PHILIPS

Semiconductors and integrated circuits

Part 4 December 1971

Transmitting transistors
Microwave devices
Field effect transistors

Dual transistors

Microminiature devices
Photo devices
Accessories
\square

SEMICONDUCTORS AND INTEGRATED CIRCUITS

Part 4

December 1971

General

Transmitting transistors
Microwave devices
Field effect transistors
Dual transistors

Microminiature devices for thick- and thin-film circuits
Photoconductive devices
Photodiodes
Phototransistors
Light emitting diodes
Infra-red sensitive devices
Accessories

DATA HANDBOOK SYSTEM

To provide you with a comprehensive source of information on electronic components, subassemblies and materials, our Data Handbook System is made up of three series of handbooks, each comprising several parts.
The three series, identified by the colours noted, are:
ELECTRON TUBES (9 parts) BLUE
SEMICONDUCTORS AND INTEGRATED CIRCUITS (5 parts) RED

COMPONENTS AND MATERIALS (7 parts)
GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued annually; the contents of each series are summarized on the following pages.
We have made every effort to ensure that each series is as accurate, comprehensive and up-to-date as possible, and we hope you will find it to be a valuable source of reference. Where ratings or specifications quoted differ from those published in the preceding edition they will be pointed out by arrows. You will understand that we can not guarantee that all products listed in any one edition of the handbook will remain available, or that their specifications will not be changed, before the next edition is published. If you need confirmation that the pusblished data about any of our products are the latest available, may we ask that you contact our representative. He is at your service and will be glad to answer your inquiries.

ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1

Transmitting tubes (Tetrodes, Pentodes)

Part 2

Tubes for microwave equipment

Part 3

Special Quality tubes

Part 4

Receiving tubes

Part 5

Cathode-ray tubes
Photo tubes
Camera tubes

Part 6

Photomultipliers tubes
Channel electron multipliers
Scintillators
Photoscintillators

Part 7

Voltage stabilizing and reference tubes
Counter, selector, and indicator tubes
Trigger tubes
Switching diodes

Part 8

T. V. Picture tubes

Part 9

Transmitting tubes (Triodes)
'Tubes for R. F. heating (Triodes)

January 1971
Associated accessories
March 1971

March 1970

Miscellaneous devices
April 1971

May 1971
Photoconductive devices
Associated accessories

June 1971
Radiation counter tubes
Semiconductor radiation detectors
Neutron generator tubes
Photo diodes
Associated accessories
July 1971
Thyratrons
Ignitrons
Industrial rectifying tubes
High-voltage rectifying tubes
August 1971

January 1971
Associated accessories

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Diodes and Thyristors

September 1971
General
Signal diodes
Variable capacitance diodes
Voltage regulator diodes
Rectifier diodes
Part 2 Low frequency; Deflection
General
Low frequency transistors (low power)
Low frequency power transistors

Part 3 High frequency; Switching

General

High frequency transistors

Part 4 Special types

General

Transmitting transistors
Microwave devices
Field effect transistors
Dual transistors
Microminiature devices for
thick- and thin-film circuits

Thyristors, diacs, triacs
Rectifier stacks
Accessories
Heatsinks

October 1971
Deflection transistors
Accessories

November 1971
Switching transistors
Accessories
December 1971
Photoconductive devices
Photodiodes
Phototransistors
Light emitting diodes
Infra-red sensitive devices
Accessories

March 1971
Linear integrated circuits

General
Digital integrated circuits
DTL (FC family)
TTL (FJ family)
MOS (FD family)

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Circuit Blocks, Input/Output Devices,
 October 1971 Electro-mechanical Components "), Peripheral Devices

Circuit blocks 40-Series
Counter modules 50-Series
Norbits 60-Series, 61-Series
Circuit blocks 90 -Series

Input/output devices
Electro-mechanical components *)
Peripheral devices

Part 2 Resistors, Capacitors
Fixed resistors
Variable resistors
Non-linear resistors
Ceramic capacitors
Part 3 Radio, Audio, Television
FM tuners
Coils **)
Piezoelectric ceramic resonators and filters
Loudspeakers

December 1970
Polyester, polycarbonate, polystyrene, paper capacitors Electrolytic capacitors Variable capacitors

February 1971
Audio and mains transformers Television tuners
Components for black and white television Components for colour television Deflection assemblies for camera tubes

Part 4 Magnetic Materials, Piezoelectric Ceramics

April 1971

Ferrites for radio, audio and television
Small coils, assemblies and assembling parts

Ferroxcube potcores and square cores
Ferroxcube transformer cores
Piezoxide
Permanent magnet materials

Part 5 Memory Products, Magnetic Heads, Quartz Crystals, June 1971 Microwave Devices, Variable Transformers

Ferrite memory cores
Matrix planes, matrix stacks
Complete memories
Magnetic heads

Quartz crystal units, crystal filters
Isolators, circulators
Variable mains transformers

Part 6 Electric Motors and Accessories, Timing and Control Devices

August 1971

Stepper motors
Small synchronous motors
Asynchronous motors

Part 7 Circuir Blocks

Circuit blocks 100 kHz Series
Circuit blocks 1-Series
Circuit blocks 10-Series

Small d.c. motors
Tachogenerators and servomotors Indicators for built-in test equipment

September 1971
Circuit blocks for ferrite core memory drive
*) From October 1971 published in Part 1 instead of Part 5.

* *) Also included (under "Small coils, etc. ") in Part 4.

Argentina
FAPESA I.y.C.
Melincué 2594
Tel. 50-9941/8155
BUENOS AIRES
Australia
Philips Industries Ltd.
Elcoma Division
95-99 York Street
Tel. 20223
SYDNEY, N.S.W. 2000
Austria
WIVEG
Zieglergasse 6
Tel. 932622
A 1072 VIENNA

Belgium

M.B.L.E

80, rue des Deux Gares
Tel. 230000
1070 BRUSSELS

Brazil

IBRAPE S.A.
Av. Paulista 2073-S/Loja
Tel. 278-1111.
SAO PAULO, SP
Canada
Philips Electron Devices
116, Vanderhoof Ave.
Tel. 425-5161
TORONTO 17, Ontario
Chile
Philips Chilena S.A.
Av. Santa Maria 0760
Tel 39-40 01
SANTIAGO

Colombia

SADAPE S.A.
Calle 19, No. 5-51
Tel. 422-175
BOGOTA D.E. 1

Denmark

Miniwatt A/S
Emdrupvej 115A
Tel. (01) 691622
DK-2400 K \emptyset BENHAVN NV

Finland

Oy Philips A.B.
Elcoma Division
Kaivokatu 8
Tel. 10915
HELSINKI 10

France

R.T.C.

La Radiotechnique-Compelec
Avenue Ledru Rollin 130
Tel. 357-69-30
PARIS 11

Germany

VALVO G.m.b.H.
Valvo Haus
Burchardstrasse 19,
Tel. (0411) 3296-1
2 HAMBURG 1

Greece

Philips S.A. Hellénique
Elcoma Division
52, Av. Syngrou
Tel. 915311
ATHENS

Hong Kong
Philips Hong Kong Ltd.
Components Dept.
St. George's Building, 21st Fl.
Tel. K-42 8205
HONG KONG

India

INBELEC Div. of
Philips India Ltd.
Band Box House
254-D, Annie Besant Road
Tel. 475311 to 15
Worli, Bombay 18 (WB)
Indonesia
P.T. Philips-Ralin Electronics

Elcoma Division
Djalan Gadjah Mada 18
Tel. 44163
DJAKARTA
Ireland
Philips Electrical (Ireland) Ltd.
Newstead, Clonskeagh
Tel. 693355
DUBLIN 14
Italy
Philips S.p.A.
Sezione Elcoma
Piazza IV Novembre 3
Tel. 6994
MILANO

Japan

NIHON PHILIPS
32nd Fl. World Trade Center Bldg. 5, 3-chome, Shiba Hamamatsu-cho Minato-ku,
Tel. (435) 5204-5
TOKYO

Mexico
Electrónica S.A. de C.V.
Varsovia No. 36
Tel. 5-33-11-80
MEXICO 6, D.F.

Netherlands

Philips Nederland N.V.
Afd. Elonco
Boschdijk, VB
Tel. (040) 433333
EINDHOVEN

New Zealand

EDAC Ltd.
70-72 Kingsford Smith Street
Tel. 873159
WELLINGTON

Norway

Electronica A/S
Middelthunsgate 27
Tel. 46 3y 70
OSLO 3

Peru

CADESA
Jr. Ilo, No. 216
Appartado 10132
Tel. 277317
LIMA

Portugal

Philips Portuguesa S.A.R.L.
Rua Joaquim Antonio de Aguiar 66
Tel. 6831 21/9
LISBOA

South Africa
EDAC (Pty.) Ltd.
South Park Lane
New Doornfontein
Tel. 24/6701-2
JOHANNESBURG

Spain

COPRESA S.A.
Balmes 22
Tel. 2326680
BARCELONA 7

Sweden

ELCOMA A.B.
Lidingơvagen 50
Tel. 08/67 9780
10250 STOCKHOLM 27
Switzerland
Philips A.G.
Edenstrasse 20
Tel. 051/44 2211
CH-8027 ZUERICH
Taiwan
Philips Taiwan Ltd.
San Min Building, 3rd Fl.
57-1, Chung Shan N. Road
Section 2
Tel. 553101-5
TAIPEI
Turkey
Turk Philips Ticaret A.S.
EMET Department
Gumussuyu Cad. 78-80
Tel. 45.32.50
Beyoglu, ISTANBUL
United Kingdom
Mullard Ltd.
Mullard House
Torrington Place
Tel. 01-580 6633
LONDON WC1E 7HD
United States
Amperex Electronic Corp.
Hicksville Division
Tel. 516 WE 1-6200
HICKSVILLE N.Y. 11802
Sem. and Microcircuits Div.
Tel. 401-762-9000
SLATERSVILLE R.I. 02876
Component Division
Tel. 516-234-7000
HAUPPAUGE N.Y. 11787
Ferroxcube Corp.
(Memory Products)
P.O. Box 359

Tel. (914) 246-2811
SAUGERTIES, N.Y. 12477

Uruguay

Luzilectron S.A.
Rondeau 1567, piso 5
Tel. 94321
MONTEVIDEO
Venezuela
C.A. Philips Venezolana

Elcoma Department
Colinas de Bello Monte
Tel. 72.01.51
CARACAS

General

Type designation
Rating systems
Letter symbols
\qquad

PRO ELECTRON TYPE DESIGNATION CODE FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete devices and to multiple devices ${ }^{1}$)

The type designation consists of:
TWO LETTERS FOLLOWED BY A SERIAL NUMBER
The first letter gives an indication of the material

A Material with a band gap of 0.6 to 1.0 eV , such as germanium

B Material with a band gap of 1.0 to 1.3 eV , such as silicon

C Material with a band gap of 1.3 eV and more, such as gallium arsenide

D Material with a band gap of less than 0.6 eV , such as indium antimonide

R Compound material as employed in Hall generators and photoconductive cells

[^0]The second letter indicates primarily the main application respectively main application and construction if a further differentiation is essential

A Detection diode, switching diode, mixer diode
B Variable capacitance diode
C Transistor for a.f. applications ($\mathrm{R}_{\mathrm{th}} \mathrm{j}-\mathrm{mb}>15^{\circ} \mathrm{C} / \mathrm{W}$)
D Power transistor for a.f. applications ($\mathrm{R}_{\mathrm{th}} \mathrm{j}-\mathrm{mb} \leq 15^{\circ} \mathrm{C} / \mathrm{W}$)
E Tunnel diode
F Transistor for h.f. applications ($R_{\text {th }} \mathrm{j}-\mathrm{mb}>15^{\circ} \mathrm{C} / \mathrm{W}$)
G Multiple of dissimilar devices (see note on page 1); Miscellaneous
H Magnetic sensitive diode; Field probe
K Hall generator in an open magnetic circuit, e.g. magnetogram or signal probe

L Power transistor for h.f. applications ($\mathrm{R}_{\mathrm{th}} \mathrm{j}-\mathrm{mb} \leq 15^{\circ} \mathrm{C} / \mathrm{W}$)
M Hall generator in a closed electrically energised magnetic circuit, e.g. Hall modulator or multiplier

P Radiation sensitive device ${ }^{1)}$
Q Radiation generating device
$R \quad$ Electrically triggered controlling and switching device having a breakdown characteristic ($\mathrm{R}_{\text {th }} \mathrm{j}-\mathrm{mb}>15^{\circ} \mathrm{C} / \mathrm{W}$)
S Transistor for switching applications ($R_{t h} \mathrm{j}-\mathrm{mb}>15^{\circ} \mathrm{C} / \mathrm{W}$)
T Electrically, or by means of light, triggered controlling and switching power device having a breakdówn characteristic ($R_{\text {th }} \mathrm{j}-\mathrm{mb} \leq 15{ }^{\circ} \mathrm{C} / \mathrm{W}$) ${ }^{1}$)
U Power transistor for switching applications ($\mathrm{R}_{\text {th }} \mathrm{j}-\mathrm{mb} \leq 15^{\circ} \mathrm{C} / \mathrm{W}$)
X Multiplier diode, e.g. varactor, step recovery diode
Y Rectifying diode, booster diode, efficiency diode ${ }^{1}$)
Z Voltage reference or voltage regulator diode ${ }^{1}$)

The serial number consists of:
Three figures for semiconductor devices designed primarily for use in domestic equipment

One letter and two figures for semiconductor devices designed primarily for use in professional equipment

VERSION LETTER

A version letter can be used, for instance, for a diode with up-rated voltage, for a sub-division of a transistor type in different gain ranges, a low noise version of an existing transistor and for a diode, transistor, or thyristor with minor mechanical differences, such as finish of the leads, length of the leads etc. The letters never have a fixed meaning, the only exception being the letter R.

EXAMPLES
AC187 Germanium low power a.f. transistor intended primarily for domestic equipment
BYX27 Silicon rectifying diode intended primarily for professional equipment TYPE DESIGNATION FOR A RANGE OF RADIATION DETECTORS

The type designation of a range of variants of radiation detectors distinctly belonging to one basic type may be qualified by a suffix part which is clearly seperated from the basic part by a dash (-).

The basic part being the same for the whole range, is in accordance with the desig nation code for discrete devices.

The suffix part consists of a figure giving the depth of the depletion layer in $\mu \mathrm{m}$ and where appropriate a version letter if there are differences in resolution.

TYPE DESIGNATION FOR A RANGE OF SEMICONDUCTOR DEVICES

The type designation of a range of variants of:
a) voltage reference or voltage regulator diodes (second letter Z)
b) rectifying diodes (second letter Y)
c) thyristors (second letter T)
d) radiation detectors
distinctly belonging to one basic type may be qualified by a suffix part which is clearly separated from the basic part by a dash (-)
The basic part being the same for the whole range, is in accordance with the designation code for discrete devices.

The suffix part consists of:
a) for voltage reference or voltage regulator diodes
one letter followed by the typical zener voltage and where appropriate the letter R ${ }^{1}$)
The first letter indicates the nominal tolerance of the zener voltage in $\%$

A	1%
B	2%
C	5%
D	10%
E	15%

The typical zener voltage is related to the nominal current rating for the whole range. The letter V is used to denote the decimal point when this occurs .
b) for rectifying diodes
a number and where appropriate the letter R^{1})
The number generally indicates the maximum repetitive peak reverse voltage For controlled avalanche types it indicates the maximum crest working reverse voltage
c) for thyristors
a number and where appropriate the letter R^{1})
The number generally indicates either the maximum repetitive peak reverse voltage or the maximum repetitive peak off-state voltage, whichever is lower
For controlled avalanche types it indicates the maximum crest working reverse voltage

[^1]d) for radiation detectors
a figure giving the depth of the depletion layer in $\mu \mathrm{m}$ and where appropriate a version letter if there are differences in resolution.

EXAMPLES

BZY88series

BZY88-C9Vi The particular type out of the range with a typical zener voltage of $9.1 \mathrm{~V} \pm 5 \%$

BYX13-1200 The particular normal polarity type out of the BYX13series with a ma.imum repetitive peak reverse voltage of 1200 V
BTW92-800R The particular reverse polarity type out of the BTW92 thyristor range of which the lower maximum repetitive peak voltage is 800 V

RATING SYSTEMS

ACCORDING TO I.E.C. PUBLICATION 134

1. DEFINITIONS OF TERMS USED
1.1 Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note; This definition excludes inductors, capacitors, resistors and similar components.
1.2 Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.
1.3 Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.
1.4 Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.
Note: Limiting conditions may be either maxima or minima.
1.5 Rating system. The set of principles upon which ratings are established and which determine their interpretation.
Note: The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

2. ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.
p.t.o.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

3. DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.
4. DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

NOTE

It is common use to apply the Absolute Maximum System in semiconductor published data.

LETTER SYMBOLS

LETTER SYMBOLS FOR SEMICONDUCTOR DEVICES excluding rectifier diodes, thyristors and integrated circuits

This system is based on the Recommendations of the INTERNATIONAL ELECTROTECHNICAL COMMISSION as published in I.E.C. Publication 148.

QUANTITY SYMBOLS

1. Instantaneous values of current, voltage and power, which vary with time are represented by the appropriate lower case letter.

> Examples: i, v, p
2. Maximum (peak), average, d.c. and root-mean-square values are represented by the appropriate upper case letter.

> Examples: I, V, P

SUBSCRIPTS FOR QUANTITY SYMBOLS

1. Total values are indicated by upper case subscripts.

$$
\text { Examples: } \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{CM}}, \mathrm{I}_{\mathrm{C}(\mathrm{AV})}{ }^{\mathrm{i}_{\mathrm{C}}}, \mathrm{~V}_{\mathrm{EB}}
$$

2. Values of varying components are indicated by lower case subscripts.

$$
\text { Examples: } i_{c}, I_{c}, v_{e b}, V_{e b}
$$

3. To distinguish between maximum (peak), average, d.c. and root-mean-square values, the following subscripts are added:

For maximum (peak) values : M or m

For average values

For d.c. values : no additional subscript For root-mean-square values : (RMS) or (rms)

$$
\text { Examples: } \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{cm}}, \mathrm{I}_{\mathrm{C}}(\mathrm{AV}), \mathrm{I}_{\mathrm{c}(\mathrm{rms})}, \mathrm{I}_{\mathrm{C}(\mathrm{RMS})}
$$

4. List of subscripts (examples, see figure 1)

A, a	$=$ Anode terminal
K, k	= Cathode terminal
E, e	= Emitter terminal
B, b	= Base terminal or Substrate for MOS devices
C, c	= Collector terminal
D, d	= Drain terminal
(BR)	= Break-down
X, x	= Specified circuit
M, m	$=$ Maximum (peak) value
(AV), (av)	= Average value
(RMS), (rms)	= R.M.S. value
F, f	= Forward
G, g	= Gate terminal
R, r	$=$ As first subscript: Reverse. As second subscript: Repetitive
O, o	$=$ As third subscript: The terminal not mentioned is open circuited
S, s	$=\left\{\begin{array}{l} \text { As first or second subscript: Source terminal (for FETS only) } \\ \text { As second subscript: Non-repetitive (not for FETS) } \\ \text { As third subscript } \quad \text { : Short circuit between the terminal not men- } \\ \text { tioned and the reference terminal } \end{array}\right.$
Z, z	$=$ Zener. (Replaces R to indicate the actual zener voltage, current or power of voltage reference or voltage regulator diodes)

5. Examples of the application of the rules:

Figure 1 represents a transistor collector current, consisting of a direct current and a signal, as a function of time.

Fig. 1

CONVENTIONS FOR SUBSCRIPT SEQUENCE

1. Currents

For transistors the first subscript indicates the terminal carrying the current (conventional current flow from the external circuit into the terminal is positive)
For diodes a forward current (conventional current flow into the anode terminal) is represented by the subscript F or f; a reverse current (conventional current flow out of the anode terminal) is represented by the subscript R or r .
2. Voltages

For transistors normally, two subscripts are used to indicate the points between which the voltage is measured. The first subscript indicates one terminal point and the second the reference terminal.
Where there is no possibility of confusion, the second subscript may be omitted.
For diodes
a forward voltage (anode positive with respect to cathode) is represented by the subscript F or f and a reverse voltage (anode negative with respect to cathode) by the subscript R or r.

3. Supply voltages

Supply voltages may be indicated by repeating the terminal subscript.
Examples: $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BB}}$
The reference terminal may then be indicated by a third subscript.
Examples: $\mathrm{V}_{\text {EEB }}, \mathrm{V}_{\mathrm{CCB}}, \mathrm{V}_{\mathrm{BBC}}$
4. In devices having more than one terminal of the same type, the terminal subscripts are modified by adding a number following the subscript and on the same line.

Example: $\mathrm{V}_{\mathrm{B} 2-\mathrm{E}}$ voltage between second base and emitter

In multiple unit devices, the terminal subscripts are modified by a number preceding the terminal subscripts:

Example: $V_{1 B-2 B}$ voltage between the base of the first unit and that of the second one.

ELECTRICAL PAR AMETER SYMBOLS

1. The values of four pole matrix parameters or other resistances, impedances admittances, etc... inherent in the device, are represented by the lower case symbol with the appropriate subscripts.

$$
\text { Examples: } h_{i b}, z_{f b}, y_{o c}, h_{F E}
$$

2. The four pole matrix parameters of external circuits and of circuits in which the device forms only a part are represented by the upper case symbols with the appropriate subscripts.

$$
\text { Examples: } \mathrm{H}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{O}}, \mathrm{H}_{\mathrm{F}}, \mathrm{Y}_{\mathrm{R}}
$$

SUBSCRIPTS FOR PAR AMETER SYMBOLS

1. The static values of parameters are indicated by upper case subscripts.

$$
\text { Examples: } h_{\mathrm{IB}}, \mathrm{~h}_{\mathrm{FE}}
$$

Note The static value is the slope of the line from the origin to the operating point on the appropriate characteristic curve, i.e. the quotient of the appropriate electrical quantities at the operating point.
2. The small-signal values of parameters are indicated by lower case subscripts.

$$
\text { Examples: } \mathrm{h}_{\mathrm{ib}}, \mathrm{z}_{\mathrm{ob}}
$$

3. The first subscript, in matrix notation identifies the element of the four pole matrix.
i $($ for 11$)=$ input
o $($ for 22$)$ = output
f (for 21) $=$ forward transfer
$r($ for 12$)=$ reverse transfer

$$
\text { Examples: } \begin{aligned}
\mathrm{V}_{1} & =\mathrm{h}_{\mathrm{i}} \mathrm{I}_{1}+\mathrm{h}_{\mathrm{r}} \mathrm{~V}_{2} \\
\mathrm{I}_{2} & =\mathrm{h}_{\mathrm{f}} \mathrm{I}_{1}+\mathrm{h}_{\mathrm{o}} \mathrm{~V}_{2}
\end{aligned}
$$

Notes ${ }^{1}$) The voltage and current symbols in matrix notation are indicated by a single digit subscript.
The subscript $1=$ input; the subscript 2 = output
2) The voltages and currents in these equations may be complex quantities.
4. The second subscript identifies the circuit configuration.
$\mathrm{e}=$ common emitter
$c=$ common collector
b $=$ common base
$j=$ common terminal, general

Examples: (common base)

$$
\begin{aligned}
& I_{1}=y_{i b} V_{1 b}+y_{r b} V_{2 b} \\
& I_{2}=y_{f b} V_{1 b}+y_{o b} V_{2 b}
\end{aligned}
$$

When the common terminal is understood, the second subscript may be omitted.
5. If it is necessary to distinguish between real and imaginary parts of the four pole parameters, the following notations may be used.
$\operatorname{Re}\left(h_{i b}\right)$ etc.. for the real part
$\operatorname{Im}\left(h_{i b}\right)$ etc. . for the imaginary part

LIST OF LETTER SYMBOLS IN ALPHABETICAL ORDER

Letter symbol	Definition
B	Bandwidth
$\mathrm{b}_{\mathrm{ib}}, \mathrm{b}_{\mathrm{ie}}, \mathrm{b}_{\text {is }}, \mathrm{b}_{\mathrm{fb}}$,	
$\mathrm{b}_{\mathrm{fe}}, \mathrm{b}_{\mathrm{fs}}, \mathrm{b}_{\mathrm{ob}}, \mathrm{b}_{\mathrm{oe}}$,	See y parameters
$\mathrm{b}_{\mathrm{OS}}, \mathrm{b}_{\mathrm{rb}}, \mathrm{b}_{\mathrm{re}}, \mathrm{b}_{\mathrm{rs}}$	
$\mathrm{C}_{\mathrm{C}} \quad{ }^{1}$)	Collector capacitance (emitter open-circuited to a.c. and d.c.)
$\mathrm{C}_{\mathrm{d}} \quad{ }^{1}$)	Diode capacitance
$\mathrm{C}_{\mathrm{e}} \quad{ }^{1}$)	Emitter capacitance (collector open-circuited to a.c. and d.c.)
$\mathrm{C}_{\mathrm{ib}}, \mathrm{C}_{\mathrm{ie}}, \mathrm{C}_{\mathrm{is}}, \mathrm{C}_{\mathrm{fb}}$	
$\mathrm{C}_{\mathrm{fe}}, \mathrm{C}_{\mathrm{fs}}, \mathrm{C}_{\mathrm{ob}}, \mathrm{C}_{\text {oe }}$	See y parameters
$\mathrm{C}_{\mathrm{OS}}, \mathrm{C}_{\mathrm{rb}}, \mathrm{C}_{\mathrm{re}}, \mathrm{C}_{\mathrm{rs}}$	
d	Distortion
F	Noise figure
f	Frequency
$\mathrm{f}_{\text {hfb }}, \mathrm{f}_{\text {hfe }}, \mathrm{f}_{\mathrm{yfe}}$	Cut-off frequency (frequency at which the parameter indicated by the subscript is 0.7 of its low frequency value)
f_{T}	Transition frequency (Gain-bandwidth product)
$g_{\text {ie }}, g_{\text {ib }}, g_{\text {gee }}, g_{\text {ob }}$	See y parameters
G_{p}	Power gain
G_{S}	Source conductance
$\mathrm{G}_{\text {tr }}$	Transducer gain
$\mathrm{G}_{\text {UM }}$	Maximum unilateralised power gain
G_{V}	Voltage gain

[^2]| Letter symbol | Definition |
| :---: | :---: |
| $\mathrm{h}_{\mathrm{FB}}, \mathrm{h}_{\mathrm{FC}}, \mathrm{h}_{\mathrm{FE}}$ | D. C. current gain (static value of the forward current transfer ratio; output voltage held constant) |
| $\mathrm{h}_{\mathrm{fb}}, \mathrm{h}_{\mathrm{fc}}, \mathrm{h}_{\mathrm{fe}}$ | Small-signal current gain (small-signal value of the forward current transfer ratio; output short-circuited to a.c.) |
| $\mathrm{h}_{\mathrm{IB}}, \mathrm{h}_{\mathrm{IC}}, \mathrm{h}_{\text {IE }}$ | Static value of the input resistance (output voltage held constant) |
| $\mathrm{h}_{\mathrm{ib}}, \mathrm{h}_{\mathrm{ic}}, \mathrm{h}_{\mathrm{ie}}$ | Small-signal value of the input impedance (output short-circuited to a.c.) |
| $\mathrm{h}_{\mathrm{OB}}, \mathrm{h}_{\mathrm{OC}}, \mathrm{h}_{\mathrm{OE}}$ | Static value of the output conductance (input current held constant) |
| $\mathrm{h}_{\mathrm{ob}}, \mathrm{h}_{\mathrm{oc}}, \mathrm{h}_{\mathrm{oe}}$ | Small-signal value of the output admittance (input open-circuited to a.c.) |
| $\mathrm{h}_{\mathrm{RB}}, \mathrm{h}_{\mathrm{RC}}, \mathrm{h}_{\mathrm{RE}}$ | Static value of the reverse voltage transfer ratio (input current held constant) |
| $\mathrm{h}_{\mathrm{rb}}, \mathrm{h}_{\mathrm{rc}}, \mathrm{h}_{\mathrm{re}}$ | Small-signal value of the reverse voltage transfer ratio (input open-circuited to a.c.) |
| $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{E}}, \mathrm{I}_{\mathrm{G}}, \mathrm{I}_{\mathrm{S}}$ | Total d.c. (or average) current |
| $\mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{c}}, \mathrm{I}_{\mathrm{d}}, \mathrm{I}_{\mathrm{e}}, \mathrm{I}_{\mathrm{g}}, \mathrm{I}_{\mathrm{S}}$ | Varying component of the current |
| $i_{B}, i_{C}, i_{D}, i_{E}, i_{G}, i_{S}$ | Instantaneous total value of the current |
| $i_{b}, i_{c}, i_{d}, i_{e}, i_{g}, i_{s}$ | Instantaneous value of the varying component of the current |
| $\mathrm{I}_{\mathrm{B}(\mathrm{AV})}, \mathrm{I}_{\mathrm{C}(\mathrm{AV})}, \mathrm{I}_{\mathrm{E}(\mathrm{AV})}$ | Total average current (to distinguish between average and d.c. if necessary) |
| $\mathrm{I}_{\text {BEX }}, \mathrm{I}_{\text {CEX }}$ | Total base, respectively collector current under specified conditions. These symbols are commonly used in case of a reverse biased emitter junction |
| $\mathrm{I}_{\mathrm{BM}}, \mathrm{I}_{\mathrm{CM}}, \mathrm{I}_{\mathrm{EM}}$ | Maximum (peak) value of the total current |
| $\mathrm{I}_{\mathrm{bm}}, \mathrm{I}_{\mathrm{cm}}, \mathrm{I}_{\mathrm{em}}$ | Maximum (peak) value of the varying component of the current |
| $\mathrm{I}_{\mathrm{CBO}}$ | Collector cut-off current (open emitter) |
| $\mathrm{I}_{\text {CEO }}$ | Collector cut-off current (open base) |
| $\mathrm{I}_{\text {CBS }}$ or $\mathrm{I}_{\text {CES }}$ | Collector cut-off current (emitter short-circuited to base) |

Letter symbol	Definition
IDSS	Drain current (source short-circuited to gate)
$\mathrm{I}_{\text {EBO }}$	Emitter cut-off current (open collector)
I_{F}	Total forward current of a diode (d.c. or average)
${ }^{\text {i }} \mathrm{F}$	Instantaneous total value of the forward current of a diode
IF (AV)	Total average forward current of a diode (to distinguish between average and d.c. if necessary)
I_{FM}	Peak forward current of a diode
$\mathrm{I}_{\text {GSS }}$	Gate cut-off current (source short-circuited to drain)
$\mathrm{I}_{\mathrm{i}}, \mathrm{I}_{\mathrm{O}}$	Input, respectively output current of a specified circuit
I_{R}	Total reverse (cut-off) current of a diode
i_{R}	Instantaneous total value of the reverse current of a diode
IRRM	Repetitive peak reverse current of a diode
IRSM	Non-repetitive peak reverse current of a diode
$\mathrm{I}_{\text {SDS }}$	Source cut-off current (drain short-circuited to gate)
I_{Z}	Zener current (d.c. or average)
IZM	Peak zener current
IZS	Non-repetitive zener current
$\mathrm{P}_{\mathrm{i}}, \mathrm{P}_{\mathrm{O}}$	Input, respectively output power of a specified circuit
$\mathrm{P}_{\text {tot }}$	Total power dissipation in the device
P_{Z}	Zener power dissipation
P_{ZM}	Peak zener power dissipation
$\mathrm{P}_{\text {ZSM }}$	Non-repetitive peak zener power dissipation
$\mathrm{Q}_{\text {S }}$	Reverse recovery charge

Letter symbol	Definition
r_{D}	Diode (internal) series resistance
r_{DS}	Drain-source resistance
$\mathrm{r}_{\text {GS }}$	Gate-source resistance
R_{L}	Load resistance
R_{S}	Source resistance
$\mathrm{R}_{\text {th }}$	Thermal resistance
$\mathrm{R}_{\text {th }} \mathrm{j}$-a	Thermal resistance from junction to ambient
$R_{\text {th }} \mathrm{j}-\mathrm{mb}$	Thermal resistance from junction to mounting base
$\mathrm{R}_{\text {th }} \mathrm{j}-\mathrm{c}$	Thermal resistance from junction to case
$\mathrm{R}_{\text {th }} \mathrm{mb}$-h	Thermal resistance from mounting base to heatsink (contact thermal resistance)
r_{z}	Dynamic-slope resistance of a zener diode
S_{z}	Temperature coefficient of the operating voltage of a zener diode
Tamb	Ambient temperature
$\mathrm{T}_{\text {case }}$	Case temperature
$\mathrm{t}_{\mathrm{d}} ; \mathrm{t}_{\mathrm{f}}$	Delay time; fall time
t_{fr}	Forward recovery time of a diode
T_{j}	Junction temperature
$\mathrm{t}_{\text {off }}$	Turn-off time ($\mathrm{t}_{\text {off }}=\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{f}}$)
$\mathrm{t}_{\text {on }}$	Turn-on time ($\mathrm{ton}_{\text {on }}=\mathrm{td}_{\mathrm{d}}+\mathrm{tr}_{\mathrm{r}}$)
t_{r}	Rise time
t_{rr}	Reverse recovery time of a diode
$\mathrm{t}_{\text {s }}$	Storage time
$\mathrm{T}_{\text {stg }}$	Storage temperature
$\mathrm{V}_{\mathrm{BB}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	Supply voltage
$\mathrm{V}_{\mathrm{BE}}, \mathrm{v}_{\mathrm{CB}}, \mathrm{v}_{\mathrm{CE}}, \mathrm{v}_{\mathrm{EB}}$	Total value of the voltage (d.c. or average)
$\mathrm{V}_{\mathrm{be}}, \mathrm{V}_{\mathrm{cb}}, \mathrm{V}_{\mathrm{ce}}, \mathrm{V}_{\mathrm{eb}}$	Varying component of the voltage
$\mathrm{v}_{\mathrm{BE}}, \mathrm{v}_{\mathrm{CB}}, \mathrm{v}_{\mathrm{CE}}, \mathrm{v}_{\mathrm{EB}}$	Instantaneous value of the total voltage
$\mathrm{v}_{\mathrm{be}}, \mathrm{v}_{\mathrm{cb}}, \mathrm{v}_{\text {ce }}, \mathrm{v}_{\text {eb }}$	Instantaneous value of the varying component of the voltage

Letter symbols	Definition
$\mathrm{V}_{\text {BEfl }}$	Base-emitter floating voltage (open base)
$V_{\text {BEsat }}$	Saturation voltage at specified bottoming conditions
$\mathrm{V}_{\text {(BR) }}$	Breakdown voltage
$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}, \mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$, $\mathrm{V}_{\text {(BR) }}$ EBO	Breakdown voltage between the terminal indicated by the first subscript and the reference terminal (second subscript) when the third terminal is open circuited
$\mathrm{V}_{\text {(BR) }}$ CER	Collector-emitter breakdown voltage with a specified resistance between emitter and base
$\mathrm{v}_{\text {(BR) }}$ CES	Collector-emitter breakdown voltage with the emitter short circuited to the base
$\mathrm{v}_{\mathrm{CBO}}, \mathrm{v}_{\mathrm{CEO}}, \mathrm{v}_{\mathrm{DGO}}$, $\mathrm{V}_{\mathrm{EBO}}, \mathrm{V}_{\mathrm{GSO}}$	Voltage of the terminal indicated by the first sub script w.r.t. the reference terminal (second subscript) with the third terminal open circuited
$\mathrm{v}_{\text {CBOM }}, \mathrm{V}_{\text {CEOM }}$	Peak value of $\mathrm{V}_{\mathrm{CBO}}$, $\mathrm{V}_{\mathrm{CEO}}$
$\mathrm{V}_{\text {CEK }}$	Knee voltage at specified conditions
$\mathrm{v}_{\text {CER }}$	Collector-emitter voltage with a specified resistance between emitter and base
$\mathrm{v}_{\text {CERM }}$	Peak value of $\mathrm{V}_{\text {CER }}$
$\mathrm{v}_{\text {CES }}$	Collector-emitter voltage with the emitter short circuited to the base
$\mathrm{V}_{\text {CEsat }}$	Saturation voltage at specified bottoming conditions
$\mathrm{V}_{\text {CE. sust }}$	Collector-emitter sustaining voltage under the condition, indicated by the third subscript
$\mathrm{v}_{\text {CEX }}$	Collector-emitter voltage in a specified circuit This symbol is commonly used to indicate a reverse biased emitter junction
$\mathrm{v}_{\text {DSS }}$	Drain-source voltage with the source short-circuited to the gate
$\mathrm{V}_{\text {Ebfl }}$	Emitter-base floating voltage (open emitter)
V_{F}	Continuous forward voltage of a diode
v_{FM}	Peak forward voltage of a diode

Transmitting transistors

RULES FOR MOUNTING QUARTER-INCH CAPSTAN HEADERS

AS USED FOR R-F POWER TRANSISTORS

A 5 mm thick brass nut is supplied with each transistor for securing it to a heatsink. To ensure optimum heat transfer and avoid damage to the threaded stud of the transistor the following recommendations should be observed:

- Diameter of mounting hole in heatsink: $4.1 \mathrm{~mm}(+0.05,-0.00)$
- Heatsink to be at least 3 mm thick.

Attachment to a thinner heatsink may damage the mounting stud.

- Heatsink surfaces at the mounting hole to be flat, parallel, and free of burrs or oxidation.
- Mounting nut torque: $8.0 \mathrm{~kg} \mathrm{~cm}(+0.05,-0.0)$ If security against vibration is required, use a locking compound such as Lock-tite. Do not use washers; they impair the heat transfer.
- Recommend distance from the top surface of heatsink to surface of printed wiring board: $2.9 \mathrm{~mm}(+0.0,-0.2)$
Tension in the transistor leads sets the limit on spacing between heatsink and printed wiring board; in general, the leads can withstand more pull in the downward than in the upward direction.
- Solder the leads to the connection pads with resin-cored lead-tin solder, using an iron of normal temperature. Soldering iron temperatures as high as $350{ }^{\circ} \mathrm{C}$ are safely tolerable; the transistor can withstand an interior temperature of $250{ }^{\circ} \mathrm{C}$ for about ten minutes.
The leads may be tinned, î̂ required, by dipping them into a solder bath at about $230{ }^{\circ} \mathrm{C}$; each lead may be dipped up to its full length. A flux of the quality of Super-Safe is recommended; after tinning, surplus flux should be rinsed away in tap water.

GERMANIUM ALLOY DIFFUSED TRANSISTOR

P-N-P transistor in a TO-39 metal envelope, primarily intended for use as a power amplifier in transmitting circuits up to frequencies of 180 MHz .

QUICK REFERENCE DATA			
Collector-base voltage (open emitter)	$-^{-} \mathrm{CBO}$	max. 32	V
Collector-emitter voltage ($\mathrm{V}_{\mathrm{BE}}=0$)	$-\mathrm{V}_{\text {CES }}$	max. 32	V
Collector current (d.c.)	$-_{\text {I }}$	max. 150	mA
Total power dissipation up to $\mathrm{T}_{\text {case }}=65^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max. 800	mW
Junction temperature	T_{j}	max. 90	${ }^{0} \mathrm{C}$
Transition frequency			
$\mathrm{I}_{\mathrm{E}}=100 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}$	f_{T}	typ. 350	MHz

MECHANICAL DATA

Dimensions in mm
TO-39
Collector connected to case

Accessories available: 56218, 56245, 56265

RATINGS (Limiting values) ${ }^{1}$)

Voltages

Collector-base voltage (open emitter)
Collector-emitter voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$

| $-\mathrm{V}_{\text {CBO }}$ | \max. | 32 V |
| :--- | :--- | :--- | :--- |
| $-\mathrm{V}_{\text {CES }}$ | \max. | 32 V |

Currents

Collector current (d.c.)
Collector current (peak value)
Emitter current (d.c.)
Emitter current (peak value)
Reverse emitter current (d.c.)
Reverse emitter current (peak value)

Power dissipation

Total power dissipation up to $T_{\text {case }}=65^{\circ} \mathrm{C}$
$-\mathrm{I}_{\mathrm{C}}$
${ }^{-\mathrm{I}_{\mathrm{CM}}}$
${ }^{\mathrm{I}_{\mathrm{E}}}$
${ }^{\mathrm{I}_{\mathrm{EM}}}$
${ }^{-\mathrm{I}_{\mathrm{E}}}$
${ }^{-\mathrm{I}_{\mathrm{EM}}}$
max. 150 mA $\max .300 \mathrm{~mA}$ $\max .200 \mathrm{~mA}$ $\max .350 \mathrm{~mA}$ \max. 10 mA $\max .30 \mathrm{~mA}$

Temperatures

Storage temperature
Junction temperature : continuous
incidentally

THERMAL RESISTANCE

From junction to ambient in free air on a heatsink of $12.5 \mathrm{~cm}^{2}$

From junction to case

$$
\begin{array}{ll}
R_{\text {th } j-a} & =0.25{ }^{\circ} \mathrm{C} / \mathrm{mW} \\
R_{\text {th } j-\mathrm{a}} & =0.08{ }^{\circ} \mathrm{C} / \mathrm{mW} \\
R_{\text {th } j-\mathrm{c}} & =0.035{ }^{\circ} \mathrm{C} / \mathrm{mW}
\end{array}
$$

[^3]
AFY19

CHARACTERISTICS

Collector cut-off current

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}=0 ;-\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{E}}=0 ;-\mathrm{V}_{\mathrm{CB}}=32 \mathrm{~V}
\end{aligned}
$$

Emitter cut-off current

$$
\mathrm{I}_{\mathrm{C}}=0 ;-\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}
$$

Base current

$$
\begin{align*}
& \mathrm{I}_{\mathrm{E}}=100 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CB}}=2 \mathrm{~V} \tag{}\\
& \mathrm{I}_{\mathrm{E}}=80 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CB}}=12 \mathrm{~V}
\end{align*}
$$

Saturation voltage

$$
-\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA} ;-\mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}
$$

Collector capacitance at $\mathrm{f}=0.5 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ;-\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}
$$

Real part of input impedance

$$
\mathrm{I}_{\mathrm{E}}=100 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V} ; \mathrm{f}=100 \mathrm{MHz} \quad \operatorname{Re}\left(\mathrm{~h}_{\mathrm{i}, \mathrm{e}}\right) \quad \text { typ. } 18 \Omega
$$

Transition f requency

$$
\mathrm{I}_{\mathrm{E}}=100 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}
$$

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

${ }^{-\mathrm{I}_{\mathrm{CBO}}}$	$<$	$10 \mu \mathrm{~A}$
${ }^{-\mathrm{I}_{\mathrm{CBO}}}$	$<$	1 mA

$$
{ }^{-I_{\mathrm{EBO}}}
$$

$$
<\quad 1 \mathrm{~mA}
$$

typ.	1	mA
$<$	2	mA

C_{c}
typ. 12 pF
-
?

APPLICATION INFORMATION

V.H.F. power amplifier circuit at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Performance in common base configuration
$\mathrm{I}_{\mathrm{E}}=80 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CB}}=12 \mathrm{~V}$
Output power at $\mathrm{f}=80 \mathrm{MHz}$
$\mathrm{f}=180 \mathrm{MHz}$
Power gain at $\quad \mathrm{f}=80 \mathrm{MHz}$
$\mathrm{f}=180 \mathrm{MHz}$

P_{o}	$>500 \mathrm{~mW}$
$\mathrm{P}_{\mathrm{o}}^{2}$	$>400 \mathrm{~mW}$
$\left.\mathrm{G}_{\mathrm{p}}^{2}\right)^{2}$	$>10 \mathrm{~dB}$
$\left.\mathrm{G}_{\mathrm{p}}\right)^{2}$	$>9 \mathrm{~dB}$

Note

Care should be taken to reduce the case to heatsink capacitance, especially at 180 MHz .

[^4]
V.H.F. POWER TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 13.5 V . The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions with a supply overvoltage to 16.5 V . It has a TO-39 envelope with the collector connected to the case.

QUICK REFERENCE DATA									
R.F. performance up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ in an unneutralised common-emitter class B circuit.									
Mode of operation	VCC (V)	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	PS (W)	$\begin{gathered} \mathrm{P}_{\mathrm{L}} \\ (\mathrm{~W}) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}} \\ & \text { (A) } \end{aligned}$	G_{p} (dB)	$\begin{gathered} \eta \\ (\%) \end{gathered}$	\bar{z}_{i} (Ω)	$\left\|\begin{array}{c} \overline{\mathrm{Y}}_{\mathrm{L}} \\ (\mathrm{~mA} / \mathrm{V}) \end{array}\right\|$
c.w. c.w.	13.5 12.5	175 175	\|r0.63	4 4	\|re0.49	$\left\lvert\, \begin{array}{r}>8 \\ \text { typ. } 8\end{array}\right.$	\|r $\begin{array}{r}>60 \\ \text { typ. } 60\end{array}$	$3.8+\mathrm{j} 2.2$	36-j22

MECHANICAL DATA

Dimensions in mm
TO-39
Collector connected to case

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Collector -base voltage (open emitter) peak value
Collector-emitter voltage (open base)
Emitter-base voltage (open collector)

Currents

Collector current (average)
Collector current (peak value) $\mathrm{f}>1 \mathrm{MHz}$
$V_{\text {CBOM }} \max .36 \mathrm{~V}$

VCEO max. 18 V
VEBO max. 4 V

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$

Temperature
Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to mounting base
From mounting base to heatsink with a boron nitride washer for electrical insulation

$\mathrm{T}_{\text {stg }} \quad-65$ to $+200 \quad{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}} \quad \max .200{ }^{\circ} \mathrm{C}$

$$
R_{\text {th } \mathrm{j}-\mathrm{mb}}=220^{\circ} \mathrm{C} / \mathrm{W}
$$

[^5]
CHARACTERISTICS

Collector cut-off current

$$
\mathrm{I}_{\mathrm{B}}=0 ; \mathrm{V}_{\mathrm{CE}}=14 \mathrm{~V}
$$

Breakdown voltages

Collector-base voltage
open emitter, $I_{C}=1 \mathrm{~mA}$

$$
\mathrm{V}(\mathrm{BR}) \mathrm{CBO}>36 \mathrm{~V}
$$

Collector -emitter voltage open base, $I_{C}=10 \mathrm{~mA}$

$$
\mathrm{V}(\mathrm{BR}) \mathrm{CEO}>\quad 18 \quad \mathrm{~V}
$$

Emitter-base voltage
open collector, $\mathrm{I} \mathrm{E}=1 \mathrm{~mA}$

| $V(B R) \mathrm{CBO}$ | $>$ | 36 V |
| :--- | :--- | :--- | :--- |
| $\mathrm{~V}(\mathrm{BR}) \mathrm{CEO}$ | $>$ | 18 V |
| $\mathrm{~V}(\mathrm{BR}) \mathrm{EBO}$ | $>$ | 4 V |

$$
\mathrm{V}(\mathrm{BR}) \mathrm{EBO}>4 \mathrm{~V}
$$

Transient energy
$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

$$
\begin{array}{ll}
\text { open base } & \mathrm{E} \\
-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega & \mathrm{E}
\end{array}
$$

D. C. current gain

$$
\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

hFE
$>$
5
Transition frequency

$$
\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=15 \mathrm{~V} \tag{c}
\end{equation*}
$$

typ.
15 pF
$<$
20 pF
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=15 \mathrm{~V} \quad \text {-Cre } \quad \text { typ. } 11 \mathrm{pF}
$$

APPLICATION INFORMATION

R.F. performance in c.w.operation (unneutralised common-emitter class Beircuit)
$\mathrm{f}=175 \mathrm{MHz} ; \mathrm{T}_{\mathrm{mb}}$ up to $25^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{L}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{Gp}_{\mathrm{p}}(\mathrm{dB})$	$\eta(\%)$	$\bar{z}_{i}(\Omega)$	$\overline{\mathrm{Y}}_{\mathrm{L}}(\mathrm{mA} / \mathrm{V})$
13.5	<0.63	4	<0.49	>8	>60	$3.8+\mathrm{j} 2.2$	$36-\mathrm{j} 22$
12.5	typ. 0.63	4	typ. 0.53	typ. 8	typ. 60		

C1 $=\mathrm{C} 6=4$ to 29 pF air trimmer with insulated rotor
$\mathrm{C} 2=\mathrm{C} 7=4$ to 29 pF air trimmer with non-insulated rotor
$\mathrm{C} 3=\quad 39 \mathrm{pF}$ ceramic
$\mathrm{C} 4=\quad 100 \mathrm{pF}$ ceramic
C5 $=\quad 15 \mathrm{nF}$ polyester
$\mathrm{L} 1=1$ turn enamelled Cu wire (1.0 mm); int. diam. 10 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 2=6$ turns enamelled Cu wire (0.7 mm); int. diam. 4 mm ; leads $2 \times 10 \mathrm{~mm}$
L3 $=$ L6 $=$ ferroxcube choke (code number 4312020 36640)
$\mathrm{L} 4=8$ turns enamelled Cu wire (0.7 mm); int. diam. 4 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 5=5$ turns enamelled Cu wire (1.0 mm); winding pitch 1.0 mm ; int. diam. 8 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 7=7$ turns enamelled Cu wire (1.0 mm); winding pitch 1.0 mm ; int. diam. 6 mm ; leads $2 \times 5 \mathrm{~mm}$
$\mathrm{R} 1=\mathrm{R} 2=10 \Omega$ carbon

IIIIII

Conditions for R.F. SOAR:
$\begin{array}{lll}\mathrm{f} & =175 \mathrm{MHz} & \mathrm{P}_{\text {Snom }}=\mathrm{P}_{\mathrm{S}} \text { at } \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCnom}} \text { and V.S.W.R. }=1 \\ \mathrm{~T}_{\text {mb }} & =70^{\circ} \mathrm{C} & \text { see also page } 5\end{array}$

The transistor has been developed for use with unstabilized supply voltages. As the output power and drive power increase with the supply voltage, the nominal output power must be derated in accordance with the graphs above for safe operation at supply voltages other than the nominal. The graphs show the allowable output power under nominal conditions, as a function of the supply overvoltage ratio, with V.S. W.R. as parameter.
The left hand graph applies to the situation in which the drive ($\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\text {Snom }}$) increases linearly with supply overvoltage ratio.
The right hand graph shows the derating factor to be applied when the drive ($\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\mathrm{Snom}}$) increases as the square of the supply overvoltage ratio ($\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCnom}}$). Depending on the operating conditions, the appropriate derating factor may lie in the region between the linear and the square-law functions.

V.H.F. POWER TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 28 V . The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions. It has a TO-39 envelope with the collector connected to the case.

QUICK REFERENCE DATA									
R.F. performance up to $\mathrm{T}_{\mathrm{mb}}=\underset{ }{25^{\circ} \mathrm{C} \text { in an unneutralised common-emitter }}$ class B circuit.									
Mode of operation	V_{CC} (V)	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	${ }^{P}$ S (W)	P_{L} (W)	${ }^{\text {I }}$ C (A)	$\underset{(\mathrm{dB})}{\mathrm{G}_{\mathrm{p}}}$	$\begin{gathered} \eta \\ (\%) \end{gathered}$	$\overline{z_{i}}$ ($\Omega)$	$\left\lvert\, \begin{gathered} \overline{\mathrm{Y}}_{\mathrm{L}} \\ (\mathrm{~mA} / \mathrm{V}) \end{gathered}\right.$
c. w.	28	175	<0.40	4	<0.22	> 10	>65	$2.3+\mathrm{j} 1.6$	8.6-j18

MECHANICAL DATA

Dimensions in mm
TO-39
Collector connected
to case

Accessories available on request: $56218 ; 56245 ; 56265$.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Collector-base voltage (open emitter) peak value

Collector-emitter voltage (open base)
Emitter-base voltage (open collector) Currents
Collector current (average)
Collector current (peak value) $\mathrm{f}>1 \mathrm{MHz}$
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$
$\mathrm{f}>1 \mathrm{MHz}$

Temperature
Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to mounting base
From mounting base to heatsink with a boron nitride washer for electrical insulation

$V_{\text {CBOM }}$	max.	65	V
$\mathrm{~V}_{\text {CEO }}$	max.	36	V
$\mathrm{~V}_{\text {EBO }}$	max.	4	V

$\mathrm{I}_{\mathrm{C}}(\mathrm{AV})$	\max.	0.5	A
I_{CM}	\max.	1.5	A

Ptot max. 8 W

$\begin{array}{llrr}\mathrm{T}_{\mathrm{stg}} & -65 \text { to } & +200 & { }^{\circ} \mathrm{C} \\ \mathrm{T}_{\mathrm{j}} & \text { max. } & 200 & { }^{\circ} \mathrm{C}\end{array}$
$R_{\text {th } j-m b}=22 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th mb-h }}=2.5 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

Collector cut-off current

$$
\mathrm{I}_{\mathrm{B}}=0 ; \mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}
$$

Breakdown voltages

$$
\begin{array}{lllll}
\begin{array}{c}
\text { Collector-base voltage } \\
\text { open emitter, } I_{C}=1 \mathrm{~mA}
\end{array} & \mathrm{~V}_{(\mathrm{BR}) \mathrm{CBO}} & > & 65 & \mathrm{~V} \\
\begin{array}{c}
\text { Collector-emitter voltage } \\
\text { open base, } \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}
\end{array} & \mathrm{~V}_{(\mathrm{BR}) \mathrm{CEO}}> & 36 & \mathrm{~V} \\
\begin{array}{c}
\text { Emitter-base voltage } \\
\text { open collector; } \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}
\end{array} & \mathrm{~V}_{(\mathrm{BR}) \mathrm{EBO}}> & 4 & \mathrm{~V}
\end{array}
$$

Transient energy
$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

$$
\begin{array}{lllll}
\text { open base } & \mathrm{E} & > & 0.5 & \mathrm{mWs} \\
-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega & \mathrm{E} & > & 0.5 & \mathrm{mWs}
\end{array}
$$

D. C. current gain

$$
\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \quad \mathrm{~h}_{\mathrm{FE}} \gg 5
$$

Transition frequency

$\mathrm{I}_{\mathrm{C}}=400 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}$
f_{T}
typ. 500 MHz

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}
$$

Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}
$$

$\begin{array}{lll}\text { typ. } & 10 & \mathrm{pF} \\ < & 15 & \mathrm{pF}\end{array}$
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\mathrm{I}_{\mathrm{CEO}}
$$

1
typ. 7.5 pF

APPLICATION INFORMATION

R.F.performance in c.w. operation (unneutralised common-emitter class Bcircuit)
$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{mb}}$ up to $25^{\circ} \mathrm{C}$

$\mathrm{f}(\mathrm{MHz})$	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{L}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	$\eta(\%)$	$\overline{\mathrm{z}}_{\mathrm{i}}(\Omega)$	$\overline{\mathrm{Y}}_{\mathrm{L}}(\mathrm{mA} / \mathrm{V})$
175	<0.40	4	<0.22	>10	>65	$2.3+\mathrm{j} 1.6$	$8.6-\mathrm{j} 18$

Test circuit

$\mathrm{C} 1=\mathrm{C} 6=4$ to 29 pF air trimmer with insulated rotor
$\mathrm{C} 2=\mathrm{C} 7=4$ to 29 pF air trimmer with non-insulated rotor
$\mathrm{C} 3=\quad 39 \mathrm{pF}$ ceramic
$\mathrm{C} 4=\quad 100 \mathrm{pF}$ ceramic
C5 = $\quad 15 \mathrm{nF}$ polyester
$\mathrm{L} 1=1$ turn enamelled Cu wire (1.0 mm); int. diam. 10 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 2=6$ turns enamelled Cuwire (0.7 mm); int. diam. 4 mm ; leads $2 \times 10 \mathrm{~mm}$
L3 = L6 = ferroxcube choke (code number 4312020 36640)
$\mathrm{L} 4=8$ turns enamelled Cu wire (0.7 mm); int. diam. 4 mm ; leads $2 \times 10 \mathrm{~mm}$
L5 = 5 turns enamelled Cu wire (1.0 mm); winding pitch 1.0 mm ; int. diam. 8 mm ; leads $2 \times 10 \mathrm{~mm}$
L 7 = 4 turns enamelled Cu wire (1.0 mm); winding pitch 1.0 mm ; int. diam. 6 mm ; leads $2 \times 5 \mathrm{~mm}$
$R 1=R 2=10 \Omega$ carbon

For high voltage operation, a stabilized power supply is generally used.
The graph shows the allowable output power under nominal conditions as a function of the V.S.W.R., with heatsink temperature as parameter.

SILICON PLANAR EPITAXIAL TRANSISTORS

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ transistors in a TO-39 metal envelope with the collector connected to the case. The BFY44 and BFY70 are primarily intended for use in v.h.f. medium power amplifiers or as output stage in small transmitters or as driver for transmitting tubes.

QUICK REFERENCE DATA			
		BFY44	BFY70
Collector-base voltage (open emitter)	$\mathrm{V}_{\mathrm{CBO}}$	max. 80	60 V
Collector-emitter voltage (open base)	$\mathrm{V}_{\text {CEO }}$	max. 60	40 V
Emitter-base voltage (open collector)	$\mathrm{V}_{\text {EBO }}$	max. 4	4 V
Collector current (d.c.)	I_{C}	max.	1 A
Total power dissipation up to $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max. 5	5 W
Junction temperature	T_{j}	max. 200	$200{ }^{\circ} \mathrm{C}$
Saturation voltages $\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$	VCEsat	typ. 0.4	0.4 V
Transition frequency $\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$	f_{T}	typ. 210	210 MHz
Performance in a specified circuit at $\mathrm{f}=180 \mathrm{MHz}$			
Output power at $\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}$	P_{o}	typ. 2.1	W
Output power at $\mathrm{V}_{\text {CE }}=28 \mathrm{~V}$	P_{O}	typ. -	1.5 W
Power gain	G_{p}	typ. 7	7 dB
Collector efficiency	η	typ. 50	50 \%

MECHANICAL DATA

Dimensions in mm
Collector connected to case
TO-39

Accessories available: $56218,56245,56265$

RATINGS (Limiting values) ${ }^{1}$)

Voltages
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
Emitter-base voltage (open collector)

Currents

Collector current (d.c.)
Collector current (peak value)

Base current (d.c.)
Base current (peak value)
Power dissipation
Total power dissipation up to $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$
$P_{\text {tot }}$
max.
5 W

Temperatures

Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to case

	BFY44	BFY70	
$\mathrm{V}_{\mathrm{CBO}}$	max. 80	60	V
$\mathrm{V}_{\text {CEO }}$	max. 60	40	V
VEBO	max. 4	4	V

I_{C}	\max.	1.0	A
I_{CM}	\max.	1.0	A
I_{B}	\max.	0.2	A
I_{BM}	\max.	0.2	A

CHARACTERISTICS

Collector cut-off current

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}
\end{aligned}
$$

Emitter cut-off current

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=0 ; \mathrm{V}_{\mathrm{EB}}=1 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=0 ; \mathrm{V}_{\mathrm{EB}}=4 \mathrm{~V}
\end{aligned}
$$

Sustaining voltages

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=0 \\
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{R}_{\mathrm{BE}}=10 \Omega \\
& \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{BE}}=0
\end{aligned}
$$

$\underline{\text { Saturation voltages }}$

$$
\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

${ }^{\text {I CBO }}$	BFY44		BFY70	
	typ.	3	-	nA
		500	-	nA
	typ.	-	3	nA
${ }^{1} \mathrm{CBO}$	<	-	500	nA
	typ.	1.5	-	$\mu \mathrm{A}$
${ }^{1} \mathrm{CBO}$	$<$	50	-	$\mu \mathrm{A}$
I	typ.	-	1.5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CBO}}$	<	-	50	$\mu \mathrm{A}$
	typ.	1	1	nA
IEBO	<	500	500	nA
$\mathrm{I}_{\text {EBO }}$	$<$	100	100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CEOsust }}$	>	60	40	V
$\mathrm{V}_{\text {CERsust }}$	>	80	60	V
$\mathrm{V}_{\text {CESsust }}$	>	80	60	V

	typ.	0.4	V
V CEsat	$\stackrel{y}{c}$	0.7	V
	V.y.sat	typ.	1.0
K	V		
	$<$	1.5	V

CHARACTERISTICS (continued) D.C. current gain

$$
\begin{array}{lllr}
\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} & \mathrm{~h}_{\mathrm{FE}} & \text { typ. } & 20 \\
\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} & & > & 5 \\
\mathrm{~h}_{\mathrm{FE}} & \text { typ. } & 20
\end{array}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\begin{array}{llllrl}
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 & \underline{\text { BFY } 44}: & \mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V} & \mathrm{C}_{\mathrm{C}} & \begin{array}{l}
\text { typ. } \\
<
\end{array} & \begin{array}{r}
7 \\
\mathrm{pF} \\
\mathrm{e}
\end{array} \\
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 & \underline{\mathrm{BFY} 70}: & \mathrm{VCB}=28 \mathrm{~V} & \mathrm{C}_{\mathrm{C}} & \begin{array}{l}
\text { typ. } \\
<
\end{array} & 7 \mathrm{pF} \\
\hline
\end{array}
$$

Transition frequency

$$
\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} \quad \mathrm{f}_{\mathrm{T}} \quad \text { typ. } 210 \mathrm{MHz}
$$

Feedback time constant at $\mathrm{f}=10.7 \mathrm{MHz}$

$$
-\mathrm{I}_{\mathrm{E}}=30 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} \quad\left|\frac{\mathrm{~h}_{\mathrm{rb}}}{\omega}\right| \begin{array}{ccc}
\text { typ. } & 18 & \mathrm{ps} \\
< & 35 & \mathrm{ps}
\end{array}
$$

y parameters at $\mathrm{f}=180 \mathrm{MHz}$ (common base) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
$-\mathrm{I}_{\mathrm{E}}=150 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CB}}=24 \mathrm{~V}$

Input conductance
Input capacitance
Transfer admittance
Phase angle of transfer admittance
Output conductance
Output capacitance
gib typ. $48 \mathrm{~m} \Omega^{-1}$
$-\mathrm{C}_{\mathrm{ib}}$ typ. 120 pF
$\left|y_{f b}\right|$ typ. $98 \mathrm{~m} \Omega^{-1}$
$\varphi_{\mathrm{fb}} \quad$ typ. 62°
gob typ. $4.3 \mathrm{~m} \Omega^{-1}$
$\mathrm{C}_{\text {ob }}$ typ. 13.5 pF
y parameters at $\mathrm{f}=180 \mathrm{MHz}$ (common emitter)
$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}$
Input conductance
Input capacitance

gie $_{\text {ie }}$	typ.	96	$\mathrm{~m} \Omega^{-1}$
$-\mathrm{C}_{\text {ie }}$	typ.	32	pF

APPLICATION INFORMATION

A. Amplifier circuit

Different methods of biasing

Components

C1, C2, C4
C3
C5, C6, C7, C8
L1
L2
$\mathrm{f}=100 \mathrm{MHz}$
25 pF variable air capacitor +22 pF mica 25 pF variable air capacitor 3.3 nF

2 turns Cu wire (1 mm); $\mathrm{d}=12 \mathrm{~mm}$
3.5 turns Cuwire (1 mm); $\mathrm{d}=12 \mathrm{~mm}$

APPLICATION INFORMATION (continued)

B. Amplifier circuit

APPLICATION INFORMATION (continued)

C. Frequency doubler $90-180 \mathrm{MHz}$

$\left.\begin{array}{l}\text { L1 } \approx 70 \mathrm{nH} ; 1.5 \text { turns } \\ \text { L2 } \approx 90 \mathrm{nH} ; \quad 2 \text { turns } \\ \mathrm{L} 3 \approx 140 \mathrm{nH} ; \quad 3 \text { turns }\end{array}\right\}$

Typical performance

V_{CE}	I_{C}	$\mathrm{P}_{\mathrm{i}}=(\mathrm{mW})$	$\mathrm{P}_{\mathrm{O}}(\mathrm{mW})$	G_{p}	η
(V)	(mA)	$\mathrm{f}_{\mathrm{i}}=90 \mathrm{MHz}$	$\mathrm{f}_{\mathrm{O}}=180 \mathrm{MHz}$	(dB)	$(\%)$
$\left.40^{2}\right)$	110	130	920	8.5	21
30	94	110	700	8.0	25
20	82	110	460	6.2	28

[^6]
TRANSMITTING TRANSISTOR

N-P-N epitaxial planar transistor intended for s.s.b. in class A and $A B$ and in f.m. transmitting applications in class C with a supply voltage up to 28 V . The transistor is resistance stabilized and tested under severe load mismatch conditions. It has a $\frac{1}{4}$ " capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA									
Operation	Class	$\begin{array}{c\|c\|} \hline \mathrm{s} & \begin{array}{c} \mathrm{V}_{\mathrm{CE}} \\ (\mathrm{~V}) \end{array} \\ \hline \end{array}$	$\begin{gathered} \mathbf{f}_{1} \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \mathrm{f}_{2} \\ (\mathrm{MHz}) \end{gathered}$	P_{L} (W)	G_{p} (dB)	$\begin{gathered} \mathrm{d}_{3} \\ (\mathrm{~dB}) \end{gathered}$	I_{C} (A)	$\begin{gathered} \mathrm{dt} \\ (\%) \end{gathered}$
s.s.b. s.s.b.	A AB	26 28	28.000 28.000	28.001 28.001	$1 \left\lvert\, \begin{gathered}\text { J-8(PEP) } \\ 1 \\ 25(P E P)\end{gathered}\right.$	$\left\lvert\, \begin{aligned} & >18 \\ & >18\end{aligned}\right.$	<-40 typ. -35	\|ry $\begin{array}{r}1.2 \\ \text { typ. } 1.28\end{array}$	typ. ${ }^{-}$
Operation	Class	$\begin{array}{\|c\|r} \mathrm{V}_{\mathrm{CC}} & \mathrm{f} \\ \mathrm{(V)} & \mathrm{MH} \\ \hline \end{array}$	P_{S} z) (W)	$\left\|\begin{array}{c} \mathrm{P}_{\mathrm{L}} \\ (\mathrm{~W}) \end{array}\right\|$	G_{p} (dB)			$\begin{gathered} \bar{z}_{i} \\ (\Omega) \end{gathered}$	$\begin{gathered} \overline{\mathrm{Y}}_{\mathrm{L}} \\ (\mathrm{~mA} / \mathrm{V}) \end{gathered}$
C. W.	B	28 70	typ. 0	525 t	typ. 17 typ	.1.49	typ.6.0	0.53-j1.4	42.5-j54

MECHANICAL DATA

Dimensions in mm

Torque on nut: min. 15 kg cm (1. 5 Newton metres) max. 17 kg cm (1.7 Newton metres)

Diameter of clearance hole in heatsink: max. 5.0 mm .

Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Collector-base voltage (open emitter)
peak value
Collector-emitter voltage (open base)
Emitter-base voltage (open collector)

Currents

Collector current (average)
Collector current (peak value) $\mathrm{f}>1 \mathrm{MHz}$

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{h}}=25{ }^{\circ} \mathrm{C}$
$\mathrm{f}>1 \mathrm{MHz}$

Temperature
Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to mounting base
From mounting base to heatsink

$V_{\text {CBOM }}$	max.	65	V
$\mathrm{~V}_{\text {CEO }}$	max.	36	V
$\mathrm{~V}_{\text {EBO }}$	max.	4.0	V

$\mathrm{I}_{\mathrm{C}(\mathrm{AV})}$	max.	3.0	A
I_{CM}	\max.	6	A

$\mathrm{T}_{\text {stg }}$
T_{j}
-30 to +200
$\max .200 \quad{ }^{\circ} \mathrm{C}$

CHARACTERISTICS

 $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Breakdown voltages

Collector-base voltage
open emitter; $I_{C}=50 \mathrm{~mA}$
$\mathrm{V}_{\text {(BR) } \mathrm{CBO}}>\mathrm{V}^{25} \mathrm{~V}$
Collector-emitter voltage
open base; $\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$
$\mathrm{V}(\mathrm{BR}) \mathrm{CEO}>36 \mathrm{~V}$
Emitter-base voltage
open collector; $I_{E}=10 \mathrm{~mA}$
$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}>44.0 \mathrm{~V}$
Transient energy
$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

$$
\begin{array}{lllll}
\text { open base } & \mathrm{E} & > & 8 & \mathrm{mWs} \\
-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega \mathrm{E} & > & 8 & \mathrm{mWs}
\end{array}
$$

D. C. current gain
$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
h_{FE}
typ.
50

Transition frequency
$\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}$
f_{T}
typ. 500
MHz

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}
$$

$$
\begin{array}{llll}
\mathrm{C}_{\mathrm{C}} & \text { typ. } & 50 & \mathrm{pF} \\
< & 65 & \mathrm{pF}
\end{array}
$$

Feedback capacitance
$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V} \quad-\mathrm{C}_{\mathrm{re}} \quad$ typ. 31 pF
Collector-stud capacitance

$$
\mathrm{C}_{\mathrm{Cs}} \quad \text { typ. } 2 \mathrm{pF}
$$

BLX13

APPLICATION INFORMATION

R.F. performance in S.S.B. operation (linear power amplifier)
$\mathrm{V}_{\mathrm{CE}}=26 \mathrm{~V}$; T_{h} up to $25^{\circ} \mathrm{C}$
$\mathrm{f}_{1}=28.000 \mathrm{MHz} ; \mathrm{f}_{2}=28.001 \mathrm{MHz}$

output power (W)	G_{p} (dB)	d_{3} $\left.(\mathrm{~dB})^{1}\right)$	I_{C} (A)	Class
$0-8(\mathrm{PEP})$	>18	<-40	1.2	A

Test circuit:

S.S.B.

class A

$\mathrm{L} 1=3$ turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 7 mm leads 50 mm totally
$\mathrm{L} 2=7$ turns enamelled Cu wire (0.7 mm) on 3 H 1 toroid; $60 \mu \mathrm{H}$
(code number of $3 \mathrm{Hl}: 432202036620$)
$\mathrm{L} 3=4$ turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 10 mm $\mathrm{L} 4=7$ turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 12 mm

Detailed information for a wide band application
1.6 to 28 MHz available on request

[^7]

BLX13

APPLICATION INFORMATION

R.F. performance in S.S.B. operation (linear power amplifier)
$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$; T_{h} up to $25^{\circ} \mathrm{C}$
$\mathrm{f}_{1}=28.000 \mathrm{MHz} ; \mathrm{f}_{2}=28.001 \mathrm{MHz}$

output power (W)	G_{p} (dB)	dt $(\%)$	d_{3} $\left.(\mathrm{~dB})^{1}\right)$	$\mathrm{I}_{\mathrm{CZS}}$ (mA)	I_{C} (A)	Class
25 PEP	>18	typ. 35	typ. -35	25	typ. 1.28	AB

Test circuit:

D1 = AYY $10 / 120$

$\mathrm{L} 1=3$ turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 7 mm leads 50 mm totally
$\mathrm{L} 2=7$ turns enamelled Cu wire (0.7 mm) on 3 H 1 toroid; $60 \mu \mathrm{H}$
(code number of $3 \mathrm{H} 1: 432202036620$)
$\mathrm{L} 3=4$ turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 10 mm $\mathrm{L} 4=7$ turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 12 mm

[^8]

IIIIIII

Conditions:
$\mathrm{P}_{\mathrm{L}}=25 \mathrm{WPEP}$
$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CZS}}=25 \mathrm{~mA}$
$\mathrm{Z}_{\mathrm{L}}=12.5 \Omega$
$\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$

APPLICATION INFORMATION

R.F. performance in c.w. operation (class B)
$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$; T_{h} up to $25^{\circ} \mathrm{C}$

f (MHz)	P_{S} (W)	P_{L} (W)	I_{C} (A)	G_{p} (dB)	η $(\%)$	\bar{z}_{i} (Ω)	$\overline{\mathrm{Y}}_{\mathrm{L}}$ $(\mathrm{mA} / \mathrm{V})$
70	typ. 0.5	25	typ. 1.49	typ. 17	typ. 60	$0.53-\mathrm{j} 1.4$	$42.5-\mathrm{j} 54$

Test circuit:

$\mathrm{L} 1=93 \mathrm{nH}$; 3 turns enamelled Cu wire (1.5 mm) ; int. diam. 10 mm ; length 8 mm ; leads $2 \times 5 \mathrm{~mm}$
$\mathrm{L} 2=147 \mathrm{nH}$; 5 turns enamelled Cu wire (1.5 mm); int. diam. 9 mm ; length 14 mm ; leads $2 \times 5 \mathrm{~mm}$
$\mathrm{L} 3=118 \mathrm{nH} ; 4$ turns enamelled Cu wire (1.5 mm); int. diam. 9 mm ; length 10.5 mm ; leads $2 \times 5 \mathrm{~mm}$
L4 = FXC choke (code number 4312020 36640)

For high voltage operation, a stabilized power supply is generally used.
The graph shows the allowable output power under nominal conditions as a function of the V.S.W.R., with heatsink temperature as parameter.

TRANSMITTING TRANSISTOR

Silicon n-p-n power transistor for use in industrial and military s.s.b. and c.w. equipment operating in the h.f. and v.h.f. band;

- rated for 50 W PEP at 1.6 MHz to 28 MHz
(intermodulation distortion better than 30 dB down);
full load mismatch permissible at stud temperatures up to $70^{\circ} \mathrm{C}$
- rated at 50 W for frequencies up to 70 MHz in c. w. operation
- supply voltage 28 V
- plastic stripline package

QUICK REFERENCE DATA							
Operation	Class	v_{CC} (V)	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	P_{L} (W)	Gp (dB)	$\begin{gathered} \mathrm{d}_{3} \\ (\mathrm{~dB}) \end{gathered}$	I_{CZ} (A)
s.s.b.	A	28	1.6 to 28	15 (PEP)	$>\quad 13$	typ. -40	2.0
s.s.b.	AB	28	1.6 to 28	7.5-50 (PEP)	>13	< -30	0.1
c.w.	B	28	70	50	>7.5		
c. w.	B	28	30	50	typ. 16		

MECHANICAL DATA

Torque on nut: min. 23 kg cm (2. 3 Newton metres) max. 27 kg cm (2.7 Newton metres)

Diameter of clearance hole in heatsink: max. 6.5 mm .

Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

RATINGSLimiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Collector-base voltage (open emitter) peak value

Collector-emitter voltage $\left(\mathrm{R}_{\mathrm{BE}}=10 \Omega\right)$ peak value

Collector-emitter voltage (open base)
Emitter-base voltage (open collector)

Currents

Collector current (average)
Collector current (peak value) $\mathrm{f}>1 \mathrm{MHz}$

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$ f $>1 \mathrm{MHz}$

Temperature
Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to mounting base
From mounting base to heatsink

	\max.	85	V
$\mathrm{~V}_{\text {CBOM }}$			
$\mathrm{V}_{\text {CERM }}$	\max.	85	V
$\mathrm{~V}_{\text {CEO }}$	\max.	36	V
$\mathrm{~V}_{\text {EBO }}$	\max.	4.0	V

$\mathrm{I}_{\mathrm{CAV}}$	\max.	4.0	A
I_{CM}	\max.	12	A

$\mathrm{T}_{\mathrm{stg}}$
T_{j}
$\begin{array}{ll}R_{\text {th }} j-m b & = \\ R_{\text {th mb-h }} & =1.8{ }^{\circ} \mathrm{C} / \mathrm{W} \\ \end{array}$

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Breakdown voltages
Collector-base voltage open emitter; $\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}$
Collector-emitter voltage
$\mathrm{R}_{\mathrm{BE}}=10 \Omega ; \mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}$
Collector-emitter voltage open base; $\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$
Emitter-base voltage open collector; $\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$

Collector-emitter saturation voltage

$$
\mathrm{I}_{\mathrm{C}}=0.7 \mathrm{~A} ; \mathrm{I}_{\mathrm{B}}=0.14 \mathrm{~A} \quad \mathrm{~V}_{\text {CEsat }}<1.0 \mathrm{~V}
$$

Transient energy

$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

$$
\begin{array}{ccccc}
\text { open base } & \mathrm{E} & > & 8 & \mathrm{mWs} \\
-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega & \mathrm{E} & > & 8 & \mathrm{mWs}
\end{array}
$$

D. C. current gain

$$
\mathrm{I}_{\mathrm{C}}=1.4 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V} \quad \mathrm{~h}_{\mathrm{FE}} \quad 15 \text { to } 100
$$

Transition frequency

$$
\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} \quad \mathrm{f}_{\mathrm{T}} \quad \text { typ. } 250 \mathrm{MHz}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}
$$

Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}
$$

Collector-stud capacitance

$-\mathrm{C}_{\text {re }}$	typ.	90	pF
C_{CS}	typ.	3.5	pF

BLX14

APPLICATION INFORMATION

R.F. performance in S.S.B. operation (linear power amplifier)
$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{h}}$ up to $25^{\circ} \mathrm{C}$
$f_{1}=28.000 \mathrm{MHz} ; f_{2}=28.001 \mathrm{MHz}$

output power (W)	G_{p} (dB)	η_{dt} $(\%)$	d_{3} $\left.(\mathrm{~dB})^{1}\right)$	d_{5} $\left.(\mathrm{~dB})^{1}\right)$	$\mathrm{I}_{\mathrm{CZSS}}$ (A)	I_{C} (A)	Class
7.5 to $50(\mathrm{PEP})$	>13	>35	<-30	<-30	0.1	<2.55	AB

At temperatures up to $90^{\circ} \mathrm{C}$ the output power relative to that at $25^{\circ} \mathrm{C}$ is diminished by a factor $-40 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

The transistor is designed to withstand a full load mismatch operating under 50 W PEP at $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{h}}=70^{\circ} \mathrm{C}$

Test circuit:

S.S.B.

class $A-B$

D1 = AYY10/120
$\mathrm{L} 1=3$ turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 7 mm leads 50 mm totally
$\mathrm{L} 2=7$ turns enamelled Cu wire (0.7 mm) on 3 Hl toroid; $60 \mu \mathrm{H}$
(code number of $3 \mathrm{Hl}: 432202036620$)
$\mathrm{L} 3=4$ turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 10 mm L 4 = 7 turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 12 mm

[^9]

S.S.B. class AB operation

P_{L}	$=50 \mathrm{~W} P E P$
$\mathrm{~V}_{\mathrm{CC}}$	$=28 \mathrm{~V}$
I_{C}	$=100 \mathrm{~mA}$

$\mathrm{Z}_{\mathrm{L}}=6.25 \Omega$
$\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$
The drawn curve holds for an unneutralized amplifier.
The dashed curve holds for a push-pull amplifier with cross neutralization. Collector-base neutralizing capacitor: 82 pF

BLX14

S.S.B. class AB operation

P_{L}	$=50 \mathrm{~W}$ PEP
V_{CC}	$=28 \mathrm{~V}$
I_{C}	$=100 \mathrm{~mA}$
Z_{L}	$=6.25 \Omega$
$\mathrm{~T}_{\mathrm{h}}$	$=25^{\circ} \mathrm{C}$

The upper graph holds for a push-pull amplifier with cross neutralization. Collector-base neutralizing capacitor: 82 pF

The lower graph holds for an unneutralized amplifier.

APPLICATION INFORMATION (continued)

R.F. performance in S.S.B. operation (linear power amplifier)
$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$; T_{h} up to $25^{\circ} \mathrm{C}$
$\mathrm{f}_{1}=28.000 \mathrm{MHz} ; \mathrm{f}_{2}=28.001 \mathrm{MHz}$

output power (W)	G_{p} $(d B)$	d_{3} $\left.(\mathrm{~dB})^{1}\right)$	d_{5} $\left.(\mathrm{~dB})^{1}\right)$	I_{C} (A)	Class
15 PEP	>13	typ. -40	typ. -45	2.0	A

Test circuit:
S.S.B. class A

$\mathrm{L} 1=3$ turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 7 mm leads 50 mm totally
$\mathrm{L} 2=7$ turns enamelled Cu wire (0.7 mm) on 3 H 1 toroid; $60 \mu \mathrm{H}$
(code number of $3 \mathrm{Hl}: 432202036620$)
$\mathrm{L} 3=4$ turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 10 mm

APPLICATION INFORMATION

R.F. performance in c.w. operation (class B)
$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{h}}$ up to $25^{\circ} \mathrm{C}$

	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	P_{L} (W)	I_{C} (A)	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	η (\%)	$\bar{z}_{i}(\Omega)$	$\overline{\mathrm{Y}}_{\mathrm{L}}$
70	<8.9	50	<3.25	>7.5	>55	$1.0+\mathrm{j} 0.2$	115-j 77
50	typ. 4	50	typ. 3.25	typ. 11	typ. 55	0.9-j0.5	104-j 85
30	typ. 1. 2	50	typ. 3.25	typ. 16	typ. 55	10.75-j 1.6	89-j 101

At temperatures up to $90^{\circ} \mathrm{C}$ the output power relative to that at $25^{\circ} \mathrm{C}$ is diminished by a factor $-40 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Test circuit:
C.W. 70 MHz

$\mathrm{L} 1=60 \mathrm{~mm}$ straight enamelled Cu wire (1.5 mm); 9 mm above chassis
L2 $=$ FXC choke coil (code number 4322020 36640)
$\mathrm{L} 3=2$ turns enamelled Cu wire (1.5 mm); winding pitch 2 mm ; int. diam. 10 mm leads 55 mm totally
$\mathrm{L} 4=3$ turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm ; int. diam. 10 mm leads 50 mm totally

BLX14

APPLICATION INFORMATION (continued)

Test circuit:
C.W.

50 MHz

$\mathrm{Ll}=1$ turn enamelled Cu wire (1.5 mm); int. diam. 10 mm ; leads 40 mm totally
$\mathrm{L} 2=4$ turns enamelled Cu wire (1.5 mm); int. diam. 12 mm ; leads 40 mm totally winding pitch 2 mm
L3 $=$ FXC choke coil (code number 4322020 36640)
$\mathrm{L} 4=3$ turns enamelled Cu wire (1.5 mm); int. diam. 10 mm ; leads 40 mm totally winding pitch 2 mm

APPLICATION INFORMATION (continued)

Test circuit :
C.W. 30 MHz

$\mathrm{L} 1=2$ turns enamelled Cu wire (1.5 mm); winding pitch 2 mm ; int. diam. 10 mm leads 60 mm totally
$\mathrm{L} 2=7$ turns enamelled Cu wire (0.7 mm) on 3 Hl toroid; $60 \mu \mathrm{H}$ (code number of 3H1: 432202036620)
$\mathrm{L} 3=4$ turns enamelled Cu wire (1.5 mm); winding pitch 2 mm ; int. diam. 10 mm leads 50 mm totally
$\mathrm{L} 4=6$ turns enamelled Cu wire (1.5 mm); winding pitch 2 mm ; int. diam. 12 mm leads 50 mm totally

For high voltage operation, a stabilized power supply is generally used.
The graphs shows the allowable output power under nominal conditions as a function of the V.S.W.R., with heatsink temperature as parameter.

U.H.F. POWER TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 13.5 V . The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions with a supply overvoltage to 16.5 V . It has a capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA									
R.F. performance up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ in an unneutralised common-emitter class B circuit.									
Mode of operation	V_{CC} (V)	$\left\|\begin{array}{c} \mathrm{f} \\ (\mathrm{MHz}) \end{array}\right\|$	PS (W)	$\left\lvert\, \begin{aligned} & \mathrm{P}_{\mathrm{L}} \\ & (\mathrm{~W}) \end{aligned}\right.$	$\begin{aligned} & \mathrm{IC} \\ & \text { (A) } \end{aligned}$	G_{p} (dB)	$\begin{gathered} \eta \\ (\%) \end{gathered}$	$\begin{aligned} & \overline{z_{i}} \\ & (\Omega) \end{aligned}$	$\left\lvert\, \begin{gathered} \overline{Y_{\mathrm{L}}} \\ (\mathrm{~mA} / \mathrm{V}) \end{gathered}\right.$
c.w.	13.5	470	<8	20	<2.28	>4	>65	$1.1+j 4.9$	190-j45
c. w.	12.5	470	< 6.8	17	< 2.09		>65		

MECHANICAL DATA

Dimensions in mm

Torque on nut: min. 7.5 kg cm (0.75 Newton metres) max. 8.5 kg cm (0.85 Newton metres)

Diameter of clearance hole in heatsink: max. 4.17 mm .

Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

```
Voltages
Collector -base voltage (open emitter)
    peak value
Collector-emitter voltage (open base)
```

Emitter-base voltage (open collector)

Currents
Collector current (average)
Collector current (peak value) $\mathrm{f}>1 \mathrm{MHz}$
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$ $\mathrm{f} \geqslant 1 \mathrm{MHz}$

Temperature
Storage temperature
Operating junction temperature
THERMAL RESISTANCE
From junction to mounting base
From mounting base to heatsink

$V_{\text {CBOM }}$	max.	36	V
$\mathrm{~V}_{\text {CEO }}$	max.	18	V
$\mathrm{~V}_{\mathrm{EBO}}$	max.	4	V

$\mathrm{I}_{\mathrm{C}(\mathrm{AV})} \max .3 .5 \mathrm{~A}$
$I_{C M} \max .10 \mathrm{~A}$

$\mathrm{T}_{\text {stg }}$	-30 to +200	${ }^{\circ} \mathrm{C}$
T_{j}	max. $\quad 200$	${ }^{\circ} \mathrm{C}$

$R_{\text {th } \text { j-mb }}=$	2.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th mb-h }}=$	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless other wise specified
Breakdown voltages
Collector-base voltage open emitter, $\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}$
Collector-emitter voltage open base, $I_{C}=25 \mathrm{~mA}$

Emitter-base voltage open collector; $\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$

Transient energy

$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

$$
\begin{array}{cllll}
\text { open base } & \mathrm{E} & > & 3.1 & \mathrm{mWs} \\
-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega & \mathrm{E} & > & 3.1 & \mathrm{mWs} \\
& & & & \\
& \mathrm{~h}_{\mathrm{FE}} & > & 10 \\
& \text { typ. } & 30
\end{array}
$$

$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}>36 \mathrm{~V}$
$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}>18 \mathrm{~V}$
$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}>\quad 4 \mathrm{~V}$

$$
>3.1 \mathrm{mWs}
$$

D. C. current gain
$I_{C}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
Transition frequency

$$
\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=15 \mathrm{~V}
$$

typ.	55	pF
$<$	70	pF

Feedback capacitance

$$
\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=15 \mathrm{~V}
$$

Collector-stud capacitance

APPLICATION INFORMATION

R.F. performance in c.w. operation (unneutralised common-emitter class B ciruit) T_{mb} up to $25^{\circ} \mathrm{C}$

$\mathrm{f}(\mathrm{MHz})$	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{L}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	$\eta(\%)$	$\overline{\mathrm{z}_{\mathrm{i}}}(\Omega)$	$\overline{\mathrm{Y}_{\mathrm{L}}}(\mathrm{mA} / \mathrm{V})$
470	13.5	<8	20	<2.28	>4	>65	$1.1+\mathrm{j} 4.9$	$190-\mathrm{j} 45$
470	12.5	<6.8	17	<2.09	>4	>65		
175	12.5	typ. 1.35	17	typ. 2.3	typ. 11	typ. 60	$1.5+\mathrm{j} 0.6$	$170-\mathrm{j} 57$

Test circuit for 470 MHz :

List of components:
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 7=\mathrm{C} 8=1.8$ to 9.0 pF film dielectric trimmer (code number 222280905002)
C $3=\mathrm{C} 4=$
C5 $=\quad 100 \mathrm{pF}$ feed through capacitor
C6= $\quad 33 \mathrm{nF}$ polyester capacitor
$\mathrm{R} 1=\quad 1 \Omega$
R2 = $\quad 10 \Omega$
$\mathrm{L}=$ strip-line ($41.1 \mathrm{~mm} \times 5.0 \mathrm{~mm}$)
$\mathrm{L} 2=13$ turns closely wound enamelled Cu wire (0.5 mm); int. diam. $4.0 \mathrm{~mm}(0.32 \mu \mathrm{H})$
$\mathrm{L} 3=2$ turns Cu wire (1 mm); winding pitch 1.5 mm ; int. diam. 4 mm ; leads $2 \times 5 \mathrm{~mm}$
$\mathrm{L} 4=$ strip-lire ($52.7 \mathrm{~mm} \times 5.0 \mathrm{~mm}$)
$L 5=$ ferroxcube choke coil, $Z($ at $f=250 \mathrm{MHz})=400 \Omega \pm 20 \%$
(code number 431202036640)
L1 and L4 are strip lines on a double Cu clad print plate with teflon fibre glass dielectric
($\epsilon_{\mathrm{r}}=2.74$); thickness 1.45 mm
Component lay-out for 470 MHz : see page 6

BLX69

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 470 MHz test circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

The transistor has been developed for use with unstabilized supply voltages. As the output power and drive power increase with the supply voltage, the nominal output power must be derated in accordance with the graphs on page 7 for safe operation at supply voltages other than the nominal. The graphs show the allowable output power, under nominal conditions, as a function of the supply overvoltage ratio, with V.S.W.R. as parameter.

The upper graph applies to the situation in which the drive ($\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\text {Snom }}$) increases linearly with the supply overvoltage ratio.
The lower graph shows the derating factor to be applied when the drive ($\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\mathrm{Snom}}$) increases as the square of the supply overvoltage ratio ($\left.\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCnom}}\right)$.
Depending on the operating conditions, the appropriate derating factor may lie in the region between the linear and the square-law functions.
The horizontal line at 20 W applies at $\mathrm{V}_{\mathrm{CCnom}}=13.5 \mathrm{~V}$. For $\mathrm{V}_{\mathrm{CCnom}}=12.5 \mathrm{~V}, \mathrm{P}_{\mathrm{L}}$ should be derated to 17 W .

SILICON PLANAR EPITAXIAL TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ transistor in a metal envelope. All electrodes are electrically insulated from the stud.
The BLY14 is intended for high frequency and high power applications, primarily for use in the transmitting field.

MECHANICAL DATA

Dimensions in mm

Collector is connected to the can (upper part of the envelope)
Torque on nut: max. 18 cm kg

RATINGS (Limiting values) ${ }^{1}$)
Voltages

Collector-base voltage (open emitter)	$\mathrm{V}_{\mathrm{CBO}}$	\max.	80	V
Collector-emitter voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{\mathrm{CES}}$	\max.	80	V
Collector-emitter voltage (open base)	$\mathrm{V}_{\mathrm{CEO}}$	\max.	55	V
Emitter-base voltage (open collector)	$\mathrm{V}_{\mathrm{EBO}}$	\max	4	V

Currents

Collector current (d.c.)	I_{C}	\max.	1.0	A
Collector current (peak value)	I_{CM}	\max.	1.0	A
Base current (d.c.)	I_{B}	\max.	0.2	A
Base current (peak value)	I_{BM}	\max.	0.2	A

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max .8 .75 \mathrm{~W}$

Temperatures

Storage temperature
Junction temperature
$\mathrm{T}_{\text {stg }} \quad-65$ to $+200{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}} \quad \max .200{ }^{\circ} \mathrm{C}$
THERMAL RESISTANCE
From junction to mounting base

CHARACTERISTICS

Collector cut-off current

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CE}}=80 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=10 \Omega \\
& \mathrm{I}_{\mathrm{B}}=0 ; \mathrm{V}_{\mathrm{CE}}=55 \mathrm{~V}
\end{aligned}
$$

Emitter cut-off current

$\mathrm{I}_{\mathrm{C}}=0 ; \mathrm{V}_{\mathrm{EB}}=1 \mathrm{~V}$
$I_{C}=0 ; V_{E B}=4 \mathrm{~V}$
$R_{\text {th } \mathrm{j}-\mathrm{mb}}=20{ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

	typ.	1	nA
$\mathrm{I}_{\mathrm{CBO}}$	$<$	500	nA
	typ.	0.8	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{CBO}}$	$<$	50	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{CER}}$	$<$	1	mA
$\mathrm{I}_{\mathrm{CEO}}$	$<$	10	mA

	typ.	2
I $_{\text {EBO }}$	nA	
		500
nA		
$\mathrm{I}_{\mathrm{EBO}}$	$<$	100 mA

[^10]CHARACTERISTICS (continued) Saturation voltages

$$
\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}
$$

V	typsat	0.3	V
	$<$	0.7	V
V	BEsat	typ.	1.1
V			
	$<$	1.5	V

D.C. current gain

$$
\begin{aligned}
& -\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} \\
& -\mathrm{I}_{\mathrm{E}}=150 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} \\
& -\mathrm{I}_{\mathrm{E}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}
\end{aligned}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V}
$$

Capacitance between collector and stud

Transition frequency

$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$

$$
\mathrm{f}_{\mathrm{T}} \quad \text { typ. } \quad 190 \mathrm{MHz}
$$

$\underline{\text { Feedback time constant }}$ at $\mathrm{f}=10 \mathrm{MHz}$

$$
-\mathrm{I}_{\mathrm{E}}=30 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V}
$$

$$
\left|\frac{\mathrm{h}_{\mathrm{rb}}}{\boldsymbol{\omega}}\right| \quad \begin{array}{crc}
\text { typ. } & 10.5 & \mathrm{ps} \\
< & 35 & \mathrm{ps}
\end{array}
$$

y parameters in common base configuration
$-\mathrm{I}_{\mathrm{E}}=150 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CB}}=24 \mathrm{~V} ; \mathrm{f}=180 \mathrm{MHz}$
Input conductance
Input capacitance

Transfer admittance
Phase angle of transfer admittance
Output conductance
Output capacitance

$g_{i b}$	typ.	48	$\mathrm{~m} \Omega^{-1}$
$-\mathrm{C}_{\mathrm{ib}}$	typ.	120	pF
$\left\|\mathrm{y}_{\mathrm{fb}}\right\|$	typ.	98	$\mathrm{~m} \Omega^{-1}$
φ_{fb}	typ.	62°	
g_{ob}	typ.	4.3	$\mathrm{~m} \Omega^{-1}$
C_{ob}	typ.	13.5	pF

y parameters in common emitter configuration

$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V} ; \mathrm{f}=180 \mathrm{MHz}$
Input conductance
Input capacitance
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
$h_{\text {FE }}$ typ. 9
h_{FE} typ. 11
$\mathrm{h} \mathrm{FE} \rightarrow 5$
typ. 11

typ.	7.5	pF
$<$	10	pF
typ.	3.7	pF
$<$	5	pF

C_{ob} typ. 13.5 pF

gie	typ.	96	$\mathrm{~m} \Omega^{-1}$
$-\mathrm{C}_{\text {ie }}$	typ.	32	pF

APPLICATION INFORMATION

Amplifier circuit

Different methods of biasing

Components

C1, C2, C3, C4
C5, C6, C7, C8
L1
L2
$\frac{\mathrm{f}=100 \mathrm{MHz}}{25 \mathrm{pF}}$
3.3 nF

2 turns Cu wire (1 mm);
$\mathrm{d}=12 \mathrm{~mm}$
3.5 turns Cu wire (1 mm);
$\mathrm{d}=12 \mathrm{~mm}$

1 turn Cu wire (1.2 mm);
$\mathrm{d}=12 \mathrm{~mm}$
2 turns Cu wire (1.2 mm);
$\mathrm{d}=12 \mathrm{~mm}$

Performance in common base configuration
$\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V} ; \mathrm{P}_{\mathrm{i}}=0.625 \mathrm{~W}$
$\mathrm{f}=180 \mathrm{MHz} ; \mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$
Output power

Power gain

Collector efficiency

| | P_{O} | $>$ 3.0 W
 typ. 3.6
 W
 $>$
 G_{p} 6.8 dB
 typ. 7.6
 dB
 η $>$ 40
 typ. 48
 $\%$,$~$ |
| :---: | :---: | :---: | :---: |

TRIPLE DIFFUSED SILICON PLANAR TRANSISTOR

N-P-N triple diffused transistor in a TO-36 metal envelope.
The BLY17 is intended for high frequency and high power applications, primarily for use in the transmitting field.

QUICK REFERENCE DATA			
Collector-base voltage (open emitter)	VCBO	max. 100	V
Collector-emitter voltage ($\mathrm{R}_{\mathrm{BE}} \leq 10 \Omega$)	$V_{\text {CER }}$	max. 100	V
Collector current (peak value)	I_{CM}	$\max .10$	A
Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ $\mathrm{f} \geq 0.5 \mathrm{MHz}$	$\mathrm{P}_{\text {tot }}$	max. 100	W
Junction temperature	T_{j}	max. 175	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { D. C. current gain at } T_{j}=25^{\circ} \mathrm{C} \\ & -I_{E}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=0 \end{aligned}$	h_{FE}	typ. 25	
Transition frequency $\mathrm{I}_{\mathrm{C}}=1.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$	f_{T}	typ. 70	MHz
Performance in a specified circuit at $\mathrm{f}=30 \mathrm{M}$ $\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V} ; \mathrm{V}_{\mathrm{BE}}=0 ; \mathrm{P}_{\mathrm{i}}=7.5 \mathrm{~W}$			
Output power	P_{0}	>30	W
Power gain	G_{p}	>6	dB
Collector efficiency	η	>40	\%

MECHANICAL DATA See page 2

MECHANICAL DATA
TO-36

Diameter of hole in heatsink: max. 5.2 mm
Supplied with device : 56213

Torque on nut: min. 8 cm kg $\max .17 \mathrm{~cm} \mathrm{~kg}$

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)
Collector-emitter voltage ($\mathrm{R}_{\mathrm{BE}} \leq 10 \Omega$)
Emitter-base voltage (open collector)
Collector current (d.c.)
Collector current (peak value)
Base current (d.c. or average over any 20 ms period)
Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$
$\mathrm{f} \geq 0.5 \mathrm{MHz}$
Storage temperature
Junction temperature

$V_{C B O}$	\max.	100	V
$\mathrm{~V}_{\text {CER }}$	\max.	100	V
$\mathrm{~V}_{\text {EBO }}$	\max.	4	V
I_{C}	\max.	10	A
I_{CM}	\max.	10	A

$\mathrm{I}_{\mathrm{B}} \quad \max \quad 2 \mathrm{~A}$

$P_{\text {tot }}$	max.	100	W
$\mathrm{~T}_{\text {Stg }}$	-65 to	+175	${ }^{\circ} \mathrm{C}$
T_{j}	max.	175	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to mounting base

$$
R_{\text {th } j-m b}=1.5 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

BLY83
BLY84

N-P-N SILICON V.H.F. POWER TRANSISTORS

Silicon high frequency power transistors in a capstan envelope, designed for mobile operation in class B.
The BLY83 is primarily intended for $\mathrm{a} . \mathrm{m}$. operation at 13.8 V but is also suitable for $\mathrm{f} . \mathrm{m}$. operation at 24 V .
The BLY84 is primarily intended for $\mathrm{f} . \mathrm{m}$. operation at 13.8 V .

QUICK REFERENCE DATA												
R.F. performance up to $\mathrm{T}_{\mathrm{h}}=40^{\circ} \mathrm{C}$												
Type No.	Mode of operation	$\left\lvert\, \begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ (\mathrm{~V}) \end{gathered}\right.$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\left\|\begin{array}{l} \mathrm{f}_{\mathrm{mod}} \\ (\mathrm{kHz}) \end{array}\right\|$	P_{S} (W)	$\begin{aligned} & \mathrm{P}_{\mathrm{L}} \\ & (\mathrm{~W}) \end{aligned}$	$\mathrm{P}_{\mathrm{L}(\mathrm{car})}(\mathrm{W})$	${ }^{I_{C}}$ (A)	G_{p} (dB)	$\left\|\begin{array}{c} \eta \\ (\%) \end{array}\right\|$	$\left\lvert\, \begin{aligned} & d_{\text {tot }} \\ & (\%) \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \mathrm{m} \\ (\%) \end{gathered}\right.$
BLY83	c.w.	24	175	-	1. 35	13	-	0.84	9.8	65	-	-
BLY84	c. w.	13.8	175	-	3.4	13	-	1.2	5.8	79	-	-
BLY84	c.w.	13.8	80	-	0.5	13.25	-	1.2	14.2	80	-	-
BLY83	a.m.	13.8	175	1	0.35	-	7	0.66	13	77	< 5	80
BLY83	a.m.	13.8	80	1	0.06	-	7.5	0.7	21	\| 77	< 5	80

MECHANICAL DATA

Diameter of clearance hole in heatsink:max. 4.17 mm .

Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or coutersink either end of hole.

When locking is required, an adhesive instead of a lock washer is required.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BLY83	BLY84	
	max.	66	40	V
$\mathrm{~V}_{\mathrm{CBOM}}$	max.	33	20	V
$\mathrm{~V}_{\mathrm{CEO}}$	max.	4	V	
$\mathrm{~V}_{\text {EBO }}$	\max			

Currents

Collector-current (peak value) $\mathrm{f}<1.0 \mathrm{MHz}$

I_{CM}	max.	2.5	A
I_{CM}	\max.	7.5	A

Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{h}}=90^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max \quad 12 \quad \mathrm{~W}$

Temperature
Storage temperature

$$
\mathrm{T}_{\text {stg }} \quad-65 \text { to }+150 \quad{ }^{\circ} \mathrm{C}
$$

CHARACTERISTICS

Breakdown voltages

Collector-base voltage open emitter; $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$
Collector-emitter voltage $\mathrm{V}_{\mathrm{BE}}=0 ; \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$

Collector-emitter voltage open base; $\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$
Emitter-base voltage open collector; $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$
D.C. current gain

$$
\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}
$$

Transition frequency

$$
\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V} ; \mathrm{f}=100 \mathrm{MHz}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}
$$

$\underline{\text { Emitter capacitance }}$ at $\mathrm{f}=1 \mathrm{MHz}$

$$
I_{C}=I_{C}=0 ; V_{E B}=0
$$

APPLICATION INFORMATION

R.F. performance in c.w. operation at $\mathrm{f}=175 \mathrm{MHz}$
T_{h} up to $40^{\circ} \mathrm{C}$

Type No.	V_{CC} (V)	P_{S} (W)	P_{L} (W)	${ }^{{ }_{\mathrm{C}}^{\mathrm{C}}}$ (A)	G_{p} (dB)	η $(\%)$
BLY84	13.8	1.20	7.0	0.66	7.6	77
BLY84	13.8	3.40	13.0	1.20	5.8	79
BLY83	24.0	1.35	13.0	0.84	9.8	65

Test circuit

List of components:
$\left.\begin{array}{l}\mathrm{C} 1=\mathrm{C} 3=\mathrm{C} 4=30 \mathrm{pFmax} \\ \mathrm{C} 2=60 \mathrm{pF} \max \end{array}\right\} \quad$ air trimmers
$\mathrm{L} 1=25.4 \mathrm{~mm}$ of straight Cu wire (1 mm)
$\mathrm{L} 2=3$ turns of Cu wire (0.5 mm) on Ferrite FX1115
$\mathrm{L} 3=3$ turns of Cu wire (1.3 mm), int. diam. $9.5 \mathrm{~mm}, 1=9.5 \mathrm{~mm}$
$\mathrm{L} 4=2$ turns of Cu wire (1.6 mm), int. diam. $12.7 \mathrm{~mm}, 1=9.5 \mathrm{~mm}$

BLY83 BLY84

APPLICATION INFORMATION

R.F. performance in c.w. operation at 80 MHz
T_{h} up to $40^{\circ} \mathrm{C}$

Type No.	V_{CC} (V)	P_{S} (W)	P_{L} (W)	${ }^{\mathrm{I}_{\mathrm{C}}}$ (A)	Gp_{2} $(\mathrm{~dB})$	η $(\%)$
BLY84	6.9	0.5	5.3	0.96	10.3	80
BLY84	13.8	0.5	13.25	1.2	14.2	80

Test circuit

List of components:
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=4$ to 29 pF air trimmers
$\mathrm{Ll}=4$ turns Cu wire $(1 \mathrm{~mm})$; int. diam. $6.3 \mathrm{~mm} ; 1=8.0 \mathrm{~mm}$
L2 $=2$ turns Cu wire (0.35 mm) on Ferrite bead FX1115
$\mathrm{L} 3=5$ turns closely wound Cu wire (1 mm); int. diam. 6.3 mm
L 4 = 5 turns Cu wire (1.3 mm); int. diam. $9.5 \mathrm{~mm} ; 1=12 \mathrm{~mm}$

||||||||

APPLICATION INFORMATION

R.F. performance in a $7 \mathrm{~W} \mathrm{a.m}$.
$\mathrm{V}_{\mathrm{CC}}=13.8 \mathrm{~V} ; \mathrm{f}_{\bmod }=1 \mathrm{kHz}$

Type No.	f (MHz)	P_{S} (W)	P_{L} (car) (W)	I_{C} dr. (A)	I_{C} ampl. (A)	G_{p} (dB)	η $(\%)$	m $(\%)$	$\mathrm{d}_{\text {tot }}$ $(\%)$
BLY83	175	0.35	7.0	0.22	0.66	13	77	80	<5

List of components

$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=\mathrm{C} 6=4$ to 29 pF air trimmers
$\mathrm{L} 1=\mathrm{L} 4=3$ turns of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. en.cu. $\mathrm{d}=6.4 \mathrm{~mm}, 1=5.0 \mathrm{~mm}$
$\mathrm{L} 3=\mathrm{L} 6=5$ turns of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g} . \mathrm{en} . \mathrm{cu} . \mathrm{d}=6.4 \mathrm{~mm}, 1=10 \mathrm{~mm}$
$\mathrm{L} 7=3$ turns of $16 \mathrm{~s} . \mathrm{w} \cdot \mathrm{g} . \mathrm{en} . \mathrm{cu} . \mathrm{d}=10 \mathrm{~mm}, \mathrm{l}=10 \mathrm{~mm}$
L2 $=\mathrm{L} 5=2$ turns of $26 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. en.cu. wound on ferrite bead FX1115

Aerial carrier power versus c.w. drive power

APPLICATION INFORMATION

R.F. performance in a 7 W a.m. transmitter at 80 MHz
$\mathrm{V}_{\mathrm{CC}}=13.8 \mathrm{~V} ; \mathrm{f}_{\bmod }=1 \mathrm{kHz}$

Type No.	f (MHz)	P_{S} (W)	P_{L} (car) (W)	I_{C} dr. (A)	I_{C} ampl. (A)	Gp_{P} (dB)	η $(\%)$	m $(\%)$	$\mathrm{d}_{\text {tot }}$ $(\%)$
BLY83	80	0.06	7.5	0.06	0.7	21	77	80	<5

List of components:
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=\mathrm{C} 6=4$ to 29 pF air trimmers
$\mathrm{L} 1=\mathrm{L} 4=5$ turns of $18 \mathrm{~s} \cdot \mathrm{w} \cdot \mathrm{g} . \mathrm{en} . \mathrm{cu} . \mathrm{d}=6.3 \mathrm{~mm}, \mathrm{l}=9.0 \mathrm{~mm}$
L3 $=$ L6 $=3$ turns of $18 \mathrm{~s} . w . g$. en.cu. $d=7.0 \mathrm{~mm}, 1=6.0 \mathrm{~mm}$
$L 7=6$ turns of $14 \mathrm{~s} . \mathrm{w} . \mathrm{g} . \mathrm{cu} . \mathrm{d}=10 \mathrm{~mm}, 1=13 \mathrm{~mm}$
$\mathrm{L} 2=\mathrm{L} 5=1$ turn of $26 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. en.cu. wound on ferrite bead FX1115
$\mathrm{R} \quad$ This resistor is incorporated in the equipment to reduce the carrier level to 8 W or below.

Aerial carrier power versus c.w. drive power

V.H.F. POWER TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 13.5 V . The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions with a supply overvoltage to 16.5 V . It has a $\frac{1.1}{4}$ capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA									
R. F. performance up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ in an unneutralised common-emitter class B circuit.									
Mode of operation	$\left\lvert\, \begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & (\mathrm{~V}) \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}\right.$	P_{S} (W)	$\left\lvert\, \begin{gathered} \mathrm{P}_{\mathrm{L}} \\ (\mathrm{~W}) \end{gathered}\right.$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}} \\ & (\mathrm{~A}) \\ & \hline \end{aligned}$	Gp (dB)	$\begin{gathered} \eta \\ (\%) \end{gathered}$	$\begin{gathered} \overline{\mathrm{z}}_{\mathrm{i}} \\ (\Omega) \end{gathered}$	$\left\lvert\, \begin{gathered} \overline{\mathrm{Y}}_{\mathrm{L}} \\ (\mathrm{~mA} / \mathrm{V}) \end{gathered}\right.$
c.w. c.w.	13.5 12.5	175 175	$\left\lvert\, \begin{array}{r}<1.0 \\ \text { typ. } 1.0\end{array}\right.$	8	<0.85 typ. 0.91	(typ. 9	>70 typ. 70	$2.75+j 1.5$	74-j18

MECHANICAL DATA

Dimensions in mm

Torque on nut: min. 7.5 kg cm (0.75 Newton metres) $\max .8 .5 \mathrm{~kg} \mathrm{~cm}$ (0.85 Newton metres)

Diameter of clearance hole in heatsink: max. 4.17 mm .

Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required, an adhesive instead of a lock washer is preferred.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Collector-base voltage (open emitter) peak value

Collector-emitter voltage (open base)
Emitter -base voltage (open collector)
Currents
Collector current (average)
Collector current (peak value) $\mathrm{f}>1 \mathrm{MHz}$

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$ $\mathrm{f}>1 \mathrm{MHz}$

Temperature
Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to mounting base
From mounting base to heatsink

$V_{\text {CBOM }}$	\max.	36	V
$\mathrm{~V}_{\text {CEO }}$	\max.	18	V
$\mathrm{~V}_{\text {EBO }}$	\max.	4	V

$I_{C(A V)} \quad \max .1 .25 \mathrm{~A}$
ICM max. 3.75 A
$\begin{array}{llrl}\mathrm{T}_{\text {stg }} & -30 \text { to }+200 & { }^{\circ} \mathrm{C} \\ \mathrm{T}_{\mathrm{j}} & \max . & 200 & { }^{\mathrm{O}} \mathrm{C}\end{array}$
$R_{\text {th } \mathrm{j}-\mathrm{mb}}=9.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th }} \mathrm{mb}-\mathrm{h}=$

CHARACTERISTICS

Coilector cut-off current

$$
\mathrm{I}_{\mathrm{B}}=0 ; \mathrm{V}_{\mathrm{CE}}=14 \mathrm{~V}
$$

Breakdown voltages

Collector -base voltage open emitter, $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
Collector -emitter voltage
open base, $I_{C}=10 \mathrm{~mA}$
Emitter-base voltage
open collector, $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$
Transient energy
$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

$$
\begin{array}{ll}
\text { open base } & E \\
-V_{B E}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega & \mathrm{E}
\end{array}
$$

$\mathrm{V}(\mathrm{BR}) \mathrm{CBO}>36 \mathrm{~V}$
$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}>18 \mathrm{~V}$

$$
V_{(B R) E B O}>4 \mathrm{~V}
$$

$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}>4 \mathrm{~V}$

D. C. current gain

$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
$h_{\text {FE }}$
$>\quad 5$
Transition frequency
$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$
f T
typ. 700 MHz
Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=15 \mathrm{~V} \tag{c}
\end{equation*}
$$

typ. 15 pF < 20 pF

Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=15 \mathrm{~V} \quad-\mathrm{C}_{\mathrm{re}} \quad \text { typ. } 11 \mathrm{pF}
$$

Collector-stud capacitance
C_{cs}
typ. 2 pF

APPLICATION INFORMATION

R.F. performance in c.w. operation (unneutralised common-emitter class B circuit) $\mathrm{f}=175 \mathrm{MHz} ; \mathrm{T}_{\mathrm{mb}}$ up to $25^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{L}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	$\eta(\%)$	$\overline{\mathrm{Z}}_{\mathrm{i}}(\Omega)$	$\overline{\mathrm{Y}}_{\mathrm{L}}(\mathrm{mA} / \mathrm{V})$
13.5	<1.0	8	<0.85	>9	>70	$2.75+j 1.5$	$74-\mathrm{jl18}$
12.5	typ. 1.0	8	typ. 0.91	typ.9	typ. 70		

Test circuit

$\mathrm{Cl}=\quad 2.5$ to 20 pF film dielectric trimmer (code number 222280907004)
$\mathrm{C} 2=\mathrm{C} 6=\mathrm{C} 7=4$ to 40 pF film dielectric trimmer (code number 222280907008)
$\mathrm{C} 3=\quad 47 \mathrm{pF}$ ceramic
$\mathrm{C} 4=\quad 100 \mathrm{pF}$ ceramic
$\mathrm{C} 5=\quad 150 \mathrm{nF}$ polyester
L1 $=\quad 0.5$ turn enamelled Cuwire (1.5 mm); int. diam. 6 mm ; leads $2 \times 10 \mathrm{~mm}$
L2 $=$ L5 $=$ ferroxcube choke (code number 4312020 36640)
$\mathrm{L} 3=\quad 2.5$ turns closely wound enamelled Cu wire (1.5 mm); int. diam. 6 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 4=\quad 4.5$ turns enamelled Cuwire (1.5 mm); int. diam. 6 mm ; leads $2 \times 10 \mathrm{~mm}$ $\mathrm{R}=10 \Omega \quad$ carbon

Component lay-out for 175 MHz test circuit see page 6

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

Conditions for R.F. SOAR:

The transistor has been developed for use with unstabilized supply voltages. As the output power and drive power increase with the supply voltage, the nominal output power must be derated in accordance with the graphs above for safe operation at supply voltages other than the nominal. The graphs show the allowable output power under nominal conditions, as a function of the supply overvoltage ratio, with V.S.W.R. as parameter.
The left hand graph applies to the situation in which the drive ($\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\text {Snom }}$) increases linearly with supply overvoltage ratio.
The right hand graph shows the derating factor to be applied when the drive ($\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\mathrm{Snom}}$) increases as the square of the supply overvoltage ratio $\left(\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCnom}}\right)$.
Depending on the operating conditions, the appropriate derating factor may lie in the region between the linear and the square-law functions.

V.H.F. POWER TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 13.5 V . The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions with a supply overvoltage to 16.5 V . It has a $\frac{11}{4}$ capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA									
R.F. performance up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ in an unneutralised common-emitter class B circuit.									
Mode of operation	$\left\|\begin{array}{c} \mathrm{V}_{\mathrm{CC}} \\ (\mathrm{~V}) \end{array}\right\|$	$\left\|\begin{array}{c} \mathrm{f} \\ (\mathrm{MHz}) \end{array}\right\|$	PS (W)	$\left\|\begin{array}{c} \mathrm{P}_{\mathrm{L}} \\ (\mathrm{~W}) \end{array}\right\|$	IC (A)	Gp (dB)	$\begin{gathered} \eta \\ (\%) \end{gathered}$	$\begin{array}{r} \overline{\mathrm{z}}_{\mathrm{i}} \\ (\Omega) \\ \hline \end{array}$	$\underset{(\mathrm{mA} / \mathrm{V})}{\overline{\mathrm{Y}}_{\mathrm{L}}}$
c.w. c.w.	$\left\lvert\, \begin{aligned} & 13.5 \\ & 12.5\end{aligned}\right.$	175	\|r $\begin{array}{r}<2.65 \\ \text { typ. } 2.65\end{array}$	15	<1.71 typ. 1.85	\|r $\begin{array}{r}\text { > } 7.5 \\ \text { typ. } 7.5\end{array}$	$\left\lvert\, \begin{array}{r}>65 \\ \text { typ. } 65\end{array}\right.$	$2.3+\mathrm{j} 2.5$	120-j7.8

MECHANICAL DATA

Dimensions in mm

Torque on nut: min. 7.5 kg cm (0.75 Newton metres) $\max .8 .5 \mathrm{~kg} \mathrm{~cm}$ (0.85 Newton metres)

Diameter of clearance hole in heatsink: max. 4.17 mm .

Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required, an adhesive instead of a lock washer is preferred.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Collector -base voltage (open emitter)
peak value
ollector-emitter voltage (open base)

Emitter-base voltage (open collector)
Currents
Collector current (average)
Collector (peak value) $\mathrm{f}>1 \mathrm{MHz}$

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$

Temperature
Storage temperature
Operating junction temperature

$\mathrm{V}_{\mathrm{CBOM}}$	\max.	36	V
$\mathrm{~V}_{\mathrm{CEO}}$	\max.	18	V
$\mathrm{~V}_{\mathrm{EBO}}$	\max.	4	V
$\mathrm{I}_{\mathrm{C}(\mathrm{AV})}$	\max.	2.5	A
I_{CM}	\max.	7.5	A

CHARACTERISTICS

Collector cut-off current

$$
\mathrm{I}_{\mathrm{B}}=0 ; \mathrm{V}_{\mathrm{CE}}=14 \mathrm{~V}
$$

Breakdown voltages

Collector -base voltage open emitter, $\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$

Collector -emitter voltage open base, $\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}$

Emitter-base voltage open collector; $\mathrm{IE}=3 \mathrm{~mA}$

Transient energy

$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

$$
\begin{array}{lll}
\text { open base } & \mathrm{E} & > \\
-V_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega & \mathrm{E} & >4.0 \mathrm{mWs} \\
& 4.5 \mathrm{mWs}
\end{array}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\mathrm{I}_{\mathrm{CEO}}<10 \mathrm{~mA}
$$

$\mathrm{V}(\mathrm{BR}) \mathrm{CBO}>36 \mathrm{~V}$
$\mathrm{V}(\mathrm{BR}) \mathrm{CEO}>18 \mathrm{~V}$
$\mathrm{V}(\mathrm{BR}) \mathrm{EBO}>4 \mathrm{~V}$
D. C. current gain

$$
\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

hFE

Transition frequency

$I_{C}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$
f T
typ. 700 MHz

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=15 \mathrm{~V}$
C_{C}
typ. 34 pF
< 40
40 pF
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=15 \mathrm{~V}
$$

Collector-stud capacitance
$-C_{r e} \quad$ typ. 25 pF
C_{cs}
typ. 2 pF

BLY88A

APPLICATION INFORMATION

R.F.performance in c.w.operation (unneutralised common-emitter class B circuit) $\mathrm{f}=175 \mathrm{MHz} ; \mathrm{T}_{\mathrm{mb}}$ up to $25^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{L}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	$\eta(\%)$	$\overline{\mathrm{z}}_{\mathrm{i}}(\Omega)$	$\overline{\mathrm{Y}}_{\mathrm{L}}(\mathrm{mA} / \mathrm{V})$
13.5	<2.65	15	<1.71	>7.5	>65	$2.3+\mathrm{j} 2.5$	$120-\mathrm{j} 7.8$
12.5	typ. 2.65	15	typ. 1.85	typ.7.5	typ. 65		

Test circuit

$\mathrm{Cl}=\quad 2.5$ to 20 pF film dielectric trimmer (code number 222280907004)
$\mathrm{C} 2=\mathrm{C} 6=\mathrm{C} 7=4$ to 40 pF film dielectric trimmer (code number 2222809 07008)
C3 $=\quad 47 \mathrm{pF}$ ceramic
$\mathrm{C} 4=\quad 100 \mathrm{pF}$ ceramic
C5 $=\quad 150 \mathrm{nF}$ polyester
$\mathrm{L} 1=\quad 0.5$ turn enamelled Cu wire (1.5 mm); int. diam. 6 mm ; leads $2 \times 10 \mathrm{~mm}$ L2=L5= ferroxcube choke (code number 4312020 36640)
L3 $=\quad 2.5$ turns closely wound enamelled Cu wire (1.5 mm); int. diam. 6 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 4=\quad 2.5$ turns enamelled Cu wire (1.5 mm); int. diam. 6 mm ; leads $2 \times 10 \mathrm{~mm}$
$R=10 \Omega$ carbon

Component lay-out for 175 MHz test circuit see page 6 .

APPLICATION INFORMATION (continued)

Component lay -out and printed circuit board for 175 MHz test circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

Conditions for R.F. SOAR:
$\begin{array}{lll}\mathrm{f} & =175 \mathrm{MHz} & \mathrm{P}_{\mathrm{Snom}}=\mathrm{P}_{\mathrm{S}} \text { at } \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCnom}} \\ \mathrm{T}_{\mathrm{h}} & =70^{\circ} \mathrm{C} & \mathrm{R}_{\text {th mb-h V }}=0.6 \\ \mathrm{~V}_{\mathrm{CCnom} / \mathrm{W}} & =12.5 \text { or } 13.5 \mathrm{~V} . \mathrm{R} .=1 \\ \text { see also page } 5\end{array}$

The transistor has been developed for use with unstabilized supply voltages. As the output power and drive power increase with the supply voltage, the nominal output power must be derated in accordance with the graphs above for safe operation at supply voltages other than the nominal. The graphs show the allowable output power under nominal conditions, as a function of the supply overvoltage ratio, with V.S. W. R. as parameter.
The left hand graph applies to the situation in which the drive ($\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\text {Snom }}$) increases linearly with supply overvoltage ratio.
The right hand graph shows the derating factor to be applied when the drive ($\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\text {Snom }}$) increases as the square of the supply overvoltage ratio ($\left.\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCnom}}\right)$. Depending on the operating conditions, the appropriate derating factor maylie in the region between the linear and the square-law functions.

V.H.F. POWER TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 13.5 V . The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions with a supply overvoltage to 16.5 V . It has a $\frac{1}{4}$ " capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA									
R. F. performance up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ in an unneutralised common-emitter class B circuit.									
Mode of operation	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & (\mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{S}} \\ (\mathrm{~W}) \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \mathrm{P}_{\mathrm{L}} \\ (\mathrm{~W}) \end{array}\right\|$	$\begin{aligned} & { }^{\mathrm{I}_{\mathrm{C}}} \\ & (\mathrm{~A}) \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \mathrm{G}_{\mathrm{p}} \\ (\mathrm{~dB}) \end{array}\right\|$	$\begin{gathered} \eta \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \overline{\mathrm{z}}_{\mathrm{i}} \\ (\Omega) \\ \hline \end{gathered}$	$\begin{gathered} \overline{\mathrm{Y}}_{\mathrm{L}} \\ (\mathrm{~mA} / \mathrm{V}) \\ \hline \end{gathered}$
c. w.	13.5	175	$1<6.25$	25	<2.64	>6	>70	$1.7+\mathrm{j} 1.4$	$209+j 13.7$

MECHANICAL DATA

Torque on nut: min. 15 kg cm (1.5 Newton metres) max. 17 kg cm (1.7 Newton metres)

Dimensions in mm

Diameter of clearance hole in heatsink: max. 5.0 mm .

Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages
Collector-base voltage (open emitter) peak value

Collector-emitter voltage (open base)
Emitter -base voltage (open collector)

Currents

Collector current (average)
Collector current (peak value) f $>1 \mathrm{MHz}$

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ $\mathrm{f}>1 \mathrm{MHz}$

Temperature
Storage temperature
Operating junction temperature
THERMAL RESISTANCE
From junction to mounting base
From mounting base to heatsink

$V_{\text {CBOM }}$	max.	36	V
$\mathrm{~V}_{\mathrm{CEO}}$	max.	18	V
$\mathrm{~V}_{\text {EBO }}$	max.	4	V

$I_{C(A V)}$	max.	5	A
$I_{C M}$	max.	10	A

$\mathrm{T}_{\text {stg }}$	-30 to +200	${ }^{\circ} \mathrm{C}$	
T_{j}	max.	200	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Breakdown voltages
Collector-base voltage open emitter, $\mathrm{IC}=50 \mathrm{~mA}$
Collector-emitter voltage open base, $I_{C}=50 \mathrm{~mA}$

Emitter-base voltage open collector; $\mathrm{IE}=10 \mathrm{~mA}$

Transient energy

$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

> open base
> $-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega$
D.C. current gain

$$
\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

Transition frequency
$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$
Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=15 \mathrm{~V}$
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=15 \mathrm{~V}$
Collector-stud capacitance

E
E
fT
typ. 650 MHz
C_{c}

typ.	65	pF
$<$	90	pF

$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	$>$	36	V
$\mathrm{~V}_{(\mathrm{BR}) \mathrm{CEO}}$	$>$	18	V
$\mathrm{~V}_{(\mathrm{BR}) \mathrm{EBO}}$	$>$	4	V

$>$	8 mWs
$>$	8 mWs

typ. 50
10 to 120
$h_{F E}$
$<$
typ. 41 pF
typ. 2 pF

APPLICATION INFORMATION

R.F. performance in c.w. operation (unneutralised common-emitter class B circuit)
$\mathrm{VCC}=13.5 \mathrm{~V}$; T_{mb} up to $25^{\circ} \mathrm{C}$

$\mathrm{f}(\mathrm{MHz})$	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{L}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	$\eta(\%)$	$\overline{\mathrm{z}}_{\mathrm{i}}(\Omega)$	$\overline{\mathrm{Y}}_{\mathrm{L}}(\mathrm{mA} / \mathrm{V})$
175	<6.25	25	<2.64	>6	>70	$1.7+\mathrm{j} 1.4$	$209+\mathrm{j} 13.7$

Test circuit

$\mathrm{C} 1=\quad 4$ to 44 pF film dielectric trimmer (code number 2222809 07008)
$\mathrm{C} 2=\quad 2$ to 22 pF film dielectric trimmer (code number 2222809 07004)
$\mathrm{C} 3=\mathrm{C} 4=\quad 47 \mathrm{pF}$ ceramic
C5 $=\quad 100 \mathrm{pF}$ ceramic
C6 $=\quad 150 \mathrm{nF}$ polyester
C7 $=\quad 4$ to 104 pF film dielectric trimmer (code number 222280907015)
$\mathrm{C} 8=4$ to 64 pF film dielectric trimmer (code number 2222809 07011)
$\mathrm{L} 1=\quad 0.5$ turn enamelled Cu wire (1.5 mm); int.diam. 6 mm ; leads $2 \times 6 \mathrm{~mm}$
L2 = L3 = ferroxcube choke (code number 431202036640)
$\mathrm{L} 4=3.5$ turns closely wound enamelled Cu wire (1.5 mm); int.diam. 6 mm ; leads $2 \times 6 \mathrm{~mm}$
L5 $=1$ turn enamelled Cu wire (1.5 mm); int.diam. 6 mm ; leads $2 \times 6 \mathrm{~mm}$
R1 $=10 \Omega$ carbon

Component lay-out for 175 MHz see page 6 .

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

The transistor has been developed for use with unstabilized supply voltages. As the output power and drive power increase with the supply voltage, the nominal output power must be derated in accordance with the graphs on page 7 for safe operation at supply voltages other than the nominal. The graphs show the allowable output power under nominal conditions, as a function of the supply overvoltage ratio, with V.S.W.R. as parameter

The upper graph applies to the situation in which the drive ($\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\text {Snom }}$) increases linearly with supply overvoltage ratio.
The lower graph shows the derating factor to be applied when the drive ($\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\text {Snom }}$) increases as the square of the supply overvoltage ratio $\left(\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCnom}}\right)$.

Depending on the operating conditions, the appropriate derating factor maylie in the region between the linear and the square-1aw functions.

V.H.F. POWER TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 12.5 V . The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions with a supply overvoltage to 15 V . It has a plastic encapsulated stripline package. All leads are isolated from the stud.

QUICK REFERENCE DATA										
R.F. performance up to $\mathrm{Th}_{\mathrm{h}}=25^{\circ} \mathrm{C}$ in an unneutralised common-emitter class B circuit.										
Mode of operation	V_{CC} (V)	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	P_{S} (W)	P_{L} (W)	I_{C} (A)		Gp (dB)	$\begin{gathered} \eta \\ (\%) \end{gathered}$	$\begin{aligned} & \bar{z}_{i} \\ & (\Omega) \end{aligned}$	$\begin{gathered} \overline{\mathrm{Y}_{\mathrm{L}}} \\ (\mathrm{~mA} / \mathrm{V}) \end{gathered}$
c.w.	12.5	175	<15.8	50	< 5.33	>	5.0	>75	$1.3+\mathrm{j} 1.6$	$270+\mathrm{j} 160$

MECHANICAL DATA

Torque on nut: $m i n .23 \mathrm{~kg} \mathrm{~cm}$
(2.3 Newton metres) max. 27 kg cm
(2.7 Newton metres)

Dimensions in mm

Diameter of clearance hole in heatsink: max. 6.5 mm .

Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

BLY90

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

```
Voltages
Collector -base voltage (open emitter) peak value
```

Collector-emitter voltage (open base)
Emitter-base voltage (open collector)

Currents

Collector current (average)
Collector current (peak value) $\mathrm{f}>1 \mathrm{MHz}$

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ f $>1 \mathrm{MHz}$

Temperature
Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to mounting base From mounting base to heatsink

$\mathrm{V}_{\text {CBOM }}$	max.	36	V
$\mathrm{~V}_{\text {CEO }}$	\max.	18	V
$\mathrm{~V}_{\text {EBO }}$	max.	4	V

$I_{C(A V)}$	max.	8	A
$I_{C M}$	\max.	20	A

Ptot max. 130 W

$R_{\text {th j-mb }}=1.35$
$R_{\text {th mb-h }}=0 .{ }^{\circ} \mathrm{C} / \mathrm{W}$
${ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

Breakdown voltages
Collector-base voltage
open emitter, $\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} \quad \mathrm{~V}(\mathrm{BR}) \mathrm{CBO}>36 \mathrm{~V}$
Collector -emitter voltage
open base, $\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$
Emitter-base voltage
open collector, $\mathrm{I}_{\mathrm{E}}=25 \mathrm{~mA}$

Transient energy

$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

$$
\begin{aligned}
& \text { open base } \\
& -\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega
\end{aligned}
$$

D. C. current gain

$$
I_{C}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

$$
\begin{array}{lll}
& > & 10 \\
\text { hFE. } & \text { typ. } & 50
\end{array}
$$

Transition frequency

$$
\mathrm{I}_{\mathrm{C}}=6 \mathrm{~A} ; \mathrm{VCE}_{\mathrm{C}}=10 \mathrm{~V} \quad \mathrm{fT} \quad \text { typ. } 550 \mathrm{MHz}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\begin{array}{lllll}
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{VCB}_{\mathrm{CB}}=15 \mathrm{~V} & \mathrm{C}_{\mathrm{C}} & \text { typ. } & 130 & \mathrm{pF} \\
& & 160 & \mathrm{pF}
\end{array}
$$

Feedback capacitance

$$
\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=15 \mathrm{~V}
$$

Collector-stud capacitance
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$\mathrm{V}(\mathrm{BR}) \mathrm{CBO}$	$>$	36	V
$\mathrm{~V}(\mathrm{BR}) \mathrm{CEO}$	$>$	18	V
$\mathrm{~V}(\mathrm{BR}) \mathrm{EBO}$	$>$	4	V

APPLICATION INFORMATION

R.F. performance in c.w. operation (unneutralised common-emitter class B circuit) $\mathrm{f}=175 \mathrm{MHz}$; T_{h} up to $25^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{L}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	$\eta(\%)$	$\overline{\mathrm{z}_{\mathrm{i}}}(\Omega)$	$\overline{\mathrm{Y}_{\mathrm{L}}}(\mathrm{mA} / \mathrm{V})$
12.5	<15.8	50	<5.33	>5.0	>75	$1.3+\mathrm{j} 1.6$	$270+\mathrm{j} 160$

Test circuit for 175 MHz :

$\mathrm{C} 1=\quad 2$ to 20 pF film dielectric trimmer
$\mathrm{C} 2=\quad 4$ to 40 pF film dielectric trimmer
$\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=\mathrm{C} 6=56 \mathrm{pF}$ ceramic
$\mathrm{C} 7=\quad 100 \mathrm{pF}$ ceramic
$\mathrm{C} 8=\quad 100 \mathrm{nF}$ polyester
C9 $=\quad 4$ to 80 pF film dielectric trimmer
$\mathrm{C} 10=\quad 4$ to 60 pF film dielectric trimmer
$\mathrm{L} 1=1.5$ turns enamelled Cu wire (1.5 mm); int. diam. 6 mm ; length 4 mm ; leads $2 \times 5 \mathrm{~mm}$
L2 $=\quad 7$ turns closely wound enamelled Cu wire (0.5 mm); int. diam. 3 mm ; leads $2 \times 5 \mathrm{~mm}$
L3 = L4 = ferroxcube choke (code number 4312020 36640)
$\mathrm{L} 5=\quad$ bifilar wound enamelled Cu wire $(1.0 \mathrm{~mm})$; see figure on page 6
R1 = 10Ω carbon
$R 2=4.7$ 2 carbon

Component lay-out for 175 MHz see page 6 .

BLY90

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallized to serve as earth. Earth connections are made by means of hollow rivets.

The transistor has been developed for use with unstabilized supply voltages. As the output power and drive powe: increase with the supply voltage, the nominal output power ($\mathrm{P}_{\text {Lnom }}$) must be derated in accordance with the adjacent graph for safe operation at supply voltage other than the nominal. The graph shows the allowable output power under nominal conditions, as a function of the supply overvoltage ratio with V.S.W.R. as parameter. The graph applies to the situation in which the drive ($\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\text {Snom }}$) increases linearly with supply overvoltage ratio $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCnom}}\right)$.

V.H.F. POWER TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 28 V . The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions. It has a $\frac{1^{\prime \prime}}{4}$ capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA									
R.F. performance up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ in an unneutralised common-emitter class B circuit									
Mode of operation	V_{CC} (V)	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{S}} \\ (\mathrm{~W}) \end{gathered}$	P_{L} (W)	I_{C} (A)	Gp (dB)	$\begin{gathered} \eta \\ (\%) \end{gathered}$	$\begin{array}{r} \bar{z}_{1} \\ (\Omega) \\ \hline \end{array}$	$\begin{gathered} \overline{\mathrm{Y}}_{\mathrm{L}} \\ (\mathrm{~mA} / \mathrm{V}) \end{gathered}$
c. w.	28	175	<0.50	8	<0.44	$\mid>12$	$\mid>65$	1. $8+\mathrm{j} 1.0$	17-j20

MECHANICAL DATA

Dimensions in mm

Diameter of clearance hole in heatsink: max. 4.17 mm

Mounting hole to have no burrs at either end De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required, an adhesive instead of a lock washer is preferred.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Collector-base voltage (open emitter) peak value
Collector-emitter voltage (open base)
Emitter-base voltage (open collector)

Currents

Collector current (average)
Collector current (peak value) f $>1 \mathrm{MHz}$

$\mathrm{V}_{\text {CBOM }}$	max.	65	V
$\mathrm{~V}_{\text {CEO }}$	max.	36	V
$\mathrm{~V}_{\text {EBO }}$	max.	4	V

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$
$\mathrm{f}>1 \mathrm{MHz}$

Temperatures
Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to mounting base
From mounting base to heatsink

$R_{\text {th } j-m b}$	$=9.4$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th mb-h }}$	$=0.6$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

BLY91A

CHARACTERISTICS

Collector cut-off current

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \text { unless otherwise specified }
$$

$$
I_{B}=0 ; V_{C E}=28 \mathrm{~V}
$$

Breakdown voltages
Collector-base voltage
open emitter; $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
Collector-emitter voltage open base, $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$
Emitter-base voltage
open collector; $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$
Transient energy
$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

$$
\begin{aligned}
& \text { open base } \\
& -\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega
\end{aligned}
$$

D. C. current gain
$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
$h_{F E}$
Transition frequency

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}
$$

Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}>65 \mathrm{~V}$
V (BR)CBO

$$
\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}>36 \quad \mathrm{~V}
$$

$\mathrm{V}_{(\mathrm{BR}) \text { EBO }}>4 \mathrm{~V}$,
家

$$
\begin{array}{llll}
\mathrm{E} & > & 0.5 & \mathrm{mWs} \\
\mathrm{E} & > & 0.5 & \mathrm{mWs}
\end{array}
$$

11FE

$$
>\quad 5
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$
C_{C}

$$
{ }^{\mathrm{f}_{\mathrm{T}}}
$$

$$
\text { typ. } \quad 500 \mathrm{MHz}
$$

$\begin{array}{lll}\text { typ. } & 10 & \mathrm{pF} \\ < & 15 & \mathrm{pF}\end{array}$
${ }^{\mathrm{I}} \mathrm{CEO}<5 \mathrm{~mA}$

$$
\mathrm{I}_{\mathrm{C}}=400 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}
$$

$$
<\quad 15 \mathrm{pF}
$$

$$
\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}
$$

$$
-\mathrm{C}_{\mathrm{re}}
$$

$$
7.5 \mathrm{pF}
$$

Collector-stud capacitance

$$
\mathrm{C}_{\mathrm{cs}}
$$

$$
\text { typ. } \quad 2 \mathrm{pF}
$$

APPLICATION INFORMATION

R.F. performance in c. w. operation (unneutralised common-emitter class B circuit)
$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{mb}}$ up to $25^{\circ} \mathrm{C}$

$\mathrm{f}(\mathrm{MHz})$	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{L}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	$\eta(\%)$	$\overline{\mathrm{z}}_{\mathrm{i}}(\Omega)$	$\overline{\mathrm{Y}}_{\mathrm{L}}(\mathrm{mA} / \mathrm{V})$
175	<0.50	8	<0.44	≥ 12	>65	$1.8+\mathrm{j} 1.0$	$17-\mathrm{j} 20$

$\mathrm{C} 1=\quad 2.5$ to 20 pF film dielectric trimmer (code number 222280907004)
$\mathrm{C} 2=\mathrm{C} 6=\mathrm{C} 7=4$ to 40 pF film dielectric trimmer (code number 222280907008)
$\mathrm{C} 3=\quad 47 \mathrm{pF}$ ceramic
$\mathrm{C} 4=\quad 100 \mathrm{pF}$ ceramic
$\mathrm{C} 5=\quad 150 \mathrm{nF}$ polyester
$\mathrm{L} 1=0.5$ turn enamelled Cu wire (1.5 mm); int. diam. 6 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 2=6.5$ turns closely wound enamelled Cu wire (0.7 mm); int. diam. 4 mm ;
leads $2 \times 5 \mathrm{~mm}$
L3 = L6 = ferroxcube choke (code number 4312020 36640)
$\mathrm{L} 4=7.5$ turns enamelled Cu wire (0.7 mm); int. diam. 4 mm ; leads $2 \times 5 \mathrm{~mm}$
$\mathrm{L} 5=4.5$ turns enamelled Cu wire (0.7 mm); int. diam. 6 mm ; leads $2 \times 7 \mathrm{~mm}$
$\mathrm{L} 7=3.5$ turns enamelled Cu wire (0.7 mm); int. diam. 6 mm ; leads $2 \times 7 \mathrm{~mm}$
R1 $=$ R2 $=10 \Omega$ carbon

Component lay-out for 175 MHz test circuit see page 6 .

BLY91A

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

For high voltage operation, a stabilized power supply is generally used.
The graph shows the allowable output power under nominal conditions as a function of the V.S.W.R., with heatsink temperature as parameter.

V.H.F. POWER TRANSISTOR

N-P-N epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 28 V . The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions. It has a $\frac{1}{4}$ " capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA									
R.F. performance up to $\mathrm{T}_{\mathrm{mb}}=\begin{aligned} 25^{\circ} \mathrm{C} \text { in an unneutralised common-emitter } \\ \text { class B circuit }\end{aligned}$									
Mode of operation	V_{CC} (V)	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	${ }^{P}$ S (W)	$\begin{aligned} & \mathrm{P}_{\mathrm{L}} \\ & (\mathrm{~W}) \end{aligned}$	${ }^{\mathrm{I}} \mathrm{C}$ (A)	$\begin{aligned} & \mathrm{G}_{\mathrm{p}} \\ & \text { (dB) } \end{aligned}$	$\begin{gathered} \eta \\ (\%) \end{gathered}$	$\overline{z_{i}}$ (Ω)	$\left\lvert\, \begin{gathered} \bar{Y}_{\mathrm{L}} \\ (\mathrm{~mA} / \mathrm{V}) \end{gathered}\right.$
c.w.	28	175	$\mid<1.5$	15	<0.83	$\mid>10$	>65	$1.4+\mathrm{j} 2.15$	32-j28

MECHANICAL DATA

Dimensions in mm

Torque on nut: min. 7.5 kg cm (0.75 Newton metres) $\max .8 .5 \mathrm{~kg} \mathrm{~cm}$ (0.85 Newton metres)

Diameter of clearance hole in heatsink: max. 4.17 mm

Mounting hole to have no burrs at either end De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required, an adhesive instead of a lock washer is preferred.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Collector-base voltage (open emitter) peak value
Collector-emitter voltage (open base)
Emitter-base voltage (open collector)
Currents
Collector current (average)
Collector current (peak value) $\mathrm{f}>1 \mathrm{MHz}$

$V_{\text {CBOM }}$	max.	65	V
$\mathrm{~V}_{\mathrm{CEO}}$	max.	36	V
$\mathrm{~V}_{\mathrm{EBO}}$	max.	4	V

$\mathrm{I}_{\mathrm{C}(\mathrm{AV})}$	max.	1.5	A
I_{CM}	\max.	4.5	A

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{h}}=25{ }^{\circ} \mathrm{C}$

Temperatures
Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to mounting base
From mounting base to heatsink

$R_{\text {th } j-m b}$	$=$	4.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th mb-h }}$	$=$	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

Collector cut-off current

$\mathrm{I}_{\mathrm{B}}=0 ; \mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}$

Breakdown voltages

Collector-base voltage
open emitter, $\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$
Collector-emitter voltage open base, $\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}$

Emitter-base voltage
open collector; $\mathrm{I}_{\mathrm{E}}=3 \mathrm{~mA}$

Transient energy

$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$ open base E
$-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega$
E
$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}>\mathrm{V}^{2} \mathrm{~V}$

$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	$>$	65	V
$\mathrm{~V}_{(\mathrm{BR}) \mathrm{CEO}}$	$>$	36	V
$\mathrm{~V}_{(\mathrm{BR}) \mathrm{EBO}}$	$>$	4	V

$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	$>$	65	V
$\mathrm{~V}_{(\mathrm{BR}) \mathrm{CEO}}$	$>$	36	V
$\mathrm{~V}_{(\mathrm{BR}) \mathrm{EBO}}$	$>$	4	V

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\mathrm{I}_{\mathrm{CEO}}<10 \mathrm{~mA}
$$

APPLICATION INFORMATION

R.F. performance in c. w. operation (unneutralised common-emitter class Bcircuit)
$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$; T_{mb} up to $25^{\circ} \mathrm{C}$

$\mathrm{f}(\mathrm{MHz})$	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{L}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	$\eta(\%)$	$\overline{\mathrm{Z}}_{\mathrm{i}}(\Omega)$	$\overline{\mathrm{Y}}_{\mathrm{L}}(\mathrm{mA} / \mathrm{V})$
175	<1.5	15	<0.83	>10	>65	$1.4+\mathrm{j} 2.15$	$32-\mathrm{j} 28$

Test circuit

C1 $=\quad 2.5$ to 20 pF film dielectric trimmer (code number 222280907004)
$\mathrm{C} 2=\mathrm{C} 6=\mathrm{C} 7=4$ to 40 pF film dielectric trimmer (code number 2222809 07008)
$\mathrm{C} 3=\quad 47 \mathrm{pF}$ ceramic
$\mathrm{C} 4=\quad 100 \mathrm{pF}$ ceramic
$\mathrm{C} 5=150 \mathrm{nF}$ polyester
$\mathrm{L} 1=0.5$ turn enamelled Cu wire (1.5 mm); int. diam. 6 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 2=6.5$ turns closely wound enamelled Cu wire (0.7 mm); int. diam. 4 mm ; leads $2 \times 5 \mathrm{~mm}$
L3 = L5 = ferroxcube choke (code number 4312020 36640)
$\mathrm{L} 4=2.5$ turns enamelled Cu wire (0.7 mm); int. diam. 6 mm ; leads $2 \times 7 \mathrm{~mm}$ $\mathrm{L} 6=4.5$ turns enamelled Cu wire (0.7 mm); int. diam. 6 mm ; leads $2 \times 7 \mathrm{~mm}$

R1 $=$ R2 $=10 \Omega$ carbon

Component lay-out for 175 MHz test circuit see page 6 .

BLY92A

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

For high voltage operation, a stabilized power supply is generally used.
The graph shows the allowable output power under nominal conditions as a function of the V.S.W.R., with heatsink temperature as parameter.

V.H.F. POWER TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 28 V . The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions. It has a $\frac{1}{4}$ " capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA									
R.F. performance up to $\mathrm{T}_{\mathrm{mb}}=\begin{aligned} 25^{\circ} \mathrm{C} \text { in an unneutralised common-emitter } \\ \text { class } \mathrm{B} \text { circuit. }\end{aligned}$									
Mode of operation	v_{CC} (V)	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	P_{S} (W)	P_{L} (W)	${ }^{I_{C}}$ (A)	$\begin{aligned} & \mathrm{G}_{\mathrm{p}} \\ & (\mathrm{~dB}) \end{aligned}$	$\begin{gathered} \eta \\ (\%) \end{gathered}$	$\begin{gathered} \bar{z}_{i} \\ (\Omega) \end{gathered}$	$\begin{gathered} \overline{\mathrm{Y}}_{\mathrm{L}} \\ (\mathrm{~mA} / \mathrm{V}) \end{gathered}$
c. w.	28	175	$\mid<3.1$	25	<1.5	>9	>60	$1.0+\mathrm{jl} .2$	57.7-j 52.7

MECHANICAL DATA

Dimensions in mm

Torque on nut: min .15 kg cm (1.5 Newton metres) max. 17 kg cm
(1.7 Newton metres)

Diameter of clearance hole in heatsink: max. 5.0 mm .

Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

```
Voltages
Collector-base voltage (open emitter) peak value
```

Collector-emitter voltage (open base)
Emitter-base voltage (open collector)

Currents

Collector current (average)
Collector current (peak value) $\mathrm{f}>1 \mathrm{MHz}$

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$

Temperature

Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to mounting base
From mounting base to heatsink

$V_{\text {CBOM }}$	max.	65	V
$\mathrm{~V}_{\mathrm{CEO}}$	max.	36	V
$\mathrm{~V}_{\text {EBO }}$	\max.	4	V

$I_{C(A V)}$	\max.	3	A
I_{CM}	\max.	9	A

$\mathrm{T}_{\text {stg }}$	-30	to +200	${ }^{\circ} \mathrm{C}$
T_{j}	max.	200	${ }^{\circ} \mathrm{C}$

R th j-mb $=2.5{ }^{\circ} \mathrm{C} / \mathrm{W}$
Rth mb-h $=0.3{ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Breakdown voltages

Collector-base voltage open emitter, $I_{C}=50 \mathrm{~mA}$
Collector-emitter voltage open base, $\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$
Emitter-base voltage open collector; $\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$

$V_{(B R) C B O}$	$>65 \mathrm{~V}$
$\left.V_{(B R)}\right) \mathrm{CEO}$	$>36 \mathrm{~V}$
$V_{(B R) E B O}$	$>$

Transient energy
$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

$$
\begin{array}{lll}
\text { open base } & \mathrm{E} & > \\
-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega & \mathrm{E} & >8 \mathrm{mWs} \\
8 \mathrm{mWs}
\end{array}
$$

D. C. current gain

$$
\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

$h_{F E}$
typ. 50
10 to 120
Transition frequency

$$
\begin{equation*}
I_{C}=3 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V} \tag{T}
\end{equation*}
$$

$$
\mathrm{C}_{\mathrm{c}}
$$

typ
50 pF
65 pF
typ. 500 MHz
Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}
$$

Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}$
Collector-stud capacitance
$-C_{r e} \quad$ typ. 31 pF
$\mathrm{C}_{\mathrm{cs}} \quad$ typ. 2 pF

APPLICATION INFORMATION

R.F.performance in c.w. operation (unneutralised common-emitter class B circuit)

$$
\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}
$$

$\mathrm{f}(\mathrm{MHz})$	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{L}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	$\eta(\%)$	$\overline{\mathrm{z}}_{\mathrm{i}}(\Omega)$
175	<3.1	25	<1.5	>9	>60	$1.0+\mathrm{Y} \mathrm{Y}_{\mathrm{L}}(\mathrm{mA} / \mathrm{V})$

Test circuit

$\mathrm{Cl}=\quad 4$ to 44 pF film dielectric trimmer (code number 222280907008)
$\mathrm{C} 2=\quad 2$ to 22 pF film dielectric trimmer (code number 2222809 07004)
C3 $=\mathrm{C} 4=\quad 47 \mathrm{pF}$ ceramic
C5 $=\quad 100 \mathrm{pF}$ ceramic
C6 = $\quad 150 \mathrm{nF}$ polyester
C7 $=\quad 4$ to 104 pF film dielectric trimmer (code number 222280907015)
C8 $=4$ to 64 pF film dielectric trimmer (code number 2222809 07011)
$\mathrm{L} 1=0.5$ turn enamelled Cu wire (1.5 mm); int.diam. 6 mm ; leads $2 \times 6 \mathrm{~mm}$
$\mathrm{L} 2=6$ turns closely wound enamelled Cu wire (0.7 mm); int. diam. 4 mm ; leads $2 \times 4 \mathrm{~mm}$
L3 = L4 = ferroxcube choke (code number 4312020 36640)
$\mathrm{L} 5=3.5$ turns enamelled Cu wire (1.5 mm); int.diam. 6 mm ; leads $2 \times 6 \mathrm{~mm}$
L6 $=1.5$ turns enamelled Cu wire (1.5 mm); int.diam. 6 mm ; leads $2 \times 6 \mathrm{~mm}$
R1 $=$ R2 $=10 \Omega$ carbon

Component lay -out for 175 MHz see page 6 .

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

For high voltage operation, a stabilized power supply is generally used. The graph shows the allowable output power under nominal conditions as a function of the V.S.W.R., with heatsink temperature as parameter.

BLY94

V.H.F. POWER TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 28 V . The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions. It has a plastic encapsulated stripline package. All leads are isolated from the stud.

QUICK REFERENCE DATA									
R.F. performance up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ in an unneutralised common-emitter class B circuit.									
Mode of operation	V_{CC} (V)	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	${ }^{\text {PS }}$ (W)	$\begin{aligned} & \mathrm{PL}_{\mathrm{L}} \\ & (\mathrm{~W}) \end{aligned}$	$\begin{aligned} & \mathrm{IC} \\ & \text { (A) } \end{aligned}$	Gp (dB)	$\begin{gathered} \eta \\ (\%) \end{gathered}$	$\begin{aligned} & \overline{\mathrm{z}_{\mathrm{i}}} \\ & (\Omega) \end{aligned}$	$\left\lvert\, \begin{gathered} \overline{Y_{L}} \\ (\mathrm{~mA} / \mathrm{V}) \end{gathered}\right.$
c.w.	28	175	<10	50	<2.75	>7	>65	0.7+j1.45	120-j70

MECHANICAL DATA

Torque on nut: min. 23 kg cm (2.3 Newton metres) max. 27 kg cm
(2.7Newton metres)

Dimensions in mm

Diameter of clearance hole in heatsink: max. 6.5 mm .

Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Collector-base voltage (open emitter) peak value
Collector-emitter voltage (open base)
Emitter -base voltage (open collector)

VCBOM	max.	65	V
$V_{\text {CEO }}$	max.	36	V
$V_{\text {EBO }}$	max.	4	V

Currents
Collector current (average)
Collector current (peak value) $\mathrm{f}>1 \mathrm{MHz}$
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ $\mathrm{f}>1 \mathrm{MHz}$

Temperature

Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to mounting base From mounting base to heatsink

CHARACTERISTICS

Breakdown voltages

Collector -base voltage
open emitter, $\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$
Collector-emitter voltage
open base, $\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$
Emitter-base voltage
open collector; $\mathrm{IE}=25 \mathrm{~mA}$
Transient energy
$\mathrm{L}=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$

$$
\begin{array}{ccccc}
\text { open base } & \mathrm{E} & > & 8 & \mathrm{mWs} \\
-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}}=33 \Omega & \mathrm{E} & > & 8 & \mathrm{mWs}
\end{array}
$$

D. C. current gain
$I_{C}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
$h_{F E}$
10 to 120

Transition frequency

$$
\mathrm{I}_{\mathrm{C}}=6 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V} \quad \mathrm{fT} \quad \text { typ. } 500 \quad \mathrm{MHz}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}
$$

C_{c}
typ. 75 pF $<130 \mathrm{pF}$
Feedback capacitance
$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}$
Collector-stud capacitance
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$\mathrm{V}(\mathrm{BR}) \mathrm{CBO}$	$>65 \mathrm{~V}$
$\mathrm{~V}(\mathrm{BR}) \mathrm{CEO}$	>36
V	
$\mathrm{~V}(\mathrm{BR}) \mathrm{EBO}$	$>$

APPLICATION INFORMATION

R.F. performance in c.w. operation (unneutralised common-emitter class Bcircuit) $\mathrm{f}=175 \mathrm{MHz} ; \mathrm{T} \mathrm{mb}$ up to $25^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	$\mathrm{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{L}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	$\eta(\%)$	$\overline{\mathrm{z}_{\mathrm{i}}}(\Omega)$	$\overline{\mathrm{Y}_{\mathrm{L}}}(\mathrm{mA} / \mathrm{V})$
28	<10	50	<2.75	>7	>65	$0.7+\mathrm{j} 1.45$	$120-\mathrm{j} 70$

Test circuit for 175 MHz :
50Ω

List of components:
$\mathrm{C} 1=2$ to 20 pF film dielectric trimmer (code number 222280907004)
$\mathrm{C} 2=4$ to 40 pF film dielectric trimmer (code number 2222809 07008)
$\mathrm{C} 3=\mathrm{C} 4=\quad 56 \mathrm{pF}$ ceramic
$\mathrm{C} 5=\quad 102 \mathrm{pF}$ ceramic
C6 $=\quad \quad 100 \mathrm{nF}$ polyester
$\mathrm{C} 7=4$ to 60 pF film dielectric trimmer (code number 2222809 07011)
$\mathrm{C} 8=4$ to 100 pF film dielectric trimmer (code number 2222809 07015)
$\mathrm{C} 9=\quad 6.8 \mathrm{pF}$ ceramic
$\mathrm{L} 1=36 \mathrm{nH}$; 2 turns enamelled Cuwire (1.5 mm); int. diam. 7 mm ; length 5 mm ; lead length $2 \times 5 \mathrm{~mm}$
$\mathrm{L} 2=$ formed by the metallization on the p.c. board; see component lay-out
$\mathrm{L} 3=100 \mathrm{nH} ; 7$ turns closely wound enamelled Cu wire (0.5 mm); int. diam 3 mm ; lead length $2 \times 5 \mathrm{~mm}$
$\mathrm{L} 4=\mathrm{L} 5=$ ferroxcube choke (code number 431202036640)
L6 $\quad 53 \mathrm{nH}$; 2 turns enamelled Cu wire (1.5 mm); int. diam. 10 mm ; length 5.2 mm ; lead length $2 \times 5 \mathrm{~mm}$
$\mathrm{L} 7=46 \mathrm{nH}$; 2 turns enamelled Cuwire (1.5 mm); int. diam. 9 mm ; length 5.4 mm ; lead length $2 \times 5 \mathrm{~mm}$
$\mathrm{R} 1=\mathrm{R} 2=10 \Omega$ carbon

Component lay-out see page 6

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

For high voltage operation, a stabilized power supply is generally used.
The graph shows the allowable output power under nominal conditions as a function of the V.S.W.R., with heatsink temperature as parameter.

SILICON EPITAXIAL PLANAR OVERLAY TRANSISTORS

The 2 N 3553 is a $n-\mathrm{p}-\mathrm{n}$ overlay transistor in a TO-39 metal envelope with the collector connected to the case.
The 2N3375 and the 2N3632 are n-p-n overlay transistors in TO-60 metal envelopes with the electrodes insulated from the studs.
The 2 N 3553 and the 2 N 3375 are intended for v.h.f./u.h.f. and the 2 N 3632 forv.h.f. transmitting applications.

MECHANICAL DATA

Dimensions in mm

2N3553

Collector connected to case TO-39

Accessories available: 56218, 56245, 56265.

MECHANICAL DATA (continued)

2N3375
2N3632
TO-60
The top pins should not be bent

Dimensions in mm
Torque on nut: min. 8 cm kg $\max .17 \mathrm{~cm} \mathrm{~kg}$
Diameter of hole in heatsink: 4.8 to 5.2 mm

RATINGS (Limiting values) ${ }^{1}$)
Voltages ${ }^{2}$)
Collector-base voltage (open emitter)
Collector-emitter voltage
I_{C} up to $200 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V}$
Collector-emitter voltage (open base)
I_{C} up to 200 mA
Emitter-base voltage (open collector)
Currents ${ }^{2}$)
Collector current (d.c.)
Collector current (peak value)
Power dissipation ${ }^{2}$)
Total power dissipation

$$
\text { up to } \mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}
$$

Temperatures

Storage temperature
Junction temperature

$$
\mathrm{V}_{\mathrm{CBO}} \quad \max . \quad 65 \mathrm{~V}
$$

$\mathrm{V}_{\text {CEX }} \max .65 \mathrm{~V}$

$V_{\text {CEO }}$	\max.	40	V
$\mathrm{~V}_{\mathrm{EBO}}$	\max.	4	V

		2N3553	2N3375	2N363	
${ }^{\text {I }}$ C	max.	0.35	0.5	1	A
I_{CM}	max.	1.0	1.5	3	A
$\mathrm{P}_{\text {tot }}$	max.	7	11.6	23	W

$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$	
T_{j}	max.	200	${ }^{\circ} \mathrm{C}$

[^11]THERMAL RESISTANCE
From junction to mounting base
From mounting base to heatsink
From mounting base to heatsink mounted with
top clamping washer of 56218
top clamping washer of 56218 and a boron nitride washer for electrical insulation

CHARACTERISTICS

Collector cut-off current

$$
\mathrm{I}_{\mathrm{B}}=0 ; \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}
$$

Breakdown voltages
$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}$
I_{C} up to 200 mA

$$
\begin{aligned}
& \left.\quad-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{B}}=33 \Omega^{1}\right) \\
& \mathrm{I}_{\mathrm{B}}=0 \\
& \mathrm{I}_{\mathrm{C}}=0 ; \mathrm{I}_{\mathrm{E}}=250 \mu \mathrm{~A}
\end{aligned}
$$

Base-emitter voltage

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=1000 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
\end{aligned}
$$

Saturation voltage

$$
\begin{aligned}
& I_{C}=250 \mathrm{~mA} ; I_{B}=50 \mathrm{~mA} \\
& I_{C}=500 \mathrm{~mA} ; I_{B}=100 \mathrm{~mA} \\
& I_{C}=1000 \mathrm{~mA} ; I_{B}=200 \mathrm{~mA}
\end{aligned}
$$

	2N3553	2N3375	2 N 3632
$R_{\text {th j-mb }}=$	25	15	7.5
${ }^{\circ} \mathrm{C} / \mathrm{W}$			
$R_{\text {th mb-h }}=$	0.6	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th mb-h }}=1.0$			${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th mb-h }}=2.5$		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

	2N3553	2N3375	2N363	
$\mathrm{I}_{\text {CEO }}$	< 100	100	250	$\mu \mathrm{A}$
$V_{\text {(BR) }}$ CBO	>65	65	65	V
$V_{(B R) C E X}$	>65	65	65	V
$V_{(B R) C E O}$	>40	40	40	V
$V_{(B R)}$ EBO	>4	4	4	V
$\mathrm{V}_{\text {BE }}$	<1.5			V
$V_{\text {BE }}$	$<$	1.5		V
$\mathrm{V}_{\text {BE }}$	<		1.5	V
$\mathrm{V}_{\text {CEsat }}$	<1.0			V
$V_{\text {CEsat }}$	<	1.0		V
$\mathrm{V}_{\text {CEsat }}$	$<$		1.0	V

${ }^{1}$) Pulsed through an inductor of $25 \mathrm{mH} ; \delta=0.5 ; \mathrm{f}=50 \mathrm{~Hz}$

2N3375
 2N 3553
 2N3632

CHARACTERISTICS (continued)
D.C. current gain

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=1000 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
\end{aligned}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}
$$

Collector-case capacitance

Transition frequency

$$
\begin{array}{lll}
\mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V} & \mathrm{f}_{\mathrm{T}} & \text { typ. } 500 \\
\mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V} & \mathrm{f}_{\mathrm{T}} & \text { typ. }
\end{array}
$$

Real part of input impedance at $\mathrm{f}=200 \mathrm{MHz}$

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V} & \operatorname{Re}\left(\mathrm{~h}_{\mathrm{ie}}\right)<20 \\
\mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V} & \operatorname{Re}\left(\mathrm{~h}_{\mathrm{ie}}\right)<
\end{array}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

		2N3553	2N3375	2N3632	
h_{FE}	>	15	15		
	$<$	200	200		
h_{FE}	>	10	10	10	
	$<$	100	100	150	
h_{FE}	>			5	
	$<$			110	
C_{c}	$<$	10	10	20	pF
	$<$		6	6	pF
f_{T}	typ.	500	500		MHz
f_{T}	typ.			400	MHz
MHz					
$\operatorname{Re}\left(h_{i e}\right)$	$<$	20	20		Ω
$\operatorname{Re}\left(h_{i e}\right)$	$<$			20	Ω

R.F. performance at $\mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}$

	f (MHz)	P_{O} (W)	P_{i} (W)	I_{C} (mA)	η $\%$	Test circuit at page
2N3553	175	2.5	<0.25	<180	>50	5
2N3375	100	7.5	<1	<410	>65	6
2N3375	400	>3	1	270	>40	7
2N3632	175	>13.5	3.5	690	>70	5

NOTE

The transistors can withstand an output V.S.W.R. of 3:1 varied through all phases under conditions mentioned in the table above.

CHARACTERISTICS (continued)

Test circuit with the 2 N 3553 or the 2 N 3632 at $\mathrm{f}=175 \mathrm{MHz}$

*) The length of the external emitter wire of the 2 N 3553 is 1.6 mm .
The emitter of the 2 N 3632 should be connected to the case as short as possible.

Components
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=4$ to 29 pF air trimmer
$\mathrm{C} 5=10 \mathrm{nF}$ polyester
C6 $=\quad 100 \mathrm{pF}$ ceramic
$\mathrm{L} 1=1$ turn Cu wire (1.0 mm); int. diam. 10 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 2=$ Ferroxcube choke coil. $\mathrm{Z}($ at $\mathrm{f}=175 \mathrm{MHz})=550 \Omega \pm 20 \%$
(code number 4312020 36640)
$\mathrm{L} 3=15$ turns closely wound enamelled Cu wire (0.7 mm); int. diam. 4 mm
$\mathrm{L} 4=3$ turns closely wound enamelled Cu wire (1.5 mm); int. diam. 12 mm ; leads $2 \times 20 \mathrm{~mm}$
$\mathrm{R}=0$ for the 2 N 3553
$R=0$ to 2Ω for the 2 N 3632

CHARACTERISTICS (continued)

Test circuit with the 2 N 3375 at $\mathrm{f}=100 \mathrm{MHz}$

Components

C 1	$=\mathrm{C} 2=3.5$ to 61.5 pF	air trimmer
C 3	$=$	10 nF
C 4	$=\mathrm{C} 5=4$ polyester	
C 6	$=$	29 pF
C 7	$=$	air trimmer
	330 pF	ceramic
	10 nF	polyester

$\mathrm{Ll}=2$ turns closely wound enamelled Cu wire (1.5 mm); int. diam. 10 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 2=$ Ferroxcube choke coil. $\mathrm{Z}($ at $\mathrm{f}=100 \mathrm{MHz})=700 \Omega \pm 20 \%$
(code number 4312020 36640)
L3 $=23$ turns closely wound enamelled Cu wire (0.7 mm); int. diam. 6 mm
$\mathrm{L} 4=5$ turns closely wound enamelled Cu wire (1.5 mm); int. diam. 12 mm ; leads $2 \times 10 \mathrm{~mm}$
$R 1=1.35 \Omega 2 \quad$ carbon
$R 2=10 \Omega$ carbon

CHARACTERISTICS (continued)
Test circuit with the 2 N 3375 at $\mathrm{f}=400 \mathrm{MHz}$

*) The emitter should be connected to the case as short as possible.

Components
$\mathrm{C} 1=\mathrm{C} 2=0.7$ to 6.7 pF
$\mathrm{C} 3=0.5$ to 3.5 pF
$\mathrm{C} 4=\mathrm{C} 5=3$ to 19 pF
$\mathrm{C} 6=\mathrm{C} 7=\quad 15 \mathrm{pF}$
C8 = 4700 pF
ceramic trimmer
ceramic trimmer
air trimmer
ceramic ceramic
$\mathrm{L} 1=20 \mathrm{~mm}$ straight Cu wire; diam. 1.5 mm ; spaced 8 mm from chassis
$\mathrm{L} 2=17$ turns closely wound enamelled Cu wire (0.5 mm); int. diam. 3 mm
$\mathrm{L} 3=7$ turns closely wound enamelled Cu wire (0.5 mm); int. diam. 3 mm
$\mathrm{L} 4=1$ turn Cu wire (1.5 mm); int. diam. 10 mm ; leads $2 \times 5 \mathrm{~mm}$
$\mathrm{R}=0$ to 5Ω

APPLICATION INFORMATION

The 2 N 3553 used in a frequency doubler circuit $87.5-175 \mathrm{MHz}$

Components
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=4$ to 29 pF air trimmer
C4 $=$
C5 =
C6 =
$\mathrm{C} 7=\quad 150 \mathrm{pF}$
$\mathrm{C} 8=\quad 100 \mathrm{pF}$
C9 = $\quad 10 \mathrm{nF}$ polyester
$\mathrm{R}_{1}=0$ to 50Ω
$R_{2}=10 \Omega$ carbon

L1 = 5 turns Cu wire (1 mm); winding pitch 1.5 mm ; int. diam. 6 mm ; leads $2 \times 12 \mathrm{~mm}$
$\mathrm{L} 2=$ Ferroxcube choke coil; $\mathrm{Z}($ at $\mathrm{f}=87.5 \mathrm{MHz})=750 \Omega \pm 20 \%$
(code number 431202036640)
L3 $=15$ turns closely wound enamelled Cu wire (0.7 mm); int. diam. 4 mm
$\mathrm{L} 4=6$ turns Cu wire (1 mm); winding pitch 1.5 mm ; int. diam. 6 mm ; leads $2 \times 12 \mathrm{~mm}$

APPLICATION INFORMATION (continued)

The 2N3553 used in a parametric frequency tripler $156.7-470 \mathrm{MHz}$

*) C3 tuned to second harmonic frequency

Components

$\begin{array}{lrlll}\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=4 & \text { to } 29 \mathrm{pF} & \text { air trimmer } & \mathrm{R}_{1}=2.2 \Omega & \text { carbon } \\ \mathrm{C} 5=\mathrm{C} 6=\mathrm{C} 7= & 4 \text { to } 10.4 \mathrm{pF} & \text { air trimmer } & \mathrm{R}_{2}=10 \Omega & \text { carbon }\end{array}$
$\mathrm{C} 8=$
C9 =
$\mathrm{C} 10=$
C11 =
C12 $=$
$\mathrm{L} 1=35 \mathrm{~mm}$ straight Cu wire; diam. 1 mm ; spaced 5.5 mm from chassis
L2 = Ferroxcube choke coil; Z (at $f=156.7 \mathrm{MHz})=600 \Omega \pm 20 \%$
(code number 4312020 36640)
$\mathrm{L} 3=18 \mathrm{~mm}$ straight Cu wire; diam. 1 mm ; spaced $5.5 . \mathrm{mm}$ from chassis
$\mathrm{L} 4=7$ turns closely wound enamelled Cu wire (0.5 mm); int. diam. 3.5 mm
L5 = 3 turns Cu wire (1 mm); winding pitch 1.7 mm ; int. diam. 8.5 mm ; leads $2 \times 10 \mathrm{~mm}$
L6 = 2 turns Cu wire (1 mm); winding pitch 1.7 mm ; int. diam. 7 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 7=40 \mathrm{~mm}$ straight Cu wire; diam. 1.5 mm ; spaced 5.5 mm from chassis
$\mathrm{L} 8=1$ turn Cu wire; int. diam. 7 mm ; leads $2 \times 5 \mathrm{~mm}$
Typical performance at $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$

P_{O} (W)	P_{i} (W)	G_{p} (dB)	I_{C} $(m A)$	η $\%$
1.5	0.27	7.5	125	43
2.0	0.39	7.1	156	46

I Region of permissible operation under all base-emitter conditions and at all frequencies, including d.c.
II Additional region of operation at $\mathrm{f} \geq 1 \mathrm{MHz}$. Care must be taken to reduce the d.c. adjustment to region I before removing the a.c. signal. This may be achieved by an appropriate bias in class A, B or C.
III Operating during switching off in this region is allowed, provided the transistor is cut-off with $-\mathrm{V}_{\mathrm{BB}} \leq 1.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{BE}} \geq 33 \Omega, \mathrm{I}_{\mathrm{C}} \leq 200 \mathrm{~mA}$ and the transient energy does not exceed 0.5 mWs .

2N3375
2N3553
2N3632

SILICON EPITAXIAL PLANAR OVERLAY TRANSISTORS

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ overlay transistors in a TO-39 metal envelope with the collector connected to the case. The devices are primarily intended for class A, B or C amplifiers, frequency multiplier- and oscillator circuits.
The transistors are suitable in output, driver or pre-driver stages in v.h.f. and u.h.f. equipment.

MECHANICAL DATA

Dimensions in mm
Collector connected to case
TO-39

Accessories available: 56218; 56245; 56265

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages ${ }^{1}$)
Collector-base voltage (open emitter)
Collector-emitter voltage
$\mathrm{R}_{\mathrm{BE}}=10 \Omega$
Collector-emitter voltage (open base)
Emitter-base voltage (open collector)

Currents ${ }^{1}$)

Collector current (d.c. or averaged over any 20 ms period)

Collector current (peak value)
Power dissipation ${ }^{1}$)
Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25{ }^{\circ} \mathrm{C}$

Temperatures

Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to ambient in free air
From junction to mounting base
From mounting base to heatsink mounted with
top clamping washer of 56218
top clamping washer of 56218
and a boron nitride washer
for electrical insulation

		2N3866	2N4427
$\mathrm{V}_{\mathrm{CBO}}$	max.	. 55	40
$\mathrm{V}_{\text {CER }}$	max.	. 55	40
$\mathrm{V}_{\text {CEO }}$	max.	. 30	20
$\mathrm{V}_{\text {EBO }}$	max.	. 3.5	2.0
I_{C}	max.	. 0.4	0.4
I_{CM}	max.	. 0.4	0.4
$\mathrm{P}_{\text {tot }}$	max.	.	3.5
$\mathrm{T}_{\text {stg }}$		-65 to +	$200{ }^{\circ} \mathrm{C}$
Tj		max.	200 oC

$R_{\text {th } j-a}=\quad 200{ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th } j-\mathrm{mb}}=35^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th mb-h }}=1.0{ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th mb-h }}=2.5{ }^{\circ} \mathrm{C} / \mathrm{W}$

1) See also areas of permissible operation on page 6.

CHARACTERISTICS

Collector cut-off current

$$
\begin{aligned}
& I_{B}=0 ; \mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{B}}=0 ; \mathrm{V}_{\mathrm{CE}}=12 \mathrm{~V}
\end{aligned}
$$

Breakdown voltages

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA} ; \mathrm{R}_{\mathrm{BE}}=10 \Omega \\
& \mathrm{I}_{\mathrm{B}}=0 ; \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{C}}=0 ; \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}
\end{aligned}
$$

Collector-emitter saturation voltage

$$
\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}
$$

D.C. current gain

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=360 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
\end{aligned}
$$

Transition frequency

$\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=15 \mathrm{~V} ; \mathrm{f}=100 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{f}=100 \mathrm{MHz}$

Collector capacitance

$\mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{f}=1 \mathrm{MHz}$	C_{C}	$<$	3
$\mathrm{~V}_{\mathrm{CB}}=12 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{f}=1 \mathrm{MHz}$	C_{C}	$<$	pF

R.F. performance at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$

	$\mathrm{f}(\mathrm{MHz})$	$\mathrm{V}_{\mathrm{CE}}(\mathrm{V})$	$\mathrm{P}_{\mathrm{O}}(\mathrm{W})$	$\mathrm{P}_{\mathrm{i}}(\mathrm{W})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$	$\eta(\%)$	Test circuit on page
2N3866	100	28	1.8	0.05	<107	>60	
2N3866	250	28	1.5	0.1	<107	>50	
2N3866	400	28	1.0	<0.1	<79	>45	4
2N4427	175	12	1.0	<0.1	<167	>50	$5 *$
2N4427	470	12	0.4	0.1	67	50	

[^12]
CHARACTERISTICS (continued)

Test circuit with the 2 N 3866 at $\mathrm{f}=400 \mathrm{MHz}$

$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=4$ to 29 pF air trimmer
$\mathrm{C} 4=\quad 4$ to 14 pF air trimmer
$\mathrm{C} 5=1 \mathrm{nF}$ feed through
C6 $=\quad 12 \mathrm{pF}$
$\mathrm{C} 7=\quad 12 \mathrm{nF}$
$R 1=\quad 5.6 \Omega$
$\mathrm{R} 2=10 \Omega$
L1 = 2 turns Cu wire (1 mm); int. diam. 6 mm ; winding pitch 3 mm
$\mathrm{L} 2=$ Ferroxcube choke coil; $\mathrm{Z}($ at $\mathrm{f}=250 \mathrm{MHz})=450 \Omega$ (code number 431202036690)
$\mathrm{L} 3=\mathrm{L} 4=6$ turns enamelled Cu wire (0.5 mm); int. diam. $3.5 \mathrm{~mm}(100 \mathrm{nH})$
$\mathrm{L} 5=2$ turns Cu wire (1 mm); int. diam. 7 mm ; winding pitch 2.5 mm ; leads $2 \times 15 \mathrm{~mm}$.

CHARACTERISTICS (continued)

Test circuit with the 2 N 4427 at $\mathrm{f}=175 \mathrm{MHz}$

*) The length of the external emitter wire is 1.6 mm

$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=4$ to 29 pF	air trimmer	
$\mathrm{C} 5=$	1 nF	feed through
$\mathrm{C} 6=$	12 nF	
$\mathrm{R}=$	10Ω	

$\mathrm{Ll}=2$ turns Cu wire (1 mm); int. diam. 6 mm ; winding pitch 2 mm ; leads $2 \times 10 \mathrm{~mm}$
L2 = Ferroxcube choke coil; Z (at f=175 MHz) $=550 \Omega$ (code number 431202036640)
L3 $=2$ turns Cu wire (1 mm); int. diam. 5 mm ; winding pitch 2 mm ; leads $2 \times 10 \mathrm{~mm}$
L 4 = 3 turns Cu wire (1.5 mm); int. diam. 10 mm ; winding pitch 2 mm ; leads $2 \times 15 \mathrm{~mm}$

I Region of permissible operation under all base-emitter conditions and at all frequencies, including d.c.

II Additional region of operation at $f \geq 1 \mathrm{MHz}$.
Care must be taken to reduce the d.c. adjustment to region I before removing the a.c. signal. This may be achieved by an appropriate bias in class A, B or C.
III Operating during switching off in this region is allowed, provided the transistor is cut-off with $-\mathrm{V}_{\mathrm{BB}} \leq 1.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{BE}} \geq 33 \Omega$, $\mathrm{I}_{\mathrm{C}} \leq 100 \mathrm{~mA}$ and the transient energy does not exceed 0.125 mWs .

SILICON EPITAXIAL PLANAR OVERLAY TRANSISTORS

The 2 N 3924 is a n-p-n overlay transistor in a TO-39 metal envelope with the collector connected to the case.
The 2N3926 and the 2N3927 are n-p-n overlay transistors in TO-60 metal envelopes with the emitter connected to the case.
The transistors are intended for v.h.f. transmitting applications.

MECHANICAL DATA

Dimensions in mm

2N3924

Collector connected to case
TO-39

Accessories available: 56218, 56245, 56265.

2N3926
2N3927
TO-60
The emitter connected to the case The top pins should not be bent

Diameter of hole in heatsink: 4.8 to 5.2 mm The device is supplied with nut and lock washer
Torque on nut: min. 8 cm kg $\max , 17 \mathrm{~cm} \mathrm{~kg}$

RATINGS (Limiting values) ${ }^{1}$)
Voltages ${ }^{2}$)
Collector-base voltage (open emitter)
Collector-emitter voltage
I_{C} up to $400 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V}$
Collector-emitter voltage (open base)
I_{C} up to 400 mA
Emitter-base voltage (open collector)
Currents ${ }^{2}$)
Collector current (d.c.)
Collector current (peak value)
Power dissipation ${ }^{2}$)
Total power dissipation
up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$
Temperatures
Storage temperature
Junction temperature
$\mathrm{V}_{\mathrm{CBO}} \max .36 \mathrm{~V}$
$\mathrm{V}_{\text {CEX }} \max .36 \mathrm{~V}$

VCEO	\max.	18	V
$\mathrm{~V}_{\mathrm{EBO}}$	\max.	4	V

		2N3924	2N3926	2N392	
${ }^{\text {I }} \mathrm{C}$	max.	0.5	1.0	1.5	A
${ }^{\text {I CM }}$	\max.	1.5	3.0	4.5	A
$\mathrm{P}_{\text {tot }}$	max.	7	11.6	23	W

$$
\begin{array}{lll}
\mathrm{T}_{\text {stg }} & -65 \text { to }+200 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{j}} & \max . & 200
\end{array}{ }^{\circ} \mathrm{C}
$$

[^13]
THERMAL RESISTANCE

From junction to mounting base
From mounting base to heatsink
From mounting base to heatsink mounted with
top clamping washer of 56218
top clamping washer of 56218 and a boron nitride washer for electrical insulation

	2N3924	2N3926	2N392	
$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{mb}}$	$=25$	15	7.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th }} \mathrm{mb}$-h	=	0.6	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th mb-h }}$	$=1.0$			${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th mb-h }}$	$=2.5$			${ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

Collector cut-off current

$$
\begin{aligned}
& I_{B}=0 ; V_{C E}=15 \mathrm{~V} \\
& I_{B}=0 ; V_{C E}=15 \mathrm{~V} ; T_{j}=150^{\circ} \mathrm{C}
\end{aligned}
$$

Breakdown voltages

$$
I_{E}=0 ; I_{C}=250 \mu \mathrm{~A}
$$

$$
\mathrm{I}_{\mathrm{C}} \text { up to } 400 \mathrm{~mA}
$$

Base-emitter voltage
$\mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=1000 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$

Saturation voltage

$$
\begin{aligned}
& I_{C}=250 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{C}}=1000 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=200 \mathrm{~mA}
\end{aligned}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

2 N 3924		2 N 3926	2 N 3927	
$<$	100	100	250	$\mu \mathrm{~A}$
$<$	5	5	5	mA
$>$	36	36	36	V
$>$	36	36	36	V

18 V

4 V

V
V
1.5 V

V
$0.75 \quad \mathrm{~V}$

$$
\begin{aligned}
& -V_{B E}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{B}}=33 \Omega^{1} \text {) } \\
& \left.I_{B}=0 \quad 1\right) \\
& I_{C}=0 ; I_{E}=250 \mu \mathrm{~A}
\end{aligned}
$$

[^14]
2N3924
 2N3926
 2N3927

CHARACTERISTICS (continued)
D.C. current gain
$I_{C}=250 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \quad \mathrm{~h}_{\mathrm{FE}}$
$I_{C}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=1000 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=13.5 \mathrm{~V}
$$

Transition frequency

$$
\begin{array}{lll}
\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=13.5 \mathrm{~V} & \mathrm{f}_{\mathrm{T}} & >250 \\
\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=13.5 \mathrm{~V} & \mathrm{f}_{\mathrm{T}} & >
\end{array}
$$

Real part of input impedance at $\mathrm{f}=200 \mathrm{MHz}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=13.5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=13.5 \mathrm{~V}
\end{aligned}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

	2N3924	2N3926	2N3927
$>$	10		
$<$	150		
$>$		5	
$<$		150	
$>$			5
$<$			150

45 pF MHz

200 MHz

20
$\operatorname{Re}\left(\mathrm{h}_{\mathrm{ie}}\right)<$
R.F. performance at $\mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V} ; \mathrm{f}=175 \mathrm{MHz}$

	P_{O} (W)	P_{i} (W)	I_{C} (mA)	η $\%$	Test circuit at page
2N3924	4	<1	<420	>70	5
2N3926	7	<2	<740	>70	6
2N3927	12	<4	<1100	>80	6

NOTE

The transistors can withstand an output V.S.W.R. of $3: 1$ varied through all phases under conditions mentioned in the table above.

CHARACTERISTICS (continued)
Test circuit with the 2 N 3924 at $\mathrm{f}=175 \mathrm{MHz}$

*) The length of the external emitter wire of the 2 N 3924 is 1.6 mm .
Components
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=4$ to 29 pF air trimmer
$\mathrm{C} 5=10 \mathrm{nF}$ polyester
$\mathrm{L} 1=1$ turn Cu wire (1.0 mm); int. diam. 10 mm ; leads $2 \times 10 \mathrm{~mm}$
$\mathrm{L} 2=$ Ferroxcube choke coil. Z (at $\mathrm{f}=175 \mathrm{MHz})=550 \Omega \pm 20 \%$
(code number 431202036640)
$\mathrm{L} 3=15$ turns closely wound enamelled Cu wire (0.7 mm); int. diam. 4 mm
$\mathrm{L} 4=3$ turns closely wound enamelled Cu wire (1.5 mm); int. diam. 12 mm ; leads $2 \times 20 \mathrm{~mm}$

2N3924 2N3926 2N3927

CHARACTERISTICS (continued)

Test circuit with the 2 N 3926 or 2 N 3927 at $\mathrm{f}=175 \mathrm{MHz}$

Components
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=4$ to 29 pF
C5 $=$
100 pF
air trimmer

C6 =
10 nF
polyester
$\mathrm{L} 1=1$ turn Cuwire (1.0 mm); int. diam. 10 mm ; leads $2 \times 10 \mathrm{~mm}$
L2 $=$ Ferroxcube choke coil. $\mathrm{Z}($ at $\mathrm{f}=175 \mathrm{MHz})=550 \Omega \pm 20 \%$
(code number 4312020 36640)
L3 $=15$ turns closely wound enamelled Cu wire (0.7 mm); int. diam. 4 mm
$\mathrm{L} 4=2$ turns closely wound enamelled Cu wire (1.5 mm); int. diam. 8.5 mm ; leads $2 \times 20 \mathrm{~mm}$
$R=10 \Omega$ carbon

I Region of permissible operation under all base-emitter conditions and at all frequencies, including d.c.

II Additional region of operation at $\mathrm{f} \geq 1 \mathrm{MHz}$.
Care must be taken to reduce the d.c. adjustment to region I before removing the a.c. signal. This may be achieved by an appropriate bias in class A, B or C .

III Operating during switching off in this region is allowed, provided the transistor is cut-off with $-\mathrm{V}_{\mathrm{BB}} \leq 1.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{BE}} \geq 33 \Omega, \mathrm{I}_{\mathrm{C}} \leq 400 \mathrm{~mA}$ and the transient energy does not exceed 2 mWs .

2N3924 2N3926 2N3927

2N3924 2N3926 2N3927

SILICON EPITAXIAL PLANAR OVERLAY TRANSISTOR

[^15]Microwave devices

MICROWAVE MIXER DIODES

Subminiature germanium point-contact mixer diodes primarily intended for low noise mixer applications at X-band.

QUICK REFERENCE DATA					
Frequency range		f	1.0 to 18	GHz	
Noise figure	AAY39	F	typ.	6.0	dB
	AAY39A	F	typ.	7.0	dB

MECHANICAL DATA

Dimensions in mm

The cathode indicates the electrode which becomes positive in an a.c. rectifier circuit.
The cathode is marked red

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Burn-out
D. C. spike
R.F. spike

Pulse peak power ($t_{p}=0.5 \mu \mathrm{~s}$)
max. $\quad 0.1$ erg
max. $\quad 0.05 \mathrm{erg}$
$\max \quad 0.5 \mathrm{~W}$

Temperatures

Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-55 to +100	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS
Reverse current at $V_{R}=0.5 \mathrm{~V}$
Forward current at $V_{F}=0.5 \mathrm{~V}$
Overall noise figure ${ }^{1}$)

Conversion loss

Noise temperature ratio
i. f. $=45 \mathrm{MHz}$

Voltage standing wave ratio
Intermediate frequency impedance
Operating frequency range

NOTE

Optimum performance is obtained when the oscillator drive is adjusted to give a diode rectified current of 1.0 mA and the load resistance is restricted to max. 100 Sc
${ }^{1}$) Measured at $9.375 \mathrm{GHz}, 1.0 \mathrm{~mA}$ diode rectified current, $\mathrm{R}_{\mathrm{L}}=15 \Omega$, this value includes i.f. noise of 1.5 dB .

7262230

APPLICATION INFORMATION

1. Mixer performance

Measured overall noise figure

$$
\begin{array}{lllll}
\mathrm{f}=16.5 \mathrm{GHz} ; \mathrm{F}_{\text {if }}=1.5 \mathrm{~dB} ; \text { i.f. }=45 \mathrm{MHz} & \text { F } & \text { typ. } & 7.0 \mathrm{~dB} \\
\mathrm{f}=3.0 \mathrm{GHz} ; \mathrm{F}_{\text {if }}=1.5 \mathrm{~dB} ; \text { i.f. }=45 \mathrm{MHz} & \text { F } & \text { typ. } & 5.5 \mathrm{~dB} \\
\mathrm{f}=9.5 \mathrm{GHz} ; \text { i.f. }=3.0 \mathrm{kHz} & \text { F } & \text { typ. } & 29 \mathrm{~dB}
\end{array}
$$

2. Signal/Flicker noise ratio at 9.5 GHz
measured at 2.0 kHz from carrier in
a 70 Hz bandwidth
131 dB
3. Detector performance

Tangential sensitivity

$$
\begin{array}{ccccc}
\mathrm{f}=9.375 \mathrm{GHz} ; \mathrm{B}=1.0 \mathrm{MHz} ; \mathrm{I}_{\mathrm{F}}=50 \mu \mathrm{~A} & & \text { typ. } & -52 \mathrm{dBm} \\
\text { Video impedance; } \mathrm{I}_{\mathrm{F}}=50 \mu \mathrm{~A}
\end{array} \quad \mathrm{Z}_{\text {iv }} \quad \text { typ. } 800 \Omega 8
$$

MICROWAVE MIXER DIODE

Subminiature germanium point-contact mixer diode for use at Q-band (Ka-band)

	QUICK REFERENCE DATA		
Frequency range		26 to 40	GHz
Noise figure		typ.	8.5

MECHANICAL DATA
 Dimensions in mm

The cathode is marked red
The cathode indicates the electrode which becomes positive in an a.c. rectifiercircuit.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Burn-out

R.F. spike	\max.	0.03 erg
Pulse peak power $\left(t_{p}=0.2 \mu \mathrm{~s}\right)$	\max.	0.5 W

Temperatures
Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-55 to $+100{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-55 to $+100{ }^{\circ} \mathrm{C}$
	$\mathrm{T}_{\text {amb }}=25{ }^{\circ} \mathrm{C}$

Reverse current at $\mathrm{V}_{\mathrm{R}}=0.5 \mathrm{~V}$
I_{R}
typ.
$2.0 \mu \mathrm{~A}$
Forward current at $\mathrm{V}_{\mathrm{F}}=0.5 \mathrm{~V}$
I_{F}
typ.
2.0 mA

Overall noise figure ${ }^{1}$)

Conversion loss
Noise temperature ratio; i.f. $=45 \mathrm{MHz}$
$\underline{\text { Voltage standing wave ratio }}{ }^{2}$)

Intermediate frequency impedance
Operating frequency range

V.S.W.R.	typ.	$1.4: 1$
	$<$	$1.8: 1$

MATCHED PAIRS

The diodes can be supplied in matched pairs under the typenumber 2-AAY59M. The diodes are matched to $\pm 10 \%$ on rectified current and within 150Ω i.f. impedance

[^16]
AEY13
 AEY15
 AEY16

GERMANIUM TUNNEL DIODES

Germanium tunnel diodes for use as low noise microwave amplifiers in S-band. The device is mounted in a small ceramic-metal case with hermetic welded seal.

QUICK REFERENCE DATA								
			AEY13	AEY15	AEY16			
Resistive cut -off frequency	f_{r}	$>$	6	8	10			

MECHANICAL DATA

Dimensions in mm

Compression force on mounting surfaces $x-x$ and $y-y$: max. 2. $45 N$

1. Do not press on this area.
2. Preferred area of pressure.
3. Take care not to flex the flange.

Contact to the diode should be made by means of a resilient arrangement so that it is not possible to apply undue force. If for example, in a microwave circuit contact is made between a plunger and a flat surface then the plunger should be actuated through a spring.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Junction temperature		T_{j}	-40 to	- 70	${ }^{\text {o }} \mathrm{C}$
CHARACTERISTICS	Tamb $=25^{\circ} \mathrm{C}$ unless otherwise specified				
Peak point voltage	V_{P}	typ.	50	mV	
Valley point voltage	V_{V}	typ.	300	mV	
Peak point current	I_{P}	1.8 to	2.3	mA	
Peak-valley current ratio	$\mathrm{I}_{\mathrm{P}} / \mathrm{I}_{V}$	typ.	10		
Resistive cut-off frequency		AEY13	AEY15	AEY16	
$\mathrm{f}_{\mathrm{r}}=\frac{1}{2 \pi \cdot \mathrm{r}_{\mathrm{n}} \cdot \mathrm{C}_{\mathrm{j}}} \sqrt{\frac{\mathrm{r}_{\mathrm{n}}}{\mathrm{r}_{\mathrm{s}}}-1}$	$\mathrm{f}_{\mathrm{r}} \mathrm{r} \stackrel{\substack{\text { typ } \\ \\ \\<}}{ }$	6 7 14	8 9 14	$\begin{aligned} & 10 \\ & 11 \\ & 14 \end{aligned}$	GHz GHz GHz
Junction capacitance at V_{V}	C_{j} typ.	3.2	2.5	2.0	pF
Stray capacitance	$\mathrm{C}_{\text {S }}$	typ.	0.3	pF	
$\underline{\text { Series inductance }}$	$1_{\text {S }}$	typ.	120	pH	
$\underline{\text { Series resistance }}$	r_{S}	$\stackrel{\text { typ. }}{ }$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	
Negative resistance at inflexion point	r_{n}	typ.	50	Ω	
Noise measure ${ }^{1}$)	$\mathrm{N}_{\text {S }}$	typ.	1.3		

EQUIVALENT CIRCUIT

$\left.{ }^{1}\right) N_{S} \approx 20 I_{F} \cdot r_{n}$ if biased in the negative resistance region.

MICROWAVE MIXER DIODES

Silicon Schottky barrier mixer diodes in a DO-23 envelope.

	QUICK REFERENCE DATA			
Noise figure in X-band	BAW95D:	F	<8.2	dB
	BAW95E:	F	<7.5	dB
	BAW95F:	F	<7.0	dB

MECHANICAL DATA

Dimensions in mm
DO-23

Symbol indicates polarity

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Total power dissipation (peak value)
$\mathrm{f}=9.375 \mathrm{GHz} ; \mathrm{t}_{\mathrm{p}}=0.5 \mu \mathrm{~s}$
$P_{\text {tot }}$
max.
1 W

Burn-out
Multiple r.f. spike; $\Delta \mathrm{F}=1 \mathrm{~dB}$
$\begin{array}{lrl}\max . & 2 \times 10^{-8} & \mathrm{~J} \\ \max . & 0.2 & \text { erg }\end{array}$
Temperatures
Storage temperature
Ambient temperature

$$
\begin{array}{lll}
\mathrm{T}_{\text {stg }} & -55 \text { to }+150 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\text {amb }} & -55 \text { to }+150{ }^{\circ} \mathrm{C}
\end{array}
$$

CHARACTERISTICS

Overall noise figure at $\mathrm{f}=9.375 \mathrm{GHz}$
$\mathrm{I}_{\mathrm{F}}(\mathrm{AV})=1 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=15 \Omega$
F includes $\mathrm{F}_{\mathrm{if}}=1.5 \mathrm{~dB}$ with 45 MHz i.f.

Voltage standing wave ratio at $\mathrm{f}=9.375 \mathrm{GHz}$

$$
\mathrm{I}_{\mathrm{F}(\mathrm{AV})}=1 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=15 \Omega ; \text { socket: JAN-106 }
$$

Intermediate frequency impedance

$$
\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}
$$

this graph holds for a pretuned holder

SILICON DOUBLE DIFFUSED VARACTOR DIODE

Varactor diode in a metal envelope primarily intended for use in frequency multiplier circuits with output frequencies up to 1000 MHz .

QUICK REFERENCE DATA				
Continuous reverse voltage	V_{R}	\max.	100	V
Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=30{ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	\max.	12	W
Junction temperature	T_{j}	\max.	150	${ }^{\circ} \mathrm{C}$
Total capacitance at $\mathrm{f}=10 \mathrm{MHz}$				
$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$	C_{d}	4.0 to 6.0	pF	
Diode series resistance at $\mathrm{f}=250 \mathrm{MHz}$				
$\mathrm{V}_{\mathrm{R}}=48 \mathrm{~V}$	r_{D}	\max.	1.3	Ω
Cut-off frequency $\frac{1}{2 \pi \mathrm{r}_{\mathrm{D}}\left(\mathrm{C}_{\mathrm{d}} \text { at } \mathrm{V}_{\mathrm{Rmax}}\right)}$		f_{co}	$>$	20

MECHANICAL DATA

Dimensions in mm
Supplied with the device: Nut and lock washer

Diameter of hole in heatsink: 2.87 mm

RATINGS (Limiting values) ${ }^{1}$)

Voltage
Continuous reverse voltage $\quad \mathrm{V}_{\mathrm{R}} \quad \max .100 \mathrm{~V}$

Current

Repetitive peak forward current
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=30^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{amb}}=30^{\circ} \mathrm{C}
$$

$\mathrm{I}_{\mathrm{FRM}} \quad \max . \quad 400 \mathrm{~mA}$

Temperatures
Storage temperature
Junction temperature

$T_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$	
T_{j}	\max.	150	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient in free air
From junction to mounting base

CHARACTERISTICS

$R_{\text {th } j-a}$	$=$	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th } j-m b}$	$=$	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Reverse current (d.c.)

$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$	I_{R}	typ.	0.1	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		10	$\mu \mathrm{~A}$	
	I_{R}	typ.	8	$\mu \mathrm{~A}$
$<$		200	$\mu \mathrm{~A}$	

Total capacitance at $\mathrm{f}=10 \mathrm{MHz}$

$\mathrm{V}_{\mathrm{F}}=0.5 \mathrm{~V}$	C_{d}	typ.	65	pF
$\mathrm{V}_{\mathrm{R}}=0$	C_{d}	typ.	25	pF
$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$	C_{d}	4 to	6	pF
Stray capacitance	$\mathrm{C}_{\text {S }}$	typ.	1.4	pF
Diode series inductance	$L_{\text {d }}$	typ.	13	nH
Diode series resistance at $\mathrm{f}=250 \mathrm{MHz}$				
$\mathrm{V}_{\mathrm{R}}=48 \mathrm{~V}$	${ }^{\text {r }}$ D	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Cut-off frequency $\frac{1}{2 \pi r_{D}\left(C_{d} \text { at } V_{R \max }\right)}$	$\mathrm{f}_{\text {co }}$	$>$ typ.	20	GHz GHz

[^17]
SILICON PLANAR EPITAXIAL VARACTOR DIODE

Varactor diode with a very low series resistance, in a low inductance, hermet ically sealed, welded ceramic-metal DO-4 envelope.
The BAY96 is a high efficiency frequency multiplier designed for use in the v.h.f. and u.h.f. regions.

With the reverse voltage rating of 120 V , it can handle an input power up to 40 W .

QUICK REFERENCE DATA			
Continuous reverse voltage	V_{R}	$\max .120$	V
Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25{ }^{\circ} \mathrm{C}$	$P_{\text {tot }}$	max. 20	W
Junction temperature	T_{j}	$\max .175$	${ }^{\circ} \mathrm{C}$
Total capacitance at $\mathrm{f}=1 \mathrm{MHz}$			
$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	C_{d}	28 to 39	pF
Diode series resistance at $\mathrm{f}=400 \mathrm{MHz}$			
$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	${ }^{r}$ D	max. 1.2	Ω
Cut-off frequency $\frac{1}{2 \pi r_{D} C_{d}}$ at $V_{R}=120 \mathrm{~V}$	f_{Co}	typ. 25	GHz

MECHANICAL DATA

Dimensions in mm

DO-4

Diameter of hole in heatsink: max. 5.2 mm Accessories available: 56295 (56262A)

Torque on nut: min. 8 cm kg $\max .17 \mathrm{~cm} \mathrm{~kg}$

RATINGS (Limiting values) ${ }^{1}$)
Voltage
Continuous reverse voltage $\quad V_{R} \max .120 \mathrm{~V}$
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max .20 \mathrm{~W}$

Temperatures

Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to mounting base
$R_{\text {th } j-\mathrm{mb}}=7.5^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

Total capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
V_{R}=6 \mathrm{~V}
$$

Diode series resistance at $\mathrm{f}=400 \mathrm{MHz}$

$$
\begin{array}{cllrl}
\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V} & \mathrm{r}_{\mathrm{D}} & \begin{array}{c}
\text { typ. } \\
<
\end{array} & 0.9 & \Omega \\
\text { Cut-off frequency } \frac{1}{2 \pi r_{D} \mathrm{C}_{\mathrm{d}}}
\end{array} \text { at } \mathrm{V}_{\mathrm{R}}=120 \mathrm{~V} \quad \mathrm{f}_{\mathrm{Co}} \quad \begin{array}{ll}
\text { typ. } & 25 \\
& \mathrm{GHz}
\end{array}
$$

APPLICATION INFORMATION

Frequency tripler 150 to 450 MHz
The tripler circuit at page 3 consists of a parallel connection of the varactor, the input and output circuits, and the idler circuits. This shunt configuration has two outstanding advantages for high power harmonic generation.

1. The varactor can be grounded on one side, thus utilizing the chassis as a heatsink.
2. The varactor, being a low impedance device, operates best in a circuit that requires a low impedance coupling element between input and output circuits .

The function of the input and output networks is to provide impedance matching, and at the same time eliminate undesired r.f.current components, minimizing losses. A single tuned circuit is insufficient for the reduction of spurious response and therefore, a suitable output filter should follow the multiplier.

1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

BAY96

APPLICATION INFORMATION (continued)

140 to 450 MHz tripler circuit
Efficiency at $\mathrm{P}_{\mathrm{I}}=25 \mathrm{~W} \quad \eta \quad \begin{aligned} & > \\ & \text { typ. }\end{aligned} \quad \begin{array}{lll}60 & \% \\ 64\end{array}$

$\mathrm{L}_{1}=6.5$ turns; $\mathrm{d}=1.3 \mathrm{~mm}$. Length of coil: 14.3 mm , inner diameter: 7.5 mm . $L_{2}=2$ turns; $d=2 \mathrm{~mm}$. Length of coil: 7.9 mm , inner diameter: 6.7 mm . $\mathrm{L}_{3}=$ copper strip, cross section $6.3 \times 0.5 \mathrm{~mm}^{2}$, length: 25.4 mm , height above chassis: 14.3 mm .

Component lay -out of tripler circuit:
 Dimensions in mm

SILICON VARACTOR DIODE

The BXY27 is a silicon planar epitaxial varactor diode exhibiting step recovery characteristics, especially suitable for use in frequency multiplier circuits up to S -band output frequency and 10 W input power.
The device is mounted in a small double ended ceramic-metal case with hermetic seal. The diode is packed in a container.

QUICK REFERENCE DATA				
Input power (doubler 1 to 2 GHz)	P_{i}	$<$	10	W
Output power (doubler 1 to 2 GHz)	P_{0}	$>$	5	W
Junction temperature	T_{j}	max.	175	${ }^{\circ} \mathrm{C}$
Cut-off frequency	f_{c}	typ.	100	GHz
Diode capacitance	C_{C}	typ.	4.5	pF

MECHANICAL DATA

Type marking on the container
The heat should be transferred via the cathode pin.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Reverse voltage
Total power dissipation up to $T_{\text {pin }}=95^{\circ} \mathrm{C}$
Storage temperature
Junction temperature

V_{R}	max.	55	V
$\mathrm{P}_{\text {tot }}$	\max.	4	W
$\mathrm{~T}_{\text {stg }}$	-65 to	+175	${ }^{\circ} \mathrm{C}$
T_{j}	max.	175	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to pin
$R_{\text {th } j \text {-pin }}=200^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

$\underline{\text { Reverse current at } V_{R}=6 \mathrm{~V}}$

Cut-off frequency at $V_{R}=6 \mathrm{~V}$

$$
\mathrm{f}_{\mathrm{C}}=\frac{1}{2 \pi r_{\mathrm{d}}\left(\mathrm{C}_{\mathrm{d}}-\mathrm{C}_{\mathrm{str}}\right)}
$$

$\underline{\text { Diode capacitance }}$ at $\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}\left(\mathrm{C}_{\mathrm{d}}\right.$ includes $\left.\mathrm{C}_{\mathrm{str}}\right)$

Stray capacitance
Diode series inductance
Diode series resistance at $\mathrm{f}=2 \mathrm{GHz}$
$V_{R}=6 \mathrm{~V}$
Overall efficiency in frequency doubler
circuit on page 3
$\mathrm{P}_{\mathrm{i}}=10 \mathrm{~W}: \mathrm{f}_{\mathrm{i}}=1 \mathrm{GHz}$

Overall efficiency in frequency tripler circuit
$P_{i}=10 \mathrm{~W}: \mathrm{f}_{\mathrm{i}}=1 \mathrm{GHz}$

$$
\text { typ. } \quad 40 \%
$$

η
$\begin{array}{lll}> & 50 & \% \\ \text { typ. } & 60 & \%\end{array}$
C_{d}

$$
\begin{array}{cll}
\text { typ. } & 4.5 & \mathrm{pF} \\
3.0 & \text { to } & 6.5
\end{array} \mathrm{pF}
$$

typ. 0.25 pF
typ. 650 pH
L_{d} $\begin{array}{lrr}> & 50 & \mathrm{GHz} \\ \text { typ. } & 100 & \mathrm{GHz}\end{array}$
f_{C}
$C_{\text {str }}$
$T_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise specified

typ.	1	$n A$
$<$	1	$\mu \mathrm{~A}$

$I_{\text {R }}$
r_{d}
typ. 0.4Ω

SILICON VARACTOR DIODE

The BXY28 is a silicon planar epitaxial varactor diode exhibiting step recovery characteristics, especially suitable for use in frequency multiplier circuits up to C-band output frequency and 7 W input power.
The device is mounted in a small double ended ceramic-metal case with hermetic seal. The diode is packed in a container.

QUICK REFERENCE DATA				
Input power (doubler 2 to 4 GHz)	P_{i}	$<$	7	W
Output power (doubler 2 to 4 GHz)	P_{o}	$>$	3.5	W
Junction temperature	T_{j}	$\max .175$	${ }^{\circ} \mathrm{C}$	
Cut-off frequency	f_{C}	typ.	100	GHz
Diode capacitance	C_{d}	typ.	1.5	pF

MECHANICAL DATA

Dimensions in mm

Type marking on the container
The heat should be transferred via the cathode pin.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Reverse voltage
Total power dissipation up to $\mathrm{T}_{\text {pin }}=70^{\circ} \mathrm{C}$
Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to pirt

CHARACTERISTICS

Reverse current at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$

Cut-off frequency at $V_{R}=6 \mathrm{~V}$

$$
\mathrm{f}_{\mathrm{c}}=\frac{1}{2 \pi r_{\mathrm{d}}\left(\mathrm{C}_{\mathrm{d}}-\mathrm{C}_{\mathrm{str}}\right)}
$$

$\underline{\text { Diode capacitance }}$ at $\mathrm{f}=1 \mathrm{MHz}$

$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}\left(\mathrm{C}_{\mathrm{d}}\right.$ includes $\left.\mathrm{C}_{\mathrm{str}}\right)$	C_{d}	typ.	1.5	pF
Stray capacitance				
Diode series inductance		$\mathrm{C}_{\mathrm{Str}}$	typ.	0.25

Diode series resistance at $\mathrm{f}=2 \mathrm{GHz}$

$$
\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}
$$

Overall efficiency in frequency doubler
circuit of page 3

$$
\mathrm{P}_{\mathrm{i}}=7 \mathrm{~W} ; \mathrm{f}_{\mathrm{i}}=2 \mathrm{GHz}
$$

r_{d}
typ.
0.9Ω
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
I_{R}

typ.	1	$n A$
$<$	1	$\mu \mathrm{~A}$

f_{c}
$\begin{array}{lrr}> & 80 & \mathrm{GHz} \\ \text { typ. } & 100 & \mathrm{GHz}\end{array}$
typ. 650 pH

$$
\begin{array}{llll}
\eta & > & 50 & \% \\
& \text { typ. } & 55 & \%
\end{array}
$$

$\frac{\text { Overall efficiency in frequency qua- }}{\text { drupler circuit }}$
$\mathrm{P}_{\mathrm{i}}=2 \mathrm{~W} ; \mathrm{f}_{\mathrm{i}}=0.56 \mathrm{GHz}$
typ. 40 \%

CHARACTERISTICS
Test circuit

June 1971

SILICON VARACTOR DIODE

Silicon planar epitaxial varactor diode exhibiting step recovery characteristics, especially suitable for use in frequency multiplier circuits up to X -band output frequency.
The device is mounted in a small double ended ceramic-metal case with hermetic seal.

QUICK REFERENCE DATA

Output power (quadrupler 2.25 to 9.0 GHz)

at $P_{i}=1.0 \mathrm{~W}$	P_{o}	$>$	0.3	W
Resistive cut-off frequency at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	f_{C}	typ.	120	GHz
Diode capacitance at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	C_{d}	typ.	1.0	pF
Junction temperature	T_{j}	\max.	150	${ }^{\circ} \mathrm{C}$

MECHANICAL DATA
Dimensions in mm

Type marking on the container
The heat should be transferred via the cathode pin

BXY29

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage
Total power dissipation up to $\mathrm{T}_{\text {pin }}=70{ }^{\circ} \mathrm{C}$
Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to pin

CHARACTERISTICS

Reverse current at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$
Cut-off frequency at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$
$\mathrm{f}_{\mathrm{c}}=\frac{1}{2 \pi r_{\mathrm{D}}\left(\mathrm{C}_{\mathrm{d}}-\mathrm{C}_{\mathrm{str}}\right)}$
Diode capacitance at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Stray capacitance
Diode series inductance
Overall efficiency in quadrupler circuit $\mathrm{P}_{\mathrm{i}}=1.0 \mathrm{~W} ; \mathrm{f}_{\mathrm{i}}=2.25 \mathrm{GHz}$
f_{c}
C_{d}
L_{d}
η
$R_{\text {th } \mathrm{j} \text {-pin }}=50 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$
typ. $1.0 \quad \mathrm{nA}$
$1.0 \mu \mathrm{~A}$
$\mathrm{C}_{\text {Str }}$
7210093.1

SILICON VARACTOR DIODE

Silicon planar epitaxial varactor diode exhibiting step recovery characteristics, es pecially suitable for use in high order frequency multiplier circuits up to X -band output frequency.
The device is mounted in a small double ended ceramic-metal case with hermetic seal.

QUICK REFERENCE DATA

Output power (frequency multiplier 1 to 10 GHz)
at $\mathrm{P}_{\mathrm{i}}=500 \mathrm{~mW} \quad \mathrm{P}_{\mathrm{O}}$ typ. 20 mW
Resistive cut-off frequency at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V} \quad \mathrm{f}_{\mathrm{C}}$ typ. 150 GHz
Diode capacitance at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V} \quad \mathrm{C}_{\mathrm{d}}$ typ. 0.75 pF
Junction temperature $\quad \mathrm{T}_{\mathrm{j}} \quad \max .150{ }^{\circ} \mathrm{C}$

MECHANICAL DATA

Dimensions in mm

Type marking on container.
The heat should be transferred via the cathode pin.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage
Total power dissipation up to $\mathrm{T}_{\text {pin }}=70^{\circ} \mathrm{C}$
Storage temperature
Junction temperature

V_{R}	max.	20	V
$\mathrm{P}_{\text {tot }}$	max.	1	W
$\mathrm{~T}_{\text {stg }}$	-55 to	+150	${ }^{\circ} \mathrm{C}$
T_{j}	max.	150	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to pin

CHARACTERISTICS

Reverse current at $V_{R}=6 \mathrm{~V}$
Cut-off frequency at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$

$$
\mathrm{f}_{\mathrm{c}}=\frac{1}{2 \pi \mathrm{r}_{\mathrm{D}}\left(\mathrm{C}_{\mathrm{d}}-\mathrm{C}_{\mathrm{Str}}\right)}
$$

$\frac{\text { Diode capacitance }}{} \mathrm{V}_{\mathrm{R}}=6 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Stray capacitance
Diode series inductance
Transition time

Storage time

$$
\begin{aligned}
& \frac{\text { Multiplier performance }}{\text { Output power at } \mathrm{P}_{\mathrm{i}}=500 \mathrm{~mW}} \\
& \text { (frequency multiplier } 1 \text { to } 10 \mathrm{GHz} \text {) }
\end{aligned}
$$

$R_{\text {th j-pin }}=\quad 50 \quad$ oC $/ \mathrm{W}$

$$
\mathrm{T}_{\mathrm{amb}}=25 \mathrm{oC}
$$

$$
\begin{array}{llll}
\mathrm{I}_{\mathrm{R}} & \text { typ. } & 1 & \mathrm{nA} \\
< & 1 & \mu \mathrm{~A}
\end{array}
$$

$$
\begin{array}{llll}
\mathrm{f}_{\mathrm{C}} & > & 100 & \mathrm{GHz} \\
& \text { typ. } & 150 & \mathrm{GHz}
\end{array}
$$

$$
\begin{array}{llrr}
& \text { typ. } & 0.75 & \mathrm{pF} \\
\mathrm{C}_{\mathrm{d}} & 0.5 \text { to } & 1 & \mathrm{pF}
\end{array}
$$

$$
\mathrm{C}_{\text {str }} \quad \text { typ. } 0.25 \mathrm{pF}
$$

$$
\mathrm{L}_{\mathrm{d}} \quad \text { typ. } \quad 650 \mathrm{pH}
$$

$$
\mathrm{t}_{\mathrm{t}}<150 \mathrm{ps}
$$

$$
\mathrm{t}_{\mathrm{s}} \quad \text { typ. } \quad 50 \text { ns }
$$

$$
\begin{array}{llll}
& > & 15 & \mathrm{~mW} \\
\mathrm{P}_{\mathrm{O}} & \text { typ. } & 20 & \mathrm{~mW}
\end{array}
$$

CAY10

GALLIUM ARSENIDE VARACTOR DIODE

Diffused mesa varactor diode with a high cut-off frequency for use in parametric amplifiers, frequency multipliers and switches.
The device is mounted in a small doubleended ceramic-metal case with hermetic seal.

QUICK REFERENCE DATA				
Reverse voltage	V_{R}	\max.	6.0	V
Average forward current	$\mathrm{I}_{\mathrm{FAV}}$	\max.	70	mA
Total power dissipation up to $\mathrm{T}_{\text {pin }}=107^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	\max.	50	mW
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-196 to +150	${ }^{\circ} \mathrm{C}$	
Cut-off frequency; $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	f_{c}	typ.	240	GHz

MECHANICAL DATA

Dimensions in mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Continuous reverse voltage
Current
Average forward current
${ }^{\mathrm{I}} \mathrm{FAV}$
\max.
70 mA

Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{pin}}=107^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$ $\max \quad 50 \mathrm{~mW}$

Temperatures
Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-196 to +150	${ }^{\circ} \mathrm{C}$	
T_{j}	\max.	150	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to pin

$$
\mathrm{R}_{\mathrm{th} \mathrm{j}-\text { pin }}=0.9{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse current
$\mathrm{V}_{\mathrm{R}}=6.0 \mathrm{~V}$
I_{R}

typ.	0.1	$\mu \mathrm{~A}$
$<$	1.0	$\mu \mathrm{~A}$

$<$
$1.0 \mu \mathrm{~A}$

Forward voltage
${ }^{\mathrm{I}} \mathrm{F}=1.0 \mu \mathrm{~A}$
V_{F}
Effective diode capacitance $^{1}{ }^{1}$) $C_{m}=\frac{1}{4 \pi^{2} \mathrm{f}_{\text {res }}^{2} 1_{\mathrm{S}}}$
$\mathrm{V}_{\mathrm{R}}=0$
C_{m}

Stray capacitance ${ }^{1}$)
Csl
Cs2
Series inductance ${ }^{1}$)
Cut-off frequency ${ }^{2}$) at $V_{R}=0$

$$
\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}
$$

$\underline{\text { Capacitance variation coefficient }}{ }^{3}$)

Series resonant frequency at $\mathrm{V}_{\mathrm{R}}=0{ }^{2}$)
$\mathrm{I}_{\mathrm{F}}=1.0 \mu \mathrm{~A}$
typ. 0.9 V

GALLIUM ARSENIDE DIFFUSED MESA VARACTOR DIODE

Varactor diode with a high cut-off frequency, primarily intended for use in microwave parametric amplifiers. The device is mounted in a small ceramic-metal case with hermetic welded seal.

QUICK REFERENCE DATA				
Continuous reverse voltage	V_{R}	\max.	6	V
Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25$	${ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	\max.	50
mW				
Junction temperature	T_{j}	-196 to +135	o C	
Cut-off frequency ; $\mathrm{V}_{\mathrm{R}}=0$	f_{Co}	typ.	350	GHz

MECHANICAL DATA
Dimensions in mm

Compression force on mounting surfaces $x-x$ and $y-y: m a x .2 .45 N$

1. Do not press on this area.
2. Preferredarea of pressure.
3. Take care not to flex the flange

CXY10

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltage

Continuous reverse voltage
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ Temperatures
Storage temperature
Junction temperature

$$
\mathrm{V}_{\mathrm{R}} \quad \max . \quad 6.0 \mathrm{~V}
$$

$$
\text { Ptot } \quad \max . \quad 50 \mathrm{~mW}
$$

$$
\mathrm{T}_{\text {stg }} \quad-196 \text { to }+175 \circ^{\circ} \mathrm{C}
$$

$$
\mathrm{T}_{\mathrm{j}} \quad \max . \quad 135 \quad \circ \mathrm{C}
$$

THERMAL RESISTANCE

From junction to mounting base

$$
R_{\text {th } j-\mathrm{mb}}=0.90^{\circ} \mathrm{C} / \mathrm{mW}
$$

$$
\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { unless otherwise specified }
$$

Reverse current

$$
\begin{array}{llll}
\mathrm{V}_{\mathrm{R}}=6.0 \mathrm{~V} & \mathrm{I}_{\mathrm{R}} & \text { typ. } & 0.1 \mu \mathrm{~A} \\
< & 1.0 & \mu \mathrm{~A}
\end{array}
$$

$\frac{\text { Capacitance }}{\mathrm{V}_{\mathrm{R}}=0} \quad \frac{1}{2 \pi \mathrm{r}_{\mathrm{D}} \mathrm{f}_{\mathrm{co}}}$
Stray capacitance

Diode series resistance

$\mathrm{V}_{\mathrm{R}}=0$	${ }^{\text {r }} \mathrm{D}$	typ.	$\begin{array}{r} 2.25 \\ 3.0 \end{array}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
\qquad	1 s	typ	140	pH
$\begin{aligned} & 4 \pi^{2} \mathrm{f}_{\mathrm{res}}{ }^{2} \mathrm{C}_{\mathrm{d}} \\ & \text { Cut-off frequency } ; \mathrm{V}_{\mathrm{R}}=0 \end{aligned}$	f_{co}	$\stackrel{\text { typ. }}{ }$	$\begin{aligned} & 200 \\ & 350 \end{aligned}$	$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{GHz} \end{aligned}$
$\frac{\text { Product of capacitance variation }}{\text { coefficient and cut-off frequency }} ; V_{R}=0^{1}$)	$\gamma \mathrm{f}_{\text {co }}$	typ.	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{GHz} \end{aligned}$
Series resonant frequency; $V_{R}=0$	$\mathrm{f}_{\text {res }}$	typ. $27 \text { to }$	30 34	GHz GHz

$\overline{\text { 1) }} \gamma=\frac{C_{d \text { max }}-C_{d \text { min }}}{2\left(C_{d \text { max }}+C_{d \text { min }}\right)}=\frac{\frac{1}{f_{\text {res min }}}-\frac{1}{f_{\text {res } \max ^{2}}}}{2\left(\frac{1}{f_{\text {res min2 }}}+\frac{1}{f_{\text {res max }}{ }^{2}}\right)}$
where $\mathrm{C}_{\mathrm{d} \max }=$ capacitance at $\mathrm{I}_{\mathrm{F}}=1.0 \mu \mathrm{~A}$
$\mathrm{C}_{\mathrm{d} \text { min }}=$ capacitance at $\mathrm{V}_{\mathrm{R}}=1.0 \mathrm{~V}$
$f_{\text {res min }}$ and $f_{r e s} \max$ are the corresponding resonant frequencies assuming a constant inductance. Hence it is directly measurable in the transmission loss system.

CXY10

Remark

The dynamic parameters are quoted using a holder which takes the form of a double four-section, wide band, low v.s.w.r. Q-band 26 to 40 GHz waveguide transformer to a reduced height of 0.25 mm . The transformer is step down followed by step up in order to use standard Q-band components on either side. A d.c. isolated choke system allows the diode to be inserted across the 0.25 mm reduced height section and to be biased.

Using a swept frequency transmission loss measuring system the $f_{c o}$, the Q and γ of the diode-holder system can be measured ($\mathrm{f}_{\mathrm{co}}=\mathrm{Q} \times \mathrm{f}_{\mathrm{res}}$).

Separately, by measuring the transmission loss past the diode at resonance, r_{D} can be found.

OPERATING NOTES

The CXY10 varactor diode will give excellent noise performance in a parametric amplifier of suitable design.

For instance, at a signal frequency of 8.5 GHz in an amplifier having an overcoupled ratio of 4 dB to 5 dB with a pump frequency at 35 GHz and an idler frequency of 26.5 GHz , the effective input noise temperature of the amplifier less the contribution due to the circulator would be typically $200^{\circ} \mathrm{K}$ and a maximum of $250^{\circ} \mathrm{K}$ with the amplifier at room temperature. In cooled paramps, due to its low temperature working capability, the device would give appropriately lower effective input noise temperatures.

CXYIIA to C

GUNN EFFECT DIODES

Gallium arsenide Gunn effect diodes for c.w. oscillations up to X-band frequencies. The devices are mounted in a small double endedceramic-metal case with hermetic seal suitable for mounting in various types of cavity.
The main types CXY11A to C will oscillate throughout X-band, the actual frequency depending on the cavity used. The sub-types $8.5,10.5$ and 11.5 are only specified in a 1 GHz band centred on $8.5,10.5$ and 11.5 GHz respectively (see table 1 on page 2)

QUICK REFERENCE DATA					
Operating voltage		V	typ.	7	V
Total power dissipation up to $\mathrm{T}_{\mathrm{nin}}=35{ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	1.0	W	
Operating frequency		X -band			
Output power at $\mathrm{f}=9.5 \mathrm{GHz}$	$\underline{\text { CXY11A }}$	P_{o}	$>$	5	mW
	$\underline{\text { CXY11B }}$	P_{o}	$>$	10	mW
	$\underline{\text { CXY11C }}$	P_{O}	$>$	15	mW

MECHANICAL DATA

Dimensions in mm

Type marking on the container
The heat should be transferred via the flangeless pin

CXYIIA to C

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage ${ }^{1}$)	V	max.	7.0	V
Total power dissipation up to $\mathrm{T}_{\text {pin }}=35{ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	1.0	W
Storage temperature	$\mathrm{T}_{\text {stg }}$	max.	175	${ }^{\circ} \mathrm{C}$
CHARACTERISTICS $\mathrm{T}_{\text {pin }}=35{ }^{\circ} \mathrm{C}$				
Current at V $=7.0 \mathrm{~V}$	I	typ.	140	mA
Operating frequency ${ }^{2}$)	f		8.0 to 12	GHz
Output power ${ }^{3}$)				
CXY11A	P_{0}	$\begin{aligned} & > \\ & \text { typ. } \end{aligned}$	5 8	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
CXY11B	P_{0}	typ.	10	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
CXY11C	P_{0}	typ.	15	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

1) Bias must always berapplied in such a way that the flanged end of the device is negative. Reversing polarity or exceeding maximum rating may cause permanent damage. Care should be taken not to exceed voltage transients of 8 V .
${ }^{2}$) The frequency is governed by the choise of cavity to which the device is coupled. For frequency coverage see table 1.
${ }^{3}$) P_{O} is measured in a coaxial cavity at the test frequency given in table 1 .

Table 1.	Test frequency and frequency coverage in GHz			
	$\begin{gathered} 8.5 \\ 8 \text { to } 9 \end{gathered}$	$\begin{gathered} 9.5 \\ 8 \text { to } 12 \end{gathered}$	$\begin{gathered} 10.5 \\ 10 \text { to } 11 \end{gathered}$	$\begin{gathered} 11.5 \\ 11 \text { to } 12 \end{gathered}$
Po $>$	$\mathrm{CXY}^{1} 1^{8} 8.5$	CXY11A	CXY11A ${ }_{10.5}$	CXY11A 11.5
$\mathrm{P}_{\mathrm{O}}{ }_{\text {typ }}^{>} 10 \mathrm{~mW}$	CXY11B8.5	CXY11B	$\mathrm{CXY}^{111 B_{10}}{ }^{\text {a }}$	CXY11B 11.5
$\mathrm{P}_{\mathrm{o}}{ }_{\text {typ. }} \begin{array}{r}15 \mathrm{~mW} \\ 20 \mathrm{~mW}\end{array}$	CXY11C8.5	CXY11C	CXY11C10.5	CXY11C 11.5

GALLIUM ARSENIDE DIFFUSED MESA VARACTOR DIODE

Diffused mesa varactor diode suitable for use in frequency multiplier circuits up to Q-band output frequency. The device is mounted in a small ceramic-metal case with hermetic welded seal.

QUICK REFERENCE DATA				
```Output power (quadrupler 9.0 to 36 GHz) at }\mp@subsup{P}{i}{}=500\textrm{mW```	$P_{0}$	>	50	mW
Resistive cut-off frequency at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	$\mathrm{f}_{\mathrm{C}}$	typ.	500	GHz
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	175	${ }^{0} \mathrm{C}$

MECHANICAL DATA
Dimensions in mm


Compression force on mounting surfaces $x-x$ and $y-y: m a x .2 .45 N$

1. Do not press on this area.
2. Preferred area of pressure.
3. Take care not to flex the flange.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Continuous reverse voltage

$$
\mathrm{V}_{\mathrm{R}} \quad \max . \quad 10 \mathrm{~V}
$$

## Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$
R.F. input power

## Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-55 to +175	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{j}}$	max.	175	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to mounting base
CHARACTERISTICS
Reverse current
$\mathrm{V}_{\mathrm{R}}=6.0 \mathrm{~V}$
$\frac{\text { Capacitance }}{V_{R}=6.0 \mathrm{~V}} \quad \frac{1}{2 \pi r_{D} f_{c o}}$
Stray capacitance
Diode series resistance

$\mathrm{V}_{\mathrm{R}}=6.0 \mathrm{~V}$	${ }^{\text {r }}$ D	typ.	1.3	$\Omega$
Series inductance	$1_{S}$	typ.	120	pH
Cut-off frequency ; $V_{R}=6.0 \mathrm{~V}$	$\mathrm{f}_{\mathrm{Co}}$	$>$ typ.	$\begin{aligned} & 300 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{GHz} \end{aligned}$
$\underline{\text { Series resonant frequency } ; ~} \mathrm{~V}_{\mathrm{R}}=6.0 \mathrm{~V}$	$\mathrm{f}_{\text {res }}$	typ. 27 to	29 35	$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{GHz} \end{aligned}$

## Remark

The dynamic parameters are quoted using a holder which takes the form of a double four-section, wide band, low v.s.w.r. Q-band 26 to 40 GHz waveguide transformer to a reduced height of 0.25 mm . The transformer is step down followed by step up in order to use standard Q -band components on either side. A d.c. isolated choke system allows the diode to be inserted across the 0.25 mm reduced height section and to be biased.

Using a swept frequency transmission loss measuring system the $f_{c o}$, the $Q$ of the diode-holder system can be measured ( $\mathrm{f}_{\mathrm{co}}=\mathrm{Qx} \mathrm{f}_{\mathrm{res}}$ ).

Separately, by measuring the transmission loss past the diode at resonance, $r_{D}$ can be found.

## SILICON VARACTOR DIODES

Silicon planar epitaxial varactor diodes exhibiting step recovery characteristics, especially suitable for use in frequency multiplier circuits up to $S$-band output frequency.

QUICK REFERENCE DATA					
Ouput power (doubler 1.0 to 2.0 GHz )					
at $\mathrm{P}_{\mathrm{i}}=12 \mathrm{~W}$	$\mathrm{P}_{\mathrm{o}}$	$=$	6.0	W	
Resistive cut-off frequency at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	$\mathrm{f}_{\mathrm{C}}$	typ.	100	GHz	
Diode capacitance at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	$\mathrm{Cd}_{\mathrm{d}}$	typ.	6.0	pF	

## MECHANICAL DATA

Dimensions in mm

## 1N5152



## 1N5153



Type marking on container
The heat should be transferred via the cathode pin

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage
Total power dissipation up to $\mathrm{T}_{\text {pin }}=70^{\circ} \mathrm{C}$
Storage temperature
Junction temperature

## THERMAL RESISTANCE

From junction to pin
CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Reverse breakdown voltage
$I_{R}=10 \mu \mathrm{~A}$
$\frac{\text { Forward voltage }}{\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}}$
Reverse current at $\mathrm{V}_{\mathrm{R}}=60 \mathrm{~V}$

Resistive cut-off frequency at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V} ; \mathrm{f}=2.0 \mathrm{GHz}$
Diode capacitance at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Overall efficiency in doubler circuit
$\mathrm{P}_{\mathrm{i}}=12 \mathrm{~W} ; \mathrm{f}_{\mathrm{i}}=1.0 \mathrm{GHz}$
$\mathrm{V}_{\mathrm{R}}$
$\mathrm{P}_{\text {tot }}$
$\mathrm{T}_{\text {stg }}$
$\mathrm{T}_{\mathrm{j}}$

$$
R_{\text {th } j \text {-pin }}=20 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

$\mathrm{V}(\mathrm{BR}) \mathrm{R} \gg 75 \mathrm{~V}$
$\mathrm{V}_{\mathrm{F}}<1.0 \mathrm{~V}$
$I_{R} \quad$ typ. $\quad 1.0 \quad \mathrm{nA}$
$\mathrm{f}_{\mathrm{C}}$
$\mathrm{C}_{\mathrm{d}}$
$\eta$
max. 75 V
$\max .5 \mathrm{~W}$
-55 to $+175 \quad{ }^{\circ} \mathrm{C}$
$\max .175{ }^{\circ} \mathrm{C}$
$>\quad 75 \mathrm{~V}$
$<1.0 \mu \mathrm{~A}$
> $\quad 55 \mathrm{GHz}$
typ. 100 GHz
5.0 to 7.5 pF
$\begin{array}{lll}7 & 50 & \% \\ \text { typ. } & 60 & \%\end{array}$

## SILICON VARACTOR DIODE

Silicon planar epitaxial varactor diode exhibiting step recovery characteristics, especially suitable for use in frequency multiplier circuits up to C -band output frequency.

QUICK REFERENCE DATA				
Output power (tripler 2.0 to 6.0 GHz )   at $\mathrm{P}_{\mathrm{i}}=5 \mathrm{~W}$	$\mathrm{P}_{\mathrm{O}}$	$>$	2.0	W
Resistive cut-off frequency at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	$\mathrm{f}_{\mathrm{C}}$	typ.	120	GHz
Diode capacitance at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	$\mathrm{C}_{\mathrm{d}}$	typ.	2.0	pF

## MECHANICAL DATA

Dimensions in mm


Type marking on container
The heat should be transferred via the cathode pin

RATINGS Limiting values in accordance with the Absolute Maximum System(IEC 134)

Reverse voltage	$\mathrm{V}_{\mathrm{R}}$	$\max$.	35	V
Total power dissipation up to $\mathrm{T}_{\text {pin }}=70^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	$\max$.	3	W
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +175	${ }^{\circ} \mathrm{C}$	
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	$\max . \quad 175$	${ }^{\circ} \mathrm{E}$	

## THERMAL RESISTANCE

From junction to pin
Rth j-pin $=35 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$\frac{\text { Reverse breakdown voltage }}{I_{R}=10 \mu \mathrm{~A}}$

$$
35 \mathrm{~V}
$$

Forward voltage
$I_{F}=10 \mathrm{~mA}$
Reverse current at $V_{R}=26 \mathrm{~V}$

Resistive cut-off frequency at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V} ; \mathrm{f}=2.0 \mathrm{GHz} \quad \mathrm{f}_{\mathrm{C}}$
Diode capacitance at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
$C_{d}$
Overall efficiency in tripler circuit
$\mathrm{P}_{\mathrm{i}}=5 \mathrm{~W} ; \mathrm{f}_{\mathrm{i}}=2.0 \mathrm{GHz}$

$$
V_{(B R) R}
$$

$\mathrm{V}_{\mathrm{F}}$	$<$	1.0	V
	typ.	1.0	nA
$\mathrm{I}_{\mathrm{R}}$	$<$	1.0	$\mu \mathrm{~A}$
	$>$	100	GHz
$\mathrm{f}_{\mathrm{C}}$	typ.	120	GHz
$\mathrm{C}_{\mathrm{d}}$	1.0	to	3.0
		pF	

$\eta$
$>\quad 40 \quad \%$

## SILICON VARACTOR DIODE

Silicon planar epitaxial varactor diode exhibiting step recovery characteristics, especially suitable for use in frequency multiplier circuits up to X -band output frequency.

QUICK REFERENCE DATA				
Output power (doubler 5.0 to 10 GHz )				
at $\mathrm{P}_{\mathrm{i}}=2.6 \mathrm{~W}$	$\mathrm{P}_{\mathrm{O}}$	$>$	1.0	W
Resistive cut -off frequency at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	$\mathrm{f}_{\mathrm{C}}$	typ.	200	GHz
Diode capacitance at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	$\mathrm{C}_{\mathrm{d}}$	typ.	0.8	pF

## MECHANICAL DATA

Dimensions in mm


Type marking on container
The heat should be transferred via the cathode pin

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage
Total power dissipation up to $\mathrm{T}_{\text {pin }}=70^{\circ} \mathrm{C}$ Storage temperature
Junction temperature

$V_{R}$	max.	20	V
$\mathrm{P}_{\text {tot }}$	max.	2.5	W
$\mathrm{~T}_{\text {stg }}$	-55	to	+175
${ }^{\circ} \mathrm{C}$			
$\mathrm{T}_{\mathrm{j}}$	max.	175	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to pin
CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Reverse breakdown voltage
$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$
$\frac{\text { Forward voltage }}{\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}}$
Reverse current at $\mathrm{V}_{\mathrm{R}}=16 \mathrm{~V}$
Resistive cut-off frequency at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V} ; \mathrm{f}=8 \mathrm{GHz}$
Diode capacitance at $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{V}(\mathrm{BR}) \mathrm{R} \quad>\quad 20 \mathrm{~V}$

Overall efficiency in doubler circuit $\mathrm{P}_{\mathrm{i}}=2.6 \mathrm{~W} ; \mathrm{f}_{\mathrm{i}}=5.0 \mathrm{GHz}$
$\eta$
38 \%

Field effect transistors


## N-CHANNEL INSULATED GATE FIELD EFFECT TRANSISTOR

Depletion type insulated gate field effect transistor in a TO-72 metal envelope with the substrate connected to the case.
It is intended for linear applications in the audio as well as the i.f. and v.h.f. frequency region, and in cases where high input impedance, low gate leakage currents and low noise figures are of importance.

QUICK REFERENCE DATA			
Drain-substrate voltage	$\mathrm{V}_{\text {DB }}$	max. 30	V
Gate-substrate voltage	${ }^{\text {V GB }}$	$\begin{array}{lr} \max . & 10 \\ \min . & -10 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Drain current $\mathrm{v}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{v}_{\mathrm{GS}}=0$	${ }^{\text {I }}$ DSS	10 to 40	mA
Transfer admittance $\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{f}=1 \mathrm{kHz}$	$\left\|\mathrm{y}_{\mathrm{fS}}\right\|$	$>6$	$\mathrm{mA} / \mathrm{V}$
Feedback capacitance $\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {rs }}$	< 0.7	pF
$\begin{aligned} & \text { Noise figure at } \mathrm{f}=200 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} \\ & \mathrm{G}_{\mathrm{S}}=1 \mathrm{~m} \Omega^{-1} ; \mathrm{B}_{\mathrm{S}}=\mathrm{B}_{\mathrm{Sopt}} \end{aligned}$	F	$<\quad 5$	dB
$\begin{aligned} & \text { Equivalent noise voltage; } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{V}_{\mathrm{n}} / \sqrt{\mathrm{B}}$	typ. 100	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

[^18]
## MECHANICAL DATA

TO-72


Note: To safeguard the gates against damage due to accumulation of static charge during transport or handling, the leads are encircled by a ring of conductive rubber which should be removed just after the transistor is soldered into the circuit.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Drain-substrate voltage	$V_{\mathrm{DB}}$	$\max$.	30	V
Source-substrate voltage	$\mathrm{V}_{\mathrm{SB}}$	$\max$.	30	V
Gate-substrate voltage (continuous)		$\mathrm{V}_{\mathrm{GB}}$	$\max$.   $\min$.	-10

## Currents

Drain current (d.c.)
Drain current (peak value) $\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ms} ; \delta=0.1$

ID	$\max$.	20	mA
IDM	$\max$.	50	mA

Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Ptot max. 200 mW

## Temperatures

Storage temperature
Junction temperature

$$
\begin{array}{llrl}
\mathrm{T}_{\mathrm{stg}} & -65 \text { to }+125 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{j}} & \max . & 125 & { }^{\circ} \mathrm{C}
\end{array}
$$

## THERMAL RESISTANCE

From junction to ambient in free air

$$
R_{\text {th } j-\mathrm{a}}=0.5{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

## CHARACTERISTICS

Gate currents; $V_{B S}=0$

$$
\begin{aligned}
&-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}} \\
&=0 \\
& \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}} \\
&-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}
\end{aligned}=0 ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C},
$$

Bulk currents; $V_{G B}=0$

$$
\begin{aligned}
-\mathrm{V}_{\mathrm{BD}} & =30 \mathrm{~V} ; \mathrm{IS}_{\mathrm{S}}
\end{aligned}=00 \mathrm{~V}=30 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0
$$

Gate-source voltage

$$
\mathrm{I}_{\mathrm{D}}=100 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}
$$

C te-source cut-off voltage
$\mathrm{H}=100 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$
y parameters $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$l o=5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$
Tansfer admittance at $\mathrm{f}=1 \mathrm{kHz}$
croput admittance at $\mathrm{f}=1 \mathrm{kHz}$
input capacitance at $f=1 \mathrm{MHz}$
eedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$
Output capacitance at $\mathrm{f}=1 \mathrm{MHz}$
Noise figure at $\mathrm{f}=200 \mathrm{MHz} \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} \\
& \mathrm{G}_{\mathrm{S}}=1 \mathrm{~m} \Omega^{-1} ; \mathrm{B}_{\mathrm{S}}=\mathrm{B}_{\mathrm{Sopt}}
\end{aligned}
$$

Equivalent noise voltage $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{f}=120 \mathrm{~Hz}$

$$
\begin{aligned}
& \mathrm{f}=1 \mathrm{kHz} \\
& \mathrm{f}=10 \mathrm{kHz}
\end{aligned}
$$

IDSS $\quad 10$ to 40 mA
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\begin{aligned}
-\mathrm{I}_{\mathrm{GSS}} & <10 \mathrm{pA} \\
\mathrm{I}_{\mathrm{GSS}} & <10 \mathrm{pA} \\
-\mathrm{I}_{\mathrm{GSS}} & <200 \mathrm{pA} \\
\mathrm{I}_{\mathrm{GSS}} & <200 \mathrm{pA} \\
& \\
\mathrm{I}_{\mathrm{BDO}} & <10 \mu \mathrm{~A} \\
-\mathrm{I}_{\mathrm{BSO}} & <10 \mu \mathrm{~A}
\end{aligned}
$$

$$
10 \text { to } 40 \mathrm{~mA}
$$

$$
-\mathrm{V}_{\mathrm{GS}} \quad 0.5 \text { to } 3.5 \mathrm{~V}
$$

$$
-\mathrm{V}_{(\mathrm{P}) G S}<4 \mathrm{~V}
$$

$\mid$ Yfs	$>$	$6 \mathrm{~mA} / \mathrm{V}$
$\mid$ Y os $_{0} \mid$	$<0.4$	$\mathrm{~mA} / \mathrm{V}$
$\mathrm{C}_{\text {is }}$	$<$	5 pF
$\mathrm{C}_{\mathrm{rs}}$	$<0.7$	pF
$\mathrm{C}_{\mathrm{OS}}$	$<3 \mathrm{pF}$	

$$
\mathrm{F} \quad<\quad 5 \mathrm{~dB}
$$

$\mathrm{V}_{\mathrm{n}} / \sqrt{\mathrm{B}}$ typ. $300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{V}_{\mathrm{n}} / \sqrt{\mathrm{B}}$ typ. $100 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{V}_{\mathrm{n}} / \sqrt{\mathrm{B}}$ typ. $35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$












For data and curves of these types please refer to section Microminiature devices for thick- and thin-film circuits

## MATCHED N-CHANNEL FET's

Natched pair of $n$-channel silicon epitaxial planar junction field effect transistors in TO-72 metal envelopes held together by a metal S-clip.
It is intended for low level differential amplifiers.

QUICK REFERENCE DATA					
$\underline{\text { Characteristics }} \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$ BFS21				BFS21A	
Gate cut-off current	${ }^{1} \mathrm{G}$		0.5	0.5	nA
Gate-source voltage difference	$\left\|\Delta V_{G S}\right\|$			10	mV
Thermal drift of gate-source voltage difference	$\left\|\frac{\mathrm{d} \Delta \mathrm{V}_{\mathrm{GS}}}{\mathrm{dT}}\right\|$			40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Difference of penetration factor	$\left\|\Delta \frac{g_{\text {os }}}{g_{\text {fs }}}\right\|$	$<$			$10^{-3}$
Difference of transfer impedance	$\left\|\Delta \frac{1}{g_{f s}}\right\|$			7.5	$\Omega$
Common mode rejection ratio	CMRR		60		dB

## TOTAL DEVICE

## MECHANICAL DATA



1) = shield lead (connected to case)
max. lead diameter is guaranteed only for 12.7 mm
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Voltage between any 2 terminals
V max. 30 V

## Currents

Drain current
Gate current
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max .30 \mathrm{~mW}$

## Temperature

Operating ambient temperature

ID max. 4 mA
$\mathrm{I}_{\mathrm{G}} \quad \max .0 .5 \mathrm{~mA}$

Tamb $\quad-20$ to $+100^{\circ} \mathrm{C}$

CHARACTERISTICS (total device)
Drain current ratio

$$
\mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Gate-source voltage difference

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}
\end{aligned}
$$

Thermal drift of gate-source voltage difference

$I_{D}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}$	$\left\|\frac{\mathrm{~d} \Delta \mathrm{~V}_{\mathrm{GS}}}{\mathrm{dT}}\right\|$	$<75$	40
$\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {DG }}=15 \mathrm{~V}$	$\left\|\frac{\mathrm{~d} \Delta \mathrm{~V}_{\mathrm{GS}}}{\mathrm{dT}}\right\|$	$<75$	$40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Change of gate-source voltage difference with ambient temperature
$\mathrm{T}_{\mathrm{amb}}=25$ to $100^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{D}}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}\left|\Delta \mathrm{~V}_{\mathrm{GS}}\left(\mathrm{T}_{\mathrm{amb} 2}\right)-\Delta \mathrm{V}_{\mathrm{GS}}\left(\mathrm{T}_{\mathrm{amb} 1}\right)\right|<6$
$\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}\left|\Delta \mathrm{~V}_{\mathrm{GS}}\left(\mathrm{T}_{\mathrm{amb} 2}\right)-\Delta \mathrm{V}_{\mathrm{GS}}\left(\mathrm{T}_{\mathrm{amb} 1}\right)\right|<6$
Difference of penetration factors ${ }^{1}$ )

$$
\begin{aligned}
& I_{D}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V} \\
& I_{D}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}
\end{aligned}
$$

$$
\begin{array}{|ll}
\left|\Delta \frac{g_{0 s}}{g_{f s}}\right| & < \\
\left|\Delta \frac{g_{0 s}}{g_{f s}}\right| & <1
\end{array}
$$

Difference of transfer impedances ${ }^{2}$ )

$I_{D}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}$	$\left\|\Delta \frac{1}{\mathrm{~g} f \mathrm{~s}}\right\|$	$<15$	$7.5 \Omega$
$\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}$	$\left\|\Delta \frac{1}{\mathrm{~g}_{\mathrm{fs}}}\right\|$	$<75$	$37.5 \Omega$

1) The difference between the penetration factors is equal to the ratio of the change of the gate-source voltage difference to the change of drain-gate voltage, at constant drain current.
$\left(\Delta \frac{g_{\text {os }}}{g_{f s}}=\frac{d \Delta V_{G S}}{d V_{D G}}\right.$ at ID $=$ constant $)$
2) The difference between the transfer impedances is equal to the ratio of the change of the gate-source voltage difference to the change of drain current, at constant drain-gate voltage.
$\left(\Delta \frac{1}{g_{f s}}=\frac{d \Delta V_{G S}}{d I_{D}}\right.$ at $V_{D G}=$ constant $)$

CHARACTERISTICS (continued) (total device)
Common mode rejection ratio ${ }^{1}$ )

	BFS21		BFS21A
CMRR	$>60$	66	dB
CMRR	$>60$	60	dB

$$
\begin{aligned}
& I_{D}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}
\end{aligned}
$$

66 dB

## INDIVIDUAL TRANSISTOR

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Drain-source voltage
Drain-gate voltage (open source)
Gate-source voltage (open drain)

## Currents

Drain current
Gate current
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ}$

## Temperatures

Storage temperature
Junction temperature

## THERMAL RESISTANCE

From junction to ambient in free air (for individual transistor without S-clip)
${ }^{1}$ ) Common mode rejection ratio
where $\mathrm{g}_{\mathrm{cs}}$ in this formula is the output conductance of the summing current source.

$$
(\text { C M R R })^{-1}=\Delta \frac{\mathrm{g}_{0 \mathrm{~s}}}{g_{\mathrm{fs}}}+\frac{1}{2} \mathrm{~g}_{\mathrm{cs}} \Delta \frac{1}{\mathrm{~g}_{\mathrm{fs}}}
$$

$$
\begin{array}{lrr}
\mathrm{T}_{\text {stg }} & -65 \text { to }+200 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{j}} & \text { mas. } 200 & { }^{\circ} \mathrm{C}
\end{array}
$$

$$
\begin{array}{cllc} 
\pm \mathrm{V}_{\text {DS }} & \text { max. } & 30 & \mathrm{~V} \\
\mathrm{~V}_{\text {DGO }} & \text { max. } & 30 & \mathrm{Y} \\
-\mathrm{V}_{\text {GSO }} & \text { max. } & 30 & \mathrm{~V}
\end{array}
$$

$$
I_{D}
$$

$\mathrm{I}_{\mathrm{G}}$
$P_{\text {tot }} \quad$ max. 300 mW
max. 20 m.t
max. 10 m.A

The guaranteed values of CMRR apply at $g_{c s}=0.1 \mu \Omega^{-1}$


CHARACTERISTICS (individual transistor) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Gate cut-off current
$I_{D}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$
$\mathrm{I}_{\mathrm{D}}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=100{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{G}}$
${ }^{\text {I }}$ G
$<0.5 \mathrm{nA}$
$<25 \mathrm{nA}$

Drain current
$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
IDSS
$-V_{\text {(P)GS }}$
Gate-source cut-off voltage
$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}, \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$
$<6 \mathrm{~V}$
Transfer conductance at $\mathrm{f}=1 \mathrm{kHz}$
$I_{D}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$
$g_{f s}$
$>1.0 \mathrm{~m} \Omega^{-1}$

Output conductance at $\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{ID}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$
$g_{O S}<15 \mu \Omega^{-1}$
Input capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{ID}=500 \mu \mathrm{~A} ; \mathrm{VDS}=15 \mathrm{~V}
$$

$C_{i s}$
$<\quad 5 \mathrm{pF}$
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$
$I D=500 \mu \mathrm{~A} ; V D S=15 \mathrm{~V}$
$\mathrm{C}_{\mathrm{rs}}<0.75 \mathrm{pF}$
Equivalent noise voltage
$\mathrm{f}=10 \mathrm{~Hz}$
ID $=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
$\mathrm{V}_{\mathrm{n}} / \sqrt{\mathrm{B}}<200 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{V}_{\mathrm{n}} / \sqrt{\mathrm{B}}<75 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

## APPLICATION INFORMATION

Operational amplifier


## APPLICATION INFORMATION (continued)

## Input voltages

Initial off-set voltage
Differential off-set voltage change with temperature
Differential off-set voltage change with time
Noise voltage ( $B=100 \mathrm{kHz}$ )
Common mode rejection ratio
Supply rejection ratio
Input voltage range

## Input currents

Input bias current	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
	$; \mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$
Off-set current	$; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
	$; \mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$


| $<$ | 10 mV |
| :--- | ---: | :--- |
| $<$ | $40 \mathrm{MV} /{ }^{\circ} \mathrm{C}$ |
| $<$ | $40 \mathrm{MV} /$ day |
| $<$ | 2 HV |
| $>$ | 65 dB |
| $<$ | $500 \quad 10^{-6}$ |
| $\pm$ | 10 V |

typ. 50 pA
$<25 \mathrm{nA}$
typ. 20 pA
$<25 \mathrm{nA}$
Input impedance
Input resistance
Input resistance (common mode)
Input capacitance
Input capacitance (common mode)
Frequency response
Bandwidth $\left(\mathrm{G}_{\mathrm{V}}=1\right)$
Slewing rate
Output voltage range
Output current range
typ. $100 \quad G \Omega$
typ. 100 G $\Omega$
typ. 3 pF
typ. 3 pF
typ. 10 MHz
typ. $10 \mathrm{~V} / \mu \mathrm{s}$
$\pm \quad 10 \mathrm{~V}$
$\pm \quad 10 \mathrm{~mA}$
Output resistance
typ. $300 \Omega$
5.1 $1025=5$

## SILICON N-CHANNEL DUAL INSULATED GATE FIELD EFFECT TRANSISTOR

Depletion type field effect transistor in a TO-72 metal envelope with source and substrate connected to the case.
This M.O.S. -tetrode is intended for a wide range of applications in communication, instrumentation and control.
The tetrode configuration, a series arrangement of two gate controlled channels offers:
a. very low feedback capacitance providing the possibility of more than 40 dB gain control in r.f. amplifiers requiring negligible a.g.c. power.
b. excellent signal handling capability over the entire gain control range.
c. low noise figure combined with high gain.

QUICK REFERENCE DATA				
Drain-source voltage	V DSX	$\max$.	20	V
Gate 1-source voltage	$\pm \mathrm{V}_{\mathrm{Gl}}-\mathrm{S}$	max.	8	V
Gate 2-source voltage	$\pm \mathrm{V}_{\text {G2 }}$-S	max.	8	V
Drain current	ID	max.	20	mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	200	mW
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	135	${ }^{0} \mathrm{C}$
$\begin{aligned} & \text { Transfer admittance at } \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=13 \mathrm{~V} ;+\mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=4 \mathrm{~V} \end{aligned}$	$\|\mathrm{yfs}\|$	$\xrightarrow{>}$ typ.	8 13	$\begin{aligned} & \mathrm{mA} / \mathrm{V} \\ & \mathrm{~mA} / \mathrm{V} \end{aligned}$
$\begin{aligned} & \text { Feedback capacitance at } \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{ID}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=13 \mathrm{~V} ;+\mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=4 \mathrm{~V} \end{aligned}$	$-\mathrm{Crs}_{\text {r }}$	typ.	25	fF
$\begin{aligned} & \text { Transducer gain at } \mathrm{f}=200 \mathrm{MHz} \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=13 \mathrm{~V} ;+\mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=4 \mathrm{~V} \end{aligned}$				
$B_{S}$ and $B_{L}$ tuned for maximum gain	$\mathrm{G}_{\text {tr }}$	typ.	18	dB
Noise figure at optimum source admittance $\begin{aligned} & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=13 \mathrm{~V} ;+\mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=4 \mathrm{~V} ; \\ & \mathrm{f}=200 \mathrm{mHz} \end{aligned}$	$\mathrm{F}_{\text {min }}$	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	3 4	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

MECHANICAL DATA see page 2 .

TO-72
Source and substrate connected to the case


Accessories available: 56246. 56263


Note: To safeguard the gates against damage due to accumulation of static charge during transport or handling, the leads are encircled by a ring of conductive rubber which should be removed just after the transistor is soldered into the circuit.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Drain-source voltage
Gate 1-source voltage
Gate 2-source voltage
Non repetitive peak voltage ( $\mathrm{t} \leq 10 \mathrm{~ms}$ ) gate 1-source voltage
gate 2 -source voltage
Current
Drain current
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Temperatures
Storage temperature
Junction temperature

THERMAL RESISTANCE
From junction to ambient in free air

$V_{\text {DSX }}$	max.	20	V
$\pm V_{\text {G1-S }}$	max.	8	V
$\pm V_{\text {G2-S }}$	max.	8	V
$\pm V_{\text {G1-SM }}$	max.	50	V
$\pm V_{\text {G2-SM }}$	max.	50	V

ID max. 20 mA

Ptot max. 200 mW
$\mathrm{T}_{\text {stg }} \quad-65$ to $+135{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}} \quad \max .135{ }^{\circ} \mathrm{C}$

## CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Gate 1 cut-off current
$\pm \mathrm{V}_{\mathrm{G} 1-\mathrm{S}}=8 \mathrm{~V} ; \mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=0 ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{j}}=135^{\circ} \mathrm{C}$
Gate 2 cut-off current

$$
\pm \mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=8 \mathrm{~V} ; \mathrm{V}_{\mathrm{G} 1-\mathrm{S}}=0 ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{j}}=135^{\circ} \mathrm{C}
$$

Gate 1-source voltage
$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=13 \mathrm{~V} ;+\mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=4 \mathrm{~V}$
Gate 1-source cut-off voltage
$I_{D}=100 \mu \mathrm{~A}: \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}:+\mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=4 \mathrm{~V}$
Gate 2-source cut-off voltage
$\mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}: \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}: \mathrm{V}_{\mathrm{Gl}-\mathrm{S}}=0$

## y parameters (common source)

$\mathrm{l}_{\mathrm{D}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=13 \mathrm{~V} ;+\mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=4 \mathrm{~V}: \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Transfer admittance $\mathrm{f}=1 \mathrm{kHz}$

$$
\mathrm{f}=200 \mathrm{MHz}
$$

$$
\mathrm{f}=500 \mathrm{MHz}
$$

Feedback capacitance $\mathrm{f}=10 \mathrm{MHz}$
Transducer gain at $\mathrm{f}=200 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=13 \mathrm{~V} ;+\mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=4 \mathrm{~V}$
$G_{S}=1.3 \mathrm{~mA} / \mathrm{V}: G_{L}=1 \mathrm{~mA} / \mathrm{V}: \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$B_{S}$ and $B_{L}$ tuned for maximum gain
Maximum unilateralised power gain at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$G_{U M}$ in $d B=10 \log \frac{\left|y_{f s}\right|^{2}}{4_{g_{i s}} g_{\text {os }}}$
$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}: \mathrm{V}_{\mathrm{DS}}=13 \mathrm{~V} ;+\mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=4 \mathrm{~V} ; \mathrm{f}=200 \mathrm{MHz}$
$f=500 \mathrm{MHz}$
$G_{U M}$
$G_{U M}$
Noise figure at optimum source admittance at $\mathrm{f}=200 \mathrm{MHz}$
$\mathrm{In}_{\mathrm{n}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=13 \mathrm{~V} ;+\mathrm{V}_{\mathrm{G} 2-\mathrm{S}}=4 \mathrm{~V}$
$G_{\text {Sopt }}=1.4 \mathrm{~mA} / \mathrm{V} ; \mathrm{B}_{\text {Sopt }}=5.5 \mathrm{~mA} / \mathrm{V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad \mathrm{F}_{\mathrm{min}}$

```
typ. 3 dB
< 4 dB
```












## N-CHANNEL SILICON FIELD EFFECT TRANSISTORS

N -channel silicon epitaxial planar junction field effect transistors in a TO-72 metal envelope with the shield lead connected to the case.
The transistors are designed for broad band amplifiers ( 0 to 300 MHz ).
Their very low noise at low frequencies makes these devices very suitable for differential amplifiers, electro-medical and nuclear detector pre-amplifiers.

QUICK REFERENCE DATA				
Drain-source voltage	$\pm \mathrm{V}_{\text {DS }}$	max. 30		
Gate-source voltage (open drain)	$-\mathrm{V}_{\text {GSO }}$	max. 30	V	
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max. 300		
		BFW10	BFW11	
Drain current		$>8$	4	mA
$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$	${ }^{\text {I DSS }}$	< 20	10	mA
Gate-source cut-off voltage				
$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$	-V(P)GS	$<8$	6	V
$\begin{aligned} & \text { Feedback capacitance at } \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 \end{aligned}$	- $\mathrm{Crss}_{\text {r }}$	$<0.80$	0.80	pF
Transfer admittance (common source) $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{f}=200 \mathrm{MHz}$	$\left\|y_{f s}\right\|$	$>3.2$	3.2	$\mathrm{mA} / \mathrm{V}$
$\begin{aligned} & \text { Noise figure at } V_{D S}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=100 \mathrm{MHz} ; \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega \end{aligned}$	F	$<2.5$	2.5	dB
Equivalent noise voltage $\mathrm{f}=10 \mathrm{~Hz}$	$\mathrm{V}_{\mathrm{n}} / \sqrt{\mathrm{B}}$	$<75$	75	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

## MECHANICAL DATA

TO-72
Insulated electrodes

7261073


1) = shield lead (connected to case)

Dimensions in mm

Accessories available: 56246, 56263.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Drain-source voltage
Drain-gate voltage (open source)
Gate-source voltage (open drain)

$\pm V_{\text {DS }}$	max.	30	V
$\mathrm{~V}_{\text {DGO }}$	$\max$.	30	V
$-\mathrm{V}_{\text {GSO }}$	$\max$.	30	V

## Currents

Drain current
Gate current
ID max. 20 mA
$\mathrm{I}_{\mathrm{G}} \quad \max . \quad 10 \mathrm{~mA}$
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Ptot max. 300 mW
Temperatures
Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{j}}$	max.	200	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE
From junction to ambient

$$
R_{\text {th } j-a}=0.59{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

## CHARACTERISTICS

Gate cut-off current

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \\
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}
\end{aligned}
$$

Drain current ${ }^{1}$ )

$$
\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0
$$

## Gate-source voltage

$$
\begin{aligned}
& I_{D}=400 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} \\
& \mathrm{ID}_{\mathrm{D}}=50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}
\end{aligned}
$$

Gate-source cut-off voltage

$$
\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}
$$

y parameters
$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ $\mathrm{f}=1 \mathrm{kHz}$ Transfer admittance

Output admittance
$\mathrm{f}=1 \mathrm{MHz}$ Input capacitance
Feedback capacitance
$f=200 \mathrm{MHz}$ Transfer admittance
Input conductance
Output conductance
Noise figure at $\mathrm{f}=100 \mathrm{MHz} ; \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$
$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ input tuned to minimum noise

Equivalent noise voltage
$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$\mathrm{f}=10 \mathrm{~Hz}$
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

		BFW10
	$<$	0.1
$-I_{G S S}$	$<$	0.5
$-I_{\text {GSS }}$	$<$	8
$I_{\text {DSS }}$	$<$	20
$-V_{G S}$	$>$	2.0
	$<$	7.5
$-V_{G S}$	$>$	
	$<$	

BFW11
0.1 nA
$0.5 \mu \mathrm{~A}$

4 mA
10 mA

V
1.25 V
4.0 V

6 V
$3.0 \mathrm{~mA} / \mathrm{V}$
$6.5 \mathrm{~mA} / \mathrm{V}$
$50 \mu \mathrm{~A} / \mathrm{V}$
4 pF
5 pF
0.6 pF
0.80 pF
$3.2 \mathrm{~mA} / \mathrm{V}$
$800 \mu \mathrm{~A} / \mathrm{V}$
$100 \mu \mathrm{~A} / \mathrm{V}$
2.5 dB
$75 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

1) Measured under pulsed conditions.



7Z08475


7208474







## BFW10 BFWII










## APPLICATION INFORMATION

## Input amplifier circuit for an oscilloscope.



## Performance:

Input resistance
Input capacitance
Bandwidth
Rise time
Voltage gain
R.M.S. noise voltage ( $B=300 \mathrm{MHz}$ )

Input sensitivity

Input voltage
$1 \mathrm{M} \Omega$
7.5 pF

From d.c. to 300 MHz
$<1 \mathrm{~ns}$
3.6
$\leq 0.2 \mathrm{mV}$ (input short-circuited)
This input amplifier is intended for an oscilloscope with a maximum input sensitivity of 5 or 10 $\mathrm{mV} / \mathrm{cm}$ and a total bandwidth of 150 MHz

Max. permissible input voltage: peak to peak 600 V
d.c. $\quad 300 \mathrm{~V}$

## APPLICATION INFORMATION (continued)

## Television camera amplifier with BFW10



The circuit is designed for the Plumbicon Television Camera tube No. 55876. The electrical behaviour of this tube can be described as consisting of a current source $I_{S}$, shunted by a capacitance $\mathrm{C}_{\mathrm{p}}\left(\mathrm{C}_{\mathrm{p}} \approx 12 \mathrm{pF}\right)$.


Performance:
Transfer impedance ( 40 Hz to 5 MHz )
Output resistance

$$
\begin{aligned}
\frac{\mathrm{VO}_{\mathrm{O}}}{\mathrm{I}_{\mathrm{S}}} & =10^{6} \mathrm{~V} / \mathrm{A} \\
\mathrm{R}_{\mathrm{O}} & =75 \Omega
\end{aligned}
$$

Output voltage (peak to peak)
( $\mathrm{d} \leq 5 \%$ )

$$
\mathrm{VO}_{\mathrm{O}}<1.3 \mathrm{~V}
$$

Signal-noise ratio
Ratio of $V_{O p-p}$ (at IS p-p $=0.3 \mu \mathrm{~A}$ ) and the effective output noise voltage $V_{n}$ (f from 40 Hz to 5 MHz )

$$
\frac{\mathrm{V}_{\text {Op-p }}}{\mathrm{V}_{\mathrm{n}}}=46 \mathrm{~dB}
$$

## N-CHANNEL SILICON FIELD EFFECT TRANSISTORS

N -channel silicon epitaxial planar junction field effect transistors in a TO-72 metal envelope with the shield lead connected to the case.
The transistors are intended for battery powered equipment and other low current/ low voltage applications.

QUICK REFERENCE DATA			
Drain-source voltage	$\pm \mathrm{V}_{\text {DS }}$	max.	30 V
Gate-source voltage (open drain)	$-\mathrm{V}_{\text {GSO }}$	max.	30 V
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=110^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$		150 mW
		BFW12	BFW13
Drain current $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$	${ }^{\text {I DSS }}$	$\begin{array}{ll}> & 1 \\ < & 5\end{array}$	$\begin{aligned} & 0.2 \mathrm{~mA} \\ & 1.5 \mathrm{~mA} \end{aligned}$
Gate-source cut-off voltage ${ }^{\mathrm{I}} \mathrm{D}=0.5 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$	$-\mathrm{V}_{( }(\mathrm{P}) \mathrm{GS}$	$<2.5$	1.2 V
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$	- $\mathrm{Crs}^{\text {r }}$	$<0.80$	0.80 pF
Transfer admittance (common source) $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} ; \mathrm{f}=1 \mathrm{kHz}$	$\left\|y_{f s}\right\|$	$>0.5$	$0.5 \mathrm{~mA} / \mathrm{V}$
$\begin{aligned} & \text { Equivalent noise voltage } \\ & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~B}=0.6 \text { to } 100 \mathrm{~Hz} \end{aligned}$	$\mathrm{V}_{\mathrm{n}}$	$<0.5$	$0.5 \mu \mathrm{~V}$

## MECHANICAL DATA

Dimensions in mm

TO-72
Insulated electrodes



1) $=$ shield lead (connected to case)

Accessories supplied on request: 56246, 56263

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Drain-source voltage
Drain-gate voltage (open source)
Gate-source voltage (open drain)

$\pm \mathrm{V}_{\text {DS }}$	max.	30	V
$\mathrm{~V}_{\text {DGO }}$	max.	30	V
$-\mathrm{V}_{\text {GSO }}$	max.	30	V

## Currents

Drain current
Gate current
$I_{D} \quad \max \quad 10 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{G}} \quad \max . \quad 5 \mathrm{~mA}$
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=110^{\circ} \mathrm{C} \quad \mathrm{P}_{\mathrm{tot}} \quad \max . \quad 150 \mathrm{~mW}$
Temperatures
Storage temperature
Junction temperature
$\begin{array}{llrl}\mathrm{T}_{\text {stg }} & -65 \text { to } & +200 & { }^{\circ} \mathrm{C} \\ \mathrm{T}_{\mathrm{j}} & \text { max. } & 200 & { }^{\circ} \mathrm{C}\end{array}$
THERMAL RESISTANCE
From junction to ambient

$$
R_{\text {th } j-a}=0.59{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

## CHARACTERISTICS

Gate cut-off current

$$
\begin{aligned}
& -\mathrm{v}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \\
& -\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}
\end{aligned}
$$

## Drain current ${ }^{1}$ )

$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$
Gate-source voltage

$$
\mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}
$$

## Gate-source cut-off voltage

$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$
y parameters at $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

$$
\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0
$$ Transfer admittance

Output admittance
$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=500 \mu \mathrm{~A}$
Transfer admittance
Output admittance
$V_{D S}=15 \mathrm{~V}$; $\mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$
Transfer admittance
Output admittance
$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$
Input capacitanc
Feedback capacitance
Equivalent noise voltage

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\
& \mathrm{~B}=0.6 \text { to } 100 \mathrm{~Hz}
\end{aligned}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

		BFW12	BFW13	
$-^{-1}$ GSS	$<$	0.1	0.1	nA
${ }^{-1} \mathrm{I}_{\text {GSS }}$	$<$	0.1	0.1	$\mu \mathrm{A}$
IDSS	$>$	1	0.2	mA
${ }^{1}$ DSS	$<$	5	1.5	mA
$-\mathrm{V}_{\text {SS }}$	$>$	0.5	0.1	V
${ }^{-}$GS	$<$	2.0	1.0	V
${ }^{-V_{(P)}}$ GS	$<$	2.5	1.2	V

$1.0 \mathrm{~mA} / \mathrm{V}$
$10 \mu \mathrm{~A} / \mathrm{V}$

- mA/V
- $\mu \mathrm{A} / \mathrm{V}$
$0.5 \mathrm{~mA} / \mathrm{V}$
$5 \mu \mathrm{~A} / \mathrm{V}$

5 pF
0.80 pF

$$
\mathrm{V}_{\mathrm{n}}
$$

$0.5 \mu \mathrm{~V}$

[^19]$\square$














## N-CHANNEL SILICON FIELD EFFECT TRANSISTOR

N -channel silicon epitaxial planar junction field effect transistor in a TO-72 metal envelope with the shield lead connected to the case.
The transistor is designed for general purpose amplifiers.

QUICK REFERENCE DATA			
Drain-source voltage	$\pm$ DS	max. 25	V
Gate-source voltage (open drain)	$-\mathrm{V}_{\mathrm{GSO}}$	max. 25	V
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	$\max .300$	mW
Drain current $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$	IDSS	2 to 20	mA
Gate-source cut-off voltage $\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$	$-V_{(P) G S}$	< 8	V
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$	$-\mathrm{Crs}$	$<2.0$	pF
Transfer admittance (common source) $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{f}=10 \mathrm{MHz}$	$\left\|y_{f s}\right\|$	$>1.6$	$\mathrm{m} \Omega^{-1}$

## MECHANICAL DATA

Dimensions in mm
TO-72


1) $=$ shield lead (connected to case)

Accessories available: 56246, 56263.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

## Voltages

Drain-source voltage
Drain-gate voltage (open source)
Gate-source voltage (open drain)

$\pm V_{\text {DS }}$	$\max$.	25	V
$\mathrm{~V}_{\text {DGO }}$	$\max$.	25	V
$-\mathrm{V}_{\text {GSO }}$	$\max$.	25	V

Currents
Drain current
Gate current

$\mathrm{I}_{\mathrm{D}}$	$\max$.	20	mA
$\mathrm{I}_{\mathrm{G}}$	$\max$.	10	mA

Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$P_{\text {tot }} \quad \max . \quad 300 \mathrm{~mW}$

Temperatures
Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{j}}$	max.	200	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient

## CHARACTERISTICS

Gate cut-off current

$$
\begin{aligned}
& -\mathrm{V}_{G S}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \\
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Drain current ${ }^{1}$ )

$$
\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0
$$

Gate-source voltage

$$
\mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}
$$

Gate-source cut-off voltage

$$
I_{D}=1.0 \mathrm{nA} ; V_{D S}=15 \mathrm{~V}
$$

y parameters (common source)

$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$					
$\mathrm{f}=1 \mathrm{kHz}$ Transfer admittance	\| yfs		2.0 to	6.5	$\mathrm{m} \Omega^{-1}$
Output admittance	\| Yos ${ }^{\text {l }}$	$<$	85	$\mu \Omega^{-1}$	
$\mathrm{f}=1 \mathrm{MHz}$ Input capacitance	$\mathrm{C}_{\text {is }}$	$<$	6	pF	
Feedback capacitance	$-\mathrm{Crs}_{\text {r }}$	$<$	2.0	pF	
$\mathrm{f}=10 \mathrm{MHz}$ Transfer admittance	\| yfs		>	1.6	$\mathrm{m} \Omega^{-1}$

[^20]$$
R_{\text {th } j-a}=0.590^{\circ} \mathrm{C} / \mathrm{mW}
$$
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

$-I_{G S S}$	$<$	1.0
$\mathrm{I}_{\text {GSS }}$	$<$	1.0 HA

IDSS
2 to 20 mA
$-\mathrm{V}_{\mathrm{GS}}$
0.5 to
7.5 V
-V (P)GS <
8 V

## $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$

$\mathrm{f}=1 \mathrm{kHz}$ Transfer admittance
| yfs |
2.0 to $6.5 \mathrm{~m} \Omega^{-1}$
| Yos |

$<6 \mathrm{pF}$
$\left|\mathrm{yfs}_{\mathrm{f}}\right|$
$>1.6 \mathrm{~m} \Omega^{-1}$

## N-CHANNEL FIELD EFFECT TRANSISTORS

Silicon N -channel junction field effect transistors in a TO-18 metal envelope with the gate connected to the case. The transistors are intended for switching applications. The devices are symmetrical and have the feature: low "on" resistance at zero gate voltage.

QUICK REFERENCE DATA						
Drain-source voltage		$\mathrm{V}_{\text {DS }}$		$\max .40$		V
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		$\mathrm{P}_{\text {tot }}$		max. 350		mW
Drain current		BSV78		BSV79	BSV80	
$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$	${ }^{\text {I }}$ DSS	>	50	20	10	mA
Gate-source cut-off voltage $\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA} ; \mathrm{V}_{C S}=15 \mathrm{~V}$		>	3.75	2.0	1.0	V
${ }^{1} \mathrm{D}=1 \mathrm{nA} ; \mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}$	${ }^{-V_{(P) G S}}$	$<$	11	7.0	5.0	V
$\begin{aligned} & \text { Drain-source resistance (on) at } f=1 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{D}}=0 ; \mathrm{V}_{\mathrm{GS}}=0 \end{aligned}$	$\mathrm{r}_{\mathrm{ds}}$ on	$<$	25	40	60	$\Omega$
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{DS}}=0 ;-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$-\mathrm{C}_{\mathrm{rs}}$	$<$	5	5	5	pF
Turn on time	${ }_{\text {on }}$	$<$		15	15	ns
Turn off time	${ }^{\text {off }}$	$<$	10	15	25	ns

## MECHANICAL DATA

Dimensions in mm
Gate connected to case
TO-18


RATINGSLimiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Drain-source voltage
Drain-gate voltage (open source)
Gate-source voltage (open drain)

$\mathrm{V}_{\text {DS }}$	$\max$.	40	V
$\mathrm{~V}_{\text {DGO }}$	$\max$.	40	V
$-\mathrm{V}_{\mathrm{GSO}}$	$\max$.	40	V

Current
Forward gate current
$\mathrm{I}_{G}$
$\max . \quad 50 \mathrm{~mA}$
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$P_{\text {tot }} \quad \max . \quad 350 \mathrm{~mW}$
Temperatures
Storage temperature
Junction temperature
$\begin{array}{llrl}\mathrm{T}_{\text {Stg }} & -65 \text { to }+200 & { }^{\mathrm{O}} \mathrm{C} \\ \mathrm{T}_{\mathrm{j}} & \max . & 175 & { }^{\mathrm{O}} \mathrm{C}\end{array}$

## THERMAL RESISTANCE

From junction to ambient in free air
$R_{\text {th } j-a}=0.43{ }^{\circ} \mathrm{C} / \mathrm{mW}$

## CHARACTERISTICS

## Gate cut-off current

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \\
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}
\end{aligned}
$$

## Drain cut-off current

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}
\end{aligned}
$$

## Drain current

$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$

## Gate-source cut-off voltage

$$
\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}
$$

## Gate-source voltage

$\mathrm{I}_{\mathrm{D}}=1.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$
Drain-source voltage (on)
$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0$
$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0$
$I_{D}=5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0$
Drain-source resistance (on) at $\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{I}_{\mathrm{D}}=0 ; \mathrm{V}_{\mathrm{GS}}=0$
y parameters at $\mathrm{f}=1 \mathrm{MHz}$ (common source)
$-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0$
Input capacitance
Feedback capacitance
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\begin{array}{rlrr}
-\mathrm{I}_{\mathrm{GSS}} & < & 0.25 & \mathrm{nA} \\
{ }^{-\mathrm{I}_{\mathrm{GSS}}} & < & 0.5 & \mu \mathrm{~A}
\end{array}
$$

$$
\begin{array}{lrrr}
{ }^{\mathrm{I}} \mathrm{DSX} & < & 0.25 & \mathrm{nA} \\
{ }_{\mathrm{I}}^{\mathrm{DSX}} & < & 0.5 & \mu \mathrm{~A}
\end{array}
$$

|  |  | BSV78 | BSV79 |
| ---: | ---: | ---: | ---: | BSV80

$$
\begin{aligned}
&-\mathrm{V}_{\mathrm{GS}}>3.5 \\
&<10
\end{aligned}
$$

$$
1.75
$$

$$
0.75 \mathrm{~V}
$$

$$
6.0
$$

$$
4.0 \mathrm{~V}
$$

mV mV 325 mV
$60 \Omega$

10 pF
5 pF

CHARACTERISTICS (continued)
Turn on time when switched from
$-\mathrm{V}_{\mathrm{GS}}=11 \mathrm{~V}$ to $\mathrm{I}_{\mathrm{D}}=20 \mathrm{mA:} \mathrm{BSV78}$
$-\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}$ to $\mathrm{I}_{\mathrm{D}}=10 \mathrm{mA:} \mathrm{BSV79}$
$-\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$ to $\mathrm{I}_{\mathrm{D}}=5 \mathrm{mA:} \mathrm{BSV80}$ delay time
rise time turn on time
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

		BSV78	BSV79	BSV80
at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$				
${ }^{\text {d }}$ d	$<$	5	10	8 ns
$\mathrm{t}_{\mathrm{r}}$	$<$	5	5	7 ns
$\mathrm{t}_{\text {on }}$	$<$	10	15	15 ns

Turn off time when switched from

$$
\left.\begin{array}{l}
\mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA} \text { to }-\mathrm{V}_{\mathrm{GS}}=11 \mathrm{~V}(\text { (BSV78 }) \\
\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \text { to }-\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}(\text { BSV79 }) \\
\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} \text { to }-\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}(\text { BSV 80) }
\end{array}\right\} \text { at } \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}
$$

fall time
storage time
turn off time

$$
\begin{array}{ll}
\mathrm{t}_{\mathrm{f}} & < \\
\mathrm{t}_{\mathrm{S}} & < \\
\mathrm{t}_{\mathrm{off}} & <
\end{array}
$$

## Test circuit:



$$
\mathrm{R}_{\mathrm{L}}=\frac{10-\mathrm{V}_{\text {DSon }}}{\mathrm{I}_{\text {Don }}}-51 \quad \Omega \quad \mathrm{R}_{\mathrm{L}}=\begin{array}{c|c|c}
\text { BSV78 } & \text { BSV79 } & \text { BSV80 } \\
\hline 424 & 909 & 1885 \Omega
\end{array}
$$

Pulse generator:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{i}}=50 \Omega \\
& \mathrm{t}_{\mathrm{r}}<0.5 \mathrm{~ns} \\
& \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}
\end{aligned}
$$

Oscilloscope:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{i}}=50 \Omega \\
& \mathrm{t}_{\mathrm{r}}<1 \mathrm{~ns} \\
& \mathrm{t}_{\mathrm{f}}<1 \mathrm{~ns}
\end{aligned}
$$










## APPLICATION INFORMATION

Floating bidirectional 50 mA switch with BSV78


Maximum allowable voltages:
Maximum allowable current to be switched:
$\begin{array}{lllll}\mathrm{V}_{10} & \text { max. } & \pm & 15 & \mathrm{~V} \\ \mathrm{~V}_{20} & \text { max. } & \pm & 15 & \mathrm{~V} \\ \mathrm{~V}_{12} & \text { max. } & \pm & 30 & \mathrm{~V}\end{array}$
$\mathrm{I}_{12} \max \pm 50 \mathrm{~mA}$

Supply currents:

$$
\begin{aligned}
\text { on-state } & I_{3}=20 \mathrm{~mA} \\
& I_{4}=20 \mathrm{~mA}
\end{aligned}
$$

Performance:
Gate voltage
Resistance between terminals 1 and 2
terminals 1 and 0
terminals 2 and 0

$$
\begin{aligned}
\text { off-state } & \mathrm{I}_{3}=20 \mathrm{~mA} \\
& \mathrm{I}_{4}=40 \mathrm{~mA}
\end{aligned}
$$

on-state		off-state	
typ.	6	0	V
typ.	50	10	10
$>$	$10^{10}$	$\Omega$	
$>$	10	10	$\Omega$
$>$	10	$\Omega$	

Switching times with $R_{L}=1 \mathrm{k} \Omega$, when

$$
\begin{aligned}
& \text { switched to } V_{G \text { on }}=6 \mathrm{~V} \\
& \text { switched to } \mathrm{V}_{\mathrm{G} \text { off }}=0
\end{aligned}
$$

$$
\begin{array}{lll}
\mathrm{t}_{\mathrm{on}} & <50 & \mathrm{~ns} \\
\mathrm{t}_{\text {off }} & <50 & \mathrm{~ns}
\end{array}
$$

## N-CHANNEL INSULATED GATE FIELD EFFECT TRANSISTOR

Depletion type insulated gate field effect transistor in a TO-72 metal envelope with the substrate connected to the case.
It is intended for chopper and other special switching applications, e.g. timing circuits, multiplex circuits, etc. The features are a very low drain-source 'on' resistance, a very high drain-source 'off' resistance and low feedback capacitances.

QUICK REFERENCE DATA
Drain-source resistance (on) at $\mathrm{f}=1 \mathrm{kHz}$

$$
\mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{BS}}=0 \quad \mathrm{r}_{\mathrm{ds} \text { on }}<50<\Omega
$$

Drain-source resistance (off)

$$
\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} ;-\mathrm{v}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{BS}}=0 \quad \mathrm{r}_{\mathrm{DSoff}}>10 \quad \mathrm{G} \Omega
$$

Feedback capacitances at $\mathrm{f}=1 \mathrm{MHz}$

$$
\begin{array}{rlll}
-\mathrm{V}_{\mathrm{GS}} & =5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{I}_{\mathrm{B}}=0 & -\mathrm{C}_{\mathrm{rS}} & <0.5 \\
-\mathrm{V}_{\mathrm{GD}} & =5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SD}}=0 ; \mathrm{I}_{\mathrm{B}}=0 & -\mathrm{C}_{\mathrm{rd}} & <1.2 \\
\mathrm{pF}
\end{array}
$$

MECHANICAL DATA


${ }^{1}$ ) Substrate connected to case

Note: To safeguard the gates against damage duo to accumulation of static charge during transport or handling, the leads are encircled by a ring of conductive rubber which should be removed just after the transistor is soldered into the circuit.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Drain-substrate voltage
Source-substrate voltage
Gate-substrate voltage (continuous)
Repetitive peak gate to all other terminals voltage $\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{DB}}=0 ; \mathrm{f}>100 \mathrm{~Hz}$
Non repetitive peak gate to all other terminals voltage $\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{DB}}=0 ; \mathrm{t}<10 \mathrm{~ms}$

## Currents

Drain current (peak value) $t_{r}=20 \mathrm{~ms} ; \mathrm{d}=0.1$
Source current (peak value) $t_{r}=20 \mathrm{~ms} ; \mathrm{d}=0.1$

## Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

## Temperatures

Storage temperature
Junction temperature

## THERMAL RESISTANCE

From junction to ambient in free air

$$
\begin{aligned}
& \mathrm{T}_{\text {stg }} \\
& \mathrm{T}_{\mathrm{j}} \quad \max . \quad 125 \text { to }+125{ }^{\circ} \mathrm{C} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{DB}}$	$\max$.	30	V
$\mathrm{~V}_{\mathrm{SB}}$	$\max$.	$30^{-}$	V
	$\max$.	10	V
$\mathrm{~V}_{\mathrm{GB}}$	min.	-10	V

Vax. $\quad 15 \mathrm{~V}$
$\mathrm{V}_{\mathrm{G}}-\mathrm{N}_{\min } . \quad-15 \mathrm{~V}$
$\begin{array}{lr}\text { max. } & 50 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{G}-\mathrm{N}} \text { min. } & -50 \cdot \mathrm{~V}\end{array}$
$I_{D M} \max . \quad 50 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{SM}} \max . \quad 50 \mathrm{~mA}$
$P_{\text {tot }} \max . \quad 200 \mathrm{~mW}$

$$
R_{\text {th } j-a}=0.5{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

## CHARACTERISTICS

Drain cut-off currents; $V_{B S}=0$

$$
\begin{array}{lll}
\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} & \mathrm{I}_{\mathrm{DSX}} & <1 \mathrm{nA} \\
\mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C} & \mathrm{I}_{\mathrm{DSX}} & <1 \mathrm{\mu A}
\end{array}
$$

Source cut-off currents; $V_{B D}=0$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{SD}}=10 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GD}}=5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{SD}}=10 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GD}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}
\end{aligned}
$$

Gate currents; $V_{B S}=0$
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Bulk currents; $\mathrm{V}_{\mathrm{GB}}=0$

$$
\begin{array}{rlll}
-\mathrm{V}_{\mathrm{BD}}=30 \mathrm{~V} ; \mathrm{IS} & =0 & -\mathrm{I}_{\mathrm{BDO}} & <10 \mu \mathrm{~A} \\
-\mathrm{V}_{\mathrm{BS}}=30 \mathrm{~V} ; \mathrm{ID} & =0 & -\mathrm{I}_{\mathrm{BSO}} & <10 \mu \mathrm{~A}
\end{array}
$$

$\underline{\text { Drain-source resistance }}$ (on) at $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{V}_{\mathrm{BS}}=0$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{GS}}=0 \quad ; \mathrm{V}_{\mathrm{DS}}=0 \\
& \mathrm{~V}_{\mathrm{GS}}=0 \quad ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \\
&+\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \\
& \text { Drain-source resistance (off) }
\end{aligned}
$$

$r_{\text {dson }}<100 \Omega$
$r_{\text {dson }}<150 \Omega$
$r_{\text {dson }}<50 \Omega$

$$
-\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{BS}}=0
$$

$r_{\text {DSoff }}$
$>\quad 10 \mathrm{G} \Omega$
$\underline{\text { Feedback capacitances }}$ at $\mathrm{f}=1 \mathrm{MHz}$

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{I}_{\mathrm{B}}=0 \\
& -\mathrm{V}_{\mathrm{GD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SD}}=0 ; \mathrm{I}_{\mathrm{B}}=0
\end{aligned}
$$

Gate to all other terminals capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
-\mathrm{V}_{\mathrm{GB}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{DB}}=0
$$

$$
\mathrm{C}_{\mathrm{g}-\mathrm{n}}<5 \mathrm{pF}
$$

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \\
& \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \\
& -\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}
\end{aligned}
$$






## N-CHANNEL SILICON FIELD EFFECT TRANSISTOR

Silicon N-channel depletion type junction-triode field effect transistor in a TO-72 metal envelope, primarily intended for depletion mode operation in low power i.f.r.f. amplifiers for industrial applications.

QUICK REFERENCE DATA				
Drain-source voltage	$\mathrm{V}_{\text {DS }}$	max.	30	V
Gate-source voltage	$-\mathrm{V}_{\mathrm{GS}}$	max.	30	V
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.		mW
Gate cut-off current $-\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0$	${ }^{-1} \mathrm{I}_{\text {GSS }}$	<	0.5	nA
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{v}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{v}_{\mathrm{GS}}=0$	$-\mathrm{C}_{\text {rs }}$	$<$	2	pF
Transfer admittance (common source) $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{f}=200 \mathrm{MHz} \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\left\|y_{f s}\right\|$	>	3.2	$\mathrm{m} \Omega^{-1}$

## MECHANICAL DATA

Dimensions in mm
TO-72


Accessories available: 56246; 56263

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages

Drain-source voltage	$\mathrm{V}_{\mathrm{DS}}$	$\max$.	30	V
Drain-gate voltage	$\mathrm{V}_{\mathrm{DG}}$	$\max$.	30	V
Gate-source voltage	$-\mathrm{V}_{\mathrm{GS}}$	$\max$.	30	V

Current
Gate current $\quad \mathrm{I}_{\mathrm{G}} \quad \max \quad 10 \mathrm{~mA}$
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max .300 \mathrm{~mW}$
Linear derating factor
$2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Temperatures
Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\mathrm{O}} \mathrm{C}$	
$\mathrm{T}_{\mathrm{j}}$	$\max$.	200	${ }^{\circ} \mathrm{C}$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Gate cut-off current

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \\
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
&-\mathrm{I}_{\mathrm{GSS}}< \\
& \mathrm{I}_{\mathrm{GSS}}<0.5 \mathrm{nA} \\
& 0.5 \mathrm{~mA}
\end{aligned}
$$

## Drain current ${ }^{1}$ )

$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$
Gate-source voltage
$\mathrm{I}_{\mathrm{D}}=400 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{GS}}$
1 to 7.5 V

Gate-source cut-off voltage
$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=.15 \mathrm{~V}$
$-\mathrm{V}_{(\mathrm{P}) \mathrm{GS}}<$
8 V
Gate-source breakdown voltage
$-\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=0$
$\left.-V_{(B R)}\right) \quad>\quad 30 \mathrm{~V}$

1) Measured under pulsed conditions; pulse duration $t=100 \mathrm{~ms}$; duty cycle $\delta \leq 0.1$.

## CHARACTERISTICS (continued)

y parameters (common source)					
$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$					
$\mathrm{f}=1 \mathrm{kHz}$	Transfer admittance ${ }^{1}$ )	$\left\|y_{f s}\right\|$		6.5	$\mathrm{m} \Omega^{-1}$
	Output admittance ${ }^{1}$ )	$\left\|\mathrm{y}_{\mathrm{OS}}\right\|$	<	35	$\mu \Omega^{-1}$
$\mathrm{f}=1 \mathrm{MHz}$	Input capacitance	$\mathrm{C}_{\text {is }}$	$<$	6	pF
	Feedback capacitance	$-\mathrm{C}_{\mathrm{rs}}$	$<$	2	pF
$\mathrm{f}=200 \mathrm{MHz}$	Transfer àdmittance	$\left\|y_{f s}\right\|$	>	3.2	$\mathrm{m} \Omega^{-1}$
	Real part of input conductance	$\mathrm{R}_{\mathrm{e}}\left(\mathrm{y}_{\mathrm{is}}\right)$	$<$	0.8	$\mathrm{m} \Omega^{-1}$
	Real part of output conductance	$\mathrm{Re}_{\mathrm{e}}$ (yos)	$<$	0.2	$\mathrm{m} \Omega^{-1}$

Noise figure at $\mathrm{f}=100 \mathrm{MHz} \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega \quad \mathrm{F} \quad<2.5 \mathrm{~dB}$


## N-CHANNEL SILICON FIELD EFFECT TRANSISTOR

N -channel silicon epitaxial planar junction field effect transistor in a TO-72 metal envelope with the shield lead connected to the case.
The transistor is suitable in a variety of low power switching applications, e.g. in multiplexing systems.

QUICK REFERENCE DATA				
Drain-source voltage	$\pm \mathrm{V}_{\text {DS }}$	max.	30	V
Gate-source voltage (open drain)	$-\mathrm{V}_{\mathrm{GSO}}$	max.	30	V
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	300	mW
Drain current $\mathrm{v}_{\mathrm{DS}}=20 \mathrm{v} ; \mathrm{v}_{\mathrm{GS}}=0$	${ }^{\text {I DSS }}$	>	2	mA
$\begin{gathered} \text { Gate-source cut-off voltage } \\ I_{D}=10 \mathrm{nA} ; V_{D S}=10 \mathrm{~V} \end{gathered}$	$-\mathrm{V}_{(\mathrm{P}) \mathrm{GS}}$		4 to 6	V
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$ $V_{M S}=0 ; V_{G S}=7 \mathrm{~V}$	$-\mathrm{C}_{\mathrm{rs}}$	<	1.5	pF
Drain-source resistance (on) at $\mathrm{f}=1 \mathrm{kHz}$ $\mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{I}_{\mathrm{D}}=0$	$\mathrm{r}_{\mathrm{ds} \text { on}}$	$<$	220	$\Omega$

## MECHANICAL DATA

TO-72
Insulated electrodes


1) $=$ shield lead (connected to case)

Accessories available: 56246, 56263.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Drain-source voltage
Drain-gate voltage (open source)
Gate-source voltage (open drain)

$\pm \mathrm{V}_{\text {DS }}$	max.	30	V
$\mathrm{~V}_{\text {DGO }}$	max.	30	V
$-\mathrm{V}_{\text {GSO }}$	$\max$.	30	V

## Current

Gate current $\quad \mathrm{I}_{\mathrm{G}} \quad \max .10 \mathrm{~mA}$
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max .300 \mathrm{~mW}$
Temperatures
Storage temperature
Junction temperature

| $\mathrm{T}_{\text {stg }}$ | -55 to +200 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | ---: | :--- |
| $\mathrm{T}_{\mathrm{j}}$ | max. $\quad 200$ | ${ }^{\circ} \mathrm{C}$ |

## THERMAL RESISTANCE

From junction to ambient
$R_{\text {th } j-a}=0.59 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$

## CHARACTERISTICS

## Gate cut-off current

$$
-\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0
$$

$$
{ }^{-\mathrm{I}_{\mathrm{GSS}}}<0.1 \mathrm{nA}
$$

## Drain current

$$
\begin{array}{lll}
\mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=0 & \mathrm{I}_{\mathrm{DGO}}<0.1 & \mathrm{nA} \\
\mathrm{~V}_{\mathrm{DG}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=0 ; \mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C} & \mathrm{I}_{\mathrm{DGO}}<0.2 & \mu \mathrm{~A}
\end{array}
$$

## Drain current ${ }^{1}$ )

$$
\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 \quad \mathrm{I}_{\mathrm{DSS}} \gg 2 \mathrm{~mA}
$$

Gate-source breakdown voltage

$$
\mathrm{I}_{\mathrm{G}}=1.0 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=0 \quad-\mathrm{V}_{(\mathrm{BR}) \mathrm{GS}}>30 \mathrm{~V}
$$

Gate-source voltage

$$
\mathrm{I}_{\mathrm{D}}=10 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} \quad-\mathrm{V}_{(\mathrm{P}) \mathrm{GS}} \quad 4 \text { to } 6 \quad \mathrm{~V}
$$

## Drain-source voltage

$$
\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0 \quad \mathrm{~V}_{\mathrm{DS}} \quad<0.25 \mathrm{~V}
$$

Drain cut-off current

$$
\begin{array}{llll}
\mathrm{V}_{\mathrm{DS}} & =10 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=7.0 \mathrm{~V} & \mathrm{I}_{\mathrm{D}} & <1.0 \\
\mathrm{~V}_{\mathrm{DS}} & =10 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=7.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=150{ }^{\circ} \mathrm{C} & \mathrm{I}_{\mathrm{D}} & <2.0
\end{array}
$$

Drain-source resistance (on) at $\mathrm{f}=1 \mathrm{kHz}$

$$
\mathrm{V}_{\mathrm{GS}}=0 ; \mathrm{I}_{\mathrm{D}}=0 \quad \mathrm{r}_{\mathrm{ds} \text { on }}<220 \Omega
$$

Input capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0
$$

$$
\mathrm{C}_{\text {is }}<6 \mathrm{pF}
$$

Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{v}_{\mathrm{GS}}=7 \mathrm{~V}
$$

$$
-\mathrm{C}_{\mathrm{rs}}<1.5 \mathrm{pF}
$$

## Switching times

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{D} \text { on }}=1.0 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{GS} \text { on }}=0 ;-\mathrm{V}_{\mathrm{GS} \text { off }}=6 \mathrm{~V}
\end{aligned}
$$

delay time	$\mathrm{t}_{\mathrm{d}}$	$<$	20	ns
rise time	$\mathrm{t}_{\mathrm{r}}$	$<$	100	ns
turn off time	$\mathrm{t}_{\text {off }}$	$<$	100	ns

## 2N3966

## CHARACTERISTICS (continued)

## Switching times

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{D} \text { on }}=1.0 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{GS} \text { on }}=0 ;-\mathrm{V}_{\mathrm{GS} \text { off }}=6 \mathrm{~V}
\end{aligned}
$$

delay time	$\mathrm{t}_{\mathrm{d}}<$	20	ns	
rise time	$\mathrm{t}_{\mathrm{r}}$	$<$	100	ns
turn off time	$\mathrm{t}_{\text {off }}<$	100	ns	

Test circuit:


Pulse generator:
${ }_{\mathrm{t}}^{\mathrm{r}}<$
$\mathrm{t}_{\mathrm{f}}<1.0 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{p}}=1.0 \mathrm{~ns}$
$\delta<0 \mathrm{~s}$
$\mathrm{D}_{\mathrm{S}}=0.5$
$\mathrm{R}_{\mathrm{S}}=50 \Omega$

Oscilloscope:
$\mathrm{t}_{\mathrm{r}}<10 \mathrm{~ns}$
$\mathrm{R}_{\mathrm{i}}>5 \mathrm{M} \Omega$
$\mathrm{C}_{\mathrm{i}}<10 \mathrm{pF}$

## N-CHANNEL FIELD EFFECT TRANSISTORS

Silicon N-channel depletion type junction-triode field effect transistors in a TO-18 metal envelope with the gate connected to the case. The transistors are intended for low power switching applications in industrial service.

QUICK REFERENCE DATA						
Drain-source voltage		$\pm \mathrm{V}_{\text {DS }}$	max.	40		V
Total power dissipation up to $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$		$P_{\text {tot }}$	max.	1.8		W
Drain current			2N4091	2N4092	2N4093	
$\mathrm{V}_{\text {DS }}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$		${ }^{\text {I DSS }}$	> 30	15	8	mA
Gate-source cut-off voltage $\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$		$-\mathrm{V}_{(\mathrm{P}) \mathrm{GS}}$	$>$ $<$	2.0		V
$\begin{aligned} & \text { Drain-source resistance (on) at } f=1 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{D}}=0 ; \mathrm{V}_{\mathrm{GS}}=0 \end{aligned}$		$\mathrm{r}_{\text {ds on }}$	$<30$	50	80	$\Omega$
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$$\mathrm{V}_{\mathrm{DS}}=0 ;-\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$		$-\mathrm{C}_{\mathrm{rs}}$	$<$	5.0		pF
Turn off time						
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$ $\mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{GSM}}=12 \mathrm{~V}$	2N4091	${ }^{\text {off }}$	$<$	40		ns
$\mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{GSM}}=8 \mathrm{~V}$	2N4092	$\mathrm{t}_{\text {off }}$	$<$	60		ns
$\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{GSM}}=6 \mathrm{~V}$	2N4093	$\mathrm{t}_{\text {off }}$	$<$	80		ns

## MECHANICAL DATA

Gate connected to case
TO-18


Accessories supplied on request: 56246, 56263.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Drain-source voltage
Drain-gate voltage (open source)
Gate-source voltage (open drain)

$\pm \mathrm{V}_{\mathrm{DS}}$	max.	40	V
$\mathrm{~V}_{\text {DGO }}$	max.	40	V
$-\mathrm{V}_{\text {GSO }}$	max.	40	V

## Current

Forward gate current (d.c.) $\quad \mathrm{I}_{\mathrm{G}} \quad \max . \quad 10 \mathrm{~mA}$
Power dissipation
Total power dissipation up to $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max \quad 1.8 \quad \mathrm{~W}$
Temperatures
Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-55	to	+200
$\mathrm{~T}_{\mathrm{o}} \mathrm{C}$			
	max.	200	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to case in free air

$$
R_{\text {th } j-c}=0.1{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

## Drain current

$V_{D G}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=0$
$\mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=0 ; \mathrm{T}_{\mathrm{amb}}=150{ }^{\circ} \mathrm{C}$

| $\mathrm{I}_{\text {DGO }}<$ | 0.2 | nA |
| :--- | :--- | :--- | :--- |
| $\mathrm{I}_{\text {DGO }}<$ | 0.4 | $\mu \mathrm{~A}$ |

## Source current

$\mathrm{V}_{\mathrm{SG}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0$

$$
\mathrm{I}_{\mathrm{SGO}}
$$

$$
<
$$

$$
0.2
$$

$$
\mathrm{nA}
$$

Drain cut-off current
$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=8 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C}$
Gate-source breakdown voltage
$-_{G}=1.0 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=0$

$$
-\mathrm{V}_{(\mathrm{BR}) \mathrm{GSS}^{>}} \quad 40
$$

Drain current ${ }^{1}$ )

$$
\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0
$$

Gate-source voltage

$$
\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}
$$

Drain-source voltage (on)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0 \\
& \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0 \\
& \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0
\end{aligned}
$$

Drain-source resistance (on)

$$
\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0
$$

Drain-source resistance (on) at $\mathrm{f}=1 \mathrm{kHz}$

$$
\mathrm{I}_{\mathrm{D}}=0 ; \mathrm{V}_{\mathrm{GS}}=0
$$

$$
\begin{array}{l|l|l}
\text { 2N4091 } & \text { 2N4092 } & \text { 2N4093 } \\
\hline
\end{array}
$$

$<0.2$
$<$
0.2

CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
$y$-parameters at $\mathrm{f}=1 \mathrm{MHz}$ (common source)
$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$

Input capacitance	$\mathrm{C}_{\mathrm{is}}$	$<$	16	pF
Feedback capacitance	$-\mathrm{C}_{\mathrm{rs}}$	$<$	5	pF

## Switching times

		2 N 4091	2 N 4092	2 N 4093		
$\mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$	$\mathrm{I}_{\mathrm{D}}$	$=$	6.6	4.0	2.5	mA
	$-\mathrm{V}_{\mathrm{GSM}}$	$=12$	8	6	V	
Delay time	$\mathrm{t}_{\mathrm{d}}$	$<$	15	15	20	ns
Rise time	$\mathrm{t}_{\mathrm{r}}$	$<$	10	20	40	ns
Turn off time	$\mathrm{t}_{\text {off }}$	$<$	40	60	80	ns

Test circuit:


$$
\mathrm{R}=\frac{2.8}{\mathrm{I}_{\mathrm{D}}}
$$

Pulse generator:

$\mathrm{t}_{\mathrm{r}}<1$
$\mathrm{t}_{\mathrm{f}}<1$
$\mathrm{t}_{\mathrm{p}}=1.0 \mathrm{~ns}$
$\delta=0.1$
$\mathrm{R}_{\mathrm{S}}=50$

Oscilloscope:
$\begin{array}{lll}\mathrm{t}_{\mathrm{r}} & <0.4 & \mathrm{~ns} \\ \mathrm{R}_{\mathrm{i}} & >9.8 & \mathrm{M} \Omega \\ \mathrm{Z}_{\mathrm{i}} & <1.7^{\circ} & \mathrm{pF}\end{array}$

## N-CHANNEL FIELD EFFECT TRANSISTORS

Silicon $N$-channel depletion type junction-triode field effect transistors in a TO-18 metal envelope with the gate connected to the case. The transistors are intended for low power, chopper or switching, application in industrial service.

QUICK REFERENCE DATA					
Drain-source voltage	$\pm \mathrm{V}_{\text {DS }}$	$\max$.	40		V
Total power dissipation up to $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$	$P_{\text {tot }}$	max.	1.8		W
		2N4391	2N4392	2N4393	
Drain current					
$\mathrm{V}_{\text {DS }}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$	IDSS	$>50$	25	5	mA
Gate source cut-off voltage	-V(P) $\mathrm{V}^{\text {S }}$	$>4.0$	2.0	0.5	V
	$-v_{\text {(P)GS }}$	$<10$	5.0	3.0	V
Drain-source resistance (on) at $\mathrm{f}=1 \mathrm{kHz}$   ID $=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0$ $\mathrm{r}_{\text {dson }}<30$ 60 100					
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$					
$\mathrm{V}_{\mathrm{DS}}=0 ;-\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V} \text { (2N4392) }$	$-\mathrm{Crs}^{\text {r }}$	$<3.5$	3.5	3.5	pF
$\mathrm{V}_{\mathrm{DS}}=0 ;-\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}(2 \mathrm{~N} 4393)$					
Turn-off time					
$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$					
$\mathrm{I}_{\mathrm{D}}=12 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{GSM}}=12 \mathrm{~V}$ (2N4391)	$\mathrm{t}_{\text {off }}$	$<20$	-	-	ns
$\mathrm{I}_{\mathrm{D}}=6.0 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{GSM}}=7 \mathrm{~V}$ (2N4392)	$\mathrm{t}_{\text {off }}$	$<-$	35	-	ns
$\mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{GSM}}=5 \mathrm{~V}$ (2N4393)	$\mathrm{t}_{\text {off }}$	$<-$	-	50	ns

## MECHANICAL DATA

Dimensions in mm
Gate connected to case
TO-18


Accessories supplied on request: 56246, 56263

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Drain-source voltage	$\pm \mathrm{V}_{\mathrm{DS}}$	$\max$.	40	V
Drain-gate voltage (open source)	$\mathrm{V}_{\mathrm{DGO}}$	$\max$.	40	V
Gate-source voltage	$-\mathrm{V}_{\mathrm{GSO}}$	$\max$.	40	V
Current				
Gate current (d.c.)	$\mathrm{I}_{\mathrm{G}}$	$\max$.	50	mA

## Power dissipation

$\begin{array}{llllll}\text { Total power dissipation up to } \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C} & \mathrm{P}_{\text {tot }} & \max . & 1.8 & \mathrm{~W}\end{array}$

## Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-65	to	200	${ }^{\circ} \mathrm{C}$
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	$\max$	200	${ }^{\circ} \mathrm{C}$	

## Thermal resistance

From junction to case in free air $\quad R_{\text {th } \mathrm{j}-\mathrm{c}}=0.1 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$

## CHARACTERISTICS

Gate cut -off current

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \\
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C}
\end{aligned}
$$

## Drain cut-off current

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{DSX}}<0.2
$$

$$
\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{DSX}}<\quad-\quad 0.2
$$

$$
\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C}
$$

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\begin{array}{ccc}
-\mathrm{I}_{\mathrm{GSS}}< & 0.1 & \mathrm{nA} \\
-\mathrm{I}_{\mathrm{GSS}}< & 0.2 & \mu \mathrm{~A}
\end{array}
$$

$$
\begin{array}{l|c|c|c} 
& \begin{array}{l}
2 \mathrm{~N} 4391 \\
\\
\mathrm{I}_{\mathrm{DSX}}<
\end{array}<0.1 & - & - \\
\mathrm{nA} 4392 & 2 \mathrm{~N} 4393 \\
\mathrm{I}_{\mathrm{DSX}}< & - & 0.1 & - \\
\mathrm{nA}
\end{array}
$$

$$
0.1 \mathrm{nA}
$$

$$
-\mu \mathrm{A}
$$

$$
-\quad \mu \mathrm{A}
$$

$0.2 \mu \mathrm{~A}$

CHARACTERISTICS (continued)

Drain current ${ }^{1}$ )
$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$
$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$
$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$
Gate-source breakdown vo
-IG $=1 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=0$
Gate-source voltage
$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=0$
Gate-source cut -off voltag
$\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA} ; \mathrm{V}_{\mathrm{DS}}=0$
Drain-source voltage (on)
$\mathrm{ID}_{\mathrm{D}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0$
$\mathrm{I}_{\mathrm{D}}=6.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0$
$\mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0$

Drain-source resistance (on)

$$
\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0
$$

Drain-source resistance (on) at $\mathrm{f}=1 \mathrm{kHz}$

$\mathrm{I}_{\mathrm{D}}=0 ; \mathrm{V}_{\mathrm{GS}}=0$	$\mathrm{r}_{\text {dso }}$	$<$	30	60	100	$\Omega$
y parameters at $\mathrm{f}=1 \mathrm{MHz}$ (common source)						
Input capacitance						
$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$	$\mathrm{C}_{\text {is }}$	$<$	14	14	14	pF
Feedback capacitance						
$-\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0$	$-\mathrm{C}_{\mathrm{rs}}$	$<$	3.5	-	-	pF
$-\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V} ; \mathrm{V}_{\text {DS }}=0$	$-\mathrm{C}_{\mathrm{rs}}$	$<$	-	3.5	-	pF
$-\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0$	- $\mathrm{C}_{\mathrm{rs}}$	<	-	-	3.5	pF

[^21]$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

	2N4391		2N4392	2N4393	
IDSS	$>$	50	-	-	mA
	$<$	150	-	-	mA
IDSS	$>$	-	25	-	mA
	$<$	-	75	-	mA
${ }^{\text {I DSS }}$	$>$	-	-	5	mA
	$<$	-	-	30	mA
$-\mathrm{V}_{(\mathrm{BR}) \mathrm{GSS}}>$		40	40	40	V
$\mathrm{V}_{\mathrm{GSon}}$	$<$	1.0	1.0	1.0	V
-V(P)GS	$>$	4.0	2.0	0.5	V
	$<$	10	5.0	3.0	V
V ${ }_{\text {DSon }}$	$<$	0.4	-	-	V
$\mathrm{V}_{\text {DSon }}$	$<$	-	0.4	-	V
V ${ }_{\text {DSon }}$	$<$	-	-	0.4	V
${ }^{\text {r }}$ DSon	$<$	30	60	100	$\Omega$
$\mathrm{r}_{\text {dson }}$	$<$	30	60	100	$\Omega$
$\mathrm{Cis}_{\text {is }}$	$<$	14	14	14	pF
$-\mathrm{Crs}^{\text {r }}$	$<$	3.5	-	-	pF
$-\mathrm{Crs}_{\text {r }}$	$<$	-	3.5	-	pF
$-\mathrm{C}_{\mathrm{rs}}$	$<$	-	-	3.5	pF

CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Switching times
$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$

Rise time
Turn on time
Fall time
Turn off time

		2 N 4391	2 N 4392	2 N 4393	
$\mathrm{I}_{\mathrm{D}}$	$=$	12	6.0	3.0	mA
$-\mathrm{V}_{\mathrm{GSM}}$	$=$	12	7	5	V
$\mathrm{t}_{\mathrm{r}}$	$<$	5	5	5	ns
$\mathrm{t}_{\text {on }}$	$<$	15	15	15	ns
$\mathrm{t}_{\mathrm{f}}$	$<$	15	20	30	ns
$\mathrm{t}_{\text {off }}$	$<$	20	35	50	ns



## N-CHANNEL FIELD EFFECT TRANSISTORS

Silicon N-channel depletion type junction-triode field effect transistors in a TO-18 metal envelope with the gate connected to the case. The transistors are intended for low power, chopper or switching, applications in industrial service.


## MECHANICAL DATA

Dimensions in mm
Gate connected to case
TO-18


Accessories supplied on request: 56246; 56263

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)


## CHARACTERISTICS

Gate cut-off current

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \\
& -\mathrm{v}_{\mathrm{GS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \\
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C} \\
& -\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 ; \mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C}
\end{aligned}
$$

$\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$ unless otherwise specified

		2N4856   2N4857   2N4858	2N4859   2N4860   2N4861
${ }^{-1} \mathrm{I}_{\text {GSS }}$	$<$	0.25	-
$-_{\text {IGSS }}$	$<$	-	0.25
$-_{\text {IGSS }}$	$<$	0.5	-
${ }^{-} \mathrm{I}_{\text {GSS }}$	<	-	0.5

Drain cut-off current
$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V} ;-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C}$

Drain current ${ }^{1}$ )

$$
\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0
$$

Gate-source breakdown voltage

$$
-\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=0
$$

Gate-source cut-off voltage

$$
I_{D}=0.5 \mathrm{nA} ; V_{D S}=15 \mathrm{~V}
$$

Drain-source voltage (on)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0 \\
& \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0 \\
& \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=0
\end{aligned}
$$

Drain-source resistance (on) at $\mathrm{f}=1 \mathrm{kHz}$ $I_{D}=0 ; V_{G S}=0$
$-\mathrm{V}(\mathrm{BR}) \mathrm{GSS}$
40
0.25 nA

IDSX	$<$	0.25	0.25	$n A$
IDSX	$<$	0.5	0.5	$\mu \mathrm{~A}$


		$\begin{aligned} & \text { 2N4856 } \\ & \text { 2N4859 } \end{aligned}$	$\left\|\begin{array}{l} 2 N 4857 \\ \text { 2N4860 } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { 2N4858 } \\ & \text { 2N4861 } \end{aligned}\right.$
IDSS	$>$	50	20	8
IDSS	$<$	-	100	80
		2N4856 2N4859   2N4857 2N4860   2N4858 2N4861		
$-V_{(B R)}$		40	30	


		2N4856	2N4857	2N4858	
		2N4859	2N4860	2N4861	
-V(P)GS	>	4	2	0.8	V
-V (P)GS	$<$	10	6	4	V
V DSon	$<$	0.75	-	-	V
$V_{\text {DSon }}$	$<$	-	0.50	-	V
V DSon	<	-	-	0.50	V
$\mathrm{r}_{\text {dson }}$	$<$	25	40	60	$\Omega$

[^22]CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
$y$-parameters at $f=1 \mathrm{MHz}$ (common source)
$-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0$
Input capacitance
Feedback capacitance
Switching times
$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$

Delay time
Rise time
Turn off time
Test circuit:


Pulse generator:
$\begin{array}{lll}\mathrm{t}_{\mathrm{r}} & \leq 1 & \mathrm{~ns} \\ \mathrm{t}_{\mathrm{f}} & \leq 1 & \mathrm{~ns} \\ \delta & =0.02 \\ \mathrm{Z}_{\mathrm{O}} & =50 & \Omega\end{array}$

Oscilloscope:

$$
\begin{array}{llrl}
\mathrm{t}_{\mathrm{r}} & \leq & 0.75 & \mathrm{~ns} \\
\mathrm{R}_{\mathrm{i}} & \geq & 1 & \mathrm{M} \Omega \\
\mathrm{C}_{\mathrm{i}} & \leq & 2.5 & \mathrm{pF}
\end{array}
$$

## Dual transistors

## N-P-N SILICON PLANAR LOW-LEVEL DUAL TRANSISTORS FOR DIFFERENTIAL AMPLIFIERS

Two special matched transistors in a TO-18 metal envelope, housed together in an aluminium cube.
The BCY55 is intended for very low level, low noise and low drift differential amplifiers.

## QUICK REFERENCE DATA

Equivalent differential voltage change
referred to the input

$$
\begin{aligned}
& \left|I_{1 E}+I_{2 \mathrm{E}}\right| \leq 200 \mu \mathrm{~A} \\
& \mathrm{~V}_{1 \mathrm{C}}-1 \mathrm{E}=\mathrm{V}_{2 \mathrm{C}-2 \mathrm{E} \leq 20 \mathrm{~V}} \\
& \left|\mathrm{~V}_{1 \mathrm{~B}-1 \mathrm{E}}-\mathrm{V}_{2 \mathrm{~B}}-2 \mathrm{E}\right| \leq 100 \mu \mathrm{~V} \\
& \mathrm{~T}_{\text {amb }}:-20 \text { to }+90^{\circ} \mathrm{C}
\end{aligned} \quad\left|\frac{\Delta \mathrm{~V}}{\Delta \mathrm{~T}}\right|{ }_{<}^{\text {typ. }}<\begin{array}{lll}
< & 1 & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
\end{array}
$$

Equivalent differential current change referred to the input

$$
\begin{aligned}
& \mathrm{I}_{1 \mathrm{C}}+\mathrm{I}_{2 \mathrm{C}}=100 \mu \mathrm{~A} \\
& \mathrm{~T}_{\mathrm{amb}}:-20 \text { to }+90{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\left|\begin{array}{lll}
\frac{\Delta \mathrm{I}}{\Delta \mathrm{~T}}
\end{array}\right| \stackrel{\text { typ. }}{\ll} \begin{array}{lll}
0.5 & \mathrm{nA} /{ }^{\circ} \mathrm{C} \\
< & 1.5 & \mathrm{nA} /{ }^{\circ} \mathrm{C}
\end{array}
$$

## MECHANICAL DATA

Dimensions in mm


CHARACTERISTICS of the individual transistors

## Collector cut-off current

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=45 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=90^{\circ} \mathrm{C}
\end{aligned}
$$

Emitter cut-off current

$$
I_{C}=0 ; V_{E B}=5 \mathrm{~V}
$$

Emitter-base voltage
$-\mathrm{I}_{\mathrm{E}}=0.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}$
$\underline{\text { Saturation voltages }}$

$$
\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}
$$

D.C. current gain

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
\end{aligned}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}
$$

Transition frequency

$$
\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

## Cut-off frequency

$$
\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

$\underline{\text { h parameters }}$ at $\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
Input impedance
Reverse voltage transfer ratio
Small signal current gain
Output admittance
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
${ }^{\mathrm{I}} \mathrm{CBO}$
$<\quad 10 \mathrm{nA}$
$\mathrm{I}_{\mathrm{CBO}}<5 \mathrm{nA}$
$\mathrm{I}_{\mathrm{EBO}}$
$<\quad 10 \mathrm{nA}$
$-V_{E B} \quad 600$ to 800 mV
$V_{\text {CEsat }}<1.0 \mathrm{~V}$
VBEsat
0.6 to 1.0 V
hFE
100 to 300
200 to 600
$<8 \mathrm{pF}$
$>\quad 50 \mathrm{MHz}$
typ. 80 MHz

$$
\mathrm{f}_{\text {hfe }} \quad>\quad 100 \mathrm{kHz}
$$

Noise figure
$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega ; \mathrm{B}=10$ to 15000 Hz

F $\quad$	typ.	2	dB
$<$	3	dB	

## BCY55

CHARACTERISTICS of the complete device
Ratio of collector currents
$\mathrm{V}_{1 \mathrm{~B}-1 \mathrm{E}}=\mathrm{V}_{2 \mathrm{~B}-2 \mathrm{E}}$
Emitter currents of each transistor up to $100 \mu \mathrm{~A}$$\quad \frac{\mathrm{I}_{1 \mathrm{C}}}{\mathrm{I}_{2 \mathrm{C}}} \quad \begin{gathered}0.85 \text { to } 1 \\ \text { typ. } 0.93\end{gathered}$

## Difference of base-emitter voltages

$$
\begin{array}{lll}
-\mathrm{I}_{1 \mathrm{E}}=-\mathrm{I}_{2 \mathrm{E}} \text { up to } 100 \mu \mathrm{~A} & \left|\mathrm{~V}_{1 \mathrm{~B}}-1 \mathrm{E}-\mathrm{V}_{2 \mathrm{~B}-2 \mathrm{E}}\right| & \text { typ. } 2 \mathrm{mV} \\
\mathrm{~T}_{\mathrm{amb}}:-20 \text { to }+90 \text { oC } & 4 \mathrm{mV}
\end{array}
$$

Illustration of matching characteristics:

$\frac{I_{2 E}}{I_{1 E}}=\exp \cdot \frac{q}{k T} \cdot \Delta V_{B E}$
$\frac{I_{2 E}}{I_{1 E}}$ measured at $\Delta V_{B E}=0$
$\Delta V_{B E}$ measured at $\frac{I_{2 E}}{I_{1 E}}=1$

CHARACTERISTICS of the complete device (continued)

## Equivalent circuit for drift

In the equivalent circuit the transistors are considered to be drift free. All temperature coefficients are concentrated in the voltage source $\frac{\Delta V}{\Delta T}$ and in the current source $\frac{\Delta I}{\Delta T}$.
It should be noted that the differential current change given is only valid when the source resistances are almost equal; the differential voltage change only when the base-emitter voltages are almost equal.


## Block symbol of test amplifier

The test amplifier, used in the tests on page 5, is described on pages 6 and 7. It is represented by the following amplifier symbol:


CHARACTERISTICS of the complete device (continued)
Equivalent differential voltage change with temperature referred to the input.

$$
\begin{aligned}
& \left|\mathrm{I}_{1 \mathrm{E}}+\mathrm{I}_{2 \mathrm{E}}\right| \leq 200 \mu \mathrm{~A} ; \mathrm{V}_{1 \mathrm{C}-1 \mathrm{E}}=\mathrm{V}_{2 \mathrm{C}-2 \mathrm{E}} \leq 20 \mathrm{~V} \\
& \left|\mathrm{~V}_{1 \mathrm{~B}-1 \mathrm{E}}-\mathrm{V}_{2 \mathrm{~B}-2 \mathrm{E}}\right| \leq 100 \mu \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}:-20 \text { to }+90^{\circ} \mathrm{C}
\end{aligned}
$$

BCY55 unit (wires included) mounted in a small metal or plastic box for shielding against direct heat radiation.

$$
\left|\frac{\Delta \mathrm{V}}{\Delta \mathrm{~T}}\right| \quad \begin{array}{llll}
\text { typ. } & 1 & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
< & 3 & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
\end{array}
$$

Equivalent differential current change with temperature referred to the input.

$$
\mathrm{I}_{1 \mathrm{C}}+\mathrm{I}_{2 \mathrm{C}}=100 \mu \mathrm{~A} \quad \frac{\Delta \mathrm{I}}{\Delta \mathrm{~T}} \quad \stackrel{\text { typ. }}{<} 0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}
$$

Test methods


NOTE
To prevent contact potentials, connections should be soldered.


Amplification factor determined by feedback circuit: $\frac{\mathrm{R} 2}{\mathrm{R} 1}=1000$
Output voltage against time is recorded.
The temperature of the amplifier is adjusted to $\mathrm{T}_{1}$ between -20 and $+90{ }^{\circ} \mathrm{C}$. When it has stabilized, the output voltage is brought to zero ( $\left.\left|\mathrm{V}_{\mathrm{Tl}}\right|<100 \mathrm{mV}\right)^{1}$ ). The amplifier temperature is then adjusted to $\mathrm{T}_{2}$ between -20 and $+90^{\circ} \mathrm{C}$. When it has stabilized the output voltage can be read off.
Then: $\frac{\Delta \mathrm{V}}{\Delta \mathrm{T}}=\frac{\mathrm{V}_{\mathrm{T} 2}-\mathrm{V}_{\mathrm{T} 1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}} \cdot \frac{\mathrm{R} 1}{\mathrm{R} 2}$ or $\frac{\Delta \mathrm{I}}{\Delta \mathrm{T}}=\frac{\mathrm{V} \mathrm{T}_{2}-\mathrm{V}_{\mathrm{T} 1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}} \cdot \frac{\mathrm{R} 1}{\mathrm{R} 2} \cdot \frac{1}{2 \mathrm{R}_{\mathrm{S}}}$

1) For $\frac{\Delta V}{\Delta T}$ : adjusted by $R_{V 1}$

For $\frac{\Delta \mathrm{I}}{\Delta \mathrm{T}}$ : first by $\mathrm{R}_{\mathrm{V} 1}$ with S 1 and S 2 closed, then by $\mathrm{R}_{\mathrm{V} 2}$ with the switches open.

## BCY55

## $\underline{\text { Differential test-amplifier }}$

The test amplifier (including feedback resistors, source-resistors and biasingresistors) should be mounted in a small box to ensure a uniform temperature throughout.


1) Relative temperature coefficient $<10^{-5} /{ }^{\circ} \mathrm{C}$
2) The device at the input is the device under test

## BCY55

Performance of the test amplifier
Open loop voltage gain $\left(Z_{L}=10 \mathrm{k} \Omega\right)$
Frequency at which $\mathrm{G}_{\mathrm{V}}=1$
Max. common mode input voltage range
Max. output current
$\mathrm{v}_{\mathrm{v}}$ typ. $10^{5}$

Max. output voltage
Input resistance
Output resistance

$f_{1} \quad$ typ.		10
	MHz	
$\pm 10$	V	
$\pm 2.5$	mA	



RATINGS of the individual transistors (Limiting values) ${ }^{1}$ )

## Voltages

Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
Collector-emitter voltage with $\mathrm{V}_{\mathrm{BE}}=0$
Emitter-base voltage (open collector)

VCBO	max.	45	V
$\mathrm{~V}_{\mathrm{CEO}}$	$\max$.	45	V
$\mathrm{~V}_{\mathrm{CES}}$	$\max$.	45	V
$\mathrm{~V}_{\text {EBO }}$	$\max$.	5	V

## Currents

Collector currents (d.c. or average over any 50 ms period)

Collector current (peak value)
$\mathrm{I}_{\mathrm{C}} \quad \max . \quad 30 \mathrm{~mA}$

Collector current (peak value)
ICM max. 60 mA

## Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$P_{\text {tot }} \max .300 \mathrm{~mW}$
Temperatures
Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-50 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{j}}$	$\max$.	125	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient in free air

$$
R_{\text {th } j-a}=0.33 \quad \circ \mathrm{C} / \mathrm{mW}
$$

(This value applies to one transistor at equal dissipation or difference in dissipation $<20 \%$ in both transistors of the unit)

[^23]
## N-P-N SILICON PLANAR DUAL TRANSISTORS FOR DIFFERENTIAL AMPLIFIERS

Matched dual n-p-n transistors in a TO-71 metal envelope with all leads insulated from the case. They are primarily intended for differential amplifier applications in general industrial service; e.g. instrumentation and control.
The product is divided in three types according to their matching accuracy.
The BCY87 and BCY88 are intended for applications in prestages of differential amplifiers where low offset, drift and noise are of prime importance. The BCY89 is for second stages, long tail pairs and more general purposes.

QUICK REFERENCE DATA					
Ratings					
Collector-base voltage (open emitter)		$\mathrm{V}_{\text {CBO }}$		x. 45	V
Collector-emitter voltage (open base)		$\mathrm{V}_{\text {CEO }}$		$x .40$	V
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C} \quad \mathrm{P}$			$\mathrm{P}_{\text {tot }}$	x. 150	mW
Junction temperature			j m	ax. 175	
Characteristics of the complete device with collector-base voltage of 10 V and sum of emitter currents from 10 to $100 \mu \mathrm{~A}$.					
Ratio of collector currents at$V_{1 B-1 E}=V_{2 B-2 E}$		BCY87	BCY88	BCY89	
	$\mathrm{I}_{1 \mathrm{C}} / \mathrm{I}_{2 \mathrm{C}}$	0.9-1.11	0.8-1.25	0.67-1.5	
Base current difference at   $\mathrm{V}_{1 B}-1 \mathrm{E}=\mathrm{V}_{2 \mathrm{~B}}-2 \mathrm{E}$ $\left\|\mathrm{I}_{1 \mathrm{~B}-\mathrm{I}_{2 \mathrm{~B}} \mid}\right\|<25$ 80					
Equivalent differential voltage change with temperature	$\left\|\frac{\Delta V}{\Delta T}\right\|^{1}$ )	$<3$	6	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Equivalent differential curren change with temperature	$\left.\left\|\frac{\Delta \mathrm{I}}{\Delta \mathrm{~T}}\right\|^{1}\right)$	$<0.5$	2	10	$n \mathrm{n} /{ }^{\circ} \mathrm{C}$

## MECHANICAL DATA

Dimensions in mm
TO-71
All leads insulated from the case

Accessories available:
56263


[^24]RATINGS see page 7
CHARACTERISTICS of the individual transistors

$$
\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { unless otherwise specified }
$$

Collector cut-off currents

$$
\begin{aligned}
& I_{E}=0 ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=90^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}
\end{aligned}
$$

D.C. current gain
$\mathrm{I}_{\mathrm{C}}=5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}$
$I_{C}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}$

Transition frequency

$$
\begin{aligned}
& -\mathrm{I}_{\mathrm{E}}=50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} \\
& -\mathrm{I}_{\mathrm{E}}=500 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}
\end{aligned}
$$

## Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$I_{E}=I_{e}=0 ; V_{C B}=10 \mathrm{~V}$

## Noise figures

$\mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$
Bandwidth 10 Hz to 15 kHz
1 kHz spot noise figure
$\mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=\mathrm{opt}$.
Bandwidth $=200 \mathrm{~Hz}$

CHARACTERISTICS of the complete device.
These characteristics are valid under the following conditions:
a. Collector-base voltage of both transistors not exceeding $10 \mathrm{~V}\left(\mathrm{~V}_{1 \mathrm{C}}-1 \mathrm{~B}=\mathrm{V}_{2 \mathrm{C}-2 \mathrm{~B}}\right.$ $\leq 10 \mathrm{~V}$ )
b. Sum of the emitter currents from 10 to $100 \mu \mathrm{~A}$

$$
-\left(\mathrm{I}_{1 \mathrm{E}}+\mathrm{I}_{2 \mathrm{E}}\right)=10 \text { to } 100 \mu \mathrm{~A}
$$

## MATCHING CHARACTERISTICS

$\underline{\text { Ratio of collector currents }}$

$$
V_{1 B-1 E}=V_{2 B-2 E} \quad I_{1 C} / I_{2 C}
$$

BCY87	BCY88	BCY89
$0.9-1.11$	$0.8-1.25$	$0.67-1.5$

## Difference between base-emitter voltages

$I_{1 C}=I_{2 C} \quad\left|V_{1 B-1 E}-V_{2 B}-2 E\right|<3$
Difference between base currents
$V_{1 B-1 E}=V_{2 B-2 E} \quad\left|I_{1 B}-I_{2 B}\right|$
D. C. current gain ratio
$\mathrm{I}_{1 \mathrm{C}}=\mathrm{I}_{2 \mathrm{C}}$
$\mathrm{h}_{1 \mathrm{FE}} / \mathrm{h}_{2} \mathrm{FE}$
0.9-1.11 0.8-1.25 -

300 nA
80
10 mV
< 25
0.9-1.11 $|0.8-1.25|-$

Illustration of matching characteristics:


$\frac{I_{2 E}}{I_{1 E}}=\exp \cdot \frac{q}{K T} \cdot \Delta V_{B E}$
$\frac{\mathrm{I}_{2} \mathrm{E}}{\mathrm{I}_{1 \mathrm{E}}}$ measured at $\Delta \mathrm{V}_{\mathrm{BE}}=0$
$\Delta V_{B E}$ measured at $\frac{I_{2 E}}{I_{1 E}}=1$

CHARACTERISTICS of the complete device (continued)

## Equivalent circuit for drift

In the equivalent circuit the transistors are considered to be drift free
All temperature coefficients are concentrated in the voltage source $\frac{\Delta V}{\Delta T}$ and in the current source $\frac{\Delta \mathrm{I}}{\Delta \mathrm{T}}$.
It should be noted that the differential current change given is only valid when the source resistances are almost equal; the differential voltage change only when the base-emitter voltages are almost equal.


Block symbol of test amplifier
The test amplifier, used in the tests on page 5, is described on pages 6 and 7. It is represented by the following amplifier symbol:


CHARACTERISTICS of the complete device (continued)
Equivalent differential voltage change with temperature

			BCY87	BCY88	BCY89	
$\mathrm{T}_{\mathrm{amb}}=-20$ to $+90^{\circ} \mathrm{C}$	$\left\|\frac{\Delta V}{\Delta T}\right\|$	$\stackrel{\text { typ. }}{<}$	1 3	2	4 10	$\mu \mathrm{V} / \mathrm{o}_{\mathrm{C}}$   $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Equivalent differential current change with temperature						
Tamb $=-20$ to $+90^{\circ} \mathrm{C}$	$\left\|\frac{\Delta I}{\Delta T}\right\|$	$<$	0.5	2	10	$n A /{ }^{\circ} \mathrm{C}$

Test methods

$\frac{\Delta \mathrm{I}}{\Delta \mathrm{T}}$


NOTE
To prevent contact potentials, connections should be soldered.


Amplification factor determined by feedback circuit: $\frac{R 2}{R 1}=100$
Output voltage against time is recorded.
The temperature of the amplifier is adjusted to $\mathrm{T}_{1}$ between -20 and $+90^{\circ} \mathrm{C}$. When it has stabilized, the output voltage is brought to zero $\left(\left|\mathrm{V}_{\mathrm{T} 1}\right|<1 \mathrm{mV}\right) 1$ ). The amplifier temperature is then adjusted to T 2 between -20 and $+90^{\circ} \mathrm{C}$. When it has stabi lized the output voltage can be read off.

Then: $\frac{\Delta \mathrm{V}}{\Delta \mathrm{T}}=\frac{\mathrm{V}_{\mathrm{T} 2}-\mathrm{V}_{\mathrm{T}} 1}{\mathrm{~T}_{2}-\mathrm{T}_{1}} \cdot \frac{\mathrm{R} 1}{\mathrm{R} 2}$ or $\frac{\Delta \mathrm{I}}{\Delta \mathrm{T}}=\frac{\mathrm{V}_{\mathrm{T} 2}-\mathrm{V}_{\mathrm{T} 1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}} \cdot \frac{\mathrm{R} 1}{\mathrm{R} 2} \cdot \frac{1}{2 \mathrm{R}_{\mathrm{S}}}$

1) For $\frac{\Delta V}{\Delta T}$ : adjusted by RV1

For $\frac{\Delta I}{\Delta T}$ : first by RV1 with S1 and S2 closed, then by $R_{V 2}$ with the switches open.

## Differential test-amplifier

The test amplifier (including feedback resistors, source-resistors and biasingresistors) should be mounted in a small box to ensure a uniform temperature throughout.


[^25]
## Performance of the test amplifier

Open loop voltage gain ( $\mathrm{Z}_{\mathrm{L}}=10 \mathrm{k} \Omega$ )
Frequency at which $G_{V}=1$
Max. common mode input voltage range
Max. output current
Max. output voltage
Input resistance
Output resistance
Common mode rejection ratio

$G_{\mathrm{v}}$	typ.	$10^{5}$	
$\mathrm{f}_{1}$	typ.	10	MHz
		$\pm 10$	V
		$\pm 2.5$	mA
		$\pm 10$	V
$\mathrm{R}_{\mathrm{i}}$		100	$\mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{o}}$	typ.	20	$\mathrm{k} \Omega$
		$10^{5}$	



RATINGS (Limiting values) 1)
Voltages (each transistor)
Collector-base voltage (open emitter) VCBO max. 45 V
Collector-emitter voltage (open base)
$I_{C}=10 \mathrm{~mA}$
Emitter-base voltage (open collector)
Currents (each transistor)
Collector current (d.c.)
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$I_{C} \quad \max .30 \mathrm{~mA}$
$P_{\text {tot }} \quad \max . \quad 150 \mathrm{~mW}$
Temperatures
Storage temperature
Junction temperature
$\mathrm{T}_{\text {stg }} \quad \max .175{ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE
From junction to ambient
$R_{\text {th } \mathrm{j}-\mathrm{a}}=1{ }^{\circ} \mathrm{C} / \mathrm{mW}$

1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.


For data and curves of these types please refer to section Field effect transistors

# Microminiature devices for thick- and thin-film circuits 

## SOLDERING RECOMMENDATIONS

The gold-plated fernico tags are pre-tinned with a solder that melts at $185{ }^{\circ} \mathrm{C}$. The following recommendations are for soldering the semiconductors to glass substrates having vapour deposited resistors and tin-lead covered conductive patterns. To get reliable connections, keep the following points in mind:

1. The maximum solder temperature and the proper flux are important.

The flux must not affect the resistors, and its residue must be easy to remove. Use only rosin flux, which can be easily removed with butylacetate or xylene.
2. The temperature change during soldering must not be so severe as to strain the substrate.
3. The semiconductors must be accurately positioned on the substrate. The soldering tags must coincide exactly with the deposited conductors to avoid cracking the glass at high spots where the heated tags come in contact with it.
4. The softening point of the plastic encapsulation is $150^{\circ} \mathrm{C}$; take care to avoid dam aging it during the soldering procedure.
5. Use micro-soldering irons of 18-8 stainless steel. They should be designed so as to concentrate heat at the tip.
6 . With the tags at the maximum permissible temperature $\left(250^{\circ} \mathrm{C}\right)$ the maximum permissible soldering time is 10 s . The maximum permissible rate of temperature change is $25^{\circ} \mathrm{C} / \mathrm{s}$.

Procedure
Pre-heat the substrate to $100{ }^{\circ} \mathrm{C}$ (on a heating table). Pick up the semiconductor with a vacuum needle. Using a magnifier and a micromanupilator position it exactly in the required place and alignment, and deposit it on the substrate. Bring the three microsoldering irons into contact with the soldering tags and press them down firmly to ensure good heat transfer. Apply 20 W to each iron for 8 seconds.
This is sufficient to make the solder fluid for 3 seconds and assure good electrical contact; the junction temperature reaches $250^{\circ} \mathrm{C}$. To cool the solder below its melting point, allow a 3 to 5 second pause before removing the soldering irons.
With this method the encapsulation gets no hotter that the heating table ( $100{ }^{\circ} \mathrm{C}$ ) and, if the soldering time is not less than 8 seconds, there is little risk of damage to the substrate. The method is also recommended for replacing semiconductors.

Minimum required dimensions of metal connection pads on thick-and thin-film substrates


Hand soldering
It is possible to replace semiconductors with a hand-held miniature soldering iron, but the procedure has the following disadvantages:

- It is expensive and time consuming.
- The semiconductors cannot be positioned accurately, and therefore the connecting tags may come into contact with the substrate and damage it.
- There is a high risk of breaking either the substrate or the connections inside the encapsulation; the encapsulation may also be damaged by the iron.

The transistors in this chapter are also available with the base and emitter connections interchanged. These types are indicated by the letter R following the type number: e.g. BCW29R.

Type No.	Marking   code	Type No.	Marking   code
BAW56	A1		
BCW29	C1	BCW29R	C4
BCW30	C2	BCW30R	C5
BCW31	D1	BCW31R	D4
BCW32	D2	BCW32R	D5
BCW33	D3	BCW33R	D6
BCW69	H1	BCW69R	H4
BCW70	H2	BCW70R	H5
BCW71	K1	BCW71R	K4
BCW72	K2		KCW72R
BFR30	M1		
BFR31	M2	BFS17R	
BFS17	E1	BFS18R	E4
BFS18	F1		BFS20R
BFS19	F2		F5
BFS20	G1		G4
BSV52	B2		B4
BZX84-C4V7	Z1		
BZX84-C5V1	Z2		
BZX84-C5V6	Z3		
BZX84-C6V2	Z4		
BZX84-C6V8	Z5		
BZX84-C7V5	Z6		
BZX84-C8V2	Z7		
BZX84-C9V1	Z8	Z9	
BZX84-C10	Y2		
BZX84-C11	BZX84-C12		

## SILICON PLANAR EPITAXIAL HIGH SPEED DIODES

The BAW56 consists of two diodes in a micro miniature plastic envelope. The anodes are commoned and the unit is intended for high speed switching in thick and thin film circuits.

QUICK REFERENCE DATA						(per diode)
Continuous reverse voltage	$\mathrm{V}_{\mathrm{R}}$	max.	25	V		
Repetitive peak reverse voltage	$\mathrm{V}_{\mathrm{RRM}}$	max.	50	V		
Repetitive peak forward current	$\mathrm{I}_{\mathrm{FRM}}$	max.	100	mA		
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	-65 to +125	0 C			
Forward voltage at $\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<$	1.1	V		
Reverse recovery time when switched from						
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$   measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$						
Recovered charge when switched from   $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{t}_{\mathrm{rr}}$	$<$	6	ns		

## MECHANICAL DATA

Dimensions in mm
Code: Al


RATINGS (per diode) Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Continuous reverse voltage
Repetitive peak reverse voltage

VR	$\max$.	25	V
VRRM	$\max$.	50	V

## Currents

Averaged rectified forward current (averaged over any 20 ms period)
Forward current (d.c.)
Repetitive peak forward current

## Temperatures

Storage temperature
Junction temperature

IFAV	max.	50	mA
IF	max.	50	mA
IFRM	max.	100	mA

THERMAL RESISTANCE (per diode)
From junction to ambient mounted on a glass substrate of $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$
both diodes loaded simultaneously
one diode loaded
$R_{\text {th } j-a}=1.4{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$R_{\text {th } j-a}=0.9{ }^{\circ} \mathrm{C} / \mathrm{mW}$
mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$,
both diodes loaded simultaneously
one diode loaded
$R_{\text {th } j-a}=1.1{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$R_{\text {th j-a }}=0.67{ }^{\circ} \mathrm{C} / \mathrm{mW}$

[^26]CHARACTERISTICS (per diode)
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$I_{F}=1 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<715 \mathrm{mV}$
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<855 \mathrm{mV}$
$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<1100 \mathrm{mV}$
$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<1300 \mathrm{mV}$

## Reverse current

```
\(\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}\)
 \(\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}\)
 \(V_{R}=25 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}\)
\(\underline{\text { Diode capacitance }}\) at \(\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{R}}=0\)
\(\mathrm{I}_{\mathrm{R}}<8 \mu \mathrm{~A}\)
```

Forward recovery voltage

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}
$$

$$
\mathrm{V}_{\mathrm{FM}}<1.75 \mathrm{~V}
$$

## Test circuit:



Current pulse: Rise time $\quad \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$ Oscilloscope: Rise time $\mathrm{t}_{\mathrm{r}}=0.35 \mathrm{~ns}$ Pulse duration $\mathrm{t}_{\mathrm{p}}=120 \mathrm{~ns}$
Duty cycle $\delta=0.01$
Circuit capacitance $\mathrm{C}<1 \mathrm{pF}(\mathrm{C}=$ Oscilloscope + parasitical capacitance $)$

CHARACTERISTICS (continued)
Recovered charge when switched from

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega
$$

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

Test circuit:



Reverse pulse: Rise time $\quad \mathrm{t}_{\mathrm{r}}=2 \mathrm{~ns}$
Pulse duration $t_{p}=400 \mathrm{~ns}$
Duty cycle $\delta=0.02$
Circuit capacitance $\mathrm{C}<7 \mathrm{pF}$ ( $\mathrm{C}=$ Oscilloscope + parasitical capacitance)
Reverse recovery time when switched from

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=1 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=100 \Omega
$$

$$
\text { measured at } \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \quad \mathrm{t}_{\mathrm{rr}}<6 \mathrm{~ns}
$$

Test circuit:


Reverse pulse: Rise time $\quad \mathrm{t}_{\mathrm{r}}=0.6 \mathrm{~ns}$ Oscilloscope: Rise time $\mathrm{t}_{\mathrm{r}}=0.35 \mathrm{~ns}$
Pulse duration $\mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$
Duty cycle $\delta=0.05$
Circuit capacitance $\mathrm{C}<1 \mathrm{pF}$ ( $\mathrm{C}=$ Oscilloscope + parasitical capacitance)





## A.F. SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in a micro miniature plastic envelope.
They are intended for low level general purpose applications in thick and thin film circuits.

QUICK REFERENCE DATA					
		BCW29 ${ }^{\text {BCW }}$ 30			
Collector-base voltage (open emitter)	$-\mathrm{V}_{\mathrm{CBO}}$	max.	30	30	V
Collector-emitter voltage (open base)	$-\mathrm{V}_{\text {CEO }}$	$\max$.	20	20	V
Collector current (peak value)	$-^{-} \mathrm{ICM}$	max.	200	200	mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	150	150	mW
Junction temperature	Tj	max.	125	125	${ }^{\circ} \mathrm{C}$
D.C. current gain at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ $-\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	$\mathrm{h}_{\mathrm{FE}}$		$\begin{aligned} & 120 \\ & 260 \end{aligned}$	215 500	
Transition frequency at $\mathrm{f}=35 \mathrm{MHz}$ $-\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	${ }^{\mathrm{f}} \mathrm{T}$		150	150	MHz
$\begin{aligned} & \text { Noise figure at } \mathrm{R}_{\mathrm{S}}=2 \mathrm{k} \Omega \\ & -\mathrm{I}_{\mathrm{C}}=200 \mu \mathrm{~A} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} ; \mathrm{B}=200 \mathrm{~Hz} \end{aligned}$	F		10	10	dB

## MECHANICAL DATA

Code:
BCW29 C1
BCW30 C2


Dimensions in mm

## BCW 29

BCW 30

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

## Voltages

Collector-base voltage (open emitter)
Collector-emitter voltage ( $\mathrm{V}_{\mathrm{BE}}=0$ )
Collector-emitter voltage (open base)
$-\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$
Emitter-base voltage (open collector)

## Currents

Collector current (d.c.)
Collector current (peak value)

$-\mathrm{V}_{\text {CBO }}$	$\max$.	30	V
$-\mathrm{V}_{\text {CES }}$	$\max$.	30	V
$-\mathrm{V}_{\text {CEO }}$	$\max$.	20	V
$-\mathrm{V}_{\text {EBO }}$	$\max$.	5	V


${ }^{-I_{C}}$	$\max$.	50	mA
${ }^{-} \mathrm{I}_{\mathrm{CM}}$	$\max$.	200	mA

Power dissipation
Total power dissipation up to $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
$P_{\text {tot }} \quad \max . \quad 150 \mathrm{~mW}$

## Temperatures

Storage temperature
Junction temperature

$$
\begin{array}{llrl}
\mathrm{T}_{\text {stg }} & -65 \text { to }+125 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{j}} & \text { max. } 125 & \left.{ }^{\circ} \mathrm{C}{ }^{1}\right)
\end{array}
$$

## THERMAL RESISTANCE

From junction to ambient mounted on a glass substrate of $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$ mounted on ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {th } j-\mathrm{a}}=0.9{ }^{\circ} \mathrm{C} / \mathrm{mW} \\
& R_{\text {th } j-\mathrm{a}}=0.67{ }^{\circ} \mathrm{C} / \mathrm{mW}
\end{aligned}
$$

## CHARACTERISTICS

Collector cut-off current

$$
\begin{array}{rlrrr}
\mathrm{I}_{\mathrm{E}}=0 ;-\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25{ }^{\circ} \mathrm{C} & { }^{-} \mathrm{I}_{\mathrm{CBO}} & < & 100 \mathrm{nA} \\
\mathrm{~T}_{\mathrm{j}} & =100{ }^{\circ} \mathrm{C} & { }^{-\mathrm{I}_{\mathrm{CBO}}} & < & 10 \mathrm{~mA}
\end{array}
$$

Base-emitter voltage

$$
-\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad-\mathrm{V}_{\mathrm{BE}} \quad 600 \text { to } 750 \mathrm{mV}
$$

[^27]CHARACTERISTICS (continued)
Saturation voltages
${ }^{-I_{C}}=10 \mathrm{~mA} ;-I_{B}=0.5 \mathrm{~mA}$
${ }^{-I_{C}}=50 \mathrm{~mA} ;-\mathrm{I}_{\mathrm{B}}=2.5 \mathrm{~mA}$
D.C. current gain
$-\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
$-\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ;-\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}
$$

Transition frequency at $\mathrm{f}=35 \mathrm{MHz}$

$$
-\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

Noise figure at $\mathrm{R}_{\mathrm{S}}=2 \mathrm{k} \Omega$

$$
\begin{gathered}
{ }^{-\mathrm{I}_{\mathrm{C}}}=200 \mu \mathrm{~A} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
\mathrm{f}=1 \mathrm{kHz} ; \mathrm{B}=200 \mathrm{~Hz}
\end{gathered}
$$

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

	typ.   $-V_{\text {CEsat }}$   $<$	80	mV
m			


	BCW29	
	BCW30	
$\mathrm{h}_{\mathrm{FE}}$	typ. 90	150
	$>$	120
$\mathrm{~h}_{\mathrm{FE}}$	$<260$	500

$\mathrm{C}_{\mathrm{C}}<7.0 \mathrm{pF}$
$\mathrm{f}_{\mathrm{T}} \quad$ typ. 150 MHz
$\mathrm{F} \quad<10 \mathrm{~dB}^{1}$ )
${ }^{1}$ ) Crystal mounted in a BC177 envelope.

Typical behaviour of collector current versus collector-emitter voltage








## A.F. SILICON PLANAR EPITAXIAL TRANSISTORS

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ transistors in a micro miniature plastic envelope.
They are intended for low level general purpose applications in thick and thin film circuits.

QUICK REFERENCE DATA					
		BCW31	BCW32	BCW33	
Collector-base voltage (open emitter)	$\mathrm{V}_{\text {CBO }}$	max. 30	30	30	V
Collector-emitter voltage (open base)	$\mathrm{V}_{\text {CEO }}$	max. 20	20	20	V
Collector current (peak value)	$\mathrm{I}_{\mathrm{CM}}$	max. 200	200	200	mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max. 150	150	150	mW
Junction temperature	T ${ }_{\text {j }}$	max. 125	125	125	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { D.C. current gain at } T_{j}=25{ }^{\circ} \mathrm{C} \\ & I_{C}=2 \mathrm{~mA}: V_{C E}=5 \mathrm{~V} \end{aligned}$	$\mathrm{h}_{\mathrm{FE}}$	$>$ $<$ 110	200 450	420 800	
$\begin{aligned} & \text { Transition frequency at } \mathrm{f}=35 \mathrm{MHz} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	${ }^{\text {f }}$ T	typ. 300	300	300	MHz
$\begin{aligned} & \text { Noise figure at } \mathrm{R}_{\mathrm{S}}=2 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{C}}=200 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} ; \mathrm{B}=200 \mathrm{~Hz} \end{aligned}$	F	$<\quad 10$	10	10	dB

## MECHANICAL DATA

Dimensions in mm
Code:
BCW31 D1
BCW32 D2
BCW33 D3


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Collector-base voltage (open emitter)
$\mathrm{V}_{\mathrm{CBO}} \max .30 \mathrm{~V}$
Collector-emitter voltage (open base)
$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$
Emitter-base voltage (open collector)

$\mathrm{V}_{\text {CEO }}$	$\max$.	20	V
$\mathrm{~V}_{\mathrm{EBO}}$	$\max$.	5	V

## Currents

Collector current (d.c.)
Collector current (peak value)

$\mathrm{I}_{\mathrm{C}}$	$\max$.	50	mA
$\mathrm{I}_{\mathrm{CM}}$	$\max$.	200	mA

## Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
$P_{\text {tot }} \quad \max . \quad 150 \mathrm{~mW}$

## Temperatures

Storage temperature
Junction temperature


## THERMAL RESISTANCE

From junction to ambient mounted on a glass substrate of $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$ mounted on ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {th } j-a}=0.9{ }^{\circ} \mathrm{C} / \mathrm{mW} \\
& R_{\text {th } j-a}=0.67{ }^{\circ} \mathrm{C} / \mathrm{mW}
\end{aligned}
$$

## CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Collector cut-off current
$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$
$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$

| $\mathrm{I}_{\mathrm{CBO}}$ | $<$ | 100 nA |
| ---: | :--- | ---: | ---: |
| $\mathrm{I}_{\mathrm{CBO}}$ | $<$ | 10 mA |

Base-emitter voltage
$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{BE}} \quad 550$ to 700 mV

[^28]CHARACTERISTICS (continued)
Saturation voltages

$$
\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}
$$

$$
\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=2.5 \mathrm{~mA}
$$

D.C. current gain

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
\end{aligned}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

	typ.   V CEsat	120	mV
$<$	250	mV	
$V_{\text {BEsat }}$	typ.	750	mV
$V_{\text {CEsat }}$	typ.	230	mV
$V_{\text {BEsat }}$	typ.	870	mV


BCW31	BCW 32	BCW33
typ. 90	150	270
$>110$	200	420
< 220	450	800

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}
$$

Transition frequency at $\mathrm{f}=35 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

Noise figure at $\mathrm{R}_{\mathrm{S}}=2 \mathrm{k} \Omega$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=200 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{f}=1 \mathrm{kHz} ; \mathrm{B}=200 \mathrm{~Hz}
\end{aligned}
$$

liver
fT typ. 300 MHz

$$
\left.\mathrm{F} \quad<\quad 10 \mathrm{~dB}^{1}\right)
$$

Typical behaviour of collector current versus collector-emitter voltage








## A.F. SILICON PLANAR EPITAXIAL TRANSISTORS

$\mathrm{P}-\mathrm{N}-\mathrm{P}$ transistors in a micro miniature plastic envelope.
They are intended for low level general purpose applications in thick and thin film circuits.

QUICK REFERENCE DATA					
			BCW69	BCW70	
Collector-base voltage (open emitter)	$-\mathrm{V}_{\text {CBO }}$	max.	- 50	50	V
Collector-emitter voltage (open base)	$-\mathrm{V}_{\text {CEO }}$	$\max$.	. 45	45	V
Collector current (peak value)	${ }^{-1} \mathrm{CM}$	max.	. 200	200	mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	. 150	150	mW
Junction temperature	Tj	max.	. 125	125	${ }^{\circ} \mathrm{C}$
D. C. current gain at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ ${ }^{-\mathrm{I}_{\mathrm{C}}}=2 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	$h_{\text {FE }}$		$\begin{aligned} & 120 \\ & 260 \end{aligned}$	$\begin{aligned} & 215 \\ & 500 \end{aligned}$	
Transition frequency at $\mathrm{f}=35 \mathrm{MHz}$ $-\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	${ }^{\text {f }}$ T		150	150	MHz
$\begin{aligned} & \text { Noise figure at } \mathrm{R}_{\mathrm{S}}=2 \mathrm{k} 2 \\ & -\mathrm{I}_{\mathrm{C}}=200 \mu \mathrm{~A} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} ; \mathrm{B}=200 \mathrm{~Hz} \end{aligned}$	F		10	10	dB

## MECHANICAL DATA

Code:
BCW69 H1
BCW70 H2


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages

Collector-base voltage (open emitter)	$-\mathrm{V}_{\mathrm{CBO}}$	$\max$.	50	V
Collector-emitter voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$	$-\mathrm{V}_{\mathrm{CES}}$	$\max$.	50	V
Collector-emitter voltage (open base)   $-\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$				
Emitter-base voltage (open collector)	$-\mathrm{V}_{\mathrm{CEO}}$	$\max$.	45	V
	$-\mathrm{V}_{\text {EBO }}$	$\max$.	5	V

## Currents

Collector current (d.c.) $\quad{ }^{-} \mathrm{I}_{\mathrm{C}} \quad \max .50 \mathrm{~mA}$
Collector current (peak value)
${ }^{-1} \mathrm{CM}$ max. 200 mA

## Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$

$$
P_{\text {tot }} \quad \max . \quad 150 \mathrm{~mW}
$$

## Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	max.	125	$\left.{ }^{\circ} \mathrm{C}{ }^{1}\right)$

## THERMAL RESISTANCE

From junction to ambient mounted on a glass substrate of $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$
$R_{\text {th j-a }}=0.9{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$R_{\text {th } \mathrm{j}-\mathrm{a}}=0.67{ }^{\circ} \mathrm{C} / \mathrm{mW}$

## CHARACTERISTICS

Collector cut-off current

$$
\begin{array}{cccrc}
\mathrm{I}_{\mathrm{E}}=0 ;-\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} & -\mathrm{I}_{\mathrm{CBO}} & < & 100 \mathrm{nA} \\
\mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} & { }^{-\mathrm{I}_{\mathrm{CBO}}} & < & 10 \mathrm{~mA} \\
\frac{\text { Base-emitter voltage }}{-\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CE}}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} & -\mathrm{V}_{\mathrm{BE}} & 600 \text { to } & 750 \mathrm{mV}
\end{array}
$$

[^29]
## CHARACTERISTICS (continued)

Saturation voltages

$$
\begin{aligned}
& -\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ;-\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA} \\
& { }^{-\mathrm{I}_{\mathrm{C}}}=50 \mathrm{~mA} ;-\mathrm{I}_{\mathrm{B}}=2.5 \mathrm{~mA}
\end{aligned}
$$

D. C. current gain

$$
\begin{aligned}
& -\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& -\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
\end{aligned}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ;-\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}
$$

Transition frequency at $\mathrm{f}=35 \mathrm{MHz}$

$$
-\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

Noise figure at $\mathrm{R}_{\mathrm{S}}=2 \mathrm{k} \Omega$

$$
\begin{gathered}
{ }^{-\mathrm{I}_{\mathrm{C}}}=200 \mu \mathrm{~A} ;-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
\mathrm{f}=1 \mathrm{kHz} ; \mathrm{B}=200 \mathrm{~Hz}
\end{gathered}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

	typ.	80	mV
$-\mathrm{V}_{\text {CEsat }}$	$<$   $<$	300	mV
$-V_{\text {BEsat }}$	typ.	720	mV
$-\mathrm{V}_{\text {CEsat }}$	typ.	180	mV
$-\mathrm{V}_{\text {BEsat }}$	typ.	810	mV


		BCW69	BCW70
	typ.	90	150
$h_{\text {FE }}$	$>$	$\underbrace{120}$	215
$h_{\text {FE }}$	$<$	500	

$\mathrm{C}_{\mathrm{c}}$
$<7.0 \mathrm{pF}$
$\mathrm{f}_{\mathrm{T}} \quad$ typ. $\quad 150 \mathrm{MHz}$

F $\quad<\quad 10 \quad \mathrm{~dB}^{1}$ )

1) Crystal mounted in a BC177 envelope.

Typical behaviour of collector current versus collector-emitter voltage










## A.F. SILICON PLANAR EPITAXIAL TRANSISTORS

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ transistors in a micro miniature plastic envelope.
They are intended for low level general purpose applications in thick and thin film circuits.

QUICK REFERENCE DATA					
			BCW71	BCW72	
Collector-base voltage (open emitter)	$\mathrm{V}_{\text {CBO }}$	max.	50		V
Collector-emitter voltage (open base)	$\mathrm{V}_{\text {CEO }}$	$\max$.	45	45	V
Collector current (peak value)	${ }^{\text {I }} \mathrm{CM}$	max.	200	200	mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	150		mW
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	125	125	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { D. C. current gain at } \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	$\mathrm{h}_{\mathrm{FE}}$		110 220	200 450	
Transition frequency at $\mathrm{f}=35 \mathrm{MHz}$ $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	$\mathrm{f}_{\mathrm{T}}$	typ.	300		MHz
$\begin{gathered} \text { Noise figure at } \mathrm{R}_{\mathrm{S}}=2 \mathrm{k} \Omega \\ \mathrm{I}_{\mathrm{C}}=200 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{kHz} ; \mathrm{B}=200 \mathrm{~Hz} \end{gathered}$	F		$10^{\circ}$	10	dB*

## MECHANICAL DATA

Code:
BCW71 K1
BCW72 K2


Dimensions in mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Collector-base voltage (open emitter)	$\mathrm{V}_{\mathrm{CBO}}$	$\max$.	50	V
Collector-emitter voltage (open base)   $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$				
Emitter-base voltage (open collector)	$\mathrm{V}_{\mathrm{CEO}}$	$\max$.	45	V
Currents	$\mathrm{V}_{\mathrm{EBO}}$	$\max$.	5	V
Collector current (d.c.)				
Collector current (peak value)	$\mathrm{I}_{\mathrm{C}}$	$\max$.	50	mA
	$\mathrm{I}_{\mathrm{CM}}$	$\max$.	200	mA

## Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
$\mathrm{P}_{\text {tot }} \quad \max . \quad 150 \mathrm{~mW}$

## Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{j}}$	$\max$.	125	$\left.{ }^{\circ} \mathrm{C}{ }^{1}\right)$

## THERMAL RESISTANCE

From junction to ambient mounted on a glass substrate of $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$
mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {th } \mathrm{j}-\mathrm{a}}=0.9{ }^{\circ} \mathrm{C} / \mathrm{mW} \\
& R_{\text {th } j-\mathrm{a}}=0.67{ }^{\circ} \mathrm{C} / \mathrm{mW}
\end{aligned}
$$

## CHARACTERISTICS

Collector cut-off current
$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}$
${ }^{\mathrm{I}} \mathrm{E}=0 ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$
Base emitter voltage
$\mathrm{V}_{\mathrm{BE}} \quad 550$ to 700 mV

[^30]
## CHARACTERISTICS (continued)

Saturation voltages

$$
\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}
$$

$$
\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=2.5 \mathrm{~mA}
$$

D. C. current gain

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
\end{aligned}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}
$$

Transition frequency at $\mathrm{f}=35 \mathrm{MHz}$

$$
{ }^{I_{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

Noise figure at $\mathrm{R}_{\mathrm{S}}=2 \mathrm{k} \Omega$

$$
{ }^{I_{C}}=200 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

$$
\mathrm{f}=1 \mathrm{kHz} ; \mathrm{B}=200 \mathrm{~Hz}
$$

## $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

	typ.   V CEsat	120   mV   $<$	250
mV			
$V_{\text {BEsat }}$	typ.	750	mV

${ }^{V}$ CEsat typ. 230 mV
$V_{\text {BEsat }}$ typ. 870 mV

		BCW71	BCW72
$\mathrm{h}_{\mathrm{FE}}$	typ.	90	150
	$>$	110	200
$\mathrm{~h}_{\mathrm{FE}}$	$<$	$\underbrace{220}$	450

$\mathrm{C}_{\mathrm{c}} \quad<\quad 4.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{C}} \quad<4.0 \mathrm{pF}$
$\mathrm{f}_{\mathrm{T}}$
typ. 300 MHz
$<\quad 10 \mathrm{~dB}^{1}$ )
$\overline{1_{)} \text {Crystal mounted in a } \mathrm{BC} 107 \text { envelope. }}$

Typical behaviour of collector current versus collector-emitter voltage









## N-CHANNEL SILICON FIELD EFFECT TRANSISTOR

Planar epitaxial junction field effect transistor in a micro miniature plastic envelope. It is intended for low level general purpose amplifiers in thick- and thin-film circuits.


## MECHANICAL DATA

Code:
BFR30 M1
BFR31 M2


Dimensions in mm

## MOUNTING METHODS see page 4.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Drain-source voltage
Drain-gate voltage (open source)
Gate-source voltage (open drain)

$\pm \mathrm{V}_{\text {DS }}$	max.	25	V
$\mathrm{~V}_{\text {DGO }}$	max.	25	V
$-\mathrm{V}_{\text {GSO }}$	max.	25	V

## Current

Drain current
Gate current
ID max. 10 mA
$\mathrm{I}_{\mathrm{G}} \quad \max \quad 5 \mathrm{~mA}$
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm} \quad \mathrm{P}_{\text {tot }} \quad \max .150 \mathrm{~mW}$

Temperatures
Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65	${ }^{\circ} \mathrm{C}$
T ${ }_{\text {j }}$	max.	${ }^{\circ} \mathrm{C}{ }^{1}$ )

THERMAL RESISTANCE
From junction to ambient
mounted on a glass substrate of $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$
mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
$R_{\text {th j-a }}=0.9{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$R_{\text {th } j-a}=0.67{ }^{\circ} \mathrm{C} / \mathrm{mW}$

[^31]
## CHARACTERISTICS

Gate cut-off current

$$
-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0
$$

## Drain current

$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$

## Gate-source voltage

$$
\begin{aligned}
& I_{D}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}
\end{aligned}
$$

## Gate-source cut-off voltage

$I_{D}=0.5 \mathrm{nA} ; V_{D S}=10 \mathrm{~V}$

$$
-\mathrm{V}_{(\mathrm{P}) \mathrm{GS}}
$$

## y parameters

Transfer admittance at $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

$$
\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$\mathrm{I}_{\mathrm{GSS}}<$$\quad$| BFR 30 | BFR31 |
| :---: | :---: |
| 0.2 | 0.2 nA |

$$
\left|y_{\mathrm{f}_{s}}\right|
$$

## MOUNTING METHODS

Minimum required dimensions
of metal connection pads on thickand thin-film substrates.


## Soldering

The leads are covered with a solder material of which the melting point is $185^{\circ} \mathrm{C}$. At a maximum lead temperature of $250^{\circ} \mathrm{C}$, the maximum permissible soldering time is 10 s .
The maximum temperature gradient is $25^{\circ} \mathrm{C} / \mathrm{s}$.



## BFR30; BFR31









## BFR30; BFR31





## SILICON PLANAR EPITAXIAL TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ transistor in a micro miniature plastic envelope.
It is intended for a wide range of v.h.f. and u.h.f. applications in thick and thin film circuits.

QUICK REFERENCE DATA				
Collector-base voltage (open emitter; peak value)	$\mathrm{V}_{\text {CBOM }}$	max.	25	V
Collector-emitter voltage (open base)	$\mathrm{V}_{\text {CEO }}$	max.	15	V
Collector current (peak value)	$\mathrm{I}_{\mathrm{CM}}$	max.	50	mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	150	mW
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	125	${ }^{\circ} \mathrm{C}$
D.C. current gain $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}$	$\mathrm{h}_{\mathrm{FE}}$	20 to		
Transition frequency $\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=500 \mathrm{MHz}$	f T	typ.	1.3	GHz
Noise figure $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega ; \mathrm{f}=500 \mathrm{MHz} \end{aligned}$	F	typ.	4.5	dB

## MECHANICAL DATA

Code: El


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

## Voltages

Collector-base voltage (open emitter; peak value) $\mathrm{V}_{\mathrm{CBOM}} \max .25 \mathrm{~V}$
Collector-emitter voltage (open base)

$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{CEO}}$	$\max$.	15	V
Emitter-base voltage (open collector)	$\mathrm{V}_{\mathrm{EBO}}$	$\max$.	2.5	V

## Currents

Collector current (d.c.) $\mathrm{I}_{\mathrm{C}} \max .25 \mathrm{~mA}$
Collector current (peak value)
$\mathrm{I}_{\mathrm{CM}} \max . \quad 50 \mathrm{~mA}$

## Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ $P_{\text {tot }} \quad \max . \quad 150 \mathrm{~mW}$

## Temperatures

Storage temperature Junction temperature

$$
\left.\begin{array}{lll}
\mathrm{T}_{\text {stg }} & -65 \text { to }+125 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{j}} & \max . & 125
\end{array}{ }^{\circ} \mathrm{C}{ }^{1}\right)
$$

## THERMAL RESISTANCE

From junction to ambient mounted on a glass substrate of $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$
mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {th } j-a}=0.9{ }^{\circ} \mathrm{C} / \mathrm{mW} \\
& R_{\text {th } j-a}=0.67{ }^{\circ} \mathrm{C} / \mathrm{mW}
\end{aligned}
$$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Collector cut-off current

$$
\begin{array}{llll}
\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} & \mathrm{I}_{\mathrm{CBO}} & < & 10 \mathrm{nA} \\
\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=100{ }^{\circ} \mathrm{C} & \mathrm{I}_{\mathrm{CBO}} & < & 10 \mu \mathrm{~A}
\end{array}
$$

D.C. current gain
$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}$

$$
\begin{array}{lll}
\mathrm{h}_{\mathrm{FE}} \\
\mathrm{~h}_{\mathrm{FE}} & > & 20 \text { to } \\
\hline
\end{array}
$$

[^32]CHARACTERISTICS (continued)
Transition frequency

$$
\begin{aligned}
& I_{C}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=500 \mathrm{MHz} \\
& \mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=500 \mathrm{MHz}
\end{aligned}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}
$$

Emitter capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
I_{C}=I_{C}=0 ; V_{E B}=0.5 \mathrm{~V}
$$

$$
\mathrm{C}_{\mathrm{e}}<2.0 \mathrm{pF}
$$

Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

## Noise figure

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{f}=500 \mathrm{MHz} ; \mathrm{R}_{\mathrm{S}}=50 \Omega
\end{aligned}
$$

## Intermodulation distortion

$$
\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=37.5 \Omega ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}
$$

$$
\mathrm{V}_{\mathrm{O}}=100 \mathrm{mV} \text { at } \mathrm{f}_{\mathrm{p}}=183 \mathrm{MHz}
$$

$$
\mathrm{V}_{\mathrm{o}}=100 \mathrm{mV} \text { at } \mathrm{f}_{\mathrm{q}}=200 \mathrm{MHz}
$$

$$
\text { measured at } f(2 q-p)=217 \mathrm{MHz} \quad \mathrm{~d}_{\mathrm{im}} \quad \text { typ. }-45 \mathrm{~dB}
$$

${ }^{1}$ ) Crystal mounted in a BFY90 envelope.










## SILICON PLANAR EPITAXIAL TRANSISTORS

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ transistors in a micro miniature plastic envelope.
They are intended for general purpose and h.f. applications in thick and thin film circuits.

QUICK REFERENCE DATA			
Collector-base voltage (open emitter)	$\mathrm{V}_{\mathrm{CBO}}$	max.	30 V
Collector-emitter voltage (open base)	$\mathrm{v}_{\mathrm{CEO}}$	max.	20 V
Collector current (d.c.)	$\mathrm{I}_{\mathrm{C}}$	max.	30 mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	150 mW
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	$125{ }^{\circ} \mathrm{C}$
D.C. current gain		BFS18	BFS19
$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$	hFE	35 to 125	65 to 225
Transition frequency at $f=100 \mathrm{MHz}$			
${ }^{\mathrm{I}} \mathrm{C}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$	$\mathrm{f}_{\mathrm{T}}$	typ. 200	260 MHz
Noise figure at $\mathrm{f}=100 \mathrm{MHz}$			
$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{G}_{\mathrm{S}}=10 \mathrm{~m} \Omega^{-1}$	F	typ.	4 dB

## MECHANICAL DATA

Dimensions in mm

## Code:

BFS18 F1
BFS19 F2


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
$I_{C}=2 \mathrm{~mA}$
Emitter-base voltage (open collector)
$\mathrm{V}_{\mathrm{CBO}}$ max. 30 V

Currents
Collector current (d.c.)
Colector current (peak value)

$\mathrm{I}_{\mathrm{C}}$	max.	30	mA
$\mathrm{I}_{\mathrm{CM}}$	max.	30	mA

Power dissipation
Total power dissipation up to $\mathrm{Tamb}=25{ }^{\circ} \mathrm{C}$
mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
$P_{\text {tot }} \quad \max . \quad 150 \mathrm{~mW}$
Temperatures
Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	$\max$.	125

## THERMAL RESISTANCE

From junction to ambient
mounted on a glass substrate of
$5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$
mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {th } j-\mathrm{a}}=0.9{ }^{\circ} \mathrm{C} / \mathrm{mW} \\
& \text { Rth j-a }=0.67{ }^{\circ} \mathrm{C} / \mathrm{mW}
\end{aligned}
$$

## CHARACTERISTICS

Collector cut-off current

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}
\end{aligned}
$$

Base-emitter voltage
$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BE}}$
0.65 to 0.74 V

1) For highly professional applications it is advisable not to exceed a maximum junction temperature of $100^{\circ} \mathrm{C}$.

## CHARACTERISTICS (continued)

## D.C. current gain

$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$
Transition frequency at $\mathrm{f}=100 \mathrm{MHz}$ $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}
$$

$\mathrm{C}_{\mathrm{C}} \quad$ typ.
1 pF
Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} \quad-\mathrm{C}_{\mathrm{re}} \quad \text { typ. } 0.85 \quad \mathrm{pF}
$$

Noise figure

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} \\
& \mathrm{GS}=10 \mathrm{~m} \Omega^{-1} ; \mathrm{f}=100 \mathrm{MHz}
\end{aligned}
$$

typ.
4
dB 1)

1) Crystal mounted in a BF115 envelope.

Typical behaviour of collector current versus collector-emitter voltage


7Z10174







## SILICON PLANAR EPITAXIAL TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ transistor in a micro miniature plastic envelope.
It has a very low feedback capacitance and is intended fori.f. andv.h.f. applications in thick and thin film circuit.


## MECHANICAL DATA

Dimensions in mm
Code: Gl


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Collector-base voltage (open emitter)
$\mathrm{V}_{\mathrm{CBO}} \quad \max .30 \mathrm{~V}$
Collector-emitter voltage (open base)
$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$
Emitter-base voltage (open collector)

$V_{\text {CEO }}$	$\max$.	20	V
$V_{\text {EBO }}$	$\max$.	4	V

## Currents

Collector current (d.c.)
Collector current (peak value)

$I_{C}$	$\max$.	25	mA
$\mathrm{I}_{\mathrm{CM}}$	$\max$.	25	mA

Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
$P_{\text {tot }} \quad \max . \quad 150 \mathrm{~mW}$

## Temperatures

Storage temperature
Junction temperature

$$
\begin{array}{llrl}
\mathrm{T}_{\text {stg }} & -65 \text { to }+125 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{j}} & \text { max. } 125 & { }^{\circ} \mathrm{C}
\end{array}
$$

## THERMAL RESISTANCE

From junction to ambient
mounted on a glass substrate of $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$ $R_{\text {th } \mathrm{j}-\mathrm{a}}=0.9{ }^{\circ} \mathrm{C} / \mathrm{mW}$
mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm} \mathrm{~m}$
$R_{\text {th j-a }}=0.67{ }^{\circ} \mathrm{C} / \mathrm{mW}$

[^33]
## CHARACTERISTICS

Collector cut-off current

$$
\begin{aligned}
& I_{E}=0 ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} \\
& I_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}
\end{aligned}
$$

Base-emitter voltage
$\mathrm{I}_{\mathrm{C}}=7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$
D.C. current gain

$$
\mathrm{I}_{\mathrm{C}}=7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}
$$

Transition frequency at $\mathrm{f}=100 \mathrm{MHz}$ $I_{C}=5 \mathrm{~mA} ; V_{C E}=10 \mathrm{~V}$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}
$$

Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
I_{C}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}
$$

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
$\mathrm{I}_{\mathrm{CBO}}<r 100 \mathrm{nA}$
$\mathrm{I}_{\mathrm{CBO}}<10 \mathrm{~mA}$

VBE typ. 740 mV
VE $<900 \mathrm{mV}$
$\begin{array}{lll} & & \\ h_{\mathrm{FE}} & \text { typ. } & 40 \\ & 85\end{array}$
$\mathrm{f}_{\mathrm{T}} \quad \begin{aligned} & > \\ & \text { typ. }\end{aligned} \begin{array}{rl}275 & \mathrm{MHz} \\ 450 & \mathrm{MHz}\end{array}$
$\mathrm{C}_{\mathrm{C}} \quad$ typ. 0.8 pF
-Cre typ. 350 fF







## SILICON PLANAR EPITAXIAL HIGH SPEED SWITCHING TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ transistor in a microminiature plastic envelope. It is intended for very highspeed saturated switching in thick and thin film circuits.

QUICK REFERENCE DATA				
Collector-base voltage (open emitter)	$\mathrm{V}_{\mathrm{CBO}}$	max.	20	V
Collector-emitter voltage ( $\mathrm{V}_{\mathrm{BE}}=0$ )	$\mathrm{V}_{\text {CES }}$	max .	20	V
Collector-emitter voltage (open base)	$\mathrm{V}_{\text {CEO }}$	max.	12	V
Collector current (peak value)	$\mathrm{I}_{\mathrm{CM}}$	max	200	mA
Total power dissipation up to $\mathrm{Tamb}=25{ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	150	mW
Junction temperature	T ${ }_{\text {j }}$	-65 to	125	${ }^{\circ} \mathrm{C}$
D.C. current gain				
$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}$	$\mathrm{h}_{\mathrm{FE}}$	40 to	120	
$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}$	$\mathrm{h}_{\mathrm{FE}}$	$>$	25	
Transition frequency at $\mathrm{f}=100 \mathrm{MHz}$ $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$	${ }^{\text {f }}$ T	$>$ typ.	400 500	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Storage time				
$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{B}}=-\mathrm{I}_{\mathrm{BM}}=10 \mathrm{~mA}$	$\mathrm{t}_{S}$	$<$	13	ns

## MECHANICAL DATA

Dimensions in mm
Code: B2


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages
Collector-base voltage (open emitter)
Collector-emitter voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$
Collector-emitter voltage (open base)
${ }^{I_{C}}=10 \mathrm{~mA}$
Emitter-base voltage (open collector)

## Currents

Collector current (d.c.)
Collector current (peak value)

$\mathrm{V}_{\mathrm{CBO}}$	max.	20	V
$\mathrm{~V}_{\mathrm{CES}}$	$\max$.	20	V
$\mathrm{~V}_{\mathrm{CEO}}$	$\max$.	12	V
$\mathrm{~V}_{\text {EBO }}$	$\max$.	5	V

Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm} \quad \mathrm{P}_{\text {tot }} \max .150 \mathrm{~mW}$

## Temperatures

Storage temperature
Junction temperature
$\mathrm{I}_{\mathrm{C}} \quad \max . \quad 50 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{CM}} \quad \max .200 \mathrm{~mA}$

## THERMAL RESISTANCE

From junction to ambient mounted on a glass substrate of
$5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$
mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ m
$R_{\text {th } \mathrm{j}-\mathrm{a}}=0.9{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$R_{\text {th j-a }}=0.67{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Collector cut-off current

$$
\begin{array}{llr}
\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} & \mathrm{I}_{\mathrm{CBO}} & < \\
\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125{ }^{\circ} \mathrm{C} & \mathrm{I}_{\mathrm{CBO}} & <
\end{array}
$$

## Saturation voltages

$$
\begin{array}{llrl}
\mathrm{I}_{\mathrm{C}} & =10 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=300 \mu \mathrm{~A} & V_{\text {CEsat }}< & 300 \mathrm{mV} \\
\mathrm{I}_{\mathrm{C}} & =10 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA} & V_{\text {CEsat }}< & 250 \mathrm{mV} \\
& V_{\text {BEsat }} & 700 \text { to } 850 \mathrm{mV} \\
\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA} & V_{\text {CEsat }}< & 400 \mathrm{mV} \\
& \text { VBEsat }<8 & 1200 \mathrm{mV}
\end{array}
$$

1) For highly professional applications it is advisable not to exceed a max. junction temperature of $100^{\circ} \mathrm{C}$.

## CHARACTERISTICS (continued)

## D.C. current gain

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}
\end{aligned}
$$

Transition frequency at $\mathrm{f}=100 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}
$$

Emitter capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}}=0 ; \mathrm{V}_{\mathrm{EB}}=1 \mathrm{~V}
$$

Switching times

Storage time $I_{C}=I_{B}=-I_{B M}=10 \mathrm{~mA}$
Test circuit:

hFE > 25
$h_{\text {FE }} \quad 40$ to 120
$\mathrm{h}_{\mathrm{FE}} \gg 25$
$\begin{array}{llll}f_{\mathrm{T}} & > & 400 & \mathrm{MHz} \\ & \text { typ. } & 500 & \mathrm{MHz}\end{array}$

$$
\mathrm{C}_{\mathrm{C}} \quad<\quad 4 \mathrm{pF}
$$

$$
\mathrm{C}_{\mathrm{e}}<4.5 \mathrm{pF}
$$

$<\quad 13 \mathrm{~ns}$


Pulse generator:
Rise time
Pulse duration
Duty cycle
Source impedance

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{r}}<1 \mathrm{~ns} \\
& \mathrm{t}>300 \mathrm{~ns} \\
& \delta<0.02 \\
& \mathrm{R}_{\mathrm{S}}=50 \Omega
\end{aligned}
$$

Oscilloscope:
Input impedance $\quad R_{i}=50 \Omega$
Rise time $\quad \mathrm{t}_{\mathrm{r}}<1 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{r}}<1 \mathrm{~ns}$

CHARACTERISTICS (continued)
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

## Switching times

Turn on time when switched from
$-\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V}$ to $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=3 \mathrm{~mA} \quad \mathrm{t}_{\mathrm{on}}<12 \mathrm{~ns}$
Turn off time when switched from

$$
\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=3 \mathrm{~mA}
$$

$$
\text { to cut-off with }-\mathrm{I}_{\mathrm{BM}}=1.5 \mathrm{~mA} \quad \mathrm{t}_{\text {off }}<18 \mathrm{~ns}
$$

Test circuit:



Pulse generator:
Oscilloscope:

Rise time	$\mathrm{t}_{\mathrm{r}}<\quad 1 \mathrm{~ns}$
Pulse duration	$\mathrm{t}>300 \mathrm{~ns}$
Duty cycle	$\delta<0.02$
Source impedance	$\mathrm{R}_{\mathrm{S}}=50 \Omega$


Input impedance	$\mathrm{R}_{\mathrm{i}}=50 \Omega$
Rise time	$\mathrm{t}_{\mathrm{r}}<1 \mathrm{~ns}$


							turn on time			turn off time	
$\begin{gathered} \mathrm{I}_{\mathrm{C}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{aligned} & -\mathrm{I}_{\mathrm{BM}} \\ & (\mathrm{~mA}) \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}$   (V)	$\begin{gathered} \mathrm{R}_{1} ; \mathrm{R}_{2} \\ (\mathrm{k} \Omega) \end{gathered}$	$\begin{aligned} & \mathrm{R}_{3} \\ & (\Omega) \end{aligned}$	R4 $(\Omega)$	$-V_{B B}$   (V)	$-V_{B E}$   (V)	$\begin{gathered} \mathrm{V}_{\mathrm{i}} \\ (\mathrm{~V}) \end{gathered}$	$-\mathrm{V}_{\mathrm{BB}}$   (V)	$-\mathrm{V}_{\mathrm{i}}$   (V)
10	3	1.5	3	3.3	50	220	3.0	1.5	15	12.0	15

## Note

$-I_{B M}$ is the reverse current that can flow during switching off. The indicated $-I_{B M}$ is determined and limited by the applied cut-off voltage and series resistance.










## SILICON PLANAR VOLTAGE REFERENCE DIODES

Low power general purpose voltage reference diodes in a micro miniature plastic envelope intended for application in thick - and thin -film circuits.
The series covers the whole normalized range of nominal zener voltages from 4.7 V to 12 V with a tolerance of $\pm 5 \%$.

QUICK REFERENCE DATA					
Zener voltage range		nom.	4.7 to 12 V		
Zener voltage tolerance			$\pm 5 \%$		
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	$\max$.	150 mW		
Junction temperature		$\mathrm{T}_{\mathrm{j}}$	$\max$.		

## MECHANICAL DATA

Code:

$$
\begin{array}{ll}
\text { BZX84-C4V7 } & \text { Z1 } \\
\text { BZX84-C5V1 } & \text { Z2 } \\
\text { BZX84-C5V6 } & \text { Z3 } \\
\text { BZX84-C6V2 } & \text { Z4 } \\
\text { BZX84-C6V8 } & \text { Z5 } \\
\text { BZX84-C7V5 } & \text { Z6 } \\
\text { BZX84-C8V2 } & \text { Z7 } \\
\text { BZX84-C9V1 } & \text { Z8 } \\
\text { BZX84-C10 } & \text { Z9 } \\
\text { BZX84-C11 } & \text { Y1 } \\
\text { BZX84-C12 } & \text { Y2 }
\end{array}
$$



RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Currents

Repetitive peak forward current $\quad$ IFRM max. 100 mA

Repetitive peak zener current
IZRM max. 100 mA

## Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
mounted on a glass substrate of $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm} \quad \mathrm{P}_{\text {tot }} \max \quad 110 \mathrm{~mW}$
mounted on a ceramic substrate of $7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ $P_{\text {tot }} \quad \max .150 \quad \mathrm{~mW}$

## Temperatures

Storage temperature
Junction temperature


## THERMAL RESISTANCE

From junction to ambient
mounted on a glass substrate of $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1 \mathrm{~mm}$

$$
R_{\text {th } j-\mathrm{a}}=0.9 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

mounted on a ceramic substrate
$7 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$

$$
R_{\text {th } j-a}=0.67 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage at $I_{F}=10 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{F}}<0.9 \mathrm{~V}$

Reverse current
$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V} \quad \mathrm{I}_{\mathrm{R}}$
$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V} \quad \mathrm{I}_{\mathrm{R}}$
$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{R}}$

	C5V6	C6V2	C6V8 to C8V2	C9V1	$\begin{aligned} & \mathrm{C} 10 \\ & \mathrm{C} 11 \\ & \hline \end{aligned}$	C12
< 3000	2000	500				nA
$<$			100			nA
$<$				100		nA
$<$					100	nA
$<$						100 nA

[^34]CHARACTERISTICS (continued)

BZX84-...

C4V7
C5V1
C5V6
C6V2
C6V8
C7V5
C8V2
C9V1
C10
C11
C12


$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified






Photoconductive devices

## TYPE SELECTION CHART



## GENERAL OPERATIONAL RECOMMENDATIONS PHOTOCONDUCTIVE DEVICES

## 1. GENERAL

1.1 These application directions are valid for all types of photoconductive cells, unless otherwise stated on the individual technical data sheets.
1.2 A photoconductive device is a light-sensitive device whose resistance varies with the illumination on the device.
1.3 Where the term illumination is used in the following sections it shall be taken to mean the radiant energy which is normally used to excite the device.
1.4 Also in the following sections, history is taken to mean the duration of the specified conditions plus a sufficient description of previous conditions.

## 2. OPERATING CHARACTERISTICS

2.1 The data given on the individual technical data sheets are based on the devices being uniformly illuminated.
2.2 The illumination resistance is the ratio of the voltage across the device to the current through the device when illumination is applied to the device.
2.2.1 For a particular set of conditions the equilibrium illumination resistance is the illumination resistance after such a time under these conditions that the rate of change of the illumination resistance is less than $1 \%$ per 5 minutes.
2.2.2 For a particular set of conditions the initial illumination resistance is the first virtually constant value of the illumination resistance after a period of storage or other operating conditions.
The initial illumination resistance usually occurs after a few seconds under the specified conditions.
2.3 The illumination current is the current which passes when a voltage and illumination are applied to the device.
2.3.1 For a particular set of conditions the equilibrium illumination current is the illumination current after such a time under these conditions that the rate of change of the illumination current is less than $1 \%$ per 5 minutes.
2.3.2 For a particular set of conditions the initial illumination current is the first virtually constant value of the illumination current after a period of storage or other operating conditions.
The initial illumination current usually occurs after a few seconds under the specified conditions.

2.4 The dark resistance is the resistance of the device in the absence of illumination.
2.4.1 For a particular set of conditions the equilibrium dark resistance is the dark resistance after such a time under these conditions that the rate of change of the dark resistance is less than $2 \%$ per 5 minutes.
2.4.2 For a particular set of conditions the initial dark resistance is the dark resistance after a specified time under these conditions following a specified history .
2.5 The dark current is the current which passes when a voltage is applied to the device in the absence of illumination.
2.5.1 For a particular set of conditions the equilibrium dark current is the dark current after such a time under these conditions that the rate of change of the dark current is less than $2 \%$ per 5 minutes.
2.5.2 For a particular set of conditions the initial dark current is the dark current after a specified time under these conditions immediately following a specified history.
2.6.1 For a particular set of conditions and history the resistance decay time is the time taken for the resistance of the device to fall to a specified value measured from the instant of starting the illumination.
2.6.2 For a particular set of conditions and history the resistance rise time is the time taken for the resistance of the device to rise to a specified value measured from the instant of stopping the illumination.
2.7.1 For a particular set of conditions and history the current rise time is the time taken for the current through the device to rise to $90 \%$ ot its initial illumination current measured from the instant of starting the illumination.

2.7.2 For a particular set of conditions and history the current decay time is the time taken for the current through the device to fall to $10 \%$ of its value at the instant of stopping the illumination, measured from that instant.

2.8 The illumination sensitivity is the quotient of illumination current by the incident illumination.
2.9 The illumination resistance (current) temperature response is the relationship between the illumination resistance (current) and the ambient temperature of the device under constant illumination and voltage conditions.
2.10 For a particular set of conditions the initial drift is the difference between the equilibrium and initial illumination current, expressed as a percentage of the initial illumination current.
2.11 The illumination response is the relationship between the initial illumination resistance and the illumination, defined as $\frac{\Delta \log r_{l o}}{\Delta \log E}$

## 3. THERMAL DATA

3.1 Ambient temperature. The ambient temperature of a device is the temperature of the surrounding air of that device in its practical situation, which means that other elements in the same space or apparatus must have their normal maximum dissipation and that the same apparatus envelope must be used. This ambient temperature can normally be measured by using a mercury thermometer the mercury container of which has been blackened, placed at a distance of 5 mm from the envelope in the horizontal plane through the centre of the effective area of the CdS tablet.
It shall be exposed to substantially the same radiant energy as that incident on the CdS tablet.
3.2 The thermal resistance of a device is defined as the temperature difference between the hottest point of the device and the dissipating medium, divided by the power dissipated in the device.

## 4. OPERATIONAL NOTES

4.1 When a photoconductive device is subjected to a change of operating conditions there may be a transient change of current in excess of that due to the difference between the equilibrium illumination currents. This transient change is called overshoot.

4.2 Direct sunlight irradiation should be avoided.

## 5. MOUNTING

5.1 If no restrictions are made on the individual published data sheets, the device may be mounted in any position.
5.2 Most of the photoconductive devices may be soldered directly into the circuit, which is indicated on the individual published data sheets. However, the heat conducted to the seal of the device should be kept to a minimum by the use of a thermal shunt. If not otherwise indicated, the device may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 sec onds up to a point 5 mm from the seals.

## 6. STORAGE

It is recommended that the devices be stored in the dark. At any rate direct sunlight irradiation should be avoided.

## 7. LIMITING VALUES

The limiting values of photoconductive devices are given in the absolute maximum rating system.

## 8. OUTLINE DIMENSIONS

The outline dimensions are given in mm .

## 9. SHOCK AND VIBRATION

The conditions for shock and vibration given on the individual data sheets are intended only to give an indication of the mechanical quality of the device. It is not advisable to subject the device to such conditions.


TYPE D

## CADMIUM SULPHIDE PHOTOCONDUCTIVE DEVICES

## LIST OF SYMBOLS

Cell voltage ..... V
Cell current ..... I
Illumination current ..... $\mathrm{I}_{1}$
Initial illumination current ..... $\mathrm{I}_{10}$
Equilibrium illumination current ..... $\mathrm{I}_{1}$
Dark current ..... $\mathrm{I}_{\mathrm{d}}$
Initial dark current ..... $I_{\text {do }}$
Equilibrium dark current ..... $I_{\text {de }}$
Illumination resistance ..... $\mathrm{r}_{1}$
Initial illumination resistance ..... rlo
Equilibrium illumination resistance ..... rle
Dark resistance ..... $\mathrm{r}_{\mathrm{d}}$
Initial dark resistance ..... $r_{\text {do }}$
Equilibrium dark resistance ..... $r_{\text {de }}$
Current rise time ..... tri
Current decay time ..... $t_{f i}$
Resistance rise time ..... trr
Resistance decay time ..... tfr
Pulse time ..... $\mathrm{t}_{\text {imp }}$
Averaging time ..... $t_{a v}$
Pulse repetition rate ..... Prr
Illumination sensitivity ..... N
Illumination response ..... $\gamma$
Voltage response ..... $\alpha$
Ambient temperature ..... $\mathrm{T}_{\mathrm{amb}}$
Thermal resistance
Temperature of CdS tabletK
Colour temperature ..... $\mathrm{T}_{\mathrm{K}}$Ttablet
Dissipation
Illumination ..... E
Initial drift ..... $\mathrm{D}_{\mathrm{o}}$

## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with top sensitivity intended for use in flame control, smoke detection and industrial on-off switching applications.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	P	max.	1.5	W
Cell voltage, d.c.and repetitive peak	V	$\max$.	350	V
Cell resistance at 50 lux, $2700^{\circ} \mathrm{K}$ colour temperature	$\mathrm{r}_{\ell \mathrm{O}}$		330	$\Omega$
Spectral response curve		type		
Outline dimensions		$\max$.	$\times 70$	mm

## MECHANICAL DATA

Dimensions in mm


Base: Octal

## ELECTRICAL DATA



## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $\underline{2700}{ }^{\circ} \mathrm{K}$ and at delivery

Equilibrium dark current measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination
Initial illumination current measured at 10 V d.c. and illumination $=50$ lux, after 16 hrs in darkness 1)

Initial illumination current measured at $10 \mathrm{~V} \mathrm{d.c.illumi-}$ nation $=50$ lux and colour temperature $=1500^{\circ} \mathrm{K}$, after 16 hrs in darkness

Sensitivity at 50 lux, with $10 \mathrm{Vd.c}$. applied

symbol	min.	typical	max.	unit
$\mathrm{I}_{\text {de }}$				
$\mathrm{I}_{\mathrm{lo}}$	11	30	47	mA
$\mathrm{I}_{\mathrm{lo}}$	24	60	96	mA
N		0.6		$\mathrm{~mA} / \mathrm{lux}$

LIMITING VALUES (Absolute max.rating system)
Cell voltage, d.c. and repetitive peak
Power dissipation
V max. 350 V

Ambient temperature, storage and operating

storage	$\mathrm{T}_{\text {amb }}$	$\max .+50$	${ }^{\circ} \mathrm{C}$
$\left.{ }^{2}\right)$			
operating	$\mathrm{T}_{\mathrm{amb}}$	$\max .+70$	${ }^{\circ} \mathrm{C}$

1) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
2) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.



## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with top and side sensitivity.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	max.	360	mW
Cell voltage, d.c. and repetitive peak	V	max.	300	V
Cell resistance at 50 lux, $2700{ }^{\circ} \mathrm{K}$ colour temperature	$\mathrm{r}_{10}$		2700	$\Omega$
Spectral response curve		type		
Outline dimensions		max.	x 44	mm

## MECHANICAL DATA



Dimensions in mm


4

## Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 10 mm from the seals.

[^35]
## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $27000^{\circ} \mathrm{K}$ and at delivery.

Equilibrium dark resistance measured with $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance measured at 20 V d.c. and illumi nation $=50$ lux, after 16 hrs in darkness ${ }^{1}$ )

Equilibrium illumination resistance measured at 20 V d.c. and illumi nation $=50$ lux, after 15 minutes under the measuring conditions

Resistance decay time
Time to reach $7 \mathrm{k} \Omega$ measuredfrom the instant of starting the illumination of 50 lux, after 16 hrs in darkness

## Resistance rise time

Time to reach $25 \mathrm{k} \Omega$ measured from the instant of stopping the illumination, after 15 minutes or longer illumination of 50 lux


[^36]
## DESIGN CONSIDERATIONS

Apparatus with CdS devices should be designed so that changes in resistance values of the CdS cells during life from $-30 \%$ to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak	V	$\max$.	300	V
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, See also	P	$\max$.	360	mW
Power dissipation at $\left.\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}\right\}$ sheet 4	P	max.	90	mW
Ambient temperature, storage and operating	Tamb	min.	-40	${ }^{0} \mathrm{C}$
storage	Tamb	$\max$.	+50	${ }^{\circ} \mathrm{C}$
operating ( $<1$ lux)	Tamb	$\max$.	+50	${ }^{\circ} \mathrm{C}$
operating ( $\geq 1 \mathrm{lux}$ )	Tamb	max.	+70	${ }^{\circ} \mathrm{C}$




## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with top and side sensitivity intended for use in industrial on-off applications such as flame failure equipment. The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	$\max$.	400	mW
Cell voltage, d.c. and repetitive peak	V	$\max$.	200	V
Cell resistance at 50 lux,				
$2700{ }^{\circ} \mathrm{K}$ colour temperature	$\mathrm{rl}_{\mathrm{O}}$		1200	$\Omega$
Spectral response curve		type D		
Outline dimensions		$\max .15 .9$ diax 44	mm	

## MECHANICAL DATA



## $\underline{\text { Soldering }}$

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dipsoldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 10 mm from the seals.

[^37]
## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery

Initial dark resistance measured with 200 V d.c. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with 200 V d.c. applied via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance measured at 10 V d.c., illumination = 50 lux, after 16 hours in darkness 2) ${ }^{3}$ )

Equilibrium illumination resistance measured at 10 V d.c., illumination $=50$ lux, after 15 minutes under the measuring conditions ${ }^{3}$ )

## Current rise time

Time to reach $90 \%$ of the max. value, measured from the instant of starting the illumination of 50 lux , at 10 V d.c. after 16 hours in darkness

symbol	min.	typical	max.	unit
$\mathrm{r}_{\mathrm{d}} \mathrm{o}$	4		1)	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {de }}$	100		${ }^{1}$ )	$\mathrm{M} \Omega$
$\mathrm{r}_{10}$	750	1200	3000	$\Omega$
rle	750	1500	4100	$\Omega$
${ }^{t}$ ri			2	s

1) The spread of the dark resistance is large and values higher than $100 \mathrm{M} \Omega$ and $10000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
2) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
3) Measured at top sensitivity .

Basic characteristics at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery (continued)

## Current decay time

Time to reach $10 \%$ of the max. value, measured from the instant of stopping the illumination after 16 hours darkness and 10 sec . illumination of 50 lux, at 10 V d.c.

Sensitivity at 50 lux, with 10 V d.c. applied

Negative temperature response of illumination resistance

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V}}{\mathrm{r} \text { at } 10 \mathrm{~V}}$

## THERMAL DATA

Continuous temperature of CdS tablet
Thermal resistance from CdS tablet to ambient, device free in air

symbol	min.	typical	max.	unit
$\mathrm{t}_{\mathrm{f}}$				
N				
$\Delta \mathrm{rl} / \Delta \mathrm{T}$		0.17		s
$\alpha$				
$\alpha$		1.05		

Ttablet max. $+85{ }^{\circ} \mathrm{C}$
$\mathrm{K} \quad 150{ }^{\circ} \mathrm{C} / \mathrm{W}$

## DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from $-30 \%$ to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

## SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

## Shock

$25 g_{\text {peak }}, 10000$ shocks in one of the three positions of the cell.

## Vibration

2.5 gpeak, 50 Hz , during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak
Cell voltage, pulse, $t_{i m p}=\max .5 \mathrm{~ms}$ p.r.r. = max. once per minute

Power dissipation, $\mathrm{t}_{\mathrm{av}}=2 \mathrm{~s}$
Power dissipation, pulse
Cell current, d.c. and repetitive peak
Illumination
Temperature CdS tablet, operating
Ambient temperature, storage and operating storage operating


[^38]
7208379


## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with top sensitivity intended for use in flame control and other industrial applications as well as for automatic brightness and contrast control in TV receivers.
The cell is shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	P	max.	70	mW
Cell voltage, d.c. and repetitive peak	V	$\max$.	350	V
Cell resistance at 50 lux, $2700{ }^{\circ} \mathrm{K}$ colour temperature	$\mathrm{r}_{10}$		60	$k \Omega$
Spectral response curve		type		
Outline dimensions		max.	15.5	mm

MECHANICAL DATA


Sensitive area


## Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240{ }^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

[^39]${ }^{2}$ ) Centre of sensitive area

## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $\underline{2700^{\circ} \mathrm{K} \text { and at delivery }}$

Initial dark current
measured at $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Initial illumination current measured at $30 \mathrm{Vd.c}$. and illumination $=50$ lux, after 16 hrs in darkness ${ }^{1}$ )

Sensitivity at 50 lux, with $30 \mathrm{~V} \mathrm{d.c}$. applied

symbol	min.	typical	$\max$.	unit
$\mathrm{I}_{\text {do }}$			1.5	$\mu \mathrm{~A}$
$\mathrm{I}_{10}$	200	500	800	$\mu \mathrm{~A}$
N		10		$\mu \mathrm{~A} / \mathrm{lux}$

## End of life characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Life test conditions: Illumination 50 to 100 lux, colour temper ature about $2500{ }^{\circ} \mathrm{K}, \mathrm{P}=60 \mathrm{~mW}, \mathrm{~T}_{\mathrm{amb}}=35^{\circ} \mathrm{C}$
None of the end of life values stated under this heading are expected to be reached before 2500 operating hours under the following conditions:

Initial dark current measured at 300 V d.c., 20 s after switching off the illumination $\mathrm{I}_{\mathrm{do}} \max .3 \mu \mathrm{~A}$
Change of initial illumination current during life measured at 30 V d.c., illumination $=$ 50 lux and colour temperature $=2700^{\circ} \mathrm{K}$, after 16 hrs in darkness
$\Delta I_{l o} \quad \max .60 \%$

[^40]
## SHOCK AND VIBRATION

An indication for the ruggedness of the device is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

## Shock

25 gpeak, 3000 shock in one of the three positions of the cell.

## Vibration

2.5 gpeak, 50 Hz during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$
Power dissipation at $\left.\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}\right\}$ sheet 4
Cell current, d.c. and repetitive peak
Ambient temperature, storage and operating storage oper ating
$\max .350 \mathrm{~V}$
$\max .70 \mathrm{~mW}$
max. 20 mW
$\max .7 .5 \mathrm{~mA}$
$\min .-40{ }^{\circ} \mathrm{C}$
$\max .+50 \quad{ }^{\circ} \mathrm{C}{ }^{1}$ )
$\max .+70{ }^{\circ} \mathrm{C}$

[^41]


## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in flame control and other industrial applications as well as for automatic brightness and contrast control in TV receivers.
The cell is shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	P	max.	70	mW
Cell voltage, d.c. and repetitive peak	V	max.	350	V
Cell resistance at 50 lux, $2700{ }^{\circ} \mathrm{K}$ colour temperature	$\mathrm{r}_{10}$		60	$k \Omega$
Spectral response curve		type		
Outline dimensions		max.	15.5	mm

MECHANICAL DATA


Sensitive area

$$
0.25 \mathrm{~mm}^{2}
$$

## Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

1) Not tin plated
2) Centre of sensitive area
3) Brown dot

## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.
$\frac{\text { Basic characteristics }}{}$ at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $\underline{2700^{\circ} \mathrm{K} \text { and at delivery }}$

Initial dark current measured at $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Initial illumination current measured at $30 \mathrm{Vd.c}$. and illumination = 50 lux, after 16 hrs in darkness ${ }^{1}$ )

Sensitivity at 50 lux, with 30 V d.c. applied

symbol	min.	typical	$\max$.	unit
$\mathrm{I}_{\text {do }}$			1.5	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {lo }}$	200	500	800	$\mu \mathrm{~A}$
N		10		$\mu \mathrm{~A} / \mathrm{lux}$

End of life characteristics at $\mathrm{Tamb}=25^{\circ} \mathrm{C}$
Life test conditions: Illumination 50 to 100 lux, colour temperature about $2500{ }^{\circ} \mathrm{K}, \mathrm{P}=60 \mathrm{~mW}, \mathrm{~T}_{\mathrm{amb}}=35^{\circ} \mathrm{C}$
None of the end of life values stated under this heading are expected to be reached before 2500 operating hours under the following conditions:

Initial dark current measured at 300 V d.c., 20 s after switching off the illumination
$\mathrm{I}_{\mathrm{do}} \quad \max .3 \mu \mathrm{~A}$
Change of initial illumination current during life measured at $30 \mathrm{~V} \mathrm{d.c}$. , illumination $=$ 50 lux and colour temperature $=2700^{\circ} \mathrm{K}$, after 16 hrs in darkness
$\Delta I_{l o} \quad \max .60$
\%

[^42]
## SHOCK AND VIBRATION

An indication for the ruggedness of the device is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

Shock
25 gpeak, 3000 shocks in one of the three positions of the cell.
Vibration
2.5 gpeak, 50 Hz during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak V

Power dissipation at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ ) See also	P	max. 70	mW
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=70{ }^{\circ} \mathrm{C}$ \} sheet 4	P	max. 20	mW
Cell current, d.c. and repetitive peak	I	max. 7.5	mA
Ambient temperature, storage and operating	Tamb	min. -40	${ }^{\circ} \mathrm{C}$
storage	$\mathrm{T}_{\mathrm{amb}}$	max. +50	${ }^{0} \mathrm{C}{ }^{1}$ )
operating	Tamb	max. +70	${ }^{\circ} \mathrm{C}$

[^43]
$|||||\mid$


## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in industrial on-off applications such as flame failure circuits. The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	$\max$	100	mW
Cell voltage, d.c. and repetitive peak	V	$\max$	350	V
Cell resistance at 50 lux, $2700{ }^{\circ} \mathrm{K}$ colour temperature	$\mathrm{r}_{1}$		45	$k \Omega$
Spectral response curve		type D		
Outline dimensions		max. 6 dia $\times 15.5$		mm

## MECHANICAL DATA




Soldering

Dimensions in mm

$\uparrow \uparrow$

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dipsoldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

[^44]
## ELECTRICAL DATA

## General.

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.
Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery.

Initial dark resistance
measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Initial illumination resistance measured at 30 V d.c., illumination 50 lux, after 16 h in darkness

Equilibrium illumination resistance measured at $30 \mathrm{Vd.c}$. , illumination 50 lux, after 15 min . under the measuring conditions

Current rise time
Current decay time
Sensitivity at 50 lux, with 30 V d.c. applied

Negative temperature response of illumination resistance

Voltage respons $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V} \text { d.c. }}{\mathrm{r} \text { at } 30 \mathrm{~V} \mathrm{d.c.}}$

symbol	min.	typical	max.	unit
$\mathrm{r}_{\mathrm{d}_{0}}$	150		1)	$\mathrm{M} \Omega$
$\mathrm{r}_{1}$	30	45	100	$k \Omega$
$\mathrm{r}_{1} \mathrm{e}$	30	60	170	$k \Omega$
${ }^{\text {t }} \mathrm{r}_{\mathrm{i}}$		see page 6		
$\mathrm{t}_{\mathrm{f}_{\mathrm{i}}}$		see page 6		
N		13		$\mu \mathrm{A} / \mathrm{lux}$
$\Delta \mathrm{r}_{1} / \Delta \mathrm{T}$		0.2	0.5	$\% /{ }^{\circ} \mathrm{C}$
		1.4		

[^45]
## THERMAL DATA

Continuous temperature of CdS tablet
Thermal resistance from CdS tablet to ambient, device free in air
$\mathrm{T}_{\text {tablet }} \max .+8 \mathrm{o}^{\circ} \mathrm{C}$

K
$600{ }^{\circ} \mathrm{C} / \mathrm{W}$

## DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from $-30 \%$ to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

## SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

Shock
$25 \mathrm{~g}_{\text {peak }}, 10000$ shocks in one of the three positions of the cell.

## Vibration

$2.5 \mathrm{~g}_{\text {peak }}, 50 \mathrm{~Hz}$, during 32 hours in each of the three positions of the cell.
LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak
Cell voltage, pulse, $t_{i m p}=\max .5 \mathrm{~ms}$ p.r.r. max. once per minute

Power dissipation, $\mathrm{t}_{\mathrm{av}}=2 \mathrm{~s}$
Power dissipation, pulse
Temperature CdS tablet, operating
Ambient temperature, storage and operating
storage
operating

V	max. 350	V
$\mathrm{V}_{\mathrm{p}}$	$\max .1000$	V
$P$	see page 5	
$\mathrm{P}_{\mathrm{p}}$	$\max .5 \times \mathrm{P}$	
$\mathrm{T}_{\text {tablet }}$	$\max$. 85	${ }^{0} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	min. -40	${ }^{\circ} \mathrm{C}$
Tamb	max. +50	${ }^{\circ} \mathrm{C}$ 1)
Tamb	max. +70	${ }^{\circ} \mathrm{C}$

[^46]




## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity.
The cell is tropic proof, shock- and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation	P	max.	75	mW
Cell voltage, d.c. and repetitive peak	V	max.	100	V
Cell resistance at 50 lux, $2700{ }^{\circ} \mathrm{K}$ colour temperature	rlo		1600	$\Omega$
Spectral response		type D		
Outline dimensions			x 26	mm

## MECHANICAL DATA



## Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dipsoldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seal.

1) Centre of sensitive area.
${ }^{2}$ ) Not tin plated.
Care should be taken not to bend the leads nearer than 1.5 mm to the seal.

## ORP63

## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.
Basic characteristics at $\mathrm{T}_{a m b}=25^{\circ} \mathrm{C}$, illumination with colour temperature $=2700^{\circ} \mathrm{K}$ and at delivery

Initial dark resistance measured with 100 V d.c. applied vial M $\Omega 20$ s after switching off the illumination

Equilibrium dark resistance measured with 100 V d.c. applied via $1 \mathrm{M} \Omega, 30 \mathrm{~min}$. after switching off the illumination

Symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	9		$\left.{ }^{1}\right)$	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {de }}$	250		$\left.{ }^{1}\right)$	$\mathrm{M} \Omega$
$\mathrm{r}_{10}$	750	1600	2500	$\Omega$
$\mathrm{r}_{1 \mathrm{e}}$	750	1920	3250	$\Omega$
${ }^{\text {tri }}$		1000		ms

[^47]
## ELECTRICAL DATA (continued)

Current decay time
Time to reach $10 \%$ of its initial illumination current, measured from the instant of stopping the illumi nation of 50 lux, at $\mathrm{V}=10 \mathrm{~V}$, after 16 hours in darkness $\mathrm{t}_{\mathrm{fi}}$
Sensitivity at 50 lux, with $V=10 \mathrm{~V}$ d.c. applied

Negative temperature response of the illumination resistance

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V}}{\mathrm{r} \text { at } 10 \mathrm{~V}}$

Symbol	min.	typical	max.	unit
$\mathrm{t}_{\mathrm{fi}}$				
N		0.15		ms
$\alpha$		0.2	0.5	$\% /{ }^{\circ} \mathrm{C}$
		1.5		

## ORP63

## DESIGN CONSIDERATIONS

It should be noted that this cell is designed for very high typical sensitivity with respect to its sensitive area, but that it may be expected that a high sensitivity will only be maintained if the dissipation averaged over 2 s is kept below 20 mW at $25^{\circ} \mathrm{C}$. Higher dissipations will accelerate the aging process which lowers sensitivity.

## SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below: More than $95 \%$ of the devices pass these tests without perceptible damage.

## Shock

$25 \mathrm{~g}_{\text {peak }}, 10000$ shocks in one of the three positions of the cell.
Vibration
2.5 gpeak, 50 Hz , during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak
Power dissipation, $t_{a v}=2 \mathrm{~s}$
Ambient temperature, storage and operating
Storage
Operating
$\max .100 \mathrm{~V}$
see sheet 5
$\mathrm{T}_{\mathrm{amb}} \min .-40{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}} \max .+40{ }^{\circ} \mathrm{C}^{\mathrm{l}}$ )
$\mathrm{T}_{\text {amb }} \max .+70{ }^{\circ} \mathrm{C}$

[^48]


## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side andtop sensitivity for use in flame control and other industrial on off applications.
The cell is tropic proff, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=+25{ }^{\circ} \mathrm{C}$	P	$\max$.	100	mW
Cell voltage, d.c. and repetitive peak	V	$\max$.	350	V
Cell resistance top sensitivity at 50 lux,				
$2700{ }^{\circ} \mathrm{K}$ colour temperature	$\mathrm{r}_{10}$		30	$\mathrm{k} \Omega$
Spectral response curve		type D		
Outline dimensions		$\max .6 \mathrm{diax}$	15.5	mm

## MECHANICAL DATA



Soldering:

$\uparrow \uparrow$

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dipsoldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

[^49]
## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.
Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$, illumination with colour temperature of $\underline{2700^{\circ} \mathrm{K} \text { and at delivery }}$

Initial dark resistance measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Initial illumination resistance measured at 30 V d.c., illumination $=50_{\text {lux }}$, after 16 hours in darkness 2) 3)

Ratio side/top sensitivity
Equilibrium illumination resistance measured at 30 V d.c. illumination $=50$ lux, after 15 minutes under the measuring conditions 3)

Current rise time
Current decay time

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	100		${ }^{1}$ )	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {lo }}$	20	30	60	$\mathrm{k} \Omega$
$\mathrm{r}_{\text {le }}$ side/top	0.7	1.0	1.8	
$\mathrm{r}_{\text {le }}$	27	46	115	$\mathrm{k} \Omega$
$\mathrm{t}_{\mathrm{ri}}$	see	sheet 7		
$\mathrm{t}_{\mathrm{fi}}$	see	sheet 7		

[^50]Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $\underline{2700^{\circ} \mathrm{K} \text { and at delivery (continued) }}$

Sensitivity at 50 lux, with 30 V d.c. applied 3)
Negative temperature response of illumination resistance

symbol	min.	typical	max.	unit
N		20		$\mu \mathrm{~A} / \mathrm{lux}$
$\Delta \mathrm{r}_{1} / \Delta \mathrm{T}$		0.2	0.5	$\% /{ }^{\circ} \mathrm{C}$
$\alpha$		1.4		

## THERMAL DATA

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V} \text { d.c. }}{\mathrm{r} \text { at } 30 \mathrm{~V} \mathrm{d.c.}}$

Continous temperature of CdS tablet
Thermal resistance from CdS tablet to
ambient, device free in air

$$
\mathrm{T}_{\text {tablet }} \quad \max .+85^{\circ} \mathrm{C}
$$

K
$600^{\circ} \mathrm{C} / \mathrm{W}$

## DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from $-30 \%$ to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

## SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

## Shock

$25 \mathrm{~g}_{\text {peak, }} 10000$ shocks in one of the three positions of the cell.
Vibration
2.5 g peak , 50 Hz , during 32 hours in each of the three positions of the cell.

LIMITING VALUES Absolute max. rating system)
Cell voltage, d.c. and repetitive peak
Cell voltage, $p u l s e, t_{i m p}=\max .5 \mathrm{~ms}$
p.r.r. = max. once per minute

Power dissipation, $t_{a v}=2 \mathrm{~s}$
Power dissipation, pulse
Temperature CdS tablet, operating
Ambient temperature, storage and operating storage operating

V	max.	350	V
$\mathrm{~V}_{\mathrm{p}}$	max.	700	V
P	See sheet 6		
$\mathrm{P}_{\mathrm{p}}$	max.	5 xP	
$\mathrm{T}_{\text {tablet }}$	max.	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	$\min$.	-40	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	$\max$.	+50	$\left.{ }^{\circ} \mathrm{C} 1\right)$
$\mathrm{T}_{\text {amb }}$	$\max$.	+70	${ }^{\circ} \mathrm{C}$

[^51]




## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in flame control, smoke detector or industrial on-off switching applications. The cell is shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	max	1	W
Cell voltage, d.c. and repetitive peak	V	max	350	V
Cell resistance at 50 lux, $2700^{\circ} \mathrm{K}$ colour temperature	r		1000	$\Omega$
Spectral response curve		type		
Outline dimensions		max	60.3	mm

## MECHANICAL DATA

Dimensions in mm


Base: 7 p. miniature
Total area to be illuminated $1.1 \times 2.9 \mathrm{~cm}^{2}$

## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery.

Initial dark current measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark current measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 15$ minutes after switching off the illumination

Initial illumination current measured at 10 V d.c. and illumination $=50$ lux, after 16 hrs in darkness ${ }^{1}$ )

Initial illumination current measured at $10 \mathrm{~V} \mathrm{d.c.}, \mathrm{illumina-}$ tion $=50$ lux and colour temperature $=1500{ }^{\circ} \mathrm{K}$, after 16 hrs in darkness

Sensitivity at 50 lux, with 10 V d.c. applied

Current rise time
Current decay time

symbol	min.	typical	max.	unit
$\mathrm{I}_{\text {do }}$			70	$\mu \mathrm{A}$
$\mathrm{I}_{\text {do }}$			2.5	$\mu \mathrm{A}$
$\mathrm{I}_{10}$	3	10	15	mA
$\mathrm{I}_{10}$	6	20	31	mA
N		0.2		mA/lux
${ }^{\text {r }}$ ri		see she	t 5	
$\mathrm{t}_{\mathrm{fi}}$		see she		

[^52]LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak ${ }^{\text { }}$	V	max.	350	V
Power dissipation at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$, See also	P	max.	1.0	W
Power dissipation at $\left.\mathrm{Tamb}=70{ }^{\circ} \mathrm{C}\right\}$ sheet 6	P	max.	0.3	W
Ambient temperature, storage and operating	Tamb	min.	-40	${ }^{\circ} \mathrm{C}$
storage	$\mathrm{T}_{\text {amb }}$	max.	+50	${ }^{\circ} \mathrm{C}{ }^{1}$ )
operating	Tamb	$\max$.	+70	${ }^{\circ} \mathrm{C}$

${ }^{1}$ ) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.
|IIIII||





## LAMP CdS CELLS-COMBINATION

Combination of four cadmium sulphide photoconductive cells and a small incandescent lamp in a Noval envelope for use in relais circuits with low output resistance, control circuits and logic circuits.

QUICK REFERENCE DATA				
Power dissipation, each cell, at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	max.	150	mW
Cell voltage, d.c. and repetitive peak	V	max.	200	V
Cell resistance	r		15	$\Omega$
Outline dimensions		max.	55.6	mm

## MECHANICAL DATA

Dimensions in mm
Base: Noval



## ELECTRICAL DATA

$\underline{\text { Basic characteristics at } T_{a m b}=25{ }^{\circ} \mathrm{C} \text {, and at delivery }}$

	symbol	min. typical	max.	unit	
Lamp filament voltage	$\mathrm{V}_{\mathrm{f}}$		24		V 2 )
Lamp filament current at $\mathrm{V}_{\mathrm{f}}=24 \mathrm{~V}$	$\mathrm{I}_{\mathrm{f}}$	54	60	66	mA
Initial dark current   measured in the circuit of fig.	$\mathrm{I}_{\mathrm{d}}$				

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, and at delivery (continued)

Initial illumination resistance measured in the circuit of fig. 1 after 16 hrs in darkness ${ }^{1}$ )

Resistance decay time
Time to reach $400 \Omega$ in circuit of fig. 2, measured from the instant of starting the illumination after 16 hrs in darkness

## Resistance rise time

Time to reach $300 \mathrm{k} \Omega$ in circuit of fig. 2, measured from the instant of stopping the illumination after 5 minutes or longer illumination

Insulation resistance between two cells or between cell and filament measured at $300 \mathrm{~V} \mathrm{d.c}$.

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {lo }}$		15	25	$\Omega$
$\mathrm{t}_{\mathrm{fr}}$				

CAPACITANCES measured at filament voltage $\mathrm{V}_{\mathrm{f}}=0 \mathrm{~V}$
Between the terminals of each cell
$\mathrm{C}_{\mathrm{r}} \quad 9.5 \mathrm{pF}$
Between any cell terminal and the filament (except pins 4 and 6)
$\mathrm{C}_{\mathrm{rf}}$ max. 1 pF

## REMARK

Shock and vibration should be avoided.

LIMITING VALUES (Absolute max. rating system)

Filament voltage (d.c. or r.m.s.)
Cell voltage, d.c. and repetitive peak
$\mathrm{V}_{\mathrm{f}}$
V
Power dissipation of each cell at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad \mathrm{P}$
Power dissipation of each cell at $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C} \quad \mathrm{P}$
Voltage between any pair of cells
Ambient temperature, oper ating
max. 25.2 V ${ }^{2}$ )
max. 200 V
$\max .150 \mathrm{~mW}{ }^{3}$ )
max. $85 \mathrm{~mW}^{3}$ )
$\max .350 \mathrm{~V}$
$\min . \quad-40 \quad{ }^{\circ} \mathrm{C}$
$\max .+55{ }^{\circ} \mathrm{C} \quad 3$ )

## Measuring circuit for $\mathrm{r}_{10}$ and $\mathrm{I}_{\text {do }}$



Fig. 1
Measuring circuit tfr and $\mathrm{trr}^{\mathrm{r}}$




Fig. 2

1) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
${ }^{2}$ ) The life expectancy is considerably longer with lower values of $\mathrm{V}_{\mathrm{f}}$. In this respect it is recommended to apply a voltage not higher than 20 V .
2) For $V_{f}=24 \mathrm{~V}$.



## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in general control circuits. The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	$\max$.	0.5	W
Power dissipation, with a heatsink with				
$\mathrm{K}=5^{\circ} \mathrm{C} / \mathrm{W}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	$\max$.	2	W
Cell voltage, d.c. and repetitive peak	V	$\max$.	100	V
Cell resistance at 5000 lux,				
$\quad 2700^{\circ} \mathrm{K}$ colour temperature	r			
Spectral response curve   Outline dimensions		$\operatorname{type}$	D	25

## MECHANICAL DATA

Dimensions in mm


The centre distance of the leads is compatible with the IEC standard raster for printed wiring ( 0.1 inch).

## Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dipsoldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700{ }^{\circ} \mathrm{K}$ and at delivery.

Initial dark resistance measured with $100 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with 100 V d.c. applied via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination
Initial illumination resistance (1) measured at 10 V d.c., illumination $=50$ lux, after 16 hrs in darkness. ${ }^{2}$ )

Initial illumination resistance (2) measured at 1 V d.c., illumination $=5000$ lux, after 16 hrs in darkness 2) ${ }^{3}$ )

symbol	min.	typical	$\max$.	unit
		$\alpha$		
$r_{\text {do }}$	5.6		$\left.{ }^{1}\right)$	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {de }}$	50		$\left.{ }^{1}\right)$	$\mathrm{M} \Omega$
$\mathrm{r}_{10}(1)$	235	400	1200	$\Omega$
$\mathrm{r}_{\mathrm{l}}$ (2)		25	35	$\Omega$

${ }^{1}$ ) The spread of the dark resistance is large and values higher than $15 \mathrm{M} \Omega$ and $2000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
${ }^{2}$ ) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
3) Maximum during life $40 \Omega$.

## DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from $-30 \%$ to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

## SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

Shock
25 gpeak, 10000 shocks in one of the three positions of the cell.

## Vibration

$2,5 \mathrm{~g}_{\text {peak }}, 50 \mathrm{~Hz}$, during 32 hours in each of the three positions of the cell.
N.B. These conditions are used solely to assess the mechanical quality of the cell. It is not advisable to subject the cell to such conditions.
LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak	V	max.	100	V
Cell voltage, pulse, $\mathrm{t}_{\mathrm{imp}}=\max .5 \mathrm{~ms}$ prr $=\max$. once per minute	$\mathrm{V}_{\mathrm{p}}$	max.	250	V
Power dissipation, $\mathrm{tav}=2 \mathrm{~s}$	P	see sheet C		
Power dissipation, pulse	$\mathrm{P}_{\mathrm{p}}$	max.	$5 \times \mathrm{P}$	
Cell current, d.c. and repetitive peak	1	max.	250	mA
Illumination	E	max.	50000	lux
Temperature CdS tablet, operating	$\mathrm{T}_{\text {tablet }}$	max.	+85	${ }^{\circ} \mathrm{C}{ }^{1}$ )
Ambient temperature, storage and operating	$\mathrm{T}_{\mathrm{amb}}$	min.	-40	${ }^{0} \mathrm{C}$
storage	$\mathrm{T}_{\mathrm{amb}}$	max.	+50	$\left.{ }^{\circ} \mathrm{C}{ }^{2}\right)$
operating	$\mathrm{T}_{\text {amb }}$	max.	+70	${ }^{\circ} \mathrm{C}$

[^53]Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery. (continued)

Equilibrium illumination resistance (1) measured at 10 V d.c., illumina tion $=50$ lux, after 15 minutes under the measuring conditions $\quad r_{l_{\mathrm{e}}}(1)$
Equilibrium illumination resistance (2) measured at 1 V d.c., illumination $=$ 5000 lux, after 15 minutes under the measuring conditions. ${ }^{2}$ ) rle (2)
Resistance decay time Time to reach $50 \Omega$, measured from the instant of starting the illumination of 5000 lux, after 16 hrs in darkness. ${ }^{1}$ ) $\mathrm{tfr}_{\mathrm{fr}}$
Resistance rise time
Time to reach $2 \mathrm{k} \Omega$, measured from the instant of stopping the illumination after 5 minutes or longer illumination of 5000 lux

Sensitivity at 50 lux, with $10 \mathrm{Vd} . \mathrm{c}$. applied

symbol	min.	typical	max.	unit
1)				
$r_{l_{\mathrm{e}}}(1)$	235	480	1560	$\Omega$
$\mathrm{rle}_{l}(2)$			$35^{\circ}$	$\Omega$
$\mathrm{t}_{\mathrm{fr}}$		5	25	ms
${ }^{\text {trr }}$		40	200	ms
N		0.5		mA/lux
		0.2	0.5	\% $/{ }^{\circ} \mathrm{C}$
$\alpha$		1.1		

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V} \text { d.c. }}{\mathrm{r} \text { at } 10 \mathrm{~V} \mathrm{d.c.}}$
Negative temperature response of illumination resistance
$\alpha$

## THERMAL DATA

Continuous temperature of CdS tablet $\quad \mathrm{T}_{\text {tablet }} \max .+85{ }^{\circ} \mathrm{C}$
Thermal resistance from CdS tablet to ambient, device free in air
$\mathrm{K} \quad 120{ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance from CdS tablet to heatsink (temperature of heatsink measured near the centre of the cell), when the cell is properly clamped on a heatsink as described on sheet 5

K
$25^{\circ} \mathrm{C} / \mathrm{W}$

1) After 16 hours in darkness changes in the CdS material are still occurring,
but have only insignificant effect on the illumination resistance and on the re-
sistance decay time.
2) Maximum during life $40 \Omega$.

MECHANICAL DATA (continued)
Dimensions in mm

RPY18 MOUNTED ON HEATSINK


Detail: Clamping strip tombac 0.3 mm
With a $=50 \mathrm{~mm} \quad \mathrm{~K}=19{ }^{\circ} \mathrm{C} / \mathrm{W}$
With a $=1.00 \mathrm{~mm} \quad \mathrm{~K}=7.5{ }^{\circ} \mathrm{C} / \mathrm{W}$

## Mounting instructions

1. Mount one clamp on the heatsink, using the side with round holes.
2. Push the RPY18 under than clamp.
3. Press the second clamp firmly against the RPY18, using the slot holes.




## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in general control circuits.
The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	P	$\max$	0.5	W
Power dissipation, with a heatsink with $\mathrm{K}=5^{\circ} \mathrm{C} / \mathrm{W}$ and $\mathrm{Tamb}=25^{\circ} \mathrm{C}$	P	$\max$	2	W
Cell voltage, d.c. and repetitive peak	V	max	400	V
Cell resistance at 50 lux, $2700{ }^{\circ} \mathrm{K}$ colour temperature	r		3000	$\Omega$
Spectral response curve		type		
Outline dimensions		max	$3 \times 6$	mm

MECHANICAL DATA
Dimensions in mm


## Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seals.

## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $\underline{2700^{\circ} \mathrm{K} \text { and at delivery }}$

Initial dark resistance measured with $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance measured at 10 V d.c. illumination $=50$ lux, after 16 hrs in darkness ${ }^{2}$ )

Equilibrium illumination resistance measured at $10 \mathrm{~V} \mathrm{d.c}$. illumination $=50$ lux, after 15 minutes under the measuring conditions

Resistance decay time Time to reach $20 \mathrm{k} \Omega$, measured from the instant of starting the illumination of 50 lux, at $10 \mathrm{Vd.c}$. after 16 hours in darkness

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	10		${ }^{1}$ )	$\mathrm{M} \Omega$
$\mathrm{r}_{\mathrm{de}}$	200		1)	M $\Omega$
rlo	1400	3000	6600	$\Omega$
$\mathrm{rle}_{l}$	1400	3800	9000	$\Omega$
$t_{f r}$			0.2	S

[^54]Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700{ }^{\circ} \mathrm{K}$ and at delivery (continued)

Resistance rise time
Time to reach $1 \mathrm{M} \Omega$, measured from the instant of stopping the illumination after 5 minutes or longer illumination of 50 lux , at $10 \mathrm{~V} \mathrm{d.c}$.

Sensitivity

symbol	min.	typical	max.	unit
$\mathrm{t}_{\mathrm{rr}}$		0.6	1.25	s
N		0.07		$\mathrm{~mA} / \mathrm{lux}$
$\alpha$		0.2	0.5	$\% /{ }^{\circ} \mathrm{C}$
		1.1		

## THERMAL DATA

Negative temperature response of illumination resistance

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V} \mathrm{d.c.}}{\mathrm{r} \text { at } 10 \mathrm{~V} \text { d.c. }}$

Continuous temperature of CdS tablet
Thermal resistance from CdS tablet to ambient, device free in air

Ttablet max. $+85{ }^{\circ} \mathrm{C}$

Thermal resistance from CdS tablet to heatsink (temperature of heatsink measured near the centre of the cell), when the cell is properly clamped on a heatsink as described on sheet 5

K
$25^{\circ} \mathrm{C} / \mathrm{W}$

## DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from $-30 \%$ to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

## SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

## Shock

25 gpeak, 10000 shocks in one of the three positions of the cell.
Vibration
2.5 gpeak, 50 Hz , during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak V
Cell voltage, pulse, $T_{i m p}=\max .5 \mathrm{~ms}$ prr $=\max$. once per minute
Power dissipation, $t_{a v}=1 \mathrm{~s}$
Power dissipation, pulse
Cell current, d.c. and repetitive peak
Illumination
Temperature CdS tablet, oper ating
Ambient temperature, storage and operating storage
operating
$V_{p}$
P
$P_{p}$
1 max. 250 mA
E
Ttablet
$\mathrm{T}_{\mathrm{amb}}$
Tamb
Tamb
max. 400 V
$\max .1000 \mathrm{~V}$
See sheet 8
max. 5xP
max. 50000 lux
$\max .+85{ }^{\circ} \mathrm{C}^{1}$ )
$\min$. $\quad-40{ }^{\circ} \mathrm{C}$
$\max .+50{ }^{\circ} \mathrm{C} 2$ )
$\max . \quad+70 \quad{ }^{\circ} \mathrm{C}$

[^55]RPY19 MOUNTED ON HEATSINK




Detail: Clamping strip tombac 0.3 mm

The heat resistance $K$ of the heatsink is defined as the temperature difference between the point $Q$ at the backside of the heatsink, and ambient at point $P$, per Watt dissipation in the device, the heatsink being placed in an enclosure as given below.

Enclosure: cubical with internal edges 5 x a mm.
Place : point Q in the centre of the cubic, plane of heatsink vertical, top upside.

Determined according to the above rules a heatsink as given in the drawing has a heat resistance $\mathrm{K}=19^{\circ} \mathrm{C} / \mathrm{W}$ when $\mathrm{a}=50 \mathrm{~mm}$ and $\mathrm{a} \mathrm{K}=7.5^{\circ} \mathrm{C} / \mathrm{W}$ when $\mathrm{a}=$ 100 mm .

With smaller enclosure dimensions a higher value for K may be expected.

## Mounting instructions

To reach the above mentioned $K$ values it is essential that the RPY 19 be installed in the following manner:

1. Mount one clamp on the heatsink, using the side with round holes.
2. Push the RPY 19 under that clamp.
3. Press the second clamp firmly against the RPY19, using the slot holes.




## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in general control circuits such as twilight switches and flame failure equipment. The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	$\max$.	1	W
Power dissipation, with a heatsink				
with $\mathrm{K}=5^{\circ} \mathrm{C} / \mathrm{W}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	$\max$.	3	W
Cell voltage, d.c. and repetitive peak	V	$\max$.	400	V
Cell resistance at 50 lux,			1500	$\Omega$
$\quad 2700^{\circ} \mathrm{K}$ colour temperature	r			
Spectral response curve		type D		
Outline dimensions		$\max .43 \times 16.3 \times 6$	mm	

## MECHANICAL DATA <br> Dimensions in mm



The centre distance of the leads is compatible with the standard raster for printed wiring (0.1 inch)

## Soldering

The cell may be soldered directly into the circuit but heat conducted to the tablet should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of $10 \mathrm{~s} u p$ to a point 5 mm from the seals.

## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery

Initial dark resistance measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with $300 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance measured at 10 V , d.c.
illumination $=50$ lux, after 16 hrs in darkness ${ }^{2}$ )

Equilibrium illumination resistance measured at 10 V , d.c.
illumination $=50$ lux, after $15 \mathrm{~min}-$ utes under the measuring conditions

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	6.5			
$\mathrm{r}_{\text {de }}$	120		$\mathrm{M} \Omega$	
$\mathrm{r}_{\mathrm{lo}}$	700	1500	3300	$\Omega$
$\mathrm{r}_{\text {le }}$	700	1900	4500	$\Omega$

1) The spread of the dark resistance is large and values higher than $100 \mathrm{M} \Omega$ and $10000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
2) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery (continued)

Resistance decay time
Time to reach $10 \mathrm{k} \Omega$, measured from the instant of starting the illumination of 50 lux, at 10 V d.c. after 16 hours in darkness 2)

Resistance rise time
Time to reach $1 \mathrm{M} \Omega$, measured from the instant of stopping the illumination after 5 minutes or longer illumination of 50 lux, at 10 V d.c.

Sensitivity at 50 lux, with $10 \mathrm{Vd.c}$. applied

Negative temperature response of illumination resistance

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V} \mathrm{d.c.}}{\mathrm{r} \text { at } 10 \mathrm{~V} \mathrm{d.c.}}$


## THERMAL DATA

Continuous temperature of CdS tablet
Thermal resistance from CdS tablet to ambient, device free in air

Thermal resistance from CdS tablet to heatsink (temperature of heatsink measured near the centre of the cell), when the cell is properly clamped on a heatsink as described on sheet 6 .
$\mathrm{T}_{\text {tablet }} \max .+85{ }^{\circ} \mathrm{C}$

K
60 º $\mathrm{C} / \mathrm{W}$

K
$15^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS in a typical twilight switching circuit.


C = CdS cell RPY20
$R \quad=D . C$. Relay $20 \mathrm{k} \Omega$ with $\mathrm{I}_{\mathrm{e}}<2.7 \mathrm{e} . \mathrm{g}$. energizing current $\mathrm{I}_{\mathrm{e}}$ of 2 mA and release current $I_{r}$ of 0.8 mA .

VDR $=$ voltage dependent resistor 10 mA at $180 \mathrm{~V}, 2 \mathrm{~W}$ e.g. type E299DG/P248
$\mathrm{F}=$ Absorption filter to be used to correct spread of the circuit and to adjust the switching level (10 to 70 lux).
Light transmission 5 to $20 \%$.
$\mathrm{D}=$ Diode $\mathrm{V}_{\text {inv }} \gg 500 \mathrm{~V}$

## DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from $-30 \%$ to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

## SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

Shock
25 gpeak, 10000 shocks in one of the three positions of the cell.
Vibration
$2.5 \mathrm{~g}_{\text {peak }}, 50 \mathrm{~Hz}$, during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak V
Cell voltage, pulse, $t_{i m p}=\max .5 \mathrm{~ms}$ $\mathrm{p}_{\mathrm{rr}}=\max$. once per minute

Power dissipation, $\mathrm{t}_{\mathrm{av}}=2 \mathrm{~s}$
Power dissipation, pulse
Cell current, d.c. and repetitive peak
Illumination
Temperature CdS tablet, operating
Ambient temperature, storage and operating
storage
operating
$\mathrm{V}_{\mathrm{p}}$ P
$P_{p}$
I
E
$\mathrm{T}_{\text {tablet }}$
Tamb
Tamb
$\mathrm{T}_{\mathrm{amb}}$
$\max .400 \mathrm{~V}$
$\max .1000 \mathrm{~V}$
See sheet 8
max. $5 x P$
$\max$. 500 mA
max. 50000 lux
$\max .+85{ }^{\circ} \mathrm{C}^{1}$ )
min. $\quad-40{ }^{\circ} \mathrm{C}$
$\max . \quad+50 \quad{ }^{\circ} \mathrm{C}{ }^{2}$ )
$\max .+70{ }^{\circ} \mathrm{C}$

[^56]RPY20 MOUNTED ON HEATSINK



Detail: clamping strip
tombac 0.3 mm

The heat resistance $K$ of the heatsink is defined as the temperature difference between the point $Q$ at the backside of the heatsink, and ambient at point $P$, per Watt dissipation in the device, the heatsink being placed in an enclosure as given below.

Enclosure: cubical with internal edges 5 x a mm
Place : point Q in the centre of the enclosure, plane of heatsink vertical, "top" up

Determined according to the above rules a heatsink as given in the drawing has a heat resistance $K=19^{\circ} \mathrm{C} / \mathrm{W}$ when $\mathrm{a}=50 \mathrm{~mm}$ and $\mathrm{K}=7.5^{\circ} \mathrm{C} / \mathrm{W}$ when $\mathrm{a}=$ 100 mm .
With smaller enclosure dimensions a higher value for K may be expected.

## Mounting instructions

To reach the above mentioned $K$ values it is essential that the RPY20 be installed in the following manner:

1. Mount one clamp on the heatsink, using the side with round holes.
2. Push the RPY20 under that clamp.
3. Press the second clamp firmly against the RPY20, using the slot holes.




## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with top sensitivity intended for use in general control circuits such as twilight switches and flame failure equipment. The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{Tamb}=25{ }^{\circ} \mathrm{C}$	P	max.	1	W
Cell voltage, d.c. and repetitive   peak	V	$\max$.	400	V
Cell resistance at 50 lux, $2700 \mathrm{o}_{\mathrm{K}}$ colour temperature	r		650	$\Omega$
Spectral response curve		type D		
Outline dimensions		max. 32 dia.	$\times 7.6$	mm

## MECHANICAL DATA



## Accessories

Contact springs

## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25 \mathrm{o}^{\circ}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery

Initial dark resistance
measured with $400 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with $400 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 30$ minutes after switching of the illumination
Initial illumination resistance measured at 10 V d.c. after 16 hrs in darkness ${ }^{2}$ ) illumination 50 lux

Equilibrium illumination resistance measured at 10 V d.c.
after 15 minutes under the measuring conditions
illumination 50 lux

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	6.0		$1)$	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {de }}$	100		1	
$\mathrm{r}_{\text {lo }}$	380	650	1900	$\Omega$
$\mathrm{r}_{\text {le }}$	380	820	2600	$\Omega$

[^57]Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery (continued)

## Resistance decay time

Time to reach $10 \mathrm{k} \Omega$, measured from the instant of starting the illumination of 50 lux, at 10 V d.c. after 16 hours in darkness ${ }^{2}$ )

symbol	min.	typical	max.	unit
$\mathrm{t}_{\mathrm{fr}}$			0.2	s
${ }^{t}{ }_{r r}$		1.0	1.5	s
N		0.3		mA/lux
		0.2	0.5	\%/ ${ }^{\circ} \mathrm{C}$
$\alpha$		1.05		

## THERMAL DATA

Continuous temperature of CdS tablet
$\mathrm{T}_{\text {tablet }} \max .+85{ }^{\circ} \mathrm{C}$
Thermal resistance from CdS tablet to ambient, device free in air

K
$60{ }^{\circ} \mathrm{C} / \mathrm{W}$

## DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from $-30 \%$ to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

## SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

Shock
$25 \mathrm{~g}_{\text {peak }}, 10000$ shocks in one of the three positions of the cell.
Vibration
2.5 geak, 50 Hz , during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak	V	max. 400	V
Cell voltage, pulse, $t_{i m p}=\max .5 \mathrm{~ms}$ $\mathrm{p}_{\mathrm{rr}}=\max$. once per minute	$\mathrm{V}_{\mathrm{p}}$	max. 1000	V
Power dissipation, $t_{\text {av }}=2 \mathrm{~s}$	P	See sheet 6	
Power dissipation, pulse	$\mathrm{P}_{\mathrm{p}}$	max. 5xP	
Cell current, d.c. and repetitive peak	I	max. 250	mA
Illumination	E	$\max .50000$	lux
Temperature CdS tablet, operating	$\mathrm{T}_{\text {tablet }}$	max. +85	${ }^{\circ} \mathrm{C}$
Ambient temperature, storage and operating	Tamb	min. $\quad-40$	${ }^{\circ} \mathrm{C}$
storage	Tamb	max. +50	${ }^{\mathrm{o}} \mathrm{C}^{1}$ )
operating	Tamb	max. +70	${ }^{\circ} \mathrm{C}$

[^58]


## CADMIUM SULPHO-SELENIDE PHOTOCONDUCTIVE CELL

Cadmium sulpho-selenide photoconductive device with top sensitivity intended for use in exposure meters, light-control equipment and for general industrial use. The device is tropic proof, shock and vibration resistant. The envelope is hermetically sealed and has a plane glass window.

QUICK REFERENCE DATA			
Power dissipation, as measuring device for general use	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	$\begin{array}{ll} \max . & 10 \\ \max . & 75 \end{array}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
Cell voltage, d.c. and repetitive peak	V	max. 50	V
Outline dimensions		4 xdia 9.4	mm
Light sensitive area		$\times 3 \mathrm{~mm}$	

## MECHANICAL DATA

Dimensions in mm


## Soldering

The device may be soldered direct into the circuit but heat conducted to the seals should be kept at a minimum by the use of a thermal shunt. Dipsoldering at a solder temperature of $245^{\circ} \mathrm{C}$ may be employed for a maximum of 10 s up to a point 5 mm from the seals of for maximum 3 s up to a point 1.5 mm from the seals. At a solder temperature between $245^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ the soldering time is maximum 5 s up to a point 5 mm from the seals.
The leads should not be bent less than 1.5 mm from the seals.

Data based on pre-production.

## ELECTRICAL DATA

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Pre-conditioning $>1 \mathrm{~h}$ illumination with 300 lx (fluorescent light)

Initial dark resistance
measured at $50 \mathrm{~V}_{\text {d.c. }}, 20 \mathrm{~s}$ after stopping the illumination of 25.6 lx
Initial illumination resistance measured at $1 \mathrm{~V}_{\mathrm{d} . \mathrm{c} .}$, illumination 25.6 lx , colour temperature $4700^{\circ} \mathrm{K}$

Current decay time:
time to reach $10 \%$ of the current at the instant of stopping the illumination of 5 lx

Gamma between $\mathrm{E}_{1}=0.41 \mathrm{x}$ and $\left.E_{2}=25.61 \mathrm{x} 1\right)$
Shift in illumination current, measured with $E=501 \mathrm{x}, \mathrm{t}=10 \mathrm{~min}$
Pre-conditioning factor ${ }^{2}$ )
Actinism
Illumination at $2700{ }^{\circ} \mathrm{K}$

(referred to the | symbol | min. | typical | max. | unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| $\mathrm{r}_{\mathrm{do}}$ | 100 |  |  | $\mathrm{k} \Omega$ |
| $\mathrm{r}_{\mathrm{lo}}$ | 1.65 |  | 5.1 | $\mathrm{k} \Omega$ |
|  |  |  |  |  |
| $\mathrm{t}_{\mathrm{fi}}$ |  | 3 |  | s |
| $\gamma$ | 0.60 | 0.75 | 0.84 |  |
|  |  |  |  | 10 |
|  | 0.9 |  | 1.2 |  | Illumination at $4700^{\circ} \mathrm{K}$ same cell current)

1) $\gamma=\frac{\log r 1-\log r_{2}}{\log E_{2}-\log E_{1}}$
2) Pre-conditioning factor $=\frac{\text { Cell current at } 0.4 \mathrm{~lx} \text {, after } 3 \text { days in darkness }}{\text { Cell current at } 0.4 \mathrm{~lx} \text { after } 1 \mathrm{~h} \text { pre-conditioning }}$ at 300 lx (fluorescent light)

## RPY 33

## SHOCK AND VIBRATION

An indication of the ruggedness of the device is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

Shock
50 gpeak, 5 shocks in each of the four positions of the device.
Vibration
2.5 gpeak, 50 Hz , during 32 hours in each of the three positions of the device.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak
V max. 50 V
Power dissipation, for use as measuring
device
for general use
Ambient temperature
P max. 10 mW
P max. 75 mW
$\mathrm{T}_{\mathrm{amb}} \quad \max .+60{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }} \quad \min .-40{ }^{\circ} \mathrm{C}$


Area of illumination resistance ratio

## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity intended for use in general control circuits.
The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	$\max$.	225	mW
Cell voltage, d.c. and repetitive peak	V	$\max$.	100	V
Cell resistance at 50 lux,				
$\quad 2700$ oK colour temperature	$\mathrm{r}_{\mathrm{lo}}$		1.6	$\mathrm{k} \Omega$
Spectral response curve		type D		
Outline dimensions		$\max .22 \times 10.3 \times 4.3$	mm	

## MECHANICAL DATA

Dimensions in mm


## Soldering

The cell may be soldered directly into the circuit but heat conducted to the seal should be kept to a minimum by the use of a thermal shunt. The cell maybe dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of $10 \mathrm{~s} u p$ to a point 5 mm from the seals.

## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $\underline{2700^{\circ} \mathrm{K} \text { and at delivery }}$

Initial dark resistance
measured with $100 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with $100 \mathrm{~V} \mathrm{d.c}$. via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance measured at $\mathrm{V}=10 \mathrm{~V}$ d.c., illumination 50 lux, after 16 hours in darkness ${ }^{2}$ )

Equilibrium illumination resistance measured at $\mathrm{V}=10 \mathrm{~V}$ d.c., illumination 50 lux, after 15 minutes under the measuring conditions

Resistance decay time
Time to reach $20 \mathrm{k} \Omega$ at $\mathrm{V}=10 \mathrm{~V}$ d.c. measured from the instant of starting the illumination of 50 lux, after 16 hours in darkness. 2)

Resistance rise time
Time to reach $1 \mathrm{M} \Omega$ at $\mathrm{V}=10 \mathrm{~V}$ d.c. measured after 5 minutes or longer illumination of 50 lux

Sensitivity, at $V=10 \mathrm{~V}$ d.c. and 50 lux
Negative temperature response of illumination resistance

Voltage response $\frac{r}{}$ at $0.5 \mathrm{~V} \mathrm{d.c}$.

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	9		1)	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {de }}$	100		1)	$\mathrm{M} \Omega$
$\mathrm{r}_{10}$	950	1600	4800	$\Omega$
$\mathrm{r}_{1 \mathrm{l}}$	950	1900	6200	$\Omega$
$\mathrm{t}_{\mathrm{fr}}$			0.2	s
$\mathrm{t}_{\mathrm{rr}}$		1.0	1.5	s
N		0.12		mA/lux
		0.2	0.5	$\% /{ }^{\circ} \mathrm{C}$
$\alpha$		1.1		

[^59]
## THERMAL DATA

Continuous temperature of CdS tablet
Thermal resistance from CdS tablet to ambient, device free in air

$$
\begin{array}{lll}
\mathrm{T}_{\text {tablet }} & +85 & { }^{\circ} \mathrm{C} \\
\mathrm{~K} & 265 & { }^{\circ} \mathrm{C} / \mathrm{W}
\end{array}
$$

## DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the CdS cells during life from $-30 \%$ to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

## SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

## Shock

25 gpeak, 10000 shocks in one of the three positions of the cell.

## Vibration

$2.5 \mathrm{~g}_{\text {peak }}, 50 \mathrm{~Hz}$, during 32 hours in each of the three positions of the cell.
LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak V
Cell voltage, pulse, $\mathrm{T}_{\mathrm{imp}}=\max .5 \mathrm{~ms}$
$P_{r r}=\max$. once per minute
Power dissipation, $\mathrm{t}_{\mathrm{av}}=2 \mathrm{~s}$
Power dissipation, pulse
Cell current, d.c. and repetitive peak
Illumination
Temperature CdS tablet, operating
Ambient temperature, storage and operating storage operating
$\max . \quad 100 \mathrm{~V}$

Vp max. 250 V

E
$\mathrm{T}_{\text {tablet }} \max .+85{ }^{\circ} \mathrm{C} 3$ )

Tamb max. $+50{ }^{\circ} \mathrm{C}^{4}$ )
Tamb
$\mathrm{T}_{\mathrm{amb}} \min . \quad-40{ }^{\circ} \mathrm{C}$
See sheet 6
max. $5 \times \mathrm{P}$ W
$\max . \quad 100 \mathrm{~mA}$
max. 50000 lux
$\max .+70{ }^{\circ} \mathrm{C}$

[^60]
## NOTES

1. The spread of the dark resistance is large and values higher than $30 \mathrm{M} \Omega$ and $2000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
2. After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
3. If no forced air cooling is used, the envelope temperature opposite the centre of the sensitive area is about $83^{\circ} \mathrm{C}$ when the CdS tablet temperature is $85^{\circ} \mathrm{C}$. This temperature can be determined e.g. with a thermocouple fastened on the envelope.
4. Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.

$\square$


## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with side sensitivity. The device satisfies Test C: Damp heat test (long term exposure), severity IV (56 days exposure) of Publication 68-2 of the International Electrotechnical Commission (IEC).

QUICK REFERENCE DATA.				
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	$\max$.	0.75	W
Cell voltage, d.c. and repetitive peak	V	$\max$.	400	V
Cell resistance at 50 lux,				
2700 OK colour temperature	r		1500	$\Omega$
Spectral response curve		type D		
Outline dimensions		$\max .30 .5 \times 13.5 \times 2$	mm	

MECHANICAL DATA
Dimensions in mm


## $\underline{\text { Soldering }}$

The cell may be soldered directly into the circuit but heat conducted to the tablet should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 s up to a point 5 mm from the seal.
Mounting
The cell is not insulated electrically and should be mounted accordingly.
Contact the manufacturer when it is desired to envelope the cell.
Warning
To avoid damaging the cell, ask us for special instructions before attempting to encapsulate it in epoxy resin.

## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700{ }^{\circ} \mathrm{K}$ and at delivery

Initial dark resistance
measured with 300 V d.c. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with 400 V d.c. applied via $1 \mathrm{M} \Omega, 30$ minutes after switching off the illumination

Initial illumination resistance measured at $10 \mathrm{~V} \mathrm{d.c}. \mathrm{illumina-}$ tion $=50$ lux, after 16 hrs in darkness ${ }^{2}$ )

Equilibrium illumination resistance measured at 10 V d.c. illumination $=50$ lux, after 15 minutes under the measuring conditions

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	10		$1)$	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {de }}$	200		$1)$	$\mathrm{M} \Omega$
$\mathrm{r}_{10}$	700	1500	3300	$\Omega$
$\mathrm{r}_{\text {le }}$	700	1900	4500	$\Omega$

[^61]Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with colour temperature of $2700^{\circ} \mathrm{K}$ and at delivery (continued)

Resistance decay time
Time to reach $10 \mathrm{k} \Omega$, measured from the instant of starting the illumination of 50 lux at 10 V d.c. after 16 hrs in darkness ${ }^{2}$ )

Resistance rise time
Time to reach $1 \mathrm{M} \Omega$, measured from the instant of stopping the illumination after 5 minutes or longer illumination of 50 lux, at 10 V d.c.

Sensitivity at 50 lux, with 10 V d.c. applied

Negative temperature response of illumination resistance

Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V} \mathrm{d.c.}}{\mathrm{r} \text { at } 10 \mathrm{~V} \mathrm{d.c.}}$

symbol	min.	typical	max.	unit
$\mathrm{t}_{\mathrm{fr}}$				
$\mathrm{t}_{\mathrm{rr}}$		0.2	s	
N		0.9	1.5	s
$\alpha$				
		0.2	0.5	$\% /{ }^{\circ} \mathrm{C}$

## THERMAL DATA

Continuous temperature of CdS tablet

$$
\mathrm{T}_{\text {tablet }} \quad+85{ }^{\circ} \mathrm{C}
$$

## CLIMATIC DATA

The device satisfies under no load conditions:
Damp heat, steady state test Ca of the I.E.C. publication 68-2-3. Severity 56 days.
$\overline{2) \text { After } 16}$ hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

LIMITING VALUES (Absolute maximum rating system)
Cell voltage, d.c. and repetitive peak
Cell voltage, pulse, $\mathrm{t}_{\mathrm{imp}}=\max .5 \mathrm{~ms}$ $\mathrm{prr}_{\mathrm{r}}=\max$. once per minute

Power dissipation, $\mathrm{t}_{\mathrm{av}}=2 \mathrm{~s}$
Power dissipation, pulse
Cell current, d.c. and repetitive peak
Illumination
Temperature CdS tablet, operating
Ambient temperature, storage and operating storage
operating

V	max.	400	V
$\mathrm{~V}_{\mathrm{p}}$	max.	1000	V
P	see sheet 6		
$\mathrm{P}_{\mathrm{p}}$	max.	5 xP	
I	max.	500	mA
E	max.	50000	1 ux
$\mathrm{T}_{\text {tablet }}$	max.	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	min.	-40	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	$\max$.	+50	${ }^{\circ} \mathrm{C}{ }^{1}$ )
$\mathrm{T}_{\text {amb }}$	$\max$.	+70	${ }^{\circ} \mathrm{C}$

## DESIGN CONSIDERATIONS

Apparatus with CdS cells should be designed so that changes in resistance values of the cells during life from $-30 \%$ to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

## SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibration tests mentioned below. More than $95 \%$ of the devices pass these tests without perceptible damage.

Shock
$25 g_{\text {peak }} 10000$ shocks in one of the three positions of the cell.
Vibration
$2.5 g_{\text {peak }}, 50 \mathrm{~Hz}$, during 32 hours in each of the three positions of the cell.

[^62]

## CADMIUM SULPHIDE PHOTOCONDUCTIVE CELL

Cadmium sulphide photoconductive cell with top sensitivity intended for use in general control circuits such as twilight switches and flame failure equipment. The cell is tropic proof, shock and vibration resistant.

QUICK REFERENCE DATA					
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P	$\max$.	1	W	
Cell voitage, d.c. and repetitive peak	V	$\max$.	200	V	
Cell resistance at 50 lux, $2700{ }^{\circ} \mathrm{K}$ c.t.	$\mathrm{r}_{\text {lo }}$		420	$\Omega$	
Spectral response curve			type D		
Outline dimensions		$\max$.	32	dia $\times 7.6$	mm

## MECHANICAL DATA

Dimensions in mm


## Accessories

Contact springs

## RPY55

## ELECTRICAL DATA

## General

The electrical properties of CdS cells are dependent on many factors such as illumination colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only checkpoints of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$, illumination with colour temperature of $\underline{2700} 0 \mathrm{~K}$ and at delivery

Initial dark resistance measured with $200 \mathrm{Vd} . c$. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Equilibrium dark resistance measured with $200 \mathrm{Vd} . \mathrm{c}$. applied via $1 \mathrm{M} \Omega, 30 \mathrm{~min}$. after switching off the illumination
Initial illumination resistance measured at $10 \mathrm{Vd} . \mathrm{c}$. , illumination 50 lux, after 16 h in darkness 2)

Wquilibrium illumination resistance measured at $10 \mathrm{Vd} . \mathrm{c}$., illumination 50 lux, after 15 min . under the measuring conditions

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	3		1)	$\mathrm{M} \Omega$
$\mathrm{r}_{\text {de }}$	50		1)	$\mathrm{M} \Omega$
$\mathrm{r}_{10}$	250	420	1250	$\Omega$
$\mathrm{r}_{1 \mathrm{e}}$	250	530	1700	$\Omega$
${ }^{\text {t }}$ fr			0.3	S

1) the spread of the dark resistance is large and values higher than $50 \mathrm{M} \Omega$ and $5000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
2) After 16 h in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

Basic characteristics at $\mathrm{T}_{\text {amb }}=25{ }^{\circ} \mathrm{C}$, illumination with colour temperature of $2700{ }^{\circ} \mathrm{K}$ and at delivery.

Resistance rise time
Time to reach $1 \mathrm{M} \Omega$, measured from the instant of stopping the illumination, after 5 min . or longer illumination of 50 lux at $10 \mathrm{Vd} . \mathrm{c}$.

Sensitivity at 50 lux, with $10 \mathrm{Vd} . \mathrm{c}$. applied

Negative temperature response of illumination resistance

symbol	min.	typical	max.	unit
trr				
N		2	s	
$\Delta \mathrm{rl} / \Delta \mathrm{T}$		0.5		$\mathrm{~mA} / \mathrm{lux}$
		1.05		

## THERMAL DATA

Continuous temperature of CdS tablet
Thermal resistance from CdS tablet to ambient, device free in air
$\mathrm{T}_{\text {tablet }} \max . \quad+85 \quad{ }^{\circ} \mathrm{C}$
Voltage response $\frac{\mathrm{r} \text { at } 0.5 \mathrm{~V}}{\mathrm{r} \text { at } 10 \mathrm{~V}}$
tablet
K
$60{ }^{\circ} \mathrm{C} / \mathrm{W}$

## DESIGN CONSIDERATIONS

Apparatus with CdScells should be designed so that changes in resistance values of the cells during life from $-30 \%$ to $+70 \%$ do not impair the circuit performance. Direct sunlight irradiation should be avoided.

## SHOCK AND VIBRATION

An indication for the ruggedness of the cell is the following:
Samples taken from normal production are submitted to shock and vibrationtests More than $95 \%$ of the devices pass these tests without perceptible damage.

Shock
$25 \mathrm{~g}_{\text {peak }}, 10000$ shocks in one of the three positions of the cell.
Vibration
$2.5 \mathrm{~g}_{\text {peak }}, 50 \mathrm{~Hz}$, during 32 hours in each of the three positions of the cell.

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak

V	max.	200	V
$\mathrm{~V}_{\mathrm{P}}$	max.	500	V
P	See	page	6
$\mathrm{P}_{\mathrm{p}}$	max.	5 x	P
I	max.	250	mA
E	max.	50000	lux
$\mathrm{T}_{\text {tablet }}$	max.	85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	$\min$.	-40	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	$\max$.	+50	$\left.{ }^{\circ} \mathrm{C} 1\right)$
$\mathrm{T}_{\text {amb }}$	$\max$.	+70	${ }^{\circ} \mathrm{C}$

1) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.



## CADMIUM SULPHIDE PHOTOCONDUCTIVE DEVICE

Cadmium sulphide photoconductive device with side sensitivity in plastic encapsulation. The device consists of two cells connected in series and is intended for general applications.

QUICK REFERENCE DATA			
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=40{ }^{\circ} \mathrm{C} \quad{ }^{1}$ )	P	200	mW
Voltage, d.c. and repetitive peak	V	$\max$. 50	V
Resistance at 50 lux, $2700{ }^{\circ} \mathrm{K}$ colour temperature	$\mathrm{rl}_{0}$	600	$\Omega$
Spectral response curve		see page 4	
Outline dimensions		max. $6 \times 6 \times 2$	mm

MECHANICAL DATA
Dimensions in mm


## Soldering

The device may be soldered direct into the circuit but heat conducted to the tablet should be kept to a minimum by the use of a thermal shunt.
It may be dip-soldered at a solder temperature of $270{ }^{\circ} \mathrm{C}$ for a maximum of 2 s up to a point 6 mm from the envelope.
${ }^{1}$ ) See Operating Note 2

## ELECTRICAL DATA

Preconditioning > 1 h illumination with 300 lx (fluorescent light)
Initial dark resistance, measured with 50 V d.c. applied via $1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after switching off the illumination

Initial illumination resistance measured at $1 \mathrm{~V}_{\mathrm{d} . \mathrm{c}}$., illumination 50 lux

Initial drift
$\mathrm{F}_{4700}\left(=\frac{\mathrm{r} 1 \text { at } 47000^{\circ} \mathrm{K}}{\mathrm{r}_{1} \text { at } 2700 \mathrm{O}^{\circ}}\right.$ at constant illumination)

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	200			$\mathrm{k} \Omega$
$\mathrm{r}_{\mathrm{lo}}$	0.35	0.6	1.4	$\mathrm{k} \Omega$
$\mathrm{D}_{\mathrm{o}}$		0		$\%$
(		1.2		

## THERMAL DATA

Cell temperature
Thermal resistance from cell to a point on the leads 2 mm from the cell

LIMITING VALUES (Absolute max. rating system)
Cell voltage, d.c. and repetitive peak
pulse, $\mathrm{t}_{\mathrm{imp}}=\max .5 \mathrm{~ms}$
prr max. once per minute
Power dissipation, $t_{a v}=0.5 \mathrm{~s}$
Cell current, d.c. and r.m.s.
Ambient temperature, storage and operating storage
Cell temperature
$\mathrm{T}_{\text {cell }}$ max. $60{ }^{\circ} \mathrm{C}$

K $35^{\circ} \mathrm{C} / \mathrm{W}$

V max. 50 V

P	max.	300	mW
I	max.	25	mA
$\mathrm{~T}_{\text {amb }}$	min.	-40	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	max.	+50	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {cell }}$	max.	+60	${ }^{\circ} \mathrm{C}$

## OPERATING NOTES

1. The device consists of two photoconductive cells connected in series. The resistance of the device is mainly governed by the resistance of that cell receiving the lowest luminous flux.
If it is essential for the application that the device is partly shaded off, the shadow line should be perpendicular to the axis A-A of the device.
2. By clamping the leads at 2 mm from the body of the device, and making sure that the thermal resistance between clamping point and ambient is $50^{\circ} \mathrm{C} / \mathrm{W}$, one obtains an allowable dissipation of 200 mW at an ambient temperature of $40^{\circ} \mathrm{C}$; the temperature difference between clamping point and ambient then is $10^{\circ} \mathrm{C}$ and the cell temperature $60^{\circ} \mathrm{C}$.

## CLIMATIC DATA

After exposure to test C: Damp heat test (long term exposure): temperature $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, relative humidity between $90 \%$ and $95 \%$, severity VII of Publication 68-2 of the International Electrotechnical Commission (IEC) the changes in illumination resistance are within $+50 \%$ and $-30 \%$.
A high humidity does not harm the cell. Yet care should be taken not to put the cell into operation when wet. Four hours under normal room conditions make it sufficiently dry, also after it has been exposed to high humidity conditions for a long time.



## CADMIUM SULPHIDE PHOTOCONDUCTIVE DEVICE

Cadmium sulphide photoconductive cell with side sensitivity in a plastic encapsulation. The device consists of two cells in series and is intended for use in cameras, exposure meters, light control equipment and for general industrial use.


The device may be soldered direct into the circuit but heat conducted to the seals should be kept at a minimum by the use of a thermal shunt. Dip soldering at a solder temperature of $270^{\circ} \mathrm{C}$ may be employed for a maximum of 2 s up to a point 6 mm from the seals.

## ELECTRICAL DATA

Basic characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, illumination with $2700 \mathrm{Kc.t}$.
Pre-conditioning 1 h illumination with 300 lx (fluorescent light)

## Initial dark resistance

measured with $50 \mathrm{~V}_{\mathrm{d} . \mathrm{c}}$. applied via
$1 \mathrm{M} \Omega, 20 \mathrm{~s}$ after stopping the illumination of 10 lx

Initial illumination resistance
measured at $\mathrm{V}=1 \mathrm{~V}_{\mathrm{d} . \mathrm{c}}$., illumination 10 lx
Illumination response 1)
measured at $1 \mathrm{~V}_{\mathrm{d} . \mathrm{c}}$. between 0.1 lx and 10 lx

Negative temperature response of illumination resistance between $-10^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ at 11 x , $\mathrm{V}=1 \mathrm{~V}$
Pre-conditioning factor 2)
Actinism
Illumination at 2700 K
Illumination at 4700 K (referred to the same cell current)

symbol	min.	typical	max.	unit
$\mathrm{r}_{\text {do }}$	0.6			$\mathrm{M} \Omega$
$\mathrm{r}_{10}$	2.4		6.0	$\mathrm{k} \Omega$
$\gamma_{0.1-10}$	0.94		1.12	
$\mathrm{r}_{1} / \Delta \mathrm{T}$			0.5	\%/ ${ }^{\circ} \mathrm{C}$
	0.9		1.1	
	0.9		1.1	

[^63]
## LIMITING VALUES (Absolute max. rating system)

Cell voltage, d.c. and repetitive peak	V	$\max$.	50	V
Power dissipation	P	$\max$.	50	mW
Cell current, d.c. and repetitive peak	I	$\max$.	20	mA
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-40 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +70	${ }^{\circ} \mathrm{C}$	

## OPERATING NOTE

The device consists of two photoconductive cells connected in series.
The resistance of the device is mainly governed by the resistance of that cell receiving the lowest luminous flux.
If it is essential for the application that the device is partly shaded off, the shadow line should be perpendicular to the axis A-A of the device.




Sty98
$\qquad$

# Photodiodes Phototransistors 

## РНОTO DETECTORS

PHOTO-DETECTORS

	Type   No.	Sensitivity	voltage   max.	Outline   (dimensions in mm )
O.	OAP12	$5 \mu \mathrm{~A} / \mathrm{mW} / \mathrm{cm}^{2}$	30 V	sealed diameter 2.8
time				

## INFRA-RED EMITTER



Sensitivity, as measured on the axis of the cell, is stated in $\mathrm{mA} / \mathrm{mW} / \mathrm{cm}^{2}$ for radiation of 875 nm wavelength; multiply by 1.2 to obtain the corresponding sensitivity to 1000 lux visible light at 2854 K . Example: sensitivity ( 875 nm ) $=0.6 \mathrm{~mA} / \mathrm{mW} / \mathrm{cm}^{2}$; sensitivity $(2854 \mathrm{~K})=1.2 \times 0.6=0.72 \mathrm{~mA} / 1000$ lux.
The factor 1.2 is merely approximate. In practice, differences in spectral response between cells, and differences in the infra-red content of 2854 K light, account for some variation.

## DEFINITIONS APPLYING TO PHOTOSENSITIVE DEVICES to IEC 306

## DEFINITIONS AND UNITS OF RADIATION AND LIGHT QUANTITIES

## Radiant flux; radiant power

Power emitted, transferred or received in the form of radiation.

$$
\text { Symbols: } \phi_{\mathrm{e}}, \phi, \mathrm{P} \quad \phi_{\mathrm{e}}=\frac{\mathrm{dQ}_{\mathrm{e}}}{\mathrm{dt}} \text {; unit: watt, W. }
$$

## Radant intensity

The radiant intensity of a source in a given direction is the quotient of (1) the radiant flux leaving the source propagated in an element of solid angle containing the given direction, by (2) the element of solid angle.

Symbols: $I_{e}$, I
$I_{e}=\frac{d \phi_{e}}{d \Omega}$; unit: watt per steradian, W/sr.

## Irradiance

The irradiance at a point of a surface is the quotient of (1) the radiant flux incident on an element of the surface containing the point, by (2) the area of that element.

$$
\text { Symbols: } \mathrm{E}_{\mathrm{e}}, \mathrm{E} \quad \mathrm{E}_{\mathrm{e}}=\frac{\mathrm{d} \phi_{\mathrm{e}}}{\mathrm{dA}} \text {; unit: watt per square metre, } \mathrm{W} / \mathrm{m}^{2} .
$$

$\underline{\text { Light }}$
Radiation capable of stimulating the organ of vision.
Luminous flux
Quantity derived from radiant flux by evaluating the radiation according to its action upon a selective receptor, the spectral sensitivity of which is defined by the standard spectral luminous efficiency.

Symbols: $\phi_{\mathrm{V}}, \phi$; unit: lumen, 1 m .

## Lumen

SI unit of luminous flux: luminous flux emitted within unit solid angle (one steradian) by a point source having a uniform intensity of 1 candela.

Symbol: 1m.
Note: - SI stands for "Système International".

## Luminous intensity

The luminous intensity of a source in a given direction is the quotient of (1) the luminous flux leaving the source propagated in an element of solid angle containing the given direction, by (2) the element of solid angle.

$$
\text { Symbols: } \mathrm{I}_{\mathrm{V}}, \mathrm{I} \quad \mathrm{I}_{\mathrm{V}}=\frac{\mathrm{d} \phi_{\mathrm{V}}}{\mathrm{~d} \Omega} \text {; unit: candela, cd. }
$$

## Candela

SI unit of luminous intensity: Luminous intensity, in the perpendicular direction, of a surface of $1 / 600000$ square metre of a black body at the temperature of freezing platinum under a pressure of 101235 newtons per square metre.

$$
\text { Symbols: cd; } 1 \mathrm{~cd}=1 \mathrm{~lm} / \mathrm{sr} \text {. }
$$

## Illuminance

At a point of a surface, the quotient of (1) the luminous flux incident on an element of the surface containing the point, by (2) the area of that element.

$$
\text { Symbols: } E_{V}, E \quad E_{V}=\frac{d \phi_{V}}{d A} \text {; unit: lux, Ix. }
$$

## Lux; lumen per square metre

SI unit of illuminance: illuminance produced by a luminous flux of 1 lumen uniformly distributed over a surface of area 1 square metre.

$$
\text { Symbol: } 1 \mathrm{x} ; 11 \mathrm{x}=11 \mathrm{~m} / \mathrm{m}^{2}
$$

## Distribution temperature

Temperature of the full radiator for which the ordinates of the spectral distribution curve of its radiance are proportional, in the visible region, to those of the distribution curve of the radiation cosidered.

The unit of measurement is degree Kelvin (K).

## Colour temperature

For the purpose of this Recommendation, colour temperature is the distribution temperature of the radiation source.
The unit of measurement is degree Kelvin.

## DEFINITIONS OF ELECTRICAL QUANTITIES

## Photocurrent

The change in output current from the photocathode caused by incident radiation.

## Frequency response characteristic

Relation, usually shown by a graph, between the radiant (or luminous) dynamic sensitivity and the modulation frequency of the incident radiation.

## Dark current

The current flowing in a photoelectric device in the absence of irradiation.

## Equivalent dark-current irradiation

The incident radiation required to give a d.c. signal output current equal to the dark current.

## Equivalent noise irradiation

The value of incident radiation which, when modulated in a stated manner, produces a signal output power equal to the noise power, both in a stated bandwidth.

## Quantum efficiency

The ratio of (1) the number of emitted photoelectrons to (2) the number of incident photons.

Quantum efficiency (Q.E.) at a given wavelength of incident radiation may be computed from:

$$
\mathrm{Q} \cdot \mathrm{E} .=\frac{\text { const. } \times \mathrm{s}_{\mathrm{k}}}{\lambda}
$$

where:

$\mathrm{s}_{\mathrm{k}}$	$=$ spectral sensitivity (amperes per watt) at wavelength $\lambda$
$\lambda$	$=$ wavelength of incident radiation (nanometres)
const. $=\mathrm{hc}_{\mathrm{o}} / \mathrm{e}$	$=1.24 \times 10^{3} \mathrm{~W} \cdot \mathrm{~nm} / \mathrm{A}$
h	$=$ Planck constant
$\mathrm{c}_{\mathrm{o}}$	$=$ speed of propagation of electromagnetic waves in vacuo
e	
	$=$ elementary charge

## Saturation voltage

The lowest operating voltage which causes no change, or only a slight change, of the photocurrent when this voltage is increased under conditions of given constant radiation.

## Saturation current

The output current of a photosensitive device which is not changed, or only insignificantly changed, by an increase of either:
a) the irradiance under constant operating conditions; or
b) the operating voltage under constant irradiance.

Note. - The context should make clear which definition is applicable.

## GENERAL

## DEFINITIONS OF SENSITIVITY

These definitions apply more directly to photocathode sensitivity. For devices in which it is necessary to define the anode (over-all) sensitivity, signal output current should be considered instead of photocurrent.

## Radiant sensitivity

a) The quotient of (1) the photocurrent of the device by (2) the incident radiant power, expressed in amperes per watt.
b) The quotient of (1) the photocurrent of the device by (2) the incident irradiance, expressed in amperes per watt/m2.
Absolute spectral sensitivity
The radiant sensitivity for monochromatic radiation of a stated wavelength.
Relative spectral sensitivity
The ratio of (1) the radiant sensitivity at any considered wavelength to (2) the radiant sensitivity at a certain wavelength taken as reference, usually the wavelength of maximum response.

Note. - For non-linear detectors, it is neccessary to refer to constant photocurrent at all wavelengths.

## Luminous sensitivity

a) The quotient of (1) the photocurrent of the device by (2) the incident luminous flux, expressed in amperes per lumen.
b) The quotient of (1) the photocurrent of the device by (2) the incident illuminance, expressed in amperes per lux.

## Dynamic sensitivity

Under stated conditions of operation, the quotient of (1) the variation of the photocurrent of the device by (2) the initiating small variation of the incident radiant power (or luminous)

Note. - Distinction is made between "luminous dynamic sensitivity" and "radiant sensitivity."

Spectral sensitivity characteristic
The relation, usually shown by a graph, between wavelength and absolute or relative spectral sensitivity.

Absolute spectral sensitivity characteristic
The relation, usually shown by a graph, between wavelength and absolute spectral sensitivity.

Relative spectral sensitivity characteristic
The relation between wavelength and relative spectral sensitivity.
Quantum efficiency characteristic
The relation, usually shown by a graph, between wavelength and quantum efficiency.

## DEFINITIONS OF TIME QUANTITIES

## Rise time

The time required for the photocurrent to rise from a stated low percentage to a stated higher percentage of the maximum value when a steady state of radiation is instantaneously applied.
It is usual to consider the $10 \%$ and $90 \%$ levels.

## Fall time

The time required for the photocurrent to fall from a stated high percentage to a stated lower percentage of the maximum value when the steady state of radiation is instantaneously removed.

It is usual to consider the $90 \%$ and $10 \%$ levels.



## SILICON PLANAR EPITAXIAL PHOTO-TRANSISTORS

General purpose n-p-n silicon photo-transistors in TO-18. The window of the BPX25 is a lens, that of the BPX29 is plane.


MECHANICAL DATA

BPX25
TO-18, except for lens
Collector connected to case


Dimensions in mm

## BPX29

TO-18, except for window
Collector connected to case


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Collector-base voltage (open emitter) $\quad \mathrm{V}_{\mathrm{CBO}} \max .32 \mathrm{~V}$

Collector-emitter voltage (open base)
Emitter-base voltage (open collector)

## Current

$\rightarrow$ Collector current (d.c.)
$\rightarrow$ Col'ector current (peak value)
IC max. 100 mA

Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Temperatures
Storage temperature
Junction temperature
Ptot max. 300 mW

## THERMAL RESISTANCE

From junction to ambient
From junction to case
CHARACTERISTICS
Collector-emitter dark cut-off current

$$
I_{B}=0 ; V_{C E}=24 \mathrm{~V}
$$

$\mathrm{IB}=0 ; \mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$

$R_{\text {th j-a }}=0.4{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$R_{\text {th j-c }}=0.15$

T amb $=25^{\circ} \mathrm{C}$ unless otherwise specified

Collector-emitter light cut-off current

$$
\mathrm{I}_{\mathrm{B}}=0 ; \mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V} \text {; illumination: } 10001 \mathrm{x}
$$

tungsten filament lamp source with
colour temperature $2700 \mathrm{~K}\left(7.7 \mathrm{~mW} / \mathrm{cm}^{2}\right)$
GaAs source; $15 \mathrm{~mW} / \mathrm{cm}^{2}$
D. C. current gain
$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$

## Cut-off frequency

Source: modulated GaAs; $0.4 \mathrm{~mW} / \mathrm{cm}^{2}$
Load : optimum $(50 \Omega) ; \mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CEO}}(\mathrm{D})$ $\begin{array}{ll}\text { typ. } & 0.2 \mu \mathrm{~A} \\ < & 1.0 \mu \mathrm{~A}\end{array}$
I CEO(D) $\begin{array}{lrr}\text { typ. } & 30 & \mu \mathrm{~A} \\ < & 200 & \mu \mathrm{~A}\end{array}$

## CHARACTERISTICS (continued)

			BPX25	BPX29	
Delay time	${ }^{\text {d }}$ d	typ.	3.0	5.0	$\mu \mathrm{s}$
Rise time		typ.	1.5	2.5	$\mu \mathrm{s}$
Rise time	${ }_{\text {r }}$	<	3.0	5.0	$\mu \mathrm{s}$
Storage time	$\mathrm{t}_{\text {s }}$	typ.	0.2	0.2	$\mu \mathrm{s}$
		<	0.4	0.4	$\mu \mathrm{s}$
Fall time		typ.	1.5	3.5	$\mu \mathrm{s}$
Fall time	${ }_{f}$	,	4.0	8.0	$\mu \mathrm{s}$
Peak spectral response	$\lambda_{\mathrm{m}}$	typ.	800	800	nm
$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$; illumination: 1000 lx		typ.	0.5	1.5	$\frac{\mathrm{mlx}}{\sqrt{\mathrm{Hz}}}$



[^64]




polar response of relative sensitivity


## SILICON PLANAR PHOTO-DIODE

Unencapsulated photo-diode for general purpose applications.

QUICK REFERENCE DATA										
Reverse voltage	$\mathrm{V}_{\mathrm{R}}$	max.	18	V						
Light sensitivity										
$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V} ; \mathrm{E}=1000 \mathrm{~lx}$	N	typ.	10	$\mathrm{nA} / 1 \mathrm{x}$						
Dark reverse current at $\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$	$\mathrm{I}_{\mathrm{d}}$	$<$	0.5	$\mu \mathrm{~A}$						
Peak spectral response	$\lambda_{\mathrm{m}}$	typ.	800	nm						

MECHANICAL DATA
Dimensions in mm


Slice thickness 0.27 mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltage

Reverse voltage $\quad \mathrm{V}_{\mathrm{R}} \quad \max .18 \mathrm{~V}$
Currents
Forward current $\mathrm{I}_{\mathrm{F}} \max .5 \mathrm{~mA}$
Dark reverse current
IR max. 2 mA
Temperatures
Storage temperature
Junction temperature
$\mathrm{T}_{\text {stg }} \quad-65$ to $+125{ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient in free air

## CHARACTERISTICS

Dark reverse current
$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$

Light reverse current; $V=0$
$\mathrm{E}=1000 \mathrm{~lx}$; colour temperature $=2700 \mathrm{~K}$
$\mathrm{I}_{1}$
$\begin{array}{lr}> & 7.5 \mu \mathrm{~A} \\ \text { typ. } & 9 \mu \mathrm{~A}\end{array}$
Forward voltage; $I=0$
$\mathrm{E}=1000 \mathrm{~lx}$; colour temperature $=2700 \mathrm{~K}$
$\mathrm{V}_{\mathrm{F}}$
$\begin{array}{lll}> & 330 \mathrm{mV} \\ \text { typ. } & 350 \mathrm{mV}\end{array}$
$\underline{\text { Light sensitivity }}{ }^{1}$ )
$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V} ; \mathrm{E}=10001 \mathrm{x}$
colour temperature $=2700 \mathrm{~K}$
Peak spectral response Diode capacitance; $\mathrm{f}=500 \mathrm{kHz}$

$$
\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}
$$

$\mathrm{C}_{\mathrm{d}}$
$C_{d}$

$$
\mathrm{V}_{\mathrm{R}}=0
$$

$$
\begin{array}{llr} 
& > & 8.5 \mathrm{nA} / 1 \mathrm{x} \\
\mathrm{~N} & \text { typ. } & 10 \mathrm{nA} / 1 \mathrm{x} \\
& \lambda_{\mathrm{m}} & \text { typ. } \\
\hline 000 \mathrm{~nm}
\end{array}
$$

${ }^{1}$ ) The value of 1 li
dark current.




IIIIII


## SILICON PLANAR PHOTO-DIODE

Unencapsulated photo-diode for general purpose applications.

	QUICK REFERENCE DATA			
Reverse voltage	$\mathrm{V}_{\mathrm{R}}$	max.	18	V
Light sensitivity				
$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V} ; \mathrm{E}=1000 \mathrm{~lx}$	N	typ.	30	$\mathrm{nA} / \mathrm{lx}$
Dark reverse current at $\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$	$\mathrm{I}_{\mathrm{d}}$	$<$	1.0	$\mu \mathrm{~A}$
Peak spectral response	$\lambda_{\mathrm{m}}$	typ.	800	nm

MECHANICAL DATA
Dimensions in mm


Slice thickness 0.27 mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Reverse voltage $\quad \mathrm{V}_{\mathrm{R}} \quad \max .18 \mathrm{~V}$

## Currents

Forward current	$I_{F}$	$\max$.	10 mA
Dark reverse current	$\mathrm{I}_{\mathrm{R}}$	$\max$.	5 mA

## Temperatures

Storage temperature
Junction temperature
$\mathrm{T}_{\text {stg }} \quad-65$ to $+125^{\circ} \mathrm{C}$

THERMAL RESISTANCE
From junction to ambient in free air
$R_{\text {th } j-a}=\quad 0.5^{\circ} \mathrm{C} / \mathrm{mW}$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}} \quad \max . \quad 125{ }^{\circ} \mathrm{C}$

Dark reverse current
$\left.\begin{array}{llll} & & \text { typ. } & 0.02 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{R}}=15 \mathrm{~V} & \mathrm{I}_{\mathrm{d}} & < & 1.0 \mu \mathrm{~A}\end{array}\right)$
$\underline{\text { Light sensitivity }}{ }^{1}$ )
$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V} ; \mathrm{E}=1000 \mathrm{~lx}$
colour temperature $=2700 \mathrm{~K}$
$\mathrm{N} \quad>\quad 25 \mathrm{nA} / \mathrm{lx}$

Peak spectral response
$\lambda_{\mathrm{m}} \quad$ typ. 800 nm
Diode capacitance; $\mathrm{f}=500 \mathrm{kHz}$

$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$	$\mathrm{C}_{\mathrm{d}}$	typ.	250 pF
$\mathrm{V}_{\mathrm{R}}=0$	$\mathrm{C}_{\mathrm{d}}$	typ.	800 pF

1) The value of light current increases with temperature equal to the increase in dark current.






## SILICON PLANAR PHOTO-DIODE

Unencapsulated photo-diode for general purpose applications.

	QUICK REFERENCE DATA			
Reverse voltage	$\mathrm{V}_{\mathrm{R}}$	max.	12	V
Light sensitivity				
$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{E}=10001 \mathrm{x}$	N	typ.	120	$\mathrm{nA} / 1 \mathrm{x}$
Dark reverse current at $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{d}}$	$<$	5	$\mu \mathrm{~A}$
Peak spectral response	$\lambda_{\mathrm{m}}$	typ.	800	nm

MECHANICAL DATA
Dimensions in mm


Slice thickness 0.27 mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltage

Reverse voltage
$\mathrm{V}_{\mathrm{R}} \quad \max .12 \mathrm{~V}$

## Currents

Forward current
Dark reverse current

$I_{\mathrm{F}}$	max.	50	mA
$\mathrm{I}_{\mathrm{R}}$	max.	20	mA

Temperatures
Storage temperature
Junction temperature
$\mathrm{T}_{\text {stg }} \quad-65$ to $+125{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}} \quad \max . \quad 125{ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient in free air

$$
R_{\text {th } j-a}=
$$

$0.3{ }^{\circ} \mathrm{C} / \mathrm{mW}$
CHARACTERISTICS
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Dark reverse current

$$
\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}
$$

$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$

$\mathrm{I}_{\mathrm{d}}$	typ.	0.1	$\mu \mathrm{A}$
	$<$	5.0	$\mu \mathrm{A}$
	typ.	6.0	$\mu \mathrm{A}$
${ }^{1}$ d	$<$	40	

$\underline{\text { Light reverse current; } \mathrm{V}=0}$
$\mathrm{E}=1000 \mathrm{~lx}$; colour temperature $=2700 \mathrm{~K}$
$\mathrm{I}_{1}$
Forward voltage; $\mathrm{I}=0$
$\mathrm{E}=1000 \mathrm{~lx}$; colour temperature $=2700 \mathrm{~K}$
$\begin{array}{llrl} & > & 330 & \mathrm{mV} \\ \mathrm{V}_{\mathrm{F}} & \text { typ. } & 350 & \mathrm{mV}\end{array}$
$\underline{\text { Light sensitivity }}^{1)}$
$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{E}=1000 \mathrm{~lx}$
colour temperature $=2700 \mathrm{~K}$
Peak spectral response

	$>$	100	$\mathrm{nA} / 1 \mathrm{x}$
N	$>$   typ.	120	$\mathrm{nA} / 1 \mathrm{x}$
$\lambda_{\mathrm{m}}$	typ.	800	nm

Diode capacitance; $f=500 \mathrm{kHz}$

$V_{R}=10 \mathrm{~V}$	$\mathrm{C}_{\mathrm{d}}$	typ.	1000	pF
$\mathrm{V}_{\mathrm{R}}=0$	$\mathrm{C}_{\mathrm{d}}$	typ.	3000	pF

[^65]




## BPX66P

## LIGHT ACTIVATED SCS

Planar $p-n-p-n$ light activated SCS in a hermetically sealed metal envelope corresponding to TO-72 but with flat glass window. It is capable of switching currents up to. 10 A .
With this component it is possible to build relatively simple circuits which will trigger at a light intensity of 100 lux.
The device is an integrated pnp -npntransistor of which all electrodes are accessible.

QUICK REFERENCE DATA				
Anode-cathode voltage (forward and reverse)   D. C. on-state current   Repetitive peak on-state cathode current $\mathrm{t}_{\mathrm{p}}=1 \mu \mathrm{~s} ; \delta=10^{-6}$	$\begin{array}{llrl} \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{R}} & \max . & 70 & \mathrm{~V} \\ \mathrm{I}_{\mathrm{T}} & \max . & 150 & \mathrm{~mA} \end{array}$			
		max.	10	A
Spread   The ratio of minimum light level at which any specimen is ON to maximum light level at which any specimen is OFF				
Irradation level to trigger all devices				
$\begin{aligned} & V_{D}=70 \mathrm{~V} ; \mathrm{I}_{\mathrm{AG}}=0 ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{KG}}-\mathrm{K}=1 \mathrm{M} \Omega ; \lambda=800 \mathrm{~mm} \end{aligned}$   Irradiation level not to trigger any device	$\mathrm{E}_{\mathrm{e}}$	>	1.5	$\mathrm{mW} / \mathrm{cm}^{2}$
$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=70 \mathrm{~V} ; \mathrm{I}_{A G}=0 ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & R_{K G}-\mathrm{K}=1 \mathrm{M} \Omega ; \lambda=800 \mathrm{~nm} \\ & \text { Peak spectral response } \end{aligned}$	$\mathrm{E}_{\mathrm{e}}$ $\lambda_{\mathrm{m}}$	typ.		$\begin{aligned} & \mathrm{mW} / \mathrm{cm}^{2} \\ & \mathrm{~nm} \end{aligned}$

## MECHANICAL DATA



Dimensions in mm

The anodegate is connected to the case.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Anode -cathode voltage (forward and reverse) $\quad \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{R}} \max .70 \mathrm{~V}$
Reverse cathodegate-cathode voltage (peak value) $\mathrm{V}_{\mathrm{RGKM}}$ max. 5 V
Reverse anode-anodegate voltage (peak value) VRAGM max. 70 V

## Currents

D.C. on-state current

IT max. 150 mA
Repetitive peak on-state current

$$
\begin{array}{lllrl}
\mathrm{t} \leq 10 \mu \mathrm{~s}, \delta=0.01 & \text { ITRM } & \max . & 2.5 & \mathrm{~A} \\
\mathrm{t} \leq 1 \mu \mathrm{~s}, \delta=10^{-6} & \text { ITRM } & \max . & 10 & \mathrm{~A}
\end{array}
$$

Anodegate current (peak value)
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad$ Ptot $\max .250 \mathrm{~mW}$

## Temperatures

Storage temperature
$\mathrm{T}_{\text {stg }}$
$\mathrm{T}_{\mathrm{j}}$ -65 to $+100 \quad{ }^{\circ} \mathrm{C}$

Junction temperature
THERMAL RESISTANCE
From junction to ambient
$R_{\text {th j-a }}=0.5 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$
${ }^{1}$ ) This value holds for the use of the device in circuit 1 b on page 9

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

## Forward on-state voltage

$$
\mathrm{I}_{\mathrm{T}}=100 \mathrm{~mA} ; \mathrm{R}_{\mathrm{KG}-\mathrm{K}}=1 \mathrm{M} \Omega ; \mathrm{I}_{\mathrm{AG}}=0 \quad \mathrm{~V}_{\mathrm{T}}<1.5 \mathrm{~V}
$$

Dark current (cathodegate current)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{D}}=70 \mathrm{~V} ; \mathrm{I}_{\mathrm{AG}}=0 ; \mathrm{V}_{\mathrm{KG}}-\mathrm{K} \leq 25 \mathrm{mV} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\
& \left.\mathrm{~V}_{\mathrm{D}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{AG}}=0 ; \mathrm{V}_{\mathrm{KG}}-\mathrm{d}\right)<25 \mathrm{mV} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{KG}}(\mathrm{~d})<
\end{aligned}
$$

Cathodegate trigger voltage

$$
\mathrm{V}_{\mathrm{D}}=70 \mathrm{~V} ; \mathrm{I}_{\mathrm{AG}}=0 ; \mathrm{R}_{\mathrm{KG}-\mathrm{K}}=1 \mathrm{M} \Omega ; \mathrm{T}_{\mathrm{j}}=25{ }^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{GKT}} \quad 200 \text { to } 500 \mathrm{mV}
$$

Holding current (anode current)

$$
I_{A G}=0 ; R_{K G}-K=1 \mathrm{M} \Omega \quad \mathrm{I}_{\mathrm{H}} \ll 10 \mu \mathrm{~A}
$$

Test circuit:


Light current (cathodegate current)
$\mathrm{V}_{\mathrm{D}}=70 \mathrm{~V} ; \mathrm{l}_{\mathrm{AG}}=0 ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
$\mathrm{E}_{\mathrm{e}}=1.5 \mathrm{~mW} / \mathrm{cm}^{2} ; \lambda=800 \mathrm{~nm}$
$\mathrm{I}_{\mathrm{KG}(\ell)} 400$ to 1200 nA
Irradiation level to trigger all devices
$\mathrm{V}_{\mathrm{D}}=70 \mathrm{~V} ; \mathrm{I}_{\mathrm{AG}}=0 ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

$$
\mathrm{R}_{\mathrm{KG}-\mathrm{K}}=1 \mathrm{M} \Omega ; \lambda=800 \mathrm{~nm} \quad \mathrm{E}_{\mathrm{e}} \quad>\quad 1.5 \mathrm{~mW} / \mathrm{cm}^{2}
$$

## Irradation level not to trigger any device

$\mathrm{V}_{\mathrm{D}}=70 \mathrm{~V} ; \mathrm{I}_{\mathrm{AG}}=0 ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{KG}}-\mathrm{K}=1 \mathrm{M} \Omega ; \lambda=800 \mathrm{~nm} \quad \mathrm{E}_{\mathrm{e}}<0.5 \mathrm{~mW} / \mathrm{cm}^{2}$

## CHARACTERISTICS (continued)

## Turn-on time

$$
\mathrm{V}_{\mathrm{D}}=70 \mathrm{~V}, \mathrm{I}_{\mathrm{AG}}=0 ; \mathrm{R}_{\mathrm{KG}-\mathrm{K}}=1 \mathrm{M} \Omega
$$

The irradiation level is switched from

$$
\mathrm{E}_{\mathrm{e}}=0 \text { to } \mathrm{E}_{\mathrm{e}}=1.5 \mathrm{~mW} / \mathrm{cm}^{2} ; \lambda=800 \mathrm{~nm}
$$

$$
\mathrm{E}_{\mathrm{e}}=0 \text { to } \mathrm{E}_{\mathrm{e}}=2.5 \mathrm{~mW} / \mathrm{cm}^{2} ; \lambda=800 \mathrm{~nm}
$$

$\mathrm{t}_{\text {on }}$	typ.	30	$\mu \mathrm{~s}$
	typ.	20	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {on }}$	$<$	50	$\mu \mathrm{~s}$

Turn-off time

$$
\begin{aligned}
& I_{A G}=0 ; \mathrm{R}_{\mathrm{KG}-\mathrm{K}}=1 \mathrm{M} \Omega ; \mathrm{E}_{\mathrm{e}}=0 \\
& \mathrm{~V}_{\mathrm{S}}=70 \mathrm{~V} ; \mathrm{R}_{\mathrm{a}}=50 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{q}}=3.9 \mathrm{k} \Omega \\
& \mathrm{~V}_{\mathrm{S}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{a}}=10 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{q}}=2.7 \mathrm{k} \Omega
\end{aligned}
$$

$\mathrm{t}_{\mathrm{q}} \quad$ typ. $100 \quad \mu \mathrm{~s}$

## Test circuit:



The turn-off time decreases a factor 10 by connecting the anodegate to the supply voltage via $1 \mathrm{M} \Omega$. See adjacent figure

Peak spectral response
Conversion of lux into $\mathrm{mW} / \mathrm{cm}^{2}$
Each 1000 lux may be substituted by $1.2 \mathrm{~mW} / \mathrm{cm}^{2}$ with 800 nm

## OPERATING PRINCIPLE

The BPX66P can be thought of as two transistors connected as shown below. It will trigger when the forward cathodegate-cathode voltage has a sufficient high value (approx. 0.3 V)

2 transistors equivalent circuit
$p-n-p-n$ SCS equivalent circuit


Symbol


Consider the situation in which the anodegate is left floating. Illumination gives rise to a photocurrent in the p-n-ptransistor which will trigger the device into conduction unless there is a bypass (e.g. a resistor) between cathodegate and cathode. If there is such a bypass, triggering will occur when the photocurrent is sufficient to cause a voltage drop across it corresponding to the triggering voltage of 0.3 to 0.4 V . The irradiation value at which the device will trigger varies inversely as the impedance of the bypass.
Two factors set a practical limit to the minimum triggering irradiation threshold:

- the leakage current across the base-collector junction of the $p-n-p$ transistor;
- the maximum practical bypass impedance (the higher the impedance, the more vulnerable it is to moisture contamination, and the more sensitive the circuit is to switching transients).
Once triggered into conduction, the device can be returned to the non-conducting state by switching -off the supply voltage, an a.c. voltage reversal, or a negative voltage pulse on the anode.


Light current as a function of illumination level measured with an incandescent lamp at a colour temperature of 2854 K .




Trigger voltage as a function of junction temperature
polar response of relative sensitivity



## APPLICATION INFORMATION

1. D.C. supply-Circuit for igniting a quench tube in photoflash equipment


Transformer data:
$\mathrm{n}_{\mathrm{p}}=15$ turns $(2 \mu \mathrm{H})$
$\mathrm{n}_{\mathrm{S}}=1215$ turns ( 13.1 mH )
$\mathrm{k}=0.68$
$\mathrm{C}_{\text {par }}=10.6 \mathrm{pF}$
Performance:
repetition frequency 1 Hz number of discharges $>10^{4}$

Switch S should open when the photoflash is fired. As soon as it opens, the BPX66P starts to register the incident illumination E . When $\int$. d dt reaches a predetermi ned value, the BPX66P is triggered and feeds a $1 \mu \mathrm{~s}$ pulse of 10 A through the primary of the transformer; the resulting high voltage across the secondary triggers the quench tube, extinguishing the photoflash tube.
2. A.C. supply -1 ight activated relay circuits
a. 220 V


R and C must be chosen to meet requirements as to illumination levels $\mathrm{E}_{\mathrm{in}}$ and $E_{\text {out }}$. The values are practically the same as in the table below.
For gradually changing light levels the relay should be shunted by a capacitor (e.g. $10 \mu \mathrm{~F}, 64 \mathrm{~V}$ ) to prevent chatter; for suddenly changing light levels (on-off) it may be slirinted by a diode.

## APPLICATION INFORMATION (continued)

b. 35 V

$R_{\ell}=$ d.c. relay
$\begin{array}{lr}\text { Coil resistance } & 2 \mathrm{k} \Omega \\ \text { Ion }^{2} & 8.5 \mathrm{~mA} \\ \text { I off } & 2.2 \mathrm{~mA}\end{array}$

R and C must be choosen to meet requirements as to illumination levels $\mathrm{E}_{\mathrm{in}}$ and $\mathrm{E}_{\text {out }}$; see table below.
For gradually changing light levels the relay should be shunted by a capacitor (e.g. $100 \mu \mathrm{~F}, 40 \mathrm{~V}$ ); for suddenly changing light levels (on-off) it may be shunted by a diode.

$\mathrm{R}(\mathrm{M} \Omega)$	$\mathrm{C}(\mathrm{nF})$	$\mathrm{E}_{\text {in }}(\mathrm{lx})$	$\mathrm{E}_{\text {out }}(\mathrm{lx})$
3.3	10	1150	750
3.3	1	450	400
1	0.5	820	800

The values are average values that can be expected at a colour temperature of 2854 K ; at other colour temperatures large deviations from these values may be observed.

Caution:
To avoid difficulties with temperature dependence it is generally advantageous to design a circuit for higher values of $\mathrm{E}_{\text {in }}$ and $\mathrm{E}_{\text {out }}$, for then R can be given a lower value.

## PHOTO-TRANSISTOR

General purpose $n-p-n$ silicon photo-transistor with a glass lens.

QUICK REFERENCE DATA				
Collector-emitter voltage (open base)	$\mathrm{V}_{\text {CEO }}$	max.	50	V
Collector current (peak value) $\mathrm{t}_{\mathrm{p}}<50 \mu \mathrm{~s} ; \delta<0.1$	$\mathrm{I}_{\mathrm{CM}}$	max.	50	mA
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
Collector-emitter dark current $\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}$	$\mathrm{I}_{\mathrm{d}}$	$<$	25	nA
Collector-emitter light current $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{E}=20 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I}_{\ell}$	0.75	15	mA
Peak spectral response	$\lambda_{\mathrm{m}}$	typ.	800	nm

MECHANICAL DATA
Dimensions in mm


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Collector-emitter voltage (open base)	$\mathrm{V}_{\mathrm{CEO}}$	$\max$.	50	V
Emitter-collector voltage (open base)	$\mathrm{V}_{\mathrm{ECO}}$	$\max$.	7	V

## Current

Collector current (d.c.)
$\mathrm{I}_{\mathrm{C}} \quad \max \quad 20 \mathrm{~mA}$
Collector current (peak value)
$\mathrm{t}_{\mathrm{p}}<50 \mu \mathrm{~s} ; \delta<0.1 \quad{ }^{\mathrm{I}} \mathrm{CM} \quad \max .50 \mathrm{~mA}$

## Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max . \quad 50 \mathrm{~mW}$ up to $\mathrm{T}_{\mathrm{mb}}=55^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max .100 \mathrm{~mW}$

## Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	$\max . \quad 150$	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient
From junction to mounting base
$R_{\text {th } j-\mathrm{a}}=2{ }^{\circ}{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$R_{\text {th } j-\mathrm{mb}}=0.95{ }^{\circ} \mathrm{C} / \mathrm{mW}$

CHARACTERISTICS
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

## Colllector-emitter dark current

$\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}$
$\mathrm{I}_{\mathrm{d}}<25 \mathrm{nA}$
$\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{d}} \quad<\quad 100 \mu \mathrm{~A}$

Collector-emitter light current
$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$; tungsten filament lamp
source with colour temperature 2854 K

$$
\begin{array}{rllrl}
\text { irradiation: } 4.75 \mathrm{~mW} / \mathrm{cm}^{2} & \mathrm{I}_{\ell} & \text { typ. } & 1 & \mathrm{~mA} \\
20 \mathrm{~mW} / \mathrm{cm}^{2} & \mathrm{I}_{\ell} & \text { typ. } & 5 & \mathrm{~mA} \\
& 0.75 \text { to } & 15 & \mathrm{~mA}
\end{array}
$$

Breakdown voltages
Collector-emitter voltage
$\mathrm{E}=0 ; \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}$
Emitter-collector voltage
$\mathrm{E}=0 ; \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}$

$V_{(B R)}$ CEO	>	50	V
$\mathrm{V}_{(\mathrm{BR}) \mathrm{ECO}}$	$>$	7	V

Collector-emitter saturation voltage
$\mathrm{I}_{\mathrm{C}}=0.4 \mathrm{~mA} ; \mathrm{E}=20 \mathrm{~mW} / \mathrm{cm}^{2}$
colour temperature: 2854 K $\quad V_{\text {CEsat }} \quad \begin{aligned} & \text { typ. } \\ & <\end{aligned} \quad \begin{aligned} & 150 \mathrm{mV} \\ & 400\end{aligned}$

## CHARACTERISTICS (continued)

Switching times
$\mathrm{I}_{\mathrm{C}}=0.8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=35 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
Delay time

Rise time

Storage time

Fall time
Light input pulse:


Peak spectral response
Bandwidth at half height








polar response of relative sensitivity


IIIIIII

## SILICON PHOTOVOLTAIC CELL

Planar photovoltaic cell for use in tape and card readers.

QUICK REFERENCE DATA				
Reverse voltage	$\mathrm{V}_{\mathrm{R}}$	max.	1.0	V
Light reverse current				
$\mathrm{V}=0 ; \mathrm{E}=1000 \mathrm{~lx}$	$\mathrm{I}_{1}$	typ.	16	$\mu \mathrm{A}$
Dark reverse current at $\mathrm{V}_{\mathrm{R}}=1.0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{d}}$	$<$	5.0	$\mu \mathrm{A}$
Peak spectral response	$\lambda_{\mathrm{m}}$	typ.	800	nm

## MECHANICAL DATA



RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Reverse voltage $\quad \mathrm{V}_{\mathrm{R}} \max .1 .0 \mathrm{~V}$

## Currents

Forward current
IF max. 10 mA

## Temperatures

Storage temperature
Junction temperature
Tstg $\quad-20$ to $+100 \quad{ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE
From junction to ambient in free air
Rth j-a $=0.6{ }^{\circ} \mathrm{C} / \mathrm{mW}$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Dark reverse current
$\mathrm{V}_{\mathrm{R}}=1.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=1.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$
$\underline{\text { Light reverse current; }} \mathrm{V}=0$
$E=1000 \mathrm{~lx}$; colour temperature $=2700 \mathrm{~K} \quad \mathrm{I}_{1}$
Forward voltage; $I=0$
$\mathrm{E}=1000 \mathrm{~lx}$; colour temperature $=2700 \mathrm{~K}$
Peak spectral response
Diode capacitance; $f=500 \mathrm{kHz}$

$$
\mathrm{V}_{\mathrm{R}}=0
$$

typ.	0.35	$\mu \mathrm{~A}$
$<$	5.0	$\mu \mathrm{~A}$

$I_{\mathrm{d}}<30 \mu \mathrm{~A}$
typ. $\quad 16 \mu \mathrm{~A}$ 7.5 to $30 \mu \mathrm{~A}$
typ. 350 mV
typ. 800 nm
$\begin{array}{lrl}\text { typ. } & 700 & \mathrm{pF} \\ < & 1000 & \mathrm{pF}\end{array}$







## SILICON DUO PHOTO-DIODE

Silicon diffused photo-diode in a 2.8 mm diameter envelope with a glass lens. The duo-diode construction makes this device independent of voltage polarity.

QUICK REFERENCE DATA				
Diode voltage (bidirectional)	V	$\max$.	60	V
Dark current at $\mathrm{V}=50 \mathrm{~V}$; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{d}}$	$<$	50	nA
Sensitivity at V $=50 \mathrm{~V}$	N	typ.	0.5	$\mu \mathrm{A} / \mathrm{lx}$
Current rise time	$\mathrm{t}_{\text {ri }}$	typ.	17	$\mu \mathrm{s}$
Peak spectral response	$\lambda_{\mathrm{m}}$	typ.	980	nm

## MECHANICAL DATA

Dimensions in mm


7258612


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltage

Diode voltage (bidirectional)
Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ Temperatures
Storage temperature
Junction temperature
$P_{\text {tot }}$
max.
80 mW
$\mathrm{T}_{\text {stg }}$
$T_{j}$

$$
\begin{array}{ll}
R_{\text {th } j-a} & =1.25{ }^{\circ} \mathrm{C} / \mathrm{mW} \\
R_{\text {th } j-c} & =0.40 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}
\end{array}
$$

From junction to case

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\mathrm{O}} \mathrm{C}$ unless otherwise specified
Dark current


Light current
$\mathrm{V}=50 \mathrm{~V}$; colour temperature $=2854 \mathrm{~K}$
$\mathrm{E}=2500$ to 40001 x
$\mathrm{E}=30001 \mathrm{x}$
$\mathrm{I}_{1}$
$\mathrm{I}_{1}$
$>\quad 0.5 \mathrm{~mA}$
typ.
1.5 mA

Capacitance
$\mathrm{V}=0$
$\mathrm{V}=50 \mathrm{~V}$
C
typ.
12 pF
C
typ.
3.5 pF

Sensitivity
$\mathrm{V}=50 \mathrm{~V}$; colour temperature $=2854 \mathrm{~K}$
$\mathrm{E}=2500$ to 4000 lx
N
$\mathrm{E}=3000 \mathrm{~lx}$
Current rise time see drawings below

$$
\mathrm{V}=50 \mathrm{~V}
$$

Current fall time see drawings below

$$
\mathrm{V}=50 \mathrm{~V}
$$

$\mathrm{t}_{\mathrm{ri}}$ typ.
$17 \mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{fi}} \quad$ typ.
$10 \mu \mathrm{~s}$








## SILICON DUO PHOTO-DIODE

Silicon diffused photo-diode in a 2.2 mm diameter envelope with a glass lens.
The duo-diode construction makes this device independent of voltage polarity.

QUICK REFERENCE DATA				
Diode voltage (bidirectional)	V	max.	60	V
Dark current at V $=50 \mathrm{~V}$; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{d}}$	$<$	50	nA
Sensitivity at V $=50 \mathrm{~V}$	N	typ.	0.37	$\mu \mathrm{A} / \mathrm{lx}$
Current rise time	${ }^{\text {ri }}$	typ.	16	$\mu \mathrm{s}$
Peak spectral response	$\lambda_{\mathrm{m}}$	typ.	980	nm

## MECHANICAL DATA

Dimensions in mm


7258612



RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Diode voltage (bidirectional)
V
$\max .60 \mathrm{~V}$

Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$
$P_{\text {tot }} \quad \max \quad 80 \mathrm{~mW}$
Temperatures
Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{j}}$	max.	125	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE
From junction to ambient
From junction to case
$R_{\text {th } j-a}=1.25 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$R_{\text {th } \mathrm{j}-\mathrm{c}}=0.40 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$

## CHARACTERISTICS

Dark current

$\mathrm{V}=60 \mathrm{~V}$	$\mathrm{I}_{\text {d }}$	typ.	7 10
$\mathrm{V}=50 \mathrm{~V}$	$\mathrm{I}_{\text {d }}$	$\underset{<}{\text { typ. }}$	6 50
$\mathrm{V}=50 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{d}}$	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	$\begin{array}{r} 20 \\ 100 \end{array}$
$\mathrm{V}=50 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{d}}$	typ.	200

Light current
$\mathrm{V}=50 \mathrm{~V}$; colour temperature $=2854 \mathrm{~K}$
$\mathrm{E}=2500$ to 40001 x
$\mathrm{E}=30001 \mathrm{x}$

Capacitance

$$
\begin{aligned}
& \mathrm{V}=0 \\
& \mathrm{~V}=50 \mathrm{~V}
\end{aligned}
$$

typ.
3.6 pF

Sensitivity
$\mathrm{V}=50 \mathrm{~V}$; colour temperature $=2854 \mathrm{~K}$
$\mathrm{E}=2500$ to 4000 1x N
$\mathrm{E}=3000 \mathrm{~lx}$
N

$>$	0.11	$\mu \mathrm{~A} / 1 \mathrm{x}$
typ.	0.37	$\mu \mathrm{~A} / 1 \mathrm{x}$

Current rise time see drawings below
$\mathrm{V}=50 \mathrm{~V}$

Current fall time see drawings below
$\mathrm{V}=50 \mathrm{~V}$
${ }^{\mathrm{t}} \mathrm{fi}$
typ.
10 $\mu \mathrm{s}$







## PLANAR EPITAXIAL PHOTO-TRANSISTOR

$\mathrm{N}-\mathrm{P}-\mathrm{N}$ silicon photo-transistor in a miniature envelope with a lens. It is intended for use as a high sensitive detector in the visible and infra-red wavelengths.

QUICK REFERENCE DATA					
Collector -emitter dark voltage	$\mathrm{V}_{\mathrm{d}}$	$\max$.	35	V	
Collector current (peak value)	$\mathrm{I}_{\mathrm{CM}}$	max.	10	mA	
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	$\max$.	70	mW	
Collector -emitter dark cut -off   current at $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$					
Light current at 2854 K   $\mathrm{~V}_{\mathrm{CE}}=30 \mathrm{~V} ; \mathrm{E}=1 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I}_{\mathrm{d}}$	$<$	100	nA	
Peak spectral response	$\mathrm{I}_{1}$	typ.	0.3	mA	

## MECHANICAL DATA

Dimensions in mm
Base lead omitted
Emitter connected to can


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Collector-emitter dark voltage
$V_{d} \quad \max \quad 35 \mathrm{~V}$
Current
Collector current (peak value) $\quad I_{C M} \max . \quad 10 \mathrm{~mA}$

## Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad$ Ptot $\max . \quad 70 \mathrm{~mW}$

## Temperatures

Storage temperature
Junction temperature

## THERMAL RESISTANCE

From junction to ambient

## CHARACTERISTICS

Collector-emitter dark cut-off current

$$
\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}
$$

Light current at 2854 K .

$$
\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V} ; \mathrm{E}=1 \mathrm{~mW} / \mathrm{cm}^{2}
$$

Peak spectral response

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\mathrm{O}} \mathrm{C}$	
$\mathrm{T}_{\mathrm{j}}$	$\max$.	125	${ }^{\mathrm{O}} \mathrm{C}$

$$
\text { Rth j-a } \quad=\quad 1.4{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

T amb $=25^{\circ} \mathrm{C}$ unless otherwise specified

Noise equivalent power

$$
\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA} ; \mathrm{R}_{\mathrm{E}}=10 \mathrm{k} \Omega
$$

$$
\mathrm{f}=200 \mathrm{kHz} ; \Delta \mathrm{f}=10 \mathrm{kHz}
$$

Current delay time ${ }^{1}$ )
Current rise time ${ }^{1}$ )
Current fall time ${ }^{1}$ )
I) Source modulated GaAs

Light pulses:
$\mathrm{f}=5 \mathrm{kHz}$
$\lambda=800 \mathrm{~nm}$
$\mathrm{t}_{\mathrm{p}}=20 \mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$










$\square$

## SILICON PHOTO-DIODE

Photo-diode sensitive to visible and infra-red radiation. It is intended for applications up to 1 GHz . The diode is provided with a glass lens.

QUICK REFERENCE DATA				
Reverse voltage	$\mathrm{V}_{\mathrm{R}}$	max.	100	V
Total power dissipation up to $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$	$P_{\text {tot }}$	$\max$.	0.5	W
$\begin{aligned} \text { Light current at } \mathrm{V}_{\mathrm{R}} & =10 \mathrm{~V} \\ \text { incident radiation: } \mathrm{E} & =1 \mathrm{~mW} / \mathrm{cm}^{2} \\ \lambda & =770 \mathrm{~nm} \end{aligned}$	Il	typ.	7.5	$\mu \mathrm{A}$
Dark reverse current at $\mathrm{VR}_{\mathrm{R}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{d}}$	$<$	2.0	aA
Current rise time	$\mathrm{tri}_{\text {r }}$	typ.	0.5	ns

Dimensions in mm

## MECHANICAL DATA


max. lead diameter is guaranteed only for 12.7 mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Reverse voltage

Total power dissipation up to $T_{\text {case }}=25^{\circ} \mathrm{C}$
Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +200	${ }^{\circ} \mathrm{C}$
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	$\max .200$	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient in free air
From junction to case
VR max. 100 V
$P_{\text {tot }}$
max.
0.5 W

## CHARACTERISTICS

Forward voltage at IF $=25 \mathrm{~mA}$
$\underline{\text { Dark reverse current at } V_{R}=10 \mathrm{~V}}$
Light reverse current at $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$
incident radiation: $\mathrm{E}=1 \mathrm{~mW} / \mathrm{cm}^{2} ; \lambda=770 \mathrm{~nm}$

Current rise time see circuit below
Current fall time see circuit below
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

VF	typ.   $<$	0.75	V
	1.0	V	

Id

typ.	0.5	$n A$
$<$	2.0	$n A$

$>\quad 1.0 \quad \mu \mathrm{~A}$
typ. $\quad 7.5 \mu \mathrm{~A}$
typ. 0.5 ns
typ.
0.6 ns



Peak spectral response
$\underline{\text { Diode capacitance }}$ at $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
$\lambda_{\mathrm{m}} \quad$ typ. $\quad 770 \mathrm{~nm}$
$\mathrm{C}_{\mathrm{d}} \quad$ typ. 4.8 pF





## GERMANIUM PHOTO-DIODE

Germanium general purpose photo-diode in a metal envelope.

	QUICK REFERENCE DATA				
Sensitive area				$\mathrm{mm}^{2}$	
Light sensitivity			0.05	$\mu \mathrm{~A} / \mathrm{lux}$	
Ambient temperature		$\mathrm{T}_{\text {amb }}$	$\max$	60	${ }^{\circ} \mathrm{C}$
Peak spectral response	$\lambda_{\mathrm{m}}$	typ.	1.55	$\mu \mathrm{~m}$	

## MECHANICAL DATA

Dimensions in mm


The coloured dot indicates the anode

RATINGS (Limiting values) ${ }^{1}$ )

Reverse voltage	$\mathrm{V}_{\mathrm{R}}$	$\max$.	30	V
Reverse current	$\mathrm{I}_{\mathrm{R}}$	$\max$.	3	mA
Total power dissipation	$\mathrm{P}_{\text {tot }}$	$\max$.	30	mW

CHARACTERISTICS $\quad \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and using a lamp of colour
$\underline{\text { Dark reverse current }}$ at $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$
Noise of the dark current (r.m.s. value)
$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{f}=10 \mathrm{kHz} ; \mathrm{B}=1 \mathrm{~Hz}$
Diode resistance $\left(V_{R}=0.5\right.$ to 30 V$) \quad \mathrm{r}_{\mathrm{D}} \gg \quad 3 \mathrm{M} \Omega$
Cut-off frequency at $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}^{2}$ ) $\quad \mathrm{f}_{\mathrm{C}} \quad$ typ. $\quad 50 \mathrm{kHz}$
Peak spectral response
$\lambda_{\mathrm{m}} \quad$ typ. $1.55 \mu \mathrm{~m}$
$\underline{Z e r o ~ s p e c t r a l ~ r e s p o n s e ~}$
$\underline{\text { Sensitive area }}$
$\mathrm{I}_{\mathrm{R}}<\quad 15 \mu \mathrm{~A}$

Light sensitivity
$\lambda_{0} \quad$ typ. $\quad 2.0 \mu \mathrm{~m}$

Light sensitivity
$1 \mathrm{~mm}^{2}$
$0.05 \mu \mathrm{~A} / \mathrm{lux}$

1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
2) Frequency at which the sensitivity is 3 dB below the reference sensitivity, the latter being measured at $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\text {amb }}=20^{\circ} \mathrm{C}$.









## GERMANIUM PHOTO-TRANSISTOR

P-N-P germanium photo-transistor intended for general purposes.

QUICK REFERENCE DATA				
Collector-base voltage (open emitter)	$-\mathrm{V}_{\mathrm{CBO}}$	$\max$.	15	V
Collector-emitter voltage $\left(\mathrm{R}_{\mathrm{BE}} \leq 1 \mathrm{k} \Omega\right)$	$-\mathrm{V}_{\mathrm{CER}}$	$\max$.	15	V
Collector current (d.c. or average)	$-\mathrm{I}_{\mathrm{C}}$	$\max$.	20	mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25$	${ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	$\max$.	100
mW				
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	$\max$.	65	o C
Light sensitivity (area 7 $\mathrm{mm}^{2}$ )	N	$>$	130	$\mathrm{~mA} /$ lumen
Peak spectral response	$\lambda_{\mathrm{m}}$	typ.	1.43	mm

## MECHANICAL DATA



The coloured dot indicates the collector
The preferred direction of incident light is perpendicular to the plane of the leads, and is on the side of the bulb bearing the type number.

[^66]RATINGS Limitingvalues in accordance with the Absolute Maximum System (IEC 134)
Voltages

Collector-base voltage (open emitter)	$-V_{\mathrm{CBO}}$	$\max$.	15	V
Collector-base voltage (peak value)	$-\mathrm{V}_{\mathrm{CBM}}$	$\max$.	15	V
Collector-emitter voltage $\left(\mathrm{R}_{\mathrm{BE}} \leq 1 \mathrm{k} \Omega\right)$	$-\mathrm{V}_{\mathrm{CER}}$	$\max$.	15	V
Collector-emitter voltage (open base)	$-\mathrm{V}_{\mathrm{CEO}}$	$\max$.	7.5	V
Collector-emitter voltage (peak value)	$-\mathrm{V}_{\mathrm{CEM}}$	$\max$.	7.5	V

## Currents

Collector current (d.c. or average)
Collector current (peak value)

## Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

## Temperatures

Storage temperature
Junction temperature

## THERMAL RESISTANCE

From junction to ambient in free air

## CHARACTERISTICS

Collector-emitter dark cut-off current $\mathrm{I}_{\mathrm{B}}=0 ;-\mathrm{VCE}=4.5 \mathrm{~V}$

Cut-off frequency for modulated light
Collector current
$-\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}$ with uniform illumination of 75 ft . candle (807 lux) with preferred direction of incident light, colour temperature of the light source $2700{ }^{\circ} \mathrm{K}$

Light sensitivity (area $7 \mathrm{~mm}^{2}$ )
Peak spectral response
$\underline{Z e r o ~ s p e c t r a l ~ r e s p o n s e ~}$

$-I_{C}$	$\max$.	20	mA
$-\mathrm{I}_{\mathrm{CM}}$	$\max$.	20	mA

Ptot max. 100 mW
$R_{\text {th } j-a}=0.4{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$\mathrm{T}_{\text {stg }}$ max. $65{ }^{\circ} \mathrm{C}$
$T_{j} \quad \max .65{ }^{\circ} \mathrm{C}$

$$
\mathrm{R}_{\text {th }} \mathrm{j}-\mathrm{a}
$$

.

$$
1=
$$

$$
\text { -ICEO }<325 \mu-1
$$

$$
\mathrm{f}_{\mathrm{C}} \quad>\quad 3 \mathrm{kHz}
$$

$$
0
$$

$$
\begin{array}{rlrl} 
& & & \\
-\mathrm{I}_{\mathrm{C}} & > & 750 & \mu \mathrm{~A} \\
\mathrm{~N} & > & 130 & \mathrm{~mA} / \text { lumen } \\
\lambda_{\mathrm{m}} & \text { typ. } & 1.43 & \mu \mathrm{~m} \\
\lambda_{0} & \text { typ. } & 1.9 & \mu \mathrm{~m}
\end{array}
$$

CHARACTERISTICS (continued)

## Circuit diagram



Photo-transistors are inherently sensitive to temperature variations, which result in variations of the output current which cannot be distinguished from the light signal. This is particularly so with an open circuit base connection, when thermal runaway is most likely to occur; for operation at elevated voltage and temperature the use of an external base emitter resistance is essential.
The function of this is to improve the light to dark current ratio by causing a much greater proportional decrease in dark current. It is recommended that for this purpose an NTC type resistor is used, the value required depending on the maximum ambient temperature and light level.








Light emitting diodes


## GALLIUM ARSENIDE LIGHT EMITTING DIODE

GaAs diode which emit radiation of a narrow spectral band in the near infrared region when forward biased. The device is intended for applications in optical transmission of information in opto-electronic couplers, etc. The diode is provided with a flat glass window.

QUICK REFERENCE DATA				
Forward current (d.c.)	$\mathrm{I}_{\mathrm{F}}$	$\max$.	30	mA
Forward current (peak value)	$\mathrm{I}_{\mathrm{FM}}$	$\max$.	0.5	A
Radiation output power per unit current	P	$>$	2	$\mathrm{~mW} / \mathrm{A}$
Rise time of output signal	I			
Emitted wavelength	$\mathrm{t}_{\mathrm{r}}$	typ.	1	ns

## MECHANICAL DATA

Dimensions in mm
TO-18, except for window

max. lead diameter is guaranteed only for 12.7 mm .

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Reverse voltage
$\mathrm{V}_{\mathrm{R}} \quad \max \quad 2 \mathrm{~V}$

Currents

Forward curent (d.c.)	$\mathrm{I}_{\mathrm{F}}$	$\max$.	30	mA
Forward current (peak value)	$\mathrm{I}_{\mathrm{FM}}$	$\max$.	0.5	A

## Temperatures

Storage temperature
Junction temperature

$$
\begin{array}{lll}
\mathrm{T}_{\text {stg }} & -196 \text { to }+200 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{j}} & -196 \text { to }+200 & { }^{\circ} \mathrm{C}
\end{array}
$$

## THERMAL RESISTANCE

From junction to ambient
From junction to case

$$
\begin{array}{lll}
R_{\text {th } j-a} & = & 570 \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
R_{\text {th } j-\mathrm{c}} & = & 220
\end{array}{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

$$
\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C} \text { unless otherwise specified }
$$

Forward voltage (single pulse $<10 \mathrm{~ms}$ )

${ }^{\mathrm{F}}=30 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{F}}$	typ.	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}$	$\mathrm{V}_{\mathrm{F}}$	typ.	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Rise time of output signal	$\mathrm{t}_{\mathrm{r}}$	typ.	1	ns
Emitted wavelength	$\lambda$	typ.	875	nm
Bandwidth at half height	$\Delta \lambda$	typ.	40	nm
$\underline{\text { Radiation output power per unit current }{ }^{1} \text { ) }}$				
$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}$	$\frac{\mathrm{P}}{\mathrm{I}}$	$>$ typ.	2 3.5	$\begin{aligned} & \mathrm{mW} / \mathrm{A} \\ & \mathrm{~mW} / \mathrm{A} \end{aligned}$
$\underline{\text { Brightness of crystal }}$ at $\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$		$\stackrel{>}{\text { typ. }}$	$\begin{aligned} & 300 \\ & 450 \end{aligned}$	$\begin{aligned} & \mathrm{mW} / \mathrm{cm}^{2} \\ & \mathrm{~mW} / \mathrm{cm}^{2} \end{aligned}$
Aperture angle at half height		typ.	20	o
Emissive area of crystal		typ.	$10^{-4} \mathrm{~cm}^{2}$	

[^67]







## CQY11B

Dissipation and heatsink considerations
The graph on page 6 can be used to determine the peak power dissipation and the thermal resistance of the heatsink required under pulse operation of the diode, when the peak pulse current, duty cycle, pulse duration and permissible temperature rise are known.


Fig. 1
The thermal relationship under pulse conditions is:
$\frac{\Delta T}{\mathrm{P}_{\mathrm{M}}}=\mathrm{Z}_{\text {th }}+\delta \cdot \mathrm{R}_{\text {th h-a }}$
where $\Delta T=$ permissible temperature rise $=T_{j \max } .-T_{\mathrm{amb}}$
$\mathrm{P}_{\mathrm{M}}=$ peak power dissipation
$\mathrm{Z}_{\text {th }}=$ thermal impedance
$\mathrm{R}_{\text {th h-a }}=$ heatsink thermal resistance
$\delta \quad=$ duty cycle
Fig. 1 is used to illustrate how the graph on page 6 should be used.

1. Starting at a point A in Fig. 1 on the $\mathrm{I}_{\mathrm{FM}}$ axis trace horizontally until the appropriate $\Delta T$ curve is reached at point $B$.
2. Trace upwards to meet $\Delta \mathrm{T} / \mathrm{P}_{\mathrm{M}}$ axis at a point C . From this value a maximum permissible peak power dissipation can be calculated.
3. Starting at a point D , on the t axis, trace upwards until the appropriate duty cycle curve is met at a point $E$.
4. From point E trace horizontally until $\mathrm{Z}_{\text {th }}$ axis is reached at a point F . This determines the thermal impedance.
5. Finally, produce the lines $B C$ and EF until they cross at a point $G$, which determines the value of $\delta . \mathrm{R}_{\mathrm{th}} \mathrm{h}-\mathrm{a}$. From this the required value of thermal resistance of the heatsink can be calculated.
The line $\delta . \mathrm{R}_{\text {th }} \mathrm{h}-\mathrm{a}=0$ can provide the maximum performance you can expect if $\mathrm{R}_{\text {th }} \mathrm{h}-\mathrm{a}=0$ (infinite heatsink) or $\delta=0$ (one pulse only).


Infra-red sensitive devices

## PHOTOCONDUCTIVE CELL

Indium antimonide photoconductive element mounted on a copper heatsink, recommended for operation at a temperature of $20^{\circ} \mathrm{C}$.
Sensitive to infra-red radiation extending to $7.5 \mu \mathrm{~m}$ and intended for use with modmodulated or pulsed radiation.

RATINGS (Limiting values) ${ }^{1}$ )
$\underline{\text { Bias current }}$ at $\mathrm{T}_{\mathrm{amb}}=20^{\circ} \mathrm{C}$ I max. 100 mA

## Temperatures

Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	$\max$	70	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-50 to +70	${ }^{\circ} \mathrm{C}$

## CHARACTERISTICS

Peak spectral response
Spectral response range

## Cell resistance

$\mathrm{T}_{\text {amb }}=20{ }^{\circ} \mathrm{C}$ unless otherwise specified

Time constant
Sensitive area
Sensitivity ( $6.0 \mu \mathrm{~m}$ radiation)
( $500{ }^{\circ} \mathrm{K}$ radiation)
D ${ }^{*}(6.0 \mu \mathrm{~m}, 800 \mathrm{~Hz}, 1 \mathrm{~Hz})$ $\left(500{ }^{\circ} \mathrm{K}, 800 \mathrm{~Hz}, 1 \mathrm{~Hz}\right)$ )
Noise equivalent power (N.E.P.)

$$
\left.\begin{array}{l}
(6.0 \mu \mathrm{~m}, 800 \mathrm{~Hz}, 1 \mathrm{~Hz}) \\
\left(500{ }^{\circ} \mathrm{K}, 800 \mathrm{~Hz}, 1 \mathrm{~Hz}\right)
\end{array}\right\} \text { see notes } 1 \text { and } 2
$$

6.0 to $6.3 \mu \mathrm{~m}$
from visible to
$\mathrm{r}_{1}$
30 to $120 \Omega$
$0.1 \mu \mathrm{~s}$

	0.1	$\mu \mathrm{~s}$
	$6.0 \times 0.5$	$\mathrm{~mm}^{2}$
$>$	0.4	$\mu \mathrm{~V} / \mu \mathrm{W}$
typ.	1.0	$\mu \mathrm{~V} / \mu \mathrm{W}$
typ.	0.3	$\mu \mathrm{~V} / \mu \mathrm{W}$
$>$	$8.5 \times 10^{7}$	$\mathrm{~cm} \sqrt{\mathrm{~Hz}} / \mathrm{W}$
typ.	$2.0 \times 10^{8}$	$\mathrm{~cm} \sqrt{\mathrm{~Hz}} / \mathrm{W}$
typ.	$6.0 \times 10^{7}$	$\mathrm{~cm} \sqrt{\mathrm{~Hz}} / \mathrm{W}$

$\begin{array}{lll}\text { typ. } & 8.6 \times 10^{-10} & \mathrm{~W} \\ < & 2.0 \times 10^{-9} & \mathrm{~W}\end{array}$
typ. $2.5 \times 10^{-9} \mathrm{~W}$

MECHANICAL DATA (see page 2)

[^68]

## NOTES

1. Measuring conditions.

The detector is attached to a heatsink which is maintained at a temperature of $20^{\circ} \mathrm{C}$ and a bias current of 50 mA is applied. A parallel beam of monochromatic radiation of wavelength $4.4 \mu \mathrm{~m}$, which would produce a steady irradiance of $68 \mu \mathrm{~W} / \mathrm{cm}^{2}$ at the sensitive element, is chopped at 800 Hz , giving an actual r.m.s. power at the element which amounts to

$$
\frac{68}{2.2}=31 \mu \mathrm{~W} / \mathrm{cm}^{2}
$$

Measurements of the detector output are made with an amplifier tuned to 800 Hz and with a bandwidth of 50 Hz , and are referred to open circuit conditions i.e. correction is made for the shunting effects of the bias supply impedance and the amplifier input impedance. Under these test conditions, the ORP10 will exhibit a minimum signal-to-noise ratio of 45 and typical of 105. The sensitivities quoted at the wavelength of peak response and under black body conditions are calculated from these measurements, assuming the detector to have a typical response curve.
2. D* and N.E.P.

These are figures of merit for the materials of detectors.
$\mathrm{D}^{*}$ is defined in the expression:

$$
D^{*}=\frac{\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{~V}_{\mathrm{n}}} \times \sqrt{\mathrm{A}(\Delta \mathrm{f})}}{\mathrm{W}}
$$

where: $\mathrm{V}_{\mathrm{S}}=$ signal voltage across detector terminals
$\mathrm{V}_{\mathrm{n}}=$ noise voltage across detector terminals
A = detector area
$(\Delta f)=$ bandwidth of measuring amplifier
W = radiation power incident on detector sensitive element in watts.

## NOTES (continued)

The figures in brackets which follow $\mathrm{D}^{*}$ refer to the measuring conditions e.g. D* $(5.3 \mu \mathrm{~m}, 800 \mathrm{~Hz}, 1 \mathrm{~Hz})$ denotes monochromatic radiation incident on the detector of wavelength $5.3 \mu \mathrm{~m}$, chopping frequency 800 Hz , bandwidth 1 Hz .

The Noise Equivalent Power (N.E.P.) is related to $\mathrm{D}^{*}$ by the expression:

$$
\text { N.E.P. }=\frac{\sqrt{A}}{D^{*}} .
$$

3. Variation of performance with bias current.

Both signal and noise vary with bias current. Typical curves are shown on page 5. At high currents the noise increases more rapidly than the signal, and therefore the signal-to-noise ratio has a peak value at some optimum current, which will vary slightly from cell to cell. A typical value is 50 mA . In addition the ohmic heating caused by bias currents above 60 mA causes the temperature of the element to become significantly greater than the substrate so that the signal decreases as described in note 4 .
4. Variation of performance with element temperature.

As with all semiconductor photocells, the performance depends on the temperature of the sensitive element. In the case of the ORP10 this is influenced by the ambient temperature and ohmic heating caused by the d.c.bias current. To minimise fluctuations, the element is mounted on a copper base from which it is insulated by a layer of aluminium oxide, and can readily be attached to a large heatsink.
A typical variation of performance with temperature is given on page 5. The curve on page 5 shows the decrease in signal caused by the high current raising the temperature of the element.
On cooling, indium antimonide exhibits improved sensitivity and increased resistance. Below $15^{\circ} \mathrm{C}$ this is impractical with the ORP10 unless special precautions are taken to prevent condensation and icing on the exposed element.
5. Warning.

The sensitive surface is unprotected and should not be touched. It is stable in normal atmospheres but should not be exposed to high concentrations of the vapours of organic solvents. Care should be taken to avoid strain when attaching cells to heatsinks.


Recommended circuit for use with radiation chopped at 800 Hz .


## CIRCUIT NOTES

The transformer should be adequately screened to prevent stray pick-up. The resistor R should be wire wound to minimise noise. It must be substantially larger than the cell resistance and its actual value will depend upon the supply voltage and the cell currents required. The 560 pF capacitor tunes the secondary to 800 Hz .




7208506


## PHOTOCONDUCTIVE CELL

Indium antimonide photoconductive element mounted in a glass dewar vessel and cooled by liquid nitrogen or liquid air. Sensitive to infrared radiation extending to $5.6 \mu \mathrm{~m}$ an intended for use with modulated or pulsed radiation.

	QUICK REFERENCE DATA			
Peak spectral response	$\lambda_{\mathrm{m}}$	5.3	$\mu \mathrm{~m}$	
Operating temperature	T		77	K
Responsivity $(5.3 \mu \mathrm{~m}, 800 \mathrm{~Hz})$			35	$\mathrm{mV} / \mu \mathrm{W}$
D* $(5.3 \mu \mathrm{~m}, 800 \mathrm{~Hz}, 1 \mathrm{~Hz})$	typ.			
Time constant	typ.	$5.5 \times 10^{10}$	$\mathrm{~cm} \sqrt{\mathrm{~Hz}} / \mathrm{W}$	
Sensitive area	typ.	5	$\mu \mathrm{~s}$	

## MECHANICAL DATA see page 2

## MECHANICAL DATA




RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
$\underline{\text { Bias current at } T_{a m b}=77 \mathrm{~K}} \mathrm{I} \max .30 \mathrm{~mA}$
Temperatures
Storage temperature

$$
\mathrm{T}_{\text {stg }} \quad-55 \text { to }+55^{\circ} \mathrm{C}
$$

CHARACTERISTICS(see note 1 on page 4)

Peak spectral response
Spectral response range
Cell resistance

Time constant
Boil-off time of bulk liquid nitrogen

## Performance

1. Black body source measurement
colour temperature : 500 K
chopping frequency : 800 Hz
bandwidth : 1 Hz
Responsivity
$D^{*}$
$\rightarrow \quad$ N.E.P.
2. Monochromatic source measurement

radiation $: 5.3 \mu \mathrm{~m}$	
chopping frequency $: 800 \mathrm{~Hz}$	
bandwidth	$: \quad 1 \mathrm{~Hz}$

Responsivity
D*
N. E.P.
$\lambda_{\mathrm{m}}$
$5.3 \mu \mathrm{~m}$
from visible to $5.6 \mu \mathrm{~m}$
$r_{\ell} \quad 20$ to $60 \mathrm{k} \Omega$

typ.	5	$\mu \mathrm{~s}$
$>$	90	min
typ.	120	min

$>\quad 4 \mathrm{mV} / \mu \mathrm{W}$
typ. $\quad 7 \mathrm{mV} / \mu \mathrm{W}$

- $\quad 5 \times 10^{9}$

typ.	16	pW
$<$	35	pW


typ.	35	$\mathrm{mV} / \mu \mathrm{W}$
typ.	$55 \times 10^{9}$	$\mathrm{~cm} \sqrt{\mathrm{~Hz}} / \mathrm{W}$
typ.	3.2	pW

## NOTES

1. Test conditions

The detector is cooled to 77 K by filling the dewar vessel with liquid nitrogen, or by use of a liquid transfer system. An optimum bias of 250 to $500 \mu \mathrm{~A}$ is applied.
The sensitive element is situated at a distance of 264 mm from ablack body source limited by an aperture of 3 mm diameter.

The radiation path is interrupted at 800 Hz by a chopper blade at ambient temperature. Under these conditions the r.m.s. power at the element (chopping factor 2.2) is $4.5 \mu \mathrm{~W} / \mathrm{cm}^{2}$.

Measurements of the detector output are made with an amplifier tuned to 800 Hz with a bandwidth of 50 Hz , and referred to open-circuit conditions, i.e., correction is made for the shunting effects of the bias supply impedance and the amplifier impedance.
2. $D^{*}$ and N.E.P.

These are figures of merit for the materials of detectors.
The detectivity $D^{*}$ is defined in the expression:

$$
D^{*}=\frac{\frac{V_{\mathrm{S}}}{\overline{\mathrm{~V}}_{\mathrm{n}}} \sqrt{\mathrm{~A}(\Delta \mathrm{f})}}{\mathrm{W}}
$$

where: $\mathrm{V}_{\mathrm{S}}=$ signal voltage across detector terminals
$\mathrm{V}_{\mathrm{n}}=$ noise voltage across detector terminals
A = detector area
$(\Delta f)=$ bandwidth of measuring amplifier
$\mathrm{W}=$ radiation power incident on detector sensitive element in r.m.s. watts.

The Noise Equivalent Power (N.E.P.) is related to $D^{*}$ by the expression:

$$
\text { N.E.P. }=\frac{\sqrt{A}}{D^{*}}
$$

3. Time constant

Detector time constant figures are based on the response to a step function in the incident radiation. Quoted times indicate the interval between the moment the radiation is cut off and the output falling to $63 \%$ of its peak value.
4. Variation of performance with bias current

Both signal and noise vary with current in this type of cell. At high currents the noise increases more rapidly than the signal, and therefore the signal-to-noise ratio has a peak value at some optimum current, which will vary slightly from cell to cell.

NOTES (continued)

## 5. Warnings

a. The resistance of the cell at room temperature is three orders of magnitude less than at the operating temperature ( 77 K ). Care should therefore be taken to ensure that the device is not allowed to reach room temperature while still biased, if any form of low impedance biasing is employed.
b. If provision is made for cells to be plugged into the bias current and amplifier, steps must be taken to limit the current available from the amplifier input capacitor. This current can be excessive at the instant of plugging in the cell.
A zener diode can be used to limit the voltage developed across the input capacitor as shown in the diagram.

c. The dewar vessel must always be completely dry before being refilled with liquid nitrogen. In humid conditions, water vapour may condense at the top of the dewar. Should this occur, the remaining liquid nitrogen should be allowed to boil off, the ice should be removed carefully and precautions taken to avoid a recurrence. In very humid conditions the window should be purged with a claen dry gas.

## 6. Low frequency noise

This will be minimised by use of non-absorbent cotton wool placed in the bottom of the dewar. The recommended quantity is 40 mg .





## PHOTOCONDUCTIVE CELL

Lead sulphide, chemically deposited, photoconductive cell recommended for room temperature operation.
It is encapsulated in a hermetically sealed TO-5 envel ope with an end viewing window. It has a germanium filter to cut off radiation below $1.5 \mu \mathrm{~m}$ and therefore it may be exposed continuously to visible radiation.

QUICK REFERENCE DATA			
Peak spectral response	$\lambda_{\mathrm{m}}$	typ. 1.9	$\mu \mathrm{m}$
Spectral response range	$\Delta \lambda$	1.5 to 3.0	$\mu \mathrm{m}$
Responsivity ( $2.0 \mu \mathrm{~m}, 800 \mathrm{~Hz}$ )		> 200	mA/W
Responsivity ( $500 \mathrm{~K}, 800 \mathrm{~Hz}$ )		$>\quad 2.0$	$\mathrm{mA} / \mathrm{W}$
$\mathrm{D}^{*}$ ( $500 \mathrm{~K}, 800 \mathrm{~Hz}, 1 \mathrm{~Hz}$ )		$>1.0 \times 10^{8}$	$\mathrm{cm} \sqrt{\mathrm{Hz}} / \mathrm{W}$
Time constant		typ. 250	$\mu \mathrm{s}$
Sensitive area		$1.0 \times 1.0$	$\mathrm{mm}^{2}$

## MECHANICAL DATA



RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Power dissipation $\quad \mathrm{P} \quad \max .20 \mathrm{~mW}$

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-20 to +50	${ }^{\circ} \mathrm{C}$	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	$\max$.	50	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=20^{\circ} \mathrm{C}$ (see notes on pages 3 and 4)

Peak spectral response
Spectral response range
Cell resistance

Time constant

$\lambda_{\mathrm{m}}$	typ.	1.9	$\mu \mathrm{~m}$
$\Delta \lambda$		1.5	to
$\Delta .0$	$\mu \mathrm{~m}$		
$\mathrm{r}_{\ell}$	$>$	200	$\mathrm{k} \Omega$
	typ.	600	$\mathrm{k} \Omega$
	typ.	250	$\mu \mathrm{~s}$
	$<$	400	$\mu \mathrm{~s}$

## Performance

1. Black body source measurement colour temperature : 500 K chopping frequency : 800 Hz bandwidth : 1 Hz

Responsivity
D*
N.E.P.
2. Monochromatic source measurement
radiation $\quad: 2.0 \mu \mathrm{~m}$
chopping frequency : 800 Hz bandwidth : 1 Hz

Responsivity
$D^{*}$
N.E.P.
$>\quad 2.0 \mathrm{~mA} / \mathrm{W}$
$>1.0 \times 10^{8} \quad \mathrm{~cm} \sqrt{\mathrm{~Hz}} / \mathrm{W}$
< 1.0 nW

## NOTES

1. Test conditions

The cell is operated at a temperature of $20^{\circ} \mathrm{C}$. The sensitive element is situated at a distance of 264 mm from a black body source limited by an aperture of 3 mm diameter.

The radiation path is interrupted at 800 Hz by a chopper blade at a mbient temperature. Under these conditions the r.m.s. power at the element (chopping factor 2.2) is $4.5 \mu \mathrm{~W} / \mathrm{cm}^{2}$.

A bias voltage of 24 V is applied to the cell. Measurements of the detector output are made using a low value resistive load, followed by a current pre-amplifier, as shown below. The output is fed into an amplifier tuned to 800 Hz with a bandwidth of 50 Hz .

2. $D^{*}$ and N.E.P.

These are figures of merit for the materials of detectors. The detectivity $D^{*}$ is defined in the expression:

$$
D^{*}=\frac{\frac{V_{S}}{V_{D}} \sqrt{A(\Delta f)}}{W}
$$

where: $\mathrm{V}_{\mathrm{S}}=$ signal voltage across detector terminals
$\mathrm{V}_{\mathrm{n}}=$ noise voltage across detector terminals
A = detector area
$(\Delta f)=$ bandwidth of measuring amplifier
W = radiation power incident on detector sensitive element in r.m.s. watts.
The Noise Equivalent Power (N.E.P.) is related to $D^{*}$ by the expression:

$$
\text { N.E.P. }=\frac{\sqrt{A}}{D^{*}}
$$

NOTES (continued)

## 3. Time constant

Detector time constant figures are based on the response to a step function in the incident radiation. Quoted times indicate the interval between the moment the radiation is cut off and the output falling to $63 \%$ of its peak value.
4. a. Variation of performance with bias

Both signal and noise vary with bias in this type of cell. At bias levels at which the cell dissipation is less than 2.5 mW the maximum level of $D^{*}$ is maintained. At higher levels the noise increases more rapidly than the signal so that although the responsivity increases, $D^{*}$ falls. The maximum responsivity typically occurs at a dissipation level of 10 mW , beyond which heating occurs with a consequent reduction in responsivity.
b. Variation of performance with temperature/life

Resistance, responsivity and $D^{*}$ are dependent on the previous temperature/ life history of the cell. The quoted values are the minimum which may be expected after storage or operation up to $35^{\circ} \mathrm{C}$. These values may decrease by $50 \%$ after storage or operation at temperatures up to the absolute maximum temperature of $50^{\circ} \mathrm{C}$.
5. Recommended operating conditions

In order to minimise the effects of parameter variations with temperature and life it is recommended that a constant voltage bias is used. A suitable circuit is shown on page 3 . With this mode of operation the signal is the short-circuit current, which is related to the open-circuit cell voltage by the expression:

$$
V_{O C}=I_{S C} \times r_{\ell}
$$




## PHOTOCONDUCTIVE CELL

Evaporated lead sulphide photoconductive cells with sensitive element mounted in a glass dewar, encapsulated in an envelope for room temperature operation. Also available without envelope for cooled operation.
The cells are intended for use with pulsed or modulated radiation.

QUICK REFERENCE DATA			
Peak spectral response	$\lambda_{\mathrm{m}}$	2.2	$\mu \mathrm{m}$
Spectral response range	$\Delta \lambda$	0.3 to 3.5	$\mu \mathrm{m}$
Internal resistance	$\mathrm{r}_{\mathrm{i}}$	typ. 1.5	$\mathrm{M} \Omega$
Responsivity (radiation $2.0 \mu \mathrm{~m}$ )		typ. 80	$\mathrm{mV} / \mu \mathrm{W}$
D* $(2.0 \mu \mathrm{~m}, 800 \mathrm{~Hz}, 1 . \mathrm{Hz})$		typ. $4 \times 10^{10}$	cm $\sqrt{\mathrm{Hz}} / \mathrm{W}$
Time constant		typ. 100	$\mu \mathrm{s}$
Sensitive area		$6.0 \times 6.0$	$\mathrm{mm}^{2}$

## MECHANICAL DATA



Dimensions in mm


encapsulated version

Accessory: socket for encapsulated version: Belling-Lee type 789/CS.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage (bidirectional)		V	max.	250	V
Current (bidirectional)		I	max.	0.5	mA
Temperatures					
Storage temperature	encapsulated version	$\mathrm{T}_{\text {stg }}$	-55 to		${ }^{\circ} \mathrm{C}$
	cooled version	$\mathrm{T}_{\text {stg }}$	-80 to	+60	${ }^{\circ} \mathrm{C}$
Operating ambient temperature		Tamb	$\max$. $60{ }^{\circ} \mathrm{C}$		

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=20^{\circ} \mathrm{C}$ (see note 1 on page 3)

Peak spectral response
Spectral response range

## Internal resistance

## Time constant

Noise voltage

## Performance

1. Black body source
colour temperature : 500 K
chopping frequency : 800 Hz
bandwidth : 1 Hz
$\rightarrow \quad$ Responsivity
$\rightarrow \quad \mathrm{D}^{*}$
N.E.P.
2. Monochromatic source
radiation
: $2.0 \mu \mathrm{~m}$
chopping frequency: 800 Hz bandwidth : 1 Hz

Responsivity
D*
N.E.P.

$\lambda_{\mathrm{m}}$		2.2	$\mu \mathrm{m}$
$\Delta \lambda$	0.3 to		$\mu \mathrm{m}$
	typ.	1.5	$\mathrm{M} \Omega$
$\mathrm{r}_{\mathrm{i}}$	1.0 to	4.0	$\mathrm{M} \Omega$
	typ.	100	$\mu \mathrm{s}$
	typ.	8.5	$\mu \mathrm{V}$

$$
\begin{array}{lll}
> & 0.2 & \mathrm{mV} / \mu \mathrm{W} \\
\text { typ. } & 1.3 & \mathrm{mV} / \mu \mathrm{W} \\
> & 2.0 \times 10^{8} & \mathrm{~cm} \sqrt{\mathrm{~Hz}} / \mathrm{W} \\
\text { typ. } 6.5 \times 10^{8} & \mathrm{~cm} \sqrt{\mathrm{~Hz}} / \mathrm{W}
\end{array}
$$

$$
\begin{array}{lrl}
\text { typ. } & 0.92 & \mathrm{nW} \\
< & 3.0 & \mathrm{nW}
\end{array}
$$

## NOTES

## 1. Test conditions

The characteristics are measured with the cell biased from a 200 V d.c. supply in series with a $1.0 \mathrm{M} \Omega$ load resistor. No correction is made for the loading effect of the $1.0 \mathrm{M} \Omega$ resistor, i.e. open circuit characteristics are not given.

The sensitive element is situated at a distance of 264 mm a black body source limited by an aperture of 3 mm . The radiation path is interrupted at 800 Hz by a chopper blade at ambient temperature. Under these conditions the r.m.s. power at the element (chopping factor 2.2) is $4.5 \mu \mathrm{~W} / \mathrm{cm}^{2}$.
Measurements of the detector output are made with an amplifier tuned to 800 Hz with a bandwidth of 50 Hz .
2. $\mathrm{D}^{*}$ and N.E.P.

These are figures of merit for the materials of detectors.
The detectivity $\mathrm{D}^{*}$ is defined in the expression:

$$
D^{*}=\frac{\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{~V}_{\mathrm{n}}} \sqrt{\mathrm{~A}(\Delta \mathrm{f})}}{\mathrm{W}}
$$

where: $\mathrm{V}_{\mathrm{S}}=$ signal voltage across detector terminals
$\mathrm{V}_{\mathrm{n}}=$ noise voltage across detector terminals
A = detector area
$(\Delta f)=$ bandwidth of measuring amplifier
$\mathrm{W}=$ radiation power incident on detector sensitive element in r.m.s. watts.

The Noise Equivalent Power (N.E.P.) is related to $\mathrm{D}^{*}$ by the expression:

$$
\text { N.E.P. }=\frac{\sqrt{\mathrm{A}}}{\mathrm{D}^{*}}
$$

## 3. Time constant

Detector time constant figures are based on the response to a step function in the incident radiation. Quoted times indicate the interval between the moment the radiation is cut off and the output falling to $63 \%$ of its peak value.
4. Variation of performance with bias current.

Both signal and noise vary with current in this type of cell. At high currents the noise increases more rapidly than the signal, and therefore the signal-to-noise ratio has a peak value at some optimum current, which will vary slightly from cell to cell.

## NOTES (continued)

5. Effect of ambient radiation

Care should be taken to avoid the incidence on the cell of appreciable radiation in the visible range. Such radiation will cause a decrease in the cell resistance and signal as long as the cell is kept cool. Normal daylight can cause this effect if seen for more than a few minutes. Precautions should be taken to prevent visible light reaching the sensitive element via the liquid nitrogen compartment.
6. Warning

Care should be taken to ensure that the device is not allowed to reach room temperature while still biased.
The dewar vessel must always be completely dry before being refilled with liquid nitrogen. In very humid conditions, water vapour may condense at the top of the dewar vessel. Should this occur, the remaining liquid nitrogen should be allowed to boil off, the ice should be removed and precautions taken to avoid a recurrence.






November 1970





## Accessories

## INTRODUCTION

## Introduction

All information on thermal resistances of the accessories combined with flat heatsinks is valid for square heatsinks of 1.5 mm blackened aluminium. For a few variations the thermal resistance may be derived as follows:
a. Rectangular heatsinks (sides a and 2a)

When mounted with long side horizontal, multiply by 0.95 .
When mounted with short side horizontal, multiply by 1.10 .
b. Unblackened or thinner heatsinks

Multiply by the factor B given below as a function of the heatsink size A.


## COOLING FIN



Fin material: brass, nickel plated

## THERMAL RESISTANCE

From case to ambient with cooling fin only with heatsink

$$
\begin{aligned}
\mathrm{R}_{\text {th } \mathrm{c}-\mathrm{a}} & =100{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { see graph }
\end{aligned}
$$



## MOUNTING INSTRUCTIONS



Torque on nut for good heat transfer: 5 cm kg

## MOUNTING ACCESSORIES

MECHANICAL DATA

mica washer


3 plain washers
material: brass, nickel plated


2 lock washers, internal teeth. material: steel, nickel plated

## THERMAL RESISTANCE

From mounting base to heatsink with mica washer

## TEMPERATURES

Maximum allowable temperature


7210869

Dimensions in mm


2 cheese head screws, slotted material: brass, nickel plated


2 insulating bushes

soldering tag


2 hexagon nuts
material: brass, nickel plated

$$
\mathrm{R}_{\text {th } \mathrm{mb}-\mathrm{h}}=1.00^{\circ} \mathrm{C} / \mathrm{W}
$$

$$
\mathrm{T}_{\max }=150{ }^{\circ} \mathrm{C}
$$

## 56201a MICA WASHER AND 2 INSULATING BUSHES

MECHANICAL DATA


THERMAL RESISTANCE
From mounting base to heatsink
$R_{\text {th mb-h }}=1.0 \quad 0 \mathrm{C} / \mathrm{W}$

## 56201b

## LEAD WASHER

MECHANICAL DATA
Dimensions in mm


## 56201c

INSULATING BUSH

## MECHANICAL DATA



MICA WASHER
56201d

MECHANICAL DATA
Dimensions in mm


THERMAL RESISTANCE
From mounting base to heatsink
$R_{\text {th }} \mathrm{mb}-\mathrm{h}=1.0{ }^{\circ} \mathrm{C} / \mathrm{W}$

## MOUNTING ACCESSORIES

## MECHANICAL DATA

Dimensions in mm



## THERMAL RESISTANCE

From mounting base to heatsink with mica washer only
with mica washer and lead washer

## TEMPERATURE

Maximum allowable temperature

$$
\begin{aligned}
& \mathrm{R}_{\text {th mb-h }}=1.0{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{R}_{\text {th mb-h }}=0.75{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

$$
\mathrm{T}_{\max }=150{ }^{\circ} \mathrm{C}
$$

## MOUNTING INSTRUCTIONS



Torque on nut for good heat transfer : 5 cm kg

Warning: A plain washer shall be inserted between M3 bolt and insulating bush to prevent this insulating bush from being damaged.

## MICA WASHER AND 2 INSULATING BUSHES

## MECHANICAL DATA



THERMAL RESISTANCE
From mounting base to heatsink

TEMPERATURE
Maximum allowable temperature

## MOUNTING INSTRUCTIONS



Torque on nut for good heat transfer: 5 cm kg
Warning: A plain washer shall be inserted between M3 bolt and insulating bush to prevent this insulating bush from being damaged.

## COOLING FIN

## MECHANICAL DATA

Dimensions in mm


Fin material: aluminium, blackened

## THERMAL RESISTANCE

From case to ambient with cooling fin only with heatsink

$$
\begin{aligned}
& \mathrm{R}_{\text {th } \mathrm{c}-\mathrm{a}}=60 \mathrm{oC} / \mathrm{W} \\
& \text { see graph }
\end{aligned}
$$



## MOUNTING INSTRUCTIONS

Torque on M3 bolts for good heat transfer: 5 cm kg

## COOLING FIN

## MECHANICAL DATA

Dimensions in mm


Fin material: brass, nickel plated

## THERMAL RESISTANCE

From case to ambient with cooling fin only with heatsink

$$
\begin{aligned}
\mathrm{R}_{\text {th } \mathrm{c}-\mathrm{a}} & =102 \mathrm{o}^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { see graph }
\end{aligned}
$$


$R_{\text {th }}$ values apply to each transistor, provided the two transistors have been mounted so that the heat flow from each is equal.

MOUNTING INSTRUCTIONS


Torque on nut for good heat transfer: 5 cm kg

## COOLING FIN

MECHANICAL DATA


Fin material: brass, nickel plated

## THERMAL RESISTANCE

From case to ambient with cooling fin only

$$
\mathrm{R}_{\text {th } \mathrm{c}-\mathrm{a}}=75{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

## COOLING FIN

## MECHANICAL DATA

Dimensions in mm


Fin material: brass, nickel plated

## THERMAL RESISTANCE

From case to ambient with cooling fin only with heatsink

7209169


## MOUNTING INSTRUCTIONS



Torque on nut for good heat transfer: 5 cm kg

## MOUNTING ACCESSORIES

## MECHANICAL DATA

Dimensions in mm

mica washer

insulating ring

cable lug material: brass, nickel plated

hexagon nut
material: brass, nickel plated

## THERMAL RESISTANCE

lock washer internal teeth material: steel, nickel plated
$R_{\text {th mb-h }}=1{ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\max }=125{ }^{\circ} \mathrm{C}$

## MOUNTING INSTRUCTIONS



Torque on nut for good heat transfer: 17 cm kg
Non insulated mounting; without items 1, 2 and 3. (3 if necessary)

## MOUNTING ACCESSORIES

MECHANICAL DATA

top clamping washer of insulating material

bottom clamping washer material: brass, tin plated

## THERMAL RESISTANCE

From mounting base to heatsink non insulated mounting insulated mounting

## TEMPERATURE

Maximum allowable temperature

Dimensions in mm

mylar washer

MOUNTING INSTRUCTIONS


Non insulated mounting; without items 2 and 3. (Note: item 1 must than be mounted up-side down)

## COOLING FIN

MECHANICAL DATA
Dimensions in mm


Fin material: brass, nickel plated

## THERMAL RESISTANCE

From case to ambient with cooling fin only with heatsink
$R_{\text {th }}$-a $=100{ }^{\circ} \mathrm{C} / \mathrm{W}$ see graph


## MOUNTING INSTRUCTIONS

Torque on nut for good heat transfer: 5 cm kg
$R_{\text {th }}$ values apply to each transistor, provided the two transistors have been mounted so that the heat flow from each is equal.


## COOLING FIN

MECHANICAL DATA
Dimensions in mm


Fin material: brass, nickel plated

## THERMAL RESISTANCE

From case to ambient with cooling fin only with heatsink

$$
\mathrm{R}_{\text {th } \mathrm{c}-\mathrm{a}}=100{ }^{\circ} \mathrm{C} / \mathrm{W}
$$ see graph



## MOUNTING INSTRUCTIONS



Torque on nut for good heat transfer: $5 \mathrm{~cm} k g$

## MICA WASHER AND 2 INSULATING BUSHES

## 56239

MECHANICAL DATA


THERMAL RESISTANCE
From mounting base to heatsink
TEMPERATURE
Maximum allowable temperature

Dimensions in mm


## DISTANCE DISCS

56245


Insulating
material
Insulating material

## TEMPERATURE

## 2 INSULATING BUSHES

56261
MECHANICAL DATA
Dimensions in mm


56263
MECHANICAL DATA
Dimensions in mm


Fin material: copper, tin plated

THERMAL RESISTANCE
From case to ambient
$R_{\text {th } \mathrm{c}-\mathrm{a}}=100{ }^{\circ} \mathrm{C} / \mathrm{W}$

## COOLING FIN

MECHANICAL DATA
Dimensions in mm


Fin material: aluminium, blackened

## THERMAL RESISTANCE

From case to ambient with cooling fin only with heatsink
7209172


MOUNTING INSTRUCTIONS
a) $\quad \prod$
b) $\prod_{\text {M3 bolt }}^{\text {washer }}$


Torque on nut for good heat transfer: 5 cm kg

MECHANICAL DATA
Dimensions in mm


## THERMAL RESISTANCE

From mounting base to heatsink

$$
\mathrm{R}_{\text {th } \mathrm{mb}-\mathrm{h}}=6{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

## 56303 <br> TORQUE WASHER

MECHANICAL DATA
Dimensions in mm


MOUNTING INSTRUCTIONS


Torque on nut: min. 8 cm kg max. 9 cm kg

## INDEX OF TYPE NUMBERS

The inclusion of a type number in this publication does not necessarily imply its availability.

Type No.	Part	Section	Type No.	Part	Section	Type No.	Part	Section
AA119	1	D	AEY16	4	Mw	ASY80	3	Sw
AAY11	1	D	AF114	3	HF	ASZ15	2	P
AAY21	1	D	AF115	3	HF	ASZ16	2	P
AAY30	1	D	AF116	3	HF	ASZ17	2	P
AAY32	1	D	AF117	3	HF	ASZ18	2	P
AAY39	4	Mw	AF118	3	HF	ASZ20	3	Sw
AAY39A	4	Mw	AF121	3	HF	ASZ21	3	Sw
AAY59	4	Mw	AF124	3	HF	AYY10-120	1	R
AAZ13	1	D	AF125	3	HF	BA100	1	D
AAZ15	1	D	AF126	3	HF	BA102	1	Var
AAZ17	1	D	AF127	3	HF	BA114	1	D
AAZ18	1	D	AF139	3	HF	BA145	1	D
AC125	2	LF	AF178	3	HF	BA148	1	D+R
AC126	2	LF	AF239	3	HF	BA182	1	D
AC127/01	2	LF	AF239S	3	HF	BA216	1	D
AC128	2	LF	AF240	3	HF	BA217	1	D
AC128/01	2	LF	AF267	3	HF	BA218	1	D
AC132	2	LF	AFY16	3	HF	BA219	1	D
AC132/01	2	LF	AFY19	4	Tr	BA220	1	D
AC172	2	LF	AFY40	3	HF	BA221	1	D
AC187	2	LF	AFZ12	3	HF	BA222	1	D
AC187/01	2	LF	ASY26	3	Sw	BAV10	1	D
AC188	2	LF	ASY28	3	Sw	BAV40	1	D
AC188/01	2	LF	ASY29	3	Sw	BAV41	1	D
AD149	2	P	ASY73	3	Bw	BAV42	1	D
AD161	2	P	ASY74	3	Sw	BAV45	1	D
AD162	2	P	ASY75	3	Sw	BAW56	4	D
AEY13	4	Mw	ASY76	3	Sw	BAW62	1	D
	4	Mw	ASY77	3	Sw	BAW95D	4	Mw

D = Signal diodes
HF = High frequency transistors
LF = Low frequency transistors
$\mathrm{Mm}=$ Microminiature devices for thick- and thin-film circuits
Mw = Microwave devices

Type No.	Part	Section	Type No.	Part	Section	Type No.	Part	Section
BAW95E	4	Mw	BC308	2	LF	BCY55	4	Dual
BAW95F	4	Mw	BC309	2	LF	BCY56	2	LF
BAX12	1	D	BC327	2	LF	BCY57	2	LF
BAX13	1	D	BC328	2	LF	BCY58	2	LF
BAX15	1	D	BC337	2	LF	BCY59	2	LF
BAX16	1	D	BC338	2	LF	BCY 70	2	LF
BAX17	1	D	BCW29	4	Mm	BCY71	2	LF
BAX18	1	D	BCW30	4	Mm	BCY72	2	LF
BAX78	1	D	BCW31	4	Mm	BCY87	4	Dual
BAY38	1	D	BCW32	4	Mm	BCY88	4	Dual
BAY66	4	Mw	BCW33	4	Mm	BCY 89	4	Dual
BAY96	4	Mw	BCW46	2	LF	BCZ10	2	LF
BB104	1	Var	BCW47	2	LF	BCZ11	2	LF
12-BB105	1	Var	BCW48	2	LF	BCZ12	2	LF
12-BB106	1	Var	BCW49	2	LF	BD115	2	P
BB110	1	Var	BCW56	2	LF	BD124	2	P
BB117	1	Var	BCW57	2	LF	BD131	2	P
BC107	2	LF	BCW58	2	LF	BD132	2	P
BC108	2	LF	BCW59	2	LF	BD133	2	P
BC109	2	LF	BCW69	4	Mm	BD135	2	P
BC146	2	LF	BCW70	4	Mm	BD136	2	P
BC147	2	LF	BCW71	4	Mm	BD137	2	P
BC148	2	LF	BCW72	4	Mm	BD138	2	P
BC149	2	LF	BCY10	2	LF	BD139	2	P
BC157	2	LF	BCY11	2	LF	BD140	2	P
BC158	2	LF	BCY12	2	LF	BD181	2	P
BC159	2	LF	BCY30	2	LF	BD182	2	P
BC177	2	LF	BCY31	2	LF	BD183	2	P
BC178	2	LF	BCY32	2	LF	BDY20	2	P
BC179	2	LF	BCY33	2	LF	BDY38	2	P
BC200	2	LF	BCY34	2	LF	BDY60	2	P
BC237	2	LF	BCY38	2	LF	BDY61	2	P
BC238	2	LF	BCY39	2	LF	BDY90	2	P
BC239	2	LF	BCY40	2	LF	BDY91	2	P
BC307	2	LF	BCY54	2	LF	BDY92	2	P

D = Signal diodes
Dual = Dual transistors
LF = Low frequency transistors
$\mathrm{Mm}=$ Microminiature devices for $\begin{aligned} \mathrm{Mm} & =\text { Microminiature devices for } \\ & \text { thick- and thin-film circuits }\end{aligned}$

Mw = Microwave devices
P = Low frequency power devices
Var = Variable capacitance diodes

Type No.	Part	Section	Type No.	Part	Section	Type No.	Part	Section
BF 115	3	HF	BFS20	4	Mm	BLY83	4	Tr
BF 167	3	HF	BFS21	4	FET	BLY84	4	Tr
BF 173	3	HF	BFS21A	4	FET	BLY87A	4	Tr
BF 177	3	HF	BFS22A	4	Tr	BLY88A	4	Tr
BF 178	3	HF	BFS23A	4	Tr	BLY89A	4	Tr
BF 179	3	HF	BFS28	4	FET	BLY90	4	Tr
BF 180	3	HF	BFS92	3	HF	BLY91A	4	Tr
BF 181	3	HF	BFS93	3	HF	BLY92A	4	Tr
BF 182	3	HF	BFS94	3	HF	BLY93A	4	Tr
BF 183	3	HF	BFS95	3	HF	BLY94	4	Tr
BF 184	3	HF	BFW10	4	FET	BPX25; 29	4	PhDT
BF 185	3	HF	BFW11	4	FET	BPX40	4	PhDT
BF 194	3	HF	BFW12	4	FET	BPX41	4	PhDT
BF 195	3	HF	BFW13	4	FET	BPX42	4	PhDT
BF 196	3	HF	BFW16A	3	HF	BPX66P	4	PhDT
BF 197	3	HF	BFW17A	3	HF	BPX71	4	PhDT
BF 198	3	HF	BFW30	3	HF	BPY10	4	PhDT
BF 199	3	HF	BFW45	2	Defl	BPY68	4	PhDT
BF 200	3	HF	BFW61	4	FET	BPY69	4	PhDT
BF 254	3	HF	BFW92	3	HF	BPY76	4	PhDT
BF 255	3	HF	BFX34	3	Sw	BPY77	4	PhDT
BF 334	3	HF	BFX44	3	HF	BR100	1	Thyr
BF 335	3	HF	BFX89	3	HF	BR Y39	1	Thyr
BF 336	3	HF	BFY44	4	Tr	BRY39(SCS)	3	Sw
BF 337	3	HF	BFY50	3	HF	BRY39(PUT)	3	Sw
BF 338	3	HF	BFY51	3	HF	BSS27	3	Sw
BFR29	4	FET	BFY52	3	HF	BSS28	3	Sw
BFR30	4	Mm	BFY55	3	HF	BSS29	3	Sw
BFR31	4	Mm	BFY70	4	Tr	BSV52	4	Mm
BFR63	3	HF	BFY90	3	HF	BSV64	3	Sw
BFR64	3	HF	BLX13	4	Tr	BSV68	3	Sw
BFR65	3	HF	BLX14	4	Tr	BSV78	4	FET
BFS17	4	Mm	BLX69	4	Tr	BSV79	4	FET
BFS18	4	Mm	BLY14	4	Tr	BSV80	4	FET
BFS19	4	Mm	BLY17	4	Tr	BSV81	4	FET

Defl $=$ Deflection transistors
FET $=$ Field effect transistors
HF = High frequency transistors
$\mathrm{Mm}=$ Microminiature devices for thick- and thin-film circuits

PhDT = Photodiodes and phototransistors
Sw = Switching transistors
Thyr $=$ Thyristors, diacs, triacs
$\mathrm{Tr}=$ Transmitting transistors

Type No.	Part	Section	Type No.	Part	Section	Type No.	Part	Section
BSV86	3	Sw	BTX41series	1	Thyr	BYX13series	1	R
BSV87	3	Sw	BTX47series	1	Thyr	BYX22series	1	R
BSV88	3	Sw	BTX48series	1	Thyr	BYX23series	1	R
BSV96	3	Sw	BTX49series	1	Thyr	BYX25series	1	R
BSV97	3	Sw	BTX50series	1	Thyr	BYX27series	1	R
BSV98	3	Sw	BTX68series	1	Thyr	BYX29series	1	R
BSW41	3	Sw	BTX81series	1	Thyr	BYX30series	1	R
BSW66	3	Sw	BTX82series	1	Thyr	BYX32series	1	R
BSW67	3	Sw	BTX92series	1	Thyr	BYX33series	1	R
BSW68	3	Sw	BTX94series	1	Thyr	BYX34series	1	R
BSW69	3	Sw	BTX95series	1	Thyr	BYX35	1	R
BSX12	3	Sw	BTY79series	1	Thyr	BYX36series	1	R
BSX12A	3	Sw	BTY87series	1	Thyr	BYX38series	1	R
BSX19	3	Sw	BTY91series	1	Thyr	BYX39series	1	R
BSX20	3	Sw	BTY95series	1	Thyr	BYX40series	1	R
BSX21	3	Sw	BTY99series	1	Thyr	BYX42series	1	R
BSX59	3	Sw	BU105	2	Defl	BYX45series	1	R
BSX60	3	Sw	BU108	2	Defl	BYX46series	1	R
BSX61	3	Sw	BXY27	4	Mw	BYX48series	1	R
BSY38	3	Sw	BXY28	4	Mw	BYX50series	1	R
BSY39	3	Sw	BXY29	4	Mw	BYX51series	1	R
BT100Aseries	1	Thyr	BXY32	4	Mw	BYX52series	1	R
BT101series	1	Thyr	BY118	1	R	BYX56series	1	R
BT102series	1	Thyr	BY122	1	R	BYX59series	1	R
BTW23series	1	Thyr	BY123	1	R	BZX29series	1	Z
BTW24series	1	Thyr	BY126	1	R	BZX48	1	Z
BTW30series	1	Thyr	BY127	1	R	BZX49	1	Z
BTW31series	1	Thyr	BY140	1	R	BZX50	1	Z
BTW47series	1	Thyr	BY164	1	R	BZX61series	1	Z
BTW92series	1	Thyr	BY176	1	R	BZX70series	1	Z
BTX18series	1	Thyr	BY179	1	R	BZX75series	1	Z
BTX35series	1	Thyr	BY184	1	R	BZX79series	1	Z
BTX36series	1	Thyr	BY185	1	R	BZX84series	4	Mm
BTX37series	1	Thyr	BY187	1	R	BZY56	1	Z
BTX38series	1	Thyr	BYX10	1	R	BZY57	1	Z


Defl $=$	Deflection transistors
Mm	$=$ Microminiature devices for
thick- and thin-film circuits	

R = Rectifier diodes
Sw = Switching transistors
Thyr = Thyristors, diacs, triacs
Z = Voltage regulator diodes

Type No.	Part	Section	Type No.	Part	Section	Type No.	Part	Section
BZY58	1	Z	OA5	1	D	ORP52	4	PhC
BZY59	1	Z	OA7	1	D	ORP60	4	PhC
BZY60	1	Z	OA9	1	D	ORP61	4	PhC
BZY61	1	Z	OA47	1	D	ORP62	4	PhC
BZY62	1	Z	OA70	1	D	ORP63	4	PhC
BZY63	1	Z	OA72	1	D	ORP69	4	PhC
BZY78	1	Z	OA73	1	D	ORP90	4	PhC
BZY88series	1	Z	OA79	1	D	OSB9110	1	St
BZY91series	1	Z	OA81	1	D	OSB9210	1	St
BZY93series	1	Z	OA85	1	D	OSB9310	1	St
BZY95series	1	Z	OA90	1	D	OSB9410	1	St
BZY96series	1	Z	OA91	1	D	OSM9110	1	St
BZZ14	1	Z	OA92	1	D	OSM9210	1	St
BZZ15	1	Z	OA95	1	D	OSM9310	1	St
BZZ16	1	Z	OA200	1	D	OSM9410	1	St
BZZ17	1	Z	OA202	1	D	OSS9110	1	St
BZZ18	1	Z	OAP12	4	PhDT	OSS9210	1	St
BZZ19	1	Z	OAZ200	1	Z	OSS9310	1	St
BZZ20	1	Z	OAZ201	1	Z	OSS9410	1	St
BZZ21	1	Z	OAZ202	1	Z	RPY13	4	PhC
BZZ22	1	Z	OAZ203	1	Z	RPY18	4	PhC
BZZ23	1	Z	OAZ204	1	Z	RPY19	4	PhC
BZZ24	1	Z	OAZ205	1	Z	RPY20	4	PhC
BZ Z25	1	Z	OAZ206	1	Z	RPY27	4	PhC
BZZ26	1	Z	OAZ207	1	Z	RPY33	4	PhC
BZZ27	1	Z	OC122	3	Sw	RPY41	4	PhC
BZZ28	1	Z	OC123	3	Sw	RPY43	4	PhC
BZZ29	1	Z	OC139	3	Sw	RPY55	4	PhC
CAY10	4	Mw	OC140	3	Sw	RPY58	4	PhC
CQY11B	4	L	OC141	3	Sw	RPY71	4	PhC
CXY10	4	Mw	OCP70	4	PhDT	RPY76A	4	I
CXY11A	4	Mw	ORP10	4	I	1N748A	1	Z
CXY11B	4	Mw	ORP13	4	I	1N749A	1	Z
CXY11C	4	Mw	ORP30N	4	PhC	1N750A	1	Z
CXY 12	4	Mw	ORP50	4	PhC	1N751A	1	Z

D = Signal diodes
I = Infrared devices
$\mathrm{L}=$ Light emitting devices
Mw = Microwave devices
PhC = Photoconductive devices

PhDT $=$ Photodiodes and phototransistors
St = Rectifier stacks
Sw = Switching transistors
Z = Voltage regulator diodes

Type No.	Part	Section	Type No.	Part	Section	Type No.	Part	Section
1N752A	1	Z	1N5739B	1	Z	2N1307	3	Sw
1N753A	1	Z	1N5740B	1	Z	2N1308	3	Sw
1N754A	1	Z	1N5741B	1	Z	2N1309	3	Sw
1N755A	1	Z	1N5742B	1	Z	2N1613	3	HF
1N756A	1	Z	1N5743B	1	Z	2N1711	3	HF
1N757A	1	Z	1N5744B	1	Z	2N1893	3	HF
1N758A	1	Z	1N5745B	1	Z	2N2218	3	Sw
1N759A	1	Z	1N5746B	1	Z	2N2218A	3	Sw
1 N 914	1	D	1N5747B	1	Z	2N2219	3	Sw
1N914A	1	D	1N5748B	1	Z	2N2219A	3	Sw
1N914B	1	D	1N5749B	1	Z	2N2221	3	Sw
1 N 916	1	D	1N5750B	1	Z	2N2221A	3	Sw
1N916A	1	D	1N5751B	1	Z	2N2222	3	Sw
1N916B	1	D	1N5752B	1	Z	2N2222A	3	Sw
1N4009	1	D	1N5753B	1	Z	2N2297	3	HF
1N4148	1	D	1N5754B	1	Z	2N2368	3	Sw
1N4150	1	D	1N5755B	1	Z	2N2369	3	Sw
1N4151	1	D	1N5756B	1	Z	2N2369A	3	Sw
1N4154	1	D	1N5757B	1	Z	2N2483	3	HF
1N4446	1	D	2N706A	3	Sw	2N2484	3	HF
1N4448	1	D	2N708	3	Sw	2N2894	3	Sw
1N5152	4	Mw	2N743	3	Sw	2N2894A	3	Sw
1N5153	4	Mw	2N744	3	Sw	2N2904	3	Sw
1N5155	4	Mw	2N753	3	Sw	2N2904A	3	Sw
1N5157	4	Mw	2N914	3	Sw	2N2905	3	Sw
1N5729B	1	Z	2N918	3	HF	2N2905A	3	Sw
1N5730B	1	Z	2N929	2	LF	2N2906	3	Sw
1N5731B	1	Z	2N930	2	LF	2N2906A	3	Sw
1N5732B	1	Z	2N1131	3	Sw	2N2907	3	Sw
1N5733B	1	Z	2N1132	3	Sw	2N2907A	3	Sw
1N5734B	1	Z	2N1302	3	Sw	2N3055	2	P
1N5735B	1	Z	2N1303	3	Sw	2N3133	3	Sw
1N5736B	1	Z	2N1304	3	Sw	2N3134	3	Sw
1N5737B	1	Z	2N1305	3	Sw	2N3303	3	Sw
1N5738B	1	Z	2N1306	3	Sw	2N3375	4	Tr

D = Signal diodes
HF = High frequency transistors
LF = Low frequency transistors
$\mathrm{Mw}=$ Microwave devices

P = Low frequency power transistors
Sw $=$ Switching transistors
$\mathrm{Tr}=$ Transmitting transistors
$Z=$ Voltage regulator diodes

Type No.	Part	Section	Type No.	Part	Section	Type No.	Part	Section
2N3426	3	Sw	40829	3	HF	56265	2.3.4	A
2N3442	2	P	56200	2.3.4	A	56268	1	DH
2N3553	4	Tr	56201	2.3.4	A	56271	1	DH
2N3570	3	HF	56201a	2.3.4	A	56274	1	DH
2N3571	3	HF	56201b	2.3.4	A	56277	1	DH
2N3572	3	HF	56201c	2.3.4	A	56278	1	DH
2N3632	4	Tr	56201d	2.3.4	A	56279	1	DH
2N3771	2	P	56201e	2.3.4	A	56280	1	DH
2N3772	2	P	56203	2.3.4	A	56283	1	DH
2N3823	4	FET	56207	2.3.4	A	56284	1	DH
2N3866	4	Tr	56208	2.3.4	A	56286	1	DH
2N3924	4	Tr	56209	2.3.4	A	56290	1	HE
2N3926	4	Tr	56210	2.3.4	A	56293	1	HE
2N3927	4	Tr	56213	2.3.4	A	56295	1	A
2N3966	4	FET	56218	2.3.4	A	56296	1	A
2N4036	3	Sw	56226	2.3.4	A	56299	1	A
2N4091	4	FET	56227	2.3.4	A	56302	2.3.4	A
2N4092	4	FET	56230	1	HE	56303	2.3.4	A
2N4093	4	FET	56231	1	HE	56309B	1	A
2N4347	2	P	56233	1	A	56309R	1	A
2N4391	4	FET	56234	1	A	56311	1	WH
2N4392	4	FET	56239	2.3.4	A			
2N4393	4	FET	56243	1	A			
2N4427	4	Tr	56243A	1	A			
2N4856	4	FET	56244	1	A			
2N4857	4	FET	56245	2.3.4	A			
2N4858	4	FET	56246	1 to 4	A			
2N4859	4	FET	56247	1	A			
2N4860	4	FET	56250	1	DH			
2N4861	4	FET	56253	1	DH			
615 V	4	I	56256	1	DH			
40809	2	LF	56261	2.3.4	A			
40819	2	LF	56262A	1	A			
40820	3	HF	56263	1 to 4	A			
40822	3	HF	56264 A	1	A			

$\begin{array}{ll}\text { A } & =\text { Accessories } \\ \text { DH } & =\text { Diecast heatsinks } \\ \text { FET } & =\text { Field effect transistors } \\ \text { HE } & =\text { Heatsink extrusions } \\ \text { HF } & =\text { High frequency transistors } \\ \text { I } & =\text { Infrared devices }\end{array}$

LF = Low frequency transistors
$\mathrm{P}=$ Low frequency power transistors
Sw = Switching transistors
$\mathrm{Tr}=$ Transmitting transistors
WH = Water cooled heatsinks

## General

Transmitting transistors
Microwave devices
Field effect transistors
Dual transistors
Microminiature devices for thick- and thin-film circuits

## Photoconductive devices

Phototransistors
Photodiodes
Light emitting diodes

## Infra-red sensitive devices

Accessories


[^0]:    ${ }^{1}$ ) A multiple device is defined as a combination of similar or dissimilar active devices, contained in a common encapsulation that cannot be dismantled, and of which all electrodes of the individual devices are accessible from the outside.

    Multiples of similar devices as well as multiples consisting of a main device and an auxiliary device are designated according to the code for discrete devices described above.
    Multiples of dissimilar devices of other nature are designated by the second letter G.

[^1]:    ${ }^{1}$ ) The letter $R$ indicates reverse polarity (anode to stud). The norinal polarity (cathode to stud) and symmetrical executions are not specially indicated.

[^2]:    1) As an exception to the general rule for electrical parameters capacitances are represented by the upper-case letter.
[^3]:    ${ }^{1}$ ) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

[^4]:    ${ }^{1}$ ) $\mathrm{C}_{5}$ should be chosen such that its series conductance can be neglected (e.g. a tubular ceramic capacitor mounted in a copper block).
    ${ }^{2}$ ) Without insertion losses and stated minimum $\mathrm{P}_{\mathrm{O}}$.

[^5]:    Rth mb-h
    $2.5{ }^{\circ} \mathrm{C} / \mathrm{W}$

[^6]:    1) Variable ceramic capacitor
    2) $\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}$ is for BFY44 only
[^7]:    ${ }^{1}$ ) Stated figures are maxima encountered at any driving level between the specified values of PEP and are referred to the according level of either of the equal ampl. tones. Relative to the according peak envelope power these figures should be increased by 6 dB .

[^8]:    $\overline{\left.{ }^{1}\right) \text { Stated }}$ intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB .

[^9]:    ${ }^{1}$ ) Stated figures are maxima encountered at any driving level between the specified values of PEP and are referred to the according level of either of the equal ampl. tones. Relative to the according peak envelope power these figures should be increased by 6 dB .

[^10]:    ${ }^{1}$ ) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

[^11]:    1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
    2) See also areas of permissible operation at pages 10 and 11 .
[^12]:    *) The transistor can withstand an output V.S.W.R. of 3:1varied through all phases for conditions, mentioned in the table above.

[^13]:    1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
    2) See also areas of permissible operation at pages 8 and 9 .
[^14]:    1) Pulsed through an inductor of $25 \mathrm{mH} ; \delta=0.5 ; \mathrm{f}=50 \mathrm{~Hz}$
[^15]:    For data of this transistor please refer to type 2N3866

[^16]:    1) Measured at $34.86 \mathrm{GHz}, 0.5 \mathrm{~mA}$ diode rectified current, this value includes i.f. noise of 1.5 dB
    ${ }^{2}$ ) With respect to standard test holder
[^17]:    1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
[^18]:    MECHANICAL DATA see page 2

[^19]:    ${ }^{1}$ ) Measured under pulsed conditions.

[^20]:    1) Measured under pulsed conditions.
[^21]:    ${ }^{1}$ ) measured under pulsed conditions: $\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s} ; \delta=0.01$

[^22]:    ${ }^{1}$ ) measured under pulsed conditions: $\mathrm{t}_{\mathrm{p}}=100 \mathrm{~ms} ; \delta \leq 0.1$

[^23]:    1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
[^24]:    1) $\mathrm{T}_{\mathrm{amb}}=-20$ to $+90^{\circ} \mathrm{C}$
[^25]:    ${ }^{1}$ ) Relative temperature coefficient $<10^{-5} /{ }^{\circ} \mathrm{C}$
    ${ }^{2}$ ) The device at the input is the device under test

[^26]:    ${ }^{1}$ ) For highly professional applications it is advisable not to exceed a max. junction temperature of $100^{\circ} \mathrm{C}$.

[^27]:    l) For highly professional applications it is advisable not to exceed a maximum junction temperature of $100^{\circ} \mathrm{C}$.

[^28]:    1) For highly professional applications it is advisable not to exceed a maximum junction temperature of $100^{\circ} \mathrm{C}$.
[^29]:    ${ }^{1}$ ) For highly professional applications it is advisable not to exceed a maximum junction temperature of $100^{\circ} \mathrm{C}$.

[^30]:    ${ }^{1}$ ) For highly professional applications it is advisable not to exceed a maximum junction temperature of $100^{\circ} \mathrm{C}$.

[^31]:    1) For highly professional applications it is advisable not to exceed a maximum junction temperature of $100^{\circ} \mathrm{C}$.
[^32]:    ${ }^{1}$ ) For highly professional applications it is advisable not to exceed a maximum junction temperature of $100^{\circ} \mathrm{C}$.

[^33]:    ${ }^{1}$ ) For highly professional applications it is advisable not to exceed a maximum junction temperature of $100^{\circ} \mathrm{C}$

[^34]:    1) For highly professional applications it is advisable not to exceed a maximum junction temperature of $100^{\circ} \mathrm{C}$.
[^35]:    1) Not tin plated
    ${ }^{2}$ ) Centre of sensitive area
[^36]:    ${ }^{1}$ ) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

[^37]:    1) Not tinned.
[^38]:    1) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.
[^39]:    1) Not tin plated
[^40]:    ${ }^{1}$ ) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

[^41]:    ${ }^{1}$ ) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.

[^42]:    ${ }^{1}$ ) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

[^43]:    ${ }^{1}$ ) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum stor age temperature.

[^44]:    1) Not tinned
    ${ }^{2}$ ) Centre of sensitive area
    2) Red dot
[^45]:    1) The spread of the dark resistance is large and values higher than $1000 \mathrm{M} \Omega$ are possible for the initial dark resistance.
    2) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the current rise time.
[^46]:    ${ }^{1}$ ) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.

[^47]:    1) The spread of the dark resistance is large and values higher than $30 \mathrm{M} \Omega$ and $2000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
    ${ }^{2}$ ) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
[^48]:    1) Operation of the cell counteracts the deteriorating effect of long periods at the high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.
[^49]:    1) Not tin plated
    2) Centre of sensitive area
    3) White dot
[^50]:    ${ }^{1}$ ) The spread of the dark resistance is large and values higher than $1000 \mathrm{M} \Omega$ are possible for the initial dark resistance.
    ${ }^{2}$ ) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
    Measured at top sensitivity .

[^51]:    1) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.
[^52]:    ${ }^{1}$ ) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

[^53]:    ${ }^{1}$ ) If no forced air cooling is used, the envelope temperature opposite the centre of the sensitive area is about $83^{\circ} \mathrm{C}$ when the CdS tablet temperature is $85^{\circ} \mathrm{C}$. This temperature can be determined e.g. with a thermocouple fastened on the envelope.
    ${ }^{2}$ ) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.

[^54]:    ${ }^{1}$ ) The spread of the dark resistance is large and values higher than $100 \mathrm{M} \Omega$ and $10000 \mathrm{M} \Omega$ are possible for the initial dark resistance and the equilibrium dark resistance respectively.
    2) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.

[^55]:    1) If no forced air cooling is used, the envelope temperature opposite the centre of the sensitive area is about $83^{\circ} \mathrm{C}$ when the CdS tablet temperature is $85^{\circ} \mathrm{C}$. This temperature can be determined e.g. with a thermocouple fastened on the envelope.
    2) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.
[^56]:    1) If no forced air cooling is used, the envelope temperature opposite the centre of the sensitive area is about $83^{\circ} \mathrm{C}$ when the CdS tablet temperature is $85{ }^{\circ} \mathrm{C}$. This temperature can be determined e.g. with a thermocouple fastened on the envelope.
    ${ }^{2}$ ) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.
[^57]:    1) The spread of the dark resistance is large and values higher than $100 \mathrm{M} \Omega$ and $10000 \mathrm{M} \Omega$ are possible for the initial darkresistance and the equilibrium dark resistance respectively.
    ${ }^{2}$ ) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
[^58]:    ${ }^{1}$ ) Operation of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature.

[^59]:    $\left.{ }^{1}\right)^{2}$ ) See page 4

[^60]:    $\overline{3})^{4}$ ) See page 4.

[^61]:    1) The spread of the dark resistance is large and values higher than $100 \mathrm{M} \Omega$ and $10000 \mathrm{M} \Omega$ are possible for the intial dark resistance and the equilibrium dark resistance respectively.
    ${ }^{2}$ ) After 16 hours in darkness changes in the CdS material are still occurring, but have only insignificant effect on the illumination resistance and on the resistance decay time.
[^62]:    1) Operating of the cell counteracts the deteriorating effect of long periods at high temperature. The maximum operating temperature is therefore higher than the maximum storage temperature
[^63]:    1) $\gamma=\frac{\log \mathrm{r} 1-\log \mathrm{r} 2}{\log \mathrm{E} 2-\log \mathrm{E} 1}$ where $\mathrm{E} 1=0.1 \mathrm{~lx}$ and $\mathrm{E} 2=10 \mathrm{~lx}$
    ${ }^{2}$ ) Pre-conditioning factor $=\frac{\text { Cell current at } 11 \mathrm{x} \text {, after } 3 \text { days in darkness }}{\text { Cell current at } 11 \mathrm{x} \text {, after } 1 \mathrm{~h} \text { pre-conditioning }}$ at 300 lx (fluorescent light)
    measured when a stable current is reached
[^64]:    ${ }^{1}$ ) Source: modulated GaAs: $0.4 \mathrm{~mW} / \mathrm{cm}^{2}$
    Load: optimum ( $50 \Omega$ )
    $\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}$
    Improved switching times can be obtained by a quiescent bias current.
    I.e. $\mathrm{I}_{\mathrm{B}}=2 \mu \mathrm{~A}: \mathrm{t}_{\mathrm{d}}<0.2 \mu \mathrm{~s}$.
    ${ }^{2}$ ) At this and lower frequencies, $\frac{1}{\mathrm{f}}$ noise predominates.

[^65]:    1) The value of light current increases with temperature equal to the increase in dark current.
[^66]:    1) Not tinned.
[^67]:    ${ }^{1}$ ) Measured under pulsed conditions, ${ }^{{ }_{p}}=10 \mu \mathrm{~s} ; \delta=0.01$

[^68]:    1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
