux, so there is no need to take any special measures about them.

The situation at the anode is once again different. The anode current causes a voltage drop across the resistance in series with the tube, so that the anode voltage decreases as the anode current increases. Moreover, care must be taken that the current is not limited by space-charge effects even at the largest permissible anode currents in order to ensure an undistorted output signal.

The upper limits of the electrode currents are determined by considerations of operating life and of the avoidance of fatigue and aging effects.

2.8 Time characteristics

2.8.1 The transit time of a photomultiplier tube is defined as the time interval between the arrival of a delta-function light pulse (a pulse having finite light flux and infinitesimal width) at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude.
2.8.2 The anode pulse rise time indicates the time required for the amplitude to rise from 10% to 90% of the peak amplitude. For this measurement the incident light usually illuminates the entire photocathode.
2.8.3 Transit-time difference expresses a systematic relationship between transit time and position of illumination on the photocathode. The reference position is mostly the center of the photocathode.

3. OPERATING NOTES

3.1 The overall supply voltage should be well stabilized, since the gain of a photomultiplier is critically dependent on the voltage by the following relation

$$
\frac{\mathrm{dG}}{\mathrm{G}}=\mathrm{n} \frac{\mathrm{dV}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{b}}}
$$

So the percentage change in gain is approximately ten times the percentage change in supply voltage. Thus, to hold the gain stable within 1%, the power supply must be stabilised to within approximately 0.1%.
Where a high current supply cannot be avoided, due to a high counting rate or the need to measure a continuous luminous flux, it is possible to employ a high current source of comparatively low voltage for the last three or four stages only, and a low current high voltage source for the remaining stages. If it is undesirable to maintain one power supply terminal at the sum of the two voltages with respect to earth, the common terminal may be earthed.
3.2 The voltage divider of a photomultiplier must be designed so that it does not give any troublesome potential shifts in operation. The dynode currents must therefore be small compared to the total current I_{b} (which flows through the voltage divider only when the cathode is in complete darkness). If this condition is not fulfilled, large dynode currents will have a serious decreasing effect on the dynode voltages between the last stages.
3.2.1 In continuous operation, a first approximation for the relative variation of the gain with a varying illumination of the cathode is:

$$
\frac{\Delta \mathrm{G}}{\mathrm{G}} \approx \frac{\mathrm{I}_{\mathrm{k}}}{\mathrm{I}_{\mathrm{b}}}\left[\delta^{\mathrm{n}}-\frac{\delta^{\mathrm{n}+1}}{(\mathrm{n}+1)(\delta-1)}\right] \approx \frac{\mathrm{I}_{\mathrm{a}}}{\mathrm{I}_{\mathrm{b}}}\left[1-\frac{\delta}{(\mathrm{n}+1)(\delta-1)}\right]
$$

So the relative change in gain is approximately proportional to the ratio of the anode current to the divider current. For example, to maintain the gain stable within 1% when measuring continuous luminous flux, the current in the voltage divider should be at least 100 times the anode current.
3.2.2 In pulsed operation, as in scintillation counting, the fluctuations in gain can be restricted without the need for a high supply current by shunting each resistor in the divider chain with a capacitor. Since the former dynodes carry a very much lower current than the following ones, it is sufficient in practice to bypass the last three or four stages only.
The capacitors should be chosen according to the following relationship:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{n}} \approx \delta \mathrm{C}_{\mathrm{n}-1} \\
& \mathrm{C}_{\mathrm{n}-1} \approx \delta \mathrm{C}_{\mathrm{n}-2} \text { etc. } .
\end{aligned}
$$

where $C_{n}=$ capacitor across resistor feeding last dynode
$\mathrm{C}_{\mathrm{n}-1}=$ capacitor across resistor feeding last dynode but one etc.
The exact calculation of the capacitively stabilised voltage divider is extremely tedious, because of the large number of parameters involved. However, with the aid of some approximations it can be shown that the relative variation of the gain is approximately:

$$
\frac{\Delta \mathrm{G}}{\mathrm{G}}=\frac{\tau \cdot \mathrm{I}_{\mathrm{a} \max }}{\mathrm{I}_{\mathrm{b}}} \cdot \frac{\mathrm{e}^{\mathrm{t} / \tau-\mathrm{e}^{-t / R C_{n}}}}{\tau-\mathrm{RC}_{\mathrm{n}}}
$$

where $\tau=$ time constant of the scintillator
$I_{a \max }=$ peak value of the anode current
$\mathrm{RC}_{\mathrm{n}}=$ time constant of the last stage of the voltage divider.
It follows that a peak value of the anode current of 1 mA causes a relative variation of the gain of less than 1% when the time constant RC_{n} is greater than $100 \boldsymbol{\tau}$ and the current in the voltage divider is at least 1 mA .

The voltage fluctuations occurring in this arrangement are small but of long duration, so that if the count rate is high the fluctuations due to successive pulses may be partially superimposed, resulting in an error which is a function of the count rate. In the example just given, the duration of each fluctuation would be approximately 470 T and if overlapping does not occur, the count rate could not exceed $1 / 470$ T p.p.s. For a time constant of 1μ s this corresponds to a rate of approximately 2200 p.p.s.
3.3 On no account should the tube be exposed to ambient light when the supply voltage is applied. A luminous flux of less than $10^{-5} 1 \mathrm{~m}$ is sufficient to cause the maximum permissible anode current to be' exceeded. To obtain the maximum useful life from the photocathode the tube should be protected from light as far as possible even when not in use.

The dark current takes approximately 15 to 30 minutes after the application of the supply voltage to fall to a stable value. For this reason it is recommended that the equipment should be switched on half an hour before making any measurements requiring a high degree of accuracy.
The dark current may be further reduced by applying to the photocathode a jet of dry air cooled by being passed, for example, through a spiral immersed in liquid nitrogen. It is very important to ensure that no condensation occurs on the base or socket of the tube if air-cooling is adopted.

Spectral response curve type A (S11)
Fig. 1

Spectral response curve type U (S13)
Fig. 2

Spectral response curve type C (S1)
Fig. 3

Spectral response curve type T (S20)
Fig. 4

Spectral response curve type TU
Fig. 5

Spectral response curve type SB
Fig. 6

Fig. 7

LIST OF SYMBOLS

Photocathode k
Secondary emission electrode (dynode) No.n S_{n}
Anode a
Acceler ating electrode acc
Luminous cathode sensitivity N_{k}
Luminous anode sensitivity N_{a}
Current amplification (Gain) G
Secondary emission factor of the dynodes δ
Total supply voltage v_{b}
Anode current I_{a}
Anode dark current $\mathrm{I}_{\mathrm{a}_{0}}$
Cathode current I_{k}
Efficiency η
Wavelength λ
Internal connection. Do not use. i.c.

RATING SYSTEM

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

SURVEY OF PHOTOMULTIPLIERS

cathode diameter (mm)	type number	$\begin{aligned} & \text { number } \\ & \text { of } \\ & \text { stages } \end{aligned}$	spectral response	comments
14	XP1110 XP1111 XP1113 XP1114 XP1115 XP1116 XP1117 XP1118	$\begin{array}{r} 10 \\ 10 \\ 6 \\ 4 \\ 10 \\ 10 \\ 9 \\ 10 \end{array}$	A (S11) C (S1) T (S20) U (S13)	flexible leads flexible leads, ruggedized tube ruggedized tube ruggedized tube quartz window
20	XP1180	10	A (S11)	
32	$\begin{aligned} & \text { 150AVP } \\ & \text { 150CVP } \\ & \text { 150UVP } \\ & \text { XP1010 } \\ & \text { XP1011 } \\ & \text { XP1015 } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { A (Sl1) } \\ & \text { C (S1) } \\ & \text { U (S13) } \\ & \text { A (S11) } \\ & \text { A (S11) } \\ & \text { A (S11) } \end{aligned}$	quartz window low noise type for X-ray and low energy gamma ray spectrometry ruggedized tube ruggedized tube
*	56AVP	14	A (S11)	
*	$\begin{aligned} & 56 \mathrm{AVP} / 03 \\ & 56 \mathrm{AVP} / 05 \end{aligned}$	14 14	$\begin{aligned} & \text { A }(\mathrm{S} 11) \\ & \mathrm{A}(\mathrm{~S} 11) \end{aligned}$	low noise type for single-electron photon and tritium counting extended UV response, curved window of 0.5 mm thickness
*	56CVP	10	C (S1)	
*	56 TVP	14	T (S20)	
42^{*}	56TUVP	14	TU	quartz window
42	56UVP	14	$\mathrm{U}(\mathrm{~S} 13)$	quartz window
*	XP1021	12	$\mathrm{A}(\mathrm{~S} 11)$	coaxial outlet with an impedance of 50Ω
*	XP1023	12	U (S13)	coaxial outlet with an impedance of 50Ω, quartz window
*	XP1140	6	S4	minimum useful cathode area 25.5 x $5.9 \mathrm{~mm}^{2}$, high current linearity
*	XP1141	7	A (S11)	

cathode diameter (mm)	type number	number of stages	spectral response	comments
44	XP1000 XP1001 XP1002 XP1003 XP1004 XP1005	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	A (S1I) A (S11) T (S20) TU U (S13) C (S1)	especially useful for gamma spectrometry quartz window quartz window
63.5	XP1030 XP1031 XP1032 XP1033	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { A (S11) } \\ & \text { A (S11) } \\ & \text { U (S13) } \\ & \text { U (S13) } \end{aligned}$	especially useful for gamma spectrometry quartz window of 3 mm thickness quartz window of 10 mm thickness
$110 \text { * }$	$\begin{aligned} & 54 \mathrm{AVP} \\ & 54 \mathrm{UVP} \\ & 58 \mathrm{AVP} \\ & \\ & 58 \mathrm{UVP} \\ & \text { XP1040 } \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \\ & 14 \end{aligned}$	A (S11) U (S13) A (S11) U (S13) A (S11)	quartz window curved window, delivered with an acrylic-resin plano-concave adaptor and metal envelope curved quartz window plane outer window, metal envelope
200	$\begin{aligned} & 57 \mathrm{AVP} \\ & 60 \mathrm{AVP} \end{aligned}$	11 12	$\begin{aligned} & \mathrm{A}(\mathrm{~S} 11) \\ & \mathrm{A}(\mathrm{~S} 11) \end{aligned}$	delivered with an acrylic-resin adaptor

* Very fast tubes designed especially for fast-coincidencetechniques in nuclear physics, having an extremely low spread in transit time. They are capable of delivering anode pulses with a rise time of $2 \times 10^{-9} \mathrm{~s}$ or even less. To take full advantage of this characteristic they are designed as high-gain, highcurrent types, thus permitting very high and steep pulses to be extracted from the anode with a 100Ω or 50Ω matched coaxial cable as a load.

7Z2 8235

SURVEY OF PHOTOMULTIPLIERS (continued)

Windowless Photomultipliers

1. XP1120 Ni cathode for Photon counting (uv, X-ray) XP1121 CuBeO cathode for ion detection (electrons, ions)
2. XPl122 Ni cathode; cap nut adaptation XPl123 CuBeO cathode; cap nut adaptation
3. XP1130 Ni cathode; ultra high vacuum version XP1131 CuBeO cathode; ultra high vacuum version
SELECTION CHART
WINDOWLESS PHOTOMULTIPLIERS

type no.	XP1120	XP1121	XP1122	XP1123	XP1130	XP1131
application	$\begin{gathered} X-r a y s \\ (\lambda>2 A) \end{gathered}$ uv photons $(\lambda<1500 \mathrm{~A})$	$\begin{gathered} \text { ions } \\ (>10 \mathrm{keV}) \\ \text { electrons } \\ (0.1-10 \mathrm{keV}) \end{gathered}$	X-rays $\left(\lambda>2^{\circ} \mathrm{A}\right)$ uv photons $(\lambda<1500 \mathrm{~A})$	ions ($>10 \mathrm{keV}$) electrons (0.1-10 keV)	uh vac. X -rays ($\lambda>2 \mathrm{~A}$) uv photons ($\lambda<1500 \mathrm{~A}$)	uh vac. ions $(>10 \mathrm{keV})$ electrons $(0.1-10 \mathrm{keV})$
cathode	Ni	Cu Be	Ni	Cu Be	Ni	Cu Be
vacuum during operation (mm Hg)	$10^{-5}-10^{-6}$	$10^{-5}-10^{-6}$	$10^{-5}-10^{-6}$	$10^{-5}-10^{-6}$	$10^{-5}-10^{-10}$	$10^{-5}-10^{-10}$
mounting	flange O-ring	flange O-ring	cap nut O-ring	cap nut O-ring	heavy flange gold foil	heavy flange gold foil
envelope	glass	glass	glass	glass	stainless steel	stainless steel
screen	nickel plated iron	nickel plated iron	nickel plated iron	nickel plated iron	-	-

RECOMMENDED ACCESSORIES

Type	Socket	Mu－metal shield
XP1140	FE1001	56128
XP1141	FE1001	56130
XP1180	B8 700 67	56138
53AVP	FE1001	56128
53UVP	FE1001	56128
54AVP	FE1001	56129
54UVP	FE1001	56129
56AVP	FE1003	56130
56AVP／03	FE1003	56130
56AVP／05	FE1003	56130
56CVP	FE1003	56130
56TUVP	FE1003	56130
56TVP	FE1003	56130
56UVP	FE1003	56130
57AVP	FE1001	56132
58AVP	FE1003	$56133 *$
58UVP	FE1003	56133
60AVP	FE1003	56132
150AVP	FE1002	56127
150CVP	FE1002	56127
150UVP	FE1002	56127
153AVP	FE1001	56128
＊Without metal		

	$\begin{array}{llll} \infty \\ \underset{\sim}{\infty} & \infty & \infty & \infty \\ \underset{\sim}{0} & \infty \\ \underset{\sim}{0} & \underset{\sim}{\circ} \\ \text { in } & \text { in } & \text { in } \end{array}$	$\begin{aligned} & \text { N N N N } \\ & \underset{y}{c} \underset{\sim}{0} \\ & \text { in in in in } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} n_{1} \text { n }$		1	
$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{u}} \\ & \stackrel{u}{U} \\ & \dot{\sim} \end{aligned}$					$\begin{aligned} & \text { ٓ̃ } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
$\underset{i}{0}$					$\begin{aligned} & 3 \\ & \underset{Z}{7} \\ & \times x \end{aligned}$	

DIMENSIONS OF MU-METAL CYLINDERS

Type No.	Inside diameter (mm)	Length (mm)	Wall thickness (mm)
56127	$42+1$	90 ± 1	1
56128	$57+1$	90 ± 1	1
56129	$132+1$	150 ± 1	1
56130	$57+1$	110 ± 1	1
56131	$75+1$	110 ± 1	1
56132	$240+1$	300 ± 1	1
56133	$145+1$	250 ± 1	1
56136	$21+1$	80 ± 1	1
56138	$28+1$	130 ± 1	1

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting of alpha, beta, gamma, neutron radiation and X-rays and different kinds of optical instruments.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode

Description

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4200 A
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

$$
\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}
$$

C_{a}
3 pF
5 pF

TYPICAL CHARACTERISTICS

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	Na_{a}	av. min.	$\begin{aligned} & 700 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{A} / \operatorname{lm} \\ & \mathrm{A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=100 \mathrm{~A} / \mathrm{lm}^{3}$)	Ia_{0}		$\begin{aligned} & 0.015 \\ & 0.050 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light flux		up to	30	mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850{ }^{\circ} \mathrm{K}$
${ }^{3}$) At an ambient temper ature of $25^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
up to 100 mA
$4 \cdot 10^{-9} \mathrm{~s}$
$4.10^{-9} \mathrm{~s}$
$40 \cdot 10^{-9} \mathrm{~s}$
$\max .1800 \mathrm{~V}$
$\max .1 \mathrm{~mA}$
\max. 500 V
min. 120 V
\max. 300 V
\min. 80 V
$\max .300 \mathrm{~V}$
\min. 80 V

RECOMMENDED CIRCUITS

1) For an infinitely short light pulse.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5333

RECOMMENDED CIRCUITS (continued)

Voltage divider type B

$$
\begin{aligned}
& \mathrm{k}=\text { cathode } \\
& \mathrm{acc}=\text { accelerating electrode }
\end{aligned}
$$

$S_{n}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as gamma-ray spectrometry.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$
Energy resolution for $0.661-\mathrm{Mev} \mathrm{Cs}$		
137	line	8.5

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

7Z2 8074

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a} / \mathrm{S}_{10}}$
C_{a}
type A (S11)
$4200 \pm 300 \AA$
N_{k}
av. $\quad 80 \quad \mu \mathrm{~A} / \mathrm{lm}$
$\min . \quad 70 \mu \mathrm{~A} / \mathrm{lm}$
$65 \mathrm{~mA} / \mathrm{W}$
semi-transparent, head-on, flat surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

44 mm

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

TYPICAL CHARACTERISTICS
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=100 \mathrm{~A} / \mathrm{lm}^{3}$)
Energy resolution for $0.661-\mathrm{Mev} \mathrm{Cs}{ }^{137}$ line ${ }^{4}$)
Linearity between anode pulse amplitude and input light flux
av. $700 \mathrm{~A} / \mathrm{lm}$
min. $400 \mathrm{~A} / \mathrm{lm}$
av. $0.015 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
av. 8.5%
$\max . \quad 9.0 \%$
up to 30 mA
${ }^{1}$) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2850{ }^{\circ} \mathrm{K}$
${ }^{3}$) At an ambient temper ature of $25^{\circ} \mathrm{C}$
${ }^{4}$) Measured with a $1.5^{\prime \prime} \times 1^{\prime \prime} \mathrm{N}_{\mathrm{a}} J$ crystal

TYPICAL CHARACTERISTICS (continued)
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
$4 \cdot 10^{-9} \mathrm{~s}$

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
$4.10^{-9} \mathrm{~s}$

Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$

$$
40 \cdot 10^{-9} \mathrm{~s}
$$

LIMITING VALUES (Absolute max. rating system)
Supply voltage

Continuous anode current

Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{VS}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{10}$
max. 1800 V
\max. 1 mA
$\max .500 \mathrm{~V}$
min. 120 V
$\begin{array}{lrl}\max . & 300 & \mathrm{~V} \\ \min & 80 & \mathrm{~V}\end{array}$
$\max .300 \mathrm{~V}$
$\min .80 \mathrm{~V}$

RECOMMENDED CIRCUIT

$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
$\mathrm{a}=$ anode
${ }^{1}$) For an infintely short light pulse.
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be a practical value.

The best results in γ-ray spectrometry will be achieved with a voltage of 4-times " V_{S} " between the cathode and the first dynode; however, the limiting values must not be exceeded. At a high tension of about 1100 V the tube will work most favour ably.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

At high pulse amplitudes it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in laser technics, working in the or ange and green range and for photometry where a high sensitivity in the whole visible region is required.

QUICK REFERENCE DATA	
Spectral response	
Useful diameter of the photocathode	type T (S20)
Anode sensitivity (at 1800 V)	44

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec 14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$

$$
\text { at } 7000 \AA
$$

Multiplier system
Number of stages
Dynode material

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

Capacitances
Anode to final dynode
Anode to all other electrodes

$$
\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}
$$

av. $\quad 150 \quad \mu \mathrm{~A} / \mathrm{lm}$ min. $\quad 110 \mu \mathrm{~A} / \mathrm{lm}$
$70 \mathrm{~mA} / \mathrm{W}$
$12 \mathrm{~mA} / \mathrm{W}$
type T (S20)
$4200 \pm 300 \AA$
N_{k}
-$\mathrm{Sb}-\mathrm{K}-\mathrm{Na}-\mathrm{Cs}$

44 mm

$$
\mathrm{C}_{\mathrm{a}}
$$

TYPICAL CHARACTERISTICS (continued)

$\underline{\text { With voltage divider } B}$
Linearity between anode pulse amplitude
and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$ 1)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
up to 100 mA
$4 \cdot 10^{-9} \mathrm{~s}$
$4 \cdot 10^{-9} \mathrm{~s}$
$40 \cdot 10^{-9}$
$\max .1800 \mathrm{~V}$
\max. 1 mA
$\max .500 \mathrm{~V}$
min. 180 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A
${ }^{1}$) For an infinitely short light pulse.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5341

RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a = anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in laser technics, and photometry where a high sensitivity in the whole visible and ultraviolet region is required.

QUICK REFERENCE DATA		
Spectral response	type	TU (extended S20)
Window material	quartz	
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V)	400	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Base: 14-pin (Jedec Bl4-38)

ACCESSORIES

Socket
Mu-metal shield

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4200 \&

$$
\text { at } 7000 \AA
$$

Multiplier system

Number of stages 10
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
3 pF
5 pF

TYPICAL CHARACTERISTICS

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	N_{a}	av. min.	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)	$\mathrm{I}_{\mathrm{a}_{0}}$		$\begin{aligned} & 0.015 \\ & 0.050 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light flux		up to	30	mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850{ }^{\circ} \mathrm{K}$
${ }^{3}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$
7Z2 5391

TYPICAL CHARACTERISTICS (continued)
With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
Transit time difference between the centre of the photocathode and the edge at
$\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
$4.10^{-9} \mathrm{~s}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Vb
Continuous anode current

Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)

RECOMMENDED CIRCUITS

Voltage divider type A

[^48]RECOMMENDED CIRCUITS (continued)

Voltage divider type B

```
k = cathode
acc = accelerating electrode
```

$S_{n}=$ dynode No.n
a = anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred $p \mathrm{p}$, to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in optical spectrometry, ultraviolet photometry and other applications which require a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA		
Spectral response		
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

7Z2 5343

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4000 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

$$
\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}
$$

C_{a}

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

$$
4000 \pm 300 \quad \AA
$$

av. $\quad 70 \quad \mu \mathrm{~A} / \mathrm{lm}$ $\min . \quad 40 \mu \mathrm{~A} / \mathrm{lm}$ $60 \mathrm{~mA} / \mathrm{W}$ 10

$$
0
$$

$$
\mathrm{Cs}-\mathrm{Sb}
$$

N_{k}

XP1004

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude

and input light pulse
up to 100 mA
4.10^{-9}
s
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
$4 \cdot 10^{-9} \mathrm{~s}$
$40 \cdot 10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage
Continuous anode current

Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}}+1}$
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{10}}$
$\max .1800 \mathrm{~V}$
max. 1 mA
max. 500 V
min. 120 V
$\max .300 \mathrm{~V}$
min. 80 V
max. 300 V
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A

[^49]
XP1004

RECOMMENDED CIRCUITS (continued)

Voltage divider type B

```
k = cathode
acc = accelerating electrode
```

$S_{n}=$ dynode No.n
$\mathrm{a}=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as infra-red telecommunication and ranging and in optical instruments operating in the far red and near infrared region.

QUICK REFERENCE DATA				
Spectral response	type A (S1)			
Useful diameter of the photocathode	44 mm			
Anode sensitivity (at 1800 V)	$100 \mathrm{~A} / \mathrm{lm}$			

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response çurve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity 2)

Infra-red luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $8000 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a} / \mathrm{S}_{10}}$
3 pF
C_{a}
5 pF

TYPICAL CHARACTERISTICS

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	Na_{a}	av. min.	$\begin{array}{r} 100 \\ 20 \end{array}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=20 \mathrm{~A} / \mathrm{lm}^{4}$)	$\mathrm{I}_{\mathrm{a}_{0}}$	max.	10	$\mu \mathrm{A}$
Linearity between anode pulse amplitude and input flux		up to	5	mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2850^{\circ} \mathrm{K}$
3) The infra-red lumen is the flux resulting from one lumen yielded by a tungsten ribbon lamp (colour temperature $2851^{\circ} \mathrm{K}$) going through an infra-red filter corning CS94 No. 2540, fusion 1613 thickness 2.61
4) At an ambient temperature of $25^{\circ} \mathrm{C}$

XP1005

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude
and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
up to $\quad 10 \mathrm{~mA}$
$4.10^{-9} \mathrm{~s}$

Transit time difference between the
centre of the photocathode and the
edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
$4 \cdot 10^{-9} \mathrm{~s}$
$40 \cdot 10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{10}}$
$\max .1800$
$\max .30 \mu \mathrm{~A}$
max. 500 V
min. 120 V
max. 300 V
min. 80 V
max. 300 V
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A

[^50]
RECOMMENDED CIRCUITS (continued) $^{\text {E.C }}$

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
$\mathrm{a}=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

This low noise tube is intended for use in applications such as X - and γ-ray spectrometry.

QUICK REFERENCE DATA		
Spectral response	type $\mathrm{A}(\mathrm{Sll})$	
Useful diameter of the photocathode	32	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$
Plateau length (Mn, K α line 5.9 keV)	min.	70
Plateau slope	max. 0.08	$\% / \mathrm{V}$
Background in middle of plateau	10	$\mathrm{c} / \mathrm{sec}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (Jedec B12-43)

ACCESSORIES

Socket
Mu-metal shield

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
3 pF
5 pF

TYPICAL CHARACTERISTICS
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude and input light pulse
Na_{a}
$\mathrm{I}_{\mathrm{a}_{0}}$
av. $700 \mathrm{~A} / \mathrm{lm}$
min. $400 \mathrm{~A} / \mathrm{lm}$
av. $0.010 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
semi-transparent, head-on, flat surface Cs-Sb

32 mm
type A (S11)
4200 ± 300 A
av. $\quad 80 \mu \mathrm{~A} / \mathrm{lm}$ $\min . \quad 70 \mu \mathrm{~A} / \mathrm{lm}$
$65 \mathrm{~mA} / \mathrm{W}$
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
up to 30 mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour tęmper ature of $2850{ }^{\circ} \mathrm{K}$
3) At an ambient temperature of $25^{\circ} \mathrm{C}$

7Z2 5603

TYPICAL CHARACTERISTICS (continued)
Plateau length (Mn, K_{α} line 5.9 KeV$)^{1}$) Plateau slope ${ }^{1}$)

Background in middle of plateau ${ }^{1}$)
Total voltage in middle of plateau
Energy resolution for $\mathrm{Cu}, \mathrm{K}_{\alpha}(8 \mathrm{KeV})$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynode

Voltage between anode and final dynode ${ }^{2}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{10}$

min.	70	V
max.	0.08	$\% / \mathrm{V}$
av.	10	Hz
max.	50	Hz
	1100	V
\approx	50	$\%$

$\max .1800 \mathrm{~V}$
\max. 1 mA

\max.	500	V
\min.	120	V

$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUIT

$\mathrm{k}=\mathrm{c}$ athode
$\mathrm{acc}=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

[^51]
OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for scintillation counting and optical measurements under severe oper ating conditions. Its rugged construction makes it particularly suitable for geophysical and astronomical missile experiments.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	32	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$
Shock	30	g

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (Jedec B12-43)

ACCESSORIES

Socket
Mu-metal shield
type FE1002
type 56127

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
N_{k}
Radiant sensitivity at $4200 \AA$
$\underline{\text { Multiplier system }}$
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$	3 pF
C_{a}	5 pF

TYPICAL CHARACTERISTICS

Shock

Shape of shock pulses
Peak acceleration
Duration
Number of shocks in each of 3 orthogonal axes
Vibration
Shape
Acceleration for

$$
\begin{array}{r}
5-\quad 14 \mathrm{~Hz} \\
14-400 \mathrm{~Hz} \\
400-2000 \mathrm{~Hz}
\end{array}
$$

Duration in each of 3 orthogonal axes
semi-transparent, head-on, flat surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

32 mm
type A (S11)
4200 ± 300 A
av. $60 \mu \mathrm{~A} / \mathrm{lm}$ min. $35 \mu \mathrm{~A} / \mathrm{lm}$
$50 \mathrm{~mA} / \mathrm{W}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	Na_{a}	av. min.	$\begin{aligned} & 700 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{1}$)	I_{O}		$\begin{aligned} & 0.010 \\ & 0.050 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse		up to	30	mA
With voltage divider B				
Linearity between anode pulse amplitude and input light pulse		up to	100	mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$ 2)			. 10^{-9}	S
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$. 10^{-9}	S
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$			$.10^{-9}$	S

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max.	1800	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 500 \\ & 120 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{3}$)	$\mathrm{V} \mathrm{a}^{\prime} \mathrm{S}_{10}$	max. \min.	$\begin{array}{r} 300 \\ .80 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

[^52]
XP1011

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for scintillation counting and optical measurements under severe oper ating conditions. Its rugged construction makes it particularly suitable for geophysical and astronomical missile experiments.

QUICK REFERENCE DATA				
Spectral response	type	A (S11)		
Useful diameter of the photocathode	32	mm		
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$		
Shock	30	g		

DIMENSIONS AND CONNECTIONS
Base: 12-pin (Jedec B12-43)

XP1015C

Dimensions in mm

ACCESSORIES

Socket
Mu-metal shield
type FE1002
type 56127

GENERAL

Photocathode

Description
Cathode material
Minimum useful diamter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages

$$
10
$$

Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
3 pF
5 pF

TYPICAL CHARACTERISTICS

Shock
Shape of shock pulses
Peak acceleration
Duration

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

Number of shocks in each of 3 orthogonal axes

Vibration

Shape

$$
\text { Acceleration for } \begin{array}{r}
5-14 \mathrm{~Hz} \\
14-400 \mathrm{~Hz} \\
400-2000 \mathrm{~Hz}
\end{array}
$$

sinusoidal

Duration in each of 3 orthogonal axes
half-wave sinusoidal $30 \pm 3 \mathrm{~g}$

11 ms 6

$$
\begin{aligned}
& \text { type A (S11) } \\
& 4200 \pm 300 \AA \\
& \text { av. } 60 \mu \mathrm{~A} / 1 \mathrm{~m} \\
& \text { min. } 40 \mu \mathrm{~A} / \mathrm{lm} \\
& 60 \mathrm{~mA} / \mathrm{W}
\end{aligned}
$$

${ }^{1}$) See spectral response curve in front of this section
${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temper ature of $2850{ }^{\circ} \mathrm{K}$

$$
7 \mathrm{Z} 28249
$$

TYPICAL CHARACTERISTICS (continued)
With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	N_{a}	av. min.	$\begin{aligned} & 700 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{\mathrm{l}}$)	I_{o}	$\begin{aligned} & \text { av. } \\ & \max . \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.050 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse		up to	30	mA
With voltage divider B				

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{2}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
up to 100 mA
$4.10^{-9} \mathrm{~s}$
$3.10^{-9} \mathrm{~s}$
$36.10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	\max.	1800	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	$\begin{aligned} & \max \\ & \text { min. } \end{aligned}$	$\begin{aligned} & 500 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between anode and final dynode ${ }^{3}$)	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{10}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

[^53]
RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

The semiflexible leads of the tube may be soldered into the circuit; care must be taken to conduct the heat away from the glass seals. Excessive bending of the leads is to be avoided. The tube is provided with a 12 -pin base to facilitate testing. After testing, the attached base should be removed prior to installing the tube in a given system.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

12 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required (fast coincidences, "time-of-flight" measurements, Cerenkov counters).

QUICK REFERENCE DATA		
Spectral response	type A (SI1)	
Useful diameter of the photocathode	42	mm
Gain (at 2500 V)	10^{8}	
Anode pulse rise time	1.8	ns
Coaxial outlet	100	Ω
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102) with coaixal outlet ${ }^{1}$)

incident radiation

${ }^{1}$) The tube is delivered with a coaxial cable connector LEMO 3.C 100.

ACCESSORIES

Socket ${ }^{1}$)
Mu-metal shield ${ }^{2}$)
type FE1003
type 56130
type 56131
semi-transparent, head-on, curved surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

42 mm
type A (S11)
4200 ± 300 A
av. $65 \mu \mathrm{~A} / \mathrm{lm}$
min. $45 \mu \mathrm{~A} / \mathrm{lm}$
$55 \mathrm{~mA} / \mathrm{W}$
Multiplier system
Number of stages
Dynode material

Capacitances

Grid No. 1 to cathode
Grid No. 1 to all other electrodes
Grid No. 1 to grid No. 2
Anode to final dynode
Anode to all other electrodes

$\mathrm{C}_{\mathrm{k} / \mathrm{g}_{1}}$	25 pF
$\mathrm{C}_{\mathrm{g}_{1}}$	30 pF
$\mathrm{C}_{\mathrm{g}_{1} / \mathrm{g}_{2}}$	17 pF
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{12}$	8 pF
C_{a}	9

1) The tube is delivered with a coaxial cable connector LEMO 3.C.100
2) To avoid field distortion in the electron optical input system it is advised to connect the aquadag shield (pin No.9) to the cathode. If the cathode is circuited to a negative high tension care should be taken to ensure a high tension insulation between the aquadag-shield and the mu-metal screen
3) See spectral response curve in front of this section
4) Measured with a tungsten ribbon lamp having a colour temperature of $2850{ }^{\circ} \mathrm{K}$

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for G $=10^{8}$	V_{b}	$\begin{array}{lr} \text { av. } & 2500 \\ \operatorname{max.} & 3000 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Anode dark current at $G=10^{81}$)	I_{a}	\max. 5	$\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse		up to 100	mA
With voltage divider B			
Linearity between anode pulse amplitude and input light pulse		up to 300	mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)		$<1.810^{-9}$	S
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)		4.10^{-9}	S
Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$		$<0,2 \cdot 10^{-9}$	S
Total transit time at $2500 \mathrm{~V}^{2}$)		28.10^{-9}	S
Maximum peak current		0.5 to 1	A

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{3}$)
Continuous anode current

V_{b}	max.	3000	V
I_{a}	max.	2	mA
	max.	600	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	min.	300	V
	max.	500	V
$\mathrm{~V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	min.	80	V
	max.	500	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{12}$	min.	80	V

${ }^{1}$) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage-divider A has a gain of about 10^{9}, whichever is lowest.
${ }^{4}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5477

RECOMMENDED CIRCUITS

Voltage divider type A^{1})

Voltage divider type B^{1})
$\mathrm{k}=$ cathode
g_{1} = focusing electrode No. 1
$g_{2}=$ focusing electrode No. 2
acc $=$ accelerating electrode
$\mathrm{g}_{3}=$ shadow grid
$S_{n}=$ dynode No.n
a $=$ anode

Voltage between k and g_{1} to be adjusted at about 1 Vs
Voltage between S_{1} and S_{2} to be adjusted at about 1.2 Vs
Voltage between g_{3} and S_{12} to be adjusted for optimum time characteristics.

1) To avoid field distortion in the electron optical input system it is advised to connect the aquadag shield (pin No.9) to the cathode. If the cathode is circuited to a negative high tension care should be taken to ensure ahigh tension insulation between the aquadag-shield and the mu-metal screen.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a hightension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of five elements:

> the photocathode k ;
> the focusing electrode g_{1}; the focusing electrode $\mathrm{g}_{2} ;$ the accelerating electrode acc; the deflector.

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitáting optical coupling;
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the ninth dynode) voltage of 1750 V ensures a field strength of about $200 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron path in the input system.
3. The potential of electrode g_{1} to the photocathode c an be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum of the potential is about $1 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the deflector to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).

OPERATIONAL CONSIDERATIONS (continued)

Fig.1: Electron optical input system
B. The multiplier system consists of 12 stages, providing a total current amplification of 10^{8} at about 2500 V (see figures 4 and 5).
The tube is capable of producing very strong peak currents (up to 1 A). Actually the time constant at the output of the multiplier must be very small. Therefore it is necessary to use a low load resistance, well matched to the associated electronic circuitry. For this reason the tube is provided with an coaxial outlet, having a characteristic impedance of 100Ω. With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous, without attenuation or distortion.

To avoid the effects, which are responsible for rounding of the leading edge and the "jagged" trailing edges, a shadow grid $\left(g_{3}\right)$ is placed parallel to the anode with its wires aligned with those of the anode.
Thus electrons walking from the next-to-last dynode (S11) to the last dynode (S12) are prevented to impinge directly upon the anode.
At the same time induction and oscillations in the anode grid are minimized. The potential of this electrode is to be adjusted at an optimum close to that of the last dynode. Figure 2 shows anode pulses produced by a 50Ω version of the tube.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 2 Photograph of anode pulses abscissa - 5 nanoseconds per major division ordinate - 10 volts per major division

A further characteristic of g_{3} is that it can be used as a control electrode determining the amplitude of anode pulses without the necessity of adjusting the incident light or the gain of the tube, and hence the H.V. supply. Figure 3 illustrates the control characteristics of g_{3}.
It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A. (See figures 4 and 5.)

It is advisable to screen the tube with a mu-metal cylinder against magnetic field influences.

Fig. 4

Fig. 5

12 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required (fast coincidences, "time-of-flight" measurements, Cerenkov counters).

QUICK REFERENCE DATA	
Spectral response	type A (S11)
Useful diameter of the photocathode	42 mm
Gain (at 2500 V)	10^{8}
Anode pulse rise time	$<1.8 \mathrm{~ns}$
Coaxial outlet	$50 \quad \Omega$
Linearity	up to 300 mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102)
with coaxial outlet

7Z2 7836

ACCESSORIES

Socket
Coaxial cable connector
Mu-metal shield ${ }^{1}$)
type FE1003
"General Radio" type 874/C8A
type 56130
type 56131
semi-transparent, head-on, curved surface
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{2}$)
Wavelength at maximum response Luminous sensitivity ${ }^{3}$)

Radiant sensitivity at 4200 凡
Multiplier system
Number of stages
Dynode material
Capacitances

Grid No. 1 to cathode	$\mathrm{C}_{\mathrm{k}} / \mathrm{g}_{1}$	25	pF
Grid No. 2 to all other electrodes	$\mathrm{C}_{\mathrm{g}_{1}}$	30	pF
Grid No. 1 to grid No. 2	$\mathrm{C}_{\mathrm{g}_{1}} / \mathrm{g}_{2}$	17	pF
Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{12}$	8	pF
Anode to all other electrodes	C_{a}	9	pF

1) To avoid field distortion in the electron optical input system it is advised to connect the aquadag shield (pin No.9) to the cathode. If the cathode is circuited to a negative high tension care should be taken to ensure a high tension insulation between the aquadag-shield and the mu-metal screen.
${ }^{2}$) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850^{\circ} \mathrm{K}$

TYPICAL CHARACTERISTICS

$\underline{\text { With voltage divider A }}$

Supply voltage for $G=10^{8}$
Anode dark current at $G=10^{8} 1$)
av. 2500 V
$\max .3000 \mathrm{~V}$
$\max . \quad 5 \mu \mathrm{~A}$
up to 100 mA
up to 300 mA
$<1,8 \cdot 10^{-9}$ s
$4 \cdot 10^{-9} \mathrm{~s}$
Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Maximum peak currents

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{3}$)
Continuous anode current

Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{4}$)

V_{b}	max.	3000	V
I_{a}	max.	2	mA
	max.	600	V
$\mathrm{~V}_{\mathrm{k}} / \mathrm{S}_{1}$	min.	300	V
	max.	500	V
$\mathrm{~V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	min.	80	V
	max.	500	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{12}$	min.	80	V

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage-divider A has a gain of about 10^{9}, whichever is lowest.
${ }^{4}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

XP1021

RECOMMENDED CIRCUITS

Voltage divider type A^{1})

Voltage divider type B^{1})
$\mathrm{k}=$ cathode
$\mathrm{g}_{1}=$ focusing electrode No. 1
$g_{2}=$ focusing electrode No. 2
acc $=$ accelerating electrode
$g_{3}=$ shadow grid
$S_{n}=$ dynode No.n
a $=$ anode

Voltage between k and g_{1} to be adjusted at about $1 \mathrm{~V}_{\mathrm{S}}$
Voltage between S_{1} and S_{2} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$
Voltage between g_{3} and S_{12} to be adjusted for optimum time characteristics.
${ }^{1}$) To avoid field distortion in the electron optical input system it is advised to connect the aquadag shield (pin No.9) to the cathode. If the cathode is circuited to a negative high tension care should be taken to ensure a high tension insulation between the aquadag-shield and the mu-metal screen.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a hightension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of five elements:

```
the photocathode k ;
the focusing electrode \(g_{1}\);
the focusing electrode \(g_{2}\);
the accelerating electrode acc;
the deflector.
```

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling;
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the ninth dynode) voltage of 1750 V ensures a field strength of about $200 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron path in the input system.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum value of the potential is about $1 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the deflector to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).

OPERATIONAL CONSIDERATIONS (continued)

Fig.1: Electron optical input system
B. The multiplier system consists of 12 stages, providing a total current amplification of 10^{8} at about 2500 V (see figures 4 and 5).
The tube is capable of producing very strong peak currents (up to 1 A). Actually the time constant at the output of the multiplier must be very small. Therefore it is necessary to use a low load resistance, well matched to the associated electronic circuitry. For this reason the tube is provided with an coaxial outlet, having a characteristic impedance of 50Ω. With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous, without attenuation or distortion.

To avoid the effects, which are responsible for rounding of the leading edge and the "jagged" trailing edges, a shadow grid $\left(g_{3}\right)$ is placed parallel to the anode with its wires aligned with those of the anode.
Thus electrons walking from the next-to-last dynode (S11) to the last dynode (S12) are prevented to impinge directly upon the anode.
At the same time induction and oscillations in the anode grid are minimized. The potential of this electrode is to be adjusted at an optimum close to that of the last dynode. Figure 2 shows anode pulses of the tube.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 2 Photograph of anode pulses abscissa - 5 nanoseconds per major division
ordinate - 10 volts per major division
A further characteristic of g_{3} is that it can be used as a control electrode
determining the amplitude of anode pulses without the necessity of adjusting
the incident light or the gain of the tube, and hence the H.V. supply. Figure
A further characteristic of g_{3} is that it can be used as a control electrode
determining the amplitude of anode pulses without the necessity of adjusting
the incident light or the gain of the tube, and hence the H.V. supply. Figure
A further characteristic of g_{3} is that it can be used as a control electrode
determining the amplitude of anode pulses without the necessity of adjusting
the incident light or the gain of the tube, and hence the H.V. supply. Figure 3 illustrates the control characteristics of g_{3}.
It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A. (See figures 4 and 5.)

It is advisable to screen the tube with a mu-metal cylinder against magnetic field influences.

Fig. 3 Anode sensitivity as a function of shadow grid potential

Fig. 4

Fig. 5

12 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required, combined with a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA	
Spectral response	type $\mathrm{U}(\mathrm{S} 13)$
Useful diameter of the photocathode	42 mm
Gain (at 2500 V)	10^{8}
Anode pulse rise time	1.8 ns
Coaxial outlet	50
Linearity	up to 300
	mA

DIMENSIONS AND CONNECTIONS

Base: 20-pin (Jedec B20-102) with coaxial outlet

incident radiation
Dimensions in mm

ACCESSORIES

Socket
Coaxial cable connector
Mu-metal shields ${ }^{1}$)
type FE1003
"General Radio" type 874/C8A
type 56130
type 56131

GENERAL

Photocathode
Description semi-transparent, head-on, curved surface

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 4000 A.
Multiplier system
Number of stages
Dynode material

Capacitances

Grid No. 1 to cathode	$\mathrm{C}_{\mathrm{k}} / \mathrm{g}_{1}$	25	pF
Grid No. 1 to all other electrodes	$\mathrm{C}_{\mathrm{g}_{1}}$	30	pF
Grid No. 1 to grid No.2	$\mathrm{C}_{\mathrm{g}_{1} / g_{2}}$	17	pF
Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{12}$	8	pF
Anode to all other electrodes	C_{a}	9	pF

[^54]
TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8}$	V_{b}	av. max.		
Anode dark current at $\mathrm{G}=10^{8} \mathrm{l}$)	$\mathrm{I}_{\mathrm{a}_{0}}$	max.	5	$\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse		up to	00	mA

With voltage divider B
Linearity between anode pulse amplitude and input light pulse up to 300 mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
$<1,8 \cdot 10^{-9} \mathrm{~s}$
$4 \cdot 10^{-9} \mathrm{~s}$
Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ $<0,2 \cdot 10^{-9}$ s

Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Maximum peak currents

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{3}$)
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{4}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{12}$
$\max .3000 \mathrm{~V}$
max. 2 mA
$\max .600 \mathrm{~V}$
min. 300 V
$\max .500 \mathrm{~V}$
$\min .80 \mathrm{~V}$
\max. 500 V
min. 80 V

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage-divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5491

RECOMMENDED CIRCUITS

Voltage divider type A^{1})

Voltage divider type B^{1})
$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode No. 1
$g_{2}=$ focusing electrode No. 2
acc $=$ accelerating electrode
$\mathrm{g}_{3}=$ shadow grid
$S_{n}=$ dynode No.n
a $=$ anode

Voltage between k and g_{1} to be adjusted at about $1 \mathrm{~V}_{\mathrm{S}}$
Voltage between S_{1} and S_{2} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$
Voltage between g_{3} and S_{12} to be adjusted for optimum time characteristics.

[^55]
OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moder ate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a hightension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an aver age voltage of high output.
A. The electron optical input system consists of five elements:

> the photocathode k ;
> the focusing electrode g_{1}
> the focusing electrode g_{2}
> the accelerating electrode acc;
> the deflector.

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling;
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the ninth dynode) voltage of 1750 V ensures a field strength of about $200 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron path in the input system.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum of the potential is about $1 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the deflector to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).

7Z2 5493

OPERATIONAL CONSIDERATIONS (continued

Fig.1: Electron optical input system
B. The multiplier system consists of 12 stages, providing a total current amplification of 10^{8} at about 2500 V (see figures 4 and 5).
The tube is capable of producing very strong peak currents (up to 1 A). Actually the time constant at the output of the multiplier must be very small. Therefore it is necessary to use a low load resistance, well matched to the associated electronic circuitry. For this reason the tube is provided with an coaxial outlet, having a characteristic impedance of 50Ω. With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous, without attenuation or distortion.

To avoid the effects, which are responsible for rounding of the leading edge and the "jagged" trailing edges, a shadow grid $\left(g_{3}\right)$ is placed parallel to the anode with its wires aligned with those of the anode.
Thus electrons walking from the next-to-last dynode (S11) to the last dynode (S12) are prevented to impinge directly upon the anode.
At the same time induction and oscillations in the anode grid are minimized. The potential of this electrode is to be adjusted at an optimum close to that of the last dynode. Figure 2 shows anode pulses of the tube.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 2 Photograph of anode pulses abscissa - 5 nanoseconds per major division
ordinate - 10 volts per major division

Fig. 3 Anode sensitivity as a function of shadow grid potential

A further characteristic of g_{3} is that it can be used as a control electrode determining the amplitude of anode pulses without the necessity of adjusting the incident light or the gain of the tube, and hence the H.V. supply. Figure 3 illustrates the control characteristics of g_{3}.

It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A. (See figures 4 and 5.)

It is advisable to screen the tube with a mu-metal cylinder against magnetic field influences.

Fig. 4

Fig. 5

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting in nuclear research together with large size crystals, plastic or liquid scintillators and in optical equipment in which a photomultiplier with a photosensitive area larger than usual is required.

QUICK REFERENCE DATA				
Spectral response	type A (S11)			
Useful diameter of the photocathode	63.5	mm		
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$		

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

$$
\begin{array}{lll}
\text { Socket } & \text { type } & \text { FE1001 } \\
\text { Mu-metal shield } & \text { type } & 56135
\end{array}
$$

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrode
$C_{a / S}{ }_{10}$
Ca
3 pF
5 pF

TYPICAL CHARACTERISTICS

$\underline{\text { With voltage divider A }}$

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	Na_{a}	av. min.	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=100 \mathrm{~A} / \mathrm{lm}^{3}$)	$\mathrm{I}_{\mathrm{a}_{0}}$	max.	0.2	$\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$		up to	50	mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2850^{\circ} \mathrm{K}$
3) At an ambient temperature of $25^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$ up to 100 mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$) $7.10^{-9} \mathrm{~s}$
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
$15 \cdot 10^{-9}$ s

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
$7.10^{-9} \mathrm{~s}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$ 60.10^{-9} s

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	$\max .2000$	V	
Continuous anode current	I_{a}	\max.	1	mA
Voltage between cathode and first dynode		$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	$\max .500$ \min.	100

[^56]
RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a = anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA to 1 mA will be sufficient.

A circuit of type A results in the highest gain of the tube at a given total voltage. A circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a seperate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

With high amplitude pulses, it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as gamma-ray spectrometry and gamma scintillation cameras.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	63.5	mm
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$
Energy resolution for $0.661 ~ M e V ~ C s ~$		

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES
Socket
Mu-metal shield

type FE1001
type 56135

7Z2 8076

GENERAL

Photocathode
Description semi-transparent, head-on, flat surface

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
3 pF
5 pF

Linearity between anode pulse amplitude and input light pulse at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{4}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
Energy resolution for $0.661 \mathrm{MeV} \mathrm{Cs}^{137}$ line ${ }^{5}$)
av. $300 \mathrm{~A} / \mathrm{lm}$
$\min .100 \mathrm{~A} / \mathrm{lm}$
$\max .0 .2 \mu \mathrm{~A}$

Cs-Sb

63.5 mm
type A (S11)
4200 ± 300 \&
av. $80 \mu \mathrm{~A} / \mathrm{lm}$
min. $70 \mu \mathrm{~A} / \mathrm{lm}$
$65 \mathrm{~mA} / \mathrm{W}$

10
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
up to 50 mA
$7.10^{-9} \mathrm{~s}$
$15.10^{-9} \mathrm{~s}$
$7 \cdot 10^{-9} \mathrm{~s}$
$60 \cdot 10^{-9} \mathrm{~s}$
av. 8.5%
max. 9.0 \%

[^57]
LIMITING VALUES (Absolute max. rating system)

Supply voltage
Continuous anode current
Voltage between cathode and first dynode
Voltage between cathode and accelerator

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{6}$)

V_{b}	$\max .2000$	V
I_{a}	max. 1	mA
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	$\begin{array}{ll} \max . & 500 \\ \min . & 100 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$	max. 500	V
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	$\begin{array}{lr} \max . & 300 \\ \min . & 80 \end{array}$	V
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{10}$	$\begin{array}{lr} \max . & 300 \\ \min . & 80 \end{array}$	V

RECOMMENDED CIRCUIT

$\mathrm{k}=\mathrm{cathode}$
$\mathrm{acc}=$ accelerating electrode
$C_{1}=470 \mathrm{pF}$
$\mathrm{C}_{2}=1000 \mathrm{pF}$

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850^{\circ} \mathrm{K}$
3) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$
${ }^{4}$) For an infinitely short light pulse
4) Measured with a $2^{\prime \prime} \times 2^{\prime \prime}$ NaI crystal
5) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked

7Z2 8078

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moder ate intensities of radiation a bridge current of approx. 0.5 mA will be a practical value.

Each tube is accompanied by a sheet with characteristics, on which is indicated the voltage to be applied between the cathode and the first dynode. The best results in gamma-ray spectrometry will be achieved with this voltage, when the recommended voltage-divider bridge is used.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

seorax

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications which require a good sensitivity in the ultraviolet region, combined with a photosensitive area larger than usual.

QUICK REFERENCE DATA			
Spectral response	type U (S13)		
Useful diameter of the photocathode	63.5 mm		
Anode sensitivity (at 1800 V)	250		

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield.
type FE1001
type 56135

GENERAL

Photocathode

Description semi-transparent, head-on, flat surface

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4000 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $N_{a}=100 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude and input light pulse at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$

TYPICAL CHARACTERISTICS

$$
\mathrm{Cs}-\mathrm{Sb}
$$

63.5 mm
type U (S13)
4000 ± 300 \&
av. $\quad 70 \mu \mathrm{~A} / \mathrm{lm}$
min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$

$$
10
$$

$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
3 pF
5 pF

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	N_{a}	av. min.	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=100 \mathrm{~A} / \mathrm{lm}^{3}$)	$\mathrm{I}_{\mathrm{a}_{0}}$	\max.	0.2	$\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$		up to	50	mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850^{\circ} \mathrm{K}$
${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$
7Z2 5721

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage
Continuous anode current
Voltage between cathode and first dynode
Voltage between cathode and accelerator electrode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)
V_{b} I_{a}

$$
\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}
$$

$$
\mathrm{V}_{\mathrm{k} / \mathrm{acc}} \quad \max .500 \mathrm{~V}
$$

$$
\begin{array}{llrl}
& \text { max. } & 300 & \mathrm{~V} \\
\mathrm{~V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1} & \text { min. } & 80 & \mathrm{~V}
\end{array}
$$

$$
{ }^{{ }^{\mathrm{S}} \mathrm{~S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1} \quad \min . \quad 80 \mathrm{~V}, ~}
$$

$$
\begin{array}{llrl}
& \mathrm{v}_{\mathrm{a}} / \mathrm{S}_{10} & \text { max. } & 300 \\
\mathrm{~min} . & 80 & \mathrm{~V}
\end{array}
$$

RECOMMENDED CIRCUITS

[^58]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
$\mathrm{a}=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of approx. 0.5 mA to 1 mA will be sufficient.

A circuit of type A results in the highest gain of the tube at a given total voltage. A circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

With high amplitude pulses, it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for geophysical measurements in which the thick quartz window serves as a medium for Cerenkov radiation caused by cosmic-rays.

QUICK REFERENCE DATA				
Spectral response	type U (S13)			
Useful diameter of the photocathode	63.5	mm		
Window thickness (quartz)	10	mm		
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$		

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56135
7Z2 7840

GENERAL

Photocathode

Description semi-transparent, head-on, flat surface
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4000 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances
Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS
With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	$\mathrm{~N}_{\mathrm{a}}$	av. min.	250	$\mathrm{~A} / 1 \mathrm{~m}$
$\mathrm{~A} / \mathrm{lm}$				

[^59]${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2850{ }^{\circ} \mathrm{K}$
${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$ 7Z2 5716

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
up to 100 mA
$7 \cdot 10^{-9} \mathrm{~s}$
$15 \cdot 10^{-9} \mathrm{~s}$
$7 \cdot 10^{-9} \mathrm{~s}$
$60 \cdot 10^{-9} \mathrm{~s}$
max. 2000 V
max. 1 mA
max. 500 V
min. 100 V
max. 500 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A

1) For an infinitely short light pulse.

2) When caculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 7841

RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
a = anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA to 1 mA will be sufficient.

A circuit of type A results in the highest gain of the tube at a given total voltage. A circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

With high amplitude pulses, it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear-physics applications where a high degree of time definition is required (fast coincidences, Cerenkov counters).

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	110	mm
Gain (at 2400 V)	10^{8}	
Anode pulse rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102)

ACCESSORIES

Socket
Mu-metal shield (tube with metal container) (tube without metal container)
type FE1003
type 56133
type 56129
7Z2 8051

GENERAL

Photocathode

Description semi-transparent, head-on, curved surface ${ }^{1}$)
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material
N_{k}

Capacitances
Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$
C_{a}
14
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
type A (S11)
$4200 \pm 300 \quad \AA$
av. $70 \mu \mathrm{~A} / \mathrm{lm}$
min. $45 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$

$$
0 \quad 0
$$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse up to 300 mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{1}$)
$2 \cdot 10^{-9} \mathrm{~s}$

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}$
$4 \cdot 10^{-9} \mathrm{~s}$

Total transit time at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{1}$)
$10^{-9} \mathrm{~s}$ $45 \cdot 10^{-9} \mathrm{~s}$

Maximum peak currents

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{2}$)
Continuous anode current
Voltage between cathode and first dynode

+ orid No. 2 $+\operatorname{grid}$ No. 2

V_{b}	\max.	3000	V
I_{a}	\max.	2 mA	
		max.	800
$\mathrm{~V}_{\mathrm{k}} / \mathrm{S}_{1}+\mathrm{g}_{2}$	min.	250	V

Voltage between cathode and acceler ator electrode

Voltage between grid No. 1 and cathode
Voltage between grid No. 3 and first dynode
Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{3}$)

	1400	to	1800
$\mathrm{~V}_{\mathrm{k} / \mathrm{acc}}$	V		
$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$	\max.	300	V
$\mathrm{~V}_{\mathrm{g} 3} / \mathrm{S}_{1}$	\max.	100	V
	max.	500	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	min.	80	V
	max.	500	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{14}$	\min.	80	V

${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
2) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
3) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
$7 Z 25701$

RECOMMENDED CIRCUITS

Voltage divider type B^{1})
$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
$g_{2}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{g}_{3}=$ deflector
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $2 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{2} and S_{3} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}, \mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

[^60]
OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value of C_{1} will be $2 \cdot 10^{-9} \mathrm{~F}$

In the case of high counting rates and large peak power outputs, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an aver age voltage of high output.
A. The electron optical system consists of five elements:
> the photocathode k; the focusing electrode g_{1}; the focusing electrode g_{2}; the acceler ating electrode acc; the deflector g_{3}.

To reduce transit-time fluctuations and geometrical time spread, this system has the following advantages.

1. The photocathode is curved, with a curvature radius of 183 mm . To facilitate optical coupling to scintillators the tube is provided with a plane-concave window.
2. A high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. Acathode-to-accelerating voltage of about 1500 V (to be connected to the tenth or a subsequent dynode) ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron paths in the input system.
3. The potential of the electrode g_{1} to the photocathode c an be adjusted in order to obtain one of the following characteristics:
(a) the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum value of the potential is about $2 \mathrm{~V}_{\mathrm{S}}$;
(b) the slightest transit-time fluctuations (the most homogeneous extraction field);
(c) the most satisfactory uniformity of collection giving the most constant output pulse amplitude.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Electron optical input system

OPERATIONAL CONSIDERATIONS (continued)

4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the electrode g_{3} to make them impinge at right angles to the first dynode surface.

Collection on the first dynode is controlled by the potential of the third dynode.
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2400 V (see fig. 2) The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact, such pulses are needed for time measurements only, so not for spectrography purposes.
If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by $d-1$, d representing the secondary-emission coefficient of each stage ($d \approx$ 3.5) It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 3 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 4 the anode current variation is plotted against anode-to-final dynode voltage.

It should be noted that for equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A.
In practice, therefore, it will be preferable to use the A type distribution, or a distribution between A and B, (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9}, 1.5 \mathrm{~V}_{\mathrm{S}}$ between S_{9} and S_{10} etc., maintaining the same progression).

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influẽnce.

Fig. 2

Fig. 3

Fig. 4

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting under limited dimensional conditions, optical measurements with narrow light beams, in-microscope light transmission measurements, and computer punch-tape or punch-card reading etc.

QUICK REFERENCE DATA	
Spectral response	type A (S11)
Useful diameter of the photocathode	14
Anode sensitivity (at 1800 V)	250
A/lm	

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 12-pin (glass)

incident radiation

type 56073

$$
\text { type } 56134
$$

ACCESSORIES

Socket

Mu-metal shield

$$
7 \mathrm{Z} 28220
$$

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity 2)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode

Anodé to all other electrodes
semi-transparent, head-on, flat surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

14 mm
type A (S11)
$4200 \pm 300 \quad \AA$
av. $\quad 70 \mu \mathrm{~A} / \mathrm{lm}$
min. $40 \mu \mathrm{~A} / 1 \mathrm{~m}$
$60 \mathrm{~mA} / \mathrm{W}$

10
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
1.5 pF
2.5 pF
av. $250 \mathrm{~A} / \mathrm{lm}$
\min. $30 \mathrm{~A} / \mathrm{lm}$
av. $0.02 \mu \mathrm{~A}$
$\max .0 .10 \mu \mathrm{~A}$
up to 10 mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2850^{\circ} \mathrm{K}$
3^{3}) At an ambient temperature of $25^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)
Total transit time
up to 30 mA
$3 \cdot 10^{-9} \mathrm{~s}$
$30 \cdot 10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max.	1800	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max min.	$\begin{aligned} & 300 \\ & 120 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \end{gathered}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	\max min.	200 80	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V} / \mathrm{S}_{10}$	max min	$\begin{array}{r} 200 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type A

[^61]
RECOMMENDED CIRCUITS (continued)

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting under limited dimensional conditions, optical measurements with narrow light beams, in-microscope light transmission measurements, and computer punch-tape or punch-card reading etc.

QUICK REFERENCE DATA				
Spectral response	type A (S11)			
Useful diameter of the photocathode	14	mm		
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$		

DIMENSIONS AND CONNECTIONS

Base: 12 isolated flexible leads

XP1111B

$7 Z 28247$

ACCESSORIES

Mu-metal shield
type 56134

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$

Multiplier system

Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

$$
\mathrm{C}_{\mathrm{a} / \mathrm{S}_{10}}
$$

C_{a}
1.5 pF
2.5 pF

TYPICAL CHARACTERISTICS

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	N_{a}	av. \min	$\begin{array}{r} 250 \\ 30 \end{array}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=30 \mathrm{~A} / \mathrm{lm}^{3}$)	I_{o}	av. max.	$\begin{aligned} & 0.02 \\ & 0.10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light flux		up to	10	mA

[^62]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
up to 30 mA
3.10^{-9}
30.10^{-9} s

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max	1800	V
Continuous anode current	I_{a}	max	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max \min.	$\begin{aligned} & 300 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{Sn}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	\max \min	$\begin{array}{r} 200 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V} \mathrm{a} / \mathrm{S}_{10}$	\max min.	$\begin{array}{r} 200 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type A

[^63]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
$\mathrm{a}=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

XP1113

6 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in optical applications, where space is very restricted and relatively high light fluxes are to be measured $\left(10^{-5}\right.$ to $\left.10^{-3} \mathrm{~lm}\right)$.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	14	mm
Anode sensitivity (at 1200 V)	0.7	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Base: 9-pin miniature with pumping stem (Jedec E9-37)

Dimensions in mm

ACCESSORIES

Socket
type 242250290007

XP1113

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrode

TYPICAL CHARACTERISTICS
With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1200 \mathrm{~V}$	N_{a}	av. min.	$\begin{aligned} & 0.7 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=0.3 \mathrm{~A} / 1 \mathrm{~m}^{3}$)	$\mathrm{I}_{\mathrm{a}_{0}}$	max.	0.010	$\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light flux		up to	15	mA
With voltage divider B				
Linearity between anode pulse amplitude and input light pulse		up to	30	mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2850^{\circ} \mathrm{K}$
${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$
7Z2 8083

LIMITING VALUES (Absolute max. rating system)
Supply voltage

V_{b}	\max.	1200	V
I_{a}	\max.	0.5	mA
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	\max.	200	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	\max.	200	V
	\min.	80	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{6}$	\max.	200	V
	\min.	50	V

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B

$$
\begin{aligned}
& \mathrm{k}=\text { cathode } \\
& \mathrm{acc}=\text { accelerating electrode }
\end{aligned}
$$

$S_{n}=$ dynode No.n
a = anode

1) When calculating the anode voltage, the voltage drop 'in the load resistance should not be overlooked.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage, a circuit of type B gives higher currents in the last stages, but the total gain is less at the same total voltage.

At high pulse amplitudes it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube against the influence of magnetic fields by means of a mu-metal cylinder.

8179x

4 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in optical applications, where space is very réstricted and relatively high light fluxes are to be measured (10^{-4} to $10^{-1} \mathrm{~lm}$).

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	14	mm
Anode sensitivity (at 900 V)	15	$\mathrm{~mA} / \mathrm{lm}$
Dark current (at $4 \mathrm{~mA} / \mathrm{lm})$	$\max .0 .1$	nA

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 9-pin miniature with pumping
stem (Jedec E9-37)

ACCESSORIES

Socket
type 242250290007

GENERAL

Photocathode

Description	semi-transparent, head-on, flat surface		
Cathode material	Cs-Sb		
Minimum useful diameter	14	mm	
Spectral response curve ${ }^{1}$)	type $\mathrm{A}(\mathrm{Sl1})$		
Wavelength at maximum response	4200 ± 300	\AA	
Luminous sensitivity ${ }^{2}$)	N_{k}	40	$\mu \mathrm{~A} / \mathrm{lm}$
Radiant sensitivity at $4200 \AA$	35	$\mathrm{~mA} / \mathrm{W}$	

Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{4}$	1.9 pF	
Anode to all other electrodes	C_{a}	2.7	pF

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=900 \mathrm{~V}$
N_{a}
Anode dark current at $\mathrm{N}_{\mathrm{a}}=4 \mathrm{~mA} / \mathrm{lm}^{3}$)
av. $\quad 15 \mathrm{~mA} / \mathrm{lm}$
min. $4 \mathrm{~mA} / \mathrm{lm}$ \max. 0.1 nA

[^64]LIMITING VALUES (Absolute max. rating system)

Supply voltage
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{1}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k}} / \mathrm{S}_{1}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{4}}$
$\max .900 \mathrm{~V}$
\max. 0.1 mA
$\max .200 \mathrm{~V}$
$\max .200$ V
$\min .80 \mathrm{~V}$
$\max .200 \mathrm{~V}$
\min. 50 V

RECOMMENDED CIRCUITS

Voltage divider type A

[^65]
OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage, a circuit of type B gives higher currents in the last stages, but the total gain is less at the same total voltage.
At high pulse amplitudes it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube against the influence of magnetic fields by means of a mu-metal cylinder.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting and optical measurements under limited dimensional conditions. Its revolutionary rugged construction makes it particularly suitable for geophysical and astronomical missile experiments.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	14	mm
Anode sensitivity (at 1800 V)	200	$\mathrm{~A} / \mathrm{lm}$
Shock	30	g
Vibration	25	g

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 12 semi-flexible leads

ACCESSORIES

Socket
Mu-metal shield
type 56073
type 56134

GENERAL

Photocathode

Description

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material
\rightarrow Capacitances
Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS

\longrightarrow Shock
Shape of shock pulses
Peak acceleration
Duration
Number of shocks in each of 3 orthogonal axes
semi-transparent, head-on, flat surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

14 mm
type A (S11)
$4200 \pm 300 \AA$
$70 \mu \mathrm{~A} / \mathrm{lm}$
$40 \mu \mathrm{~A} / 1 \mathrm{~m}$
$60 \mathrm{~mA} / \mathrm{W}$

XP1115 B
 XP 1115

TYPICAL CHARACTERISTICS (continued)

Vibration

Shape
Acceleration for 20 to 2000 Hz

Duration in each of 3 orthogonal axes
With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$

Anode dark current at $\mathrm{N}_{\mathrm{a}}=30 \mathrm{~A} / \mathrm{lm}^{1}$)
N_{a}
$\mathrm{I}_{\mathrm{a}_{0}}$
Linearity between anode pulse amplitude and input light flux

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{2}$).
Total transit time
sinusoidal
5 to 20 g

30 min.
av. $200 \mathrm{~A} / \mathrm{lm}$
min. $30 \mathrm{~A} / \mathrm{lm}$
av. $0.02 \mu \mathrm{~A}$
$\max .0 .10 \mu \mathrm{~A}$
up to 10 mA
up to 30 mA
$3 \cdot 10^{-9} \mathrm{~s}$
$30.10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage $\quad \mathrm{V}_{\mathrm{b}}$
Continuous anode current $\quad \mathrm{I}_{\mathrm{a}}$
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{3}$)
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{10}}$
$\max .1800 \mathrm{~V}$
$\max .0 .5 \mathrm{~mA}$
$\max .300 \mathrm{~V}$
min. 220 V
max. 200 V
min. 80 V
$\max .200 \mathrm{~V}$
min. 80 V

1) At an ambient temper ature of $25^{\circ} \mathrm{C}$.
${ }^{2}$) For an infinitely short light pulse.
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=\mathrm{cathode}$
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

OPERATIONAL CONSIDERATIONS (continued)

The semi-flexible leads of the tube may be soldered into the circuit; care must be taken to conduct the heat away from the glass seals. Excessive bending of the leads is to be avoided.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

XP1115 XP 1115 C

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as infra-red telecommunication and ranging, under limited dimensional conditions. Its rugged construction makes it particularly suitable for industrial equipment.

QUICK REFERENCE DATA		
Spectral response	type	C (S1)
Useful diameter of the photocathode	14	mm
Anode sensitivity (at 1800 V)	20	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (glass)

incident radiation

ACCESSORIES

Socket
Mu-metal shield
type 56073
type 56134
7Z2 8090

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $8000 \AA$
Multiplier system
Number of stages
Dynode material
N_{k}

Capacitances
Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
1.5 pF
2.5 pF

Shock and vibration
To be specified

TYPICAL CHARACTERISTICS

Voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	$\mathrm{~N}_{\mathrm{a}}$	$20 \mathrm{~A} / \mathrm{lm}$
Anode dark current at $\left.\mathrm{N}_{\mathrm{a}}=10 \mathrm{~A} / \mathrm{lm}^{3}\right)$	$\mathrm{I}_{\mathrm{a}_{\mathrm{o}}}$	$10 \mathrm{\mu A}$

[^66]
XP1116

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max	1800	V
Continuous anode current	I_{a}	max	30	$\mu \mathrm{A}$
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	\max \min.	$\begin{aligned} & 300 \\ & 120 \end{aligned}$	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}}+1}$	$\max _{\min }$	200 80	V
Voltage between anode and final dynode ${ }^{1}$)	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{10}$	$\max _{\min }$.	200 80	V

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B

$$
\begin{array}{ll}
\mathrm{k}=\text { cathode } & \mathrm{S}_{\mathrm{n}}=\text { dynode No. } \mathrm{n} \\
\mathrm{acc}=\text { accelerating electrode } & \mathrm{a}=\text { anode }
\end{array}
$$

[^67]
OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

9 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in laser-technics working in the orange, yellow and green range, under limited dimensional conditions. Its rugged construction makes it particularly suitable for industrial equipment.

QUICK REFERENCE DATA		
Spectral response	type T (S20)	
Useful diameter of the photocathode	14	mm
Anode sensitivity (at 1800 V)	100	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Base: 12-pin (glass)

Dimensions in mm

ACCESSORIES

Socket
type 56073

Mu-metal shield

GENERAL

Photocathode

Description	semi-transparent, head-on, flat surface		
Cathode material	Sb-K-Na-Cs		
Minimum useful diameter	14	mm	
Spectral response curve 1)	type $\mathrm{T}(\mathrm{S} 20)$		
Wavelength at maximum response	4200 ± 300	\AA	
Luminous sensitivity ${ }^{2}$)	N_{k}	100	$\mu \mathrm{~A} / \mathrm{lm}$
Radiant sensitivity at $4200 \AA$	60	$\mathrm{~mA} / \mathrm{W}$	

Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{9}$	1.5 pF
C_{a}	2.5 pF

Shock and vibration
To be specified.

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=30 \mathrm{~A} / \mathrm{lm}^{3}$)
N_{a}
$I_{a_{0}}$
$100 \mathrm{~A} / \mathrm{lm}$
$0.02 \mu \mathrm{~A}$

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2850{ }^{\circ} \mathrm{K}$
3) At an ambient temperature of $25^{\circ} \mathrm{C}$

7Z2 8252

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{Va} / \mathrm{S}_{9}$
$\max .1800$
V
$\max .1 \mathrm{~mA}$
$\max .300 \mathrm{~V}$
min. 120 V
max. 200 . V
min. 80 V
$\max .200 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type B

1) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5384

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in optical applications which require a good sensitivity in the ultraviolet region, under limited dimensional conditions.

QUICK REFERENCE DATA				
Spectral response	type U (S13)			
Useful diameter of the photocathode	14			
mm				
Anode sensitivity (at 1800 V)	250			
A/lm				

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (glass)

ACCESSORIES

Socket
Mu-metal shield

type 56073
type 56134

7Z2 8221

GENERAL

Photocathode

Description	semi-transparent, head-on, flat surface			
Cathode material		Cs-Sb		
Minimum useful diameter		14 mm		
Spectral response curve ${ }^{1}$)		type U (S13)		
Wavelength at maximum response		$4000 \pm 300 \AA$		
Luminous sensitivity ${ }^{2}$)	N_{k}	av. min.	70 40	$\mu \mathrm{A} / \operatorname{l\mathrm {m}}$ $\mu \mathrm{A} / \mathrm{lm}$
Radiant sensitivity at $4000 \AA$			60	mA/W

Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

| $\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$ | 1.5 pF |
| :--- | :--- | :--- |
| C_{a} | 2.5 pF |

TYPICAL CHARACTERISTICS

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	N_{a}	av. min.	$\begin{array}{r} 250 \\ 30 \end{array}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=30 \mathrm{~A} / \mathrm{lm}^{3}$)	$\mathrm{I}_{\mathrm{a}_{0}}$	av. max.	$\begin{aligned} & 0.02 \\ & 0.10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Linearity between anode pulse amplitude and input light flux		up to	10	mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850{ }^{\circ} \mathrm{K}$
3) At an ambient temperature of $25^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
up to 30 mA

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)
Total transit time
$3 \cdot 10^{-9} \mathrm{~s}$
$30.10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{2}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{v}_{\mathrm{a} / \mathrm{S}_{10}}$
$\max .1800 \mathrm{~V}$
$\max .1 \mathrm{~mA}$
$\max 300 \mathrm{~V}$
min. 120 V
\max. 200 V
min. 80 V
max. 200 V
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A

[^68]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B

```
k = cathode
acc = accelerating electrode
```

$S_{n}=$ dynode No.n
a = anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultraviolet region $(\lambda<1500 \AA)$ and soft x -ray counting $(\lambda>2 \AA)$.

QUICK REFERENCE DATA		
Quantum efficiency for UV-photons (at 800 \&)	10	$\%$
Useful area of the Ni photocathode	22×22	$\mathrm{~mm}^{2}$
Gain (at 4000 V)	5.10^{7}	
Dark current	6.10^{-12}	A
Pressure during oper ation	$10^{-5}-10^{-6}$	mmHg
Potted voltage divider		

GENERAL

Photocathode

Description
Cathode material
Minimum useful area

Wavelength at maximum response (see fig.1)

Wavelength at maximum response (see fig.1)
Quantum efficiency for UV,-photons at $800 \AA$
Quantum efficiency for UV,-photons at $800 \AA$
Multiplier system
Number of stages
opaque, head-on, venetian blind structureNi
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

$$
22 \times 22 \mathrm{~mm}^{2}
$$

$$
800 \pm 100 \quad \AA
$$

$$
10 \%
$$

$$
17
$$

$\mathrm{Cu}-\mathrm{Be}-\mathrm{O}$
-

$$
\mathrm{Cu}-\mathrm{Be}-\mathrm{O}
$$

Base connections

High voltage connector
Signal connector
"LEMO" type III C40 H. T. 10
"LEMO" type OC50

TYPICAL CHARACTERISTICS

With potted voltage divider

Gain at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$
Anode dark current at $G=10^{6}$

G av. $\quad 5.10^{7}$
$\mathrm{I}_{\mathrm{a}}{ }_{0}$
av่ $6 \cdot 10^{-6} \mu \mathrm{~A}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)
Continuous anode current
Voltage between cathode and first dynode

$$
\mathrm{v}_{\mathrm{b}}
$$

$$
\mathrm{I}_{\mathrm{a}}
$$

$$
\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}
$$

Voltage between consecutive dynodes

Voltage between anode and finaly dynode
Pressure during operation ${ }^{2}$)

$$
\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}
$$

$$
\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{17}
$$

$\max .5000 \mathrm{~V}$
$\max . \quad 1 \mu \mathrm{~A}$
$\max .500 \mathrm{~V}$
$\max .300 \mathrm{~V}$
\min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max \cdot 10^{-5} \mathrm{mmHg}$

RECOMMENDED CIRCUIT

potted resistor chain type 56120

1) When the tube is to be used at 5000 V preferably the cathode should be grounded.
2) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$.

7 Z 27843

OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the eid of an electrostatic focusing system equivalent to the one in the 56AVP-family.

The tube may be used both in counting circuits and integrating current circuits. In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to values over $1 \mu \mathrm{~A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a glass envelope which is sealed to a metal flange to facilitate mounting to a vacuum system (vacuum seal with O-ring). The glass envelope is protected by a nickel plated iron mantle, which contains a complete potted voltage divider. The external connections are made via two coaxial connectors. Because of the O-ring the tube may not be heated for outgassing.

The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.

In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum.

A counter-flange with cock is delivered with the tube.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultraviolet region ($\lambda<1400 \AA$) detection of ions ($>10 \mathrm{Kev}$) and electrons (0.1 10 Kev).

QUICK REFERENCE DATA			
Quantum efficiency for UV-photons (at 680 \&)	20	$\%$	
Useful area of the Cu Be O photocathode	22×22	$\mathrm{~mm}^{2}$	
Gain (at 4000 V)	5.10^{7}		
Dark current	6.10^{-12}	A	
Pressure during operation	$10^{-5}-10^{-6}$	mmHg	
Potted voltage divider			

GENERAL

Photocathode

Description

Cathode material

Minimum useful area
Wavelength at maximum response (see fig. 1)
Quantum efficiency for UV-photons at 680 \&
Multiplier system
Number of stages 17
Dynode material
$\mathrm{Cu}-\mathrm{Be}-\mathrm{O}$
Capacitances
Anode to final dynode
Anode to all other electrodes $\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{17}$ 7 pF
C_{a} 9.5 pF

Dimensions in mm

Base connections

High voltage connector
Signal connector
"LEMO" type III C40 H.T. 10
"LEMO" type OC50

TYPICAL CHARACTERISTICS

With potted voltage divider
$\begin{array}{lll}\text { Gain at } \mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V} & \mathrm{G} & \text { av. } 5 \cdot 10^{7} \\ \text { Anode dark current at } \mathrm{G}=10^{6} & \mathrm{I}_{\mathrm{a}_{\mathrm{o}}} & \text { av. } 6 \cdot 10^{-6} \mu \mathrm{~A}\end{array}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)
Continuous anode current
Voltage between cathode and first dynode
Voltage between consecutive dynodes

Voltage between anode and final dynode
Pressure during operation ${ }^{2}$)

$$
\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}
$$

$$
\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}
$$

$$
\mathrm{v}_{\mathrm{a} / \mathrm{S}_{17}}
$$

$\max .5000 \mathrm{~V}$
$\max . \quad 1 \mu \mathrm{~A}$
$\max .500 \mathrm{~V}$
$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max \cdot 10^{-5} \mathrm{mmHg}$

RECOMMENDED CIRCUIT

[^69]
OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the aid of an electrostatic focusing system equivalent to the one in the 56AVP-family.

The tube may be used both in counting circuits and integrating current circuits. In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to values over $1 \mu \mathrm{~A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a glass envelope which is sealed to a metal flange to facilitate mounting to a vacuum system (vacuum seal with O-ring). The glass envelope is protected by a nickel plated iron mantle, which contains a complete potted voltage divider. The external connections are made via two coaxial connectors. Because of the O-ring the tube may not be heated for outgassing.

The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.

In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum.

A counter-flange with cock is delivered with the tube.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultraviolet region ($\lambda<1500$ A) and detection of soft x-rays ($\lambda>2 \AA$).

QUICK REFERENCE DATA		
Quantum efficiency for UV-photons (at 800 凡)	10	$\%$
Useful area of the Ni photocathode	22×22	$\mathrm{~mm}^{2}$
Gain (at 4000 V)	5.10^{7}	
Dark current	6.10^{-12}	A
Pressure during operation	$10^{-5}-10^{-6}$	mmHg
Potted voltage divider		

GENERAL

Photocathode
Description opaque, head-on, venetian blind structure

Cathode material
Minimum useful area
Wavelength at maximum response (see fig.1)
Quantum efficiency for UV-photons at 800 \&
Multiplier system
Number of stages
17
Dynode material
Capacitances
Anode to final dynode
$\mathrm{C}_{\mathrm{a} / \mathrm{S}_{17}}$
Anode to all other electrodes
C_{a}
9.5 pF

High voltage connector
Signal connector

"LEMO" type III C40 H.T. 10
"LEMO" type OC50

TYPICAL CHARACTERISTICS

With potted voltage divider
$\begin{array}{lll}\text { Gain at } \mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V} & \mathrm{G} & \text { av. } 5 \cdot 10^{7} \\ \text { Anode dark current at } \mathrm{G}=10^{6} & \mathrm{I}_{\mathrm{a}_{\mathrm{O}}} & \text { av. } 6 \cdot 10^{-6} \mu \mathrm{~A}\end{array}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)
Continuous anode current
Voltage between cathode and first dynode
Voltage between consecutive dynodes

Voltage between anode and final dynode
Pressure during oper ation ${ }^{2}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{17}}$
$\max .5000 \mathrm{~V}$
$\max . \quad 1 \mu \mathrm{~A}$
max. 500 V
$\max .300 \mathrm{~V}$
min. 80 V
max. 300 V
min. 80 V
$\max \cdot 10^{-5} \mathrm{mmHg}$

RECOMMENDED CIRCUIT

potted resistor chain type 56120

${ }^{1}$) When the tube is to be used at 5000 V preferably the cathode should be grounded.
2) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$.

7Z2 7845

OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the aid of an electrostatic focusing system equivalent to the one in the 56 AVP-family.

The tube may be used both in counting circuits and integrating current circuits. In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to values over $1 \mu \mathrm{~A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a glass envelope which is sealed to a metal flange to facilitate mounting to a vacuum system (vacuum seal with O-ring). The glass envelope is protected by a nickel plated iron mantle, which contains a complete potted voltage divider. The external connections are made via two coaxial connectors. Because of the O-ring the tube may not be heated for outgassing.
The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.

In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum.

A counter-flange with cock is delivered with the tube.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultraviolet region ($\lambda<1400 \AA$) detection of ions ($>10 \mathrm{Kev}$) and electrons (0.1 10 Kev).

QUICK REFERENCE DATA		
Quantum efficiency for UV-photons (at 680 \&)	20	$\%$
Useful area of the Cu Be O photocathode	22×22	$\mathrm{~mm}^{2}$
Gain (at 4000 V)	5.10^{7}	
Dark current	6.10^{-12}	A
Pressure during operation	$10^{-5}-10^{-6}$	mmHg
Potted voltage divider		

GENERAL

Photocathode

Description
Cathode material
Minimum useful area
Wavelength at maximum response (see fig.1)

$$
680 \pm 100 \quad \AA
$$

Quantum efficiency for UV-photons at 680 \&
Multiplier system
Number of stages
17
Dynode material
opaque, head-on, venetian blind structure

$$
\mathrm{Cu}-\mathrm{Be}-\mathrm{O}
$$

$$
22 \times 22 \mathrm{~mm}^{2}
$$

20 \%

$$
\mathrm{Cu}-\mathrm{Be}-\mathrm{O}
$$

Capacitances
Anode to finaly dynode
Anode to all other electrodes

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{17}$	7 pF
C_{a}	9.5 pF

7Z2 5737

High voltage connector
Signal connector
"LEMO" type III C40 H.T. 10
"LEMO" type OC50

TYPICAL CHARACTERISTICS

With potted voltage divider
$\begin{array}{lll}\text { Gain at } \mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V} & \mathrm{G} & \text { av. } 5 \cdot 10^{7} \\ \text { Anode dark current at } \mathrm{G}=10^{6} & \mathrm{I}_{\mathrm{a}_{\mathrm{o}}} & \text { av. } 6 \cdot 10^{-6} \mu \mathrm{~A}\end{array}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{1}$)
Continuous anode current
Voltage between cathode and first dynode
Voltage between consecutive dynodes

Voltage between anode and final dynode
Pressure during operation ${ }^{2}$)
v_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{17}}$
$\max .5000 \mathrm{~V}$
$\max . \quad 1 \mu \mathrm{~A}$
$\max .500 \mathrm{~V}$
max. 300 V
min. 80 V
max. 300 V
min. 80 V
$\max \cdot 10^{-5} \mathrm{mmHg}$

RECOMMENDED CIRCUIT

potted resistor chain type 56120

[^70]
OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the aid of an electrostatic focusing system equivalent to the one in the 56AVP-family.

The tube may be used both in counting circuits and integrating current circuits. In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to values over $1 \mu \mathrm{~A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a glass envelope which is sealed to a metal flange to facilitate mounting to a vacuum system (vacuum seal with O -ring). The glass envelope is protected by a nickel plated iron mantle, which contains a complete potted voltage divider. The external connections are made via two coaxial connectors. Because of the O-ring the tube may not be heated for outgassing.

The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.

In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum.

A counter-flange with cock is delivered with the tube.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultraviolet region ($\lambda<1500 \AA$) and soft $x-r$ ray detection ($\lambda>2 \AA$) under ultra high vacuum conditions.

QUICK REFERENCE DATA		
Quantum efficiency for UV-photons (at 800 \&)	10	$\%$
Useful area of the Ni photocathode	22×22	$\mathrm{~mm}^{2}$
Gain (at 4000 V)	5.10^{7}	
Dark current	6.10^{-12}	A
Pressure during operation	$10^{-5}-10^{-10}$	mmHg
Potted voltage divider		

GENERAL

Photocathode
Description
opaque, head-on, venetian blind structure

Cathode material
Minimum useful area
Wavelength at maximum response (see fig.1)
Quantum efficiency for UV-photons at 800 A
Multiplier system
Number of stages17

Dynode material
$\mathrm{Cu}-\mathrm{Be}-\mathrm{O}$

Capacitances

Anode to final dynode 7 pF
Anode to all other electrodes

DIMENSIONS AND CONNECTIONS
Dimensions in mm

High voltage connector
Signal connector

"LEMO" type III C40 H.T. 10
"LEMO" type OC50

TYPICAL CHARACTERISTICS

With potted voltage divider
Gain at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$
Anode dark current at $\mathrm{G}=10^{6}$

G	5.10^{7}	
$I_{a_{0}}$	6.10^{-6}	$\mu \mathrm{~A}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)
Continuous anode current
Voltage between cathode and first dynode
Voltage between consecutive dynodes

Voltage between anode and final dynode
V_{b}
I_{a}

$$
\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}
$$

$$
\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}
$$

$$
\mathrm{V}_{\mathrm{a} / \mathrm{S}_{17}}
$$

Pressure during operation 2)
$\max .5000 \mathrm{~V}$
$\max . \quad 1 \mu \mathrm{~A}$
$\max .500 \mathrm{~V}$
$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max \cdot 10^{-5} \mathrm{mmHg}$

RECOMMENDED CIRCUIT

1) When the tube is to be used at about 5000 V preferable the cathode should be grounded, to avoid gas emission from the focusing electrodes of the input.
2) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$.

OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the aid of an electrostatic focusing system equivalent to the one in the 56AVP-family.

The tube may be used both in counting circuits and integrating current circuits. In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to values over $1 \mu \mathrm{~A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a stainless steel envelope and a heavy flange to facilitate mounting to a vacuum system (gold foil vacuum seal). The envelope contains also a complete potted voltage divider. The external connections are made via two coaxial connectors.

The tube may be heated to $300^{\circ} \mathrm{C}$ for several hours to obtain an ultra high vacuum ($10^{-10} \mathrm{mmHg}$), but this must be done with care. The temperature of the glass bottom with the pins must be kept always at about the same level as the one of the stainless steel flange by which it is carried. The potted resistor chain must be taken apart.

The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.

In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum. A counter flange with cock is delivered with the tube.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultraviolet region ($\lambda<1400 \AA$), detection of ions ($>10 \mathrm{Kev}$) and electrons (0.1 10 Kev), under ultra high vacuum conditions.

QUICK REFERENCE DATA		
Quantum efficiency for UV-photons (at 680 \&)	20	$\%$
Useful area of the Cu Be O photocathode	22×22	$\mathrm{~mm}^{2}$
Gain (at 4000 V)	5.10^{7}	
Dark current	6.10^{-12}	A
Pressure during operation	$10^{-5}-10^{-10}$	mmHg
Potted voltage divider		

GENERAL

Photocathode

Description
Cathode material
Minimum useful area
Wavelength at maximum response (see fig.1)
Quantum efficiency for UV-photons at 680 A
Multiplier system
Number of stages17

Dynode material
opaque, head-on, venetian blind structure

Capacitances
Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{17}$
7 pF
$\begin{array}{ll}\mathrm{C}_{\mathrm{a}} & 9.5 \mathrm{pF}\end{array}$

7Z2 5745

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base connections
High voltage connector
Signal connector
"LEMO" type III C40 H.T. 10
"LEMO" type OC50

TYPICAL CHARACTERISTICS

With potted voltage divider
Gain at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$
Anode dark current at $G=10^{6}$

G
I_{a}
av. $5 \cdot 10^{7}$
av. $6 \cdot 10^{-6} \mu \mathrm{~A}$

XP1131

LIMITING VALUES (Absolute max. rating system)

Supply voltage 1)	V_{b}
Continuous anode current	I_{a}
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k}} / \mathrm{S}_{1}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
Voltage between anode and final dynode	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{17}$
Pressure during operation 2)	

RECOMMENDED CIRCUIT

${ }^{1}$) When the tube is to be used at about 5000 V preferable the cathode should be grounded, to avoid gas emission from the focusing electrodes of the input.
${ }^{2}$) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$.

7Z2 7850

OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the aid of an electrostatic focusing system equivalent to the one in the 56AVP-family.

The tube may be used both in counting circuits and integrating current circuits : In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to values over $1 \mu \mathrm{~A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a stainless steel envelope and a heavy flange to facilitate mounting to a vacuum system (gold foil vacuum seal). The envelope contains also a complete potted voltage divider. The external connections are made via two coaxial connectors.

The tube may be heated to $300^{\circ} \mathrm{C}$ for several hours to obtain an ultra high vacuum $\left(10^{-10} \mathrm{mmHg}\right)$, but this must be done with care. The temperature of the glass bottom with the pins must be kept always at about the same level as the one of the stainless steel flange by which it is carried. The potted resistor chain must be taken apart.

The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.

In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum. A counter flange with cock is delivered with the tube.

6 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in plasma physics where high light flashes must be measured and other applications where a high degree of time definition and linearity is required.

	QUICK REFERENCE DATA		
Spectral response	type	S4	
Useful window area	150	$\mathrm{~mm}^{2}$	
Gain (at 3750 V)	10^{4}		
Anode pulse rise time	1.7	ns	
Linearity	up to 2	A	
Peak current	4	A	

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: 14-pin (Jedec B14-38)

$7 Z 28253$

ACCESSORIES

Socket	type	FE1001
Mu-metal shield	type	56128

GENERAL

Photocathode

Description
Cathode material
Minimum useful window area
Spectral response curve
Wavelength at maximum response
Luminous sensitivity ${ }^{1}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

TYPICAL CHARACTERISTICS

With recommended voltage divider
Supply voltage for $G=10^{4}$

Anode dark current at $G=10^{4} 2$)
Linearity (within 5\%) between anode pulse amplitude and input light pulse

Supply voltage for a linearity of 2 A
opaque, head-on, flat window Cs-Sb $25.5 \times 5.9 \mathrm{~mm}^{2}$ type S4
4000 ± 500 \&
av. $45 \mu \mathrm{~A} / \mathrm{lm}$ min. $25 \mu \mathrm{~A} / \mathrm{lm}$ $35 \mathrm{~mA} / \mathrm{W}$
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
V_{b} av. 3750 V
max. 5000 V
av. $0.03 \mu \mathrm{~A}$
$\max .1 \mu \mathrm{~A}$
up to 2 A
Vb av. 6000 V max. 6500 V

[^71]
TYPICAL CHARACTERISTICS (continued)

With recommended voltage divider

Anode pulse rise time at $V_{b}=6500 \mathrm{~V}^{1}$)	1.7×10^{-9}	s
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=6500 \mathrm{~V}^{1}$)	3×10^{-9}	s
Total transit time at $\mathrm{V}_{\mathrm{b}}=6500 \mathrm{~V}^{1}$)	11×10^{-9}	s
Maximum peak current	4	A

LIMITING VALUES

Supply voltage $\quad \mathrm{V}_{\mathrm{b}} \max .7000 \mathrm{~V}$
Continuous anode current $\mathrm{I}_{\mathrm{a}} \max .2 \mathrm{~m}_{1}$

RECOMMENDED CIRCUIT

Voltage divider

| $\mathrm{R}_{1}=47 \mathrm{k} \Omega$ | $\mathrm{R}_{3}=50 \Omega$ | $\mathrm{C}_{1}=2200 \mathrm{pF} / 6 \mathrm{kV}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{R}_{2}=100 \Omega$ | $\mathrm{R}_{4}=22 \Omega$ | $\mathrm{C}_{2}=10000 \mathrm{pF} / 3 \mathrm{kV}$ |

$\mathrm{k}=$ cathode
$\mathrm{g}_{1}=$ deflector
$S_{\mathrm{n}}=$ dynode No.n
$g_{2}=$ shadow grid
a = anode
voltages between $\mathrm{S}_{2}-\mathrm{S}_{3}, \mathrm{~S}_{3}-\mathrm{S}_{4}$ and $\mathrm{S}_{6}-\mathrm{a}$ to be ad justed for maximum linearity (see operating con siderations)
${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
7Z2 8255

OPERATIONAL CONSIDERATIONS

A. The multiplier system of the tube is equivalent to the one in the XP1141. The first stage of this multiplier system is used as a cathode so the actual number of dynodes is 6 , providing a total current amplification of 10^{4} at about 3500 V .
The tube is capable of producing very strong peak currents (up to 6 A). Actually the time constant at the output of the multiplier must be very small. Therefore it is necessary to use a low load resistance, well matched to the associated electronic circuitry. With a load of 50Ω the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous, without attenuation or distortion. All stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes.

To avoid the effects, which are responsible for rounding of the leading edge and the "jagged" trailing edges, a shadow grid $\left(g_{2}\right)$ is placed parallel to the anode with its wires aligned with those of the anode.

Thus electrons walking from the next-to-last dynode (S_{5}) to the last dynode $\left(\mathrm{S}_{6}\right)$ are prevented to impinge directly upon the anode. At the same time induction and oscillations in the anode grid are minimized.
B. The following test procedure for linearity is used:

A very short light pulse is seen by 2 photomultiplier tubes one of which is a perfect linear reference tube and the other one the tube to be measured. The signals of both tubes are fed in phase to an oscilloscope.

The measurements are done with a voltage divider as indicated, starting with a total voltage of 4.8 kV .

Observing the oscillogramme and at the same time regulating simultaneously the tensions between $S_{2}-S_{3}$ and $S_{3}-S_{4}$, it is possible to find a compromise between linearity and absence of oscillations. After this the voltage between $\mathrm{S}_{6}{ }^{-\mathrm{a}}$ is increased in order to get a linearity as specified; eventually the whole procedure has to be repeated.

Each tube is accompanied by a test-card which indicates the voltages between $\mathrm{S}_{2}-\mathrm{S}_{3}, \mathrm{~S}_{3}-\mathrm{S}_{4}$ and $\mathrm{S}_{6}-\mathrm{a}$, at which a linearity (within 5%) of 2 A is obtained.

REMARKS

1. It is possible to obtain linearities even higher than 3 A by a more complicated procedure with each individual tube. Starting from the recommended voltage divider each interstage tension has to be adjusted independently and carefully.
2. Linearity within 5% is defined as follows: the output pulse amplitude (up till 2 A) as a function of the input light pulse amplitude will not deviate more than 5% from a straight line.

7Z2 5892

7 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in plasma physics where high light flashes must be measured and other applications where a high degree of time definition and linearity is required.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	42	mm
Gain (at 3500 V)	10^{4}	
Anode pulse rise time	1.9	ns
Linearity	up to 1	A
Peak current	3	A

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

7Z2 8095

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56130

GENERAL

Photocathode
Description semi-transparent, low resistivity, head-on, curved surface

Cathode material

Minimum useful diameter
Radius of curvature
Spectral response curve
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4200 §

Multiplier system
Number of stages
Dynode material

TYPICAL CHARACTERISTICS
With recommended voltage divider
Supply voltage for $G=10^{4}$

Anode dark current at $G=10^{4}$)
Linearity (within 5\%) between anode pulse amplitude and input light pulse

Supply voltage for a linearity of 1 A

$$
\begin{array}{llll}
& \text { av. } & 3500 & \mathrm{~V} \\
\mathrm{~V} & \max . & 6500 & \mathrm{~V}
\end{array}
$$

av. $0.1 \mu \mathrm{~A}$
\max. $20 \mu \mathrm{~A}$
up to 1 A
av. 6000 V
$\max .6500 \mathrm{~V}$

[^72]
TYPICAL CHARACTERISTICS (continued)

With recommended voltage divider (continued)
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=6500 \mathrm{~V}^{1}$)
$1.9 \times 10^{-9} \mathrm{~s}$
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=6500 \mathrm{~V}^{1}$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=6500 \mathrm{~V}^{1}$)
$3.2 \times 10^{-9} \mathrm{~s}$
$16 \times 10^{-9} \mathrm{~s}$
3 A

LIMITING VALUES (Absolute max. rating system)
Supply voltage $\quad \mathrm{V}_{\mathrm{b}} \quad \max .7000 \mathrm{~V}$
Continuous anode current $\quad I_{a} \max .2 \mathrm{~mA}$

RECOMMENDED CIRCUIT

Voltage divider

| $\mathrm{R}_{1}=47 \mathrm{k} \Omega$ | $\mathrm{R}_{3}=50 \Omega$ | $\mathrm{C}_{1}=2000 \mathrm{pF} / 6 \mathrm{kV}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{R}_{2}=100 \Omega$ | | $\mathrm{C}_{2}=10000 \mathrm{pF} / 3 \mathrm{kV}$ |

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{g}_{2}=$ focusing electrode
$\mathrm{g}_{3}=$ deflector
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
$\mathrm{g}_{4}=$ shadow grid
a $=$ anode
voltage between k and g_{1} to be adjusted at about $2 \mathrm{~V}_{\mathrm{S}}$; voltage between k and acc to be adjusted at about $15 \mathrm{~V}_{\mathrm{S}}$; voltages between $\mathrm{S}_{4}-\mathrm{S}_{5}$ and $\mathrm{S}_{7}-$ a to be adjusted for maximum linearity (see operational considerations).

[^73]7Z2 8096

OPERATIONAL CONSIDERATIONS

A. The electron optical input system consists of five elements:

> the photocathode k ;
> the focusing electrode g_{1};
> the focusing electrode g_{2}
> the accelerating electrode acc;
> the deflector g_{3}.

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, thus minimizing geometrical time spread;
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum value of the potential is about $2 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the deflector to make it impinge at right angles to the first dynode surface.
B. The multiplier system consists of 7 stages, providing a total current amplification of 10^{4} at about 3500 V .

The tube is capable of producing very strong peak currents (up to 3 A). Actually the time constant at the output of the multiplier must be very small. Therefore it is necessary to use a low load resistance, well matched to the associated electronic circuitry. With a load of 50Ω the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous, without attenuation or distortion. All stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes.

To avoid the effects, which are responsible for rounding of the leading edge and the "jagged" trailing edges, a shadow grid $\left(g_{4}\right)$ is placed parallel to the anode with its wires aligned with those of the anode.

Thus electrons walking from the next-to-last dynode (S_{6}) to the last dynode $\left(\mathrm{S}_{7}\right)$ are prevented to impinge directly upon the anode. At the same time induction and oscillations in the anode grid are minimized.

7Z2 8097
C. The following test procedure for linearity is used:

A very short light pulse is seen by 2 photomultiplier tubes one of which is a perfect linear reference tube and the other one the tube to be measured. The signals of both tubes are fed in phase to an oscilloscope.

The measurements are done with a voltage divider as indicated, starting with a total voltage of 4.8 kV . Observing the oscillogramme and at the same time regulating the tension between $S_{4}-S_{5}$, it is possible to find a compromise between linearity and absence of oscillations. After this the voltage between S_{7}-a is increased in order to get a linearity as specified; eventually the whole procedure has to be repeated.

Each tube is accompanied by a test-card which indicates the voltages between $\mathrm{S}_{4}-\mathrm{S}_{5}$ and $\mathrm{S}_{7}-\mathrm{a}$, at which a linearity (within 5%) of 1 A is obtained.

REMARKS

1. It is possible to obtain linearities even higher than 1 A by a more complicated procedure with each individual tube. Starting from the recommended voltage divider each interstage tension has to be adjusted independently and carefully.
2. Linearity within 5% is defined as follows: the output pulse amplitude (up till 1 A) as a function of the input light pulse amplitude will not deviate more than 5% from a straight line.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting, in small medical probes or in portable equipment or any optical or nuclear application in which a small diameter is required.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	20	mm
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 13-pin (glass)

ACCESSORIES

Socket
Mu-metal shield
type B8 70067
type 56138
7Z2 8092

XP1180

GENERAL .

Photocathode

Multiplier system

Number of stages

Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
$\begin{array}{ll}3 & \mathrm{pF} \\ 5 & \mathrm{pF}\end{array}$
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

Linearity between anode pulse amplitude and input light pulse

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
av. $250 \mathrm{~A} / \mathrm{lm}$
min. $30 \mathrm{~A} / \mathrm{lm}$
av. $0.02 \mu \mathrm{~A}$
\max. $0.1 \mu \mathrm{~A}$

	av.	250	$\mathrm{~A} / 1$
$\mathrm{~N}_{\mathrm{a}}$	min.	30	$\mathrm{~A} / 1$
		av.	0.02
	$\mu \mathrm{~A}$		
I_{a}	\max.	0.1	$\mu \mathrm{~A}$

up to 5 mA
up to 10 mA

[^74]
XP1180

LIMITING VALUES (Absolute max. rating system)

Supply voltage
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{1}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{10}$
$\max .1800 \mathrm{~V}$
$\max .1 \mathrm{~mA}$
max. 500 V
min. 120 V
max. 300 V
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B

$$
\begin{array}{ll}
\mathrm{k}=\text { cathode } & \mathrm{S}_{\mathrm{n}}=\text { dynode No. } \mathrm{n} \\
\text { acc }=\text { accelerating electrode } & \mathrm{a}=\text { anode }
\end{array}
$$

[^75]
XP1180

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

In pulse techniques, such as scintillation counting, it is advisable to decouple the last two or three stages by means of capacitors of approx. 100 pF , to avoid a serious voltage drop between these stages during a pulse.
With the voltage divider type A the tube gives the highest gain, while with the voltage divider type B the tube can deliver higher anode currents at the cost of the total gain.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against magnetic field influence.

11 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting of α, $\beta, \gamma, \mathrm{n}$ radiation and X rays, in flying-spot apparatus and different kinds of optical instruments.

QUICK REFERENCE DATA	
Spectral response	type A (S11)
Useful diameter of the photocathode	44
mm	
Anode sensitivity (at 1800 V)	1000
	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield

Dimensions in mm

type FE1001
type 56128

GENERAL

Photocathode

Description	ns	head-o	rface
Cathode material			
Minium useful diameter			mm
Spectral response curve ${ }^{1}$)		type	
Wavelength at maximum response		4200	\AA
Luminous sensitivity ${ }^{2}$)	N_{k}	av. min.	$\mu \mathrm{A} / \mathrm{lm}$ $\mu \mathrm{A} / \mathrm{lm}$
Radiant sensitivity at 4200 \&			mA / W

Multiplier system

Number of stages
Dynode material

11
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{11}$
C_{a}
3 pF
5 pF

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Na_{a}
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
$\mathrm{I}_{\mathrm{a}_{0}}$
av. $1000 \mathrm{~A} / \mathrm{lm}$
min. $250 \mathrm{~A} / \mathrm{lm}$
av. $0.015 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
Linearity between anode pulse amplitude and input light pulse
up to 30 mA

[^76]
TYPICAL CHARACTERISTICS (continued)

$\underline{\text { With voltage divider } B}$

Linearity between anode pulse amplitude
and input light pulse
up to 100 mA
$5 \cdot 10^{-9} \mathrm{~s}$
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total trarisit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)

	max.	1800	V
$\mathrm{~V}_{\mathrm{b}}$		max.	1
mA			
I_{a}	max.	500	V
	min.	120	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	max.	300	V
	min.	80	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	max.	300	V
	min.	80	V

RECOMMENDED CIRCUITS

Voltage divider type A

$$
\begin{array}{ll}
\mathrm{k}=\text { cathode } & \mathrm{S}_{\mathrm{n}}=\text { dynode No. } \mathrm{n} \\
\mathrm{acc}=\text { accelerating electrode } & \mathrm{a}=\text { anode }
\end{array}
$$

1) For an infinitely short light pulse

${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked

7Z2 5464

RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
$\mathrm{a}=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA to 1 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

11 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for optical spectrometry, ultraviolet photometry and other applications which require a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA	
Spectral response	type U (S13)
Useful diameter of the photocathode	44
mm	
Anode sensitivity (at 1800 V)	1000
$\mathrm{~A} / \mathrm{lm}$	

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield

7Z2 5458

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4000 A
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{a}} / \mathrm{S}_{11} \\
& \mathrm{C}_{\mathrm{a}}
\end{aligned}
$$

$$
3 \mathrm{pF}
$$

Anode to all other electrodes

$$
5 \mathrm{pF}
$$

TYPICAL CHARACTERISTICS

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	N_{a}	av. min.	$\begin{array}{r} 1000 \\ 250 \end{array}$	$\begin{aligned} & \mathrm{A} / \operatorname{lm} \\ & \mathrm{A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)	I_{o}		$\begin{aligned} & 0.015 \\ & 0.050 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse		up to	30	mA

[^77]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
up to 100 mA
$5 \cdot 10^{-9} \mathrm{~s}$
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
LIMITING VALUES (Absolute max. rating system)
Supply voltage

V_{b}	max.	1800	V
I_{a}	max.	1	mA
	max.	500	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	\min.	120	V
	max.	300	V
$\mathrm{~V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	\min.	80	V
	\max.	300	V
$\mathrm{~V}_{\mathrm{a} / \mathrm{S}_{11}}$	\min.	80	V

RECOMMENDED CIRCUITS

Voltage divider type A

$$
\begin{aligned}
& \mathrm{k}=\text { cathode } \\
& \mathrm{acc}=\text { accelerating electrode }
\end{aligned}
$$

$$
\mathrm{S}_{\mathrm{n}}=\text { dynode No.n }
$$

$$
a=\text { anode }
$$

[^78]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B

$$
\begin{aligned}
& \mathrm{k}=\text { cathode } \\
& \mathrm{acc}=\text { accelerating electrode }
\end{aligned}
$$

$S_{n}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA to 1 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of mangetic fields.

11 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting with large crystals, or applications in which light must be gathered from a diffusely reflecting surface (e.g. flying-spot techniques in colour printing) or from a distant source.

QUICK REFERENCE DATA		
Spectral response	type $\mathrm{A}(\mathrm{S} 11)$	
Useful diameter of the photocathode	111	mm
Anode sensitivity (at 1800 V)	500	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Base: 14-pin (Jedec B14-38)

Dimensions in mm

7Z2 7851

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56129

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4200 A
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=250 \mathrm{~A} / \mathrm{lm}^{3}$)
av. min.

500 A/lm $100 \mathrm{~A} / \mathrm{lm}$
$0.2 \mu \mathrm{~A}$

Linearity between anode pulse amplitude and input light pulse
semi-transparent, head-on, flat surface Cs-Sb

111 mm
type A (S11)
4200 ± 300 \&
av. $60 \mu \mathrm{~A} / \mathrm{lm}$
$\min .40 \quad \mu \mathrm{~A} / \mathrm{lm}$
$50 \mathrm{~mA} / \mathrm{W}$

11
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
$\mathrm{C}_{\mathrm{a} / \mathrm{S}_{11}}$
Ca
3 pF
5 pF
\qquad

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2850^{\circ} \mathrm{K}$
3) At an ambient temperature of $25^{\circ} \mathrm{C}$

7Z2 5659

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
up to 100 mA
7.10^{-9}
$18 \cdot 10^{-9}$
s
$15.10^{-9} \mathrm{~s}$
70.10^{-9}
s
$\max .2000 \mathrm{~V}$
$\max . \quad 1 \mathrm{~mA}$
$\max .500$ V
\min. 120 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

1) For an infinitely short light pulse
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5660

RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 1 mA will be sufficient.

With the voltage divider type A the tube gives the highest gain, while with the voltage divider type B the tube can deliver a higher anode current output with better time characteristics.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

In pulse techniques, such as scintillation counting, it is advisable to decouple the last two or three stages by means of capacitors of 100 pF and 200 pF (the highest value at the last stage).

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

11 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications which require a good sensitivity in the ultra-violet region, combined with a photosensitive area larger than usual.

QUICK REFERENCE DATA	
Spectral response	type U (S13)
Useful diameter of the photocathode	111
mm	
Anode sensitivity (at 1800 V)	500
$\mathrm{~A} / \mathrm{lm}$	

DIMENSIONS AND CONNECTIONS
Base: 14-pin (B14-38)

Dimensions in mm

7Z2 7852

ACCESSORIES

Socket
 Mu-metal shield
 GENERAL

type FE1001
type 56129

Photocathode
Description semi-transparent, head-on, flat surface
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wave length at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4000 A
Multiplier system
Number of stages
Dynode material
type U (S13)
$4000 \pm 300 \AA$

Cs-Sb
111 mm
$\square-$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse up to 100 mA

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2000 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2000 \mathrm{~V}$
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=2000 \mathrm{~V}$

Total transit time at $\mathrm{V}_{\mathrm{b}}=2000 \mathrm{~V}$

LIMITING VALUES

Supply voltage
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)

V_{b}	max.	2000	V
I_{a}	max.	1	mA
	max.	500	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	min.	120	V
	max.	300	V
		80	V
$\mathrm{~V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	min.		
	max.	300	V
		80	V

RECOMMENDED CIRCUITS

Voltage divider type A
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

1) For an infinitely short light pulse
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked. 7Z2 5664

RECOMMENDED CIRCUITS (continued)

Voltage divider type B

```
k = cathode
acc = accelerating electrode
```

$$
S_{n}=\text { dynode No.n }
$$

$$
\mathrm{a}=\text { anode }
$$

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 1 mA will be sufficient.

With the voltage divider type A the tube gives the highest gain, while with the voltage divider type B the tube can deliver a higher anode current output with better time characteristics.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.
In pulse techniques, such as scintillation counting, it is advisable to decouple the last two or three stages by means of capacitors of 100 pF and 200 pF (the highest value at the last stage).
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.
It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields .

Syure

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required (fast coincidences, life of unstable particles, Cerenkov counters).

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	42	mm
Gain (at 2200 V)	10^{8}	
Anode pulse rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102)

7Z2 8264

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 4200 \&
Multiplier system
Number of stages
Dynode material
Capacitances
Grid No. 1 to accelerator electrode
Grid No. 2 to all other electrodes
Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, curved surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

42 mm
\max. 69 mm
type A (S11)
4200 ± 300 \&
N_{k}
av. $65 \mu \mathrm{~A} / \mathrm{lm}$
min. $45 \mu \mathrm{~A} / \mathrm{lm}$
$55 \mathrm{~mA} / \mathrm{W}$

14
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

$\mathrm{C}_{\mathrm{g}_{1} / \mathrm{acc}, \mathrm{S}_{1}}$	25 pF	
$\mathrm{C}_{\mathrm{g}_{2}}$	7 pF	
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$	7	pF
C_{a}	9.5 pF	

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.
2) See spectral response curve in front of this section
3) Measured with a tungsten ribbon lamp having a colour temperature of $2850{ }^{\circ} \mathrm{K}$

7Z2 5783

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8} \quad V_{b}$	av. max.	$\begin{aligned} & 2200 \\ & 2500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Anode dark current at $G=10^{8} \mathrm{l}$) $\quad \mathrm{I}_{\mathrm{a}_{0}}$	av. max.	$\begin{aligned} & 0.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Linearity between anode pulse amplitude and input light pulse	up to	100	mA
With voltage divider B			
Linearity between anode pulse amplitude and input light pulse	up to	300	mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)		0^{-9}	S
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)		0^{-9}	S
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$	max.	-10	S
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)		10^{-9}	S
Maximum peak currents		to 1	A

Supply voltage ${ }^{3}$)	V_{b}	\max.	2500	V
Continuous anode current	I_{a}	\max.	. 2	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between grid No. 1 and cathode	$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$	max.	100	V
Voltage between grid No. 2 and first dynode	$\mathrm{V}_{\mathrm{g} 2} / \mathrm{S}_{1}$	max.	100	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	max. min.	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{4}$)	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{14}$	\max. min.	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

${ }^{1}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$.
${ }^{2}$) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5784

RECOMMENDED CIRCUITS

Voltage divider type A ${ }^{1}$)

Voltage divider type B^{1})
$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{g}_{2}=$ deflector
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig. 2); voltage between S_{2} and S_{3} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$, $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$,
$\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.
${ }^{1}$) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.

7Z2 5785

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high countingrates and large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an aver age voltage of high output.
A. The electron optical input system consists of four elements:
the photocathode k ;
the focusing electrode g_{1};
the accelerating electrode acc;
the deflector g_{2}.
To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling to a scintillator.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron path in the input system.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 2 the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output pulse amplitude;
d. the useful cathode area can be controlled by giving the electrode g_{1} a negative potential with respect to the photocathode, as shown in Fig.3, 4 and 5 ; obviously this variable electronic iris has the effect of reducing the dark current since the electrons emitted at the edge of the cathode do not reach the first dynode and consequently do not contribute to the anode current.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Electron optical input system

Fig. 2 Anode current variation with the adjustment of g_{1}

OPERATIONAL CONSIDERATIONS (continued)

Fig. 3

Fig. 4

OPERATIONAL CONSIDERATIONS (continued)

Fig. 5
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the electrode g_{2} to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the third dynode (see recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2200 V (see Fig.6).
The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

OPERATIONAL CONSIDERATIONS (continued)

It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact such short pulses are needed for time measurements only, so not for spectrography purposes. If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by $d-1, d$ representing the secondary-emission coefficient of each stage ($d \approx 3.5$). It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 7 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 8 the anode current variation is plotted against anode-to-final-dynode voltage.

It should be noted that for equal high tension the gain of the tube is smaller for voltage divider type B than for one according to type A. In practice, therefore, it will be preferable to use the type A distribution, or a distribution between A and B (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S} 91.5 \mathrm{~V}_{\mathrm{S}}$ between S 9 and S_{10} and so on, maintaining the same progression.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

Fig. 6

Fig. 7

Fig. 8

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in spectrometry where very low luminous fluxes are to be measured (single photon counting) and for detecting of soft β-radiation (C_{14} and H_{3} counting). Its fast time characteristics make the tube especially useful for fast coincidence measurements, thus reducing the background noise considerably.

QUICK REFERENCE DATA		
Spectral response	type	$\mathrm{A}(\mathrm{S} 1 \mathrm{l})$
Useful diameter of the photocathode	42	mm
Gain (at 2150 V)	10^{8}	
Anode pulse rise time	2	ns
Efficiency for single photons (1600 V)	7	$\%$
Background noise (1600 V)	350	$\mathrm{c} / \mathrm{sec}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102)

7Z2 8258

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130 type 56131
semi-transparent, head-on, curved surface
Cs-Sb

Minimum useful diameter
42 mm
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $4200 \AA$

Multiplier system

Number of stages
Dynode material

Capacitances

Grid No. 1 to accelerator electrode	$\mathrm{C}_{\mathrm{g}_{1} / \mathrm{acc}, \mathrm{S}_{1}}$	25	pF
Grid No. 2 to all other electrodes	C_{2}	7	pF
Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$	7	pF
Anode to all other electrodes	C_{a}	9.5	pF

1) To avoid electric field distortion in the electron optical system the aquadag
shield (pin No.18) must be connected to a voltage near to the cathode voltage.
If the cathode is connected to the negative H.T., precautions should be taken
to ensure a high-tension insulation between the aquadag shield and the mu-
metal shield.
2) See spectral response curve in front of this section
3) Measured with a tungsten ribbon lamp having a colour temperature of $2850{ }^{\circ} \mathrm{K}$ 7 Z 25801

TYPICAL CHARACTERISTICS

With voltage divider A
Supply voltage for $G=10^{8}$
Anode dark current at. $G=10^{81}$)

	av.	2150	V
$\mathrm{~V}_{\mathrm{b}}$	max.	2500	V
	av.	0.1	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}_{\mathrm{o}}}$	max.	1	$\mu \mathrm{~A}$

Linearity between anode pulse amplitude and input light pulse
up to 100 mA

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
up to 300 mA
$2 \cdot 10^{-9} \mathrm{~s}$
$4 \cdot 10^{-9} \mathrm{~s}$
$\max \cdot 5 \cdot 10^{-10} \mathrm{~s}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Maximum peak currents
With voltage divider C^{3})

Efficiency for single-photons	η	min.	7	\%
Supply voltage for $\eta=7 \%$	V_{b}	av. max.	$\begin{aligned} & 1600 \\ & 1800 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Background noise for $\eta=7 \%$	B	av. max.	$\begin{aligned} & 350 \\ & 800 \end{aligned}$	c/sec c/sec
Background noise at $\mathrm{V}_{\mathrm{b}}=2100 \mathrm{~V}$	B	av. max.	$\begin{aligned} & 2000 \\ & 5000 \end{aligned}$	c/sec $\mathrm{c} / \mathrm{sec}$

1) At an ambient temperature of $25^{\circ} \mathrm{C}$
2) For an infinitely short light pulse, fully illuminating the photocathode
${ }^{3}$) Measured with a threshold at the anode of the photo multiplier of $4.25 \times 10^{-13} \mathrm{C}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{1}$)
Continuous anode current $\quad I_{a}$
Voltage between cathode and first dynode
Voltage between grid No. 1 and cathode
Voltage between grid No. 2 and first dynode
Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)

V_{b}	max.	2500	V
I_{a}	max.	0.2	mA
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{k} / \mathrm{g}}{ }_{1}$	max.	100	V
$\mathrm{V}_{\mathrm{g}} / \mathrm{S}_{1}$	max.	100	V
$\mathrm{V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	\max. \min.	500 80	V
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{14}}$	\max. \min.	500 80	V

RECOMMENDED CIRCUITS

Voltage divider type A ${ }^{3}$)
$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$g_{2}=$ deflector
$S_{n}=$ dynode No.n
a = anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig. 2); voltage between S_{2} and S_{3} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$,
$\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$,
$\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 5.10^{8} whichever is lowest.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5803

RECOMMENDED CIRCUITS (continued)

Voltage divider type B^{3})

Voltage divider type C^{3})
$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{g}_{2}=$ deflector
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig.2); voltage between S_{2} and S_{3} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$, $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$,
$\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.
3) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.

7 Z 25804

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of four elements:

> the photocathode k ;
> the focusing electrode g_{1}; the accelerating electrode acc; the deflector g_{2}.

To reduce transit-time fluctuations, geometrical time spread, amplitude fluctuation or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron path in the input system.
3. the potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig.2; the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
d. the useful cathode area can be controlled by giving the electrode g_{1} a negative potential with respect to the photocathode, obviously this variable electronic iris has the effect of reducing the dark current since the electrons emitted at the edge of the cathode do not reach the first dynode and consequently do not contribute to the anode current.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Electron optical input system

Fig. 2 Anode dark current variation with the adjustment of g_{1}

OPERATIONAL CONSIDERATIONS (continued)

4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the electrode g_{2} to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the third dynode (see recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2150 V (see fig.5).

The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capcitances, too use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

Fig. 3 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B . The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In Fig. 4 the anode current variation is plotted against anode-to-final-dynode voltage.

It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A .

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.
C. The specification of the tube characteristics for the detection of very low luminous fluxes is based on the following method of measuring:

1. The photocathode of the tube is impinged by a monochromatic light flux $(\lambda=4240 \AA)$ of $1,46 \cdot 10^{5}$ photons $/ \mathrm{sec}$. This flux is small enough to ensure that the interactions of the photons with the photocathode result in single photoelectron pulses.
2. The tube is circuited in the voltage divider C . The threshold of the electronic system related to the anode of the photomultiplier is 4.25×10^{-13} Coulomb.
3. The efficiency for single photons at a certain voltage is defined as follows:

$$
\eta=\frac{\mathrm{n}-\mathrm{B}}{\mathrm{~N}} \times 100 \%
$$

In which: $\mathrm{n}=$ number of counted pulses per unit of time
$B=$ number of noise pulses per unit of time
$\mathrm{N}=$ luminous flux in photons per unit of time

OPERATIONAL CONSIDERATIONS (continued)

Fig. 6 shows the efficiency and noise curves as a function of the high tension, measured as described before.

The results obtained with a special liquid scintillation-tritium source are given in fig.7. It should be noticed that a detection efficiency for tritium of about 40% at room temperature is possible. A considerable reduction of the background noise can be obtained by means of coincidence measurements. For this purpose particularly well matched pairs of photo multipliers are available. The high voltages for these two tubes are equal within $\pm 15 \mathrm{~V}$ at a detection efficiency of 7% for single photons and the product of the values of the background noise of both tubes is less than 25.10^{4} at the same voltage. (Type no. 56AVP/03A).

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required, combined with a good sensitivity in the near-ultraviolet region.

QUICK REFERENCE DATA		
Spectral response	type $\mathrm{A} / 05$ (extended S11)	
Useful diameter of the photocathode	42	mm
Window thickness	0.5	mm
Gain (at 2200 V)	10^{8}	
Anode rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 20-pin (Jedec B20-102)

ACCESSORIES

Socket

Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131

GENERAL

Photocathode
Description semi-transparent, head-on, curved surface

Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 4400 A
Multiplier system
Number of stages
Dynode material
Capacitances
Grid No. 1 to accelerator electrode
Grid No. 2 to all other electrodes
Anode to final dynode
Anode to all other electrodes

Cs-Sb

42 mm
\max. 69 mm
type A/05 (extended S11)
4400 ± 300 \&
av. $65 \mu \mathrm{~A} / 1 \mathrm{~m}$
min. $45 \mu \mathrm{~A} / \mathrm{lm}$
$55 \mathrm{~mA} / \mathrm{W}$

14
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

$\mathrm{C}_{\mathrm{g}} / \mathrm{acc}, \mathrm{S}_{1}$	25 pF	
$\mathrm{C}_{\mathrm{g}_{2}}$	7 pF	
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$	7	pF
C_{a}	9.5 pF	

[^79]
TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8}$

Anode dark current at $G=10^{8} \quad 1$)
Linearity between anode pulse amplitude and input light pulse

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Maximum peak currents

av.	2200	V
max.	2500	V
av.	0.5	$\mu \mathrm{~A}$
$\operatorname{max.}$	5.0	$\mu \mathrm{~A}$

up to 100 mA
up to 300 mA
$2 \cdot 10^{-9} \mathrm{~s}$
$4 \cdot 10^{-9} \mathrm{~s}$
$\max \cdot 5 \cdot 10^{-10} \mathrm{~s}$
$36.10^{-9} \mathrm{~s}$
0.5 to 1 A

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{3}$)	V_{b}	\max.	2500	V
Continuous anode current	I_{a}	\max.	2	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k}} / \mathrm{S}_{1}$	\max.	800	V
min.	250	V		
Voltage between grid No. 1 and cathode	$\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1}$	\max.	100	V
Voltage between grid No. 2 and first dynode	$\mathrm{V}_{\mathrm{g}} / \mathrm{S}_{1}$	\max.	100	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	\max.	500	V
		\min.	80	V
		\max.	500	V
Voltage between anode and final dynode $\left.{ }^{4}\right)$	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{14}$	\min.	80	V

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5837

RECOMMENDED CIRCUITS

Voltage divider type A ${ }^{1}$)

Voltage divider type B^{1})
$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{g}_{2}=$ deflector
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig. 2); voltage between S_{2} and S_{3} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$; $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$,
$\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an aver age voltage of high output.
A. The electron optical input system consists of four elements:
the photocathode k ;
the focusing electrode g_{1};
the accelerating electrode acc;
the deflector g_{2}.
To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling to a scintillator;
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron path in the input system.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 2 the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output pulse amplitude;
d. the useful cathode area can be controlled by giving the electrode g_{1} a negative potential with respect to the photocathode, as shown in Fig.3, 4 and 5; obviously this variable electronic iris has the effect of reducing the dark current since the electrons emitted at the edge of the cathode do not reach the first dynode and consequently do not contribute to the anode current.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Electron optical input system

Fig. 2 Anode current variation with the adjustment of g_{1}

OPERATIONAL CONSIDERATIONS (continued

Fig. 3

Fig. 4

OPERATIONAL CONSIDERATIONS (continued)

Fig. 5
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the electrode g_{2} to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the third dynode (see recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2200 V (see Fig. 6)
The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable touse a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

OPERATIONAL CONSIDERATIONS (continued)

It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact such short pulses are needed for time measurements only, so not for spectrography purposes. If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by $\mathrm{d}-1$, d representing the secondary-emission-coefficient of each stage ($\mathrm{d} \approx 3.5$). It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 7 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 8 the anode current variation is plotted against anode-to-final-dynode voltage.

It should be noted that for equal high tension the gain of the tube is smaller for voltage divider type B than for one according to type A. In practice, therefore, it will be preferable to use the type A distribution, or a distribution between A and B (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9} 1.5 \mathrm{~V}_{\mathrm{S}}$ between S 9 and S_{10} and so on, maintaining the same progression.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield inlfuences.

Fig. 6

Fig. 7

Fig. 8

Spectral response curve A/05
Fig. 9

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in such applications as infra-red telecommunication and ranging, and in optical experiments in which a fast response is required.

QUICK REFERENCE DATA		
Spectral response	type C (S1)	
Useful diameter of the photocathode	42	mm
Anode sensitivity (at 2750 V)	100	$\mathrm{~A} / \mathrm{lm}$
Anode pulse rise time	2	ns

DIMENSIONS AND CONNECTIONS
Base: 20-pin (Jedec B20-102)

7Z2 8266

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131
semi-transparent, head-on, curved surface

$$
\mathrm{Ag}-\mathrm{O}-\mathrm{Cs}
$$

Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response Luminous sensitivity ${ }^{3}$)

Infra-red luminous sensitivity ${ }^{4}$)
Radiant sensitivity at $8000 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Grid No. 1 to accelerator electrode	$\mathrm{C}_{\mathrm{g}_{1} / \mathrm{acc}}, \mathrm{S}_{1}$	25	pF
Grid No. 2 to all other electrodes	$\mathrm{C}_{\mathrm{g}_{2}}$	7	pF
Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$	7	pF
Anode to all other electrodes	C_{a}	9.5	pF

Grid No. 2 to all other electrodes

Anode to final dynode
Anode to all other electrodes
N_{k}
N_{k}
max. 69 mm
type C (S1)
$8000 \pm 1000 \AA$
av. $25 \mu \mathrm{~A} / \mathrm{lm}$
$\min .15 \mu \mathrm{~A} / \mathrm{lm}$
av. $\quad 3 \mu \mathrm{~A} / \mathrm{lm}$ min. $1.4 \mu \mathrm{~A} / \mathrm{lm}$
$2 \mathrm{~mA} / \mathrm{W}$

10

$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
9.5 pF

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.
2) See spectral response curve in front of this section.
3) Measured with a tungsten ribbon lamp having a colour temperature of $2850^{\circ} \mathrm{K}$
4) The infra-red lumen is the flux resulting from one lumen yielded by a tungsten ribbon lamp (colour temperature $2850{ }^{\circ} \mathrm{K}$) going through an infra-red filter corning CS94 No. 2450, fusion 1613 thickness 2.61 .

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=2750 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=20 \mathrm{~A} / \mathrm{lm}^{1}$)
With voltage divider B

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}{ }^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}{ }^{2}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max.	3000	V
Continuous anode current	I_{a}	max.	30	$\mu \mathrm{A}$
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	$\begin{aligned} & \max \\ & \min \end{aligned}$	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between grid No. 1 and cathode	$\mathrm{V}_{\mathrm{k} / \mathrm{g}} \mathrm{g}_{1}$	max.	100	V
Voltage between grid No. 2 and first dynode	$\mathrm{V}_{\mathrm{g}} / \mathrm{S}_{1}$	max.	100	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	$\begin{aligned} & \max \\ & \min \end{aligned}$	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{3}$)	$\mathrm{V} \mathrm{a}^{\text {S }} \mathrm{S}_{10}$	$\begin{aligned} & \max \\ & \text { min. } \end{aligned}$	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

[^80]
RECOMMENDED CIRCUITS

Voltage divider type A ${ }^{1}$)

Voltage divider type B^{1})
$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{g}_{2}=$ deflector
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig.2); voltage between S_{2} and S_{3} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$, $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

[^81]
OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.
The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an aver age voltage of high output.
A. The electron optical input system consists of four elements:

> the photocathode k ;
> the focusing electrode g_{1};
> the accelerating electrode acc;
> the deflector g_{2}.

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling to a scintillator;
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron path in the input system.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 2 the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output pulse amplitude;
d. the useful cathode area can be controlled by giving the electrode g_{1} a negative potential with respect to the photocathode, as shown in Fig.3, 4 and 5; obviously this variable electronic iris has the effect of reducing the dark current since the electrons emitted at the edge of the cathode do not reach the first dynode and consequently do not contribute to the anode current.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Electron optical input system

Fig. 2 Anode current variation with the adjustment of g_{1}

OPERATIONAL CONSIDERATIONS (continued)

Fig. 3

Fig. 4

OPERATIONAL CONSIDERATIONS (continued)

Fig. 5
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the electrode g_{2} to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the third dynode (see recommended circuits).
B. The multiplier system consists of 10 stages, providing a total current amplification of 10^{7} at about 3000 V

When high frequency signals are to be detected the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω).

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

Fig. 6

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as telecommunication and ranging and in optical experiments where a high-sensitivity in the whole visible and ultraviolet region is required combined with a high degree of time definition.

QUICK REFERENCE DATA		
Spectral response	type TU (extended S20)	
Window material	quartz	
Useful diameter of the photocathode	42	mm
Gain (at 2500 V)	10^{8}	
Anode pulse rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131

GENERAL

Photocathode

Description semi-transparent, head-on, curved surface

Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $4200 \AA$
at $7000 \AA$ $\mathrm{Sb}-\mathrm{K}-\mathrm{Na}-\mathrm{Cs}$

42 mm
max. 69 mm
type TU (extended S20)
$4200 \pm 300 . \AA$
av. $115 \mu \mathrm{~A} / \mathrm{lm}$
min. $\quad 90 \mu \mathrm{~A} / \mathrm{lm}$
$65 \mathrm{~mA} / \mathrm{W}$
$12 \mathrm{~mA} / \mathrm{W}$
Multiplier system
Number of stages
Dynode material
Capacitances
Grid No. 1 to accelerator electrode
Grid No. 2 to all other electrodes
Anode to final dynode
Anode to all other electrodes

$\mathrm{C}_{\mathrm{g}} / \mathrm{acc}, \mathrm{S}_{1}$	25 pF	
$\mathrm{C}_{\mathrm{g}_{2}}$	7 pF	
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$	7	pF
C_{a}	9.5 pF	

[^82]7Z2 5819

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8}$
Anode dark current at $G=10^{8} 1$)

	av.	2500	V
$\mathrm{~V}_{\mathrm{b}}$	\max.	2750	V
$\mathrm{I}_{\mathrm{a}_{0}}$	\max.	5	$\mu \mathrm{~A}$
	up to	100	mA

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
up to 300 mA
$2 \cdot 10^{-9} \mathrm{~s}$
$4 \cdot 10^{-9} \mathrm{~s}$
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Maximum peak currents $\max \cdot 10^{-9} \mathrm{~s}$
$36.10^{-9} \mathrm{~s}$
0.5 to 1 A

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{3}$)	V_{b}	max.	2750
Continuous anode current	I_{a}	\max.	2
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$
Voltage between grid No. 1 and cathode	$\mathrm{V}_{\mathrm{k} / \mathrm{g}} \mathrm{g}_{1}$	max.	100
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	max. \min.	$\begin{array}{r} 500 \\ 80 \end{array}$
Voltage between anode and final dynode ${ }^{4}$)	$\mathrm{V} / \mathrm{S}_{14}$	max. min.	$\begin{array}{r} 500 \\ 80 \end{array}$

${ }^{1}$) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
${ }^{4}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

Voltage divider type A ${ }^{1}$)

Voltage divider type B^{1})
$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$g_{2}=$ deflector
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig. 2); voltage.between S_{2} and S_{3} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$, $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an aver age voltage of high output.
A. The electron optical input system consists of four elements:

> the photocathode k ; the focusing electrode g_{1};
> the acceler ating electrode acc;
> the deflector g_{2}

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following adyantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling to a scintillator.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-acceler ator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron path in the input system.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 2 the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output pulse amplitude;
d. the useful cathode area can be controlled by giving the electrode g_{1} a negative potential with respect to the photocathode, as shown in Fig. 3, 4 and 5 ; obviously this variable electronic iris has the effect of reducing the dark current since the electrons emitted at the edge of the cathode do not reach the first dynode and consequently do not contribute to the anode current.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Electron optical input system

Fig. 2 Anode current variation with the adjustment of g_{1}

OPERATIONAL CONSIDERATIONS (continued)

Fig. 3

Fig. 4

OPERATIONAL CONSIDERATIONS (continued)

Fig. 5
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the electrode g_{2} to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the third dynode (see recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2500 V (see Fig.6).

The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 7 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 8 the anode current variation is plotted against anode-to-final-dynode voltage.

It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A. In practice, therefore, it will be preferable to use the type A distribution, or a distribution between A and B (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9}, 1.5 \mathrm{~V}_{\mathrm{S}}$ between S_{9} and S_{10} and so on, maintaining the same progression.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

Fig. 6

Fig. 7

Fig. 8

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in laser-technics working in the orange, yellow and green range.

QUICK REFERENCE DATA		
Spectral response	type $\mathrm{T}(\mathrm{S} 20)$	
Useful diameter of the photocathode	42	mm
Gain (at 2500 V)	10^{8}	
Anode pulse rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Base: 20-pin (Jedec B20-102)
Dimensions in mm

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131

GENERAL

Photocathode
Description semi-transparent, head-on, curved surface

Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $4200 \AA$ at $7000 \AA$

Multiplier system
Number of stages
Dynode material

Capacitances

Grid No. 1 to accelerator electrode
Grid No. 2 to all other electrodes
Anode to final dynode
Anode to all other electrodes

$$
\mathrm{Sb}-\mathrm{K}-\mathrm{Na}-\mathrm{Cs}
$$

42 mm
\max. 69 mm
type T (S20)
$4200 \pm 300 \AA$
av. $115 \mu \mathrm{~A} / \mathrm{lm}$
min. $\quad 90 \mu \mathrm{~A} / \mathrm{lm}$
$65 \mathrm{~mA} / \mathrm{W}$
$12 \mathrm{~mA} / \mathrm{W}$
N_{k}

14
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

$\mathrm{C}_{\mathrm{g}_{1} / \mathrm{acc}, \mathrm{S}_{1}}$	25 pF	
$\mathrm{C}_{\mathrm{g}_{2}}$	7 pF	
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$	7	pF
C_{a}	9.5	pF

[^83]
TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8}$
av. 2500 V

Anode dark current at $G=10^{8} \mathrm{l}$) V_{b}

Linearity between anode pulse amplitude and input light pulse

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Maximum peak currents

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{3}$)
V_{b}
Continuous anode current
Voltage between cathode and first dynode
Voltage between grid No. 1 and cathode
Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{4}$)
$\mathrm{V}_{\mathrm{k}} / \mathrm{S}_{1}$
$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{\mathrm{l}}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{14}$
up to 100 mA
un to 300 mA
max. 2750
\max. $5.0 \mu \mathrm{~A}$
2.10^{-9}
4.10^{-9}
s
$\max \cdot 10^{-9} \mathrm{~s}$
$36 \cdot 10^{-9} \mathrm{~s}$
0.5 to 1 A
$\max .2750 \mathrm{~V}$
\max. 2 mA
$\max .800 \mathrm{~V}$
min. 250 V
$\max .100 \mathrm{~V}$
\max. 500 V
$\min .80$ V
$\max .500 \mathrm{~V}$
\min. 80 V
${ }^{1}$) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
${ }^{3}$) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 7853

RECOMMENDED CIRCUITS (continued)

Voltage divider type A^{1})

Voltage divider type B^{1})
$\mathrm{k}=\mathrm{cathode}$
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{g}_{2}=$ deflector
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig. 2); voltage between S_{2} and S_{3} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$, $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.

7Z2 5812

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an aver age voltage of high output.
A. The electron optical input system consists of four elements:

> the photocathode k ;
> the focusing electrode g_{1};
> the accelerating electrode acc; the deflector g_{2}

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling to a scintillator.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron path in the input system.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 2 the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output pulse amplitude;
d. the useful cathode area can be controlled by giving the electrode g_{1} a negative potential with respect to the photocathode, as shown in Fig.3, 4 and 5 ; obviously this variable electronic iris has the effect of reducing the dark current since the electrons emitted at the edge of the cathode do not reach the first dynode and consequently do not contribute to the anode current.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Electron optical input system

Fig. 2 Anode current variation with the adjustment of g_{1}

OPERATIONAL CONSIDERATIONS (continued)

Fig. 3

Fig. 4

OPERATIONAL CONSIDERATIONS (continued)

Fig. 5
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the electrode g_{2} to make it.impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the third dynode (see recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2500 V (see Fig. 6).

The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

OPERATIONAL CONSIDERATIONS (continued)
Fig. 7 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 8 the anode current variation is plotted against anode-to-final-dynode voltage.

It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A. In practice, therefore, it will be preferable to use the type A distribution, or a distribution between A and B (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9}, 1.5 \mathrm{~V}_{\mathrm{S}}$ between S_{9} and S_{10} and so on, maintaining the same progression.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

Fig. 6

Fig. 7

Fig. 8

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required, combined with a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA		
Spectral response	type U (S13)	
Useful diameter of the photocathode	42	mm
Gain (at 2200 V)	10^{8}	
Anode pulse rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102)

7Z2 8265

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131
semi-transparent, head-on, curved surface
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 4000 §
Multiplier system
Number of stages
Dynode material

Capacitances

Grid No. 1 to accelerator electrode
Grid No. 2 to all other electrodes
Anode to final dynode
Anode to all other electrodes

| $\mathrm{C}_{\mathrm{g}} / \mathrm{acc}, \mathrm{S}_{1}$ | 25 pF |
| :--- | ---: | :--- |
| $\mathrm{C}_{\mathrm{g}_{2}}$ | 7 pF |
| $\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$ | 7 pF |
| C_{a} | 9.5 pF |

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.
2) See spectral response curve in front of this section.
3) Measured with a tungsten ribbon lamp having a colour temperature of $2850^{\circ} \mathrm{K}$

7Z2 5792

56 UVP

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8} \quad V_{b}$	av. max.	$\begin{aligned} & 2200 \\ & 2500 \end{aligned}$	V
Anode dark current at $G=10^{81}$) $\mathrm{I}_{\mathrm{a}_{\mathrm{o}}}$	av. max.	$\begin{aligned} & 0.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Linearity between anode pulse amplitude and input light pulse	up to	100	mA
With voltage divider B			
Linearity between anode pulse amplitude and input light pulse	up to	300	mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V} 2$)		10^{-9}	S
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)		10^{-9}	S
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$	max.	0^{-10}	s
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)		10^{-9}	S
Maximum peak currents		to 1	A

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{3}$)	V_{b}	\max.	2500	V
Continuous anode current	I_{a}	\max.	2	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k}} / \mathrm{S}_{1}$	\max. \min.	800	V
Voltage between grid No. 1 and cathode	$\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1}$	\max.	100	V
Voltage between grid No. 2 and first dynode	$\mathrm{V}_{\mathrm{g}} / \mathrm{S}_{1}$	\max.	100	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	\max.	500	V
		\min.	80	V
		\max.	500	V
Voltage between anode and final dynode $\left.{ }^{4}\right)$	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{14}$	\min.	80	V

[^84]2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5793

RECOMMENDED CIRCUITS

Voltage divider type A 1)

Voltage divider type B^{1})
$\mathrm{k}=$ cathode
$\mathrm{g}_{1}=$ focusing electrode
acc $=$ accelerating electrode
$g_{2}=$ deflector
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig. 2); voltage between S_{2} and S_{3} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$, $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

[^85]
OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.
The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an aver age voltage of high output.
A. The electron optical input system consists of four elements:
the photocathode k ;
the focusing electrode g_{1};
the accelerating electrode acc;
the deflector g_{2}.
To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling to a scintillator.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron path in the input system.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 2 the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output pulse amplitude;
d. the useful cathode area can be controlled by giving the electrode g_{1} a negative potential with respect to the photocathode, as shown in Fig.3, 4 and 5; obviously this variable electronic iris has the effect of reducing the dark current since the electrons emitted at the edge of the cathode do not reach the first dynode and consequently do not contribute to the anode current.

7Z2 5795

OPERATIONAL CONSIDERATIONS(continued)

Fig. 1 Electron optical input system

Fig. 2 Anode current variation with the adjustment of g_{1}

OPERATIONAL CONSIDERATIONS (continued)

Fig. 3

Fig. 4

OPERATIONAL CONSIDERATIONS (continued)

Fig. 5
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the electrode g_{2} to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the third dynode (see recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2200 V (See Fig. 6).
The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

OPERATIONAL CONSIDERATIONS (continued)

It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact such short pulses are needed for time measurements only, so not for spectrography purposes. If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by $d-1, d$ representing the secondary-emission coefficient of each stage ($d \approx 3.5$). It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 7 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 8 the anode current variation is plotted against anode-to-final-dynode voltage.

It should be noted that for equal high tension the gain of the tube is smaller for voltage divider type B than for one according to type A. In practice, therefore, it will be preferable to use the type A distribution, or a distribution between A and B (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9} 1.5 \mathrm{~V}_{\mathrm{S}}$ between S 9 and S_{10} and so on, maintaining the same progression).

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

56 UVP

Fig. 6

Fig. 7

Fig. 8

11 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as total body radiation measurements, uranium prospecting with very large scintillators, Cerenkov light measurements in large transparent objects.

QUICK REFERENCE DATA	
Spectral response	type A (S11)
Useful diameter of the photocathode	200
mm	
Anode sensitivity (at 1800 V)	250
$\mathrm{~A} / \mathrm{lm}$	

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56132

GENERAL

Photocathode
Description semi-transparent, head-on, curved surface ${ }^{1}$)

Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes $\mathrm{Cs}-\mathrm{Sb}$

200 mm
186 mm
type A (Sl1)
4200 ± 300 Я
av. $\quad 50 \mu \mathrm{~A} / \mathrm{lm}$
\min. 35. $\mu \mathrm{A} / \mathrm{lm}$
$45 \mathrm{~mA} / \mathrm{W}$

$\mathrm{N}_{\mathrm{k}} \quad$| av. | min. | 35 |
| :--- | :--- | :--- |
| | | $\mu \mathrm{~A} / \mathrm{lm}$ |
| | 45 | $\mathrm{~mA} / \mathrm{W}$ |11

$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{11}$	3	pF
C_{a}	5	pF

C_{a}
5 pF

TYPICAL CHARACTERISTICS

With voltage divider A

	av.	250	$\mathrm{~A} / 1 \mathrm{~m}$
$\mathrm{~N}_{\mathrm{a}}$	min.	60	$\mathrm{~A} / \mathrm{lm}$
$\mathrm{I}_{\mathrm{a}_{\mathrm{o}}}$	\max.	1	$\mu \mathrm{~A}$

Linearity between anode pulse amplitude and input light pulse
up to 30 mA

1) The tube is delivered with a plane-concave plexiglass adaptor and with a metal envelope
${ }^{2}$) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850^{\circ} \mathrm{K}$
3) At an ambient temperature of $25^{\circ} \mathrm{C}$

7Z2 5754

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
up to 100 mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
$5 \cdot 10^{-9} \mathrm{~s}$
$10 \cdot 10^{-9} \mathrm{~s}$
$4.10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max. 2500	V
Continuous anode current	I_{a}	max.	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	$\begin{array}{lr} \max . & 1 \theta 00 \\ \min . & 200 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between cathode and accelerator electrode	$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$	max. 1000	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	$\begin{array}{lr} \max . & 300 \\ \min . & 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{11}}$	$\begin{array}{lr} \max . & 300 \\ \min . & 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

1) For an infinitely short light pulse.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5755

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a = anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 1 mA will be sufficient.

With the voltage divider type A the tube gives the highest gain, while with the voltage divider type B the tube can deliver a higher anode current output with better time characteristics.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

In pulse techniques, such as scintillation counting, it is advisable to decouple the last two or three stages by means of capacitors of 100 pF and 200 pF (the highest value at the last stage).

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear-physics applications where a high degree of time definition is required (fast coincidences, Cerenkov counters).

QUICK REFERENCE DATA	
Spectral response	type A (S11)
Useful diameter of the photocathode	110
Gain (at 2400 mm	
Anode pulse rise time	10^{8}
Linearity	2

Base: 20-pin (Jedec B20-102)

ACCESSORIES

Socket
Mu-metal shield (tube with metal container) (tube without metal container)
type FE1003
type 56133
type 56129
7Z2 8267

GENERAL

Photocathode
Description semi-transparent, head-on, curved surface ${ }^{1}$)

Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 4200 A
Multiplier system
Number of stages
Dynode material
av. $\quad 70 \mu \mathrm{~A} / \mathrm{lm}$ min. $45 \mu \mathrm{~A} / \mathrm{lm}$
type A (S11)
4200 ± 300 \&

Capacitances
Anode to final dynode
Anode to all other electrodes

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14} \\
& \mathrm{C}_{\mathrm{a}}
\end{aligned}
$$14

TYPICAL CHARACTERISTICS

With voltage divider A
Supply voltage for $G=10^{8}$
Anode dark current at $G=10^{8} 4$)
$\begin{array}{llrl} & \text { av. } & 2400 & \mathrm{~V} \\ \mathrm{~V}_{\mathrm{b}} & \text { max. } & 3000 & \mathrm{~V} \\ & & 2 & \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{a}} & \text { av. } & 2 & \max . \\ & & 12 & \mu \mathrm{~A}\end{array}$
Linearity between anode pulse amplitude and input light pulse

$$
\mathrm{Cs}-\mathrm{Sb}
$$

110 mm
$180 \pm 5 \mathrm{~mm}$
$60 \mathrm{~mA} / \mathrm{W}$

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B
Linearity between anode pulse amplitude
and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{1}$)
up to 300 mA
$2 \cdot 10^{-9} \mathrm{~s}$
$4 \cdot 10^{-9} \mathrm{~s}$
10^{-9}
$45.10^{-9} \mathrm{~s}$
0.5 to 1 A

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{2}$)
Continuous anode current
Voltage between cathode and first dynode + grid No. 2

V_{b}	max.	3000	V
I_{a}	max.	2	mA
	max.	800	V
$\mathrm{~V}_{\mathrm{k}} / \mathrm{S}_{1}+\mathrm{g}_{2}$	min.	250	V

Voltage between cathode and accelerator electrode
Voltage between grid No. 1 and cathode
Voltage between grid No. 3 and first dynode
Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{3}$)
$\mathrm{V}_{\mathrm{k} / \mathrm{acc}} \quad 1400$ to 1800 V
$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}} \max .300 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g}_{3} / \mathrm{S}_{1}} \quad \max .100 \mathrm{~V}$
$\begin{array}{llrl} & \text { max. } & 500 & \mathrm{~V} \\ \mathrm{~V}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1} & \text { min. } & 80 & \mathrm{~V}\end{array}$
$\begin{array}{llrl} & \text { max. } & 500 & \mathrm{~V} \\ \mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{14} & \text { min. } & 80 & \mathrm{~V}\end{array}$

1) For an infinitely short light pulse, fully illuminating the photocathode
${ }^{2}$) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
${ }^{3}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5687

RECOMMENDED CIRCUITS

Voltage divider type A^{1})

Voltage divider type B^{l})
$\mathrm{k}=\mathrm{c}$ athode
$g_{1}=$ focusing electrode
$g_{2}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{g}_{3}=$ deflector
$S_{\mathrm{n}}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $2 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{2} and S_{3} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}, \mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}, \quad \mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with q = quantity of electricity transported by the anode.

1) If the cathode is connected to negative HT, precautions should be taken to ensure a high-tension insulation between the aquadag shield and the metal envelope or mu-metal shield.

7Z2 5688

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value of C_{1} will be $2 \cdot 10^{-9} \mathrm{~F}$.

In the case of high counting rates and large peak power outputs, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of five elements:
the photocathode k ;
the focusing electrode g_{1};
the focusing electrode g_{2};
the accelerating electrode acc;
the deflector g_{3}.
To reduce transit-time fluctutations and geometrical time spread, this system has the following advantages.

1. The photocathode is curved, with a curvature radius of 183 mm . To facilitate optical coupling to scintillators the tube is delivered with a plexiglass planeconcave adaptor.
2. A high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. Acathode-to-accelerating voltage of about 1500 V (to be connected to the tenth or a subsequent dynode) ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron paths in the input system.
3. The potential of the electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
(a) the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum value of the potential is about $2 \mathrm{~V}_{\mathrm{S}}$;
(b) the slightest transit-time fluctuations (the most homogeneous extraction field);
(c) the most satisfactory uniformity of collection giving the most constant output pulse amplitude.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Electron optical input system

OPERATIONAL CONSIDERATIONS (continued)

4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the electrode g_{3} to make them impinge at right angles to the first dynode surface.

Collection on the first dynode is controlled by the potential of the third dynóde.
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2400 V (see fig.2). The tube is capable of producing very strong peak currents (up to 1 A) Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact, such pulses are needed for time measurements only, so not for spectrography purposes.
If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by $\mathrm{d}-1$, d representing the secondary-emission coefficient of each stage ($\mathrm{d} \approx$ 3.5). It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 3 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 4 the anode current variation is plotted against anode-to-final dynode voltage.

It should be noted that for equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A.
In practice, therefore, it will be preferable to use the A type distribution, or a distribution between A and B, (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9}, 1.5 \mathrm{~V}_{\mathrm{S}}$ between S_{9} and S_{10} etc., maintaining the same progression).

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influence.

Fig. 2

Fig. 3

Fig. 4

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear-physics applications where a high degree of time definition is required, combined with a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA		
Spectral response	type	U (S13)
Useful diameter of the photocathode	110	mm
Gain (at 2400 V)	10^{8}	
Anode pulse rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Base: 20-pin (Jedec B20-102)

Dimensions in mm

7Z2 8268

ACCESSORIES

Socket

Mu-metal shield ${ }^{1}$)
Quartz adaptor
type FE1003
type 56133
type 56137

GENERAL

Photocathode
Description semi-transparent, head-on, curved surface

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 4000 A
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS

With voltage divider A
Supply voltage for $G=10^{8}$
Anode dark current at $G=10^{8} 4$)
Linearity between anode pulse amplitude and input light pulse

$$
\mathrm{Cs}-\mathrm{Sb}
$$

110 mm
type U (S13)
$4000 \pm 300 \AA$
av. $70 \mu \mathrm{~A} / \mathrm{lm}$ $\min .45 \mu \mathrm{~A} / \mathrm{lm}$

$$
60 \mathrm{~mA} / \mathrm{W}
$$14

$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$	5 pF
C_{a}	7 pF

av. 2400 V
$\max .3000 \mathrm{~V}$
av. $\quad 2 \mu \mathrm{~A}$
$\max . \quad 12 \mu \mathrm{~A}$
up to 100 mA
$\left.\left.\left.\overline{1})^{2}\right)^{3}\right)^{4}\right)$ See page 3.

58 UVP

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{5}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}{ }^{5}$)

up to | 300 mA |
| ---: |
| 2.10^{-9} |
| 4.10^{-9} |
| s |
| s |
| 10^{-9} |

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{6}$)	V_{b}	max.	3000	V
Continuous anode current	I_{a}	max.	2	mA
Voltage between cathode and first dynode + grid No. 2 and grid No. 3	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}+\mathrm{g}_{2}+\mathrm{g}_{3}}$	$\begin{aligned} & \max . \\ & \min . \end{aligned}$	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between cathode and accelerator electrode	$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$	1400 to	1800	V
Voltage between grid No. 1 and cathode	$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$	max	300	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	max. \min.	500 80	V
Voltage between anode and final dynode ${ }^{7}$)	$\mathrm{V}_{\mathrm{a} / \mathrm{S}} \mathrm{S}_{14}$	max . min.	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

${ }^{1}$) To avoid electric-field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to the cathode. If the cathode is connected to the negative HT, precautions should be taken to ensure a hightension insulation between the aquadag shield and the mu-metal shield.
2) See spectral response curve in front of this section.
3) Measured with a tungsten ribbon lamp having a colour temperature of $2850^{\circ} \mathrm{K}$
4) At an ambient temperature of $25^{\circ} \mathrm{C}$
${ }^{5}$) For an infinitely short light pulse, fully illuminating the photocathode
${ }^{6}$) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
7) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5694

58UVP

RECOMMENDED CIRCUITS

Voltage divider type A^{1})

Voltage divider type B^{1})
$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
$g_{2}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{g}_{3}=$ deflector
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $2 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{2} and S_{3} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}, \mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}$, $C_{3}=100 q / 9 V_{S}, C_{4}=100 q / 27 V_{S}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

[^86]7Z2 5695

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value of C_{1} will be $2 \cdot 10^{-9} \mathrm{~F}$.

In the case of high counting rates and large peak power outputs, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of five elements:
the photocathode k ;
the focusing electrode g_{1};
the focusing electrode g_{2};
the accelerating electrode acc;
the deflector g_{3}.
To reduce transit-time fluctuations and geometrical time spread, this system has the following advantages.

1. The photocathode is curved, with a curvature radius of 183 mm . To facilitate optical coupling to scintillators, a quartz adaptor can be delivered with the tube.
2. A high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. Acathode-to-accelerating voltage of about 1500 V (to be connected to the tenth or a subsequent dynode) ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}. Fig. 1 shows the electron paths in the input system.
3. The potential of the electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
(a) the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum value of the potential is about $2 \mathrm{~V}_{\mathrm{S}}$;
(b) the slightest transit-time fluctuations (the most homogeneous extraction field);
(c) the most satisfactory uniformity of collection giving the most constant output pulse amplitude.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Electron optical input system

OPERATIONAL CONSIDERATIONS (continued)

4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the electrode g_{3} to make them impinge at right angles to the first dynode surface.

Collection on the first dynode is controlled by the potential of the third dynode.
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2400 V (see fig.2). The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.
It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact, such pulses are needed for time measurements only, so not for spectrography purposes.
If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by $d-1$, d representing the secondary-emission coefficient of each stage ($d \approx$ 3.5). It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 3 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .
Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 4 the anode current variation is plotted against anode-to-final dynode voltage.

It should be noted that for equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A.
In practice, therefore, it will be preferable to use the A type distribution, or a distribution between A and B, (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S} 9,1.5 \mathrm{~V}_{\mathrm{S}}$ between S 9 and S_{10} etc., maintaining the same progression).
It is advisable to screen the tube with a mu-metal cylinder against magneticfield influence.

Fig. 2

Fig. 3

Fig. 4

12 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in large solid or liquid scintillator detectors, when a high time resolution is required.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	300	mm
Gain (at 3000 V)	10^{8}	
Anode pulse rise time	2.5	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 20-pin (Jedec B20-102)

ACCESSORIES

Socket
Mu-metal shield
type FE1003
type 56132

GENERAL

Photocathode

Description semi-transparent, head-on, curved surface

Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
 Anode to all other electrodes
 TYPICAL CHARACTERISTICS

$\mathrm{C}_{\mathrm{a} / \mathrm{S}}^{12}$
C_{a}
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

With voltage divider A
Linearity between anode pulse amplitude and input light pulse
Anode dark current at $\mathrm{G}=10^{8} 3$)
Supply voltage for $G=10^{8}$
up to 100 mA
$\max . \quad 50 \mu \mathrm{~A}$
av. 3000 V
$\max .3500 \mathrm{~V}$

1) See spectral response curve in front of this section
${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temper ature of $2850{ }^{\circ} \mathrm{K}$ ${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B
Linearity between anode pulse amplitude and input light pulse up to 300 mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{1}$) $2 \cdot 5 \cdot 10^{-9} \mathrm{~s}$

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}$
$2 \cdot 10^{-9} \mathrm{~s}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{1}$) $45.10^{-9} \mathrm{~s}$

Maximum peak current
0.5 to 1

A

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{2}$)
Continuous anode current
$\max .3000$
$\mathrm{I}_{\mathrm{a}} \max .2 \mathrm{~mA}$

Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{3}$)
$\max .1000$
V min. 350 V $\max .500 \mathrm{~V}$ $\mathrm{V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$ \min. 80 V
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{12}}$ $\max .500$ min. 80 V
${ }^{1}$) For an infinitely short light pulse, fully illuminating the photo cathode
${ }^{2}$) Or the voltage at which the tưbe circuited in the voltage divider A has a gain of 10^{9}, whichever is lowest.
3) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked

7Z2 8081

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
The accelerator to be adjusted for maximum gain
The grid to be adjusted for fastest response
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

60 AVP

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 5 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a hightension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.

The multiplier system consists of 12 stages, providing a total current amplification of 10^{8} at about 3000 V (see Fig. 1)

The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

To avoid the effects, which are responsible for rounding of the leading edge and the "jagged" trailing edges, a grid (g) is placed parallel to the anode with its wires aligned with those of the anode.
Thus electrons walking from the next-to-last dynode (S11) to the last dynode (S12) are prevented to impinge directly upon the anode.
At the same time induction and oscillations in the anode grid are minimized. The potential of this electrode is to be adjusted at an optimum close to that of the last dynode.
It should be noted that at equal high tension the gain of the tube is smaller for voltage divider type B than for one according to type A.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting, flying spot scanners, difference kinds of optical and industrial instruments.

QUICK REFERENCE DATA	
Spectral response	type A (S11)
Useful diameter of the photocathode	32
	mm
Anode sensitivity (at 1800 V)	700
$\mathrm{~A} / \mathrm{lm}$	

Base: 12 -pin (Jedec B1 2-43)

ACCESSORIES

Socket
Mu-metal shield
type FE1002
type 56127

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances

Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$	3	pF
Anode to all other electrodes	C_{a}	5	pF

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
$\mathrm{I}_{\mathrm{a}_{0}}$
Linearity between anode pulse amplitude and input light pulse
semi-transparent, head-on, flat surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

32 mm
type A (S11)
$4200 \pm 300 \AA$
av. $70 \mu \mathrm{~A} / 1 \mathrm{~lm}$
\min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$

10
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
pF

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode amplitude
and input light pulse
 $4 \cdot 10^{-9} \mathrm{~s}$ $3 \cdot 10^{-9} \mathrm{~s}$ edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$

Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current

Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)

V_{b}	\max.	1800	V
I_{a}	\max.	1	mA
	max.	500	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	\min.	120	V
	max.	300	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	\min.	80	V
	\max.	300	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{10}$	\min.	80	V

RECOMMENDED CIRCUITS

Voltage divider type A

$$
\begin{aligned}
& \mathrm{k}=\text { cathode } \\
& \mathrm{acc}=\text { accelerating electrode }
\end{aligned}
$$

$$
S_{n}=\text { dynode No.n }
$$

$a=$ anode
${ }^{1}$) For an infinitely short light pulse.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 5592

RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a^{*} stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of oper ation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as infra-red telecommunication and ranging, and in optical instruments operating in-the far red and near infrared region (astronomical measurements, spectrometry, optical pyrometry, infra-red radiation intensity control instruments).

QUICK REFERENCE DATA				
Spectral response curve	type C (Sl)			
Useful diameter of the photocathode	32	mm		
Anode sensitivity (at 1800 V)	100	$\mathrm{~A} / \mathrm{lm}$		

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (Jedec B12-43)

ACCESSORIES

Socket
Mu-metal shield
type FE1002
type 56127

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelenght at maximum response
Luminous sensitivity ${ }^{2}$)

Infra-red luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 8000 \&
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
N_{a}
Anode dark current at $\mathrm{N}_{\mathrm{a}}=20 \mathrm{~A} / \mathrm{lm}^{4}$)
$I_{a_{0}}$
av. $\quad 100 \mathrm{~A} / \mathrm{lm}$
min. $20 \mathrm{~A} / \mathrm{lm}$
$\max . \quad 10 \mu \mathrm{~A}$
Linearity between anode pulse amplitude and input light pulse
semi-transparent, head-on, flat surface $\mathrm{Ag}-\mathrm{O}-\mathrm{Cs}$

32 mm
type C (S1)
$8000 \pm 1000 \AA$
av. $25 \mu \mathrm{~A} / \mathrm{lm}$ min. $\quad 15 \mu \mathrm{~A} / \mathrm{lm}$ av. $\quad 3 \mu \mathrm{~A} / \mathrm{lm}$ min. $1.4 \mu \mathrm{~A} / \mathrm{lm}$
$2.5 \mathrm{~mA} / \mathrm{W}$

10
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
3 pF
5 pF
${ }^{1}$) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850{ }^{\circ} \mathrm{K}$
3) The infra-red lumen is the flux resulting from one lumen yielded by a tungsten ribbon lamp (colour temperature $2850^{\circ} \mathrm{K}$) going through an infra-red filter corning CS94 No. 2540, fusion 1613 thickness 2.61
4) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude
and input light pulse
up to 10 mA $4 \cdot 10^{-9} \mathrm{~s}$

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$

Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$
$\mathrm{~V}_{\mathrm{a} / \mathrm{S}_{10}}$
$3.10^{-9} \mathrm{~s}$
$36.10^{-9} \mathrm{~s}$

Continuous anode current I_{a}
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)
$\max .1800 \mathrm{~V}$
$\max .30 \mu \mathrm{~A}$
$\max .500 \mathrm{~V}$
min. 120 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
a $=$ anode
${ }^{1}$) For an infinitely short light pulse.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 8073

RECOMMENDED CIRCUITS (continued)

Voltage divider type B

$$
\begin{array}{ll}
\mathrm{k}=\text { cathode } & \mathrm{S}_{\mathrm{n}}=\text { dynode No. } \mathrm{n} \\
\mathrm{acc}=\text { accelerating electrode } & \mathrm{a}=\text { anode }
\end{array}
$$

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.
When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for optical spectrometry, ultraviolet photometry and other applications which require a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA	
Spectral response	type U (S13)
Useful diameter of the photocathode	32
Anode sensitivity (at 1800 V)	700
A/lm	

DIMENSIONS AND CONNECTIONS

Base: 12-pin (Jedec B 12-43)

ACCESSORIES

Socket
Mu-metal shield

type FE1002
type 56127

Dimensions in mm

GENERAL

Photocathode
Descirption
semi-transparent, head-on, flat surface

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4000 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS
With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude and input light pulse
N_{a}
I_{a}
$\mathrm{C}_{\mathrm{a} / \mathrm{S}_{10}}$
C_{a}
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
av. $\quad 70 \mu \mathrm{~A} / \mathrm{lm}$
min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$

3 pF
5 pF
av. $700 \mathrm{~A} / \mathrm{lm}$
min. $250 \mathrm{~A} / \mathrm{lm}$
av. $0.010 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
up to 30 mA

[^87]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode amplitude
and input light pulse
up to 100 mA
$4 \cdot 10^{-9} \mathrm{~s}$
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
$3 \cdot 10^{-9} \mathrm{~s}$
$36.10^{-9} \mathrm{~s}$
$\max .1 \mathrm{~mA}$ $\max .500 \mathrm{~V}$ \min. 120 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A

$$
\begin{aligned}
\mathrm{k} & =\text { cathode } \\
\mathrm{acc} & =\text { acceler ating electrode }
\end{aligned}
$$

$$
\mathrm{S}_{\mathrm{n}}=\text { dynode No. } \mathrm{n}
$$

$$
a=\text { anode }
$$

${ }^{1}$) For an infinitely short light pulse.
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

7Z2 8037

RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$k=c$ athode
$\mathrm{acc}=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moder ate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

11 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as gamma-ray spectrometry.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V)	1000	$\mathrm{~A} / \mathrm{lm}$
Energy resolution for 0.661 Mev Cs137 line	8.5	$\%$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

7Z2 5466

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4200 \&
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{4}$)
semi-transparent, head-on, flat surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

44 mm
type A (S11)
$4200 \pm 300 \AA$
av. $\quad 80 \mu \mathrm{~A} / \mathrm{lm}$
min. $\quad 70 \mu \mathrm{~A} / \mathrm{lm}$
$65 \mathrm{~mA} / \mathrm{W}$

11
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{11}$	3 pF
C_{a}	5 pF

N_{a}
$\mathrm{I}_{\mathrm{a}_{0}}$
av. $0.015 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
up to 30 mA
$5 \cdot 10^{-9} \mathrm{~s}$

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2850{ }^{\circ} \mathrm{K}$
3) At an ambient temperature of $25^{\circ} \mathrm{C}$
4) For an infinitely short light pulse

TYPICAL CHARACTERISTICS (continued)

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Energy resolution for 0.661 Mev Cs 137 line ${ }^{1}$)

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current

Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{11}$
$4 \cdot 10^{-9} \mathrm{~s}$
$45 \cdot 10^{-9} \mathrm{~s}$
av. 8.5 \%
$\max .9 .0 \%$
$\max .1800 \mathrm{~V}$
$\max . \quad 1 \mathrm{~mA}$
$\max .500 \mathrm{~V}$
min. 200 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUIT

$\mathrm{Cl}=220 \mathrm{pF}$
$C 2=470 \mathrm{pF}$
$\mathrm{C} 3=1000 \mathrm{pF}$

$$
\begin{array}{ll}
\mathrm{k}=\text { cathode } & \mathrm{S}_{\mathrm{n}}=\text { dynode No. } \mathrm{n} \\
\mathrm{acc}=\text { accelerating electrode } & \mathrm{a}=\text { anode }
\end{array}
$$

[^88]
OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be a practical value.

The best results" in γ-ray spectrometry will be achieved with a voltage of 4 times "Vs" between the cathode and the first dynode; however, the limiting values must not be exceeded. At a high tension of about 1200 V the tube will work most favourably.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

evacer

Scintillators

ZnS-SCINTILLATOR FOR

α AND $\alpha+\beta$ RADIATION DETECTION

SAM scintillators comprise an acrylate disc, covered at one side with a thin aluminized scintillationfoil.
Zinc sulphide activated with silver is used as scintillating material. The scintillator surface may be touched. Only high pressures or abrasive products can damage the film locally.
The SAF type consists of the same scintillating layer deposited on cellulose acetate-foil instead of acrylate.

CHARACTERISTICS

\[

\]

(measured with a thin Am ${ }^{241}$ source $5.45-5.48 \mathrm{MeV}$, $\varnothing 9 \mathrm{~mm}$, distance 7 mm from the scintillator)
Mass per unit area of the ZnS layer
$5 \mathrm{mg} / \mathrm{cm}^{2}$
Mass per unit area of the metal-coating $600-800 \mu \mathrm{~g} / \mathrm{cm}^{2}$

SCINTILLATORS FOR A LPHA -BÊTA DETECTION

Type SPABM consisting of a metallized film of ZnS deposited on a thin foil of SPF (thickness $\geq 0.2 \mathrm{~mm}$) can be delivered with or without acrylate support.

UNMETA LLIZED SCINTILLATORS

Types SA and SPAB (unmetallized SAM and SPABM) can be ordered.

SPECIAL SCINTILLATORS

All types can be made resistant to a salty atmosphere for at least 100 hours on request.

Standard dimensions:
Discs:

Type	Diameter (mm)	Thickness (mm)	Matching photomultiplier
SAM19	19	3	XP1110
SAM25	25	3	52 AVP
SAM40	40	3	150 AVP
SAM50	50	3	$53 A V P /$ XP1000
SAM70	70	3	XP1030
SAM125	125	3	$54 A V P$

Sheet:

SAM223/127	length $: 223$ width$\quad: 127 \mathrm{~mm}$
	thickness : 3 mm

Foil:

SAF4400/70	length $: 4400$ width thickness $: 0.23$ thm

Quality control points with a thick U source and equivalent values for a thin Pu source

Na I (TI) CRYSTAL SCINTILLATOR FOR
 γ AND X-RAYS DETECTION AND SPECTROMETRY

SIS scintillators consist of Thallium activated sodium iodide crystals. The crystals are mounted in aluminium with glass windows.

CHARACTERISTICS

Time constant of fluorescence
$0.25 .10^{-6} \mathrm{~s}$
Time constant of phosphorescence
$2.5 .10^{-3} \mathrm{~s}$
Wavelength of maximum emission
4100
A
Density
3.66
Refractive index
1.77
Maximum temperature gradient
10

SCINTILLATORS FOR GAMMA -SPECTROMETRY

The types with dimensions up till 44×50 can be realized with a resolution of $\leq 9 \%$ for the peak of a $\mathrm{C}_{\mathrm{S}}{ }^{137}$ gamma ray source.
For bigger dimensions and well-type crystals: $<10 \%$.
The typenumber of this spectrometry quality is followed by SP.

SCINTILLATORS FOR X-RAY DETECTION AND COUNTING

Thin SIS mounts can be ordered (thickness of the crystal $\leq 5 \mathrm{~mm}$) with a Be window (thickness 0.20 mm).

SPECIAL SCINTILLATORS

Anticoincidence mounts can be made on request.
(SIS crystal with or without mounting in a SPF scintillator).

Standard dimensions:

Other dimensions on request.

Dimensions of the mounted crystal:

Type	dimensions (mm)				
	E	C	D	F	
SIS 12x12	16.2	20.2	16.8	5.5	
SIS 12x25	16.2	20.2	29.8	6.5	
SIS 19x19	22.2	26.2	23.8	5.5	
SIS 19x25	22.2	26.2	29.8	6.5	
SIS 25x12	29.2	33.2	16.8	5.5	
SIS 25x25	29.2	33.2	29.8	5.5	
SIS 25x50	29.2	33.2	54.8	6.5	
SIS 32x25	36.2	40.2	29.8	5.5	
SIS 32x32	36.2	40.2	36.8	6.5	
SIS 44×25	48.2	52.2	29.8	6.5	
SIS 44x38	48.2	52.2	42.8	6.5	
SIS 44x50	48.2	52.2	54.8	6.5	
SIS 50x50	54.2	58.2	54.8	6.5	
SIS 63x50	67.2	71.2	54.8	6.5	
SIS 63x63	67.2	71.2	67.8	6.5	
SIS 67x75	67.2	71.2	79.8	6.5	
SIS 75x50	79.2	83.2	54.8	6.5	
SIS 75x75	79.2	83.2	79.8	6.5	

Absorption of γ radiation in the crystal

FLUORESCENT PLASTIC SCINTILLATOR FOR α, β, γ, FAST NEUTRONS AND COSMIC RAYS DETECTION

SPF scintillators are composed of polystyrene with p-terphenyl and $1-1^{\prime} 4-4{ }^{\prime}$ tetraphenylbutadiene.
The p-terphenyl is the fluorescent agent, while the TPB corrects its emission spectrum in order to adapt it to the spectral sensitivity of the photomultiplier.
They are delivered with an adhesive papercover to protect the surface against damage. Before use this paper can be easily removed.

CHARACTERISTICS

Time cnnstant of fluorescence	4.10^{-9} s	
Time constant of phosphorescence	0	
Wavelength of maximum emission	4300	A
Density	1.06	
Refractive index	1.59	
Softening point	$80-85$	${ }^{\circ} \mathrm{C}$
Light output \% Anthracene	$55-65$	$\%$
Coëfficient of linear expansion	$6.10-5-8.10^{-5}$	
Ratio no. of H-atoms to no. of C-atoms	≈ 1.0	

SCINTILLATORS FOR BÊTA DETECTION
Type SPFM (aluminized SPF)
The light-tight metalcover has a mass per unit area of $600-800 \mu \mathrm{~g} / \mathrm{cm}^{2}$.
SCINTILLATORS FOR A LPHA DETECTION
SPF foil with or without support, made of acrylate or glass.
SPECIAL SCINTILLATORS

- Compositions for increased temperatures (maximum $150^{\circ} \mathrm{C}$)
- To obtain an improved efficiency the scintillators can be ordered with a metal or titanium dioxide reflective coating.

SPECIAL FORMS

All forms can be prepared to customers specifications.
7Z2 7993

Standard dimensions:
Discs and cylinders:

Type	$\begin{aligned} & \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$	Standardized thicknesses (x) (mm)	Matching photomultiplier
SPF 25/x	25		52 AVP
SPF 40/x	40		150 AVP
SPF 50/x	50	$\begin{aligned} & 0.2-0.5-1-1.5-3- \\ & 20-80-100-200 \end{aligned}$	$\left\{\begin{array}{l} 53 A V P / 56 A V P \\ \text { XP1000/XP1020/XP1021 } \end{array}\right.$
SPF 70/x	70		XP1030
SPF 125/x	125	$\begin{aligned} & 0.2-0.5-1-2-3- \\ & 20-80-100-200 \end{aligned}$	54AVP/58AVP/XP1040
SPF 175/x	175	155	57AVP/ 60AVP
SPF 260/x	260	260	57AVP/60AVP
SPF 450/x	450	300	57AVP/60AVP

Sheets and blocks:

Type	Length (mm)	Width (mm)	Standardized thicknesses (x) (mm)
SPF 350/350/x	350	350	$1-2-4-5-5-8-10$
SPF 500/500/x	500	500	$8-10-15-20-25$
SPF 800/500/x	800	500	$10-15-20-25-30$
SPF 1500/1000/x	1500	1000	$10-15-20-25$

Foil: thickness between 5 and 100μ.
Scintillators of one piece can be made up till 100 kg .
Bigger blocks (up till 1000 kg) can be manufactured by welding more pieces together.

Range of particles in dependence of energy

PLASTIC HORNYAK SCINTILLATOR FOR FAST NEUTRONS MEASUREMENT IN NUCLEAR REACTORS

SPH scintillators are composed of a styrene monomer polymerized with zinc sulphide. The action of neutrons causes the styrene to produce recoil protons which ionize the zinc sulphide, thus producing scintillations.

CHARACTERISTICS

Time constant of fluorescence

$$
10^{-6} \mathrm{~s}
$$

Wavelength of maximum emission
4500 A
Softening point $80-85{ }^{\circ} \mathrm{C}$

Response to fast neutrons 1.5%

Ratio no. of H -atoms to no. of C -atoms
≈ 1.0

SENSITIVITY TO GAMMA RAYS AND SLOW NEUTRONS

Because this sensitivity is low the luminous pulses produced by these two types of radiation have a very much smaller amplitude. It is therefore possible to eliminate them almost completely by choosing the threshold of the discriminator which follows the photomultiplier at such a high level that only the pulses from fast neutrons are counted.

Standard dimensions:

Discs:

Type	Diameter (mm)	Thickness (mm)	Matching photomultiplier
SPH 25	25	15	52AVP
SPH 40	40	15	150 AVP
SPH 50	50	15	53AVP/XP1000
SPH 70	70	15	XP1030
SPH125	125	15	54AVP

Response curve with a Ra-Be source

INDEX OF TYPENUMBERS

Type No.	Section	Type No.	Section	Type No.	Section
D10-11..	CRT	M21-12W	CRT	XP1002	PmT
D10-12..	CRT	M28-12W	CRT	XP1003	PmT
D13-15..	CRT	M36-11W	CRT	XP1004	PmT
D13-16..	CRT	M36-13W	CRT	XP1005	PmT
D13-16../01	CRT	M.13-16	CRT	XP1010	PmT
D13-17..	CRT	MG/U/Y6-2	CRT	XP1011	PmT
D13-19..	CRT	MG/U/Y13-38	CRT	XP1015	PmT
D13-20..	CRT	MW6-2	CRT	XP1015/C	PmT
D13-21..	CRT	MW13-38	CRT	XP1020	PmT
D13-23. .	CRT	ORP11	PcD	XP1021	PmT
D13-24. .	CRT	ORP30	PcD	XP1023	PmT
D13-26. .	CRT	ORP50	PcD	XP1030	PmT
D13-26../01	CRT	ORP60	Pc D	XP1031	PmT
D13-27	CRT	ORP61	PcD	XP1032	PmT
D.3-91	CRT	ORP62	PcD	XP1033	PmT
D. 7-5	CRT	ORP63	PcD	XP1040	PmT
D. 7-6	CRT	ORP90	Pc D	XP1110	PmT
D. $7-11$	CRT	RPY13	PcD	XP1111	PmT
D. 7-31	CRT	RPY18	PcD	XP1111B	PmT
D. 7-32	CRT	RPY19	PcD	XP1113	PmT
D. 7-36	CRT	RPY20	Pc D	XP1114	PmT
D. 7-78	CRT	RPY27	PcD	XP1115	PmT
D. 10-6	CRT	RPY41	PcD	XP1115B	PmT
D. 10-74	CRT	RPY43	PcD	XP1115C	PmT
D. 10-78	CRT	SAM	Sc	XP1116	PmT
D.13-2	CRT	SIS	Sc	XP1117	PmT
D. 13-32	CRT	SPF	Sc	XP1118	PmT
D. 13-34	CRT	SPH	Sc	XP1120	PmT
E10-12..	CRT	XP1000	PmT	XP1121	PmT
M21-11W	CRT	XP1001	PmT	XP1122	PmT

CRT $=$ Cathode-ray tubes
$\mathrm{PcD}=$ Photoconductive Devices
PmT = Photomultiplier Tubes

PT $=$ Photo tubes
CT = Camera tubes
$\mathrm{Sc}=$ Scintillators

Type No.	Section	Type No.	Section
XP1123	PmT	155UG	PT
XP1130	PmT	55850	CT
XP1131	PmT	55850AM	CT
XP1140	PmT	55851	CT
XP1141	PmT	- 55852	CT
XP1180	PmT	55875	CT
53A VP	PmT	55875R, G, B	CT
53 UVP	PmT	55876	CT
54A VP	PmT		
54UVP	PmT		
56A VP	PmT		
56AVP/03	PmT		
56A VP/05	PmT		
56CVP	PmT		
56TUVP	PmT		
56TVP	PmT		
56UVP	PmT		
57A VP	PmT		
58A VP	PmT		
58CG	PT		
58 CV	PT		
58UVP	PmT		
60A VP	PmT		
90AV	PT		
90CG	PT		
90CV	PT		
92AG	PT		
92AV	PT		
150 AV	PT		
150A VP	PmT		
150CV	PT		
150CVP	PmT		
150UV	PT		
150UVP	PmT		
153A VP	PmT		

Type No.	Section
\vdots	

CRT = Cathode-ray tubes
$\mathrm{PcD}=$ Photoconductive Devices
PmT = Photomultiplier Tubes

PT = Photo tubes
CT = Camera tubes
Sc $=$ Scintillators
7Z2 8272

Cathode-ray tubes

Camera tubes

Photo tubes

Photoconductive devices
Photomultiplier tubes

Scintillators

[^0]: 1）used in projection tubes

[^1]: 2) See page 5
[^2]: ${ }^{1}$) Reflective material.

[^3]: 3) See page 6
[^4]: $\left.\left.\left.\left.\overline{1})^{2}\right)^{3}\right)^{4}\right)^{5}\right)^{6}$) See page 6

[^5]: 1) Depends on the frequency and the adaptors being used.
 2) Values to be taken into account for the calculation of the focus potentiometer.

 7Z2 5539

[^6]: $\left.\left.{ }^{4}\right)^{5}\right)^{67}$) and ${ }^{8}$, see page 8

[^7]: 1) See page 6
[^8]: ${ }^{4}$) See page 6

[^9]: 3) See page 5
[^10]: ${ }^{1}$) A graticule, consisting of concentric rectangles of $43.2 \mathrm{~mm} \times 43.2 \mathrm{~mm}$ and $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

[^11]: ${ }^{1}$) A graticule, consisting of concentric rectangies of $43.2 \mathrm{~mm} \times 43.2 \mathrm{~mm}$ and $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

 7Z2 5575

[^12]: 2) See page 5
[^13]: 2) See page 5
[^14]: ${ }^{8}$) See page 6.

[^15]: 3) See page 6.
[^16]: 1) $\left.\left.\left.\left.)^{2}\right)^{3}\right)^{4}\right)^{6}\right)^{7}$) See page 6
[^17]: 1) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g}_{9}}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=3$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage and the intergunshield voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
[^18]: 1) Reference line
 2) The maximum dimension is detern!ined by the reference line gauge
[^19]: ${ }^{1}$) With the small change in focus spot size with variation of focus voltage, the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus, a voltage of at least -100 to +500 V will be required.

 7Z2 7818

[^20]: 1) Voltage range to obtain optimum overall focus at $100 \mu \mathrm{~A}$ beam current.
 ${ }^{2}$) Maximum pulse duration 22% of a cycle but max. 1.5 ms .
 7Z2 7980
[^21]: 1) Maximum pulse duration 22% of a cycle but max. 1.5 ms .
[^22]: ${ }^{1}$) The d.c. value of bias must not be such as to allow the grid to become posi tive with respect to the cathode, except during the period immediately after switching the receiver on or off when it may be allowed to rise to +1 V . The maximum positive excursion of the video signal must not exceed +2 V , and at this voltage the grid current may be expected to be approximately 2 mA .

[^23]: ${ }^{1}$) With the small change in focus spot size with variation of focus voltage the limit of $0-400 \mathrm{~V}$ is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus, a voltage of at least -100 V to +500 V will be required.

 7Z2 6451

[^24]: 1) Reference line, determined by the plane of the upper edge of the reference line gauge when the gauge is resting on the cone.
 2) Insulating outer coating; should not be in close proximity to any metal part.
 ${ }^{3}$) Conductive outer coating; to be grounded.
 3) Recessed cavity contact .
 4) Spark trap; to be grounded.
 5) The distance between the deflection centre and the reference line should not exceed 31 mm .
 6) Distance between the centre of the magnetic length of the focusing unit and the reference line.

 7Z2 6433

[^25]: 1) In order to avoid excessive hum, the A.C. component of the heater to cathode voltage should be as low as possible and should not exceed 20 VRMS.
 ${ }^{2}$) During a heating-up period not exceeding 45 sec .
 7Z2 7828
[^26]: ${ }^{1}$) The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
 2) With this mode of operation beam-landing errors, resulting in parabolic shading and dark corners, increase. The deflecting and focusing coils should be designed to eliminate these errors.
 The increased-power requirements for these coils will increase the tube temperature, adequate provisions for cooling should be made.

 7Z2 5679

[^27]: ${ }^{1}$) This capacitance, which effectively is the output impedance of the tube, is increased by about 3 pF when the tube is inserted into the deflection and focusing coil-assembly. The resistive component of the output impedance is in the order of $100 \mathrm{M} \Omega$.

 7Z2 7709

[^28]: ${ }^{1)}$ Beam focus is obtained by the combined effect of the grid No. 3 voltage, which should be adjustable over the indicated range and a focusing coil having an average field strength of 40 Oerstedt.
 Definition, focus uniformity and picture quality decrease with decreasing grid No. 3 voltage. In general, grid No. 3 should be operated above 250 V .
 ${ }^{2}$) In transistorized cameras cathode blanking will be preferable. The cathode impedance is in the order of $30 \mathrm{k} \Omega$.
 ${ }^{3}$) The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
 ${ }^{4}$) The alignment coil assembly should be located on the tube so that its centre is at a distance of approx. $94 \mathrm{~mm}\left(311 / 16^{\prime \prime}\right)$ from the face of the tube and be positioned so that its axis coincides with the axis of the tube, the deflecting yoke and the focusing coil.

 7Z2 5762

[^29]: 1) Red
 ${ }^{2}$) Black
 ${ }^{3}$) Sensitive cathode area shown shaded
[^30]: ${ }^{1}$) The relation between the incident luminous flux and the tube current is linear within measuring errors, provided the anode voltage is higher than the saturation voltage.

[^31]: ${ }^{1}$) The relation between the incident luminous flux and the tube current is linear within measuring errors, provided the anode voltage is higher than the saturation voltage.

[^32]: ${ }^{1}$) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

 7Z2 5159

[^33]: 1) Not tin plated
 ${ }^{2}$) Centre of sensitive area
[^34]: ${ }^{1}$) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temper ature.

[^35]: ${ }^{1}$) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

 7Z2 5165

[^36]: ${ }^{1}$) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.

 7 Z 25166

[^37]: ${ }^{1}$) Operation of the cell counteracts the deteriorating .effect of long periods a high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.

 7Z2 5169

[^38]: 1) Operation of the cell counteracts the deteriorating effect of long periods at the high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.

 7Z2 8032

[^39]: ${ }^{1}$) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

 7Z2 5174

[^40]: 1) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.
[^41]: ${ }^{1}$) The spread of the dark resistance is large and values higher than $100 \mathrm{M} \Omega$ and $10000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
 2) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

 7Z2 7968

[^42]: 1) If no forced air cooling is used, the envelope temperature opposite the centre of the sensitive area is about $83^{\circ} \mathrm{C}$ when the CdS tablet temperature is $85^{\circ} \mathrm{C}$. This temper ature can be determined e.g. with a thermocouple fastened on the envelope.
 2) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.
[^43]: 1) If no forced air cooling is used, the envelope temperature opposite the centre of the sensitive area is about $83^{\circ} \mathrm{C}$ when the CdS tablet temperature is $85{ }^{\circ} \mathrm{C}$. This temperature can be determined e.g. with a thermocouple fastened on the envelope.
 ${ }^{2}$) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.

 7Z2 7919

[^44]: 1) The spread of the dark resistance is large and values higher than $100 \mathrm{M} \Omega$ and $10000 \mathrm{M} \Omega$ are possible for the initial darkresistance and the equilibrium dark resistance respectively.
 ${ }^{2}$) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

 7Z2 7914

[^45]: 1) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.
[^46]: 3^{4}) See page 4.

[^47]: ${ }^{1}$) The spread of the dark resistance is large and values higher than $100 \mathrm{M} \Omega$ and $10000 \mathrm{M} \Omega$ are possiblefor the intial dark resistance and the equilibrium dark resistance respectively.
 ${ }^{2}$) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

 7Z2 7979

[^48]: ${ }^{1}$) For an infinitely short light pulse
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

 7Z2 5392

[^49]: 1) For an infinitely short light pulse.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

 7Z2 5345

[^50]: 1) For an infintely short light pulse.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

 7Z2 5349

[^51]: 1) Measured with a $32 \mathrm{~mm} \times 1 \mathrm{~mm}$ NaI crystal, at a counting rate of about 2500 Hz in the middle of the plateau, and with the discriminator bias set at 0.7 V. Preamplifier gain 250 x (source $100 \mu \mathrm{C} \mathrm{Fe}^{55}$).
 2) When caluclating the anode voltage, the voltage drop in the load resistance should not be overlooked.

 7Z2 7834

[^52]: 1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
 2) For an infinitely short light pulse.
 3) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

 7Z2 5608

[^53]: ${ }^{1}$) At an ambient temperature of $25^{\circ} \mathrm{C}$.
 ${ }^{2}$) For an infinitely short light pulse.
 3) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^54]: 1) To avoid field distortion in the electron optical input system it is advised to connect the aquadag shield (pin No.9) to the cathode. If the cathode is circuited to a negative high tension care should betaken to ensure a high tension insulation between the aquadag-shield and the mu-metal screen.
 2) See spectral response curve in front of this section
 3^{3}) Measured with a tungsten ribbon lamp having a colour temper ature of $2850^{\circ} \mathrm{K}$
[^55]: 1) To avoid field distortion in the electron optical input system it is advised to connect the aquadag shield (pin No.9) to the cathode. If the cathode is circuited to a negative high tension care should be taken to ensure a high tension insulation between the aquadag-shield and the mu-metal screen.
[^56]: 1) For an infinitely short light pulse.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
[^57]: $\left.\left.\left.\left.{ }^{1}\right)^{2}\right)^{3}\right)^{4}\right)^{5}$) see page 3.

[^58]: ${ }^{1}$) For an infinitely short light pulse.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

 7Z2 7839

[^59]: ${ }^{1}$) See spectral response curve in front of this section

[^60]: ${ }^{1}$) If the cathode is connected to negative HT, precautions should be taken to ensure a high-tension insulation between the aquadag shield and the metal envelope or mu-metal shield.

 7Z2 5702

[^61]: ${ }^{1}$) For an infinitely short light pulse.
 2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

 7Z2 5353

[^62]: 1) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850{ }^{\circ} \mathrm{K}$
 3) At an ambient temper ature of $25{ }^{\circ} \mathrm{C}$
[^63]: 1) For an infinitely short light pulse.
 2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

 7Z2 5357

[^64]: 1) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850^{\circ} \mathrm{K}$ ${ }^{3}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$
[^65]: ${ }^{1}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^66]: ${ }^{1}$) See spectral response curve in front of this section
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temper ature of $2850^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$
 7Z2 8091

[^67]: ${ }^{1}$) When calculating the anode voltage, the voltage drop in-the load resistance should not be overlooked.

 7Z2 5374

[^68]: ${ }^{1}$) For an infinitely short light pulse.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

 7Z2 5388

[^69]: ${ }^{1}$) When the tube is to be used at 5000 V preferably the cathode should be grounded.
 2) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$.

 7Z2 7844

[^70]: 1) When the tube is to be used at 5000 V preferable the cathode should be grounded.
 ${ }^{2}$) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$.

 7Z2 7846

[^71]: 1) Measured with a tungsten ribbon lamp having a colour temperature of $2850^{\circ} \mathrm{K}$ 2) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$
[^72]: 1) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2850{ }^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$
[^73]: ${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.

[^74]: ${ }^{1}$) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850{ }^{\circ} \mathrm{K}$
 3) At an ambient temperature of $25^{\circ} \mathrm{C}$

[^75]: 1) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
[^76]: ${ }^{1}$) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temper ature of $2850{ }^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$

[^77]: 1) See spectral response curve in front of this section
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temper ature of $2850{ }^{\circ} \mathrm{K}$ 3) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$
[^78]: 1) For an infinitely short light pulse
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked

 $$
 7 \mathrm{Z} 25460
 $$

[^79]: 1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.
 ${ }^{2}$) See spectral response curve page D.
 3^{3}) Measured with a tungsten ribbon lamp having a colour temperature of $2850^{\circ} \mathrm{K}$
[^80]: 1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
 2) For an infinitely short light pulse fully illuminating the photocathode.
 3) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

 7Z2 5829

[^81]: 1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.
[^82]: ${ }^{1}$) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.
 2) See spectral response curve in front of this section.
 3) Measured with a tungsten ribbon lamp having a colour temperature of $2850^{\circ} \mathrm{K}$

[^83]: 1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.
 ${ }^{2}$) See spectral response curve in front of this section.
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2850{ }^{\circ} \mathrm{K}$
[^84]: 1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
[^85]: ${ }^{1}$) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.

 7Z2 5794

[^86]: 1) To avoid electric-field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to the cathode. If the cathode is connected to the negative HT, precautions should be taken to ensure a hightension insulation between the aquadag shield and the mu-metal shield.
[^87]: ${ }^{1}$) See spectral response curve in front of this section
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temper atue of $2850^{\circ} \mathrm{K}$
 3) At an ambient temperature of $25^{\circ} \mathrm{C}$

[^88]: 1) Measured with a $1.5^{\prime \prime} \times 1^{\prime \prime}$ Nal crystal
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked

 7Z2 7856

