RCA TUBE Handbook HB-3

0

0

31

PHOTOSENSITIVE DEVICE SECTION

This Section contains data on phototubes of the single-unit, twin-unit, and multiplier types; photocells; television camera tubes- such as image orthicons, iconoscopes, and vidicons; and other devices employing photosensitive materials.

For further Technical Information, write to Commercial Engineering, Tube Division, Radio Corporation of America, Harrison, N. J.

2-57

SEPARATOR

DEFINITIONS

of Photosensitive-Device Terms

Radiant Sensitivity. The quotient of output current by incident radiant power of a given wavelength, at constant electrode voltages.

Radiant Intensity Sensitivity. The quotient of output current by incident radiant power per unit area, at constant electrode tages.

Cathode Radiant Sensitivity. The quotient of current leaving the photocathode by incident radiant power of a given wavelength.

Luminous Sensitivity. The quotient of output current by incident luminous flux, at constant electrode voltages.

Luminous Intensity Sensitivity. The quotient of the output current by the incident luminous intensity, at constant electrode voltages.

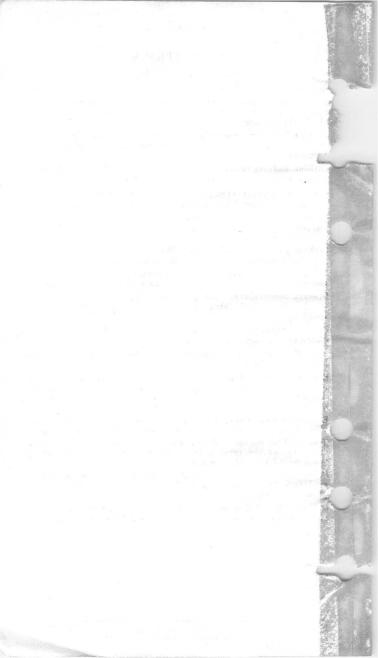
Cathode Luminous Sensitivity. The quotient of current leaving the photocathode by the incident luminous flux.

Illumination Sensitivity. The quotient of output current by the incident illumination, at constant electrode voltages.

Dynamic Sensitivity. The quotient of the modulated component of the electrical output by the modulated component of the incident radiation.

Current Amplification. Ratio of the output current to the photocathode current, at constant electrode voltages.

Equivalent Anode-Dark-Current Input. The quotient of the anode dark current by the luminous sensitivity.


Equivalent Noise Input. That value of incident luminous flux which when modulated in a stated manner produces an rms output current equal to the rms noise current within a specified bandwidth.

Electrode Dark Current. The electrode current which flows when there is no radiant flux incident on the photocathode.

Transit-Time Spread. The increase in width of the output pulse over that of the input pulse. Pulse width is measured at 50 per cent of the pulse height.

Pulse Rise Time. The time required for the instantaneous amplitude of the pulse to go from 10 per cent to 90 per cent of the peak value.

Median. That value in a series such that half of the devices in the series are on one side of it, and half on the other.

Spectral Response	Diameter (nominal) in	No. of Stages	Secondary Emitting Surface	RCA Tube Types
S-1	1-1/2	10	Mg-0ª	7102
	1/2	9	Cs-Sb	8571
S-4	1-1/8	9	Cs-Sb	IP21, 931A, 4471, 4472, 4473, 6328, 6472, 7117
S-5	1-1/8	9	Cs–Sb	1P28, 1P28A
S-8	1-1/8	9	Cs-Sb	1 P22
S-10	2	10	Cs-Sb	6217
	211	6	Be-0	7764
	3/4	10	Be-O	4460, 7767
	e.	10	Be-0	4461
	1-1/2	10	Cs-Sb	2060, 2067, 4438, 4439, 4440, 4441, 4441A, 619
S-11		10	Be-0	2020, 2061, 2063, 6342A, 7746, 8053
	2	10	Cs-Sb	2062, 5819, 6655A
		12	Be-0	7850
		14	Be-0	6810A, 7264
	3	10	Be-0	2064, 2064B, 8054
	5	10	Be-0	2065, 8055
S-11 ^b	5	14	Be-0	7046
S-13	2	10	Cs-Sb	6903
S-19	1-1/2	9	Cs-Sb	7200
	3/4	10	Be-0	8644, 8645
		10	Be-0	4463, 7326
S-20	2	12	Be-0	4459
		14	Be-0	7265
	3	10	Be-0	4464
6	5	10	Be-0	4465
	2	10	Be-0	4523
(c)	3	10	Be-0	4524
	5	10	Be-0	4525
	2	12	Be-0	8575

PHOTOMULTIPLIER TUBES

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

PHOTOSENSITIVE-DEVICE GUIDE | 7-67

Spectral Response	Single-Unit		Twin Unit	Anode- Cathode
	Vacuum	Gas	Gas	Vacuum
S-1	917 919 922 925 6570	1P40 1P41 868 921 923 927 930 6405/1640 6953	920	
S-3	926	1P29		
S-4	1P39 929 934 5653 7043	1P37 4409 5581 5582 5583		5652
S-5	935			
S-9	1P42			

IMAGE-CONVERTER	TUBES d
-----------------	---------

Spectral	Recommended Service			
Response	Infrared	Photographic Shutter		
S-1	6032A 6914 6914A 6929			
S-11		4449A		

CAMERA TUBES

	VIDICONS ^e Recommended Service		
Tube Diameter inches	Television Film Pickup	Live Television and Industrial	Space Military and Industrial
1/2			4427
1	7038 8134/V1 8572	4478 4488 4493 4494 4495 7262A 7697 7735B 8134 8507 8573	2048 4482 4500 4503 7263A 8567 ^b

PHOTOSENSITIVE-DEVICE GUIDE I

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

		e (Cont'd)	
Recommended Service			9
Tube Diameter inches	Television Film Pickup	Live Television and Industrial	Space Military, and Industria
1-1/2	8051 8480 8480/V1		8480 8521

	IMAGE ORTH	HICONS		
	Recommended Service			
Tube	Live Television Pickup		Military	
Diameter inches	Color	Black and White	and Industria	
3	4415, 4416 4415/S, 4416/S ⁹ 7513/S, 4513/S ⁹ 7513/L 8092A/S	4401V1 4401V1/L 5820A 5820A/L 7293A 7293A/L 7513 7513/L 8092A 8093A 8093A/L	4401V1 4401V1/L 7198A ^b 7629A 7967 8092A	
4-1/2	4492 j	7295B 7295C 7389B 7389C		

IMAGE-INTENSIFIER ORTHICON

Combined Image-Converter and Image Orthicon Sections

Tube	Recommended Service			
Diameter inches	Extremely Low-Light Level Television Cameras			
5	4470			

a This surface is being replaced gradually by Be-O.

b Has extended spectral response in the near-ultraviolet. Maximum response occurs at about 4200 angstroms. The approximate spectral range, at the 10 per cent points, is from 2500 to 6500 angstroms.

C A spectral-response S- designation has not been assigned for these bialkali photocathode types. Maximum response occurs at about 3850 angstroms for approximate spectral range, at the 10 per cent points, is from 2600 to 6000 angstroms for type 8575 and from 3100 to 6100 for types 4523, 4524, and 4525.

d These types utilize a P20 phosphor screen except type 4449A which has a P11 phosphor screen.

RCA B

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. PHOTOSENSITIVE-DEVICE GUIDE 2 7-67

- Water - Martin

9

- e Variants of each vidicon type having fiber-optics faceplates, reticles, and/or radiation-resistant faceplates can often be supplied to meet the needs of specific applications.
- f Ruggedized type.
- 9 Types 4415/S, 4416/S are available as a triohaving matched characteristics. The 4415/S's are for use in the red and green channels and the 4416/S is for use in the blue channel. Types 7513/S, 4513/S are also available as a set of three tubes having matched characteristics. Types 7513/S are for the red and green channels and type 4513/S for the blue.
- h A trio of these tubes having matched characteristics is available as three type 7513/S.
- J For the luminance channel in 4-tube color cameras.

ş

MAR IN

ind all

ŕ

PHOTOTUBE SENSITIVITY SENSITIVITY MEASUREMENTS

GENERAL CONSIDERATIONS

The range of luminous-sensitivity limits given for a phototube on the data sheets of this Section is that which the tube will display when operated under low-current conditions.

If the tube is to be operated under conditions approaching its maximum-current rating, the equipment design should provide for a wider sensitivity range having a minimum value equal to one-half of that shown for low-current operation. The sensitivity of a phototube under such high-current conditions is dependent upon the tube type, as follows:

I. Single-Unit and Twin Phototubes

- a. Gas Types: For high-current operation, and particularly in applications in which the type is subjected to these higher values continuously, a drop in sensitivity below the values for low-current operation may be expected, the extent of the drop being affected by the severity of the operating conditions. After a period of idleness, a gas phototube usually recovers most of its initial sensitivity.
- b. Vacuum Types: Unlike gas phototubes, this class of phototubes shows negligible drop in sensitivity values for different degrees of illumination and over long periods of use. The output current of a vacuum phototube is a linear function of the exciting illumination under normal operating conditions. The frequency response is flat up to frequencies at which transit-time effects become the limiting factor.

2. Multiplier Phototubes

Although RCA Multiplier Phototubes are vacuum types, a drop in sensitivity is to be expected from this class of phototubes when operated at high anode-current values. The extent of the drop is affected by the nature and severity of the operating conditions to which the tube is subjected. After aperiod of idleness, the multiplier phototube usually recovers a substantial percentage of this loss of sensitivity.

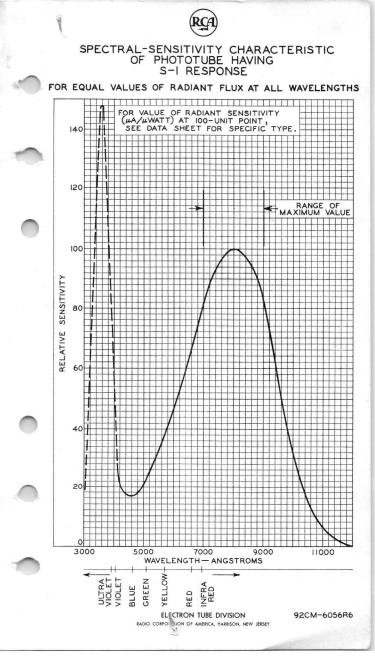
Multiplier-phototube-sensitivity values are dependent on the respective amplification of each dynode stage. Hence, large variations in sensitivity can be expected between individual tubes of a given type. The overall amplification of a multiplier phototube is equal to the average amplification per stage raised to the <u>n</u>th power, where <u>n</u> is the number of stages. Thus, very small variations in amplification per stage changes in overall tube amplification.

Because these overall changes are very large, it is advisable for designers to provide adequate adjustment of the supply voltage per stage so as to be able to adjust the amplification of individual tubes to the desired design value. It is suggested that an overall voltage-adjustment (continued on next page)

PHOTOTUBE SENSITIVITY AND SENSITIVITY MEASUREMENTS

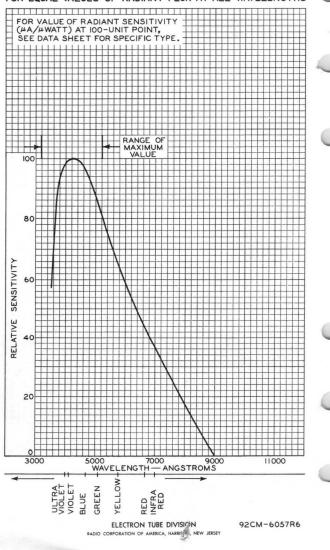
range of at least 2 to 1 be provided. When the output current can be controlled by change in the illumination of the photocathode of the multiplier phototube, the required range of adjustment in the voltage per stage can be reduced.

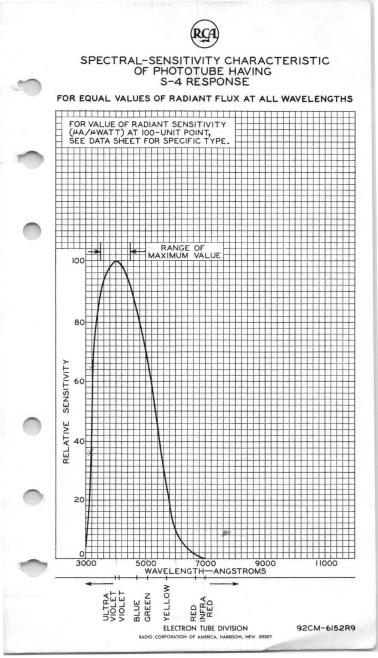
SENSITIVITY MEASUREMENTS


The luminous-sensitivity values shown on the data pages of this Section are measured according to the following procedures:

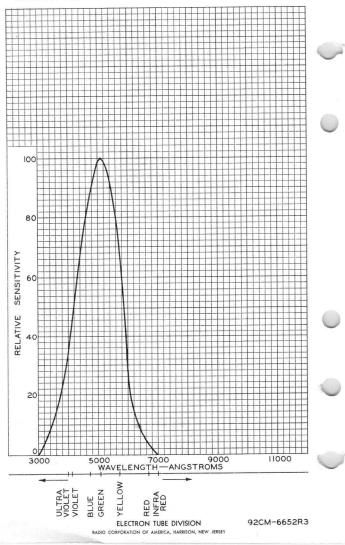
I. Single-Unit and Twin Phototubes

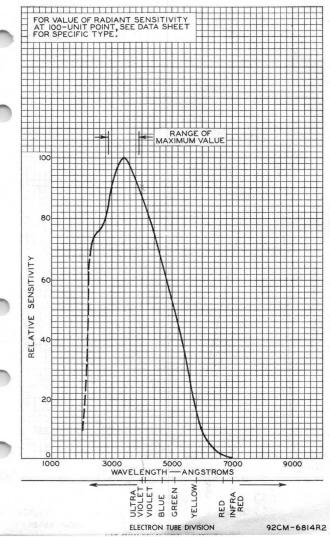
- a. Gas Types: The light source consists of a tungsten lamp operating at a filament color temperature of 2870^bK. For the O-cycle measurements, a light input of O.I Jumen is used, unless otherwise specified. For the 5000- and 10000 cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean. For all measurements, adc anode-supply voltage of 90 volts and a 1.0-megohm loadresistor are employed. Under these conditions, the effect of tube capacitance is negligible.
- b. Vacuum Types: The light source consists of a tungsten lamp operating at a filament color temperature of 2870°K. A steady light input of 0.1 lumen is used, unless otherwise specified, together with a dc anode-supply voltage of 250 volts and a 1-megohm load resistor.


2. Multiplier Phototubes

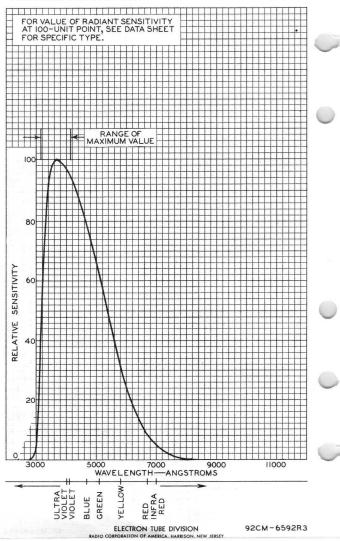

The light source consists of a tungsten lamp operating at a filament color temperature of 2870° K. A light flux of 10 microlumens from a rectangular aperture approximately 0.8" long and 0.2" wide is projected normal to the cathode in the direction noted on the basing diagram and outline. The load resistor has a value of 0.01 megohm. The applied voltages are specified on the individual data sheets.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-3 RESPONSE

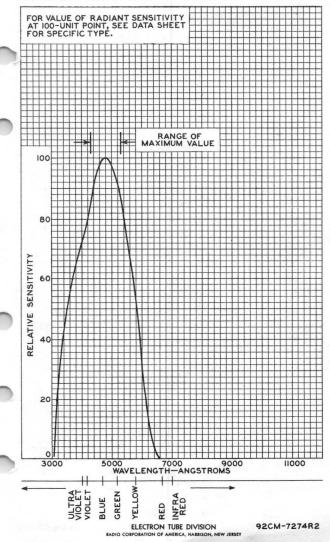



SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-4 RESPONSE

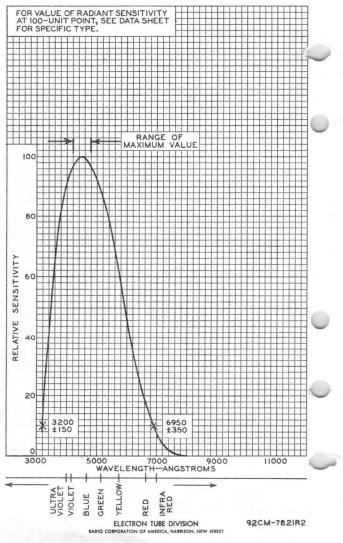
RADIANT FLUX FROM TUNGSTEN SOURCE AT 2870° K

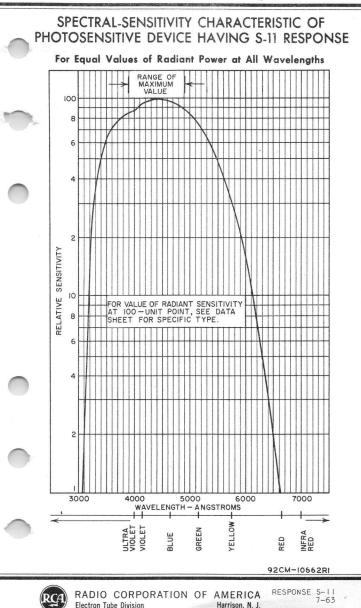


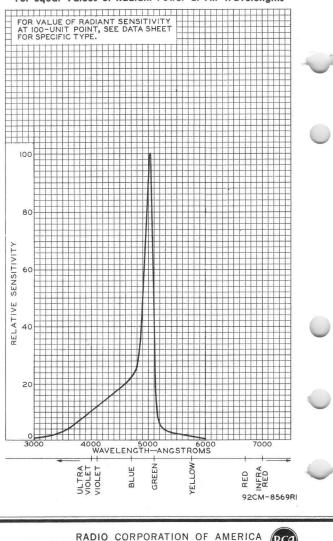
SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-5 RESPONSE



SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-8 RESPONSE

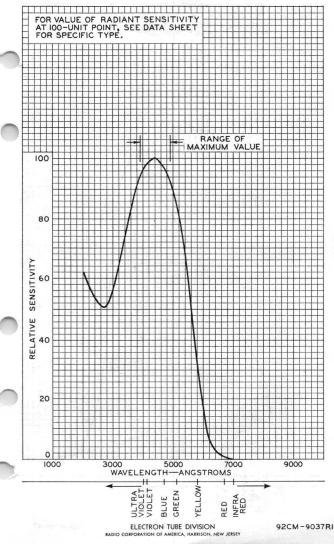



SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-9 RESPONSE


SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-10 RESPONSE

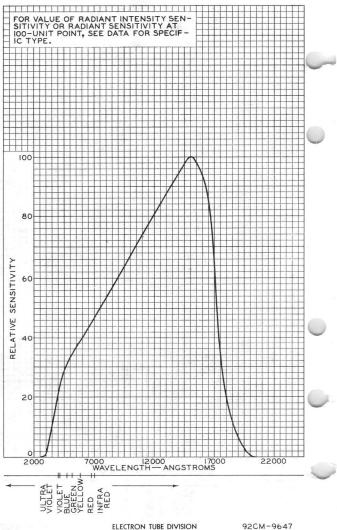
SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-12 RESPONSE

For Equal Values of Radiant Power at All Wavelengths


Electron Tube Division

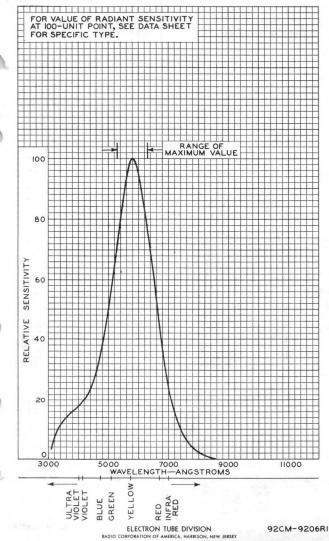
Harrison, N. J.

TENTATIVE SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-13 RESPONSE



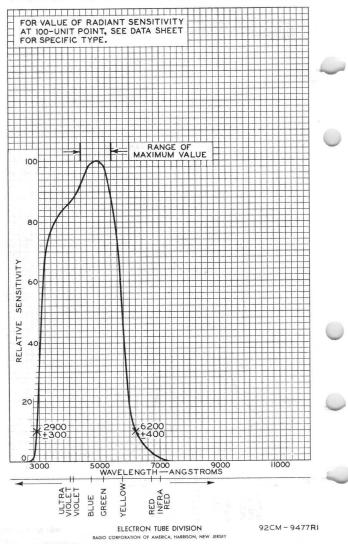
TENTATIVE SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOJUNCTION CELL HAVING S-14 RESPONSE

FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVELENGTHS

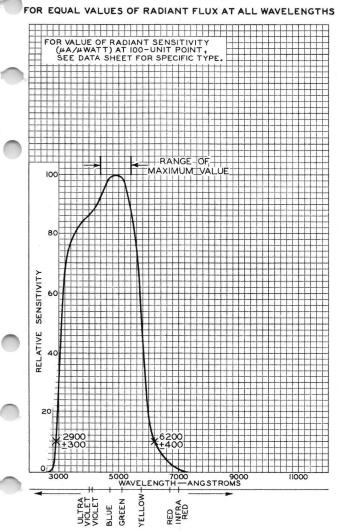


RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

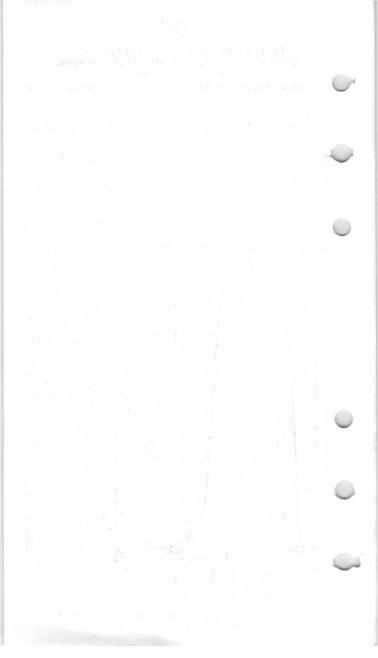
92CM-9647

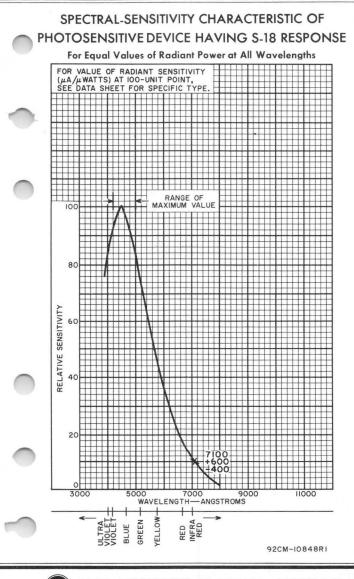


TENTATIVE SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOCONDUCTIVE CELL HAVING S-15 RESPONSE



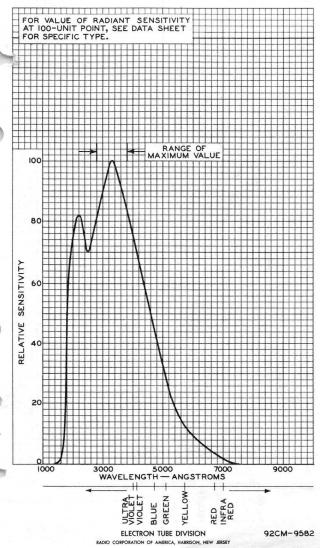
TENTATIVE SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-I7 RESPONSE



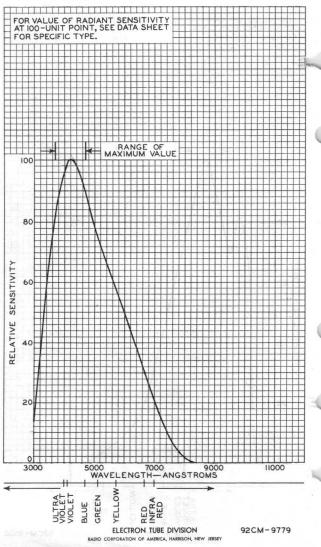


TENTATIVE SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-I7 RESPONSE

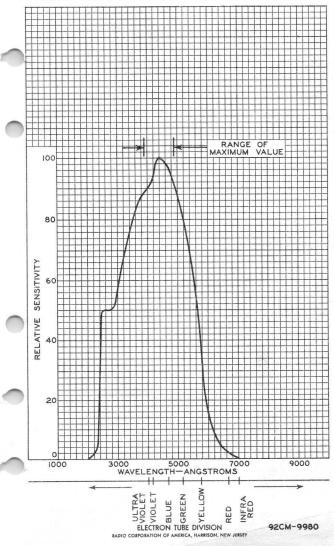

ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM - 9477

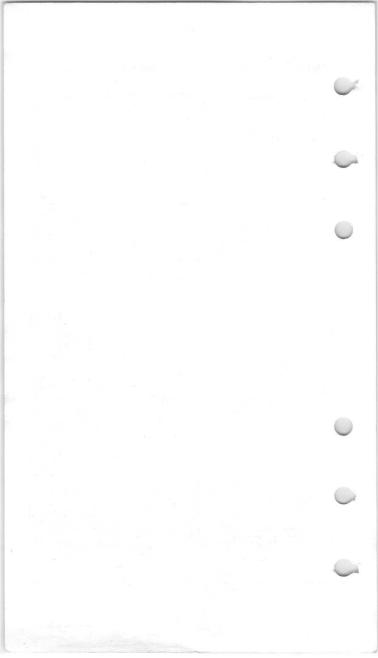

Electron Tube Division

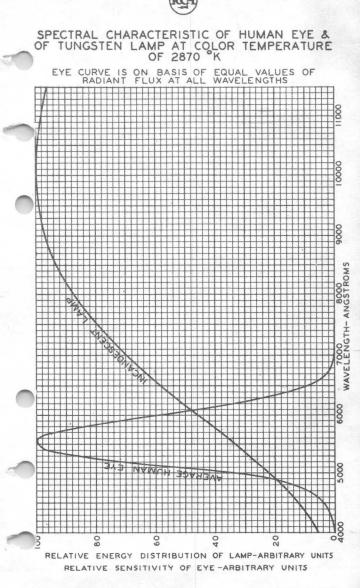
RADIO CORPORATION OF AMERICA Harrison, N. J. RESPONSE S-18 1-62



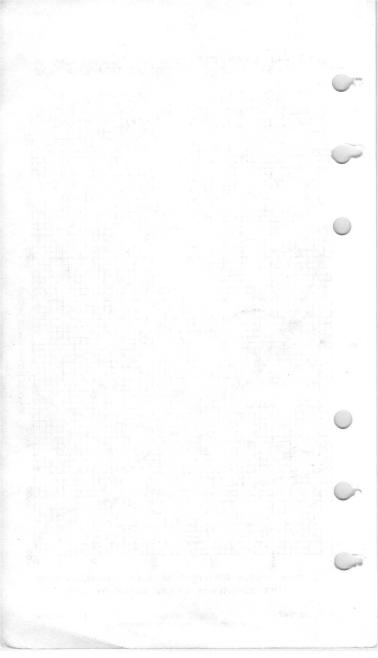
TENTATIVE SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-19 RESPONSE

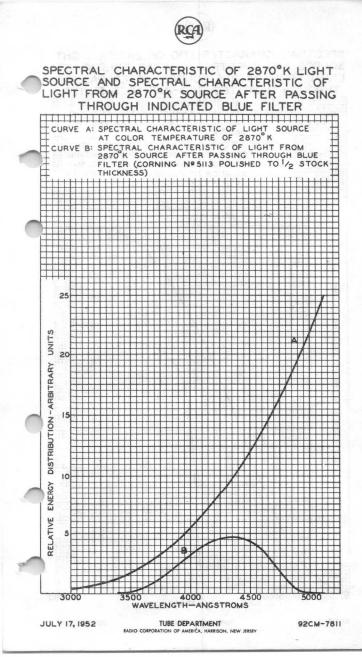


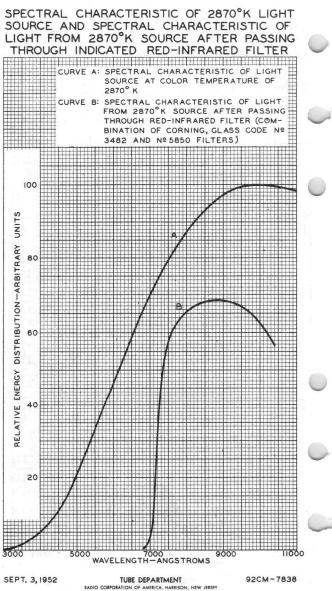

TENTATIVE SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-20 RESPONSE



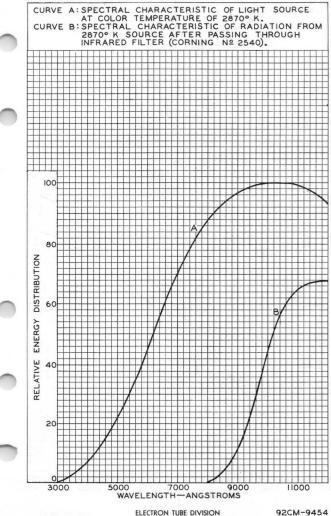
TENTATIVE SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-21 RESPONSE

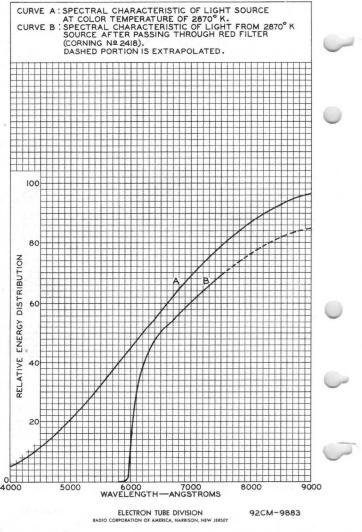




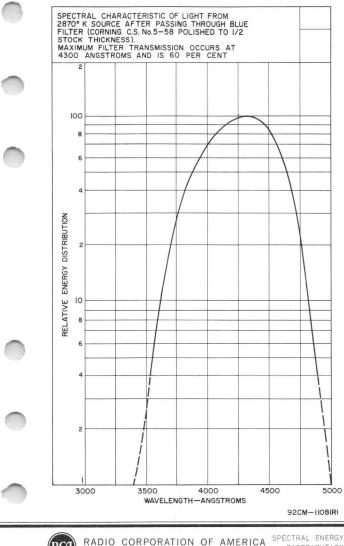

OCT. 20, 1947

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6435RI

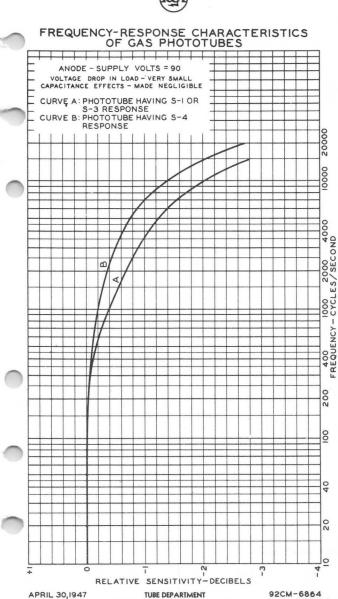



SPECTRAL CHARACTERISTIC OF 2870° K LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF RADIATION FROM 2870° K SOURCE AFTER PASSING THROUGH INDICATED INFRARED FILTER

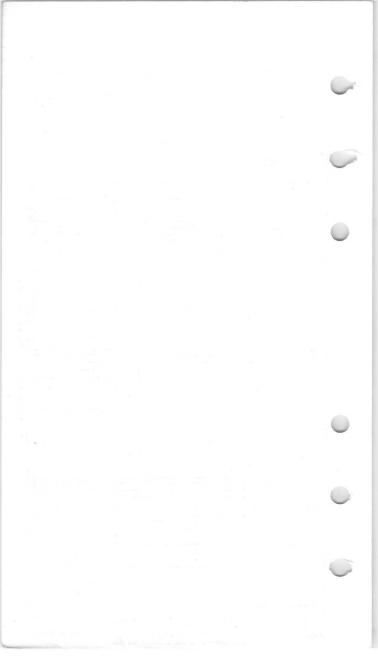
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



SPECTRAL CHARACTERISTIC OF 2870° K LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF LIGHT FROM 2870° K SOURCE AFTER PASSING THROUGH INDICATED RED FILTER


Spectral Energy Distribution

SPECTRAL ENERGY DISTRIBUTION OF 2870⁰ K LIGHT SOURCE AFTER PASSING THROUGH INDICATED FILTER


RADIO CORPORATION Electronic Components and Devices AMERICA Harrison, N. J.

SPECTRAL ENERGY DISTRIBUTION 9-67

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-6864

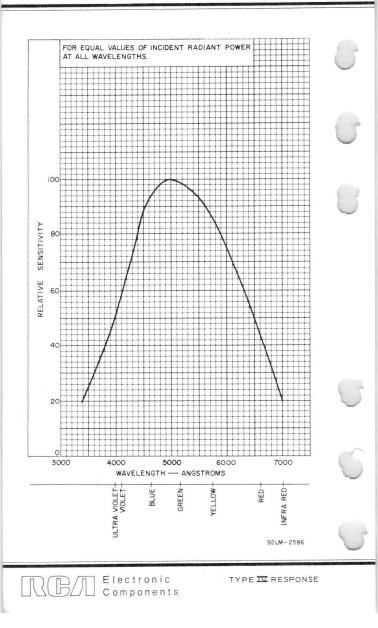
RCA Type II Spectral Response

FOR EQUAL VALUES OF SIGNAL-OUTPUT CURRENT AT ALL WAVELENGTHS. SIGNAL-OUTPUT MICROAMPERES FROM SCANNED AREA OF 1/2"×3/8"=0.02 DARK CURRENT (MICROAMPERES)=0.02

0.110

0.100 0.090 ENERG' 0.080 RADIANT 0.070 0.060 0.020 0.010 0 4000 7000 8000 WAVELENGTH -ANGSTROMS

IELLOW VIOLET GREEN RED BLUE


92CM-11619

Electronic H Components

ωw

TYPE I RESPONSE 12-68

RCA Type IV Spectral Response

. . S-4

0.94 in (2.4 cm)

0.31 in (0.8 cm)

.... Nickel

Cesium-Antimony

or equivalent

Photomultiplier Tube

9-Stage, Side-On Type Having S-4 Spectral Response

Wavelength of Maximum Response. . 4000 ± 500 angstroms

Cathode, Opaque Cesium-Antimony Minimum projected length^a Minimum projected width^a Lime Glass (Corning^b No.0080), Window Index of refraction at 4360 angstroms 1.523 Dynodes: Substrate Secondary-Emitting Surface Structure... Circular-Cage, Electrostatic-Focus Type Direct Interelectrode Capacitances (Approx.): Anode to dynode No.9 4.4 pF Maximum Overall Length 3.68 in (9.3 cm) Maximum Diameter 1.31 in (3.3 cm) Bulh T9 Small-Shell Submagnal 11 Pin, (JEDEC Group 2. Base . . No.B11-88), Non-hygroscopic Amphenol^c No.78S11T, or equivalent Socket Millen^d No.80801B, or equivalent Magnetic Shield Operating Position

GENERAL

Spectral Response

. Weight (Approx.) ABSOLUTE-MAXIMUM RATINGS

DC or Peak AC Supply Voltage:

Between anode and cathode	1250 max. V
Between anode and dynode No.9	250 max. V
Between consecutive dynodes	250 max. V
Between dynode No.1 and cathode	250 max. V
Average Anode Current ^f	0.1 max. mA
Ambient Temperature ⁹	$+75$ max. ^{o}C

Electronic Components Any

1.6 oz

+ C	HARACTERISTICS F							
Under conditions with dc supply voltage (E) across a volt- age divider providing 1/10 of E between cathode and dy- node No.1; 1/10 of E for each succeeding dynode stage; and 1/10 of E between dynode No.9 and anode.								
	With $E = 1000$ volts							
		Min.	Typical	Max.				
	Anode Sensitivity:							
	Radiant ^h at 4000 angstroms	-	1.2×10^{5}	-	A/W			
	Luminous ^I (2870 [°] K)	40	120	800	A/lm			
	Cathode Sensitivity:							
	Radiant ^k at 4000 angstroms	-	0.04	-	A/W			
	Luminous ^m (2870 [°] K)	2x10 ⁻⁵	4x10 ⁻⁵	-	A/lm			
	Quantum Efficiency at 3800 angstroms	-	13	_	%			
	Current Amplifica-	_	3x10 ⁶	-				
	Anode Dark Current ⁿ	-	1x10 ⁻⁹	1x10 ⁻⁸	A			
	Equivalent Anode Dark Current Input	{-	5x10 ⁻¹¹ 4.8x10 ⁻¹⁴ p	5x10 ⁻¹⁰ 4.8x10 ⁻¹³ p	lm W			
	Equivalent Noise Input ^q	Ì- _	6.7x10 ⁻¹³ 6.4x10 ⁻¹⁶	_	lm W			
	Anode-Pulse Rise Time at 1250 V	-	1.6x10 ⁻⁹	_	s			
	Electron Transit Time [†] at 1250 V	-	1.6x10 ⁻⁸	_	s	~		

^a On plane perpendicular to the indicated direction of incident light and passing through the major axis of the tube.

^b Made by Corning Glass Works, Corning, NY 14830.

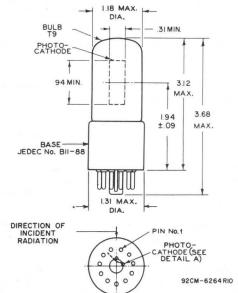
^c Made by Amphenol Electronics Corporation, 1830 South 54th Avenue, Chicago 50, IL 60650.

^d Made by James Millen Manufacturing Company, 150 Exchange Street. Malden, MA 02148.

Averaged over any interval of 30 seconds maximum.

- Indicates a change.

Electronic Components


日/

- ⁹ Tube operation at room temperature or below is recommended.
- ^h This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 1036 lumens per watt.
 - ⁱ Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 10 microlumens is used.
 - k This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1036 lumens per watt.
 - ^m Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870^o K. The value of light flux is 0.01 lumen and 100 volts are applied between cathode and all other electrodes connected as anode.
 - ⁿ At a tube temperature of 22° C. With supply voltage adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission may be reduced by use of a refrigerant.
 - At 4000 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 1036 lumens per watt.
- ^q Under the following conditions: Tube temperature 22° C, external shield connected to cathode, bandwidth 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
 - ^r At 4000 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 1036 lumens per watt.
 - ⁵ Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.

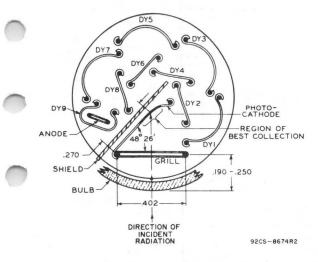
3(円/川

[†] The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

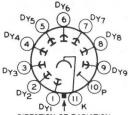
DIMENSIONAL OUTLINE

C of bulb will not deviate more than 2⁰ in any direction from the perpendicular erected at center of bottom of base.

Dimensions are in inches unless otherwise stated. Dimensions tabulated below are in millimeters.


nch	mm	Inch	mm	Inch	mm
.09	2.3	.31	7.9	1.31	33.2
190	4.8	.402	10.2	1.94	49.2
250	6.3	.94	23.8	3.12	79.2
270	6.8	1.18	29.9	3.68	93.4

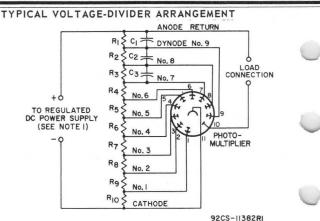
Electronic Components


日/

DATA 2

DETAIL A (Top View)

TERMINAL DIAGRAM (Bottom View)


DIRECTION OF RADIATION

Pin 1: Dynode No.1
Pin 2: Dynode No.2
Pin 3: Dynode No.3
Pin 4: Dynode No.4
Pin 5: Dynode No.5
Pin 6: Dynode No.6

ŀ

Pin 7: Dynode No.7 Pin 8: Dynode No.8 Pin 9: Dynode No.9 Pin 10: Anode Pin 11: Photocathode

DATA 3 8-69

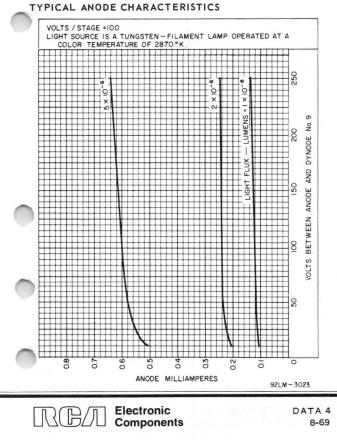
 R_1 through $R_{10} = 20,000$ to 1,000,000 ohms

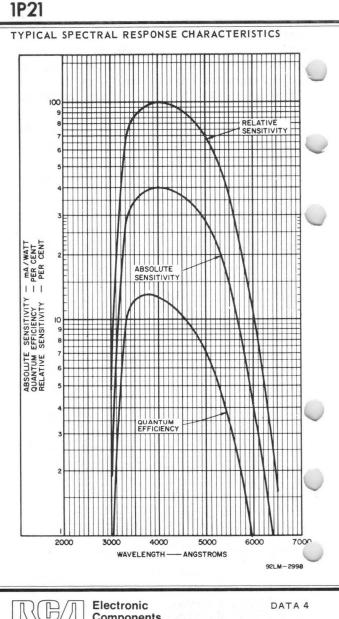
Note 1: Adjustable between approximately 500 and 1250 volts.

Note 2: Capacitors C_1^{\bullet} through C_3^{\bullet} should be connected at tube socket for optimum high-frequency performance.

•Leads to all capacitors should be as short as possible to minimize inductance effects.

The capacitor values will depend upon the shape and the amplitude of the anode-current pulse, and the time duration of the pulse, or train of pulses. When the output pulse is assumed to be rectangular in shape, the following formula applies:

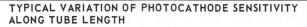

$$C = 100 \frac{i \cdot t}{V}$$

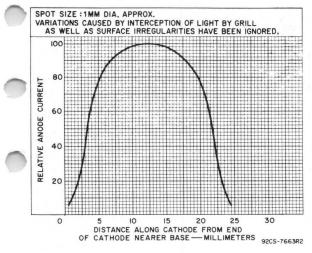

where C is in farads

i is the amplitude of anode current in amperes V is the voltage across the capacitor in volts and t is the time duration of the pulse in seconds This formula applies for the anode-to-final dynode capacitor. The factor 100 is used to limit the voltage change across the capacitor to 1% maximum during a pulse. Capacitor values for preceding stages should take into account the smaller values of dynode currents in these stages. Conservatively, a factor of approximately 2 per stage is used. Capacitors are not required across those dynode stages where the dynode current is less than 1/10 of the current through the voltage-divider network.

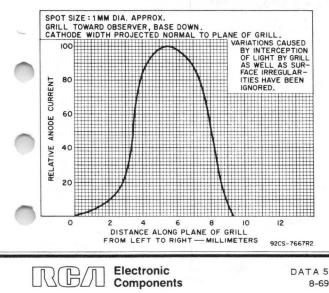
For other shaped pulses or for a train of pulses, the total charge q should be substituted for (i't) and the following formula applies:

C = 100 $\frac{q}{V}$ where q = $\int i(t) dt$ coulombs

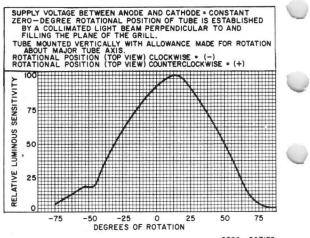




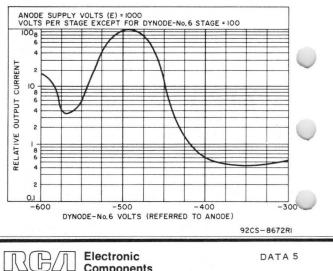
Electronic Components


Г

ł

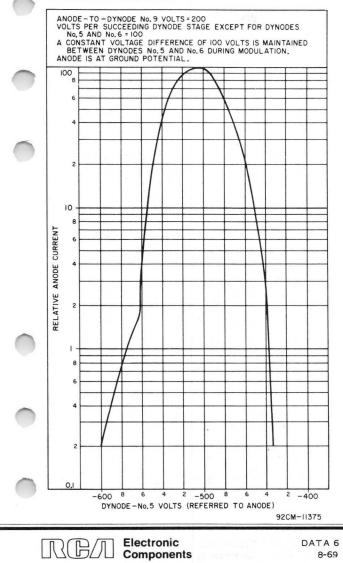


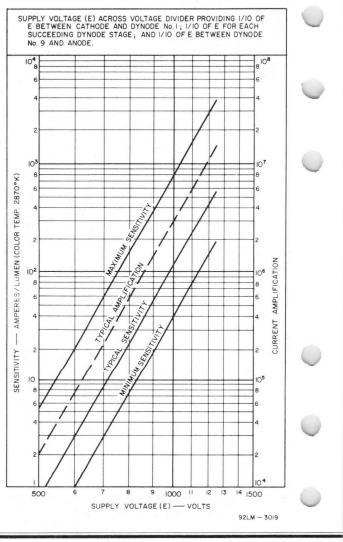
TYPICAL VARIATION OF PHOTOCATHODE SENSITIVITY ACROSS PROJECTED WIDTH IN PLANE OF GRILL



TYPICAL VARIATION OF SENSITIVITY AS TUBE IS ROTATED WITH RESPECT TO FIXED LIGHT BEAM

92CS - 8671R2

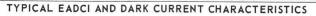

TYPICAL CHARACTERISTIC OF OUTPUT CURRENT AS A FUNCTION OF DYNODE-NO. 6 VOLTS

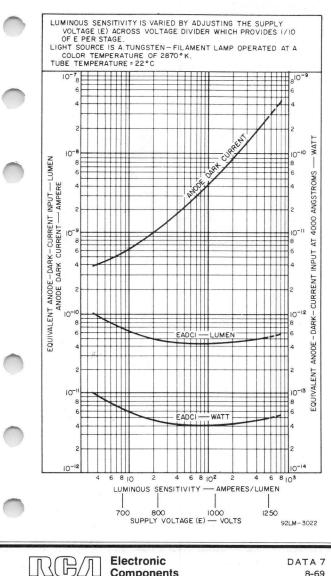

Components

DATA 5

TYPICAL CHARACTERISTIC OF OUTPUT CURRENT AS A FUNCTION OF SIMULTANEOUS MODULATION OF DYNODES NO. 5 AND NO. 6

SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS

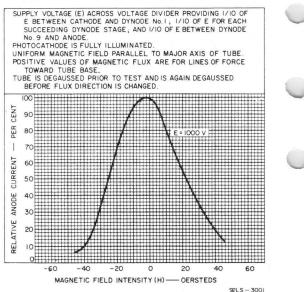


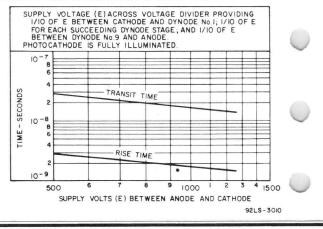

Electronic Components

B/Л

 Λ

DATA 6




Components

DATA 7 8-69

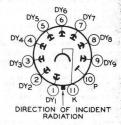
TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE CURRENT

Electronic Components DATA 7

Multiplier Phototube

9-STAGE, SIDE-ON TYPE

S-8 RESPONSE


Especially Useful in Colorimetric and Spectroscopic Applications. High Sensitivity to Green-and-Blue Rich Light

General:

denorali
Spectral Response
Wavelength of Maximum Response 3650 ± 500 angstroms
Cathode, Opaque Cesium-Bismuth
Minimum projected length ^a
Minimum projected width ^a
Window
Dynode Material
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.9 4.4 pf
Anode to all other electrodes 6.0 pf
Maximum Overall Length
Maximum Seated Length
Length from Base Seat to Center
of Useful Cathode Area 1-15/16" ± 3/32"
Maximum Diameter
Operating Position
Weight (Approx.)
Bulb
Socket Amphenol ^c No.78S11T, or equivalent
Magnetic Shield. Perfection Mica Co. ^d No.P-101-2, or equivalent
Base Small-Shell Submagnal 11-Pin (JEDEC Group 2,
No.B11-88), Non-hygroscopic
NO. DII 007, NON NY OSCOPIC

Basing Designation for BOTTOM VIEW

Pin 1 - Dynode No.1 Pin 2 - Dynode No.2 Pin 3-Dynode No.3 Pin 4 - Dynode No.4 Pin 5-Dynode No.5 6 - Dynode No.6 Pin Pin 7 - Dynode No.7 Pin 8 - Dynode No.8 Pin 9-Dynode No.9 Pin 10 - Anode Pin 11 - Photocathode

Maximum Ratings, Absolute-Maximum Values:

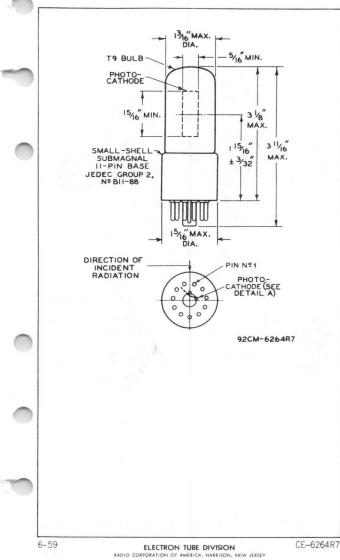
Supply Voltage Between Anode and	
Cathode (DC or Peak AC)	1250 max. volts
Supply Voltage Between Dynode No.9	
and Anode (DC or Peak AC)	250 max. volts
Supply Voltage Between Consecutive	
Dynodes (DC or Peak AC)	250 max. volts
Supply Voltage Between Dynode No.1	
and Cathode (DC or Peak AC)	250 max. volts
Average Anode Current ^e	1 max. ma
Ambient Temperature	50 max. ^Q C
	+ Indicates a channe

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N.J. DATA 1 10-63

11 K

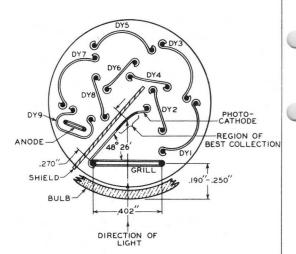
-

*	- Characteristics Range Values:	
	Under conditions with supply voltage (E) across a voltage divider providing 1/10 of E between cathode and dynode No.1; 1/10 of E foreach succeeding dynode stage; and 1/10 of E between dynode No.9 and anode With E = 1000 volts (Except as noted)	C
	Min. Typ. Max.	
	Sensitivity: Radiant, at 3650 angstroms 750 - a/w Cathode radiant.	
	at 3650 angstromş 2.3x10 ⁻³ - a/w Luminous, at 0 cps ⁴ 0.115 1 16 a/lm Cathode luminous ⁹ 1.5x10 ⁻⁶ 3x10 ⁻⁶ - a/lm Current Amplification 3.3x10 ⁵ - Equivalent Anode-Dark-Current Input at a luminous sensi-	
	tivity of 0.4 a/lm ^h , j 7.5x10-9 3.75x10 ⁻⁷ lm Equivalent Noise Input ^k 7.5x10 ⁻¹² - lm	C
	With $E = 750$ volts (Except as noted)	
	Min. Typ. Max.	
	Sensitivity: Radiant,at3650 angstroms 110 - a/w Cathode radiant, at3650 angstroms 2.3x10 ⁻³ - a/w Luminous, at0 cpsf 0.016 0.145 1.85 a/lm Cathode luminous9 1.5x10 ⁻⁶ 3x10 ⁻⁶ - a/lm Current Amplification 4.8x10 ⁴ -	
	a On plane perpendicular to the indicated direction of incident light and passing through the major axis of the tube.	
	 Corning No.0080, Corning Glass Works, Corning, New York, or equivalent. Made by Amphenol Electronics Corporation, 1830 South 54th Avenue, Chicago 54, Illinois. 	
	d Made by Magnetic Shield Division, Perfection Mica Co., 1829 Civic Opera Bldg., 20 North Wacker Drive, Chicago 6, Illinois.	
	^e Averaged over any interval of 30 seconds maximum. f Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 10 microlumens is used.	
	9 Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 100 volts are applied between cathode and all other electrodes connected as anode.	
	h At a tube temperature of 25° C. Dark current may be reduced by use of a refrigerant.	
	a refrigerant, manager J For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1000 volts is recommended.	
	k Under the following conditions: Supply voltage (F) is as shown 250 c	1
	tube temperature, external shield connected to cathode, bandwidth 1 cycle per second, tungsten-light source at a color temperature of 28700 K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.	
	ież skani i skani skani k na k na k na jedni skonik ego navk.	
	→ Indicates a change.	



RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

1822


MULTIPLIER PHOTOTUBE

MULTIPLIER PHOTOTUBE

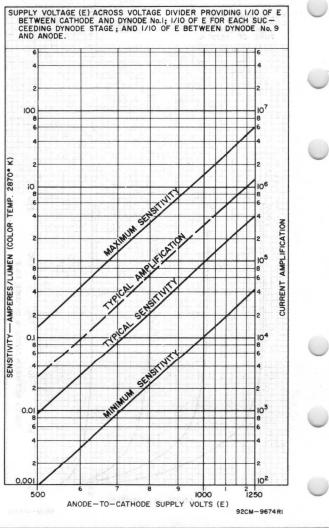
DETAIL A

92CS-8674RI

NOTE I: CENTER LINE OF BULB WILL NOT DEVIATE MORE THAN $2^{\rm O}$ in any direction from the perpendicular erected at center of bottom of base.

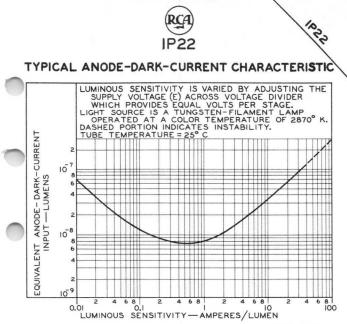
NOTE 2: THE MAXIMUM ANGULAR VARIATION BETWEEN THE PLANE THROUGH PINS I AND II AND THE PLANE OF THE GRILL WILL NOT EXCEED $6^{\circ}.$

1822

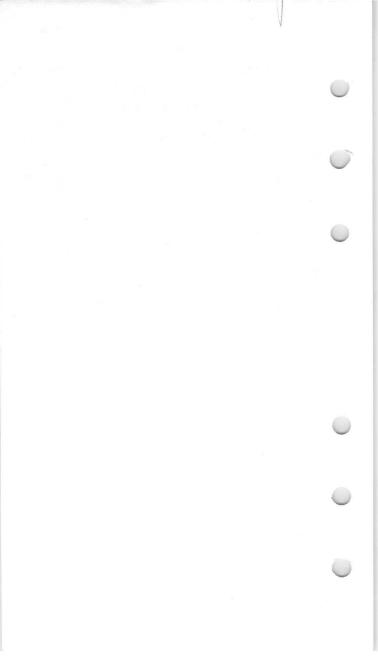


RADIO CORPORATION OF AMERICA

Electronic Components and Devices Harrison, N. J.


DATA 3 10-63

SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS



RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

92CS-9680

Photomultiplier Tube

9-STAGE, SIDE-ON TYPE


S-5 RESPONSE

For Detection and Measurement of Ultraviolet and Visible Radiation

GENERAL

Spectral Response
Wavelength of Maximum Response 3400 ± 500 angstroms
Cathode, Opaque
Minimum projected length ^a
Minimum projected width ^a
Window Ultraviolet-Transmitting Glass ^b
Index of refraction at 5893 angstroms
Dynodes +
Substrate
Secondary-emitting surface
Structure Circular Cage
Direct Interelectrode Capacitances (Approx.)
Anode to dynode No.9
Anode to all other electrodes
Maximum Overall Length
Maximum Seated Length
Length from Base Seat to Center of
Useful Cathode Area
Maximum Diameter
Operating Position
Weight (Approx.)
Envelope
Base Small-Shell Submagnal II-Pin,
(JEDEC Group 2, No.BII-88), Non-hygroscopic
Socket
Magnetic Shield Millen ^d Part No.80801B, or equivalent
TERMINAL DIAGRAM (Bottom View)
Pin 1-Dynode No.1
Pin 1 - Dynode No.1 DY5 6 DY7

Pin 2 - Dynode No.2 Pin 3-Dynode No.3 4 - Dynode No.4 Pin 5 - Dynode No.5 6 - Dynode No.6 Pin Pin Pin 7 - Dynode No.7 Pin 8-Dynode No.8 Pin 9-Dynode No.9 Pin 10 - Anode Pin 11-Photocathode

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA I 4-66

- Indicates a change.

ABSOLUTE-MAXIMUM VALUES

DC or Peak AC Supply Voltage

Between	anode and cathode	\sim						1250	V
Between	dynode No.9 and anode			×	•			250	V
Between	consecutive dynodes .		2					250	٧
Between	dynode No.1 and catho		2	÷.	2			250	V
Average	anode current ^e		3	÷				0.5	mA
Ambient	temperature ^f		÷					75	°C

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing 1/10 of E between cathode and dynode No.1, 1/10 of E for each succeeding dynode stage, and 1/10 of E between dynode No.9 and anode.

With E = 1000 V (Except as noted)

	Min	Тур	Max	
Sensitivity				
Radiant, 9 at 3400 angstroms Cathode radiant, ^h at	-	1.2 x 10 ⁵	-	A/W
3400 angstroms	-	0.05	-	A/W
Luminous ^j	17.5	100	500	A/lm
Cathode luminous ^k	I x 10 ⁻⁵	4 x 10-5	-	A/lm
Quantum efficiency				
at 3200 angstroms	-	19 2.5 x 10 ⁶	-	%
Current Amplification .	-	2.5 x 10 ⁶	-	
Equivalent Anode-Dark- Current Input ⁿ	{ _	2.5 x 10 ^{-10^m} 2 x 10 ^{-13^p}	1.25 x 10 ^{-9m} 1 x 10 ^{-12 p}	lm W
Anode Dark Current at 20 A/lm ^{m, n}	-	5 x 10-9	2.5 × 10 ⁻⁸	A
Equivalent Noise Input ^q	1 -	7.5 × 10-13	-	1 m
	L -	6 x 10-16 ^p	-	W
Anode-Pulse Rise Timer.	-	1.9×10-9	5 — 2	S
Electron Transit Time ^s .	-	1.7×10 ⁻⁸	-	S

 $^{\rm a}$ On plane perpendicular to the indicated direction of incident light $_{\rm a}$ and passing through the major axis of the tube.

 b Corning No.9741, Corning Glass Works, Corning, New York, or equivalent.
 c Made by Amphenol Electronics Corporation, 1830 South 54th Avenue, Chicago 50, Illinois.

d Made by James Millen Manufacturing Company, 150 Exchange Street, Malden 48, Mass.

^e Averaged over any interval of 30 seconds maximum.

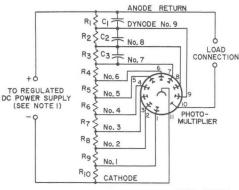
[†] Tube operation at room temperature or below is recommended.

9 This value is calculated from the typical luminous sensitivity rating using a conversion factor of 1252 lumens per watt.

h This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1252 lumens per watt.

J Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870°K and a light input of 10 microlumens is used.

^k Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870°K. The value of light flux is 0.01 lumen and 100 volts are applied between cathode and all other electrodes connected as anode.


-Indicates a change.

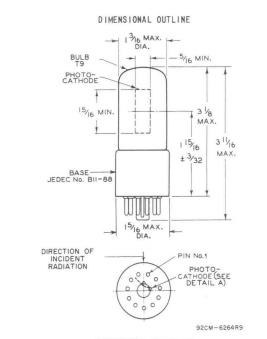
DATA I

- $^{\rm m}$ At a tube temperature of 22°C and with supply voltage (E) adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current may be reduced by use of a refrigerant.
- ⁿ For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1000 volts is recommended.
- $^{\rm p}$ At 3400 angstroms. This value is calculated from the rating in lumen using a conversion factor of 1252 lumens/watt.
- ⁹ Under the following conditions: Supply voltage (E) is as shown, 22°C tube temperature, external shield connected to cathode, bandwidth levele per second, tungsten-light source at a color temperature of 2870°K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period r of the pulse is equal to the "off" period.
- Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- ⁸ The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT

92CS-11382RI

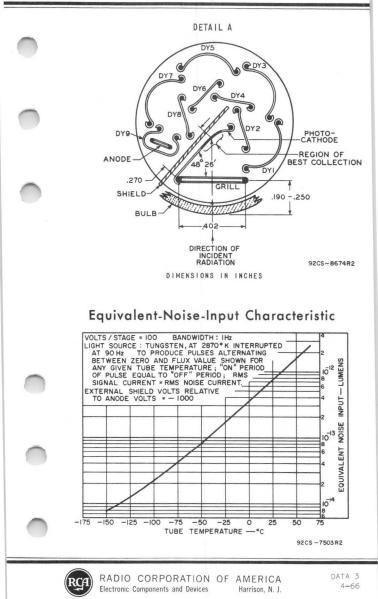
R1 through R10 = 20,000 to 1,000,000 ohms Note I: Adjustable between approximately 500 and 1250

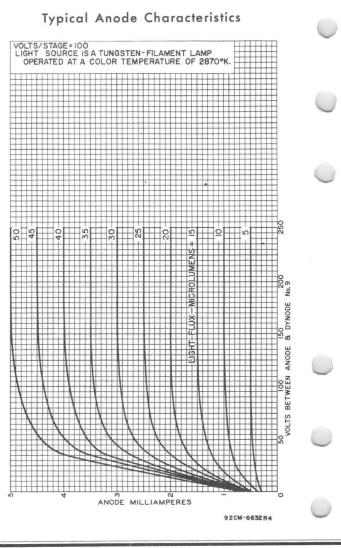

volts.

Note 2: Capacitors C1 through C3 should be connected at tube socket for optimum high-frequency performance.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-5 RESPONSE is shown at the front of this section

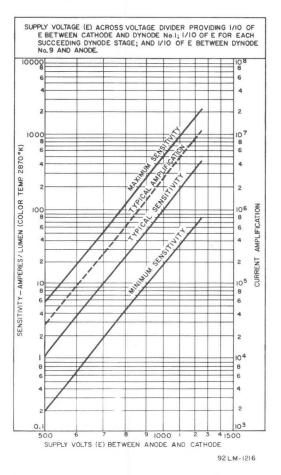
DATA 2 4-66


DIMENSIONS IN INCHES


Center line of bulb will not deviate more than $2^{\rm O}$ in any direction from the perpendicular erected at center of bottom of base.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

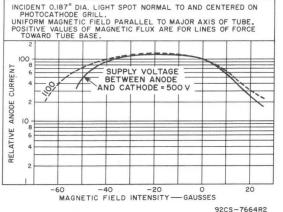
DATA 2

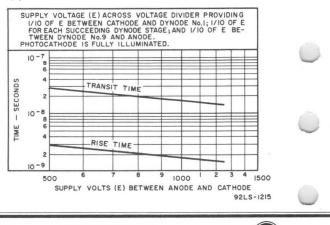


DATA 3

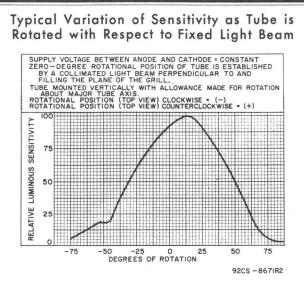
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Typical Sensitivity and Current Amplification Characteristics

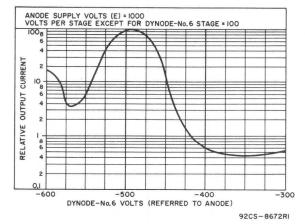



RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 4 4-66

Typical Effect of Magnetic Field on Anode Current

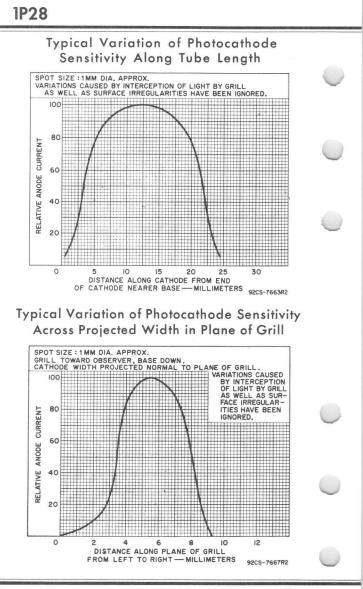


Typical Time-Resolution Characteristics



DATA 4

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.



Dynode Modulation Characteristics

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 5 4-66

DATA 5

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

1P28A

Photomultiplier Tube

9-STAGE, SIDE-ON TYPE

S-5 RESPONSE

For Detection and Measurement of Ultraviolet and Visible Radiation

The 1P28A is the same as the 1P28 except for the following items:

CHARACTERISTICS RANGE VALUES

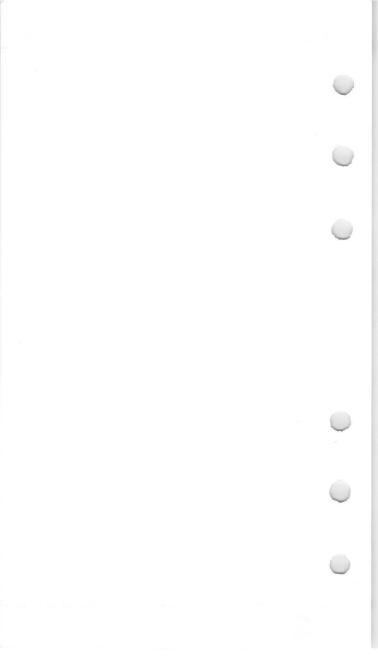
Under conditions with dc supply voltage (E) across a voltage divider providing 1/10 of E between cathode and dynode No.1; 1/10 of E for each succeeding dynode stage, and 1/10 of E between dynode No.9 and anode.

With E = 1000 volts

Sensitivity,										Тур		
Luminous J			5		5	÷			35	200	500	A/1m
"Red-to-White"	Ratio	÷		r				•	7	-	-	%

J Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870 % and a light input of 10 microlumens is used.

RED-TO-WHITE RATIO


The sensitivity of the 1P28A above the wavelength of 5800 angstroms is controlled. This control is important in applications where a high-level of sensitivity in the red region of the spectral-response characteristic is required. The degree of this controlled sensitivity in the red region is specified by a "red-to-white" ratio of anode currents. Anode current is measured first using a tungsten-lamp source, and then measured with a red filter interposed between the light source and phototube.

The anode current comprising the "white" portion of this ratio is measured with a light input of 10 microlumens. The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870 °K.

The anode current comprising the "red" portion of the ratio is measured under conditions identical with the "white" measurement except that the light input of 10 microlumens is transmitted through a red filter (Corning C.S. No.2-112-manufactured by the Corning Glass Works, Corning, N.Y., or equivalent) which has the following characteristics: the transmittance of all wavelengths from 3000 to 5790 angstroms is less than 0.5%; the 37% transmittance point lies between 6030 and 6070 angstroms; the transmittance from 6400 to 7000 angstroms is greater than 80%; and the difference between the wavelengths where transmittance is 15% and 60% is not greater than 150 angstroms.

DATA 4-66

Gas Phototube

SIDE-ON TYPE HAVING S-3 RESPONSE

DATA

	General:	
	Spectral Response	
	Wavelength of Maximum Response 4200 ± 1000 angstroms	
	Cathode:	
	Shape	1
	Minimum projected length ^a	
	Minimum projected width ^a	1
	Direct Interelectrode Capacitance (Approx.) 3 μμf	
	Maximum Overall Length	
	Maximum Seated Length	
-		1
	Maximum Diameter	1
	Operating Position	
	Weight (Approx.)	1
	Bulb	
	Socket Amphenol No.77-MIP-4-T, or equivalent+	
	Base	
	Basing Designation for BOTTOM VIEW	
	(2) (3)	
	Pin 1 – No Connection	
	Pin 2 - Anode Y Pin 4 - Photocathode	1
	Anoue Anoue	1
	$\cup - \cup$	
	DIRECTION OF LIGHT	
		1
	Maximum Patings Abcolute Korimum Valuaci	
	Maximum Ratings, Absolute-Maximum Values:	
	Rating I Rating II	
	Contraction of the second	and the second se
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts	and the second se
	Rating I Rating II ANODE-SUPPLY VOLTAGE	and the second se
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts	and the second se
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. 25 max. µa/sq. in.	and the second se
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) AVERAGE CATHODE-CURRENT DENSITY ^b AVERAGE CATHODE CURRENT ^b AVERAGE CATHODE CURRENT ^b AVERAGE CATHODE CURRENT ^b	and the second se
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. AVERAGE CATHODE CURRENT AVERAGE CATHODE CURRENT ^b ANDIAL ANDERAGE CATHODE CURRENT ^b AMBIENT TEMPERATURE	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) AVERAGE CATHODE-CURRENT DENSITY ^b AVERAGE CATHODE CURRENT ^b AVERAGE CATHODE CURRENT ^b AVERAGE CATHODE CURRENT ^b	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT DENSITY ⁶	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. AVERAGE CATHODE CURRENT AVERAGE CATHODE CURRENT ^b AVERAGE CATHODE CURRENT ^b AVERAGE CATHODE CURRENT ^b AMBIENT TEMPERATURE MBIENT TEMPERATURE With an anode-supply voltage of 90	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. AVERAGE CATHODE CURRENT AVERAGE CATHODE CURRENT ^b AVERAGE CATHODE CURRENT ^b AVERAGE CATHODE CURRENT ^b AMBIENT TEMPERATURE MBIENT TEMPERATURE With an anode-supply voltage of go volts unless otherwise specified	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC)	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. 25 max. µa/sq. in. AVERAGE CATHODE CURRENT ^b 10 max. 5 max. µa AMBIENT TEMPERATURE 100 max. 100 max. °C Characteristics: With an anode-supply voltage of go volts unless otherwise specified Win. Median Max. Sensitivity:	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. AVERAGE CATHODE CURRENT AVERAGE CATHODE CURRENT ^b AVERAGE CATHODE CURRENT ^b Image: Carbon Constraints AMBIENT TEMPERATURE Image: Carbon Constraints With an anode-supply voltage of 90 volts unless otherwise specified Min. Median Max. Sensitivity: Radiant, at 4200 angstroms. Ambient	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT DENSITY ^D 50 max. 25 max. µa/sq. in. AVERAGE CATHODE CURRENT ^D 10 max. 5 max. µa AMBIENT TEMPERATURE 100 max. 100 max. °C Characteristics: With an anode-supply voltage of go volts unless otherwise specified Min. Median Max. Sensitivity: Radiant, at 4200 angstroms 0.011 - amp/watt Luminous: ^C	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. 25 max. µa/sq. in. AVERAGE CATHODE CURRENT ^b 10 max. 5 max. µa AMBIENT TEMPERATURE 100 max. 100 max. °C Characteristics: With an anode-supply voltage of go volts unless otherwise specified Min. Median Max. Sensitivity: adjant, at 4200 angstroms. 0.011 - amp/watt Luminous: ^c At 0 cps. 20 40 70 µa/lumen	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. 25 max. µa/sq. in. AVERAGE CATHODE CURRENT ^b 10 max. 5 max. µa AMBIENT TEMPERATURE 100 max. 100 max. ^O C Characteristics: With an anode-supply voltage of go volts unless otherwise specified Win. Median Max. Sensitivity: Radiant, at 4200 angstroms 0.011 - amp/watt Luminous: ^C At 0 cps 20 40 70 µa/lumen At 5000 cps	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. 25 max. µa/sq. in. AVERAGE CATHODE CURRENT ^b 10 max. 5 max. µa/sq. in. AVERAGE CATHODE CURRENT ^b 10 max. 5 max. µa AMBIENT TEMPERATURE 100 max. 100 max. °C Characteristics: With an anode-supply voltage of go with an anode-supply voltage of go volts unless otherwise specified Min. Median Max. Sensitivity: Radiant, at 4200 angstroms. At 0 cps. At 0 cps. At 0 cps. At 0 cps. At 10000 cps.	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. 25 max. µa/sq. in. AVERAGE CATHODE CURRENT ^b 10 max. 5 max. µa AMBIENT TEMPERATURE 100 max. 100 max. °C Characteristics: With an anode-supply voltage of go volts unless otherwise specified Min. Median Max. Sensitivity: Radiant, at 4200 angstroms. At 0 cps. At 10000 cps.	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. 25 max. µa/sq. in. AVERAGE CATHODE CURRENT ^b 10 max. 5 max. µa/sq. in. AVERAGE CATHODE CURRENT ^b 10 max. 5 max. µa AMBIENT TEMPERATURE 100 max. 100 max. °C Characteristics: With an anode-supply voltage of go with an anode-supply voltage of go volts unless otherwise specified Min. Median Max. Sensitivity: Radiant, at 4200 angstroms. At 0 cps. At 0 cps. At 0 cps. At 0 cps. At 10000 cps.	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT DENSITY'O 50 max. 25 max. μa /sq. in. AVERAGE CATHODE CURRENT'D 10 max. 5 max. μa AMBIENT TEMPERATURE 100 max. 100 max. °C Characteristics: With an anode-supply voltage of go volts unless otherwise specified Win. Median Max. Sensitivity: Radiant, at 4200 angstroms 0.011 - amp/watt Luminous:° At 0 cps 20 40 70 $\mu a/lumen$ At 5000 cps 35 - $\mu a/lumen$ At 10000 cps 31 - $\mu a/lumen$ At 10000 cps 9 Anode Dark Current at 25° C 0.10 μa	
	Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT DENSITY ^b 50 max. 25 max. µa/sq. in. AVERAGE CATHODE CURRENT ^b 10 max. 5 max. µa AMBIENT TEMPERATURE 100 max. 100 max. °C Characteristics: With an anode-supply voltage of go volts unless otherwise specified Min. Median Max. Sensitivity: Radiant, at 4200 angstroms. At 0 cps. At 10000 cps.	

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

Minimum Circuit Values:

With an anode-supply voltage of 80 or less	100	volts
DC Load Resistance:		
For dc currents above 5 μ a 0.1 min.	-	megohm
For dc currents below 5 μ a 0 min.	-	megohms
For dc currents above 3 μ a –	2.5 min.	megohms
For dc currents below 3 µa	0.1 min.	megohm

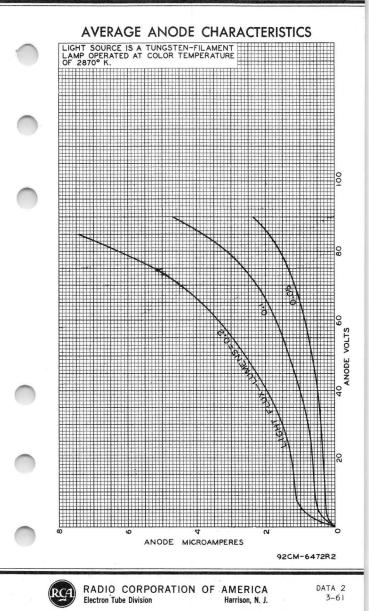
a on plane perpendicular to indicated direction of incident light.

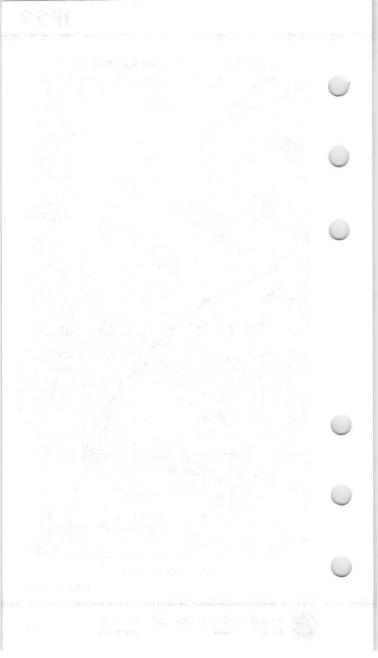
b Averaged over any interval of 30 seconds maximum.

- C For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A dc anode supply voltage of 90 volts and a 1-megohm load resistor are used. For the O-cycle measurement, a light input of 0.1 lumen is used. For the 5000- and 10,000cycle measurements, the light input is varied sinusoidally about amean value of 0.015 lumen from zero to a maximum of twice the mean value.
- d The ratio of luminous sensitivity at an anode supply voltage of 90 volts to luminous sensitivity at an anode supply voltage of 25 volts. In each case, sensitivity is obtained under conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K, the light input is 0.1 lumen, and the load resistor has a value of 1 megohm.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-3 RESPONSE

and


FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES


are shown at the front of this section

DIMENSIONAL OUTLINE shown under Type IP37 also applies to the IP29

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

Gas Phototube

SIDE-ON TYPE HAVING S-4 RESPONSE

DATA

General:	:
----------	---

Spectral Response
Wavelength of Maximum Response 4000 ± 500 angstroms
Cathode:
Shape Semicylindrical
Minimum projected length ^a 1-1/4"
Minimum projected width ^a
Direct Interelectrode Capacitance (Approx.) 3 µµf
Maximum Overall Length
Maximum Seated Length
Seated Length to Center of Cathode 2-1/8" ± 3/32"
Maximum Diameter
Operating Position
Weight (Approx.)
Bulb
Socket Amphenol No.77-MIP-4-T, or equivalent -
Base
Basing Designation for BOTTOM VIEW 2K

Pin 1 - No Connection Pin 2 - Anode

Pin 3-No Connection Pin 4-Photocathode

Maximum Ratings, Absolute-Maximum Values:

Rating I Rating II

ANODE-SUPPLY VOLTAGE (DC or Peak AC) AVERAGE CATHODE-CURRENT		•	80	max.	100	max.	volts
DENSITY ^b			50	max.	25	max.	µa/sq. in.
DENSITY ^b AVERAGE CATHODE CURRENT ^b			10	max.	5	max.	μa
AMBIENT TEMPERATURE			75	max.	75	max.	μa °C

Characteristics:

Sensitivity:

With an anode-supply voltage of 90 volts unless otherwise specified

Min.	Median	Max.

	Radiant, at 4000 angstrom Luminous:	ns.	-	0.13	-	μa/μw
	At 0 cps		75	135	205	µa/lumen
	At 5000 cps		-	124	-	µa/lumen
c.	At 10000 cps		-	108	-	µa/lumen
)	Gas Amplification Factor ^d .		-	-	5.5	
	Anode Dark Current at 25° C		-	-	0.05	μa

-Indicates a change.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA I 3-61

Minimum Circuit Values:

With an anode-supply voltage of 80 or less 100 volts

DC Load Resistance:

For dc	currents above 5	μa		0.1 min.	-	megohm
For dc	currents below 5	μa		0 min.	-	megohms
For dc	currents above 3	μa		—	2.5 min.	megohms
For dc	currents below 3	μa		-	0.1 min.	megohm

On plane perpendicular to indicated direction of incident light.

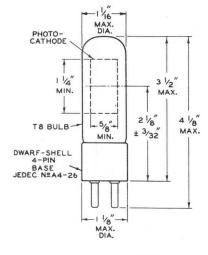
Averaged over any interval of 30 seconds maximum.

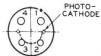
- For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A dc anode supply voltage of 90 volts and a 1-megohm load resistor are used. For the 0-cycle measurement, a light input of 0.1 lumen is used. For the 5000- and 10,000-cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the C mean value. d
- The ratio of luminous sensitivity at an anode supply voltage of 90 volts to luminous sensitivity at an anode supply voltage of 25 volts. In each case, sensitivity is obtained under conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K, the light input is 0.1 lumen, and the load resistor has a value of 1 megohm.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-4 RESPONSE

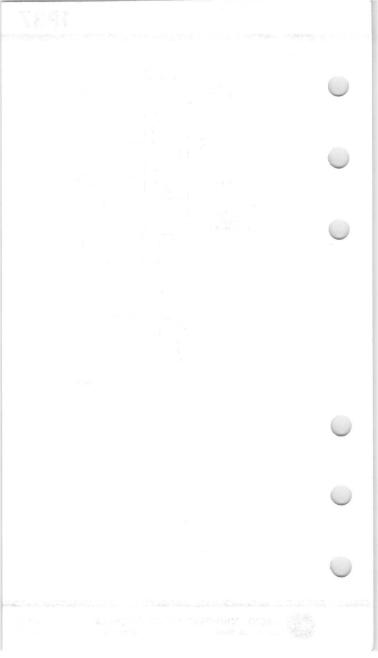
and

FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES


are shown at the front of this section


AVERAGE-ANODE-CHARACTERISTICS CURVE shown under Type 5581 also applies to the IP37

RADIO CORPORATION OF AMERICA **Electron Tube Division** Harrison, N. J.



92CM-470R5

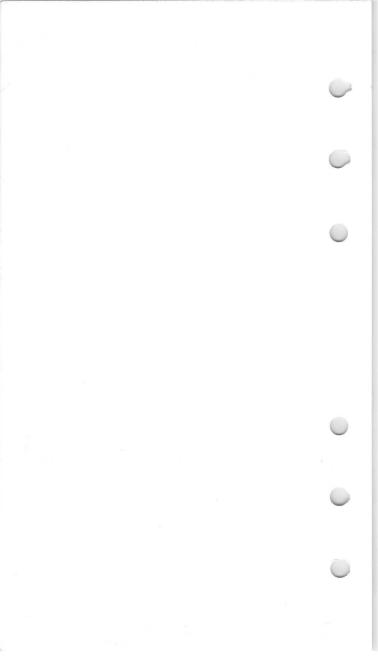
RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 2 3-61

VACUUM PHOTOTUBE

WITH S-4 RESPONSE For applications critical as to leakage under high-humidity conditions

The 1P39 is like the 929, except that the 1P39 has a maximum dark current of 0.005 μ a at 250 volts, and has a nonhygroscopic base which insures a value of resistance between anode and cathode pins about 10 times higher than conventional bases under adverse service conditions of high humidity.

← Indicates a change.

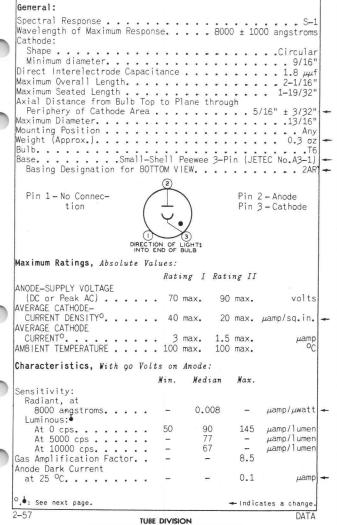


GAS PHOTOTUBE

WITH S-I RESPONSE For applications critical as to leakage under high-humidity conditions

The 1P40 is like the 930, except that the 1P40 has a maximum dark current of 0.005 μ a at 90 volts, and has a nonhygroscopic base which insures a value of resistance between anode and cathode pins about 10 times higher than conventional bases under adverse service conditions of high humidity.

- Indicates a change.



10 N

GAS PHOTOTUBE

HEAD-ON TYPE WITH S-I RESPONSE

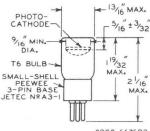
DATA

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

GAS PHOTOTUBE

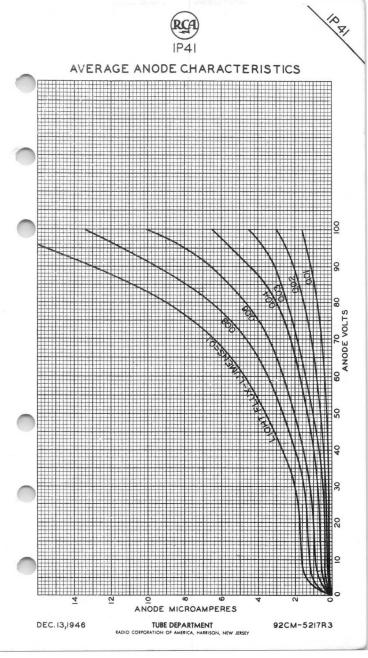
Minimum Circuit Values:

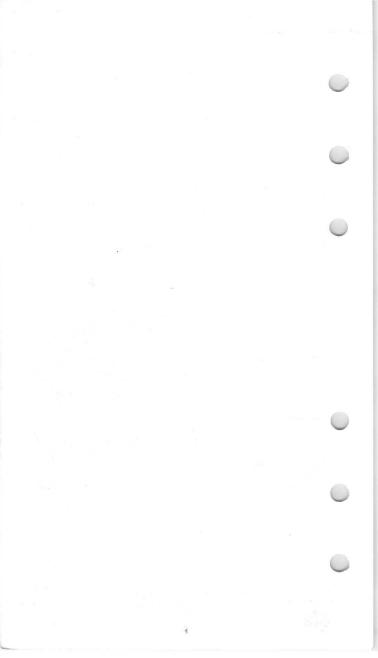
(PA)


With anode-sup;	ply voi	lta	ge	2	of	70 or less	90	volts
DC Load Resistan For dc currents								
1.5 μamp			•			0.1 min.	-	megohm
For dc currents								
1.5 μamp For dc currents		•	•	•	•	0 min.	-	megohm
1 μamp				•		-	2.5 min.	megohms
For dc currents							0.1 min.	meanhm

Averaged over any interval of 30 seconds maximum. ۵

Actuated of the maximum of your source is a tungsten-filament lamp operated at a color temperature of 2870 °K. A dc anode supply of 90 volts and a 1-megohm load resistor are used. For the 0-cycle measurements, a light input of 0.06 lumen is used. For the 5000-and 10000-cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean.


SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-I Response and FREQUENCY-RESPONSE CHARACTERISTICS of Gas Phototubes


are shown at the front of this Section

92CS-6676R2

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

Vacuum Phototube

HEAD-ON TYPE WITH S-9 RESPONSE

DATA

General:

	Spectral Response	
	Cathode, Semitransparent: 🔶	
þ	ShapeCircular Window:	
	Area	
	Minimum diameter 0.19"	
	Direct Interelectrode Capacitance 1.9 μμf	
	Maximum Overall Length	
	Maximum Diameter	
	Operating Position	
).	Weight (Approx.)	
2	Bulb	
	Terminal Diagram (See Dimensional Outline)	

Large End: Cathode

Maximum Ratings, Absolute-Maximum Values:

ANODE-SUPPLY VOLTAGE (DC or PEAK		max.	volts
AVERAGE CATHODE-CURRENT DENSITY			µa/sq. in.
AVERAGE CATHODE CURRENT		max.	μa oc
AMBIENT TEMPERATURE	 . 75	max.	oC

Characteristics:

Small End: Anode

With an anode-supply voltage of 180 volts unless otherwise specified

Min. Median Max.

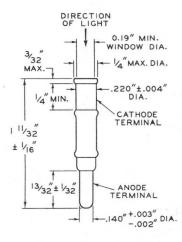
Sensitivity:

Radiant, at 4800 angstron	ns	-	0.025	-	µa/µw
Luminous [#]		20	37	70	µa/lumen
Anode Dark Current at 25° (_	0.005	щa

Averaged over any interval of 30 seconds maximum.

For conditions where the light source is a tungsten-filament lamp operated a color temperature of 2870° K. The supply voltage is 180 volts, the load resistor is I megohm, and the light input is 0.015 lumen.

-Indicates a change.

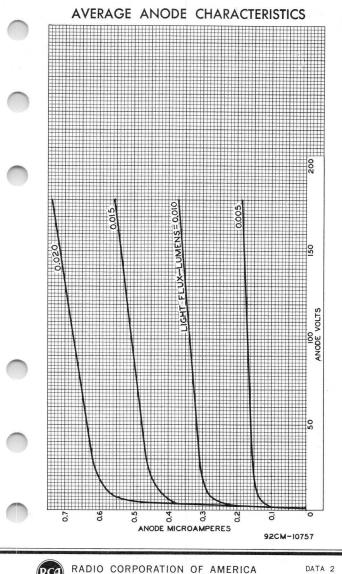

DATA I 8-60

OPERATING CONSIDERATIONS

Exposure to intense illumination, such as direct sunlight, may decrease the sensitivity of the IP42 even though no voltage is applied to the tube. The magnitude and duration of the decrease depend on the length of the exposure.

Shielding of the IP42 and its leads to the amplifier is recommended when amplifier gain is high or when the phototube load resistance is high. Whenever frequency response is important in a phototube circuit, the leads from the phototube to the amplifier should be made short so as to minimize capacitance shunting of the phototube load. It is important that insulation of associated circuit parts and wiring be adequate.

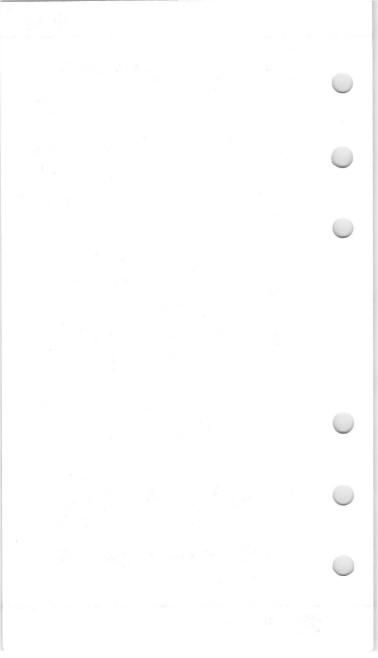
> SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-9 Response is shown at front of this Section


NOTE: WHEN TUBE IS ROTATED ABOUT THE LONGITUDINAL AXIS OF ITS CATHODE TERMINAL, NO PART OF THE ANODE TERMINAL WILL FALL OUTSIDE OF A 0.241"-DIAMETER CIRCLE CONCENTRIC WITH THE LONGITUDINAL AXIS OF THE CATHODE TERMINAL.

92CS-679IR2

-Indicates a change.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.



DATA 2 8-60

Electron Tube Division

Harrison, N. J.

Gas Phototube

SIDE-ON TYPE HAVING S-I RESPONSE

DATA

General	:
---------	---

Spectral Response
Wavelength of Maximum Response 8000 ± 1000 angstroms
Cathode:
Shape Semicylindrical
Minimum projected length ^a
Minimum projected width ^a
Direct Interelectrode Capacitance (Approx.) 3 μμf
Maximum Overall Length
Maximum Seated Length
Seated Length to Center of Cathode 2-1/8" ± 3/32"
Maximum Diameter
Operating Position
Weight (Approx)
BulbT8
Socket Amphenol No.77-MIP-4-T, or equivalent -
Base Dwarf-Shell Small 4-Pin (JEDEC No.A4-26) -
Basing Designation for BOTTOM VIEW

Pin 1-No Connection Pin 2-Anode

Pin 3-No Connection Pin 4-Photocathode

DIRECTION OF RADIATION

Maximum Ratings, Absolute-Maximum Values:

ANODE-SUPPLY VOLTAGE	Rating 1 Rating 11
(DC or Peak AC)	80 max. 100 max. volts
DENSITY ^b AVERAGE CATHODE CURRENT ^b	50 max. 25 max. μa/sq. in. 10 max. 5 max. μa
AMBIENT TEMPERATURE	

Characteristics:

With an anode-supply voltage of 90 volts unless otherwise specified

Min. Median Max.

Sensitivity:						
Radiant, at 8000 angstroms		÷.	-	0.0084	-	amp/watt
Luminous: °						
At 0 cps			50	90	145	µa/lumen
At 5000 cps				77	-	µa/lumen
At 10000 cps			-	67	-	µa/lumen
Gas Amplification Factor ^d			-	_	8	1
Anode Dark Current at 25° C.	a.		-	-	0.1	μa
				🖛 In	dicates	a change.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 3-61

Minimum Circuit Values:

With an anode-supply							
voltage of				80 or less	100	volts	1
DC Load Resistance:							1
For dc currents above							
5 μa				0.1 min.	-	megohm	
For dc currents below							
5 μa			•	0 min.	-	megohms	
For dc currents above							
3 μa				-	2.5 min.	megohms	
For dc currents below							4
3 μa		÷		-	0.1 min.	megohm	

^a On plane perpendicular to indicated direction of incident radiation.

b Averaged over any interval of 30 seconds maximum.

For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A dc anode supply voltage of 90 volts and a 1-megohm load resistor are used. For the 0-cycle measurement, a light input of 0.1 lumen is used. For the 5000- and 10.000-cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean value.

d The ratio of luminous sensitivity at an anode supply voltage of 90 volts to luminous sensitivity at an anode supply voltage of 25 volts. In each case, sensitivity is obtained under conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K, the light input is 0.1 lumen, and the load resistor has a value of 1 megohm.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-I RESPONSE

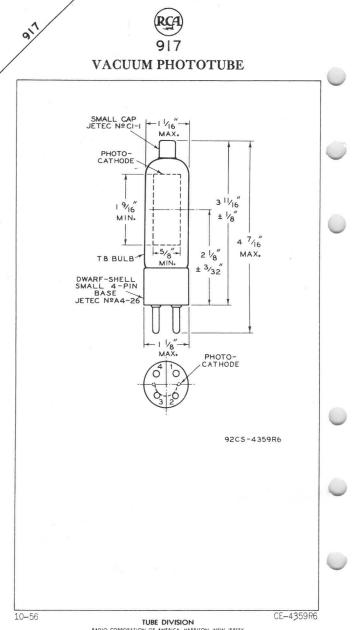
and

FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES

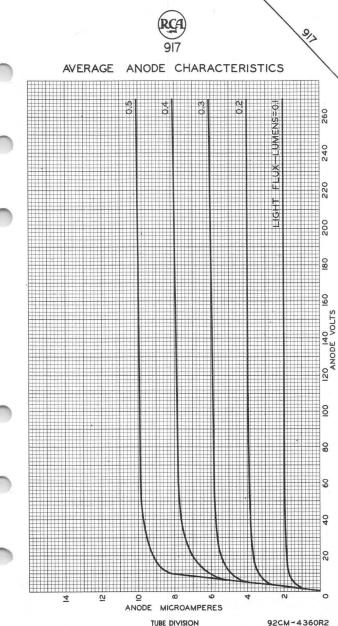
are shown at the front of this section

DIMENSIONAL OUTLINE shown under Type IP37 also applies to the 868

AVERAGE-ANODE-CHARACTERISTICS CURVE shown under Type IP4I also applies to the 868

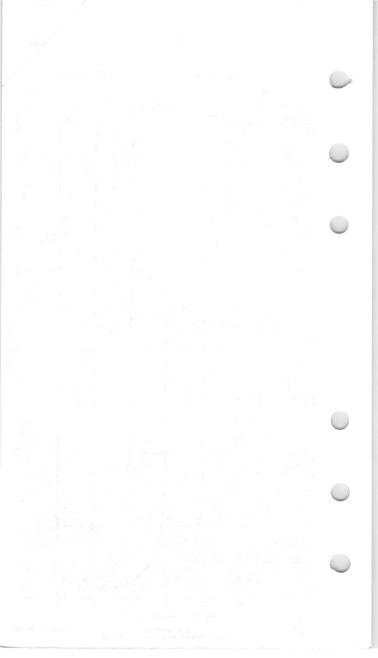

VACUUM PHOTOTUBE

LOW-LEAKAGE TYPE WITH ANODE-TERMINAL CAP AND S-1 RESPONSE


For light-measuring and relay applications

General: Spectral Response.
Wavelength of Maximum Response 8000 ± 1000 angstrom Cathode: Shape. Shape. Semicylindrica Minimum projected length* 1-9/16 Minimum projected width* 5/8 Direct Interelectrode Capacitance. 2.2 µµ Maximum Overall Length 4-7/16 Seated Length to Center of Cathode 3-11/16" ± 1/8 Mounting Position. Ar Weight (Approx.) 1.1 c Base Dwarf-Shell Small 4-Pin (JETEC No.44-26 Basing Designation for BOTTOM VIEW 1 Pin 1-No Connec- Pin 3-No Connec-
Maximum Overall Length 4-7/16 Seated Length 3-11/16" ± 1/8 Seated Length to Center of Cathode 2-1/8" ± 3/32 Maximum Diameter 1-1/6" ± 1/8 Mounting Position 1-1/16" ± 1/8 Mounting Position 1-1/16" ± 1/8 Mounting Position 1-1/16" ± 1/8 Maximum Diameter 1-1/16" ± 1/8 Mounting Position 1-1/16 Bulb 1-1/16 Cap Small (JETEC No.C1-1 Base Small (JETEC No.A4-26 Basing Designation for BOTTOM VIEW 1 Pin 1-No Connec Pin 3-No Connec-
tion Pin 2 - No Connec- tion DIRECTION OF LIGHT tion Pin 4 - Cathode Cap - Anode
Maximum Ratings, Absolute Values:
MAXIMUM Katings, Associate values. ANODE-SUPPLY VOLTAGE (DC or Peak AC). 500 max. volt AVERAGE CATHODE-CURRENT DENSITYO 30 max. μamp/sq.ir AVERAGE CATHODE CURRENT ⁰
Characteristics, At 250 Volts on Anode:
Min. Median Max.
Sensitivity: Radiant, at 8000 angstroms 0.0018 - μamp/μwat Luminous▲ 12 20 40 μamp/lume Anode Dark Current at 25°C 0.005 μan
* On plane perpendicular to indicated direction of incident light.
^O Averaged over any interval of 30 seconds maximum.
For conditions where the light source is a tungsten-filament lamp operate at a color temperature of 2870%. A dc anode supply of 250 volts, a 5 megohm load resistor, and a light input of 0.1 lumen are used.
SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-1 Response is shown at front of this Section
- Indicates a chang

10-56



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-4360R2

918

Gas Phototube

SIDE-ON TYPE HAVING S-I RESPONSE

DATA

	General:
	Spectral Response
	Shape
	Seated Length to Center of Cathode 2-1/8" ± 3/32" Maximum Diameter 1-1/8" Operating Position Any
	Weight (Approx.)
	Pin 1 - No Connection Pin 2 - Anode Pin 2 - Anode Pin 4 - Photocathode
	Maximum Ratings, Absolute-Maximum Values:
	Rating 1 Rating 11
	ANODE-SUPPLY VOLTAGE (DC or Peak AC)
	DENSITY ^b
	Characteristics:
	With an anode-supply voltage of 90
	volts unless otherwise specified Min. Median Max.
/	Sensitivity:
	Radiant, at 8000 angstroms 0.014 - amp/watt Luminous:°
	Luminous: At 0 cps 120 150 220 μa/lumen At 5000 cps
	Luminous: ^e At 0 cps
	Luminous: ^e At 0 cps

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA I 3-61

918

Minimum Circuit Values:

With an anode-supply							
voltage of				70 or less	90	volts	
DC Load Resistance:							
For dc currents above							
5μa For dc currents below		÷ 2	÷	0.1 min.		megohm	
5 µa	$\mathbf{x}_{i} = \mathbf{x}$			0 min.	-	megohms	
For dc currents above							
3 μa For dc currents below				-	2.5 min.	megohms	1
							- 1
3 μa			×	-	0.1 min.	megohm	

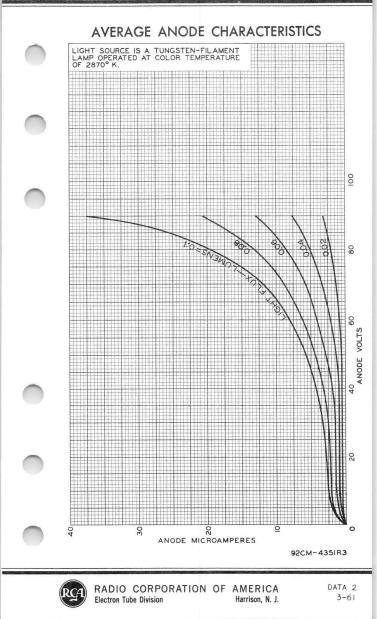
^a On plane perpendicular to indicated direction of incident radiation.

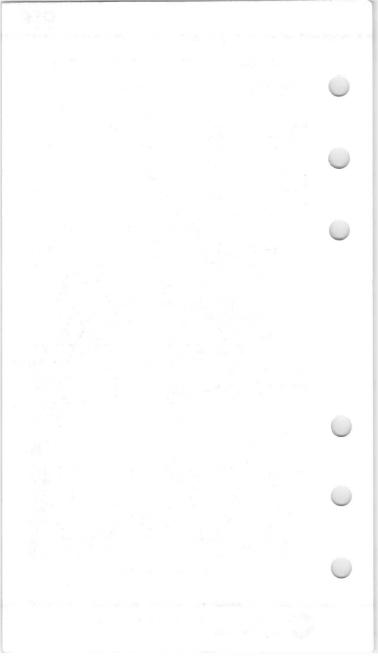
b Averaged over any interval of 30 seconds maximum.

For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A dc anode supply voltage of 90 volts and a 1-megohm load resistor are used. For the 0-cycle measurement, a light input of 0.1 lumen is used. For the 5000- and 10,000-cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean value.

d The ratio of luminous sensitivity at an anode supply voltage of 90 volts to luminous sensitivity at an anode supply voltage of 25 volts. In each case, sensitivity is obtained under conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K, the light input is 0.1 lumen, and the load resistor has a value of 1 megohm.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-I RESPONSE

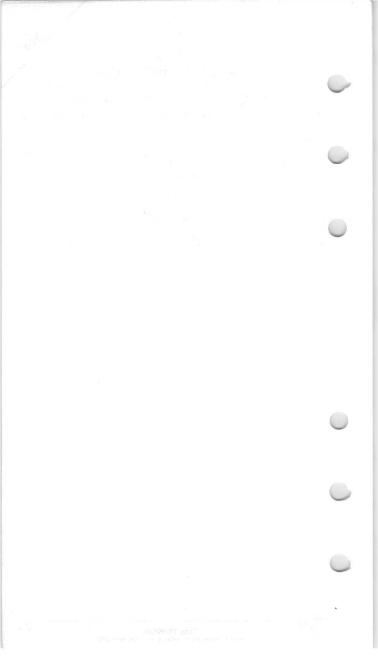

and


FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES

are shown at the front of this section

DIMENSIONAL OUTLINE shown under Type IP37 also applies to the 918

VACUUM PHOTOTUBE


LOW-LEAKAGE TYPE WITH CATHODE-TERMINAL CAP AND S-I RESPONSE

For light-measuring and relay applications

DIRECTION OF LIGHT

tion

9₁₉

Gas Phototube

SIDE-ON, TWIN-UNIT TYPE HAVING S-I RESPONSE

DATA

General:

	Spectral Response
	Cathode (Each):
)	Shape Quarter-Cylindrical
	Minimum projected length ^a
	Direct Interelectrode Capacitances (Approx.):
	Cathode to cathode ^b
	Cathode to anode ^c
	Maximum Overall Length
	Maximum Seated Length
	Maximum Diameter
	Operating Position
	Bulb
	Socket Amphenol No.77-M1P-4-T, or equivalent +
	Base
	2 3
	Pin 1 - Photo- Pin 3 - Anode of

cathode of Unit No.2 Pin 2-Anode of Unit No.2

Pin 3 - Anode of Unit No.1 Pin 4 - Photocathode of Unit No.1

DIRECTION OF RADIATION

Maximum Ratings, Absolute-Maximum Values:

Values are for Each Unit

Rating I Rating II

V VOLTACE								
				70	max.	90	max.	volts
				30	max.	15	max.	µa/sq.in.
								μa oC
IPERATURÉ			•	100	max.	100	max.	oC
e	THODE-CURRENT	eak AC) THODE-CURRENT THODE CURRENT ^e .	eak AC) THODE-CURRENT THODE CURRENT®	eak AC)	eak AC) 70 THODE-CURRENT THODE CURRENT ^e	eak AC) 70 max. THODE-CURRENT THODE CURRENT ^e 4 max.	eak AC)	eak AC) 70 max. 90 max. THODE-CURRENT 30 max. 15 max.

← Indicates a change.

RADIO · CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA I 3-62

- Characteristics:

Values are for each unit with an anode-supply voltage of 90 volts unless otherwise specified

	Min.	Median	Max.	
Sensitivity: Radiant, at 8000 angstroms Luminous: ^f	-	0.0094	-	amp/watt
At 0 cps	50	100	175	µa/lumen
At 5000 cps	-	85	-	µa/lumen 🦕
At 10000 cps	-	74	-	µa/lumen
Ratio of Luminous Sensitivities				1
(Unit No.1 to Unit No.2)	0.5	1.15	2.0	
Gas Amplification Factor ^g	-	-	9	
Anode Dark Current at 25° C	-	-	0.1	μa

Minimum Circuit Values:

Values are for Each Unit

With an anode-supply voltage of		70 or less	90	volts
DC Load Resistance:				
For dc currents above 2	μa	0.1 min.	-	megohm
For dc currents below 2	μa	0 min.	-	megohm
For dc currents above 1				megohms
For dc currents below 1	μa		0.1 min.	megohm

 $f{a}$ On plane perpendicular to indicated direction of incident radiation.

b With anodes grounded.

c Each unit, with other unit grounded.

d with cathodes grounded.

e Averaged over any interval of 30 seconds maximum.

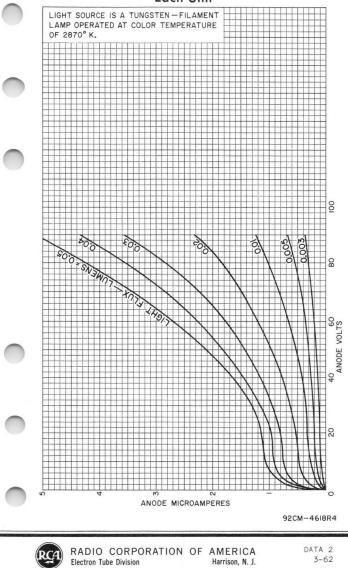
- Averaged over any interval of sources backnown and the source of the sou
- g The ratio of luminous sensitivity at an anode-supply voltage of 90 volts to luminous sensitivity at an anode-supply voltage of 25 volts. In each case, sensitivity is obtained under conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2070 K, the light input is 0.04 lumen, and the load resistor has a value of 1 megohn.

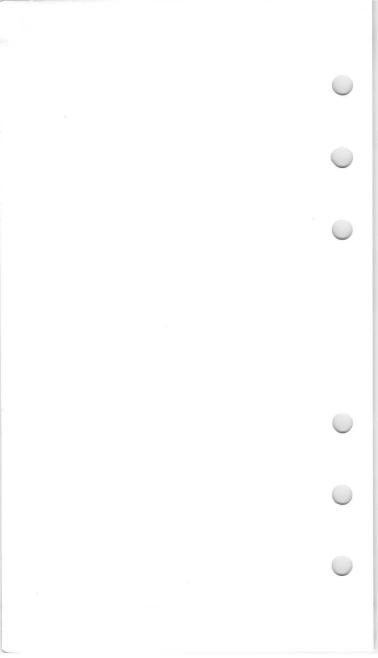
SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-I RESPONSE

and

FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES

are shown at the front of this section


DIMENSIONAL OUTLINE shown under Type 5584 also applies to the 920


- Indicates a change.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

AVERAGE ANODE CHARACTERISTICS Each Unit

2°

GAS PHOTOTUBE

CARTRIDGE TYPE WITH S-I RESPONSE

For relay applications

DATA

DATA	A		
General:			
Spectral Response			S-1
Wavelength of Maximum Response .	8	3000 ± 100	0 angstroms
athode:			5
Shape		Semi	cylindrical
Minimum projected length*			7/8"
Minimum projected width*			1/2"
Direct Interelectrode Capacitanc	e		1 μμf
Overall Length			32" ± 1/16"
Seated Length			32" ± 1/32"
ength from Center of Useful Cat	hode Area	1 11/	101 . 1/101
to Plane A-A' (See Dimensional		••• 11/	16" ± 1/16"
Maximum Diameter			. 0.4 oz
			0.4 02
Mounting Position			•••••Any
Recessed cap		IFT	EC No.J1-23
Protruding cap		157	EC No.J1-29
Basing Designation		• • • ULI	2A0
			• • • • 2AQ
Recessed Anode		Protruding	} Cathode
Cap Janoue (Сар	Jeannoac
Ϋ́	./		
	/		
	F LIGHT:		
DIRECTION O INTO CONCA OF CATH	HODE		
Maximum Ratings, Absolute Values	:		
ANODE-SUPPLY VOLTAGE (DC or Peak	AC)	90 max.	volts
VERAGE CATHODE-CURRENT DENSITYO		30 max.	µamp/sq.in.
AVERAGE CATHODE CURRENTO		3 max.	μamp
AMBIENT TEMPERATURE		100 max.	oC
Characteristics, At go Volts on	Anode .		
Min.	Median	Max.	
Sensitivity:			
Radiant, at			
8000 angstroms	0.012	-	μ amp/ μ watt
Luminous:	105	0.05	11
At 0 cps 75	135	205	µamp/lumen
At 5000 cps	119		µamp/lumen
At 10000 cps	108	10	.µamp/lumen
Gas Amplification Factor	-	10	
node Dark Current		0.01	
at 25°C	-	0.01	μ amp
* On plane perpendicular to indicated	direction	of incident	light.
1.000			
O,▲: See next page.		+ Indica	tes a change.
, . See next page.			

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

RCA)	
2 ² 921	
GAS PHOTOTUBE	
Minimum Circuit Values:	
With anode-supply voltage of 70 or less	90 volts
DC Load Resistance: For dc currents above	*******
3 μamp 0.1 min.	- megohm
For dc currents below	
3 μamp 0 min. For dc currents above	- megohin
2 μamp	2.5 min. megohms
For dc currents below 2 μamp	0.1 min. megohm
^D Averaged over any interval of 30 seconds maximum	. This value may be
Averaged over any interval of 30 seconds maximum doubled when anode-supply voltage is limited to 7	0 volts.
For conditions where the light source is a tungste ated at a color temperature of 2870°K. A dc anod and a1-megohm load resistor are used. For the 0- light input of0.1 lumen is used. For the 5500-and ments, the light input is varied sinusoidally at 0.015 lumen from zero to a maximum of twice the m	cycle measurements, a 10000-cycle measure- oout a mean value of ean.
SPECTRAL-SENSITIVITY CHARACTER of Phototube having S-I Respo	
and FREQUENCY-RESPONSE CHARACTERIS	TICS
of Gas Phototubes	
are shown at the front of this S	ection
AVERAGE ANODE CHARACTERISTIC	
for Type 921 are the same as those show	
₩ _890″MAX	
-,112"	
.188"±.015"	
T TERMINAL JETEC Nº	CAP JI-23
121/32 1, "	
$\frac{1}{2} \frac{1}{4} \frac{1}{6} \frac{1}{2} \frac{1}{2} \frac{1}{6} \frac{1}$	
	"
PHOTOCATHODE .141"±.047 TERMINAL CAP .375"±.010"	
JETEC № JI-24 03"+ 015"	

М

۸

12-56

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

-.890"MAX.-A-A'=PLANE PERPENDICULAR TO AXIS OF TUBE

DIRECTION OF LIGHT

1

Ŧ

1/8 DIA

.031"±.015"

375" ±.010"

1

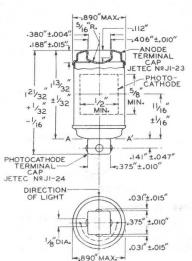
.031"±.015"

92CM-4789R5

VACUUM PHOTOTUBE

CARTRIDGE TYPE WITH S-I RESPONSE

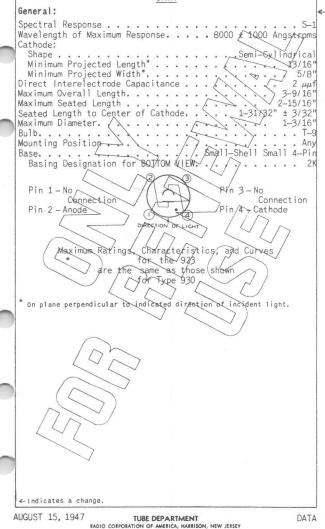
For relay applications

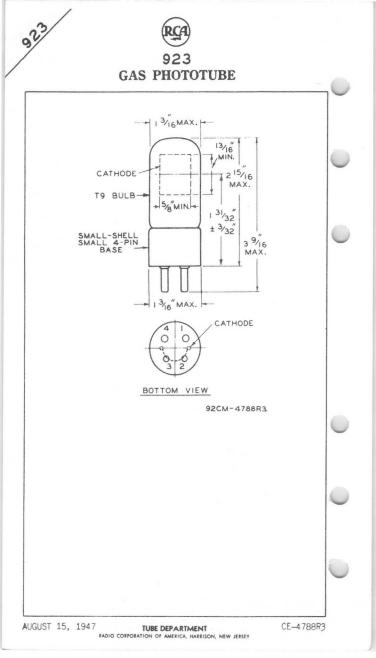

General:	
Spectral Response	-1
Wavelength of Maximum Response 8000 ± 1000 angstrom	ns
Cathode:	
Shape Semicylindrica	al
Minimum projected length*	3"
Minimum projected width*	2"
Direct Interelectrode Capacitance 1 μμ	
Overall Length 1-21/32" + 1/32" - 1/16	
Seated Length 1–13/32" ± 1/32	2"
Length from Center of Useful Cathode Area	
to Plane A-A' (See Dimensional Outline) 11/16" ± 1/16	
Maximum Diameter 0.890	· .
Mounting Position	- 1
Weight (Approx.)0.4 c	12
Recessed cap JETEC No.J1-2	23
Protruding cap.	-
Basing Designation	
	T
Recessed } Anode (-) Protruding } Cathode	
Cap Scathode () Cap Scathode	
DIRECTION OF LIGHT: INTO CONCAVE SIDE	
OF CATHODE	
Maximum Ratings, Absolute Values:	
ANODE-SUPPLY VOLTAGE (DC or Peak AC). 500 max. volt	
AVERAGE CATHODE-CURRENT DENSITYO 30 max. µamp/sq.ir	
AVERAGE CATHODE CURRENTO 5 max. µam	np C
AMBIENT TEMPERATURE 100 max.	4
Characteristics, At 250 Volts on Anode:	
Min. Median Max.	
Sensitivity:	
Radiant, at	
8000 angstroms 0.0018 - μamp/μwat	
Luminous 10 20 40 µamp/lume	en
Anode Dark Current	
at 25° C 0.005 μ an	np
* On plane perpendicular to indicated direction of incident light.	
Averaged over any interval of 30 seconds maximum.	
For conditions where the light source is a tungsten-filament lamp ope ated at a color temperature of 2870 K. A dc anode supply of 250 volt a 1-megohm load resistor, and a light input of 0.1 lumen are used.	r-
a 1-megohm load resistor, and a light input of 0.1 lumen are used.	"
←Indicates a change	e.]
LO-56 THRE DIVISION DAT	

VACUUM PHOTOTUBE

SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-I Response is shown at the front of this Section

AVERAGE ANODE CHARACTERISTICS for Type 922 are the same as those shown for Type 917


92CM-4818R5


922

WITH S-I RESPONSE

Vacuum Phototube

SIDE-ON TYPE HAVING S-I RESPONSE

DATA

General:

Spectral Response
Wavelength of Maximum Response 8000 ± 1000 angstroms
Cathode:
Shape
Minimum projected length ^a
Minimum projected width ^a
Direct Interelectrode Capacitance (Approx.) 1.6 μμf
Maximum Overall Length
Maximum Seated Length
Seated Length to Center of Cathode 1-13/32" ± 3/32" +
Maximum Diameter
Operating Position
Weight (Approx.) 0.8 oz -
Bulb
Socket
BaseIntermediate-Shell Octal 5-Pin, Arrangement 1
(JEDEC Group 1, No.B5-10)
Basing Designation for BOTTOM VIEW

DIRECTION OF RADIATION

Pin 1-No Internal Connection Pin 2-No Internal Connection

Pin 4 - Anode Pin 6 - No Internal Connection Pin 8 - Photocathode

1	Maximum Ratings, Absolute-Maximum ANODE-SUPPLY VOLTAGE	2]	Va	lue	es:		-
	(DC or Peak AC) AVERAGE CATHODE-CURRENT DENSITY ^b AVERAGE CATHODE CURRENT ^b	•	·	•	•	250 max. 30 max.	volts ua/sg.in.
	AVERAGE CATHODE CURRENT ^b AMBIENT TEMPERATURE						μa °C
	Characteristics:						

With an anode-supply voltage of 250 volts

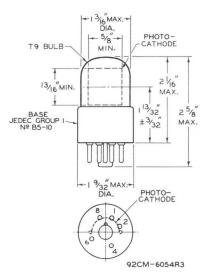
Min. Median Max.

Sensitivity:		0.0010		1
Radiant, at 8000 angstroms.		0.0019	-	amp/watt
Luminous ^c		20	40	µa/lumen
Anode Dark Current at 25° C.	-	-	0.0125	μa

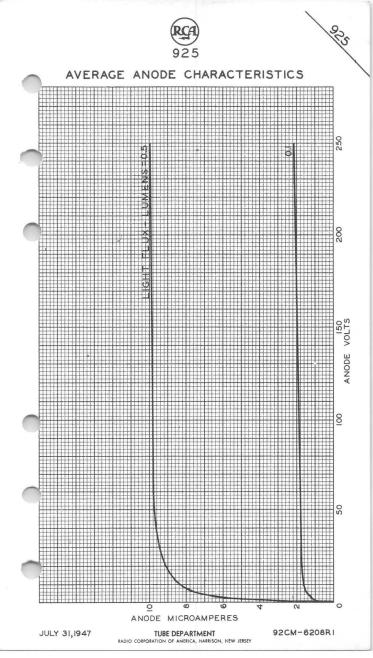
RCA

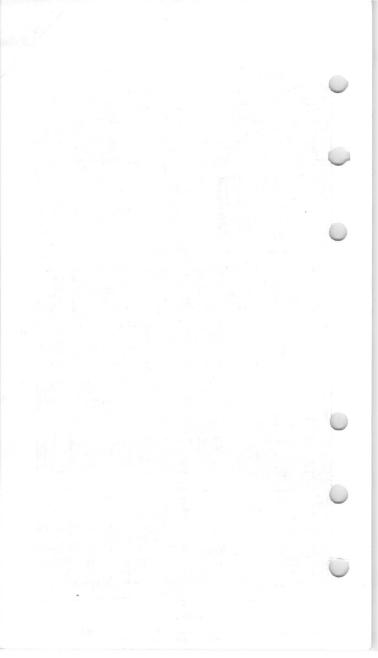
- Indicates a change.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.


DATA 1-62

^a On plane perpendicular to indicated direction of radiation.


b Averaged over any interval of 30 seconds maximum.

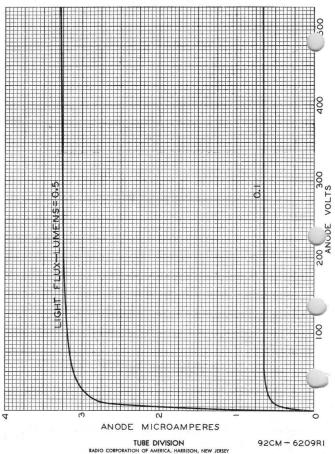

C For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A 1-megohm load resistor and a light input of 0.1 lumen are used.

> SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-I RESPONSE is shown at the front of this section

VACUUM PHOTOTUBE

CARTRIDGE TYPE WITH S-3 RESPONSE For colorimetric applications

			IA			
General:						
Spectral Re						S-j
Wavelength	of Maximum F	Response		. 420	00 ± 100	0 angstrom
Cathode:						
Shape					Semi	cylindrica
	projected ler					7/8
	projected wid					1/2
	erelectrode (nce			1 μμ
	ngth				. 1-21/	
Seated Leng	n Center of l	instal C	· · ·		. 1-13/	32" ± 1/32
	A-A' (See Din				11/	16" ± 1/16
	ameter		i ouci	the	•••••	0.890
Weight (App						0.4 0
Mountina Po			111			An
Terminals:						at. A.
Recessed	cap					EC No.J1-2
Protrudin	ng cap			· · ·	JET	EC No.J1-2
Basing Desi	gnation					· · · .2A
		1	a l			
Recessed	1	1	1	Pro	truding)
Cap	} Anode	1 -	-)		Cap	{ Cathode
	J	1.)			,
		DIRECTION	OF LIGH	T:		
		DIRECTION INTO CON OF CA	CAVE SIL	DE		
Maximum Rat	ings, Absola					
	LY VOLTAGE (50	0 max.	volt
	THODE-CURREN					µamp/sq.in
	THODE CURREN				5 max.	μam
AMBIENT TEN	MPERATURE			10	00 max.	0
Characteris	stics, At 250	Volte	on Ano	de ·		
onaracteris	TETCS, At 29					
			Min.	Median	Max.	
Sensitivity						
Radiant,	at ngstroms			0.0018	12	µamp/µwat
Luminous			4	6.5	15	µamp/µwat µamp/lume
Anode Dark		· · ·		0.0	10	participor i unic
at 25°C.			4.14	-	0.005	μam
*						1.1
and the second	erpendicular to ver any interv					light.
A For condit	ions where the	light sour	rce is a	a tunaste	en-filame	nt lamp oper-
ated at a co	ions where the olor temperatu load resistor	re of 287	DOK. A	dc anode	supply	of 250 volts
a 1-megohm	iuau resistor	, anu a I	ignt inf	Juc 01 0.	.i rumen i	are useu.
					1	tes a change.



VACUUM PHOTOTUBE

DIMENSIONAL OUTLINE for Type 926 is the same as that shown for Type 921

> SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-3 Response is shown at the front of this Section

AVERAGE ANODE CHARACTERISTICS

Gas Phototube

SIDE-ON TYPE HAVING S-I RESPONSE

DATA

General:
Spectral Response
Shape Shape Semicylindrical Minimum projected length ^a 11/16" Minimum projected width ^a 11/16" Direct Interelectrode Capacitance (Approx.) 2 µµf Maximum Overall Length 2-13/32" Maximum Seated Length 1-15/16" Seated Length to Center of Cathode 1-1/4" ± 3/32" Maximum Diameter 0.669" Operating Position 0.3 oz + Bulb 0.3 oz + Bubb 5-1/4 Socket Small-Shell Peewee 3-Pin (JEDEC No.A3-1) Basing Designation for BOTTOM VIEW. 2F
DIRECTION OF RADIATION
Pin 1-No Internal Connection Pin 2-Anode Pin 3-Photocathode
Maximum Ratings, Absolute-Maximum Values:
Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) 70 max. 90 max. volts AVERAGE CATHODE-CURRENT DENSITY ^b 60 max. 30 max. μa/sq.in. AVERAGE CATHODE CURRENT ^b 4 max. 2 max. μa AMBIENT TEMPERATURE 100 max. 100 max. ^O C
Characteristics:
With an anode-supply voltage of 90
volts unless otherwise specified
Nin. Median Max. Sensitivity: Radiant, at 8000 angstroms 0.012 - amp/watt
🗕 Indicates a change.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA I 3-62

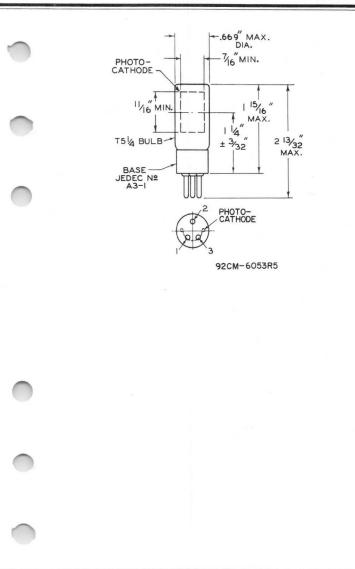
	Min.	Median	Max.	
Luminous: ^c At 0 cps At 5000 cps Gas Amplification Factor ^d Anode Dark Current at 25 ^o C.	75 - - -	125 110 100 -	185 - 10 0.1	μa/lumen μa/lumen μa/lumen μa
Minimum Circuit Values:				
With an anode-supply voltage of	70 or	less	90	volts
DC Load Resistance: For dc currents above 2 μ a. For dc currents below 2 μ a. For dc currents above 1 μ a. For dc currents below 1 μ a.	0.1 m 0 m -	nin. 2	- .5 min. .1 min.	

a on plane perpendicular to indicated direction of radiation.

b Averaged over any interval of 30 seconds maximum.

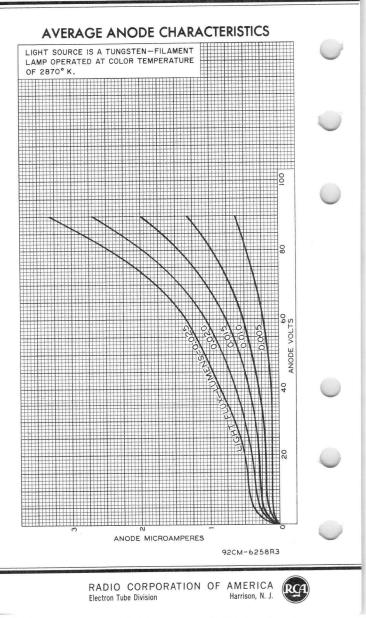
For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A dc anode supply of 90 volts and a 1-megohm load resistor are used. For the 0-cycle measurement, a light input of 0.1 lumen is used. For the 5000- and 10000-cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean value.

d The ratio of luminous sensitivity at an anode-supply voltage of 90 volts to luminous sensitivity at an anode-supply voltage of 25 volts. In each case, sensitivity is obtained under conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K, the light input is 0.1 lumen, and the load resistor has a value of 1 megohm.


SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-1 RESPONSE

and

FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES


are shown at the front of this section

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 2 3-62

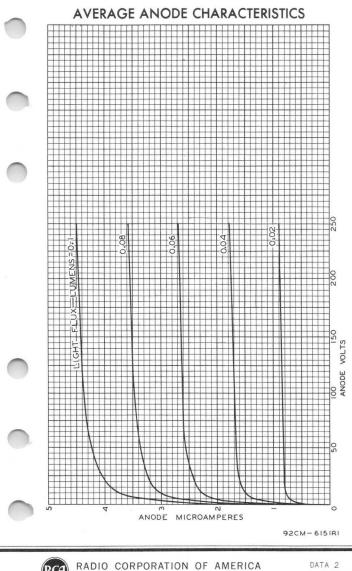
Vacuum Phototube

SIDE-ON TYPE HAVING S-4 RESPONSE

DATA

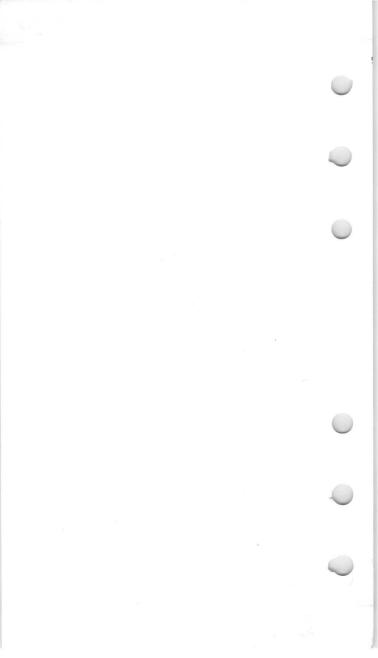
	DATA	
	General:	
	Spectral Response	
0	Cathode: Shape. Semicylindrical Minimum projected length ^a 13/16" Minimum projected width ^a 5/8" Direct Interelectrode Capacitance (Approx.) 2.6 µµf Maximum Overall Length 3-1/16" Maximum Seated Length 2-1/2"	
•	Seated Length to Center of Cathode	
	Basing Designation for BOTTOM VIEW	
	DIRECTION OF LIGHT	
	Pin 1-No Internal Connection Pin 2-No Internal Connection () - 8 Pin 4-Anode Pin 6-No Internal Connection Pin 8-Cathode	
0	Maximum Ratings, Absolute-Maximum Values: ANODE-SUPPLY VOLTAGE (DC or Peak AC). AVERAGE CATHODE-CURRENT DENSITY ^b AVERAGE CATHODE CURRENT ^b AVERAGE CATHODE CURRENT ^b AMBIENT TEMPERATURE.	
	Characteristics:	
	With an anode-supply voltage of 250 volts	
	Min. Median Max.	
	Min. Mealan Max. Sensitivity: Radiant, at 4000	
	angstroms 0.044 - amp/watt	
-	Luminous ^c 25 45 70 μa/lumen	
0	Anode Dark Current at 25 ⁰ Cμa	
	←Indicates a change.	
COLUMN TAXABLE		100.00

DATA I 1-62


- a On plane perpendicular to indicated direction of radiation.
- b Averaged over any interval of 30 seconds maximum.
- $^{\rm C}$ For conditions where the light source is a tungsten-filamentlamp operated at a color temperature of 2870° K. A 1-megohm load resistor and a light input of 0.1 lumen are used.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-4 RESPONSE is shown at the front of this section

DIMENSIONAL OUTLINE shown under Type 5581 also applies to the 929


RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

Electron Tube Division

Harrison, N. J.

1-62

Gas Phototube

SIDE-ON TYPE HAVING S-I RESPONSE

DATA

	DATA
	General:
	Spectral Response
	Cathode:
	Shape Shape Semicylindrical Minimum projected length ^a 13/16" Minimum projected width ^a 5/8" Direct Interelectrode Capacitance (Approx.) 2.4 µµf
	Maximum Overall Length
	Seated Length to Center of Cathode 1-5/8" ± 3/32"
	Maximum Diameter
	Weight (Approx.)
	Bulb
	Socket Cinch No.8JM-1, or equivalent -
	Base
	Basing Designation for BOTTOM VIEW
	DIRECTION OF RADIATION
	Pin 1-No Connection Pin 2-No Connection Pin 4-Anode Pin 4-Anode
	$() \bullet (\mathfrak{s})$
	Maximum Ratings, Absolute-Maximum Values:
	Rating I Rating II
	ANODE-SUPPLY VOLTAGE
	(DC or Peak AC) 70 max. 90 max. volts AVERAGE CATHODE-CURRENT
	DENSITY ^b
	AVERAGE CATHODE CURRENT ^b . 6 max. 3 max. μa
	AMBIENT TEMPERATURE 100 max. 100 max. °C
	Characteristics:
	With an anode-supply voltage of 90
	volts unless otherwise specified
	Nin. Median Max.
	Sensitivity: Radiant, at 8000
	angstroms
V	

-Indicates a change.

DATA I 3-61

Min. Median Max.

Luminous: c

At 0 cps	ι.		90	135	205	µa/lumen
At 5000 cps			-	111	-	µa/lumen
At 10000 cps				101	-	µa/lumen
Gas Amplification Factor ^d			-	-	10	
Anode Dark Current at 25°	С		-	-	0.1	μa

Minimum Circuit Values:

With an anode-supply voltage of 70	or less go volts
DC Load Resistance:	
	1 min. – megohm
	0 min. – megohms
For dc currents above 2 μ a	 2.5 min. megohms
For dc currents below 2 $\mu a.$.	– 1 min. megohm

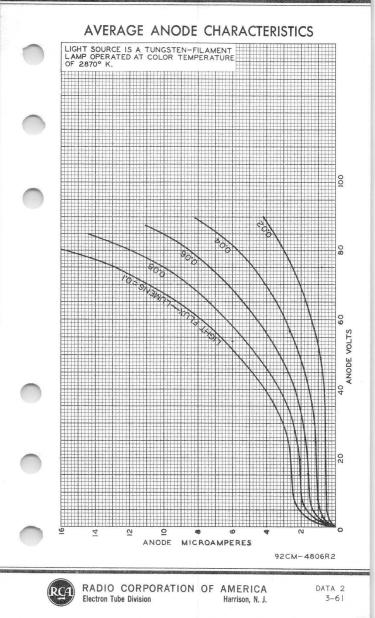
^a On plane perpendicular to indicated direction of incident radiation.

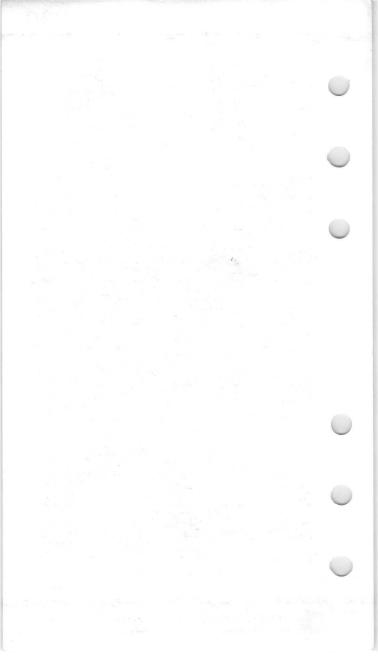
b Averaged over any interval of 30 seconds maximum.

- For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A dc anode supply voltage of 90 volts and a 1-megohm load resistor are used. For the 0-cycle measurement, a light input of 0.1 lumen is used. For the 5000 and 10,000-cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean value.
- d The ratio of luminous sensitivity at an anode supply voltage of 90 volts to luminous sensitivity at an anode supply voltage of 25 volts. In each case, sensitivity is obtained under conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K, the light input is 0.1 lumen, and the load resistor has a value of 1 megohm.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-I RESPONSE

and


FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES


are shown at the front of this section

DIMENSIONAL OUTLINE

shown under Type 5581 also applies to the 930

931A

Photomultiplier Tube

9-Stage, Side-On Type Having S-4 Spectral Response

For general purpose applications in low-light level detection and measurement systems.

ENERAL
Spectral Response
Wavelength of Maximum Response 4000 \pm 500 angstroms
Cathode, OpaqueCesium-Antimony
Minimum projected length ^a 0.94 in (2.4 cm)
Minimum projected width ^a 0.31 in (0.8 cm)
Window Lime Glass (Coming ^b No. 0080), or equivalent
Index of refraction at 4360 angstroms 1.523
Dynodes:
Substrate
Secondary-Emitting Surface Cesium-Antimony
Structure Circular-Cage, Electrostatic-Focus Type
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.9 4.4 pF
Anode to all other electrodes 6.0 pF
Maximum Overall Length 3.68 in (9.3 cm)
Seated Length 3.12 in (7.9 cm)
Maximum Diameter 1.31 in (3.3 cm)
ulb
Base Small-Shell Submagnal 11 Pin, (JEDEC Group 2, No. B11-88), Non-hygroscopic
Socket Amphenol ^c No. 78S11T, or equivalent
Magnetic Shield Millen ^d No. 80801B, or equivalent
perating Position Any
Weight (Approx.)

MAXIMUM RATINGS, Absolute-Maximum Values

DC or Peak AC Supply Voltage:

Between anode and cathode	1250 max.	V
Between anode and dynode No.9	250 max.	V
Between consecutive dynodes	250 max.	V
Between dynode No.1, and cathode	250 max.	V

Electronic Components

931A

Average Anode Current ^f		ax. mA ax. ^o C
CHARACTERISTICS RANGE VALUES		9
Under conditions with dc supply voltage (E) divider providing 1/10 of E between cathode 1/10 of E for each succeeding dynode stag between dynode No.9 and anode.	e and dynode	e No.1;
With E = 1000 volts (Except as noted) Min. Typical	Max.	
Anode Sensitivity: Radiant ^h at 4000 angstroms 8.3 x 10 ⁴	_	A/W
Luminous (2870 ⁰ K) 10 80	600	A/ln
Cathode Sensitivity: Radiant ^k at 4000 angstroms 0.04		A/W
Luminous ^m $(2870^{\circ} \text{ K}) \dots - 4 \times 10^{-5}$	_	A/Im
Quantum Efficiency at 3800 angstroms 13	_	%
Current Amplification – 2 x 10 ⁶	-	
Anode Dark Current ⁿ – 5 x 10 ⁻⁹	5 x 10 ⁻⁸	А
Input ^{n} $\left\{ -2.4 \times 10^{-13} \text{ p} \right\}$.5 x 10 ⁻⁹ .4 x 10 ⁻¹² p	lm W
Equivalent Noise $\begin{cases} - & 3 \times 10^{-12} \\ - & 2 \times 10^{-15} r \end{cases}$	_	lm W
Anode-Pulse Rise Fime ^s at 1250 V 1.6 x 10 ⁻⁹	-	s
Electron Transit Time [†] at 1250 V 1.6 x 10 ⁻⁸ ^a On plane perpendicular to the indicated cident light and passing through the major	axis of the	
^b Made by Corning Glass Works, Corning, N	Y 14830.	
^c Made by Amphenol Electronics Corporat 54th Avenue, Chicago 50, IL 60650.	tion, 1830	South
^d Made by James Millen Manufacturing Co change Street, Malden, MA 02148.	ompany, 15	50 Ex
 Averaged over any interval of 30 seconds Indicates a change or addition. 	maximum.	
RBA Electronic Components	Ľ	DATA 1

⁹ Tube operation at room temperature or below is recommended.

This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 1036 lumens per watt.

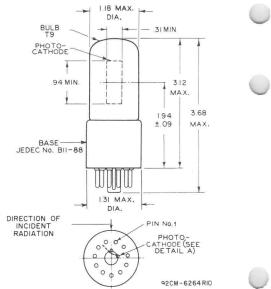
ⁱ Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 10 microlumens is used.

k This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1036 lumens per watt.

Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 100 volts are applied between cathode and all other electrodes connected as anode.

- At a tube temperature of 22° C. With supply voltage adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission may be reduced by use of a refrigerant.
- P At 4000 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 1036 lumens per watt.
- ⁹ Under the following conditions: Tube temperature 22° C, external shield connected to cathode, bandwidth 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.

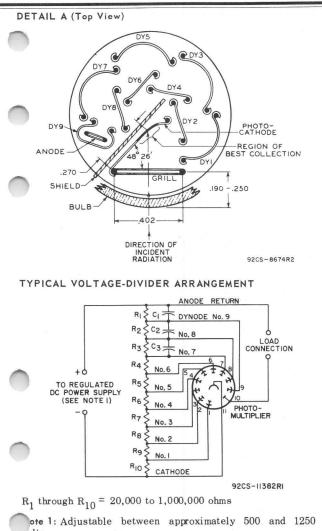
At 4000 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 1036 lumens per watt.


⁵ Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.

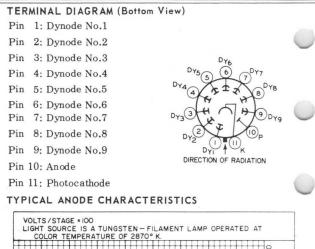
R(B/)

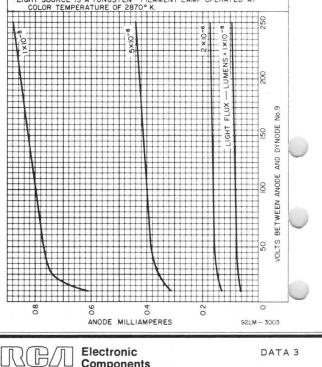
931A

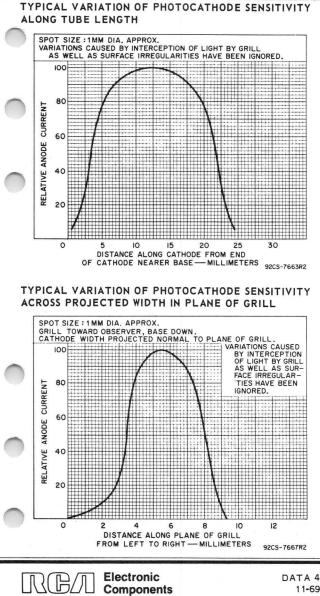
[†] The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transitime is measured under conditions with the incident light fully illuminating the photocathode.


DIMENSIONAL OUTLINE

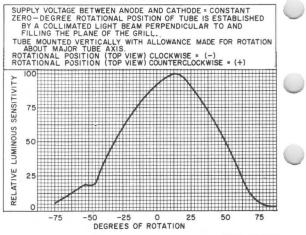
nch	mm	Inch	mm	Inch	mm
09	2.3	.31	7.9	1.31	33.2
190	4.8	.402	10.2	1.94	49.2
50	6.3	.94	23.8	3.12	79.2
270	6.8	1.18	29.9	3.68	93.4


Electronic Components

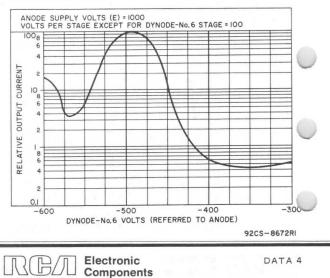

日/Л


volts. Note 2: Capacitors C_1 through C_3 should be connected at tube socket for optimum high-frequency performance.

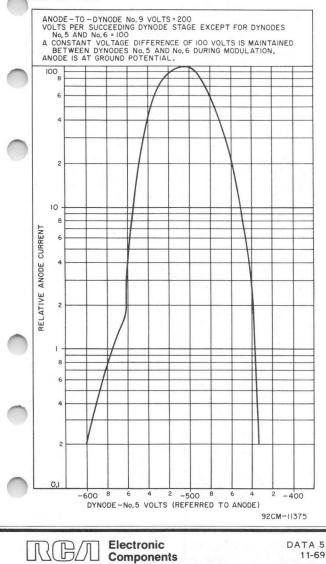
931A


Components

11-69

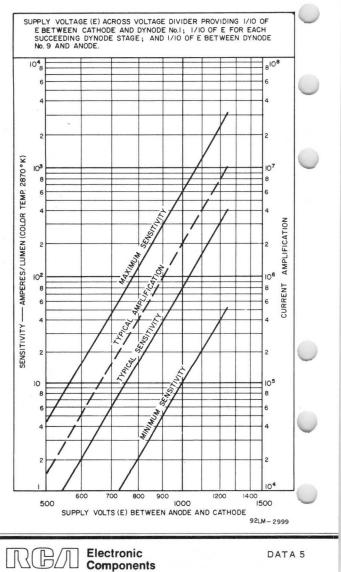

931A

TYPICAL VARIATION OF SENSITIVITY AS TUBE IS ROTATED WITH RESPECT TO FIXED LIGHT BEAM

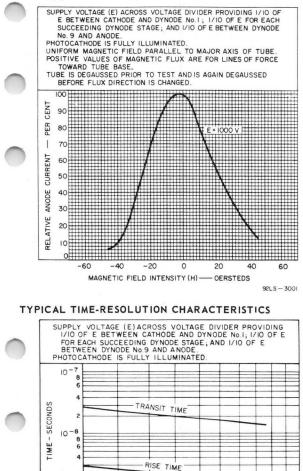


92CS -8671R2

TYPICAL CHARACTERISTIC OF OUTPUT CURRENT AS A FUNCTION OF DYNODE-NO.6 VOLTS



TYPICAL CHARACTERISTIC OF OUTPUT CURRENT AS A FUNCTION OF SIMULTANEOUS MODULATION OF DYNODES NO.5 AND NO.6



931A

TYPICAL SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS

TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE CURRENT

SUPPLY VOLTS (E) BETWEEN ANODE AND CATHODE 92LS-3010

1000

2 3

Electronic Components

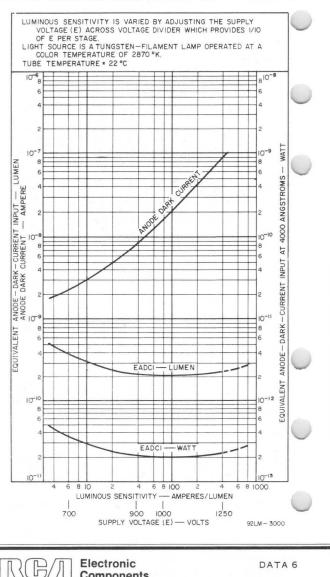
8 9

6

2 10-9

500

日/Л


4 1500

931A

. 21

Components

TYPICAL EADCI AND DARK CURRENT CHARACTERISTICS

Vacuum Phototube

SIDE-ON TYPE HAVING S-4 RESPONSE

DATA

General:

deneral:	
Spectral Response	
Wavelength of Maximum Response 4000 ± 500 angstroms Cathode:	
Shape	
Minimum projected length ^a	
Minimum projected width ^a	
Direct Interelectrode Capacitance (Approx.) 1.5 µµf	
Maximum Overall Length. 2-13/32" Maximum Seated Length 1-15/16"	
Seated Length to Center of Cathode $1-1/4" \pm 3/32"$	
Maximum Diameter	
Operating Position	
Weight (Approx.)	+
Bulb	
Socket Amphenol No.78S3S-T, or equivalent	+
Base	
Basing Designation for BOTTOM VIEW 2F	
DIRECTION OF LIGHT	
¥	
(2)	
Pin 1 - No Internal / Pin 2 - Anode	
Connection Pin 3 - Photocathode	
Maximum Ratings, Absolute-Maximum Values:	+
ANODE-SUPPLY VOLTAGE	
(DC or Peak AC) 250 max. volts	
AVERAGE CATHODE-CURRENT DENSITY ^b 30 max. µa/sq. in. AVERAGE CATHODE CURRENT ^b 4 max. µa	
AVERAGE CATHODE CURRENT [®] 4 max. μa AMBIENT TEMPERATURE 75 max. ^O C	
Characteristics:	+
With an anode-supply voltage of 250 volts	
Min. Median Max.	
Sensitivity:	
Radiant, at 4000 angstroms 0.029 - amp/watt	
Luminous ^c	
Anode Dark Current at 25° C – – 0.005 μ a	
🛥 Indicates a change.	
	185
RADIO CORPORATION OF AMERICA	

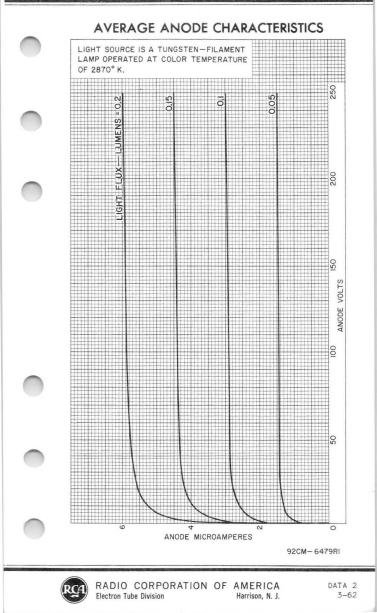
Harrison, N. J.

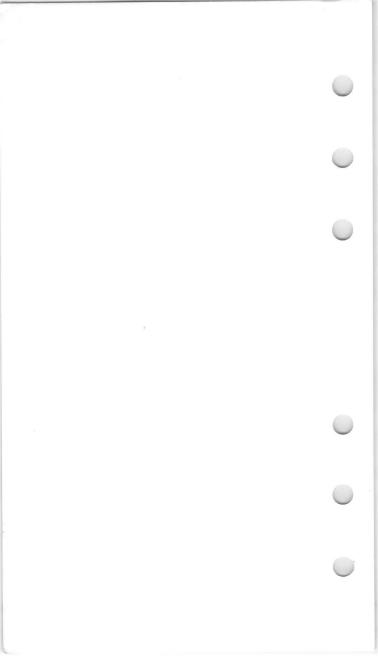
3-62

Electron Tube Division

a On plane perpendicular to indicated direction of incident light.

b Averaged over any interval of 30 seconds maximum.


For conditions where the light source is a tungsten-filament lamp operated at a color temperature of $28706\ K_{\star}$ A 1-megohm load resistor and a light input of 0.1 lumen are used. С


> SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-4 RESPONSE is shown at the front of this section

DIMENSIONAL OUTLINE shown under Type 927 also applies to the 934

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

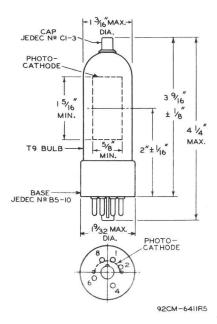
Vacuum Phototube

SIDE-ON TYPE HAVING S-5 RESPONSE

DATA

General:
Spectral Response
Shape.
(JEDEC Group 1, No.85-10) Basing Designation for BOTTOM VIEW
DIRECTION OF RADIATION
Pin 1-No Internal Connection Pin 2-No Internal Connection Pin 4-No Internal Connection
() () (B) Maximum Ratings, Absolute-Maximum Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC)
Characteristics:
With an anode-supply voltage of 250 volts
Min. Median Max. Sensitivity: Radiant, at 3400 angstroms. – 0.043 – amp/watt Luminous ^e

- Indicates a change.


DATA 5-62

 $\overset{\mathbf{a}}{\cdot}$ On plane perpendicular to indicated direction of radiation.

b Averaged over any interval of 30 seconds maximum.

C For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A 1-megohm load resistor and a light input of 0.1 lumen are used.

> SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-5 RESPONSE is shown at the front of this section

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

Multiplier Phototube

10-Stage, Head-On Type Having S-11 Spectral Response

GENERAL

Spectral Response
Wavelength of Maximum Response 4400 \pm 500 Å
Cathode, Semitransparent Cesium-Antimony with High-Conductivity Grating
Area including grating $\ldots \ldots \ldots$
Minimum diameter 1.5 in (3.8 cm)
Window Corning ^a No.0080, or equivalent
Shape Plano-Plano
Index of refraction at 4360 angstroms 1.523
Dynodes:
Substrate Copper-Beryllium
Secondary-Emitting Surface Beryllium-Oxide
Structure Circular-Cage, Electrostatic-Focus Type
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.10 4.4 pF
Anode to all other electrodes 7.0 pF
Maximum Overall Length 5.81 in (14.8 cm)
Seated Length
Maximum Diameter 2.31 in (5.9 cm)
Bulb T-16
Base Medium-Shell Diheptal 14-Pin (JEDEC No.B14-38), Non-hygroscopic
Socket Eby ^b No.9709-7, or equivalent
Magnetic Shield Millen ^c Part No.80802B, or equivalent
Operating Position Any
Weight (Approx.) 5.2 oz (174 g)
ABSOLUTE-MAXIMUM RATINGS

DC Supply Voltage:

RВЛ

Between anode and cathode		1500 max.	V
Between anode and dynode No.10		250 max.	V
Between consecutive dynodes		250 max.	V
Between dynode No.1 and cathode	•••	400 max.	V

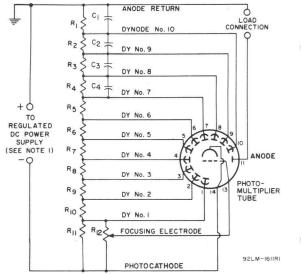
Electronic Components

Between focusing electrode and cathode	400 max. V
Average Anoae Current ^e	2 max. mA
Average Cathode Current ^f	5 max. µA
Ambient Temperature ⁹	75 max. ^o C

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode. Focusing-electrode voltage is adjusted to that value between 10 and 60 per cent of dynode No.1 potential (referred to cathode) which provides maximum anode current.

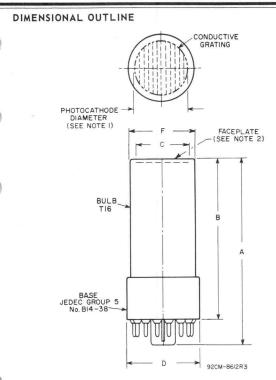
With E = 1250 volts (Except as noted)


	Min.	Typical	Max.		
Anode Sensitivity:					\cup
Radiant ^h at 4400 angstroms	_	$4.8 \ge 10^3$		A/W	
Luminous (2870 [°] K) ^j	2,5	6	75	A/lm	
Cathode Sensitivity:					
Radiant ^k at 4400 angstroms	_	0.04	-	A/W	
Luminous (2870 ^o K) ^m ;	3 x 10 ⁻⁵	5 x 10 ⁻⁵	-	A/lm	
Current with blue light source (2870° K + C.S. No.5-58) ⁿ	3 x 10 ⁻⁸	5 x 10 ⁻⁸	_	А	
Quantum Efficiency at 4200 angstroms		11.5		%	\bigcirc
Current Amplification	_	1.2×10^5	_	70	
Anode Dark Current ^P Equivalent Anode	-	4 x 10 ⁻⁹	4.5 x 10 ⁻⁸	А	
Darly Comment					
Input ^p	Ξ	2.5×10^{-10} x 10^{-13} q	2.25×10^{-9} 2.8 x 10	9 W	
Equivalent Noise Input ^r	=	5.6 x 10 ⁻¹² 7 x 10 ⁻¹⁵ s	1.9 x 10 ⁻¹¹ 2.3 x 10 ⁻¹⁴ s	$_{W}^{lm}$	
		C			

^a Made by Corning Glass Works, Corning, NY 14830.

RBA Electronic Components

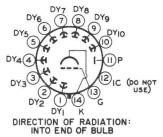
- ^b Made by Hugh H. Eby Company, 4701 Germantown Avenue, Philadelphia, PA 19144.
- ^c Made by James Millen Manufacturing Company, 150 Exchange Street, Malden, MA 02148.
- e Averaged over any interval of 30 seconds maximum.
- ^f Above this value of average cathode current, serious loss in linearity between light input and anode current will be caused by the resistivity of the cathode.
- **9** Tube operation at room temperature or below is recommended.
- h This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 804 lumens per watt.
- i Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 10 microlumens is used.
- k This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 804 lumens per watt.
- ^m Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ⁿ Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, NY 14830) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- P At a tube temperature of 22° C. With supply voltage adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission may be reduced by use of a refrigerant.
- ^q At 4400 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 804 lumens per watt.


- Under the following conditions: Tube temperature 22° C, external shield connected to cathode, bandwidth 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- ^s At 4400 angstroms. These values are calculated from the ENI values in lumens using a conversion factor of 804 lumens per watt.

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT

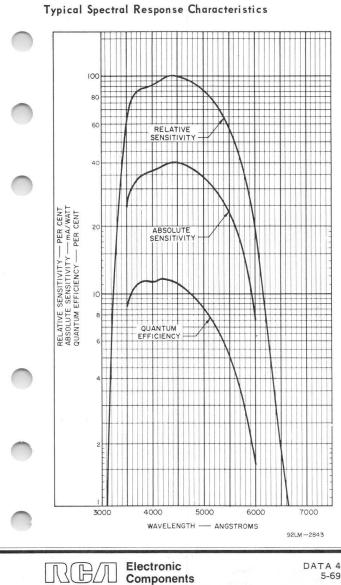
C1: 0.05 µF, 20%, 500 volts (dc working), ceramic disc Co: 0.02 µF, 20%, 500 volts (dc working), ceramic disc C3: 0.01 µF, 20%, 500 volts (dc working), ceramic disc C₄: 0.005 μF, 20%, 500 volts (dc working), ceramic disc R_1 through R_{10} : 390,000 ohms, 5%, 1/2 watt R11: 910,000 ohms, 5%, 1/2 watt R₁₂: 5 megohms, 20%, 1/2 watt, adjustable Note 1: Adjustable between approximately 500 and 1500 volts dc. Note 2: Component values are dependent upon nature of apand output signal desired. plication Electronic

Components


Note 1: The grating consists of 12 equally spaced conductive strips having a maximum width of 0.02" (0.5 mm).

Note 2: Deviation from flatness will not exceed 0.010" from peak to valley.

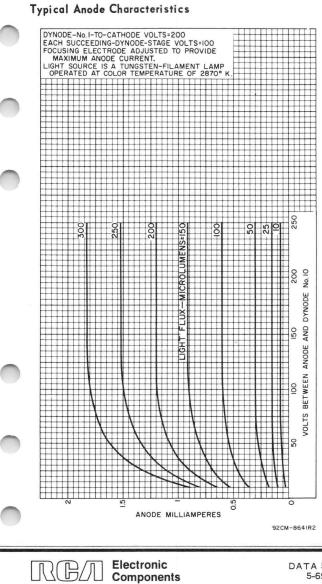
OUTLINE DIMENSIONS


Dimensions	Inches	mm	
А	5.81 max.	147.5 max.	
В	4.88 ± .19	123.9 ± 4.8	
С	1.5 min. dia.	38 min. dia.	
D	2.31 max. dia.	58.6 max. dia.	
F	2.00 ± .06 dia.	50.8 ± 1.5 dia.	

TERMINAL DIAGRAM (Bottom View)

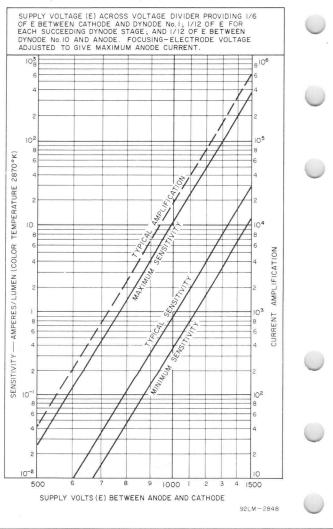
- Pin 1: Dynode No.1
- Pin 2: Dynode No.2
- Pin 3: Dynode No.3
- Pin 4: Dynode No.4
- Pin 5: Dynode No.5
- Pin 6: Dynode No.6
- Pin 7: Dynode No.7
- Pin 8: Dynode No.8

- Pin 9: Dynode No.9
- Pin 10: Dynode No.10
- Pin 11: Anode
- Pin 12: Internal connection-Do not use
- Pin 13: Focusing Electrode
- Pin 14: Photocathode

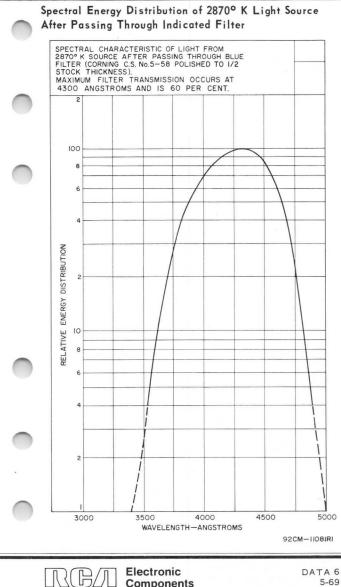

5-69

Typical EADCI and Anode Dark Current Characteristics

LUMINOUS SENSITIVITY IS VARIED BY ADJUSTING THE SUPPLY VOLTAGE (E) ACROSS A VOLTAGE DIVIDER PROVIDING 1/6 OF E BETWEEN CATHODE AND DYNODE No. 1; 1/12 OF E FOR EACH SUCCEEDING DYNODE STAGE ; AND 1/12 OF E BETWEEN DYNODE No. 10 AND ANODE. FOCUSING ELECTRODE VOLTAGE IS ADJUSTED TO THAT VALUE BETWEEN IO AND 60 PER CENT OF DYNODE No. I POTENTIAL (REFERRED TO CATHODE) WHICH PROVIDES MAXIMUM ANODE CURRENT. LIGHT SOURCE IS A TUNGSTEN - FILAMENT LAMP OPERATED AT A COLOR TEMPERATURE OF 2870° K. TUBE TEMPERATURE = 22 °C 810-9 10-7 8 6 6 4 4 NAT' 2 2 G 0484-LUMEN 4400 ANGSTROMS 10-8 ANDOR 10-10 8 8 COUIVALENT ANODE - DARK-CURRENT INPUT ----6 6 - AMPERE 4 4 AT 2 2 TUPUT ANODE DARK CURRENT 10-9 ANODE - DARK - CURRENT 10 8 8 ADCI 6 6 4 1 UNE 4 2 2 10-10 10 EQUIVALENT 8 8 6 6 4 4 2 2 10-13 10 4 68 102 2 4 6 8 103 10-1 2 4 6 8 1 2 4 6 8 10 2 LUMINOUS SENSITIVITY --- AMPERES/LUMEN 800 1000 1200 1500 SUPPLY VOLTAGE (E) --- VOLTS 92LM-2846

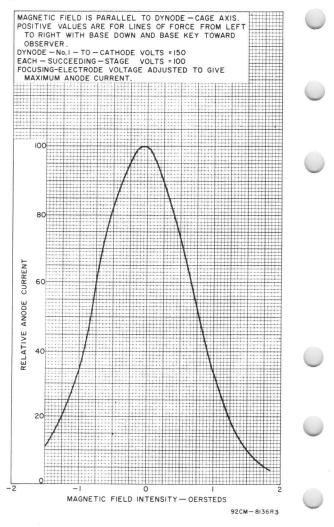

RBA Electronic Components

DATA 4


DATA 5 5-69

Sensitivity and Current Amplification Characteristics

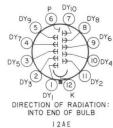
RBA Electronic Components


DATA 5

Components

DATA 6 5-69

Electronic Components


H/

Photomultiplier Tube

IO-STAGE, HEAD-ON, FLAT-FACEPLATE TYPE HAVING S-II RESPONSE 1.24 INCH MINIMUM DIAMETER FLAT PHOTOCATHODE

For Use in Scintillation Counters for the Detection and Measurement of Nuclear Radiation and Other Low-Level Light Sources The 2060 is identical to type 6199 in all respects except that it is supplied with a medium-shell diheptal base attached to flexible leads to facilitate testing. After testing, the attached base should be removed prior to installing the 2060

BASING DIAGRAM (Bottom View)

With Base Attached

TERMINAL CONNECTIONS (Bottom View) With Base Removed

Lead	1 -	Dynode	No.1
Lead	2 -	Dynode	No.3
Lead	3-	Dynode	No.5
Lead	4 -	Dynode	No.7
Lead	5 -	Dynode	No.9
Lead	6 -	Anode	
Lead	7 -	Dynode	No.10
Lead	8 -	Dynode	No.8
Lead	9 -	Dynode	No.6
Lead	10 -	Dynode	No.4
Lead	11 -	Dynode	No.2

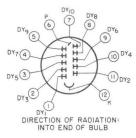
in a given system.

Pin

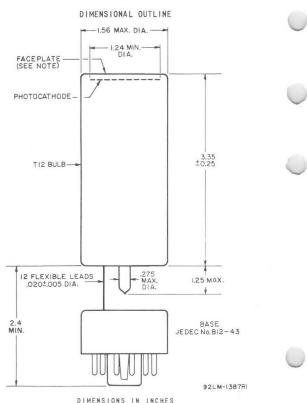
Pin

2 - Dynode No.3

3 - Dynode No.5


4 - Dynode No.7

8 - Dynode No.8


9 - Dynode No.6

Pin 12 - Photocathode

6 - Anode

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Note: Within 1.24-inch diameter, deviation from flatness of external surface of faceplate will not exceed 0.010-inch from peak to valley.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Photomultiplier Tube

S-11 RESPONSE 10-STAGE, HEAD-ON, FLAT-FACEPLATE

ELECTROSTATICALLY FOCUSED DYNODE STAGES

For Detection and Measurement of Nuclear Radiation and Other Low-Level Light Sources in Scintillation Counters

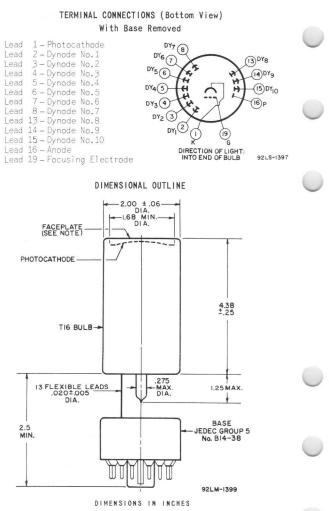
The 2061 is electrically similar to type 6342A except for the following performance characteristic and that the anode luminous sensitivity and equivalent noise input ratings shown for the 6342A do not apply for type 2061.

The 2061 is supplied with a medium-shell diheptal base attached to flexible leads to facilitate testing. After testing, the attached base of the 2061 should be removed prior to installing the tube in a given system.

PERFORMANCE CHARACTERISTIC

Minimum Pulse Height^a. . 0.13 V

^a Pulse height is defined as the amplitude of the anode pulse voltage (referred to anode) measured across a 100 ± 5%-kilohm resistor and a total capacitance of 92 ± 3% pF in parallel. An anode-to-cathode volt-age of 1130 volts is applied across a voltage-divider network having a 1.5 ±5% megohm resistor between cathode and dynode No.1, 450 ± 5%-kil-ohm resistors between each succeeding stage including dynode No.10 to anode. The focusing electrode is adjusted to that value between 0% and 60% of dynode No.1 potential (referred to cathode) which will provide maximum anode current. The 662-KeV photon from an isotope of cesium having an atomic mass of 137 ([csl37] and a cylindrical 2 inch x 2 inch thallium-activated sodium-iodide scintillator [Na1(Tl)] type BDB, or equivalent are used. The scintillator is manufactured by the Harshaw (Demical Corporation, 1945 East 97th Street, Cleveland 6, Ohio. The faceplate end of the crystal is coupled to the 2061 by a coupling fluid such as Dow Corning Corp., Type DC200 (Viscosity of 100 centipies) manufactured by the Dow Corning Corp., Midland, Michigan, or equivalent.


BASING DIAGRAM (Bottom View) With Base Attached

- Pin 1 - Dynode No.1 Pin 2 - Dynode No.2 Pin 3 - Dynode No.3 Pin 4 - Dynode No.4 Pin 5 - Dynode No.5 Pin 6 - Dynode No.6 7 - Dynode No.7 Pin Pin 8 - Dynode No.8 Pin 9 - Dynode No.9 Pin 10 - Dynode No.10 Pin 11 - Anode Pin 12-No Connection Pin 13 - Focusina Electrode
- Pin 14 Photocathode
- DY8 DY7 DYg 8 a DYIO DY4(4 II)P 2 DY3 NC 3 DY DIRECTION OF RADIATION: INTO END OF BULB

RADIO CORPORATION OF AMERICA **Electronic Components and Devices**

Harrison, N. J.

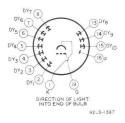
DATA 6-66

Note: Within 1.68-inch diameter, deviation from flatness of external surface of faceplate will not exceed 0.010 inch from peak to valley.

Photomultiplier Tube

IO-STAGE, HEAD-ON, FLAT-FACEPLATE TYPE HAVING S-II RESPONSE 1.68 INCH MINIMUM DIAMETER CURVED PHOTOCATHODE

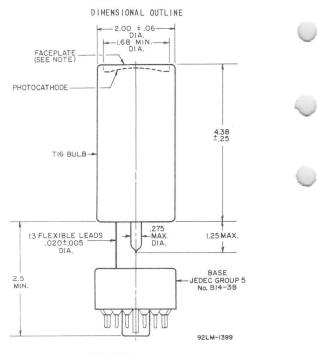
For Use in Scintillation Counters for the Detection and Measurement of Nuclear Radiation and Other Low-Level Light Sources


The 2062 is identical to type 6655A in all respects except that it is supplied with a medium-shell diheptal base attached to flexible leads to facilitate testing. After testing, the attached base should be removed prior to installing the 2062 in a given system.

BASING DIAGRAM (Bottom View) With Base Attached

- 3 Dynode No.3 4 - Dynode No.4 Pin 6 - Dynode No.6 7 - Dynode No.7 Pin 8-Dynode No.8 Pin 9-Dynode No.9 Pin 12-No Connection Pin 13 - Focusing Electrode
- Pin 14 Photocathode
- DY7 DY8 8 DYg 10 DYIO DY4(4 11)P 12)NC DY-14 DIRECTION OF LIGHT: INTO END OF BULB

TERMINAL CONNECTIONS (Bottom View) With Base Removed


4.00000.00	a oliver enderstand
Lead	1 – Photocathode
Lead	2 - Dynode No.1
Lead	3 - Dynode No.2
Lead	4 - Dynode No.3
Lead	5 - Dynode No.4
Lead	6 - Dynode No.5
	7 - Dynode No.6
Lead	8 - Dynode No.7
Lead	13 - Dynode No.8
	14 - Dynode No.9
	15 - Dynode No.10
	16 – Anode
Lead	19 - Focusing Electroc

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DIMENSIONS IN INCHES

Note: Within 1.68-inch diameter, deviation from flatness of external surface of faceplate will not exceed 0.010-inch from peak to valley.

Photomultiplier Tube

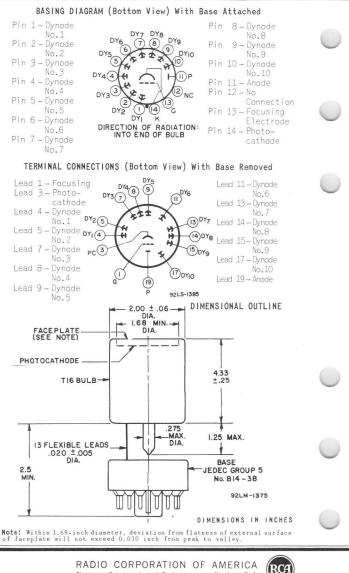
IO-STAGE, HEAD-ON FLAT-FACEPLACE TYPE HAVING VENETIAN-BLIND-TYPE DYNODE STRUCTURE, 1.68-INCH MINIMUM-DIAMETER, FLAT, CIR-CULAR, SEMITRANSPARENT PHOTOCATHODE AND S-II RESPONSE

For Use in Scintillation Counting Applications

The 2063 is electrically similar to type 8053 except for the following performance characteristics and that the anode luminous sensitivity and equivalent noise input ratings shown for the 8053 do not apply for type 2063.

The 2063 is supplied with a medium-shell diheptal base attached to flexible leads to facilitate testing. After testing, the attached base of the 2063 should be removed prior to installing the tube in a given system.

PERFORMANCE CHARACTERISTICS


Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of Ebetween dynode No.10 and anode. The focusing electrode is adjusted to that value between 50% and 100% of dynode No.1 potential (referred to cathode) which will provide maximum anode current.

Maximum	Anode	Dark Curi	rent	. ^а .				2			0.05	μA
Minimum	Pulse	Height ^b .									0.13	V

- a Measured under the following conditions: Light incident on the photocathode is transmitted through a blue filter Corning C.S. No.5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The light flux incident on the filter is 10 microlumens. The supply voltage is adjusted to obtain an anode current of 9 µA. Dark current is measured with the light source removed.
- of 9 μA . Dark current is measured with the light source removes. b Pulse height is defined as the amplitude of the anode pulse voltage (referred to anode) measured across a 100 \pm 5%-kilohm resistor and a total for the source of 92 \pm 3% pF in parallel. An anode-to-cathode voltage of 1120 source is applied across a voltage divider network having a k5 of 1120 source of 92 \pm 3% pF in parallel. An anode-to-cathode voltage of 1120 source of 92 \pm 3% pF in parallel. An anode-to-cathode voltage of 1120 source of 92 \pm 3% pF in parallel. An anode-to-cathode voltage of 1120 source of 92 \pm 3% pF in parallel. An anode-to-cathode voltage of 1120 source of 92 \pm 3% pF in parallel of the source of 95% and 100% of dynade No. 1 potential (referred to cathode) which will provide maximum anode current. The 662-Kgy photon from an isotope of cesium having an atomic mass of 137 (Cs^{1-3}) and a cylindrical 2 in ch x 2 in ch thallium-activated sodium-iodide scintillator [NaI(T1)] type 8DB, or equivalent are used. This scintillator is manufactured by the Harshaw Chemical Corporation, 1945 East 97th Street, Cleveland 6, Ohio. The Cs^{1-37} is in direct contact with the metal end of the scintillator. The faceplate end of the crystal is coupled to the 200 compine) manufactured by the Dow Corning Corp., Midland, Michigan, or equivalent.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA I 6-66

Electronic Components and Devices

Harrison, N. J.

Photomultiplier Tube

IO-STAGE, HEAD-ON, FLAT-FACEPLACE TYPE HAVING VENETIAN-BLIND-TYPE DYNODE STRUCTURE, 2.59-INCH MINIMUM-DIAMETER, FLAT, CIR-CULAR, SEMITRANSPARENT PHOTOCATHODE AND S-II RESPONSE

For Use in Scintillation Counting Applications

The 2064B is electrically similar to type 8054 except for the following performance characteristics and that the anode luminous sensitivity and equivalent noise input ratings shown for the 8054 do not apply for type 2064B.

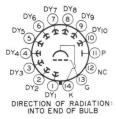
The 2064B is supplied with a medium-shell diheptal base attached to flexible leads to facilitate testing. After testing, the attached base of the 2064B should be removed prior to installing the tube in a given system.

PERFORMANCE CHARACTERISTICS

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode. The focusing electrode is adjusted to that value between 50% and 100% of dynode-No.1 potential (referred to cathode) which will provide maximum anode current.

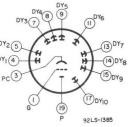
Maximum	Anode	Dark Cur	re	۱ť	а.						0.05	μA
Minimum	Pulse	Height ^b .									0.18	٧

- a Measured under the following conditions: Light incident on the photocathode is transmitted through a blue filter (Corning C.S. No. 5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The light flux incident on the filter is 10 microlumens. The supply voltage is adjusted to obtain an anode current of 9 μ A. Dark current is measured with the light source removed.
- Dulse height is defined as the amplitude of the anode pulse voltage (referred to anode) measured across a 100 ± 5%-kilohm resistor and a total capacitance of 92 ± 3% prin parallel. An anode-to-cathode voltage of 1130 volts is applied across a voltage-divider network having a 1.5 ± 5%-megohm resistor between eathode and dynode No.1, 450 ± 5%-kilohm resistors between each succeeding stage including dynode No.10 to amod 100 He dynotsing electrode is adjusted to that value between 50% mad income the state of the state of the state of the state of the state maximum anode current. The 662-KeV photon from an incident of the state having an atomic mass of 137 (Cal37) and a cylindrical 3 inch * 3 inch thallium-activated sodium-iodide scintillator [Nal(Tl)] type 12Al2, or equivalent are used. This scintillator is manufactured by the Harshaw Chemical Corporation, 1945 East 97th Street, Cleveland 6, Ohio. The faceplate end of the crystal is coupled to the 2064B by a coupling fluid such as Dow Corning Corp., Midland, Michigan, or equivalent.


RCA

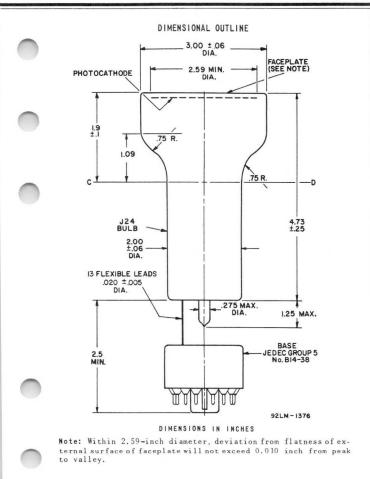
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 1 6-66

2064B

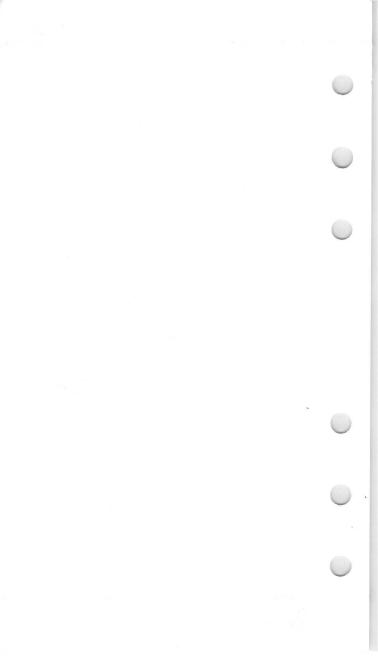

BASING	DIA	GRAM	(Bottom	View)
Wi	ith	Base	Attached	ł

Pin	1 – Dynode No.1
Pin	2 - Dynode No.2
Pin	3 - Dynode No.3
Pin	4 - Dynode No.4
Pin	5 - Dynode No.5
Pin	6 - Dynode No.6
Pin	7 - Dynode No.7
Pin	8 - Dynode No.8
Pin	9 - Dynode No.9
Pin	10 - Dynode No.10
Pin	11 – Anode
Pin	12-No Connection
Pin	13 - Focusing Elect rode
Pin	14 - Photocathode

TERMINAL CONNECTIONS (Bottom View) With base Removed


Lead		ng Electrode	
	3 – Photoca		DYa
	4 – Dynode		
	5 – Dynode		-
	7 – Dynode		DY2 5
	8 – Dynode		DY
	9 – Dynode		
	11 – Dynode		PC(3)
	13 – Dynode		100
	14 – Dynode		
	15 – Dynode		
	17 – Dynode	No.10	
Lead	19 – Anode		

DATA I


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 6-66

Photomultiplier Tube

IO-STAGE, HEAD-ON, FLAT-FACEPLATE TYPE HAVING VENETIAN-BLIND-TYPE DYNODE STRUCTURE, 4.38-INCH MINIMUM DIAMETER, FLAT, CIRCULAR, SEMITRANSPARENT PHOTOCATHODE AND S-II RESPONSE

For Use in Scintillation Counting Applications

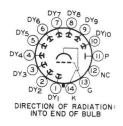
The 2065 is electrically similar to type 8055 except for the following performance characteristics and that the anode luminous sensitivity and equivalent noise input ratings shown for the 8055 do not apply for type 2065.

The 2065 is supplied with a medium-shell diheptal base attached to flexible leads to facilitate testing. After testing, the attached base of the 2065 should be removed prior to installing the tube in a given system.

PERFORMANCE CHARACTERISTICS

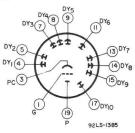
Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode. The focusing electrode is adjusted to that value between 50% and 100% of dynode-No.1 potential (referred to cathode) which will provide maximum anode current.

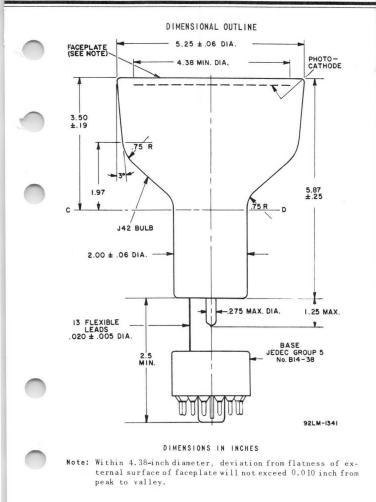
Maximum Anode	Dark Current ^a .						0.05	μA
Minimum Pulse	Height ^D		•	÷.			0.13	۷


- ^a Measured under the following conditions: Light incident on the photocathode is transmitted through a blue filter (Corning C. S. No. 5-58, polished to 1/2 stock thickness — Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The light flux incident on the filter is 10 microlumens. The supply voltage is adjusted to obtain an ander current of 9 µA. Dark current is measured with the light source removed.
- b Pulse height is defined as the amplitude of the anode pulse voltage (referred to anode) measured across a 100 ± 5%-kilohm resistor and a total capacitance of 92 ± 3% pF in parallel. An anode-to-cathode voltage of 1130 volts is applied across a voltage-divider network having a 1.5 ± 5%-segohm resistor between cathode and ynode No.1, $450 \pm 5\%$ -kilohm resistors between each succeeding stage including dynode No.1 to anode. The focusing electrode is adjusted to that value between 50% and 100% of dynode No.1, potential (referred to cathode) which will provide maximum anode current. The 62% pK photon from an isotope of cesium having an atomic mass of 137 (Cs¹³⁴) and a cylindrical 3 inch x 3 inch thallium-activated sodium iodide scintillator (NaI(TI)) type 12AL2, or equivalent are used. This scintillator is manufactured by the faceplate end of the crystal is on plated with sociation of the faceplate end of the crystal is on the face solity of 00 centipoies manufactured by the Dow Corning Corp., Midland, Michigan, or equivalent.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 1 6-66

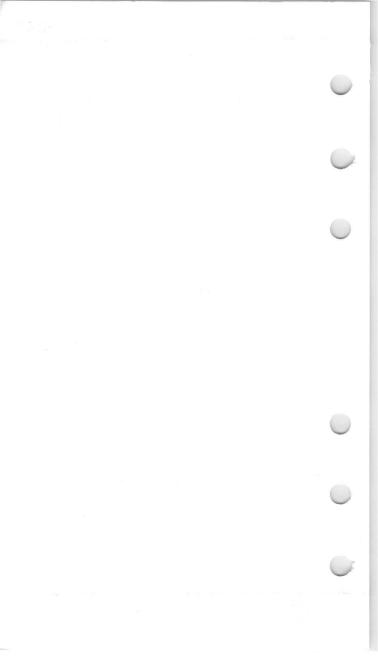
BASING DIAGRAM (Bottom View) With Base Attached


Pin	1 - Dynode No.1
Pin	2 - Dynode No.2
Pin	3 - Dynode No.3
Pin	4 - Dynode No.4
Pin	5 - Dynode No.5
Pin	6 - Dynode No.6
Pin	7 - Dynode No.7
Pin	8 - Dynode No.8
Pin	9 - Dynode No.9
Pin	10 – Dynode No.10
Pin	11 – Anode
Pin	12 - No Connection
Pin	13-Focusing Electrode
Pin	14 - Photocathode


TERMINAL CONNECTIONS (Bottom View)

With Base Removed

Lead	1 - Focusing Electrode	
Lead	3 – Photocathode	
Lead	4 - Dynode No.1	
Lead	5 - Dynode No.2	
Lead	7 - Dynode No.3	
Lead	8 - Dynode No.4	
Lead	9 - Dynode No.5	
Lead	11 - Dynode No.6	
Lead	13 - Dynode No.7	
Lead	14 - Dynode No.8	
Lead	15 - Dynode No.9	
Lead	17 - Dynode No.10	
Lead	19 – Anode	



RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 6-66

Photomultiplier Tubes

Sturdy, 10-Stage, S-11, Head-On Types for Use Under Adverse Environmental Conditions

The 4439 differs from the 4438 in that it is supplied with a small-shell duodecal base attached to semiflexible leads to facilitate testing prior to installation. After testing, the attached base should be removed.

GENERAL

Spectral Response S-11
Wavelength of Maximum Response 4400 ± 500 Å
Cathode, Semitransparent Cesium-Antimony
Minimum area $\dots \dots \dots$
Minimum diameter 1.24 in (3.1 cm)
Window Corning ^a No.0080, or equivalent
Shape Plane-Plano Index of refraction at 4360 angstroms 1.523
Dynodes:
Substrate Nickel
Secondary-Emitting Surface Cesium-Antimony
Structure Circular - Cage Electrostatic-Focus Type
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.10 4 pF
Anode to all other electrodes
(Excluding Semiflexible Leads) 3.91 in (9.9 cm)
Maximum Diameter 1.56 in (3.9 cm)
Bulb
Socket Eby ^b No.9058, or equivalent
Magnetic Shield See footnote c Operating Position Any
Weight (Approx.)
MAXIMUM RATINGS, Absolute-Maximum Values: DC Supply Voltage:

 Between anode and cathode
 1250 max.
 V

 Between anode and dynode No.10
 250 max.
 V

 Between consecutive dynodes
 200 max.
 V

 Between dynode No.1 and cathode
 300 max.
 V

Electronic Components

Average Anode Currer					
Ambient Temperature			. 75 ma	х. ^о С	6
CHARACTERISTICS	RANGE	VALUES			-
Under conditions with age divider providing I, except as noted.	electrod	le voltages as			
With $E = 1000$ volts (E	-	s noted)			
	Min.	Typical	Max.		
Anode Sensitivity: Radiant ⁹ at 4400 angstroms	-	2.2×10^4	-	A/W	
Luminous ^h	10	27	300	A/lm	
Cathode Sensitivity:					
Radiant ¹ at 4400 angstroms		3.6×10^{-2}	-	A/W	
Luminous ^k		$4.5 \ge 10^{-5}$	-	A/lm	
With blue light ^m 2.	8 x 10 ⁻⁸		-	Α	
Quantum Effi- ciency at 4200 angstroms	_	10.5	_	%	
Current Ampli- fication	_	$6 \ge 10^5$	-		
Anode Dark Cur- rent ⁿ	-	1.6 x 10 ⁻⁸	5 x 10 ⁻⁸	A	
Equivalent Anode Dark Current In- put ⁿ	} _	8 x 10 ⁻¹⁰ 1 x 10 ⁻¹² p	2.5 x 10 ⁻⁹	lm W	
Equivalent Noise Input ^q	_	$6.5 \ge 10^{-12}$	-	lm	
Anode-Pulse Rise Time ^{r, s} at 1250 V.	-	2.5 x 10 ⁻⁹	-	s	
Electron Transit Time ^{r,†} at 1250 V.	-	2.9 x 10 ⁻⁸	-	s	
a Mala ha Carris a	1 117			1000	

^a Made by Corning Glass Works, Corning, New York 14830.

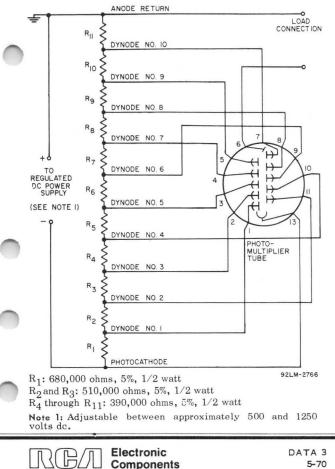
- ^b Made by Hugh H. Eby Company, 4701 Germantown Avenue, Philadelphia, Pa. 19144.
- ^c Magnetic shielding material in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1322 N. Elston Avenue, Chicago, Ill., 60622, or equivalent.
- ^e Averaged over any interval of 30 seconds maximum.
- f Tube operation at room temperature or below is recommended.
 Indicates additions or changes.

- 9 This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 804 lumens per watt.
- ^h Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 10 microlumens is used.
- This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 804 lumens per watt.
- **k** Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ^m Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness - Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ⁿ At a tube temperature of 22^o C. With supply voltage adjusted to give a luminous sensitivity of 20 amperes per lumen.
- P At 4400 angstroms. This value is calculated from the EADCI value in lumens using a conversion factor of 804 lumens per watt.
- ^q Under the following conditions: Tube temperature 22^o C, external shield connected to cathode, bandwidth 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- ^r Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dvnode No.1: 1/12 of E for each succeeding dvnode stage: and 1/12 of E between dynode No.10 and anode.

- ⁵ Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- [†] The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

Table I	
Typical Potential Distrib	oution
Between	8.13% of Supply Voltage (E) multiplied by
Cathode and Dynode No.1	1.7
Dynode No.1 and Dynode No.2	1.3
Dynode No.2 and Dynode No.3	1.3
Dynode No.3 and Dynode No.4	1.0
Dynode No.4 and Dynode No.5	1.0
Dynode No.5 and Dynode No.6	1.0
Dynode No.6 and Dynode No.7	1.0
Dynode No.7 and Dynode No.8	1.0
Dynode No.8 and Dynode No.9	1.0
Dynode No.9 and Dynode No.10	1.0
Dynode No.10 and Anode	1.0
Anode and Cathode	12.3

OPERATING CONSIDERATIONS


SHIELDING:

Electrostatic shielding of these tubes is ordinarily required. When a shield is used, it must be connected to the cathode terminal. The application of high voltage, with respect to cathode, to insulating or other materials supporting or shielding these tubes at the photocathode end of the tubes should not be permitted unless such materials are chosen to limit leakage current to the tube envelope to $1 \ge 10^{-12}$ ampere or less.

HIGH VOLTAGE WARNING:

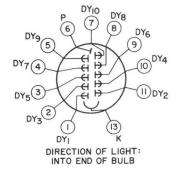
The high voltages at which these tubes are operated are very dangerous. Before any part of the circuit is touched, the power-supply switch should be turned off and both terminals of any capacitors grounded.

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT WHICH PERMITS DIRECT COUPLING TO THE ANODE

C1: 0.05 μF, 20%, 500 volts, ceramic disc
 C2: 0.02 μF, 20%, 500 volts, ceramic disc
 C3: 0.01 μF, 20%, 500 volts, ceramic disc
 C4: 0.005 μF, 20%, 500 volts, ceramic disc
 ceramic disc
 R1: 680,000 ohms, 5%, 1/2 watt
 R2 and R3: 510,000 ohms, 5%, 1/2 watt
 R4 through R11: 390,000 ohms, 5%, 1/2 watt

Electronic

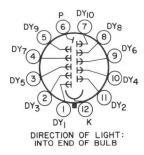
Components


R₁₃: 100,000 ohms, 5%, 1/2 watt

Note 1: Adjustable between approximately 500 and 1250 volts dc.

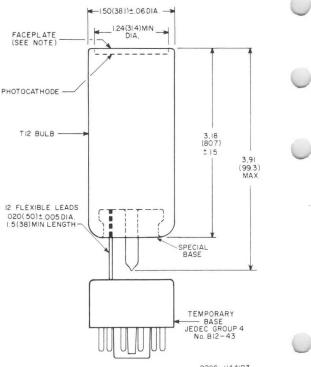
Note 2: Capacitors C_1 through C_6 should be connected at tube socket for optimum high-frequency performance.

LEAD CONNECTIONS Bottom View


(With Base Removed)

- Lead 1: Dynode No.1 Lead 2: Dynode No.3 Lead 3: Dynode No.5 Lead 4: Dynode No.7 Lead 5: Dynode No.9 Lead 6: Anode Lead 7: Dynode No.10 Lead 8: Dynode No.8 Lead 9: Dynode No.6 Lead 10: Dynode No.2
- Lead 13: Photocathode

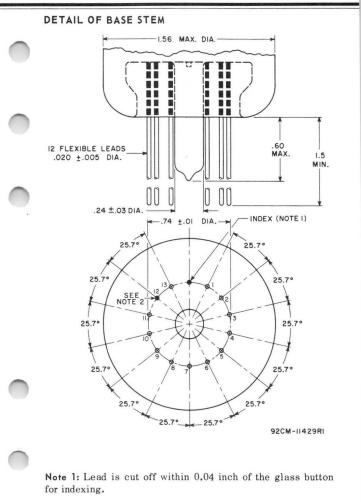
TERMINAL DIAGRAM Bottom View (With Temporary Base)


日/Л

Pin	1:	Dynode No.1	
Pin	2:	Dynode No.3	
Pin	3:	Dynode No.5	
Pin	4:	Dynode No.7	
Pin	5:	Dynode No.9	
Pin	6:	Anode	
Pin	7:	Dynode No.10	
Pin	8:	Dynode No.8	
Pin	9:	Dynode No.6	
Pin	10:	Dynode No.4	
Pin	11:	Dynode No.2	
Pin	12:	Photocathode	

1 51

DIMENSIONAL OUTLINE



92CS-11441R3

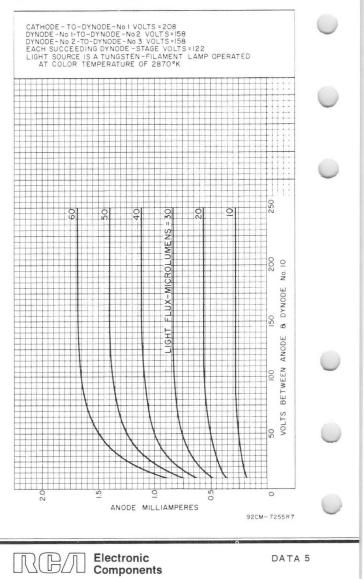
Dimensions are in inches unless otherwise stated. Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions (1 inch = 25.4 mm).

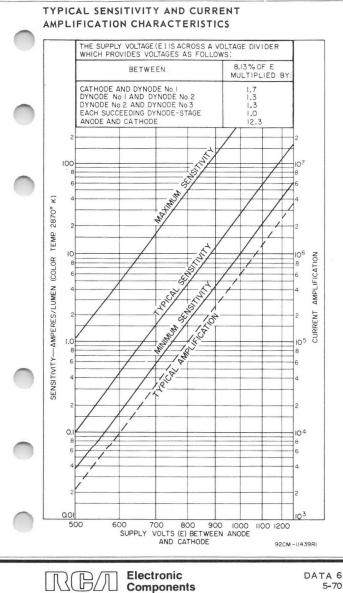
Note: Within 1.24" diameter, deviation from flatness of external surface of faceplate will not exceed 0.010" from peak to valley.

Note: Type 4438 is supplied without temporary B12-43 base.

Note 2: Lead No.12 is cut off within 0.04 inch of the glass button.

See Spectral Energy Distribution Curve at Front of this Section.


Electronic


Components

日/Л

DATA 5 5-70

TYPICAL ANODE CHARACTERISTICS

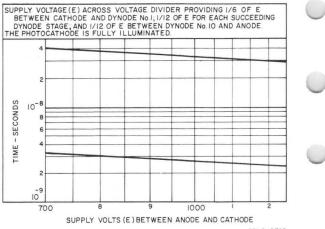
5-70


TYPICAL DARK CURRENT AND EADCI CHARACTERISTICS

LUMINOUS SENSITIVITY IS VARIED BY ADJUSTMENT OF THE SUPPLY VOLTAGE (E) ACROSS A VOLTAGE DIVIDER WHICH PROVIDES VOLTAGES AS FOLLOWS 813%OF E BETWEEN: MULTIPLIED BY CATHODE AND DYNODE No. I 1.7 DYNODE No.I AND DYNODE No. 2 1.3 1.3 DYNODE No. 2 AND DYNODE No. 3 EACH SUCCEEDING DYNODE - STAGE 12.3 ANODE AND CATHODE TUBE TEMPERATURE = 22°C DASHED PORTION INDICATES INSTABILITY. LIGHT SOURCE IS A TUNGSTEN-FILAMENT LAMP OPERATED AT A COLOR TEMPERATURE OF 2870°K 105 10-7 4 400 ANGSTROMS-WAT 8 A 6 6 4 4 1 2 2 -LUMEN 1 106 10-8 CURRENT ? 8 8 6 6 ANDDE -DARK- CURRENT INPUT ANDDE -DARK- CURRENT - AMPERE 4 4 ++++ AT TUPUT DARK 2 2 107 10-9 ANODE . R - DARK - CURRENT 8 6 6 4 4 ENT ANODE -DARK-. 2 108 10-10 NEW 8 8 6 6 QUIVALENT ANODE Π4 4 12 2 EQUIVAL 10⁹ 8 8 6 4 4 0 112 2 10-12 1010 8 4 8 4 6 8 ۵ 6 8 4 10² 103 101 10 LUMINOUS SENSITIVITY - AMPERES/LUMEN 500 660 880 1180 1250 SUPPLY VOLTS (E) - VOLTS 92LM - 2769

> Electronic Components

KG/J


DATA 6

5-70

4438,4439

TYPICAL TIME RESOLUTION CHARACTERISTICS

92LS-2768

Multiplier Phototube

S-II RESPONSE

"RUGGEDIZED", IO-STAGE, HEAD-ON, ELECTROSTATICALLY FOCUSED FLAT-FACEPLATE TYPE DYNODE STAGES

> For Detection and Measurement of Nuclear Radiation and Other Low-Level Light Sources in Industrial, Military, and Missile Applications

DATA

General:

)	Spectral Response S-11 Vavelength of Maximum Response 4400 ± 500 angstroms Schode, Semitransparent Cesium-Antimony Shape Flat, Circular Minimum Area. 1.2 sq. in. Minimum diameter 1.2 sq. in. Minimum diameter 1.2 sq. in. Window 1.2 sq. in. Minimum diameter 1.2 sq. in. Jynode Material 1.2 sq. Anode to dynode No.10 1.51 Anode to all other electrodes 7 pf Anode to all other electrodes 7 pf Animum Diameter 3.50" ± 0.12" Maximum Diameter 1.56" Operating Position Any Weight (Approx.) 120 Socket Amphenol ^b No.59-402, or equivalent Agaretic Shield Willen ^c No.80802C, or equivalent Base Ultrashort Small-Shell Duodecal 12-Pin, (JEDEC Group 4, No. B12-186), Non-hygroscopic 12-Pin,
	Basing Designation for BOTTOM VIEW
	Maximum Ratings, Absolute-Maximum Values: DC SUPPLY VOLTAGE BETWEEN ANODE AND CATHODE
	C SUFFLI VULIAGE DEIWEEN DINUDE NO. IU

UC SUPPLI VULTAGE	BEIWEEN DINUUE NO. 10	
AND ANODE		250 max. volts
DC SUPPLY VOLTAGE	BETWEEN CONSECUTIVE	
DYNODES		200 max. volts

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

.

DATA 1 8-63

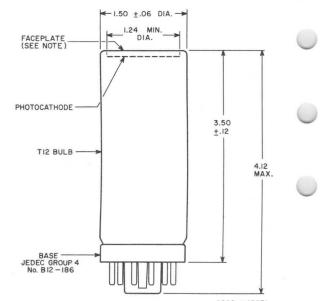
DC SUPPLY VOLTAGE BETWE AND CATHODE AVERAGE ANODE CURRENT ^d . AMBIENT TEMPERATURE			300 max. 0.75 max. 75 max.	volts °C
Characteristics Range V	alues for	Equipment D	esign:	
Under conditions a voltage divider and dynode No.1; stage; and 1/12 of	with dc su providing /lุ2ofE fc E between	pply voltage 1/6 of E bet or each succe dynode No.1	e (E) across ween cathode eding dynode	
With E = 1000 volts (Ex	cept as no	ted)		
	Min.	Typ.	Max.	
Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400	-	2.2×10 ⁴	_	a/w
angstroms Luminous:	-	0.036	-	a/w 💛
At 0 cps ^e With dynode No.10	10	27	300	a/lm
as output electrode ^f Cathode luminous:	-	16	-	a/lm
With tungsten light source ^g . With blue light	3×10^{-5}	4.5×10 ⁻⁵	-	a/lm
source ^{h, n}	2.8×10^{-8}	-	-	a
Current Amplification	-	6×10^{-5}	-	5
Equivalent Anode- Dark-Current In- put at a luminous sensitivity of 20 a/lmj,k	_	8×10 ⁻¹⁰	2.5×10 ⁻⁹	lm
Equivalent noise		01120	210.120	
Input ^m	-	4 × 10 ⁻¹²	1.7×10-11	lm 🔵
Anode at 25° C	-	-	7.5×10 ⁻⁷	а
With E = 750 volts (Exc	ept as not	ed)		
15	Min.	Typ.	Max.	
Sensitivity: Radiant, at 4400 angstroms Cathode radiant,	-	2.2×10^{3}	-	a/w
at 4400 angstroms	-	0.036	-	a/w
Luminous: At O cps ^e	-	2.7	-	a/lm
With dynode No.10 as output electrode ^f	_	1.6	_	a/lm
		1.0		Gr fill

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

	Min.	Typ.	Max.	
Cathode luminous: With tungsten				
light source ⁹ With blue light	3×10^{-5}	4.5×10^{-5}	- a/	lm
source ^{h, n}	2.8×10^{-8}		_	а
Current Amplification.		6×10^{4}	-	

- ^a Made by Corning Glass Works, Corning, New York.
- b Made by Amphenol Electronics Corporation, 1830 South 54th Avenue, Chicago 54, Illinois.
- Made by James Millen Manufacturing Company, 150 Exchange Street, Malden 48. Massachusetts.
- Averaged over any interval of 30 seconds maximum.
- e Under the following conditions: The light source is a tungsten-filament lamp haying a lime-glass envelope. It is operated at a color temperature of 2870° k and a light input of 10 microlumens is used.
- An output current of opposite polarity to that obtained at the anode may An output current of opposite polarity to that obtained at the anode may be provided by using dynode No.10 as the output electrode. With this ar-rangement, the load is connected in the dynode-No.10 circuit and the anode serves only as collector. The curves shown in the accompanying fypical Anode Characteristics curve do not apply when dynode No.10 is used as the output electrode.
- Under the following conditions: The light source is a tungsten-filament lamo p having a lime-glass envelope. It is operated at a color temperature 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- h Under the following conditions: Under the following conditions: Light incident on the cathode is trans-mitted through a blue filter (Corning C.S. No.5-58, Glass Code No.5113 pol-ished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corn-ing, New York) from a tungsten-filament lamp operated at a color temper-ature of 2810° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- $^{
 m j}$ At a tube temperature of 25 $^{
 m O}$ C. Dark current may be reduced by use of a refrigerant.
- For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1000 volts is recommended.
- Tow 1060 vorts is recommensed. Winder the following conditions: Supply voltage (E) is as shown, 25^o C tube temperature, external shield connected to cathode, bandwidth 1 cycle per second, tungsten-light source at a color temperature of 2870° K interrupt-ed at a low audio frequency to produce incident radiation pulses alterna-ting between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- n See Spectral Characteristic of 2870 0 K Light Source and Spectral Characteristic of Light from 2870 0 K Source after passing through Indicated Blue Filter at front of this Section.

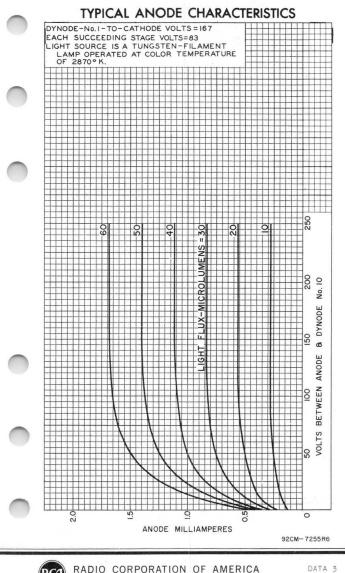
SPECTRAL-SENSITIVITY CHARACTERISTIC of PHOTOSENSITIVE DEVICE HAVING S-11 RESPONSE is shown at the front of this Section



RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

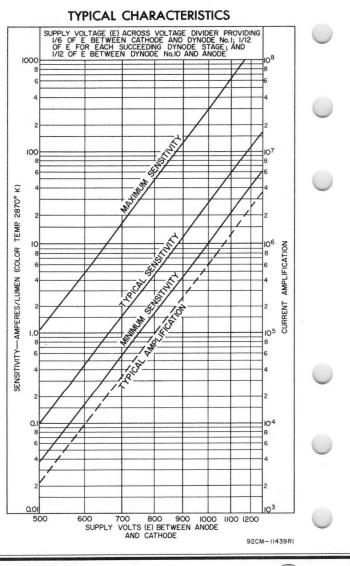
DATA 2 8-63


92CS-11435RI

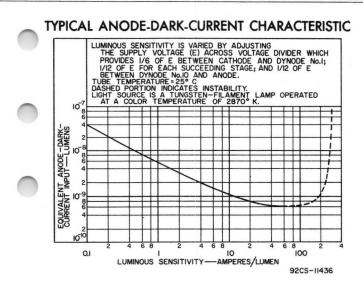
DIMENSIONS IN INCHES

CENTER LINE OF BULB WILL NOT DEVIATE MORE THAN 2° IN ANY DIRECTION FROM THE PERPENDICULAR ERECTED AT THE CENTER OF BOTTOM OF THE BASE.

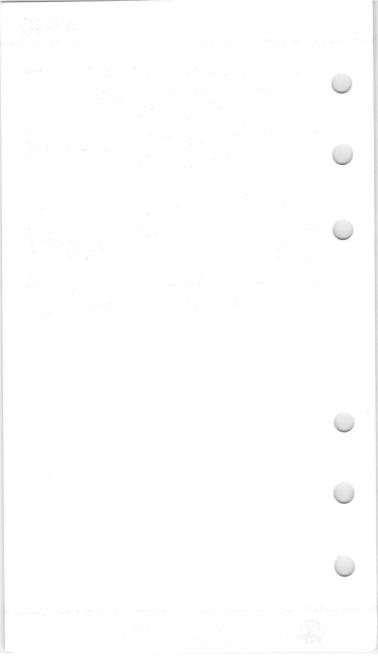
NOTE: WITHIN 1.24 INCH DIAMETER, DEVIATION FROM FLATNESS OF EXTERNAL SURFACE OF FACEPLATE WILL NOT EXCEED 0.010 INCH FROM PEAK TO VALLEY.



Electronic Components and Devices


8-63

Harrison, N. J.


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

RCA

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 4 8-63

Multiplier Phototube

S-II RESPONSE

"RUGGEDIZED", IO-STAGE, HEAD-ON, ELECTROSTATICALLY FOCUSED FLAT-FACEPLATE TYPE DYNODE STAGES

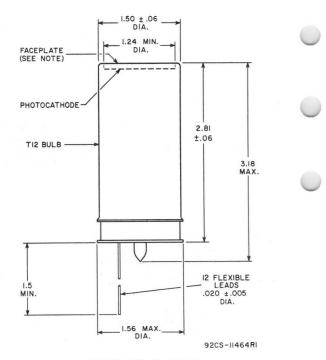
> For Detection and Measurement of Nuclear Radiation and Other Low-Level Light Sources in Industrial, Military, and Missile Applications

DATA

General:

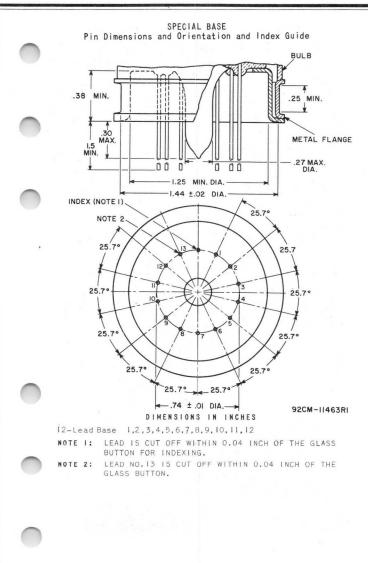
Spectral Response. S-11 Wavelength of Maximum Response 4400 ± 500 angstroms Cathode, Semitransparent Cesium-Antimony Shape Flat, Circular Minimum area 1.2 sq. in. Minimum diameter 1.2 sq. in. Window Lime Glass (Corningª No.0080), or equivalent Index of refraction 1.51 Dynode Material Cesium-Antimony Direct Interelectrode Capacitances (Approx.): 3.2 pf Anode to dynode No. 10 3.2 pf Anode to all other electrodes 5.0 pf Maximum Overall Length (Excluding flexible leads) 3.18" Maximum Diameter 3.02 Operating Position Anot Magnetic Shield 3.02 Base Stield Base Special Terminal Diagram: BOTTOM VIEW	
Lead 1 & Metal Flange- Photocathode Lead 2 - Dynode No.1 Lead 3 - Dynode No.3 Lead 4 - Dynode No.5 Lead 5 - Dynode No.7 Lead 6 - Dynode No.9 Lead 7 - Anode Lead 8 - Dynode No.6 Lead 10 - Dynode No.6 Lead 12 - Dynode No.4 DIRECTION OF RADIATION: INTO END OF BULB Maximum Ratings, Absolute-Maximum Values:	
DC SUPPLY VOLTAGE BETWEEN ANODE AND CATHODE	

DC SUPPLY VOLTAGE BETWEEI AND CATHODE AVERAGE ANODE CURRENT ^C . AMBIENT TEMPERATURE		10.1		volts ma. °C	
Characteristic Range Val	ues for Ec	uipment Des	ign:		
Under conditions wid a voltage divider pr and dynode No.1; 1/12 stage; and 1/12 of E	oviding 1/ of E for	6 of E betw each succee	een cathode ding dynode		_
With E = 1000 volts (Exce	ept as not	ed)			
	Min.	$Ty\phi$.	Max.		
Sensitivity: Radiant, at 4400 angstroms	-	2.2×10 ⁴	-	a/w	
Cathode radiant, at 4400 angstroms .		0.036	_	a/w	
Luminous:		0.000		a/ w	()
At 0 cps ^d	10	27	300	a/lm	\smile
With dynode No.10					
as out-		10		a/lm	
put electrode ^e	-	16	-	a/im	
Cathode luminous: With tungsten light source [†] With blue light	3 × 10 ⁻⁵	4.5×10 ⁻⁵	-	a/lm	
source ^{g,m}	2.8 × 10-8	_	_	а	
Current Amplification .	-	6×10^{5}	-		
Equivalent Anode-Dark- Current Input at a luminous sensitivity of 20 a/lm: h,j.	-	8 × 10-10	2.5×10 ⁻⁹	lm	
Equivalent Noise Input ^k	-	4×10^{-12}	1.7 × 10-11	Jm	
Dark Current to Any Electrode Except					
Anode at 25° C	-	_	7.5×10^{-7}	а	
With E = 750 volts (Except	t as note	<i>d</i> 1			()
WITH D 190 DOTTS (Date)	Min.	Typ.	Max.		
Sensitivity:		1)7.			
Radiant, at					
4400 angstroms	-	2.2×10^{3}	-	a/w	
Cathode radiant,		0.036		a/w	
at 4400 angstroms . Luminous:	-	0.030	-	a/w	
At O cps ^d	-	2.7	—	a/lm	
With dynode No.10 as		4.0		(1	
output electrode ^e Cathode luminous:	-	1.6	_	a/lm	
With tungsten light source	3×10 ⁻⁵ 4	.5×10 ⁻⁵	_	a/lm	
With blue light	0 0 10-8			а	
source ^{g,m} ? Current Amplification .		6 × 10 ⁴	-	a	


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

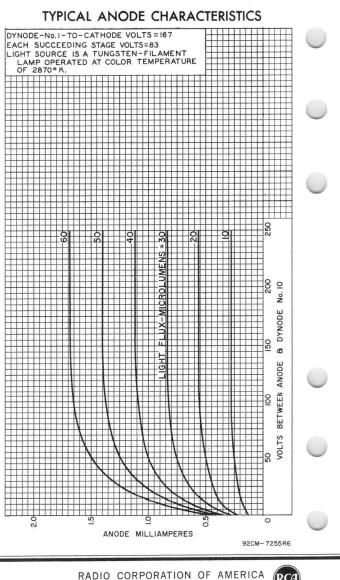
- ^a Made by Corning Glass Works, Corning, New York.
- Magnetic Shielding material in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1829 Civic Opera Building, 20 North Wacker Drive, Chicago 6, Illinois, or equivalent.
- C Averaged over any interval of 30 seconds maximum.
- d Under the following conditions: The light source is a tungsten-filament lamp haying a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 10 microlumens is used.
- Of 2010 A duild fright input of to increases to be added at the anode may be provided by using dynode No.10 as the output electrode. With this arrangement, the load is connected in the dynode No.10 circuit and the anode serves only as collector. The curves shown in the accompanying *Typical Anode Characteristics* curve do not apply when dynode No.10 is used as the output electrode.
- f Under the following conditions: The light source is a tungsten-filament lamp haying a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- piled between defined and all child of the definition of the cathode is transmitted through a blue filter (Corning C.S. No.5-58, Glass Code No.5.113 polished to 1/2 stock thickness—Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- $^{\rm h}$ At a tube temperature of 25 $^{\rm O}$ C. Dark current may be reduced by use of , a refrigerant.
- j For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1000 volts is recommended.
- k Under the following conditions: Supply voltage (E) is as shown, 25° c tube temperature, external shield connected to cathode, bandwidth Lycle per second, tungsten-light source at a color temperature of 2870° K interrupted at alow audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- ^m See Spectral Characteristic of 2870° K Light Source and Spectral Characteristic of Light from 2870° K Source after passing through Indicated Blue Pilter at front of this section.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-11 RESPONSE is shown at the front of this Section

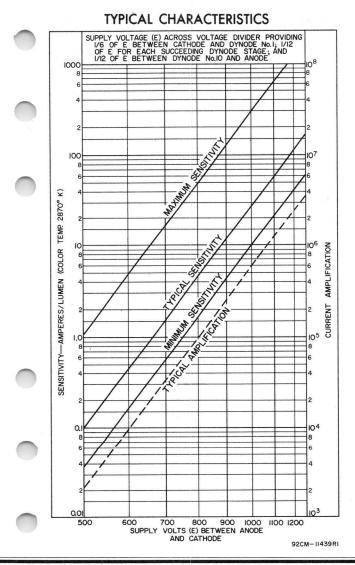

DIMENSIONS IN INCHES

CENTER LINE OF BULB WILL NOT DEVIATE MORE THAN $2^{\rm O}$ in any direction from the perpendicular erected at the center of bottom of the base flange.

NOTE: DEVIATION FROM FLATNESS WITHIN THE 1.24 INCH DIAM-ETER AREA WILL NOT EXCEED 0.010 INCH FROM PEAK TO VALLEY.

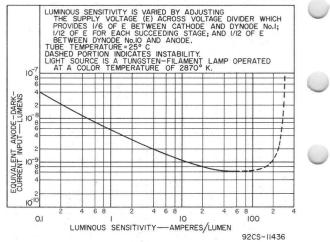


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 8-63

Electronic Components and Devices

Harrison, N. J.



RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 4 8-63

TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

4441A

Multiplier Phototube

RUGGED VIBRATION-RESISTANT STRUCTURE S-II RESPONSE ELECTROSTATICALLY FOCUSED 10-STAGE, HEAD-ON, FLAT-FACEPLATE TYPE DYNODE STAGES

For Detection and Measurement of Nuclear Radiation and other Low-Level Light Sources. Especially Useful in Missile and Rocket Service and other Industrial and Military Applications where Severe Environmental Conditions may be Encountered.

The 4441A is the same as the 4441 except for the following:

Characteristics Range Values for Equipment Design:

With E = 1000 volts

	Min.	Typ.	Max.	
Anode-Pulse Rise Time ^a	. –	2.8×10^{-9}	-	sec.
<i>With E = 750 volts</i> Equivalent Anode-Dark- Current Input at a				
luminous sensitivity of 20 a/lm ^{b,c}		8×10-10	2.5 × 10-9	lm

ENVIRONMENTAL TESTS:

The 4441A is designed to withstand environmental tests equivalent to those specified in MIL-E-5272C* for equipment mounted on the structures of missiles propelled or launched by high-thrust rocket engines. The accelerations specified in these tests are applied directly to the tubes.

One-Hundred Per-Cent Shock and Vibration Testing:

Shock. These tests are performed first, per method of MIL-E-5272C*, Par.4.15.5.1, Proc.V, on apparatus which provides a half-wave sinusoidal shock pulse. One-hundred percent testing of all 4441A's is performed. Each 4441A (non-operating) is subjected to three impact shocks in each direction of the three orthogonal axes. Each impact shock has a peak acceleration of 30 ± 3 g's and a time duration of 11 ± 1 milliseconds. Each tube is subjected to a total of 18 impact shocks.

Vibration. These tests are performed next, on apparatus which applies a variable-sinusoidal frequency vibration to the tube in accordance with MIL-E-5272C*, par.4.7.14 and par.4.7.14.1, except for the cycle duration. This test is performed on all 4441A tube types. Each 4441A (Operating under the conditions specified under *Tube Rejection Criterion*) is vibrated in each of the three orthogonal axes and as specified in the following schedule. A vibration cycle has a duration of 5 minutes per axis in which time the frequency is varied logarithmically from 20 to 2000 and back to 20 cycles per second. One vibration cycle is performed for each axis and the total test period for each tube is 15 minutes.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3-64 4441A

Double Amplitude inches	Accelera- tion g's	Fre- quency cps	Cycle Duration Per Axis minutes
0.050 ± 0.005		20-87 87-2000	5
- 0.050 ± 0.005	20	2000-87 87-20	

Tube Rejection Criterion. After completion of the shock tests, tubes are operated at an anode-to-cathode voltage of 1000 volts with the light level incident on the tube adjusted to provide an anode current of 8 microamperes. Electrical and/or mechanical tube failures due to shock or vibration are observed during the vibration test when the specified anode current is monitored. Tube rejection criterion for both tests is that the anode current of 8 microamperes will not change more than \pm 20 per cent at any time during the vibration test for each axis.

Design Tests:

Vibration. These tests are performed under conditions equivalent to those described in MIL-E-5272C*, par.4.7.14 and par.4.7.14.1. The vibration cycle has a duration of one hour and two cycles are performed for each of the three orthogonal axes. The total test period for each tube is six

Acceleration. These tests are performed in a centrifuge providing unidirectional acceleration by a method equivalent to that specified in MIL-E-5272C*, par.4.16.3, Proc.111 except that tubes are subjected for one minute to an increased acceleration test level of 100 ± 10 g's in both directions of the three orthogonal axes and the tubes are non-operating.

Military Specification MIL-E-5272C (ASG), 13 April 1959; and Amend-ment 1, 5 January 1960.

Vidicon

SpectraPlex Type for Single-Tube Color Cameras

- Integral Dichroic Filter Stripes Optically Encode Color Information
- Signal Can Be NTSC (or PAL) Encoded
- Requires Only Moderate Studio Lighting-100 lumens/foot² (fc)
- Produces Fully Compatible Video for Black-and-White Monitors
- Familiar Vidicon Structure Magnetic Focus and Deflection

General Data

Electrical:

Heater Voltage
Heater Current at 6.3 Volts, ac or dc 0.6 nominal A
Focusing Method Magnetic
Deflection Method Magnetic
Direct Interelectrode Capacitance: ^a
Target to all other electrodes 46 pE

Optical:

Outer faceplate glass is Corning code 7056 having a thickness of 0.094 $^{\prime\prime}$ \pm 0.012 $^{\prime\prime}.$

Inner faceplate	Dark-Clad Fiber Optics
Photoconductor	Antimony Trisulfide

Orientation of quality rectangle - Proper orientation is obtained when the horizontal scan is essentially parallel to the plane passing through the tube axis and short index pin.

Mechanical:

Maximum Length						
Maximum Diameter						
Bulb						
Base Small-Button Ditetrar 8-Pin (JEDEC No.E8-11)						
Socket Cinch ^b No.8VT (133-98-11-015), or equivalent						
Deflecting Yoke – Focusing Coil – Alignment Coil – Assembly Cleveland Electronicsc,d No.VDA-945, or equivalent						
Operating Position Any						
Weight (Approx.)						

BA Electronic Components

Maximum and Minimum Ratings, Absolute-Maximum Values: ^e						
For scanned area of 1/2" x 3/8" (12.7 mm x 9.5 mm)						
	Min.	Max.				
Grid-No.4 Voltage ^f		1000	V			
Grid-No.4 and Grid-No.3						
Voltage Difference	-	600	V			
Grid-No.3 Voltage ^f	-	1000	V			
Grid-No.2 Voltage	-	350	V	-		
Grid-No.2 Power Dissipation	-	1	W			
Grid-No.1 Voltage	-150	0	V			
Heater-Cathode Voltage	-125	10	V			
Heater-Voltage Tolerance	-	5	%			
Target Voltage	—	70	V	\bigcirc		
Dark Current		0.25	μΑ			
Peak Target Current ^g	-	0.75	μΑ			
Faceplate:		(1000				
Illumination ^h	-	{ 1000	m/ft ² lux			
Temperature:		(10,000	IUX			
Operating and storage		71	oC			
Typical Operation and Performance	e Data:					
For scanned area of 1/2'' \times 3/8''' – Faceplate temperature of 30° \pm 3° C and standard TV scanning Rate						
Grid-No.4 (Decelerator) Voltagef		900	V			
Grid-No,3 (Beam-Focus Electrode) Voltage ^f		540	V			
Grid-No.2 (Accelerator) Voltage		300	V	0		
Grid-No.1 Voltage for Picture CutoffJ	-65 to	-100	V			
Average ''Gamma'' of Transfer Characteristic for Signal-Output Current Between 30 nA and 300 nA		0.65		0		
Lag–Per Cent of Initial Value of Signal-Output Current 1/20 Second After Illumination is Removed ^k		. 25	%	•		
Peak-to-Peak Blanking Voltage:						
When applied to grid No.1		. 75	V			
When applied to cathode		20	V			

RCA Electronic Components

DATA 1

	Field Strength at Center of Focusing Coil ^m	60 ± 5	G			
)	Field Strength of Adjustable Alignment Coil ⁿ	0 to 4	G			
	Peak Deflecting-Coil Current:					
	Horizontal	250	mA			
	Vertical	45	mA			
,	Sensitivity					
	Conditions					
	Faceplate illumination (highlight)	6	Im/ft^2 (fc)			
	Dark current ^p	30	nA			
	Performance					
	Target voltage ^{q,r}	22 to 45	V			
)	Signal-Output Current ^s	300	nA			
	a This capacitance, which effectively is the output impedance of the tube, is increased when the tube is mounted in the deflect- ing yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohms.					
	b Made by Cinch Manufacturing Corporat	tion, 1501	Morse Ave.,			

Elk Grove Village, ILL 60007.

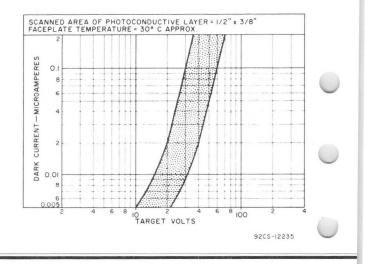
C Made by Cleveland Electronics Inc., 17877 St. Clair Avenue, Cleveland, OH 44110.

d These components are chosen to maximize resolution uniformity over the useful picture area of the camera tube. Resolution uniformity is necessary for good color uniformity.

e A description of the Absolute Maximum Rating is given in the General Section titled Rating System for Electron Tubes.

^f Grid-No.4 voltage must always be greater than grid-No.3 voltage. The maximum voltage difference between these electrodes, however, should not exceed 600 volts. The recommended ratio of grid-No.3 to grid-No.4 voltage is 6/10.

9 Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.

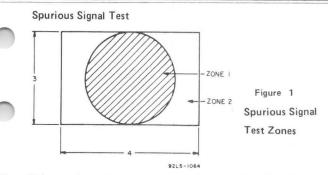

h For conditions where "white light" is uniformly diffused over entire tube face.

J With no blanking voltage on grid No.1.

k For initial signal-output current of 300 nanoamperes and a dark current of 30 nanoamperes.

- m The polarity of the focusing coil should be such that a northseeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- n The alignment coil should be located on the tube so that its center is at a distance of 3-3/4 inches from the face of the tube, and be positioned so that its axis is coincident with the axis of the tube, the deflecting yoke, and the focusing coil.
- P The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.
- 9 The target voltage for each tube must be adjusted to that value which gives the desired operating dark current.
- Indicated range serves only to illustrate the operating targetvoltage range normally encountered.
- S Defined as the component of the highlight target current after dark-current component has been subtracted.

Typical Range of Dark Current



RBA Electronic Components

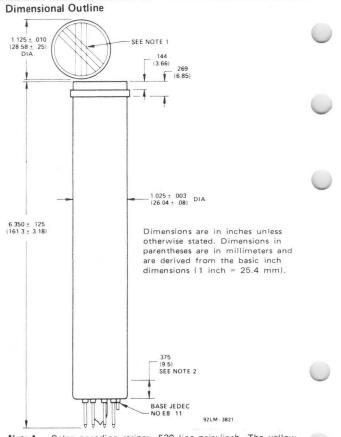
DATA 2

DATA 3

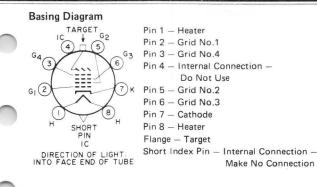
6-72

This test is performed using a uniformly illuminated test pattern containing two "zones" as shown in **Figure 1**. Illumination is for a peak signal current of 300 nanoamperes. Under these conditions, a blemish will be counted if its signal amplitude is greater than 45 nanoamperes under either illuminated or capped conditions. Some spots and fiber-optic distortion errors are more easily observed when viewing a red or a blue field. Therefore, Wratten filters numbers 25 or 47B (or equivalents) will be inserted into the light path to provide the red or blue fields. Table I shows the number of countable spots allowed. No two spots may be closer together than the distance equivalent to twenty TV lines.

Table I


For scanned area of 1/2" x 3/8" (12.7 mm x 9.5 mm)

Blemish Size (equivalent number of raster lines)	Zone 1	Zone 2
over 4	0	0
over 3	2	3
over 1	6	10
1 or less	*	*

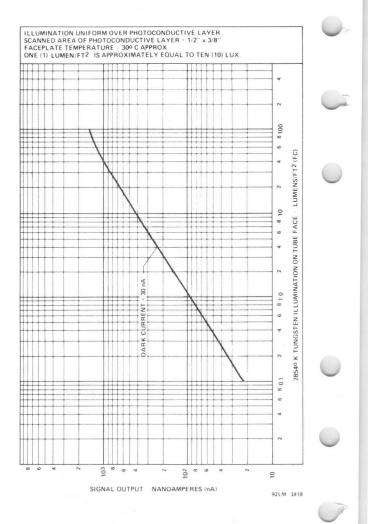

*Spots of this size are allowed unless concentration causes a smudged appearance.

Electronic

Components

- Note 1 Color encoding stripes, 530 line pairs/inch. The yellow (minus blue) stripes are shown vertically on the centerline, the cyan (minus red) stripes are 45° counterclockwise from the yellow stripes. The yellow stripes are perpendicular to the plane passing through tube axis and short index pin. This plane also defines the direction of horizontal scan.
- Note 2 Within this distance, diameter of bulb is $1.025^{\prime\prime} \pm 0.003^{\prime\prime}$ - 0.030^{\prime\prime}.

Typical System Response (These data are obtained by "sweeping" the input of a camera system, employing a SpectraPlex vidicon type 4445 with the output of a Bausch & Lomb Monochromator Model 33-86-02.



92LS-3819

Electronic Components

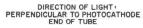
日/几

Typical Light Transfer Characteristic

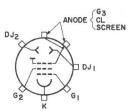
RBA Electronic Components

DATA 4

4449A


Image-Converter Tube

S-II RESPONSE


For Use as a High-Speed Light Shutter in Extremely-High-Speed Photography

Gene	ral	•
dene	a	

Spectral Response
Photocathode, Semitransparent: ShapeSpherical, Circular
Window: Area 9.52 sq.cm (1.48 sq.in.)
Minimum diameter
Index of refraction 1.48
Fluorescent Screen:
Shape
Phosphor
Fluorescence
Phosphorescence
Persistence ^a Medium Short Window:
Useful deflection
area (Approx.)
Minimum diameter
Index of refraction
Direct Interelectrode Capacitances (Approx.):
Grid No.1 to all other electrodes 20 pf
Deflecting electrode DJ1 to
deflecting electrode DJ2 1 pf
Deflecting electrode DJ1 to
all other electrodes 6 pf
Deflecting electrode DJ2 to all other electrodes 6 pf
Focusing Method.
Deflection Method.
Overall Length
Diameter
Operating Position
Weight (Approx.)
Terminal Connections (See Dimensional Outline):

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA | 6-64

Maximum Ratings, Absolute-Maximum Values:	
DC Anode Voltage ^b	
5	
Typical Operating Values: Anode Voltage ^b	
Characteristics:	
With conditions shown under Typical Operating Values and at an ambient temperature of 25°C Min. Typical Max.	
Photocathode Sensitivity: Radiant, at 4400 angstroms	

^a FOT P11 Spectral-Energy Emission Characteristic curve, see front of Cathode-Ray Tube, Storage-Tube, & Monoscope Section. See also accompanying Operating Considerations.

b Referred to photocathode.,

C Referred to anode.

d Over an interval not exceeding 1 microsecond.

- e Averaged over any interval of 8 minutes maximum.
- Adjusted to minimize shadowing effects in the displayed image caused by the wires of grid No.1.
- 9 For conditions where the light source is a tungsten-filament lamp having a lime glass envelope (Corning Glass Code No.0080, or equivalent). The lamp is operated at a color temperature of 2870° K. A light input of 0.01 lumen is used to irradiate a centered 1/2-inch diameter of the photocathode.
- h pefined as the ratio of the separation of two diametrically opposite image points on the screen to the separation of the corresponding image points on the photocathode.

j

Determined as follows: The image incident on the photocathode is perpendicular to the grid-No.1 wires and consists of 2 parallel lines on a bright background approximately 0.16" in length and separated by a distance of 0.460" \pm 0.002". The image on the photocathode is focused and positioned so that the separation between the image lines is an equal distance on bath sides of the geometric center of the photocathode. The line spacing on the screen is measured adjacent to the faint image of the center grid-No.1 wire. A second magnification value (Emx) is measured under the conditions established in (1) except that the lines are separated by a distance of 1.00° ± 0.01°. Distortion (D) is defined by the equation:

$$D = \frac{Emx}{Cmx} - 1$$

- m Determined with a resolution pattern consisting of horizontal and vertical bars. The limiting resolution value is measured adjacent to the faint image of the center grid-No.1 wire and applies to both vertical and horizontal resolution.
- $^{\rm N}$ Measured at the edge of a 1-inch diameter circle positioned concentric with the geometric center of the photocathode under the same conditions established in (m).
- established in (m). P under the following conditions: Light incident on the photocathode is ransmitted through a blue filter (Corning C. S. No.S-SG filter from Melt No.S-133 polished to 1/2 stock thickness—Manufactured by the Corning glass works, corning, New York) from a tungsten-filament lamp having a lime glass envelope. The lamp is operated at a color temperature of 2870° K. A 1/2-inch diameter of the photocathode is irradiated and the value of light flux incident on the filter is 0.1 lumen. A calibrate diameter aperture is positioned 12 inches from the screen of the 4449A. The output current (11) of the receiver is noted. The same receiver is then positioned to receive the radiant flux originally incident on the photocathode and its output current (12) is noted. Radiant power gain [G] is defined by the equation: (G) is defined by the equation:

$$G = 2000 \times \frac{I_1}{I_2}$$

The coefficient 2000 is derived by assuming that the integrated light radiated by the screen is 79 per cent of that value that would be obtained if the light emitted by the screen has a cosine distribution.

- 9 See Spectral Characteristic of 28700 K Light Source and Spectral Characteristic of Light from 2870 K Source after passing through Indicated Blue Filter at front of this Section.
- Defined as that value of incident radiation required to cause an increase in screen brightness equal to the screen background brightness.
- $^{\rm S}$ The ratio of the luminance values of the brightest area to the darkest area of the screen with the entire photocathode uniformly illuminated. The value of incident illumination on the photocathode is 1 footcandle and the light spot on the screen has a diameter of 0.10" \pm 0.01".
 - At trace produced on the screen, when the center of the photocathode is irradiated with a 0.025-inch diameter light spot and an ac voltage is applied to the deflecting electrodes, will not deviate more than μ^{o} from the plane passing through the center of the recessed ball cap of grid No.1 and the major axis of the tube. The angle produced by the trace and the faint images of the grid wires, that are observed when the photocathod, will be 90° ± 30°.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-II RESPONSE is shown at front of this Section

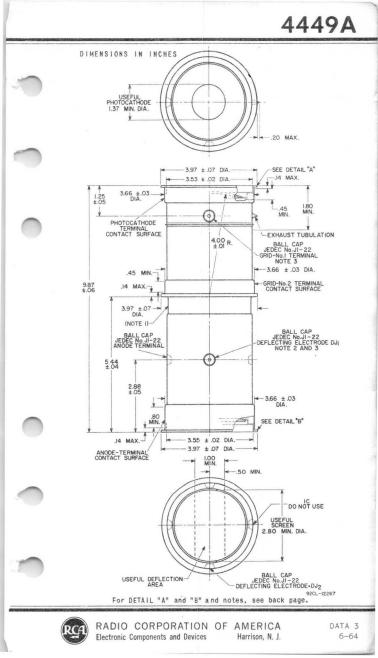
OPERATING CONSIDERATIONS

Magnetic shielding of the 4449A is required to minimize the effects of extraneous fields on tube performance; ac magnetic fields are particularly objectionable in that they seriously impair tube resolution. If an iron or steel case is used, care should be taken in its construction to insure that the case is completely demagnetized.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

DATA 2 6-64

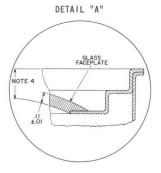
4449A


The *P-11 phosphor screen* employed by the 4449A emits highintensity actinic blue fluorescence and has a persistence characteristic, within the range of IO microseconds to I millisecond, that is dependent on the current density employed.

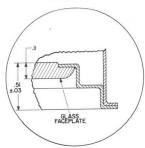
To prevent degradation in the resolution of deflected images care must be taken to assure that the deflecting voltage is free of ac ripple and that shielded semiflexible leads are used for making connection to the deflecting electrode terminals. Balanced deflection with respect to anode should be used.

Exposure Time. In practice, the shutter speeds attainable with the 4449A are limited by the ability of the external circultry to supply to grid No.1 good rectangular-wave pulses of sufficiently short duration. With perfect pulse-forming circuits, the minimum exposure time of the 4449A is limited by electron transit time which, for an anode voltage of 15 kilovolts, is in the order of 10^{-9} seconds. Electrons are defocused if they are not beyond the influence of the gating (control) grid when its voltage returns to cutoff value at the end of the gating pulse.

The high voltage at which the 4449A is operated may be very dangereous. Great care should be taken in the design of apparatus to prevent the user from coming in contact with the high voltage. Precautions must include safeguards which eliminate all hazards to operating personnel. In the use of high-voltage tubes, such as the 4449A, it should always be remembered that high voltage may appear at normally lowpotential points in the circuit because of capacitor breakdown or incorrect circuit connections. Before any part of the circuit is touched, the voltage-supply switch should be turned off and both terminals of any capacitors grounded.



NOTES FOR DIMENSIONAL OUTLINE


Note I: Not to be used for mechanical support or electrical connection.

Note 2: The plane passing through the center of the recessed ball cap DJ2 and the major axis of the tube will not deviate more than 3° from the plane passing through the center of the recessed ball cap DJI and the major axis of the tube. Note 3: The plane passing through the center of the recessed ball cap DJI and the major axis of the tube will not deviate more than 5° from the plane passing through the center of the recessed ball cap for grid No.1 and the major axis of the tube.

Note 4: This distance on the major axis of the tube is .33 ± .03.

DETAIL "B"

DIMENSIONS IN INCHES

RADIO CORPORATION OF AMERICA Harrison, N. J. Electronic Components and Devices

Multiplier Phototube

I2-STAGE, HEAD-ON S-20 RESPONSE ENCLOSED, IN-LINE SPHERICAL-FACEPLATE TYPE DYNODE STRUCTURE HIGH CURRENT AMPLIFICATION EXTREMELY SHORT RISE TIME

For Near-Infrared Ruby-Laser Detector Systems, Flying-Spot Scanning, Photometry, and Scintillation Counters Requiring Low-Dark Current and High Sensitivity over the Visible and Near-Infrared Regions of the Spectrum.

General:

Shape Minimum area Minimum diameter	K-Na-Cs-Sb (Multialkali) Spherical, Circular 2.2 sq.in. 1.68 in. Borosilicate Glass ^a Copper-Beryllium Approx.):
Anode to all other electrodes Dynode No.12 to all other electrode	
Maximum Overall Length	
Seated Length	5.50" ± 0.19"
Maximum Diameter	2.06"
	Any
Socket	No.20-PM, or equivalent
Magnetic Shield Perfection	
	mall-Shell Bidecal 20-Pin
Basing Designation for BOTTOM VIEW	320-102), Non-hygroscopic 20E
Pin 1-No Internal Connection Pin 2-Dynode No.1	
Pin 3-Dynode No.3	NC NC NC DY12
Pin 4 - Dynode No.5	9 10 11 12 DY10
Pin 5-Dynode No.7 Pin 6-Dynode No.9	(B) + (13) DY8
Pin 6 - Dynode No.9 DY	H H (14)
Pin 8 – Anode DY96	H H DYG
Fill 9-Salle as Fill 1	H H 15
Pin 10 - Same as Pin 1 Pin 11 - Same as Pin 1	H H IG DY4
Pin 12 Dunada No 12	K H H TITINY
Pin 13 – Dynode No.10	
Pin 14 - Dynode No.8	
Pin 15 - Dynode No.6 Pin 16 - Dynode No.4	
Pin 17 – Dynode No.4	NC K
Pin 18 - Same as Pin 1	DIRECTION OF LIGHT:
Pin 19- (Focusing Electrode)	INTO END OF BOLD
Pin 20 – Photocathode	

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA | 6-64

Maximum Ratings, Absolute-Maximum Values:

DC Supply Voltage:		
Between anode and cathode	0 max.	volts
Between anode and dynode No.12 40	0 max.	volts
	0 max.	volts
	0 max.	volts
Between focusing electrode		
	0 max.	
Average Anode Current ^d		
Ambient-Temperature Range	to +85	°C

Characteristics Range Values:

Under conditions with dc supply voltage (E) across a voltage divider providing electrode voltages shown in Table I. Focusing electrode is connected to arm of a potentionmeter between cathode and dynode No.1 and its voltage is adjusted to that value which provides maximum anode current.

With E = 2300 volts (Except as noted)

	Min.	$Ty\phi$.	Max.		
Sensitivity: Radiant, at 4200					
angstroms Cathode radiant, at 4200	-	4.3×10 ⁵	-	a/w	
angstroms Luminous,	-	0.064	-	a/w	
at 0 cps ^e Cathode luminous: With tungsten	250	1000	12000	a/lm	
light source ^f With blue light	1.1×10^{-4}	1.5×10^{-4}	-	a/lm	
source ^{g, h} With red light	5.5×10^{-8}	-	-	а	
Source ^{j,k}	3×10^{-7}	5×10^{-7}	-	а	
cation Equivalent Anode- Dark-Current Input at a luminous sensi- tivity of	-	6.6×10 ⁶	-		
300 a/lm ^m Anode-Pulse Rise	-	1 × 10-10	1.3×10^{-9}	lm	0
Time ⁿ Greatest Delay Between Anode Pulses: Due to position		2 × 10 ⁻⁹	-	sec	
from which elec- trons are simul- taneously released within a circle centered on tube					0

	Min.	Typ.	Max.	
face having a				
diameter of— 1.4"		3 × 10-10p		
1.6"	_	5 x 10-10p	_	sec sec
With E = 1800 volts (Ex	cept as no	ted)		
	Min.	Typ.	Max.	
Sensitivity:				
Radiant, at 4200				
angstroms Cathode radiant, at	-	4.3×10^{4}	-	a/w
4200 angstroms.	-	0.064	_	a/w
Luminous, at 0 cps ^e .	-	100	-	a/lm
Cathode luminous: With tungsten				
light source ^f .	1.1×10^{-4}	1.5×10^{-4}	_	a/lm
With blue light	F F 10-8			
source ^{g,h} With red light	5.5 X 10 0	-	-	а
sourcej,k	3×10^{-7}	5×10^{-7}		а
Current Amplification	-	6.6×10^{5}	-	
Equivalent Anode Dark-Current				
Input at a				
luminous sensi-				
tivity of 300 a/lm ^m	_	1×10^{-10}	1.3×10^{-9}	lm
Equivalent Noise				
Input ^q	17 <u></u> -	1.1×10^{-12}	2.4 × 10-12	lm

- ^a Corning No.7056, made by Corning Glass Works, Corning, New York, or equivalent.
- b Made by Cinch Manufacturing Company, 1026 South Homan Avenue, Chicago 24, Illinois.
- ^C Magnetic shielding material in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1829 (cit. Opera Bldg., 20 North Wacker Drive, Chicago 6, 1011nois, or equivalent.
- d Averaged over any interval of 30 seconds maximum.
- ^e Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 0.1 microlumen is used.
- f Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- 9 under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness--Manufactured by the Corning Glass Works, Corning, New York) from a lungsten-filament lamp operated at a color temperature of 28700 K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.

h See Spectral Characteristic of 2870° K Light Source and Spectral Characteristic of Light from 2870° K Source after passing through Indicated Blue Pilter at front of this Section.

J Under the following conditions: Light incident on the cathode is transmitted through a red filter (corning C.S. No.2-62--Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light-flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 6-64

- K see Spectral Characteristic of 28700 % Light Source and Spectral Characteristic of Light from 28700 % Source after passing through Indicated Red Filter at front of this Section.
- At a tube temperature of 25⁰ C. Dark current may be reduced by use of a refrigerant.
- Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- P These values also represent the difference in time of transit between the photocathode and dynode No.1 for electrons simultaneously released from the center and from the periphery of the specified areas.
- 9 Under the following conditions: Supply voltage (E) is as shown, 25° c tube temperature, external shield connected to cathode, bandwidth i cycle per second, tungsten-light source at a color temperature of 2870° x interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.

Between	6.95% of Supply Voltage (E) multiplied by
Cathode and Dynode No.1	2
lynode No.1 and Dynode No.2	1.4
lynode No.2 and Dynode No.3	1
Dynode No.3 and Dynode No.4	1
Dynode No.4 and Dynode No.5	1
ynode No.5 and Dynode No.6	1
Dynode No.6 and Dynode No.7	1
Dynode No.7 and Dynode No.8	1
lynode No.8 and Dynode No.9	1
Dynode No.9 and Dynode No.10	1
Dynode No.10 and Dynode No.11	1
)ynode No.11 and Dynode No.12	1
lynode No.12 and Anode	1
anode and Cathode	14.4

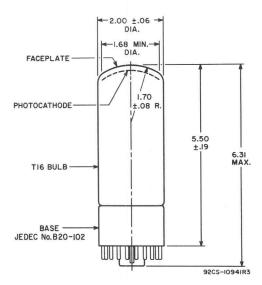
TABLE I

Focusing electrode is connected to arm of potentiometer between cathode and dynode No.1. The focusingelectrode voltage is varied to give maximum anode current.

OPERATING CONSIDERATIONS

The operating stability of the 4459 is dependent on the magnitude of the anode current and its duration. When the 4459 is operated at high average values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends of the severity of the operating conditions. After a period of idleness, the 4459 usually recovers a substantial percentage of such loss in sensitivity.

It is recommended that the average anode current be well below the maximum-rated value of I milliampere when stability of operation is important. When maximum stability is required, the average anode current should not exceed IO microamperes.

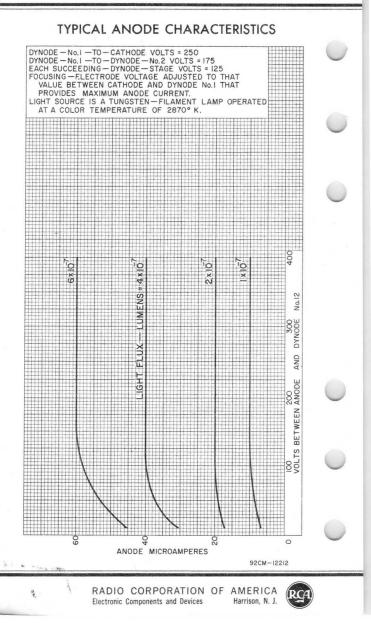


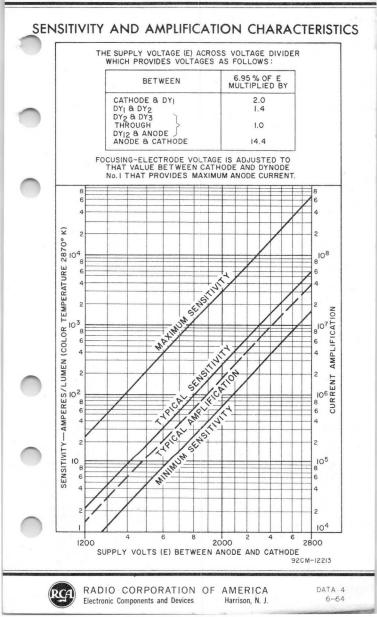
Electrostatic and/or magnetic shielding of the 4459 may be necessary.

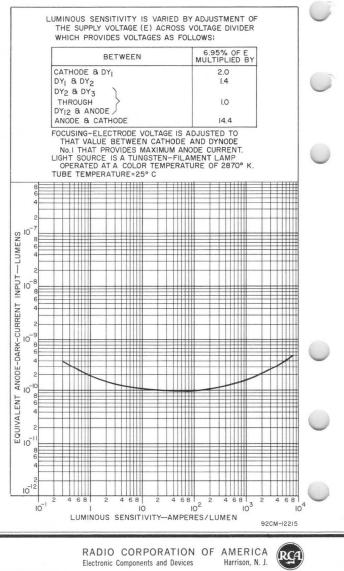
Adequate light shielding should be provided to prevent extraneous light from reaching any part of the 4459.

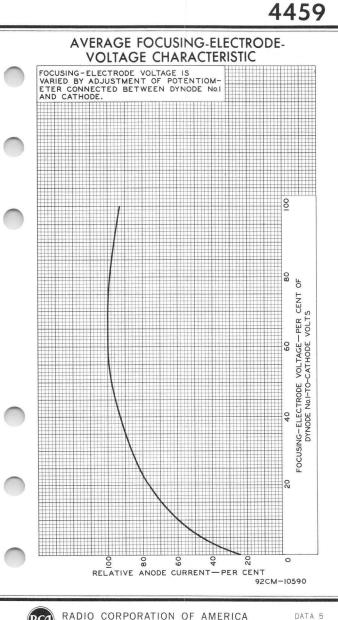
The highvoltages at which the 4459 is operated are very dangerous. Care should be taken in the design of apparatus to prevent the operator from coming in contact with these high voltages. Precautions should include the exclosure of high-potential terminals and the use of interlock switches to break the primary circuit of the high-voltage power supply when access to the apparatus is required.

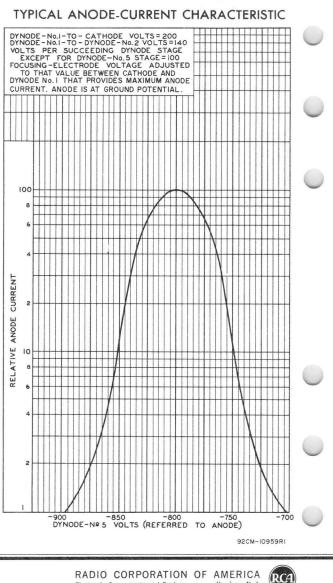
SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-20 RESPONSE is shown at the front of this Section


DIMENSIONS IN INCHES


Center line of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.


DATA 3 6-64


TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC

Electronic Components and Devices

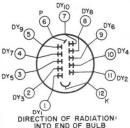
AMERICA Harrison, N. J. DATA 5 6-64

Electronic Components and Devices

Harrison, N. J.

Multiplier Phototube

S-11 RESPONSE


"RUGGEDIZED", IO-STAGE, HEAD-ON, ELECTROSTATICALLY FOCUSED FLAT-FACEPLATE TYPE IN-LINE DYNODE STAGES

> For Detection and Measurement of Nuclear-Radiation and Low-LevelLight in Compact Industrial and Military Equipment

General:

Spectral Response. S-11 Wavelength of Maximum Response. 4400±500 angstroms Cathode, Semitransparent. Cesium-Antimony Minimum area. 0.2 sq. in. Window 0.5 in. Window Lime Glass (Corning ^a No.0080), or equivalent Shape Index of refraction at 5893 angstroms. 1.51 Dynode Material. Copper-Beryllium
Anode to dynode No.10
Anode to all other electrodes
(Excluding semiflexible leads)
Maximum Diameter 0.78"
Operating Position
Weight (Approx.)
Bulb
Magnetic Shield Perfection Mica Co. ^b , or equivalent
BaseSmall-Button Thirteenar 12-Semiflexible Lead,
(JEDEC No.E12-72), and Protective Shell
Basing Designation for BOTTOM VIEW

Lead 1 - Dynode No.1 Lead 2 - Dynode No.3 Lead 3 - Dynode No.5 Lead 4 - Dynode No.7 Lead 5-Dynode No.9 Lead 6 - Anode Lead 7 - Dynode No.10 Lead 8 - Dynode No.8 Lead 9-Dynode No.6 Lead 10 - Dynode No.4 Lead 11 - Dynode No.2 Lead 12 - Photocathode

Maximum Ratings, Absolute-Maximum Values:

Supply Voltage (DC or Peak AC):					
Between Anode and Cathode			 1500	max.	volts
Between Anode and Dynode No.10 .			 300	max.	volts
Between Consecutive Dynodes			 250	max.	volts
Between Dynode No.1 and Cathode.			 400	max.	volts
Average Anode Current ^c					
Ambient Temperature		•	 75	max.	°C.

RADIO CORPORATION OF AMERICA **Electronic Components and Devices** Harrison, N. J. DATA I 6-64

Characteristics Range Values:

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode With E = 1250 volts (Except as noted)

	14	<i>T i</i>	Max.	
	Min.	Typ.	max.	
Sensitivity:				
Radiant, at 4400		7		
angstroms		6×10^{3}	_	a/w
Cathode radiant,				
at 4400 angstroms		0.048		a/w
Luminous.				
At 0 cps ^d	2	7.5	60	a/lm
	>	1.0	00	ur m
Cathode luminous:				
With tungsten light	-	-		
source ^e	4×10^{-5}	6×10^{-5}	-	a/lm()
With blue light				\smile
source ^{f,g}	1×10^{-8}	6×10^{-8}	-	а
Current Amplification	TATO	1.25×10^{5}		
	_	T. 20 X TO.		
Equivalent Anode-Dark-				
Current Input at a				
luminous sensitivity of			0	
7.5 a/lm ^h	-	8×10^{-10}		lm
Equivalent Noise Input ^j	-	3×10^{-12}		lm
Anode-Pulse Rise Time ^k	_	2.1×10^{-9}		sec
Electron Transit Time ^m		2.3×10^{-8}	_	sec
Quantum Efficiency at				10001000-00
		14		%
4300 angstroms	-	14	1000	10

^a Made by Corning Glass Works, Corning, New York.

b Magnetic shielding in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1322 North Ellston, Chicago 24, Illinois, or equivalent.

c Averaged over any interval of 30 seconds maximum.

d Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 10 microlumens is used.

6 Lader the following conditions: The light-source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 28700 K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.

f Under the following conditions: Light incident on the cathode is transmitted through ablue filter (Corning C.S. No.5-58, polished to1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870 K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.

- 9 See Spectral Characteristic of 2870° K Light Source and Spectral Characteristic of Light from 2870° K Source after passing through Indicated Blue Filter at front of this Section.
- h At a tube temperature of 25 $^{\rm O}$ C. Darkcurrent may be reduced by use of a refrigerant such as dry ice.
- J under the following conditions: Supply voltage (E) is as shown, 25°C tube temperature, external shield connected to cathode, bandwidth 1 cycle per second, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "non" period of the pulse is equal to the "off" period.

Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transittime variation and is measured under conditions with the incident light fully illuminating the photocathode.

The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-11 RESPONSE is shown at the front of this Section

ENVIRONMENTAL TESTS-

The 4460 is designed to withstand the shock, vibration, and acceleration tests shown below which are equivalent to those specified in MIL-E-5272C* for equipment mounted on the structures of missiles propelled or launched by high-thrust rocket engines. The accelerations specified in these tests are applied directly to the tubes.

One-Hundred Per-Cent Shock and Vibration Testing:

Each 4460 is subjected in sequence to shock and then to vibration as specified below with the tube non-operating.

Shock. These tests are performed first, per method of MIL-E-5272C*, Paragraph 4.15.5.1, Procedure V, on apparatus which provides a half-wave sinusoidal shock pulse. One-hundred per-cent testing of all 4460's is performed. Each 4460 is subjected to three impact shocks in each direction of the three orthogonal axes shown in the accompanying *Orthogonal Axes Used During Environmental Tests* drawing. The peak acceleration of the impact shock is 30 ± 3 g's and the time duration is 11 ± 1 milliseconds. Each tube is subjected to a total of 18 impact shocks.

Vibration. These tests are performed next, on apparatus which applies variable-sinusoidal frequency vibration to the tube, per method of MIL-E-5272C*, paragraph 4.7.14 and paragraph 4.7.14.1. One-hundred per-cent testing of all 4460's is performed. Each 4460 is vibrated in each of the three orthogonal axes shown in the accompanying Orthogonal Axes Used During Environmental Tests drawing and as specified in the schedule below. A vibration cycle has a duration of 5 minutes per axis in which time the frequency is varied logarithmically from 20 to 2000 and back to 20 cycles per second. One vibration cycle is performed for each axis and the total test period for each tube is 15 minutes.

Double Amplitude Inches	Acceleration g's	Frequency cps	Cycle Duration per axis minutes
0.050 ± 0.005	-	20 - 87	2
-	20 ± 2	87 - 2000	
-	20 ± 2	2000 - 87	> 5
0.050 ± 0.005	-	87 - 20	

RCA

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 6-64

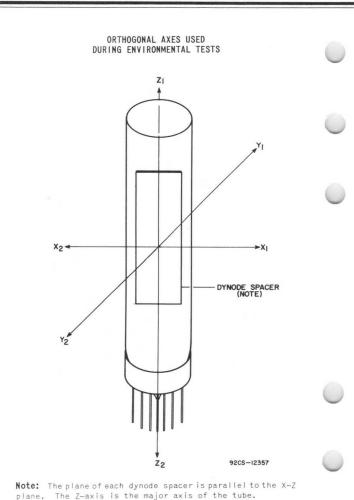
Tube Rejection Criterion. Upon completion of the One-Hundred Per-Cent Shock and Vibration Testing each tube is tested at a anode-to-cathode voltage of 1250 volts under the conditions shown under Characteristics Range Values for Equipment Design and will meet the specified values.

Design Tests:

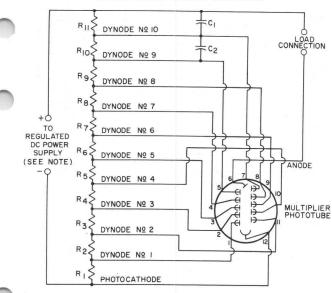
Vibration. These tests are performed under conditions equivalent to those described in MILE-5272C*, paragraph 4.7.14 and paragraph 4.7.14.1. The vibration cycle has a duration of one hour and two cycles are performed for each of the three orthogonal axes shown in the accompanying *Orthogonal Axes Used During Environmental Tests* drawing. The total test period for each tube is six hours. Tubes are operating during the test.

Acceleration. These tests are performed in a centrifuge providing unidirectional acceleration by a method equivalent to that specified in MIL-E-5272C*, paragraph 4.16.3, Procedure III, except that tubes are subjected for one minute to an increased acceleration test level of 100 ± 10 g/s in both directions of the three orthogonal axes shown in the accompanying Orthogonal Axes Used During Environmental Tests drawing and the tubes are non-operating.

* Military Specification MIL-E-5272C (ASG), 13 April 1959; and Amendment 1, 5 January 1960.



4460

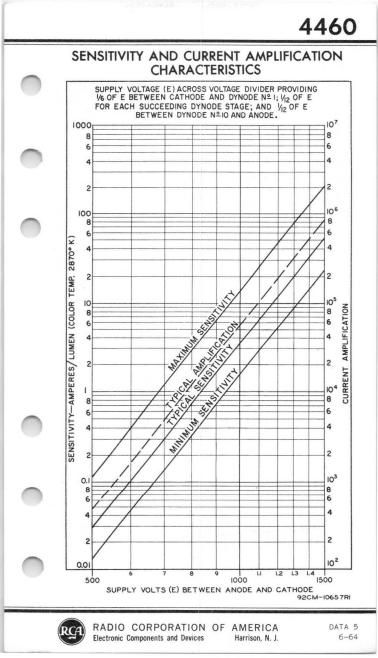


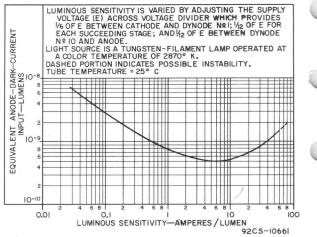
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 6-64

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT

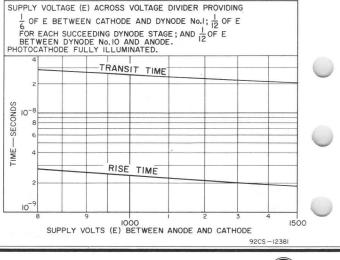
92CS-10656RI

Note: Adjustable between approximately 500 and 1500 volts DC.


C₁,C₂: 0.01 µf, 500 volts (dc working) R₁: 91,000 ohms, 2 watts R₂ through R₁₁: 47,000 ohms, 1 watt

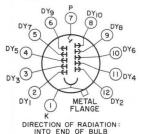

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 4 6-64

AVERAGE ANODE CHARACTERISTICS



TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC

TYPICAL TIME RESOLUTION CHARACTERISTICS


Photomultiplier Tube⁴

RUGGED VIBRATION-RESISTANT STRUCTURE S-11 RESPONSE ELECTROSTATICALLY FOCUSED **IO-STAGE. HEAD-ON. FLAT-FACEPLATE TYPE** DYNODE STAGES For Detection and Measurement of Nuclear Radiation and other Low-Level Light Sources. Especially Useful in Missile and Rocket Service and other Industrial and Military Applications where Severe Environmental Conditions may be Encountered. General: Spectral Response. S-11 Wavelength of Maximum Response 4400 ± 500 angstroms Cathode, Semitransparent Cesium-Antimony Minimum area 1.2 sq. in. . 1 24" Minimum diameter

3.2 pf Anode to all other electrodes. . . 5.0 pf . Maximum Overall Length (Excluding semiflexible leads). 3.18" 1.56" Maximum Diameter . . . Operating Position . . Any Weight (Approx.) . 2.2 oz Bulb . . . T12 . . . Millen Co. b Magnetic Shield. . . , or equivalent Base Special Terminal Diagram: BOTTOM VIEW

Lead 1 & Metal Flange-Photocathode Lead 2 - Dynode No.1 Lead 3 - Dynode No.3 Lead 4 - Dynode No.5 Lead 5 - Dynode No.7 Lead 6 - Dynode No.9 Lead 7 - Anode Lead 9 - Dynode No.10 Lead 9 - Dynode No.8 Lead10 - Dynode No.6 Lead11 - Dynode No.4

Lead 12 - Dynode No. 2

Maximum Ratings, Absolute-Maximum Values:

Between anode and cathode. 1500 volts Between anode and dynode No.10 250 volts Between consecutive dynodes. 200 volts Between dynode No.1 and cathode. 400 volts Average Anode Current ^c . 1 Average Cathode Current ^c , d. 2	DC Supply Voltage:	
Between anode and dynode No.10		1500 volts
Between dynode No.1 and cathode 400 volts Average Anode Current ^c 1 ma Average Cathode Current ^c , d 2 μa	Between anode and dynode No.10	250 volts
Average Anode Current ^c 1 ma Average Cathode Current ^c , d 2 μa		
Average Cathode Current¢,d 2 µa		
	Average Anode Current ^c	
		2 µa
Ambient lemperature	Ambient Temperature	75 °C

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA I 5-65

Characteristics Range Values:

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between anode and dynode No.10 and anode.

With E = 1250 volts (Except as noted)

	Min.	Typ.	Max.		
Sensitivity: Radiant, at 4400 angstroms		8 × 10 ⁻³	-	a/w	C
Cathode radiant, at 4400 angstroms Luminous, at 0 cps ^e	- 3	0.048	90	a/w a/lm	
With dynode No.10 as output electrode ^f Cathode luminous:	-	6	-	a/lm	
With tungsten light source ^g 4 With blue light	× 10 ⁻⁵	6 × 10 ⁻⁵	-	a/lm	C
source ^h 4 Current Amplification 4 Equivalent Anode-		6 × 10 ⁻⁸ 1.7 × 10 ⁻⁵	-	а	
Dark-Current Input at a luminous sensitivity of 10 a/lm ^j Equivalent Noise Input ^k , m	-	2.8 × 10-12 1.	2 × 10 ⁻⁹ .8 × 10 ⁻¹	lm 1 lm	
Anode-Pulse Rise Time ⁿ Electron Transit Time ^p		2.4 × 10 ⁻⁹ 2.9 × 10 ⁻⁸	-	sec	
Quantum Efficiency at 4300 angstroms	_	2.9 × 10 °	_	sec %	
With $E = 750$ volts (Except	as note	d)			
	Min.	Typ.	Max.		
Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400	-	1.8×10^{-2}	-	a/w	
angstroms	-	0.048	-	a/w	6
Luminous, at0 cps ^e Cathode luminous: With tungsten light	-	0.22	-	a/lm	
source ⁹	4 × 10 ⁻	$5 6 \times 10^{-5}$	-	a/lm	
With blue light source ^h Current Amplification	4 × 10-		-	а	
Equivalent Anode-Dark- Current Inputata luminous sensitivity of					C
10 a/lm ^j	-	5×10^{-10}	2×10^{-9}	9 lm	
Anode-Pulse Rise Time ^k Electron Transit Time ^p	-	3.1 × 10 ⁻⁹ 3.8 × 10 ⁻⁸	-	sec sec	
 a Made by Corning Glass Works, C b Magnetic shielding in the for James Millen Manufacturing C 	m of foi	l or tape as ava	uilable fr eet. Mald	om the len 48.	C

Massachusetts, or equivalent.

- c Averaged over any interval of 30 seconds maximum.
- d For a uniformly illuminated area of 0.5 square inches minimum.
- ^e Under the following conditions: The light source is a tungsten-filament lamp haying a lime-glass envelope. It is operated at a color temperature of 2870 K and at a light input of 10 microlumens.
- f An output current of opposite polarity to that obtained at the anode may be provided by using dynade No.10 as the output electrode. With this arrangement, the load is connected in the dynade No.10 circuit and the anode serves only as a collector. The curves under Typical Anode Characteristics do not apply when dynade No.10 is used as the output electrode.
- 9 Under the following conditions: The light source is a tungsten-filament lamp haying a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- applied between cathode and an other strates detailed is transmitted through ablue filter (Corning C.S. No. 5-58, polished to 1/2 stock thickness—Maurfactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° k. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ${\bf j}$ At a tube temperature of 25 $^{\rm O}$ C. Dark current may be reduced by use of a refrigerant.
- ^K For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1250 volts is recommended.
- ^m Under the following conditions: Supply voltage (E) is as shown, 25° C tube temperature, external shield connected to cathode, bandwidth 1 cycleper second, tungsten-light source at acolor temperature of 2870 K interrupted at allow audio-frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- ⁿ Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rime is primarily a function of transittime variations and is measured under conditions with an incident-light fully ill uminating the photocathode.
- ^P The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reachespeak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.
- Alternate designation for Multiplier Phototube.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-11 RESPONSE is shown at the front of this Section

ENVIRONMENTAL TESTS:

The 4461 is designed to withstand the shock, vibration, and acceleration tests shown below which are equivalent to those specified in ML-E-5272C* for equipment mounted on the structures of missiles propelled or launched by high-thrust rocket engines. The accelerations specified in these tests are applied directly to the tubes.

One-Hundred Per-Cent Shock and Vibration Testing:

Each 4461 is subjected in sequence to shock and then to vibration as specified below with the tube non-operating.

Shock. These tests are performed first, per method of MIL-E-5272C*, Paragraph 4.15-5.1, Procedure V, on apparatus which provides a half-wave sinusoidal shock pulse. One-hundred per-cent testing of all 4461's is performed. Each 4461 (non-operating) is subjected to three impact shocks in each direction of the three orthogonal axes. The peak acceler

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 5-65 ation of the impact shock is 30 ± 3 g's and the time duration is 11 \pm 1 milliseconds. Each tube is subjected to a total of 18 impact shocks.

Vibration. These tests are performed next, on apparatus which applies variable-sinusoidal frequency vibration to the tube, permethod of MIL-E-5272C*, paragraph 4.7.14 and paragraph 4.7.14.1. One hundred per-cent testing of all 4461's is performed. Each 4461 is vibrated in each of the three orthogonal axes as specified in the schedule below. A vibration cycle has a duration of 5 minutes per axis in which time the frequency is varied logarithmically from 20 to 2000 and back to 20 cycles per second. One vibration cycle is performed for each axis and the total test period for each tube is 15 minutes.

Double Amplitude Inches	Acceleration g's	Frequency cps	Cycle Duration Per Axis minutes
0.050 ± 0.005	-	20 - 87)
-	20 ± 2	87 - 2000	5
-	20 ± 2	2000 - 87	1
0.050 ± 0.005	-	87 - 20)

Tube Rejection Criterion. Upon completion of the Shock and Vibration Testing each tube is tested at a anode-to-cathode voltage of 1250 volts with the light level incident on the tube adjusted to provide an anode current of approximately 8 microamperes. Electrical and/or mechanical tube failures due to shock or vibration will be observed during the vibration test when the specified anode current is monitored. Tube rejection criterion for both tests is that the anode current of 8 microamperes will not change more than ±20 per cent upon completion of the vibration test for each axis.

Design Tests:

Vibration. These tests are performed under conditions equivalent to those described in MIL-E-5272C*, paragraph 4.7.14 and paragraph 4.7.14.1. The vibration cycle has a durationof one hour and two cycles are performed for each of the three orthogonal axes. The total test period for each tube is six hours.

Acceleration. These tests are performed in a centrifuge providing unidirectional acceleration by a method equivalent to that specified in MIL- $E-5272C^*$, paragraph 4.16.3, Procedure III, except that tubes are subjected for one minute to an increased acceleration test level of 100 \pm 10 g's in both directions of the three orthogonal axes. The tubes are non-operating during the test.

* Military Specification MIL-E-5272C (ASG), 13 April 1959; and Amendment 1, 5 January 1960.

DATA 2

OPERATING CONSIDERATIONS

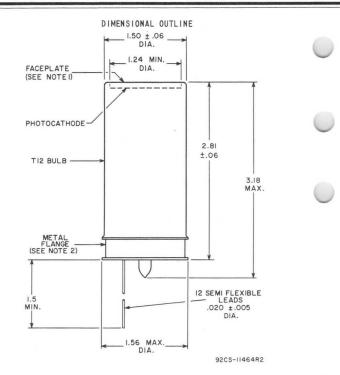
The operating stability of the 4461 is dependent on the magnitude of the anode current and its duration. When operating at high average values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 4461 usually recovers a substantial percentage of such loss in sensitivity.

It is recommended that the average anode current be well below the maximum rated value of I milliampere when stability of operation is important. When maximum stability is required. the average anode current should not exceed 10 microamperes.

Electrostatic and/or magnetic shielding of the 4461 may be necessary.

Adequate shielding should be provided to prevent extraneous radiation from reaching any part of the 4461.

The high voltages at which the 4461 is operated are very dangerous. Before any part of the circuit is touched, the power supply switch should be turned off and both terminals of any capacitors grounded.

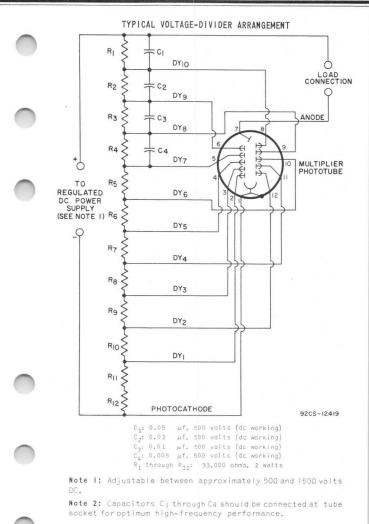

Accompanying Typical Voltage-Divider Arrangement is recommended for use with the 4461. Resistance values for the voltage-divider arrangement range from 10,000 ohms perstage to 1,000,000 ohms per stage. The choice of resistance values for the voltage-divider network is usually a compromise. If low values of resistance per stage are utilized, the power drawn from the regulated power supply and the required wattage rating of the resistors increase. Phototube noise may also increase due to heating if the divider network is near the photocathode. The use of resistance values near I megohm per stage may cause deviation from linearity if the voltage-divider current is not maintained at a value several times that of the maximum value of anode current, and may limit anode-current response to pulsed light. The latter effect may be reduced by connecting capacitors between the leads for dynodes No.7 and No.8, dynodes No.8 and No.9, dynodes No.9 and No.10, and between dynode No.10 and anode return. In addition to non-linearity and pulse-limiting effects, the use of resistance values exceeding I megohm per stage make the 4461 more susceptible to leakage effects between terminals with possible resulting deviation in interstage voltage leading to a loss of current amplification.

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

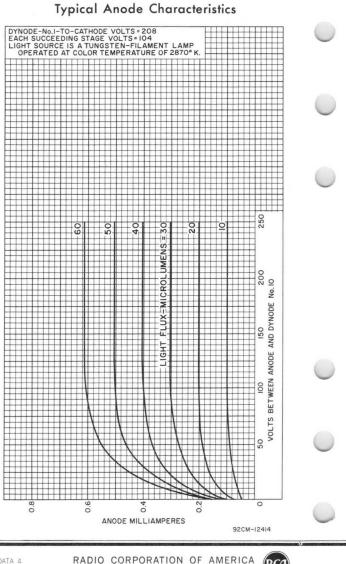
DATA 3 5-65

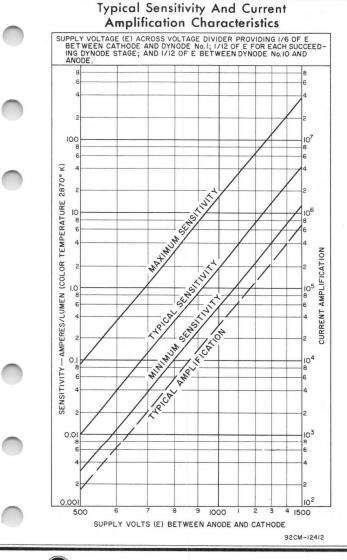
DIMENSIONS IN INCHES


Center line of bulb will not deviate more than 2^0 in any direction from the perpendicular erected at the center of bottom of the base flange.

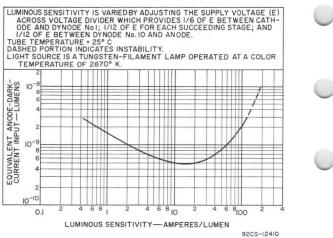
Note 1: Deviation from flatness within the 1.24 inch diaeter area will not exceed 0.010 inch from peak to valley.

Note 2: The metal flange should never be employed for mechanical mounting purposes.

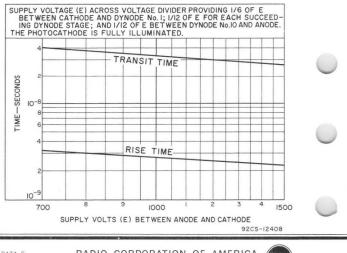



RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 4 5-65

Electronic Components and Devices


Harrison, N. J.

DATA 4



RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 5 5-65

Typical Anode-Dark-Current Characteristic

Typical Time Resolution Characteristics

DATA 5

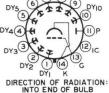
Multiplier Phototube

S-20 RESPONSE

10-STAGE, HEAD-ON, FLAT-FACEPLATE TYPE VENETIAN-BLIND-TYPE DYNODE STRUCTURE

For Photometry, Flying-Spot Scanning, and Scintillation-Counter Equipment Requiring Low-Dark Current and High Sensitivity Over a Wide Spectrum (Blue through Near-Infrared).

General:


Ca	tral ResponseS-20 length of Maximum Response4200 ± 500 angstroms ode, Semitransparent Potassium-Sodium-Cesium-Antimony (Multialkali)
Win Dyr Din	ape
Ma: Sea Ma: Ope We Bu Soc Mag Ba	ode to all other electrodes
	n 1 - Dynode No.1 n 2 - Dynode No.2 n 3 - Dynode No.3 n 4 - Dynode No.5 n 5 - Dynode No.5 n 6 - Dynode No.6 n 7 - Dynode No.7 n 8 - Dynode No.8 n 9 - Dynode No.9 n 10 - Dynode No.10 py3 2 - 2 (1) (4) 3 (1) (4) (1) (4) 3 (1) (1) (1) (1) (1)

Pin 11-Anode

Pin 12-Do Not Use

Pin 13-Focusing Electrode

Pin 14-Photocathode

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA I 6-64

4463

Maximum Ratings, Absolute-Maximum Values:

DC Supply	Voltage:									
Between	anode an	id catho	de				2500	max.	volts	
Between	anode an	id dynod	e No.	10 .			300	max.	volts	
Between	consecut	ive dyn	odes.				300	max.	volts	
Between	dynode N	lo.1 and	cath	ode.			600	max.	volts	
Between	focusino	electr	ode a	nd ca	atho	de .	600	max.	volts	
Average Ar	node Curr	ent ^d .					1	max.	ma	
Ambient Te								max.	°C	

Characteristics Range Values:

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between anode and dynode No.10. Focusing-electrode voltage is adjusted to that value between 50 and 100 per cent of dynode-No.1 potential (referred to cathode) which provides maximum anode current.

With E = 2000 volts (Except as noted)

	Min.	Typ.	Max.	
Sensitivity: Radiant, at 4200				
angstroms Cathode radiant.	. –	1.1×10^{4}	-	a/w
at 4200 angstroms.		6.8×10^{-2}	-	a/w
Luminous, at O cps ^e . Cathode luminous: With tungsten	. 12	25	240	a/lm
light source ^f . With blue light	• 1.2×10^{-4}	1.6×10^{-4}	-	a/lm
source ^{g,h} With red light	$.5 \times 10^{-8}$	-	-	а
source ^{j,k}	3×10^{-7}	-		а
Current Amplification Equivalent Anode- Dark-Current Input at a luminous sensi-		1.6 × 10 ⁵	-	
tivity of 12 a/lm ^m .		4×10^{-10}	1 × 10 ⁻⁹	lm
Equivalent Noise Input Anode-Pulse Rise Time ⁿ		9.8×10^{-9}	3.8 × 10-12	lm
Electron Transit Time ^P		5.2×10^{-8}	_	sec
With $E = 1500$ volts (
	Min.	Typ.	Max.	
Sensitivity: Radiant, at 4200 angstroms	_	2.1 × 10 ³		a/w
Cathode radiant,	•			G/W
at 4200 angstroms		6.8×10^{-2}	-	a/w
Luminous, at 0 cps ^e .	. –	5	-	a/lm

		Min.	Ty⊅.	Max.	
	Cathode luminous: With tungsten				
	light source ^f . With blue light	1.2×10^{-4}	1.6×10^{-4}	-	a/lm
	source ^{g, h}	5×10^{-8}	-	-	в
	With red light source j,k	3×10^{-7}	-	-	а
D	Current Amplification Equivalent Anode-Dark Current Input at a luminous sensitivity	-	3.1×10 ⁴	-	
	of 12 a/lm ^m	-	4×10^{-10}	1×10^{-9}	lm
	a Corning No. 7056 made by	Corning Glass	Works, Corni	ng. New Yor	k. or

Glass Works, Corning. equivalent. b

Made by Cinch Manufacturing Company, 1026 South Homan Avenue, Chicago 24, Illinois.

Made by JAN Hardware Manufacturing Company, 38-01 Queens Blvd., Long Island City 1, New York. d

Averaged over any interval of 30 seconds maximum.

e Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 1 microlumen is used. f

- Under the following conditions: The light source is a tungsten-filament Jamp having a lime Jassenvelope. It is operated at a color temperature of 28700 K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58 pollshed to 1/2 stock thickness-manufactured by the Corning Glass works, Corning. New York) from atungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes Under the following conditions: connected as anode. h
- See Spectral Characteristic of 2870° K Light Source and Spectral Characteristic of Light from 2870° K Source after passing through Indicated Blue Pilter at front of this Section.
- j Under the following conditions: Light incident on the cathode is transmitted through ared filter (Corning C.S. No. 2-62, manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2010⁶ K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.

See Spectral Characteristic of 2870⁰ K Light Source and Spectral Characteristic of Light from 2870⁰ K Source after passing through Indicated Red Filter at front of this Section.

At a tube temperature of 25° C. Dark current may be reduced by use of a refrigerant. n

Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit-time variation and is measured under conditions with the incident light fully illuminating the photocathode.

The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

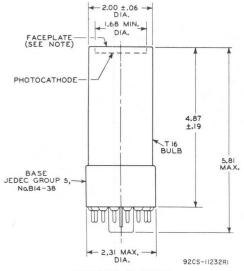
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

DATA 2 6-64

OPERATING CONSIDERATIONS

The operating stability of the 4463 is dependent on the magnitude of the anode current and its duration. When the 4463 is operated at high average values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 4463 usually recovers a substantial percentage of such loss in sensitivity.

It is recommended that the average anode current be well below the maximum-rated value of I milliampere when stability of operation is important. When maximum stability is required, the average anode current should not exceed 10 microamperes.

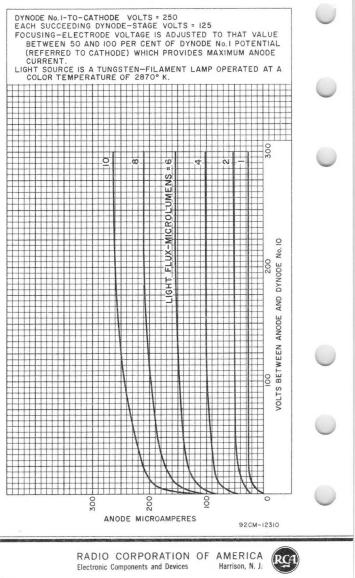

Electrostatic and/or *magnetic* shielding of the 4463 may be necessary.

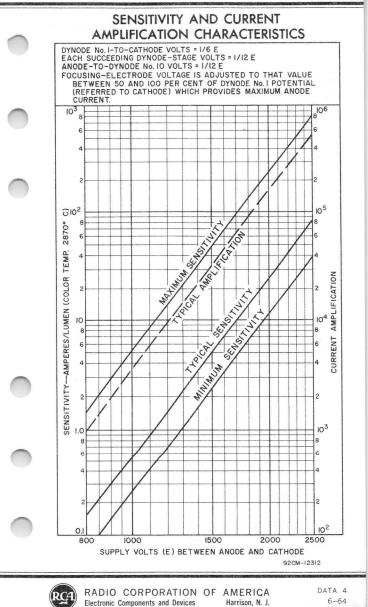
Adequate shielding should be provided to prevent extraneous radiation from reaching any part of the 4463.

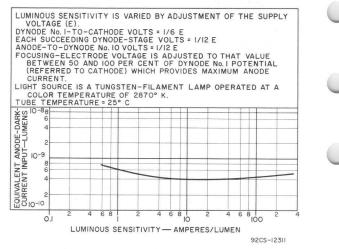
The high voltages at which the 4463 is operated are very dangerous. Care should be taken in the design of apparatus to prevent the operator from coming in contact with these high voltages. Precautions should include the enclosure of highpotential terminals and the use of interlock switches to break the primary circuit of the high-voltage power supply when access to the apparatus is required.

> SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-20 RESPONSE is shown at the front of this Section

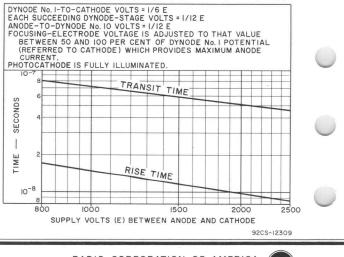
DIMENSIONS IN INCHES

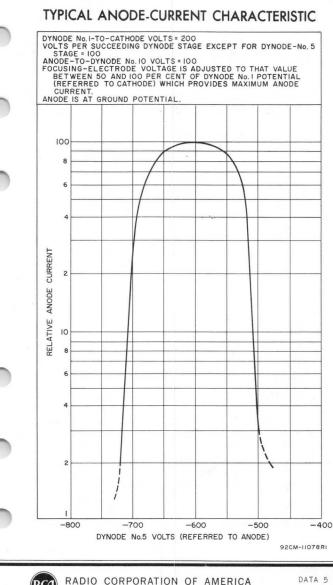

Center line of bulb will not deviate more than $2^{\rm O}$ in any direction from the perpendicular erected at the center of bottom of the base.


Note: Within 1.68" diameter, deviation from flatness of external surface of faceplate will not exceed 0.010" from peak to valley.


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 6-64

TYPICAL ANODE CHARACTERISTICS



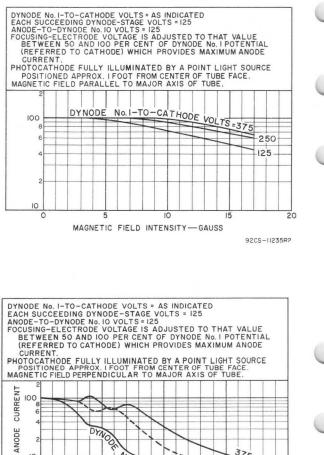


TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC

TYPICAL TIME RESOLUTION CHARACTERISTICS

DATA 5 6-64

Electronic Components and Devices


Harrison, N. J.

ANODE 2

4 REL 2

0

TYPICAL ANODE-CURRENT CHARACTERISTICS

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

No 1-TO-CATHODE

MAGNETIC FIELD INTENSITY - GAUSS

20

375

250 VOLTS=125

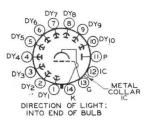
92CS-11236R2

Multiplier Phototube

S-20 RESPONSE

10-STAGE, HEAD-ON, FLAT-FACEPLATE TYPE

VENETIAN-BLIND-TYPE DYNODE STRUCTURE


For Photometry, Flying-Spot Scanning, and Scintillation-Counter Equipment Requiring Low-Dark Current and High Sensitivity Over a Wide Spectrum (Blue through Near-Infrared).

G	e	n	e	r	a	1	:	

Spectral Response
Wavelength of Maximum Response 4200 ± 500 angstroms
Cathode, Semitransparent K-Na-Cs-Sb (Multialkali)
Shape
Minimum area
Minimum diameter
Window
Index of refraction at 5893 angstroms 1.51
Dynode Material
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.10
Anode to all other electrodes
Maximum Overall Length 6.31"
Seated Length 5.38" ± 0.18"
Maximum Diameter
Operating Position
Weight (Approx.)
Bulb
Socket Cinch ^b No.3M14, or equivalent
Magnetic Shield Perfection Mica Co. ^c , or equivalent
Base Medium-Shell Diheptal 14-Pin
(JEDEC Group 5, No.B14-45) Non-hygroscopic
Province Decised to POTTON VIEW

Basing Designation for BOTTOM VIEW .

1 - Dynode No.1 2 - Dynode No.2 Pin 3 - Dynode No.3 4 - Dynode No.4 Pin 5 - Dynode No.5 Pin 6 - Dynode No.6 Pin 7-Dynode No.7 Pin 8 - Dynode No.8 Pin 9 - Dynode No.9 Pin 10 - Dynode No.10 Pin 11 - Anode Pin 12 - Do Not Use Pin 13-Focusing Electrode Pin 14 - Photocathode Metal Collar-Do Not Use

RADIO CORPORATION OF AMERICA **Electronic Components and Devices** Harrison, N. J. DATA I 8-64

4464

Maximum Ratings, Absolute-Maximum Values:

DC Supply Voltage	:				
Between anode a	nd cathode		2500	max.	volts
Between anode a	nd dynode No.10		300	max.	volts
Between consecu	tive dynodes				volts
Between dynode			600	max.	volts
Between focusing			600	max.	volts
Average Anode Cur	rent ^d		1	max.	ma °C
Ambient Temperatu	re		85	max.	C

Characteristics Range Values:

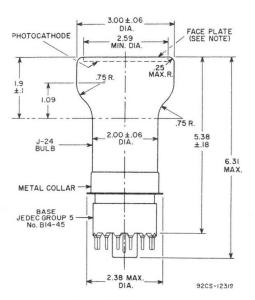
Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between anode and dynode No.10. Focusing-electrode voltage is adjusted to that value between 50 and 100 per cent of dynode-No.1 potential (referred to cathode) which provides maximum anode current.

With E = 2000 volts (Except as noted)

	Min.	Typ.	Max.		
County fortant.		1) / .			
Sensitivity:					
Radiant, at 4200		1.1×10^{4}		- 1	
angstroms	• =	1.1 X 10 '	-	a/w	
Cathode radiant,		0 0 10-2		7.000	
at 4200 angstroms.		6.8×10^{-2}	-	a/w	
Luminous, at O cps ^e .	. 12	25	240	a/lm	
Cathode luminous:					
With tungsten					
light source ^f	1.2×10^{-4}	1.6×10^{-4}	-	a/lm	
With blue light					
source ^{g,h}	5×10^{-8}	-	-	a	
With red light					
source ^{j,k}	3×10^{-7}	-	<u> </u>	а	
Current Amplification.		1.6×10^{5}	_		
Equivalent Anode-					
Dark-Current Input					
at a luminous sensi-					
tivity of 12 a/lm ^m .	-	4×10^{-10}	1×10^{-9}	lm	
Equivalent Noise Input		4 × 10 ⁻¹⁰ - 3 1.16 × 10 ⁻⁸	8× 10-12	lm	
Anode-Pulse Rise Time"		1.16×10^{-8}	-	sec	
Electron Transit Time ^P		5.8×10 ⁻⁸	_	sec	
	·			500	
With E = 1500 volts (Es	xcept as not	ed)			
	Min.	Typ.	Max.		
Sensitivity:					
Radiant, at 4200					
angstroms	_	2.1×10^{3}	_	a/w	
Cathode radiant.		E. 1 V 10		CAT W	
at 4200 angstroms.	-	6.8×10^{-2}	-	a/w	
Luminous, at 0 cps ^e .		5	-	a/lm	
cannous, at o eps .		5		ar mi	

-		18
	Min. Typ. Max.	
	Cathode luminous:	
	With tungsten	
	light source ^f 1.2×10 ⁻⁴ 1.6×10 ⁻⁴ - a/lm	
	With blue light	
	source ^{g,h} 5×10 ⁻⁸ a	
	With red light	
	source ^{j, k} 3×10 ⁻⁷ - a	
	Current Amplification – 3.1×10 ⁴ –	
	Equivalent Anode-Dark	
	Current Input at a	
	luminous sensitivity of 12 a/lm ^m 4 x 10 ⁻¹⁰ 1 x 10 ⁻⁹ lm	
	^a Corning No.0080 made by Corning Glass Works, Corning, New York, or equivalent.	
	b Made by Cinch Manufacturing Company, 1026 South Homan Avenue, Chicago 24, Illinois.	
	^C Magnetic shielding material in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1322 North Ellston, Chicago 24, Illinois, or equivalent.	
	Averaged over any interval of 30 seconds maximum.	
	^e Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature	
	lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 1 microlumen is used.	
	¹ Under the following conditions: The light source is a tongsten-filament lamp having a lime-glass envelope. It is operated at a color temperature	
	lamp having a lime-glass envelope. It is operated at a color temperature of 2070° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.	
	9 Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning®C.S. No.5-58 polished to 1/2 transmitted through a blue filter (Corning®C.S. No.5-58 polished to	
	1/2 stock thickness—manufactured by the Corning Glass Works, Corning, New York) from a tungsten—filament lamp operated at a color temperature	
	1/2 stock thickness—manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes	
	connected as anode.	
	h See Spectral Characteristic of 2870° K Light Source and Spectral Characteristic of Light from 2870° K Source after passing through Indicated Blue Filter at front of this Section.	
	Blue Filter at front of this Section.	
	Under the following conditions: Light incident on the cathode is transmitted through a red filter (corning C.S. No.2-62, manufactured by	
	J Under the following conditions: Light incident on the cathode is transmitted through a red filter (Corning C.S. No.2-62, manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.	
	flux incident on the filter is 0.01 lumen and 200 volts are applied	
	between cathode and all other electrodes connected as anode.	
	k See Spectral Characteristic of 2870° K Light Source and Spectral Char- acteristic of Light from 2870° K Source after passing through Indicated Red Fiber at front of this Section.	
	Red Filter at front of this Section.	
	^m At a tube temperature of 25 ⁰ C. Dark current may be reduced by use of a refrigerant.	
	n Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit- time variation and is measured under sectivity of the section of transit- time variation.	
	fully illuminating the photocathode.	
	P The electron transit time is the time interval between the arrival of	
	P The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illumination the observations.	
	The transit time is measured under conditions with the incident light fully illuminating the photocathode.	
	OPERATING CONSIDERATIONS	
	It is recommended that the average anode current be well	
	below the maximum-rated value of 1 milliampere when stability	
	of operation is important. When maximum stability is required,	
	the average anode current should not exceed 10 microamperes.	

Electrostatic and/or magnetic shielding of the 4464 may be necessary.

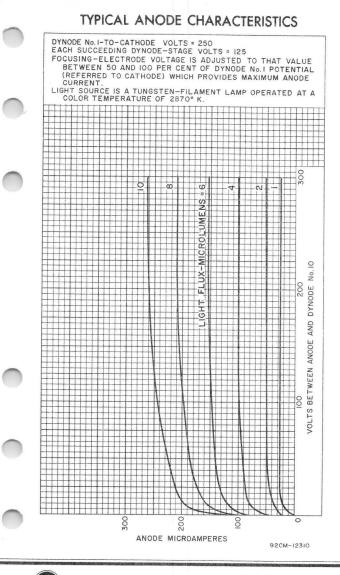

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 8-64

Adequate shielding should be provided to prevent extraneous radiation from reaching any part of 4464.

The operating stability of the 4464 is dependent on the magnitude of the anode current and its duration. When the 4464 is operated at high average values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 4464 usually recovers a substantial percentage of such loss in sensitivity.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-20 RESPONSE is shown at the front of this Section

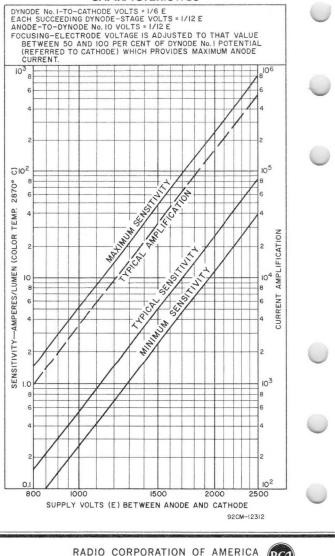
TYPICAL VOLTAGE-DIVIDER ARRANGEMENT shown under Type 4463 also applies to Type 4464



DIMENSIONS IN INCHES

Center line of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

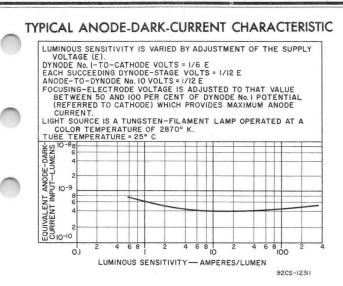
NOTE: Within 2.59" diameter, deviation from flatness of external surface of faceplate will not exceed 0.010"from reak to valley.

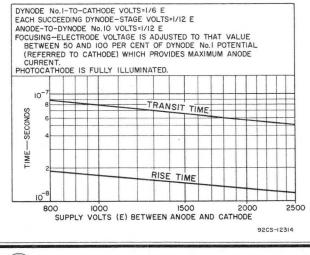


DATA 3 8-64

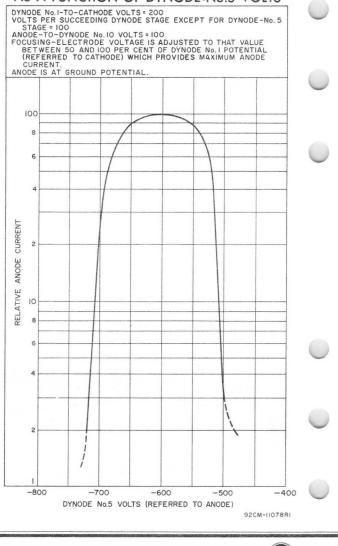
RADIO CORPORATION OF AMERICA Electronic Components and Devices

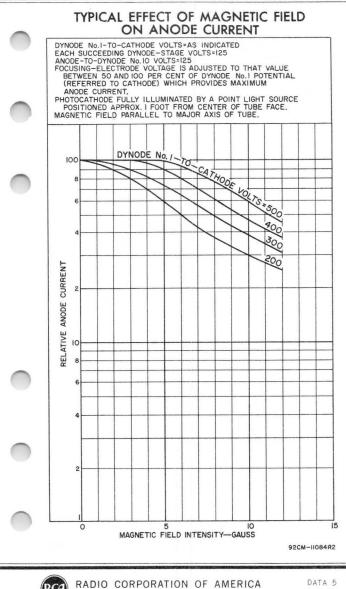
Harrison, N. J.


SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS


Electronic Components and Devices

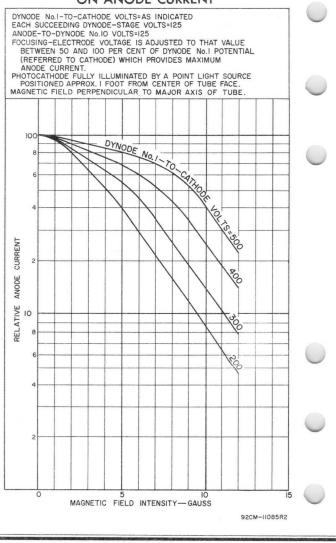
Harrison, N. J.


TYPICAL TIME RESOLUTION CHARACTERISTICS



RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 4 8-64

TYPICAL CHARACTERISTIC OF OUTPUT CURRENT AS A FUNCTION OF DYNODE-No.5 VOLTS



Electronic Components and Devices

8-64

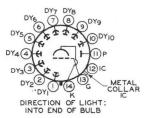
Harrison, N. J.

TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE CURRENT

Multiplier Phototube

S-20 RESPONSE

IO-STAGE, HEAD-ON FLAT-FACEPLATE TYPE VENETIAN-BLIND-TYPE DYNODE STRUCTURE


For Photometry, Flying-Spot Scanning, and Scintillation-Counter Equipment Requiring Low-Dark Current and High Sensitivity Over a Wide Spectrum (Blue Visible Well into Near Infrared).

General:

Spectral Response
Wavelength of Maximum Response 4200 ± 500 angstroms
Cathode, Semitransparent K-Na-Cs-Sb (Multialkali)
ShapeFlat, Circular
Minimum area
Minimum diameter
Window
Index of refraction at 5893 angstroms 1.51
Dynode Material Copper-Beryllium
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.10
Anode to all other electrodes 8.5 pf
Maximum Overall Length 7.69"
Seated Length 6.75" ± 0.19"
Maximum Diameter
Operating Position
Operating Position
Weight (Approx.)
Bulb
Socket Cinch ^b No.3M14, or equivalent
Magnetic Shield Perfection Mica Co., or equivalent
Base
(JEDEC Group 5, No.B14-45), Non-hygroscopic
Pasing Designation for BOTTOM VIEW 14AM

Basing Designation for BOTTOM VIEW

Pin 1 - Dynode No.1 Pin 2 - Dynode No.2 Pin 3 - Dynode No.3 Pin 4 - Dynode No.4 Pin 5 - Dynode No.5 Pin 6 - Dynode No.6 Pin 7-Dynode No.7 Pin 8-Dynode No.8 Pin 9 - Dynode No.9 Pin 10 - Dynode No.10 Pin 11 - Anode Pin 12 - Do Not Use Pin 13-Focusing Electrode Pin 14 - Photocathode Metal Collar-Do Not Use

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA | 8-64 Maximum Ratings, Absolute-Maximum Values:

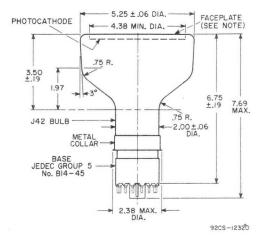
DC Supply	Voltage:									
	anode and						2500	max.	volts	6
Between	anode and	dyno	de N	0.10			300	max.	volts	
	consecutiv						300	max.	volts	
	dynode No.						600	max.	volts	
	focusing e						600	max.	volts	
Average Ar	node Currer	ntd.					1	max.		
Ambient Te	emperature.						85	max.	°C	

Characteristics Range Values:

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode. Focusing-electrode voltage is adjusted to that value between 50 and 100 per cent of dynode-No.1 potential (referred to cathode) which provides maximum anode current.

With E = 2000 volts (Except as noted)

	Mir	<i>τ. Τyφ</i> .	Max.		
Sensitivity:					
Radiant, at 4200			,		
angstroms		1.1×10^{-1}	4 -	a/w	
Cathode radiant,					
at 4200 angstroms.		6.8 × 10 ⁻	-2 -	a/w	
Luminous, at 0 cps ^e	. 12	25	240	a/lm	
Cathode luminous:					
With tungsten					
light source ^f	. 1.2 x	10 ⁻⁴ 1.6 × 10 ⁻	-4 -	a/lm	
With blue light		0			
source ^{g, h}	. 5 × 1	0-8 -	-	а	
With red light	0.4	0-7			
sourcej,k		1.6×10	5	а	
Current Amplification	. –	1.0 X 10.	-		
Equivalent Anode-Dark- Current Input at a					
luminous sensitivity					
of 12 a/lm ^m		4×10^{-11}	$0 1 \times 10^{-9}$	lm	
Equivalent Noise Input .			-8 3.8 × 10-12	lm	
Anode-Pulse Rise Time" .		1.65×10^{-1}	-8 _	sec	
Electron Transit Time ^P .		9.3×10-8	3 _	sec	
With E = 1500 volts (Exc					
WILL E - 1500 00115 TEXE	cept us				
		Min. Ty	p. Max.		
Sensitivity:					$\overline{}$
Radiant, at 4200			7		
angstroms	• •	- 2.1:	× 10 ³ –	a/w	
Cathode radiant,					
at 4200 angstroms.			10-2 -	a/w	
Luminous, at O cps ^e .		- 5		a/lm	-

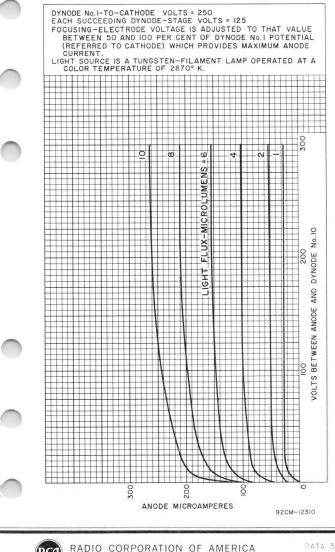


		Min.	Typ.	Max.	
-	Cathode luminous:				
	With tungsten				
	light source ^f	1.2×10^{-4}	1.6×10^{-4}	- a	/1m
	With blue light				
	source ^{g, h}	5×10^{-8}	-	-	а
	With red light				
	sourcej,k	3×10^{-7}	-	-	а
-	Current Amplification	-	3.1×10^{4}	-	-
	Equivalent Anode-Dark-		211 × 10		
	Current Input at a				
	luminous sensitivity				
	of 12 a/lm ^m		4×10^{-10}	1×10^{-9}	lm
	a Corning No.0080 made by Corning	g Glass Works	, Corning,	New York,	or
-	equivalent. b Made by Cinch Manufacturing Comp	1026 500	th Homan Av	onuo chic	220
	24. 111 incis.				
	C Magnetic shielding material in from the Magnetic Shield Divisio Ellston, Chicago 24, Illinois, o	the form of fo n, Perfection r equivalent.	oil or tape Mica Compan	as availa y, 1322 No	ble rth
	d Averaged over any interval of 30	seconds maxim	ium.		
	• Under the following conditions:	The light sour	ce is a tung	sten-filam	ent
	lamp haying a lime-glass envelope of 2870 K and a light input of	. It is operat 1 microlumen	ed at a colo is used.	r temperat	ure
	f Under the following conditions:	The light sour	ce isatuno	sten-filam	ent
	lamp having a lime-glass envelope of 2870° K. The value of light	. It is operat	ed at a colo	r temperat	ure
	applied between cathode and all	other electri	lumen and	200 volts	are de
	9 Under the following conditions	: Light inc	ident on th	e cathode	is.
	9 Under the following conditions transmitted through a blue filter stock thickness-manufactured by York) from a tungsten-filament of 2870° K. The value of light umen and 200 volts are applied b	(Corning C.S. the Corning (lamp operated flux inciden etween cathode	No.5-58 pc lass works, d at a colo nt on the f e and all oth	lished to Corning, r temperat ilter is O per electro	1/2 New ure .01 ides
	connected as anode. h See Spectral Characteristic of 2 acteristic of Light from 2870 h Blue Pilter at front of this Sec				
	Blue Filter at front of this Sec	tion.		5	
	Under the following conditions transmitted through a red filter the Corning Glass Works, Corni lamp operated at a color tempe flux incident on the filter is				
	k See Spectral Characteristic of	870° K Light	Source and l	Spectral Cl	iar-
	k See Spectral Characteristic of 2 acteristic of Light from 2870 1 Red Pilter at front of this Sect	ion.	passing thro	ough Indice	ited
	^m At a tube temperature of 25° C.	Dark current	may be red	uced by us	e of
	a refrigerant.				
	n Measured between 10 per cent a height. This anode-pulse rise t time variation and is measured un fully intervention.	nd 90 per cer ime is primari der condition	it of maximi ly a functions with the i	um anode-pu on of trans incident li	isit-
	fully infuminating the photocath	lode.			
	P The electron transit time is the delta function light pulse at t time at which the output pulse, amplitude. The transit time i incident light fully illuminat	he entrance wi at the anod s measured un ing the photo	ndow of the e terminal der condit cathode.	tube and reaches p ions with	the eak the
	SPECTRAL-SENSIT	IVITY CHARAC	TERISTIC		
-	OF PHOTOSENSITIVE DE			ONSE	
)	is shown at the				
	TYPICAL VOLTAGE-				
	shown under Type 4463	also applies	to Type	4465	
New York	des to develop the second s	CALIFY DESTRUCTION OF THE OWNER	A REPORT OF A REAL PROPERTY OF	NAL DROMOND OF THE R	
	RADIO CORPORATIO		RICA	DAT	A 2

Electronic Components and Devices

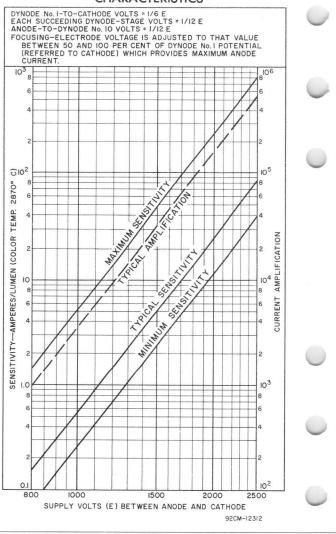
DATA 2 8-64

Harrison, N. J.

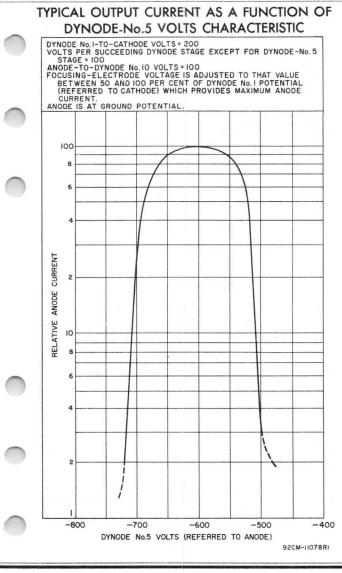

DIMENSIONS IN INCHES

Center line of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

NOTE: Within 4.38" diameter, deviation from flatness of external surface of faceplate will not exceed 0.010" from peak to valley.

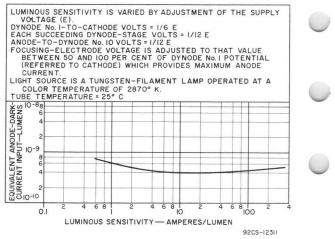


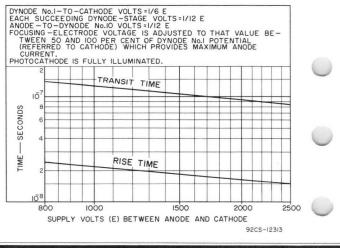
Electronic Components and Devices


0ATA 3 8-64

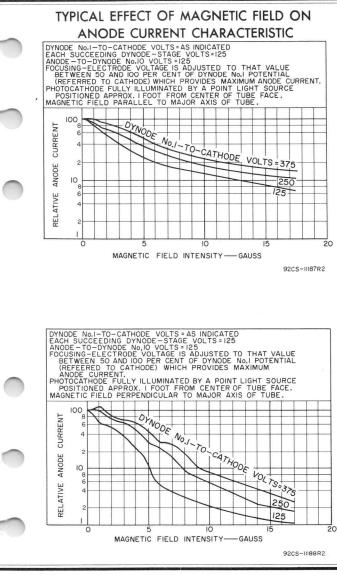
Harrison, N. J.

SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS

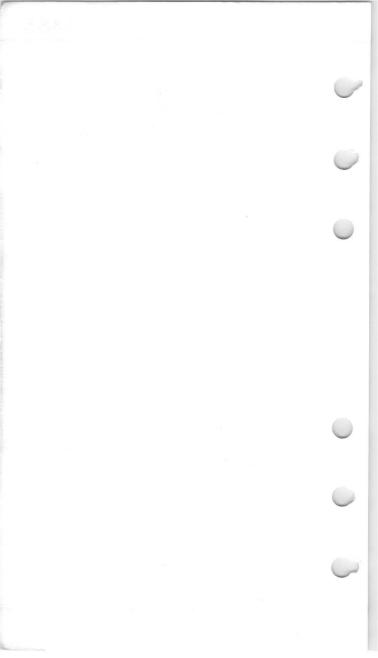




RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 4 8-64


TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC

TYPICAL TIME RESOLUTION CHARACTERISTICS



RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 5 8-64

Photomultiplier Tubes^a

9-STAGE, SIDE-ON TYPES

S-4 RESPONSE

CONTROLLED SENSITIVITY ABOVE WAVELENGTH OF 5800Å

The 4471 and 4472 are the same as the 931\AA except for the following items:

Characteristics Range Values:

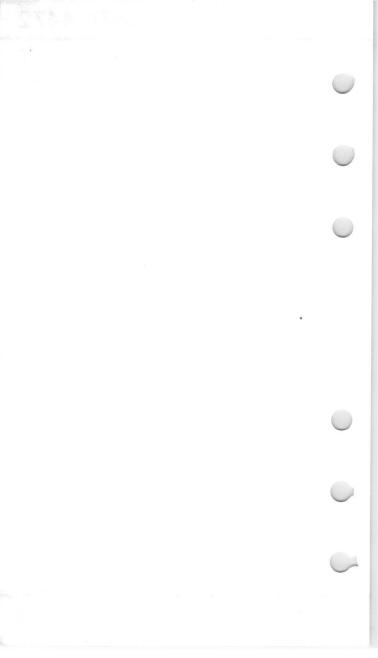
With E = 1000 volts

			Min. Typ.	Max.
Sensitivity: Luminous, at "Red-to-White"	O cps b. Ratio:	 	10 100	600 a/lm
4471		 	5 -	- %
4472			7 –	- %

a Alternate designation for Multiplier Phototube.

Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870* and a light input of 10 microlumens is used.

OPERATING CONSIDERATIONS


The luminous-sensitivity ratings of the 4471 and 4472 are higher, and their sensitivities above the wavelength of 5800 angstroms are controlled. This control is important in applications where a high level of sensitivity in the red region of the spectral-response characteristic is required. The degree of this controlled sensitivity in the red region is specified by a "red-to-white" ratio of anode currents. Anode current is measured first using atungsten-lamp source, and then measured with a red filter interposed between the light source and the phototube. The "red-to-white" ratio is greater than 5% for the 4471, and greater than 7% for the 4472.

The anode current comprising the "white" portion of this ratio is measured with a light input of 10 microlumens. The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K.

The anode current comprising the "red" portion of the ratio is measured under conditions identical with the "white" measurement except that the light input of 10 microlumens is transmitted through a red filter (Corning C.S. No.2-112--manufactured by the Corning Glass Works, Corning, N.Y., or equivalent) which has the following characteristics: the transmittance of all wavelengths from 3000 to 5790 angstroms is less than 0.5%; the 37% transmittance point lies between 6030 and 6070 angstroms; the transmittance from 6400 to 7000 angstroms is greater than 80%; and the difference between the wavelengths where transmittance is 15% and 60% is not greater than 150 angstroms.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 5-65

Photomultiplier Tube^a

9-STAGE, SIDE-ON TYPE

S-4 RESPONSE

CONTROLLED SENSITIVITY ABOVE WAVELENGTH OF 5800Å

The **4473** is the same as the **IP21** except for the following items:

Characteristics Range Values:

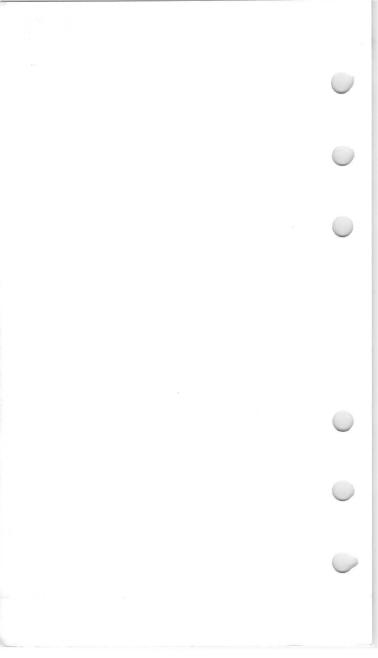
With E = 1000 volts

									Min.	Typ.	Max.	
Sensitivity:	~											
Luminous, at (0 cps ^b .								40	160	800	a/lm
"Red-to-White"	Ratio .	•	ž.	•	•	•	×.	•	7	-	-	%

a Alternate designation for Multiplier Phototube.

b Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870 K and a light input of 10 microlumens is used.

OPERATING CONSIDERATIONS


Sensitivity of the 4473 above the wavelength of 5800 angstroms is controlled. This control is important in applications where a high-level of sensitivity in the red region of the spectral-response characteristic is required. The degree of this controlled sensitivity in the red region is specified by a "red-to-white" ratio of anode currents. Anode current is measured first using atungsten-lamp source, and then measured with a red filter interposed between the light source and phototube. The "red-to-white" ratio is greater than 7% for the 4473.

The anode current comprising the "white" portion of this ratio is measured with a light input of 10 microlumens. The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K.

The anode current comprising the "red" portion of the ratio is measured under conditions identical with the "white" measurement except that the light input of 10 microlumens is transmitted through a red filter (Corning C.S. No.2-112--manufactured by the Corning Glass Works, Corning, N.Y., or equivalent) which has the following characteristics: the transmittance of all wavelengths from 3000 to 5790 angstroms is less than 0.5%; the 37% transmittance point lies between 6030 and 6070 angstroms; the transmittance from 6400 to 7000 angstroms is greater than 80%; and the difference between the wavelengths where transmittance is 15% and 60% is not greater than 150 angstroms.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 5-65

Image Orthicon

Magnetic Focus 4-½-Inch Dia. Magnetic Deflection For use in the luminance channel of suitably designed 4-tube color TV cameras in studio or outdoor service

GENERAL

	Heater, for Unipotential Cathode:	
	Voltage (AC or DC) 6.3 ± 10%	V
į.	Current at 6.3 volts 0.6	A
ļ	Direct Interelectrode Capacitance:	
		pF
	Target-to-Mesh Spacing 0.002	in
	Spectral Response	10
	Wavelength of Maximum Response 4500 ± 300 angstron	ms
	Photocathode, Semitransparent:	

Rectangular image (4 x 3 aspect ratio):

Orientation of.... Proper orientation is obtained when the vertical scan is essentially parallel to the plane passing through the center of the faceplate and the grid-No.6 terminal. The horizontal and vertical scan should start at the corner of the picture between the grid No.6 and the photocathode terminals.

the photocathode terminars.
Focusing Method
Deflection Method Magnetic
Overall Length 19.375 in ±0.310 in
Greatest Diameter of Bulb 4.500 in ± 0.094 in
Envelope Terminals
End Base
(JEDEC Group 5, No.B14-45)
Socket Cinch Part No.3M14, or equivalent
Operating Position The tube should never be operated
in a vertical position with the diheptal-base end up nor in
any other position where the axis of the tube with the base
up makes an angle of less than 20° with the vertical.
Weight (Approx.)
Minimum Deflecting-Coil Inside Diameter 3.2 in
Deflecting-Coil Length 7 in
Focusing-Coil Length 15 in
Alignment Coil:
Position on neck Centerline of magnetic field should be
located 9.25" from the flat area of the shoulder.
MAXIMUM AND MINIMUM RATINGS, ABSOLUTE-MAXIMUM VALUES
Photocathode:
Voltage V

Electronic Components

Operating Temperature: b		
Operating Temperature:		
Any part of bulb	65 max.	°C
Of bulb at large end of tube (Image section)	35 min.	°C
Temperature Difference:		
Between image section and any part		
of bulb hotter than image section	5 max.	oC
Grid-No.6 Voltage	-700 max.	V
Target Voltage:		
Positive value	10 max.	V
Negative value	10 max.	V
Field-Mesh Voltage ^c	30 max.	v
Grid-No.5 Voltage	300 max.	V
Grid-No.4 Voltage	350 max.	v
Grid-No.3 Voltage	400 max.	v
Grid-No.2 & Dynode-No.1 Voltage	350 max.	v
Grid-No.1 Voltage: Negative bias value	125 max.	V
Positive bias value	0 max.	v
Voltage Per Multiplier Stage	350 max.	v
Anode-Supply Voltage ^d	1650 max.	v
Peak Heater-Cathode Voltage:	1000 max.	v
Heater negative with respect to cathode	125 max.	V
Heater positive with respect to cathode	10 max.	v
		v
TYPICAL OPERATING VALUE	S	
Photocathode Voltage	-600	V
Grid-No.6 Voltage (Image Focus)	-600	V
Grid-No.6 Voltage (Image Focus)	-600 370 to -470	V V
Grid-No.6 Voltage (Image Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff g		V V
Grid-No.6 Voltage (Image Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff g	370 to -470	V
Grid-No.6 Voltage (Image Focus) Approx. 70% of Photocathode Voltage f	370 to -470 2.3	V V
Grid-No.6 Voltage (Îmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff g Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.4 Voltage (Beam Focus)	370 to -470 2.3 15 to 25	V V V V V
Grid-No.6 Voltage (Îmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff g Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.4 Voltage (Beam Focus) Grid-No.3 Voltage h	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \end{array}$	V V V V V V
Grid-No.6 Voltage (Îmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff g Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.4 Voltage (Beam Focus) Grid-No.3 Voltage ^h Grid-No.2 & Dynode-No.1 Voltage	370 to -470 2.3 15 to 25 40 70 to 90 250 to 275 280	V V V V V V V V
Grid-No.6 Voltage (Îmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff g Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.4 Voltage (Beam Focus) Grid-No.3 Voltage ^h Grid-No.2 & Dynode-No.1 Voltage	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \end{array}$	V V V V V V V V V
Grid-No.6 Voltage (Îmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff g Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.4 Voltage (Beam Focus) Grid-No.3 Voltage ^h Grid-No.2 & Dynode-No.1 Voltage	370 to -470 2.3 15 to 25 40 70 to 90 250 to 275 280	V V V V V V V V V V V V
Grid-No.6 Voltage (Īmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff 9 Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.3 Voltage (Beam Focus) Grid-No.2 & Dynode-No.1 Voltage Grid-No.1 Voltage for Picture Cutoff Dynode-No.3 Voltage	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \\ 280 \\ -45 \text{ to } -115 \end{array}$	V V V V V V V V V V V V V V V V V V V
Grid-No.6 Voltage (Īmage Focus) Approx. 70% of Photocathode Voltage ^f Target Voltage Above Cutoff ^g Field-Mesh Voltage ^c Grid-No.5 Voltage (Decelerator) Grid-No.4 Voltage (Beam Focus) Grid-No.3 Voltage ^h Grid-No.2 & Dynode-No.1 Voltage Grid-No.1 Voltage for Picture Cutoff Dynode-No.2 Voltage	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \\ 280 \\ -45 \text{ to } -115 \\ 600 \end{array}$	V V V V V V V V V V V V V V V V V V V
Grid-No.6 Voltage (Īmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff 9 Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.3 Voltage (Beam Focus) Grid-No.2 & Dynode-No.1 Voltage Grid-No.1 Voltage for Picture Cutoff Dynode-No.3 Voltage	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \\ 280 \\ -45 \text{ to } -115 \\ 600 \\ 800 \\ 1000 \\ 1200 \end{array}$	V V V V V V V V V V V V V V V V V V V
Grid-No.6 Voltage (Īmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff 9 Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.3 Voltage (Beam Focus) Grid-No.2 & Dynode-No.1 Voltage Grid-No.1 Voltage for Picture Cutoff Dynode-No.2 Voltage Dynode-No.3 Voltage Dynode-No.4 Voltage	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \\ 280 \\ -45 \text{ to } -115 \\ 600 \\ 800 \\ 1000 \\ 1200 \\ 1250 \end{array}$	V V V V V V V V V V V V V V V V V V V
Grid-No.6 Voltage (Īmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff 9 Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.4 Voltage (Beam Focus) Grid-No.3 Voltage h Grid-No.2 & Dynode-No.1 Voltage Grid-No.1 Voltage for Picture Cutoff Dynode-No.2 Voltage Dynode-No.3 Voltage Dynode-No.5 Voltage Dynode-No.5 Voltage	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \\ 280 \\ -45 \text{ to } -115 \\ 600 \\ 800 \\ 1000 \\ 1200 \end{array}$	V V V V V V V V V V V V V V V V V V V
Grid-No.6 Voltage (Īmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff 9 Field-Mesh Voltage Cecelerator) Grid-No.5 Voltage (Decelerator) Grid-No.3 Voltage h Grid-No.2 & Dynode-No.1 Voltage Grid-No.1 Voltage for Picture Cutoff Dynode-No.2 Voltage Dynode-No.3 Voltage	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \\ 280 \\ -45 \text{ to } -115 \\ 600 \\ 800 \\ 1000 \\ 1200 \\ 1250 \end{array}$	V V V V V V V V V V V V V V V V V V V
Grid-No.6 Voltage (Īmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff 9 Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.3 Voltage (Beam Focus) Grid-No.2 & Dynode-No.1 Voltage Grid-No.1 Voltage for Picture Cutoff Dynode-No.2 Voltage Dynode-No.3 Voltage Dynode-No.5 Voltage Recommended Target Temperature Range b. Minimum Peak-to-Peak Blanking Voltage Field Strength of Focusing Coil:	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \\ 280 \\ -45 \text{ to } -115 \\ 600 \\ 800 \\ 1000 \\ 1200 \\ 1200 \\ 1250 \\ 35 \text{ to } 45 \\ 5 \end{array}$	V V V V V V V V V V V V V V V V V V V
Grid-No.6 Voltage (Īmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff g Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.4 Voltage (Decelerator) Grid-No.3 Voltage h Grid-No.3 Voltage h Grid-No.1 Voltage for Picture Cutoff Dynode-No.2 Voltage Dynode-No.3 Voltage Dynode-No.3 Voltage Dynode-No.5 Voltage Anode Voltage Recommended Target Temperature Range b. Minimum Peak-to-Peak Blanking Voltage Field Strength of Focusing Coil: At center of scanning section (Approx.).	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \\ 280 \\ -45 \text{ to } -115 \\ 600 \\ 800 \\ 1000 \\ 1200 \\ 1250 \\ 35 \text{ to } 45 \\ 5 \\ 60 \end{array}$	V V V V V V V V V V V V V V V V V V V
Grid-No.6 Voltage (Īmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff 9 Field-Mesh Voltage ° Grid-No.5 Voltage (Decelerator) Grid-No.3 Voltage (Decelerator) Grid-No.3 Voltage h Grid-No.3 Voltage h Grid-No.1 Voltage for Picture Cutoff Dynode-No.2 & Dynode-No.1 Voltage Dynode-No.3 Voltage Dynode-No.3 Voltage Dynode-No.4 Voltage Notage Recommended Target Temperature Range b. Minimum Peak-to-Peak Blanking Voltage Field Strength of Focusing Coil: At center of scanning section (Approx.) In plane of photocathode (Approx.)	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \\ 280 \\ -45 \text{ to } -115 \\ 600 \\ 800 \\ 1000 \\ 1200 \\ 1250 \\ 35 \text{ to } 45 \\ 5 \\ 60 \\ 120 \end{array}$	V V V V V V V V V V V V V V V V V V V
Grid-No.6 Voltage (Īmage Focus) Approx. 70% of Photocathode Voltage f Target Voltage Above Cutoff g Field-Mesh Voltage c Grid-No.5 Voltage (Decelerator) Grid-No.4 Voltage (Decelerator) Grid-No.3 Voltage h Grid-No.3 Voltage h Grid-No.1 Voltage for Picture Cutoff Dynode-No.2 Voltage Dynode-No.3 Voltage Dynode-No.3 Voltage Dynode-No.5 Voltage Anode Voltage Recommended Target Temperature Range b. Minimum Peak-to-Peak Blanking Voltage Field Strength of Focusing Coil: At center of scanning section (Approx.).	$\begin{array}{c} 370 \text{ to } -470 \\ 2.3 \\ 15 \text{ to } 25 \\ 40 \\ 70 \text{ to } 90 \\ 250 \text{ to } 275 \\ 280 \\ -45 \text{ to } -115 \\ 600 \\ 800 \\ 1000 \\ 1200 \\ 1250 \\ 35 \text{ to } 45 \\ 5 \\ 60 \end{array}$	V V V V V V V V V V V V V V V V V V V

PERFORMANCE DATA

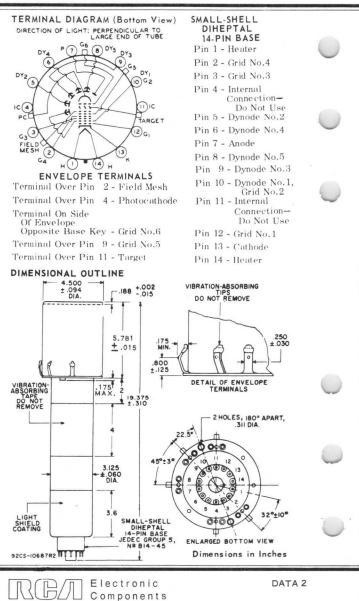
With conditions shown under Typical Operating Values including Recommended Target Temperature Range; target voltage adjusted to 2.3 volts above cutoff; with camera lens set to bring picture highlights a maximum of one stop over the knee of the light transfer charac-

> Electronic Components

H

	teristic; and operation in a 525-line 60-cycle T	V system	
		Typical	
	Signal-Output Current (Peak to Peak)	20	μA
7	Ratio of Peak-to-Peak Highlight		
	Video-Signal Current to RMS Noise		
	Current for Bandwidth of 4.5 MHz ^k	59:1k	
	Photocathode Illumination at 2870°K Required		
	to bring Picture Highlights to the "Knee"		
	of Light Transfer Characteristic	0.02	\mathbf{fc}
	Amplitude Response at 400 TV Lines		
	per Picture Height (Per cent of large-area		·
	black to large-area white) ^m	75	%
	Highlight Signal Variation	15	0H
	(Per cent of peak signal)	15	%
	Background Signal Variation	7.5	%
	(Per cent of peak signal)	1.5	70
1	^b Operation outside of the Recommended Target	Tempera	iture

Operation outside of the Recommended Target Temperature Range shown under Typical Operating Values will not damage the 4492 provided the Maximum Temperature Ratings of the tube are not exceeded. Optimum performance, however, is only obtained when the tube is operated within the Recommended Target Temperature Range.


- With respect to grid No.4.
- ^d Dynode-voltage values are shown under *Typical Operating* Values.
- With 4492 operated in RCA TK-42 camera at fixed photocathode voltage.
- Adjust for optimum focus.

1、(||/ / |

- **9** The target supply voltage should be adjustable from -5 to +5 volts.
- h Adjust to give the most uniformly shaded picture near maximum signal.
- Direction of current should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- k Signal-to-noise ratio is dependent upon tube operating conditions and on the method of measurement. Significant factors affecting this ratio include target voltage, bandwidth, system line number and frame time, and the choice of reference signal black level. Two common test conditions and resultant difference in signal-to-noise ratio are shown on reverse side.

verse side.	Method A	Method B
Bandwidth	4.5 MHz	5.1 MHz
Scan Line Number	525	625
Field Rate	60	50
Black Level	Picture Black	"Capped" Black
Target Voltage	2.3 V	3.0 V
Signal-to-Noise Ratio	59:1	83:1
m Measured with amplifier	having flat frequ	lency response.

Electronic Components

4493, 4494, 4495

Vidicons

1-Inch Diameter

Electrostatic Focus

Magnetic Deflection For use in the chroma channels of suitably designed color TV cameras in live pickup service

GENERAL

Overall Length 6.25 in ±0.10 in							
Greatest Diameter							
Bulb Diameter							
Faceplate Thickness 0.094 in ±0.012 in							
Direct Interelectrode Capacitance: a							
Target to all other electrodes 5.0 pF							
Focusing Method Electrostatic							

rocusing method.		•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		1	-	e	cuostanc
Deflection Method																			Magnetic
Heater Power																			0.6 W
Photoconductive L	a	ye	r:																

Maximum useful picture size 0.192 in x 0.256 in Orientation of quality rectangle--Proper orientation is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short index pin.

Base		Smal	l-B	utt	on	Dit	et	rar	8-	Pin	, (;	JE	DE	C		No	. E8-11)
Socket				Ci	ncł	n N	0.	13	3-9	98-1	1-()15	5,	or	е	qu	ivalent
Weight																	
Operating I	Posi	tion												•			Any

ABSOLUTE MAXIMUM RATINGS

Grid-No. 6 & Grid-No. 3 V	oltagec		
Grid-No. 5 Voltage ^c			
Grid-No. 4 Voltage			
Grid-No. 2 Voltage			850 max. V
Grid-No. 1 Voltage:			
Negative bias value			300 max. V
Positive bias value			0 max. V
Peak Heater-Cathode Volt	age:		
Heater negative with re	espect to	cathode	125 max. V
Heater positive with re	spect to	cathode	10 max. V
Heater Voltage			7 max. V
Target Voltage			100 max. V
Target Dark Current			
Peak Target Currentd			
Faceplate:			i i oi i mani pir
			1000
Illumination			
Temperature			71 max. oC
		and the second sec	

Electronic

R(B/Л Components

TYPICAL OPERATION AND PERFORMANCE DATA

For scanned area of 0.192 in x 0.256 in Faceplate Temperature of 25° to 30° C

For All Types

Grid-No. 6 (Decelerator) & Grid-No.3 Voltage	750 V
Grid-No.5 Voltage 250 to	315 V
Grid-No.4 (Beam-Focus Electrode) Voltage 100 to	125 V
Grid-No.2 (Accelerator) Voltage 100 to	300 V
Grid-No 1 Voltage	

	4493 (Red)	4494 (Green)	4495 (Blue)	
Illumination ^e	4.5	4.5	4.0	\mathbf{fc}
Signal Output Current ^f	0.060	0.060	0.020	$\mu \mathbf{A}$
Signal-to-Dark Current Ratio ^f Typical Resolution: ^f	6:1	6.1	4:1	
Center	500	500	500	TV lines
Corner	400	400	400	TV lines
Amplitude Response to a 125 TV Line Square- Wave Test Pattern at Center of Picture ^f	60	60	60	%
Average "Gamma" of Transfer Characteristicf	0.65	0.65	0.65	
Lag - Per Cent of Initial Value of Signal-Output Current 1/20 Second after Illumination is				
Removed ^f	12	12	10	%

^aThis capacitance, which effectively is the output impedance of the tube, is increased when the tube is mounted in the deflecting-yoke assembly. The resistive component of the output impedance is in order of 100 megohms.

^cThe maximum voltage difference between grids No.6 & 3 and No.5 should not exceed 750 volts.

d_{Video} amplifiers must be designed properly to handle peak target currents of this magnitude to avoid amplifier overload or picture distortion.

^eUnder the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 3100° K. These illumination values are incident on the filters shown in (f) which are interposed between the light source and tube faceplate.

RBA Electronic Components 4493, 4494, 4495

^fThese characteristics are measured using the following standard optical filters, or equivalent:

For type 4493 (Red) - Wratten No.25 (A) with 2 Fish-Shurman No. IR650

For type 4494 (Green) - Wratten No.58 with 1 Fish-Shurman No. IR650

For type 4495 (Blue) - Wratten No.47 with 1 Fish-Shurman No. IR650

BASING DIAGRAM (Bottom View)

Pin 1 - Heater

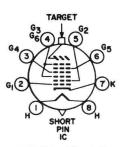
Pin 2 - Grid No.1

Pin 3 - Grid No.4

Pin 4 - Grids No.3 & No.6

Pin 5 - Grid No.2

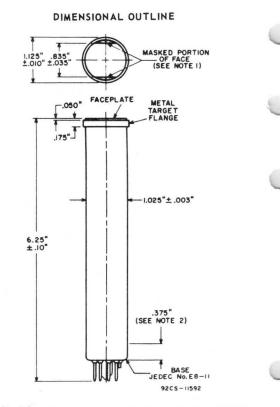
Pin 6 - Grid No.5


Pin 7 - Cathode

Pin 8 - Heater

Flange -Target

Short Index Pin -


Internal Connection--Make No Connection

DIRECTION OF LIGHT: INTO FACE END OF TUBE

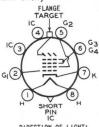
8LN

BA Electronic Components DATA 2 1-68

Note 1: Straight Sides Of Masked Portions Are Parallel To The Plane Passing Through Tube Axis And Short Index Pin. Note 2: Within This Distance, Diameter Of Bulb Is 1.025" + 0.003"-0.030".

Components

Vidicon


MAGNETIC FOCUS I-INCH DIAMETER MAGNETIC DEFLECTION HIGH SENSITIVITY

For Use in Applications Where Scene Motion is Limited and for Slow-Scan TV Pickup Service

GENERAL

Heater, for Unipotential Cathode
Voltage (AC or DC) 6.3 ± 10% V
Current at 6.3 V 0.6 A
Direct Interelectrode Capacitance ^a
Target to all other electrodes 4.6 pF
Spectral Response See Typical Spectral Response
Photoconductive Layer 0.62 inch
Maximum useful diagonal of rectangle
image (4 x 3 aspect ratio) b
Focusing Method
Deflection Method
Overall Length 6.25 ± 0.25 inch
Greatest Diameter
Operating Position
Weight (Approx.)
Bulb
Focusing Coil Cleveland Electronics ^{c, d} No.VF-115-5,
or equivalent
Deflecting Yoke Cleveland Electronics ^{c, d} No.VY-111-3,
or equivalent
Alignment Coil Cleveland Electronics ^{c, d} No.VA-118,
or equivalent
Socket Cinch ^e No.54A18088, or equivalent
Base Small-Button Ditetrar 8-Pin, (JEDEC No.E8-II)
BASING DIAGRAM (Bottom View)

Pin 1 - Heater Pin 2-Grid No.1 Pin 3-Internal Connection-Do Not Use Pin 4 - Internal Connection-Do Not Use Pin 5-Grid No.2 Pin 6 - Grids No.3 and No.4 Pin 7 - Cathode Pin 8-Heater Flange - Target Short Index Pin-Internal Connection-Make no Connection

DIRECTION OF LIGHT: INTO FACE END OF TUBE

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA I 12-66

ABSOLUTE-MAXIMUM VALUES

For scanned area of $1/2 \times 3/8$ inch	1	
Grid-No.3 & Grid-No.4 Voltage	V 000	
Grid-No.2 Voltage		"
Grid-No.l Voltage		
Negative bias value	300 V	
Positive bias value	0 V	
Peak Heater-Cathode Voltage		
Heater negative with respect to cathode I	25 V	
Heater positive with respect to cathode	10 V	
	60 V 🛰	J
Dark Current 0).Ι μ Α	
Peak Target Current ^f 0).6 μ Α	
Faceplate		
lllumination ^g	000 fc	
Temperature Range		
Storage20 to		
Operating	55 °C	J

TYPICAL OPERATION AND PERFORMANCE DATA

For Standard TV Scan Rates

For scanned area of 1/2 x 3/8 inch. Faceplate temperature of 30°C.

	.*	*	2	
	Low-	High-		
	Voltage	Voltage		
	Operation	Operation		
Grid-No.4 (Decelerator) & Grid-No.3 (Beam-Focus	250 ^h + 200	750	W	
Electrode) Voltage Grid-No.2 (Accelerator)	250" to 300	750	V	
Voltage	300	300	۷	
Picture Cutoff ^j	-45 to -100	-45 to -100	٧	
Average "Gamma" of Transfer Characteristic	0.7	0.7		
Signal-output current be- tween 0.02 µA & 0.2 µA Visual Equivalent Signal-to-				0
Noise Ratio (Approx.) ^k	300:1	300:1		and the second s
Lag ^m Typical value	55	55	%	
Minimum Peak-to-Peak Blanking Voltage				
When applied to grid No.1	75	75	v	
When applied to cathode Limiting Resolution at Center	20	20	۷	n de
of Picture Typical value	600	700	ς τv	
			Lines	
Amplitude Response to a 400 TV Line Square-Wave Test Pattern	20	30	%	
At center of picture Field Strength at Center of				07.
Focusing Coil ⁿ	40	60	G	

12

		Low-	High-	
		Voltage	Voltage	
		Operation	Operation	
× .	Peak Deflecting-Coil Current			
	Horizontal	185	375	mA
	Vertical	. 25	43	mA
	Field Strength of Adjustable Alignment Coil	0 to 4	0 to 4	G
5	Average-Light-Level Operation-1.0) Footcandle	on Faceplat	t e
2	Faceplate Illumination (Highlight)			fc
	Target Voltage ^{p, q}		. 7 to 25	۷
	Dark Current ^r		. 0.005	μA
	Signal-Output Current ^s			
	Typical		. 0.4	μA
	Low-Light-Level Operation-0.1	Footcandle d	on Faceplate	
	Faceplate illumination (Highlight)		. 0.1	fc
2	Target Voltage ^{p, q}		. 15 to 45	v
	Dark Current ^r		. 0.02	μA
	Signal-Output Current ^s			1000
	Typical		. 0.16	μA
	TYPICAL OPERATION AND P	FREORMANCE I	ΔΤΔ	
	For Slow-Scan App			
		TICALIONS		
	Typical Target Voltage		30	V
	Typical Dark Current		8	nA
	Typical Exposure	0	.25 footcand seco	
	Typical Signal Output		seco	mus
	At frame time of			
	1 second		160	nA
	2 seconds		70	nA
	4 seconds		30	nA
	6 seconds		19	nA
	10 seconds		10	nA
	Lag, or Residual Signal-Time to reach	5 per-		
	cent level	5		ames
	Amplitude Response to 400 TV Lines		50	%
	Signal Storage—Time to decay to 50 cent level	per-	80 seco	
			80 seco	onds
	a This capacitance which effectively is the	ne output impe	dance of the 4	500,
	a This capacitance which effectively isth is increased when the tube is mount focusing-coil assembly. The resistive of is in the order of 100 megohms.	ed in the de component of t	flecting-yoke he output impe	an d dance
	is in the order of 100 megohms.		in the part of the part	aanoo
	Orientation of quality rectangle is ob is essentially parallel to the straight	tained when t	he horizontal	scan
-	the faceplate. The straight sides ar	e parallel to	the plane pas	sing
	b Orientation of quality rectangle is ob is essentially parallel to the straigh the faceplate. The straight sides ar through the tube axis and short pin. only and doesnotdefine the proper scar	The masking ined area of t	is for orienta he photoconduc	tive
	layer.			
	C Made by Cleveland Electronics Inc., 197	East 61st St	., Cleveland C	Dhio.
	These components are chosen to provide landing error.	ube operation	with minimum	beam-
~	e Made by Cinch Manufacturing Corporation,	1026 S. Homa	n Ave., Chicago	24,

^e Made by Cinch Manufacturing Corporation, 1026 S. Homan Ave., Chicago 24, Illinois.

f liinois. f Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.

9 For conditions where "white light" is uniformly diffused over entire tube face.

ⁿ Definition, focus uniformity, and picture quality decrease with decreasing grid-No.4 and grid-No.3 voltage. In general, grid-No.4 and grid-No.3 should be operated above 250 volts.

- J With no blanking voltage on grid No.1.
- K Measured with high gain, low-noise, cascode-input-type amplifier having bandwidth of 5 Mc/s and apeak signal-output current of 0.35 microampere. Because thenoise in such asystem is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3.
- ^m Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.3 microampere and a dark current of 0.02 microampere.
- ⁿ The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- ${\rm P}$ The target voltage for each 4500 must be adjusted to the value which gives the desired operating signal current.
- q Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- The deflecting circuits must provide extremely linear scanning for good blacklevel reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error indirect proportion to the change in scanning velocity.
- S Defined as the component of the highlight target current after the dark-current component has been subtracted.

OPERATING CONSIDERATIONS

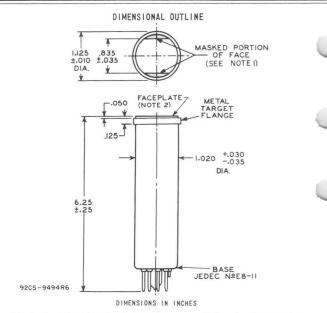
Target connection may be made by a suitable spring-finger contact bearing against the edge of the metal ring at the face end of the tube.

Faceplate-temperature should not exceed $55^{\circ}C(131^{\circ}F)$, either during operation or storage of the 4500. Operation at a faceplate temperature of about $30^{\circ}C(86^{\circ}F)$ is recommended. The 4500 should be operated at a steady temperature to maintain dark current at a preselected level and thereby insure optimum and stable day-to-day operation. If temperature control cannot be made in the camera installation, changes in target voltage may be required from time to time. The range of target voltage for various dark current levels is shown in Range of Dark Current. Individual 4500's will have substantially identical performance characteristics when operated with an identical value of dark current.

Operation at higher electrode voltages may introduce additional beam-landing errors that may be partially compensated for by repositioning the deflecting components. Full compensation may require the application of a modulating voltage of suitable waveform, at both horizontal and vertical scan rates, to the cathode, grid-No.1, and grid-No.2 of the 4500.

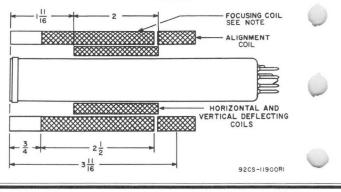
Dos and Don'ts on Use of RCA-4500 Dos

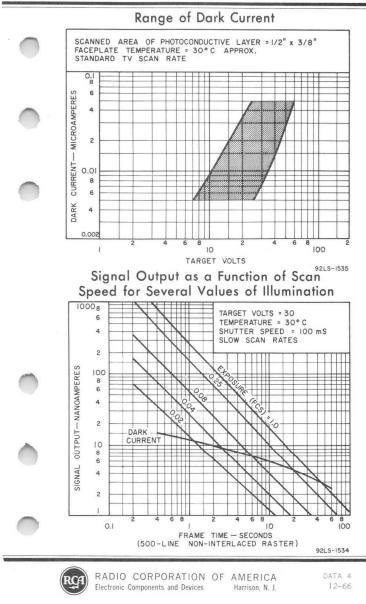
- Adjust camera scanning to utilize maximum useful area of photoconductive layer.
- Orient the vidicon so that horizontal scan is essentially parallel to the plane passing through tube axis and short index pin.


Dos and Don'ts on Use of RCA-4500 Dos

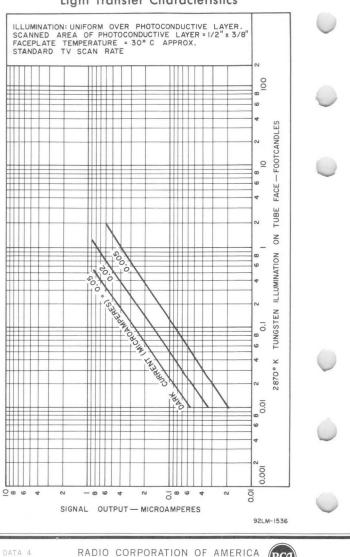
- 3. Align electron beam.
- With lens capped, adjust target voltage for each individual vidicon to the highest value that will still give uniform background.
- 5. Match any visible raster pattern on photoconductive layer with new scan by reorienting the vidicon as required.
- 6. Use only sufficient beam current to bring out picture highlights.
- Open lens iris or increase the scene illumination obtain the "snappiest" picture without noticeable smear from moving objects. Target voltage should be reduced if light on the tube and/or resultant signal is excessive.
- 8. Always caplens when transporting camera (see "Don'ts" 5).

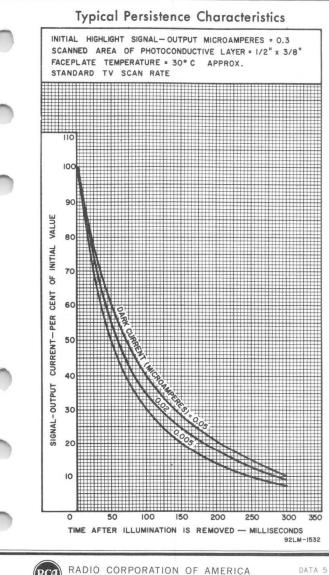
Don'ts


- 1. Don't underscan the photoconductive layer.
- Don't change camera size and centering controls once the scanned area of photoconductive layer has been properly positioned.
- Don't rotate vidicon from its original operating position in deflecting yoke.
- Don't turn beam of vidicon on without normal scanning or remove scanning before beam of vidicon is turned off.
- DON'T ALLOW IMAGE OF THE SUN OR OTHER VERY INTENSE SOURCE OF ILLUMINATION TO BE FOCUSED ON PHOTOCONDUCTIVE LAYER AT ANY TIME.



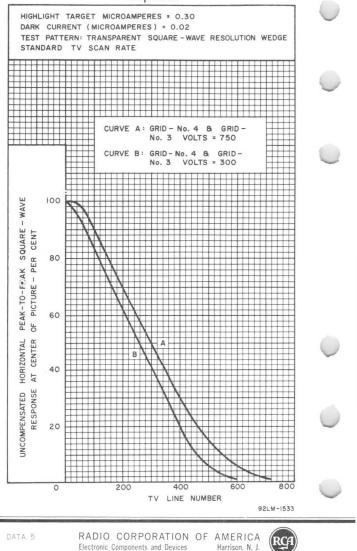
Note 1: Straight sides of masked portions are parallel to the plane passing through tube axis and short pin. Note 2: Faceplate glass is Corning No.7056 having a thickness of 0.094 \pm 0.012 inch.

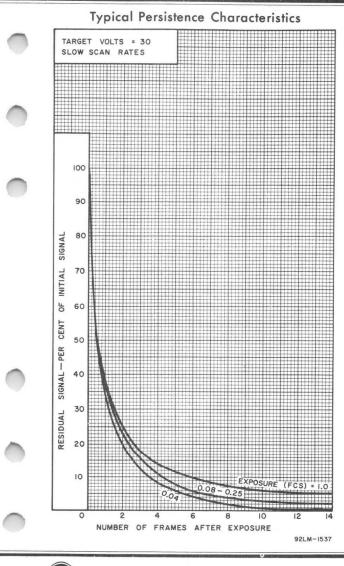

COMPONENT LOCATIONS


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Light Transfer Characteristics

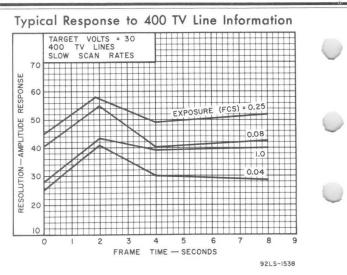
Electronic Components and Devices Harrison, N. J.

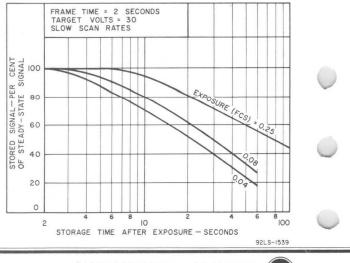



Electronic Components and Devices

Harrison, N. J.

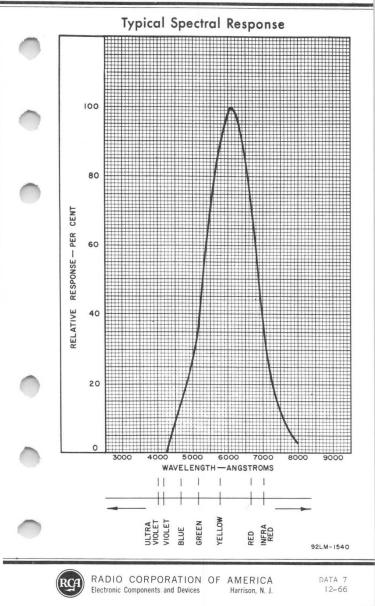
DATA 5 12-66


Uncompensated Horizontal Square-Wave Response



RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

DATA 6 12-66




Typical Storage Characteristics

DATA 6

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Vidicon

Ruggedized, Magnetic-Focus, Magnetic-Deflection Type Having Separate-Mesh Connection for Compact TV Cameras Where Severe Shock and Vibration Conditions Exist

GENERAL Heater, for Unipotential Cathode;
Voltage (AC or DC)
Current at 6.3 volts
Direct Interelectrode Capacitance: ^a
Target to all other electrodes
Spectral Response
Response at front of this section
Photoconductive Layer:
Maximum useful diagonal of rectangular image (4 x 3 aspect ratio) 0.62 in
Orientation of quality rectangle-Proper orientation is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short index pin. The masking is for orientation only and does not define the proper scanned area of the photoconductive layer.
Focusing Method Magnetic
Deflection Method Magnetic
Overall Length 5.12" + 0.13"-0.06"
Greatest Diameter
Bulb T8
Bulb Diameter 1.025" ± 0.003"
Base Small-Button Ditetrar 8-Pin, (JEDEC No.E8-11)
Socket Cinch ^b No.54A18088, or equivalent
Deflecting Yoke-Focusing Coil-
Alignment-Coil Assembly Cleveland Electronics ^{c,d} VYFA-355-2, or equivalent
Operating Position Any
Weight (Approx.) 2 oz
ABSOLUTE MAXIMUM RATINGS For scanned area of 1/2" x 3/8"
Grid-No.4 Voltage ^f 1000 max. V
Grid-No.3 Voltage ^f 1000 max. V

BA Electronic Components

Grid-No.2 Voltage 350 max. V	
Grid-No.1 Voltage:	
Negative bias value 150 max. V	6
Positive bias value 0 max. V	
Peak Heater-Cathode Voltage:	0
Heater negative with respect to cathode 125 max. V	
Heater positive with respect to cathode 10 max. V	5
Target Voltage 100 max. V	
Dark Current	_
Peak Target Current ⁹ 0.75 max. μA	
Faceplate: Illumination ^h 5000 max. fc	C
Temperature 71 max. ^o C	C

TYPICAL OPERATION AND PERFORMANCE DATA

For scanned area of 1/2" x 3/8" Faceplate Temperature of 30⁰ to 35⁰ C and Standard TV Scanning Rate

	Low- Voltage Mode	High - Voltage Mode		
Grid-No.4 (Decelerator) Voltagef	500	900	V	
Grid-No.3 (Beam-Focus Electrode) Voltage ^f	300	540	V	
Grid-No.2 (Accelerator) Voltage	300	300	V	
Grid-No.1 Voltage for Picture Cutoffi	-65 to-100	-65 to-100	V	8
Average "Gamma" of Transfer Characteristic for signal- output current between 0.02 µA and 0.2 µA	0.65	0.65		
Visual Equivalent Signal-to- Noise Ratio (Approx.)k	300:1	300:1		0
Lag-Per Cent of Initial Value of Signal-Output Current 1/20 Second After Illumingtion				0
is Removed ^m	20	20	%	
Minimum Peak-to-Peak Blanking Voltage: When applied to grid No.1	75	75	V	3
When applied to cathode	20	20	V	
Electronic			A 1	,

RCBA Electronic Components

Limiting Resolution: At center of picture 1000 1100 TV	
At corner of picture 600 700 TV lines	
Amplitude Response to a 400 TVIntesLine Square-Wave Test Pattern at Center of Picture5060	
Field Strength at Center of Focusing Coil ⁿ	
Peak Deflecting-Coil Current: Horizontal	
Field Strength of Adjustable Alignment Coil ^p 0 to 4 0 to 4 G	
High-Sensitivity Operation-0.1 Footcandle on Faceplate Faceplate Illumination (Highlight)0.1 fc	
Target Voltage ^{q,r} 30 to 60 V	
Dark Current ^s 0.1 µA	
Signal-Output Current: [†] Typical	
Average-Sensitivity Operation-1.0 Footcandle on Faceplate	
Faceplate Illumination (Highlight)	
Target Voltage ^{q,r} 20 to 40 V	
Dark Current ^s 0.02 μA	
Signal-Output Current: [†] Typical	
High-Light Level Operation-10 Footcandles on Faceplate	
Faceplate Illumination (Highlight) 10 fc	
Target Voltage ^{q,r} 10 to 22 V	
Dark Current ^s 0.005 µA	
Signal-Output Current: [†] Typical 0.3 μA	

Environmental Performance Data

The 4503A is designed to withstand the following operational and non-operational environmental tests.

Rejection Criteria: After completion of all tests, the tube will meet the performance characteristics specified under Typical Operation and Performance Data. However, the number of spots specified under the Spurious Signal

RBA Electronic Components

Test may increase slightly if the tube is subjected to the maximum shock and vibration levels specified below. During the vibration test the tube is positioned so that its major axis is parallel to the surface of the earth.

Operational Tests. The tube is operated as shown under the Typical Low-Voltage Mode in the tabulated data.

- 1. Low-Frequency Sinusoidal Vibration. The tube is subjected to 10 g peak sinusoidal vibration, 5 to 500 Hz, per MIL-STD-810A, Equipment Class 3, Equipment Mounting A, Curve C of Figure 514-1. The vidicon will show no loss in resolution and the amplitude of any generated spurious signals will not exceed 20 per cent of the maximum white-signal level.
- 2. High-Frequency Sinusoidal Vibration. The tube is subjected to 10 g peak sinusoidal vibration, 5 to 2000 Hz, per MIL-STD-810A, Equipment Class 3, Equipment Mounting A, Curve C of Figure 514-3. The vidicon will maintain a minimum resolution of 500 TV lines throughout this test. The amplitude of any generated spurious signals will not exceed 75 per cent of the maximum white-signal level.
- 3. Random Vibration. The tube is subjected to 12 g, RMS, 20 to 2000 Hz, per MIL-STD-810A, Equipment Class 3, Equipment Mounting A, Curve D of Figure 514-4. The vidicon will show no loss in resolution and the amplitude of any generated spurious signals will not exceed 50 per cent of the maximum whitesignal level.

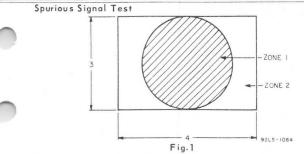
Non-Operational Tests

1. Shock. The tube is subjected per MIL-STD-810A, method 516.1, Figure 516-1, procedure V, to a 100 g, 6 millisecond terminal peak sawtooth shock pulse in each of three orthogonal axes, one of which is parallel to the major axis of the tube. A total of 18 impact shocks are applied.

2. Vibration

a. Sinusoidal - The tube is subjected to 15 g peak

Components


sinusoidal vibration, 5 to 2000 Hz per MIL-STD-810A, Equipment Class 3, Equipment Mounting A, Curve D on **Figure 514-3**.

- b. Random The tube is subjected to 25 g, RMS, 20 to 2000 Hz, per MIL-STD-810A, Equipment Class 3, Equipment Mounting A, Curve G on Figure 514-4.
- 3. Temperature-Pressure (Altitude) Tests. The vidicon and associated components are subjected, per MIL-E-5400A* par.3.2.20, 3.2.20.1, and 3.2.20.1.1, to the separate and combined effects of varying temperature of 0^o to +55^o C and to varying barometric pressure of 30" to 3.4" of mercury. The pressure corresponds to sea level and to an altitude of 50,000 feet, respectively.
- 4. Temperature-Humidity Tests. The vidicon is subjected, per MIL-E-5400A* par.3.2.30.2B, to relative humidities up to and including 95 per cent at temperatures up to and including +50° C.
- * 1 January 1956
- ^a This capacitance, which effectively is the output impedance of the tube, is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohms.
- ^b Made by Cinch Manufacturing Corporation, 1501 Morse Ave., Elk Grove Village, Ill. 60007.
- ^c Made by Cleveland Electronics Inc., 2000 Highland Road, Twinsburg, Ohio 44087.
- d This component is chosen to provide tube operation with minimum beam-landing error and is used to evalute tube performance data. The Environmental Performance Data are obtained using a Cleveland Electronics assembly No.VYFA-164-2, or equivalent. When the tube is to be operated in severe environments, this or other suitably ruggedized components should be used to take full advantage of the environmental capabilities of the tube.
- ^f Grid-No.4 voltage must always be greater than grid-No.3 voltage. The maximum voltage difference between these electrodes, however, should not exceed 600 volts. The recommended ratio of grid-No.3 to grid-No.4 voltage is 6/10 to

RBA Electronic Components DATA 3 12-68

5/10; best geometry being provided when the ratio is 6/10, and most uniform signal output when the ratio is 5/10. The operator should select the ratio within this range which provides the desired performance.

- ⁹ Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.
- ^h For conditions where "white light" is uniformly diffused over entire tube face.
- With no blanking voltage on grid No.1.
- k Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 MHz and a peak signal-output current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3.
- ^m For initial signal-output current of 0.3 microampere and a dark current of 0.02 microampere.
- ⁿ The polarity of the focusing coil should be such that a northseeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- P The alignment coil should be located on the tube so that its center is at a distance of 3-11/16 inches from the face of the tube, and be positioned so that its axis is coincident with the axis of the tube, the deflecting yoke, and the focusing coil.
- ^q Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- ^r The target voltage for each tube must be adjusted to that value which gives the desired operating signal current.
- ⁵ The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.
- [†] Defined as the component of the highlight target current after the dark-current component has been subtracted.

This test is performed using a uniformly diffused white test pattern that is separated into two zones as shown in **Figure 1**. The 4503A is operated under the conditions specified under Typical Operation and Performance Data with the lens adjusted to provide a target current of 0.3 microampere. The tubes are adjusted to provide maximum picture resolution. Spurious signals are evaluated by size which is represented by equivalent numbers of raster lines in a 525 TV line system. Allowable spot size for each zone is shown in Table 1. To be classified as a spot, a contrast ratio of 1.5:1 must exist for white spots and 2:1 for black spots. Smudges, streaks, or mottled and grainy background must have a contrast ratio of 1.5:1 to constitute a reject item.

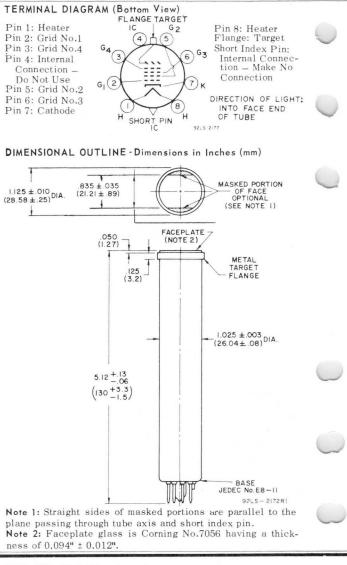
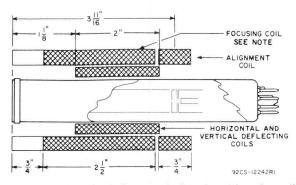

Equivalent Number of Raster Lines over 4	Zone 1 Allowed Spots 0	Zone 2 Allowed Spots
4 but not including 3	0	1
3 but not including 1	2	3
1 or less		8

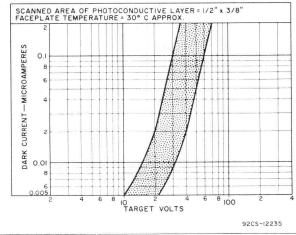
Table 1 For scanned area of $1/2'' \times 3/8''$

Minimum separation between any 2 spots greater than 1 raster line is limited to 16 raster lines.

Spots of this size are allowed unless concentration causes a smudged appearance.

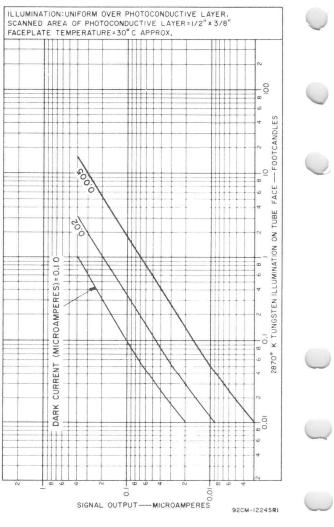

RBA Electronic Components DATA 4 12-68

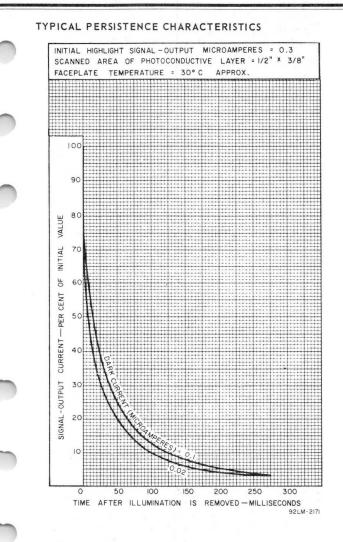
BA Electronic Components


RECOMMENDED LOCATION AND LENGTH OF DEFLECT-ING, FOCUSING, AND ALIGNMENT COMPONENTS

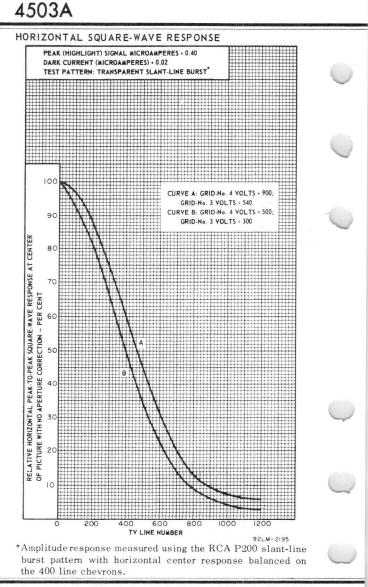
To Obtain Minimum Beam-Landing Error

Note: Cross-hatching indicates wound portion of focusing coil.


RANGE OF DARK CURRENT


Components

DATA 5 12-68



RBA Electronic Components

Components

RGA Electronic Components

Photomultiplier Tube

2" Diameter, 12-Stage, Head-On Type Having a Bialkali Photocathode

General Data

Spectral Response See Figure 1
Wavelength of Maximum Response $\dots \dots 385 \pm 50 \text{ nm}$
Cathode, Semitransparent Cesium-Potassium-Antimony (Bialkali)
Minimum projected area 2.54 sq in (16.4 cm ²)
Minimum diameter 1.80 in (4.57 cm)
Window Pyrex Corning ^a No.7740, or equivalent
Shape Spherical Segment
Index of refraction at 589.3 nanometers 1.47
Dynodes:

Substrate Copper-Beryllium
Secondary-emitting surface Beryllium-Oxide
Structure In-Line Electrostatic Focus Type
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.12 5 pF
Anode to all other electrodes
Maximum Overall Length 5.71 in (14.5 cm)
Seated Length 4.98 \pm 0.08 in (12.6 \pm 0.2 cm)
Maximum Diameter 2.10 in (5.3 cm)
Bulb
Base RCA 21-Pin (See Base Drawing)
Socket RCA-AJ2144, AJ2145, or AJ2180 ^b
Magnetic Shield Perfection Mica ^C Part No.22P50, or equivalent
Operating Position Any
Weight (Approx.) 6 oz
Maximum and Minimum Ratings,
Absolute-Maximum Values:
DC Supply Voltage:
Between anode and cathode 2500 max. V
Between anode and dynode No.12 300 max. V
Between consecutive dynodes 300 max. V
Between dynode No.1 and cathode 600 max. V
Between focusing electrode and cathode

RBA Electronic Components DATA 1 10-71

Average Anode Current ^e		max. mA	4
Ambient-Temperature Range ^f	+85	00	2

Characteristics Range Values for Equipment Design:

Under conditions with a dc supply voltage (E) across a voltage divider providing electrode voltages shown in Table I, and at a a temperature of 22° C, except as noted.

With E = 1500 volts (Except as noted).

	Min.	Typical	Max.		
Anode Sensitivity:					
Radiant ^g , at 385 nm	-	1.8×10 ⁵	_	A/W	
Luminous ^h (2870 ⁰ K)	20	160	750	A/Im	0
With blue light source ^j	2.6	21	97	A/incident	
Cathode Sensitivity	1:				
Radiant ^k , at 385 nm	_	0.097	_	A/W	
Luminous ^m (2870 ^o K)	7.3x10 ⁻⁵	8.5×10 ⁻⁵	-	A/Im	
With blue light source ⁿ	9.5×10-6	1.1×10 ⁻⁵	-	A/incident	
Quantum effi- ciency at 385 nm	_	31	_	%	
Current Amplifi-		1.9x106	_		
Anode Dark Cur- rentP at 50 A/Im	_	2×10-10	2×10 ⁻⁹	A	
Equivalent Anode Dark Current In- put at 50 A/Im	∫ –	4x10-12q	4x10 ^{-11q}	Im	
put at 50 A/m.) –	3.5x10-15r	3.5×10-14r	W	
Equivalent Noise Input ^s	{ _	4.0x10-13 3.5x10-16t	- 	lm W	
Anode Pulse Rise Time ^u at 2500 V	-	2.4x10 ⁻⁹	_	s	
Electron Transit Time ^v , at 25 0 0 V	-	3.4x10 ⁻⁸	-	S	0

RBA Electronic Components

- a Made by Corning Glass, Corning, NY 14830.
- b The AJ2145 is designed specifically for chassis mounting. The AJ2180 is similar to the AJ2145, but is light-tight. The AJ2144 is designed for use in any desired mounting arrangement. It is supplied with an unattached clamp ring which fits to either the top or bottom of its socket body to permit chassis mounting. The ring is not normally required for other mounting arrangements and can be discarded to make such arrangements more compact.

The 4507 is supplied without a socket. The AJ2144, AJ2145, or the AJ2180 may be ordered from your nearest RCA Field Sales Office.

- ^c Made by Magnetic Shield Division, Perfection Mica Company, 1322 North Elston Avenue, Chicago, IL 60622.
- e Averaged over any interval of 30 seconds maximum.
- f Tube operation at 22° C or below is recommended.
- 9 This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 1140 lumens per watt.
- h These values are calculated as shown below:

	Anode blue sensitivity (A/incident Im)
Luminous Sensitivity (A/Im) =	0.13

The value of 0.13 is the average value of the ratio of the anode current measured under the conditions specified in footnote (j) to the anode current measured under the same conditions but with the blue filter removed.

- J Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, NY 14830) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 1 x 10⁻⁷ lumen.
- k This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1140 lumens per watt.
- m These values are calculated as shown below:

Cathode Luminous Sensitivity (A/Im) =

RBA Electronic Components

Cathode blue sensitivity (A/incident Im) 0.13

The value of 0.13 is an average value. It is the ratio of the cathode current measured under the conditions specified in footnote

> DATA 2 10-71

(n) to the cathode current measured under the same conditions but with the blue filter removed.

- ⁿ Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 1 x 10⁻⁴ lumen and 500 volts are applied between cathode and all other electrodes connected as anode.
- P Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness). The light flux incident on the filter is 1 x 10⁻⁷ lumen. The supply voltage E is adjusted to obtain an anode current of 0.65 microamperes. Luminous sensitivity of the tube under these conditions is approximately equivalent to 50 amperes per lumen. Dark current is measured with incident light removed.
- 9 Equivalent Anode Dark Current Input is the quotient of anode dark current at a given anode luminous sensitivity by the anode luminous sensitivity.
- r At 385 nanometers. These values are calculated from the EADCI values in lumens using a conversion factor of 1140 lumens per watt.
- ^S Under the following conditions: An equivalent bandwidth of 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- t At 385 nanometers. This value is calculated from the ENI value in lumens using a conversion factor of 1140 lumens per watt.
- ^u Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

Operating Considerations

Anode-Dark Current

The 4507 is intended for use in systems requiring very low

RBA Electronic Components dark current. Accordingly, the base of the tube and its socket should never be allowed to become contaminated by handling. Such contamination produces leakage and dark current. It is recommended that if the tube base or its socket is handled that it be washed with a solution of alkaline soap cleaner such as Alconox^{*}, or equivalent, and de-ionized or distilled water having a temperature not exceeding 60° C. Careful scrubbing between pins or socket contacts is useful, but not usually required. The base of socket should then be rinsed in de-ionized or distilled water (60°) for several minutes and then air-blown dry.

A temporary increase in anode dark current by as much as 3 orders of magnitude may occur if the tube is exposed momentarily to high-intensity ultraviolet radiation from sources such as fluorescent room lighting even though voltage is not applied to the tube. The increase in dark current may persist for a period up to 48 hours following such irradiation.

Cathode Current

A peak cathode current of 5×10^{-9} ampere at a tube temperature of 22° C or 1×10^{-11} ampere at -80° C should not be exceeded. Because of the resistivity of the photocathode, the voltage drop caused by higher peak cathode currents may produce radial electric fields on the photocathode which can result in poor photoelectron collection by the first dynode. Photocathode resistivity increases with decreasing temperature.

Leakage Current

[1](1]/7]

The application of high voltage, with respect to cathode, to insulating or other materials supporting or shielding the tube at the photocathode end should not be permitted unless such materials are chosen to limit leakage current to the tube envelope to 1×10^{-12} ampere or less.

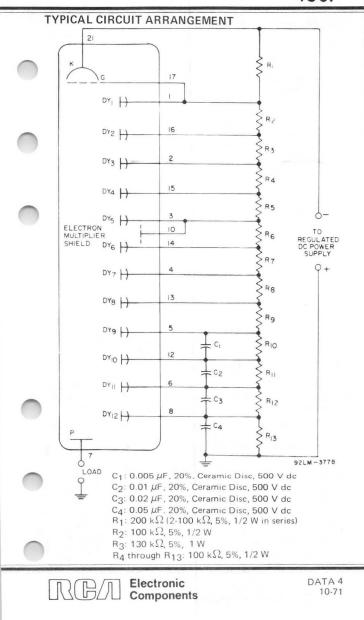
In addition to increasing dark current and noise output because of voltage gradients developed across the bulb wall, such high voltage may produce minute leakage current to

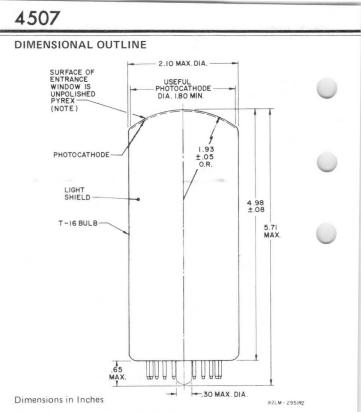
> Electronic Components

the cathode, through the tube envelope and insulating materials, which can permanently damage the tube.

*Distributed by Arthur H. Thomas Company, Vine Street and 3rd, Philadelphia, PA 19105.

Ambient Atmosphere

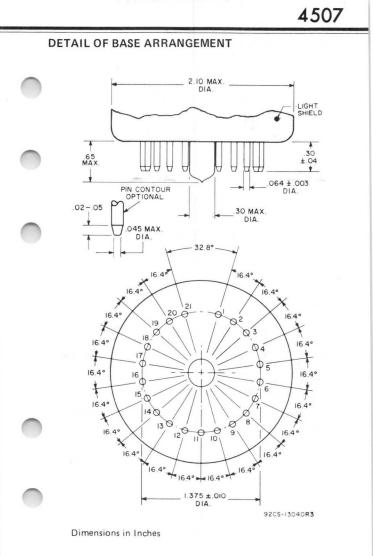

Operation or storage of this tube in environments where helium is present should be avoided. Helium may permeate through the tube envelope and may lead to eventual tube destruction.


Table I		
Voltages To Be Provided by Divid	er	
Between the Following Electrodes	6.94% of Supply Voltage (E)	
Cathode (K), Dynode (Dy), and Anode (P)	Multiplied By	
K – Dy1	2.0	
Dy1 – Dy2	1.0	
Dy2 – Dy3	1.4	
Dy3 – Dy4	1.0	
Dy4 – Dy5	1.0	
Dy5 – Dy6	1.0	
Dy6 – Dy7	1.0	
Dy7 – Dy8	1.0	
Dy8 – Dy9	1.0	
Dy9 – Dy10	1.0	
Dy10 – Dy11	1.0	
Dy11 – Dy12	1.0	
Dy12 - P	1.0	
K – P	14.4	

Focusing Electrode (Pin 17) is connected to dynode No.1 potential.

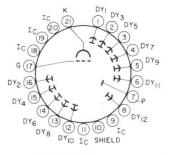
Electron Multiplier Shield (Pin 10) is connected to dynode No.5 potential.

Note: Caution must be employed when handling this tube because of the thinness (approx. 0.02 inch thick) of the entrance window.


The dimensions in millimeters are derived from the basic inch dimensions (1 inch = 25.4 mm).

Electronic Components

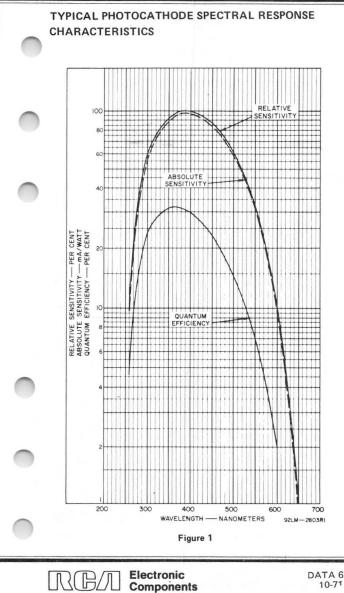
121


B/A

Inch	mm	Inch	mm	Inch	mm
.003	.08	.05	1.3	1.375	34.93
.010	.25	.064	1.63	1.80	45.7
.02	.5	.08	2.0	1.93	49.0
.04	1.0	.30	7.6	2.10	53.3
.045	1.14	.65	16.5	4.98	126.5
				5.71	145.0

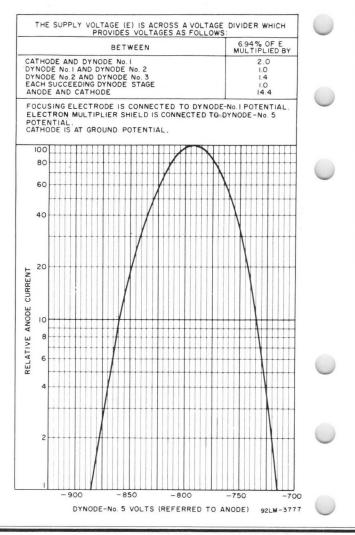
RBA Electronic Components DATA 5 10-71

TERMINAL DIAGRAM (Bottom View)



DIRECTION OF RADIATION: INTO END OF BULB

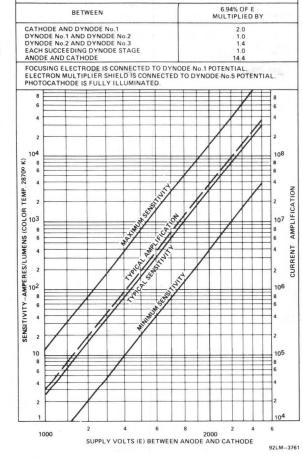
92LS-2812


- Pin 1: Dynode No.1
- Pin 2: Dynode No.3
- Pin 3: Dynode No.5
- Pin 4: Dynode No.7
- Pin 5: Dynode No.9
- Pin 6: Dynode No.11
- Pin 7: Anode
- Pin 8: Dynode No.12
- Pin 9: Internal Connection, Do not use
- Pin 10: Electron Multiplier Shield
- Pin 11: Internal Connection, Do not use

- Pin 12: Dynode No.10
- Pin 13: Dynode No.8
- Pin 14: Dynode No.6
- Pin 15: Dynode No.4
- Pin 16: Dynode No.2
- Pin 17: Focusing Electrode
- Pin 18: Internal Connection, Do not use
- Pin 19: Internal Connection, Do not use
- Pin 20: Internal Connection, Do not use
- Pin 21: Photocathode

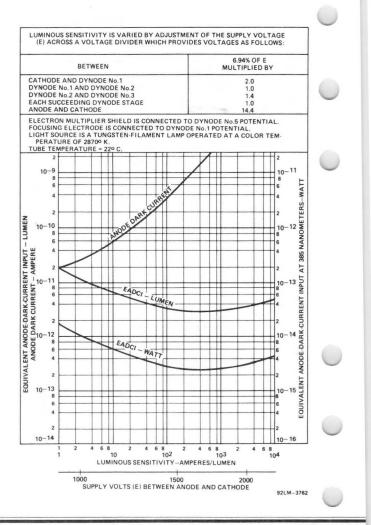
10-71

TYPICAL DYNODE MODULATION CHARACTERISTIC

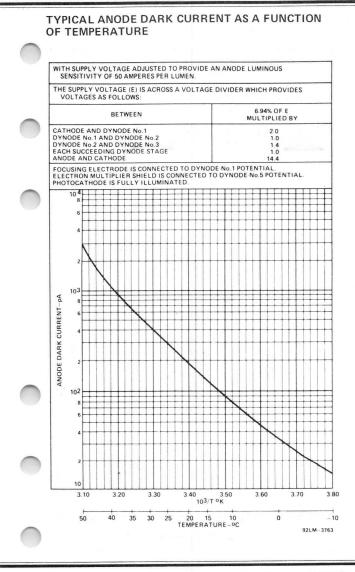


Electronic Components

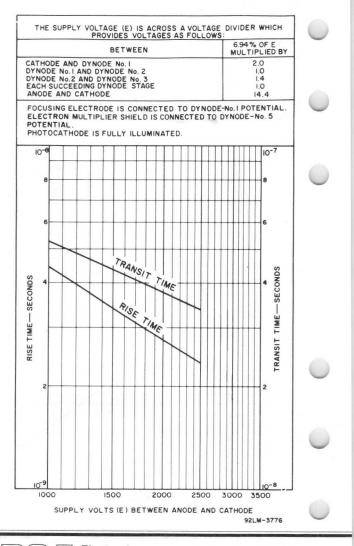
RB/Л


TYPICAL SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS

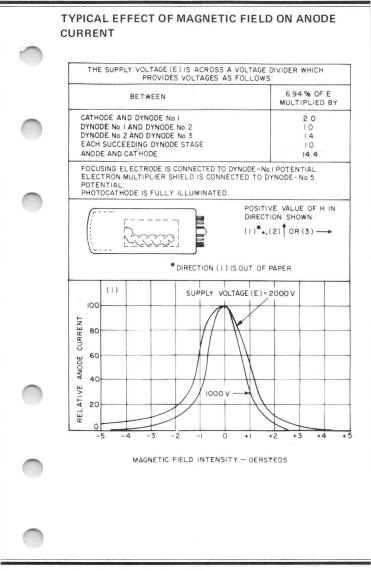
THE SUPPLY VOLTAGE (E) IS ACROSS A VOLTAGE DIVIDER WHICH PROVIDES VOLTAGES AS FOLLOWS:


RBA Electronic Components

TYPICAL ANODE DARK CURRENT AND EACDI CHARACTERISTICS

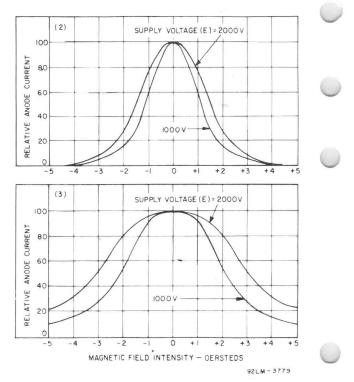

Electronic Components

NGЛ



RBA Electronic Components DATA 8 10-71

TYPICAL TIME-RESOLUTION CHARACTERISTICS


RBA Electronic Components

RBA Electronic Components

DATA 9 10-71

TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE CURRENT (Cont'd)

Photomultiplier Tubes

10-Stage, Head-On Types Having Bialkali Photocathode.

GENERAL

Spectral Response See accompanying Typical Spectral Response Characteristics
Wavelength of Maximum Response $\ldots\ldots\ldots$ 4000 \pm 500 Å Cathode, Semitransparent Potassium-Cesium-Antimony (Bialkali)
Type 4516
Minimum projected area0.2 in ² (1.26 cm ²)
Minimum diameter 0.5 in (1.27 cm)
Туре 4517
Minimum projected area1.2 in ² (7.8 cm ²)
Minimum diameter 1.24 in (31.5 mm)
Window Corning ^a No.0080, or equivalent
Index of refraction at 4360 angstroms 1.523 Type 4516
ShapePlano-Concave
Туре 4517
Shape Plano-Plano
Dynodes:
Substrate
Secondary-Emitting Surface Beryllium-Oxide
Structure
Direct Interelectrode Capacitances (Approx.):
Type 4516 Anode to dynode No.10
Anode to all other electrodes
Туре 4517
Anode to dynode No.10 4 pF
Anode to all other electrodes 7 pF Type 4516
Maximum Overall Length
(Excluding semiflexible leads)
Maximum Diameter 0.78 in (2 cm)
Bulb
Base See Dimensional Outline
Magnetic Shield Millen ^c Part No.80801N, or equivalent
Operating Position
Weight (Approx.) 0.9 oz (25.5 g)

Electronic Components

RG/J

GENERAL (Cont'd) Type 4517 Maximum Overall Length 4.57 in (116 mm) Seated Length 3.88 in ± 0.19 in (98.6 mm ± 4.8 mm) Maximum Diameter 1.56 in (39.6 mm) Bulb T12 Base Small-Shell Duodecal 12-pin, JEDEC No.B12-43 Socket Eby^b No.9058, or equivalent Magnetic Shield Millen^c No.80802C, or equivalent Operating Position Any Weight (Approx.) 2 oz

MAXIMUM RATINGS, Absolute-Maximum Values

DC Supply voltage:

Between anode and cathode	1800 max.	V
Between anode and dynode No.10		
Type 4516	300 max.	V
Туре 4517	250 max.	V
Between consecutive dynodes	300 max.	V
Between dynode No.1 and cathode		
Туре 4516	300 max.	V
Type 4517	400 max.	V
Average Anode Current ^e	0.5 max.	mA
Ambient-Temperature Range ^f	+85	°C

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing electrode voltages as shown in Table I and at a temperature of 22° C, except as noted.

With E = 1500 volts (Except as noted)

Min.	Typical	Max.		
	5.6×10 ⁴	-	A/W	
10	47	170	A/Im	
10	47	150	A/Im	
		– 5.6x10 ⁴	. – 5.6×10 ⁴ – 10 47 170	. – 5.6×10 ⁴ – A/W 10 47 170 A/Im

BA Electronic Components

Min. Typical Max. Current with blue light sourcel (2870°K + C.S. No.5-58) 1.5x10-6 7x10-6 2.6x10-5 A Type 4516 1.5x10-5 7x10-5 2.2x10-4 A Cathode Sensitivity: Type 4516 - A/W Addiant ^k at 4000 angstroms - 0.071 - A/W Luminous ^m (2870°K) 5.3x10-5 6x10-5 - A/Im Current with blue light source ⁿ (2870°K + C.S. No.5-58) 8x10-9 9x10-9 - A Quantum Efficiency at 4000 angstroms - 2.2 % % Type 4517 - - 2.2 % Type 4517 - - 2.2 % Quantum Efficiency at 4000 angstroms - 0.079 - A/W Luminous ^m (2870°K) - 6.7x10-5 - A/Im Current with blue light source ⁿ (2870°K + C.S. 8x10-10 1x10-9 - A Quantum Efficiency at 4000 angstroms - 2.4 % - 2.10-10 </th <th></th> <th></th> <th>RANGE</th> <th>VALUES (C</th> <th>ont"d)</th> <th></th>			RANGE	VALUES (C	ont"d)	
source1 (2870°K + Č.S. No.5-58) Type 4516 1.5x10 ⁻⁶ 7x10 ⁻⁶ 2.6x10 ⁻⁵ A Type 4517 1.5x10 ⁻⁵ 7x10 ⁻⁵ 2.2x10 ⁻⁴ A Cathode Sensitivity: Type 4516 Radiant ^k at 4000 angstroms 0.071 - A/W Luminous ^m (2870°K) 5.3x10 ⁻⁵ 6x10 ⁻⁵ - A/Im Current with blue light source ¹ (2870°K + C.S. No.5-58) 8x10 ⁻⁹ 9x10 ⁻⁹ - A Quantum Efficiency at 4000 angstroms 22 - % Type 4517 Radiant ^k at 4000 angstroms 0.079 - A/W Luminous ^m (2870°K) 6.7x10 ⁻⁵ - A/Im Current with blue light source ¹ (2870°K) 6.7x10 ⁻⁵ - A/Im Current with blue light source ¹⁰ (2870°K) 6.7x10 ⁻⁵ - A/Im Current with blue light source ¹⁰ (2870°K) 6.7x10 ⁻⁵ - A/Im Current with blue light source ¹⁰ (2870°K) 6.7x10 ⁻⁵ - A/Im Current with blue light source ¹⁰ (2870°K) 6.7x10 ⁻⁵ - A/Im Current with blue light source ¹⁰ (2870°K) 6.7x10 ⁻⁵ - A/Im Current Amplification 8x10 ⁵ - Anode Dark Current at 7 A/Im ⁵ 2x10 ⁻¹¹⁰ 6x10 ⁻¹⁰ A Equivalent Anode Dark Current Input at 7 A/Im ⁶ 250 - cps (See Typical Dark-Pulse Spectrum) Pulse Height Resolution ¹⁰ - 8.5 - % Anode-Pulse Rise TimeV.W at 1800 V 1.7 x10 ⁻⁹ - s						
Type 4517 1.5x10·5 7x10·5 2.0x10·4 A Cathode Sensitivity: Type 4516 Radiant ^k at 4000 angstroms - 0.071 - A/W Luminous ^m (2870°K) 5.3x10·5 6x10·5 - A/Im Current with blue light source ⁿ (2870°K) 5.3x10·9 9x10·9 - A Quantum Efficiency at 4000 angstroms - 22 - % Type 4517 Radiant ^k at 4000 angstroms - 22 - % Radiant ^k at 4000 angstroms - 0.079 - A/W Luminous ^m (2870°K) - 6.7x10·5 - A/Im Current with blue light source ⁿ (2870°K) - 6.7x10·5 - A/Im Quantum Efficiency at - 24 - % - - % - - % - - 2x10·10 6x10·10 A - - - - - % - - - - - - - - -		sourceJ (2870°K + Č.S.				
Type 4516 Radiant ^k at 4000 angstroms - 0.071 - A/W Luminous ^m (2870°K) 5.3x10 ⁻⁵ 6x10 ⁻⁵ - A/Im Current with blue light source ⁿ (2870°K + C.S. No.5-58) - 22 - % Quantum Efficiency at 4000 angstroms - 22 - % Type 4517 Radiant ^k at 4000 angstroms - 0.079 - A/W Luminous ^m (2870°K) - 6.7x10 ⁻⁵ - A/Im Current with blue light source ⁿ (2870°K) - 6.7x10 ⁻⁵ - A/Im Current with blue light source ⁿ (2870°K + C.S. 8x10 ⁻¹⁰ 1x10 ⁻⁹ - A Quantum Efficiency at 4000 angstroms - 24 - % Type 4516 Eurrent Amplification - 8x10 ⁵ - Anode Dark Current at 7 A/Im ^P - 2x10 ⁻¹⁰ 6x10 ⁻¹⁰ A Equivalent Anode Dark Current Input at 7 A/Im - 2.9x10 ^{-11P} 8.6x10 ^{-11P} Im 2 - 2.9x10 ⁻¹¹⁴⁹		CARL CONTRACTORS OF A MADE AND A CONTRACTORS OF				
Radiant ^k at 4000 angstroms - 0.071 - A/W Luminous ^m (2870°K) 5.3x10 ⁻⁵ 6x10 ⁻⁵ - A/Im Current with blue light source ⁿ (2870°K + C.S. No.5-58) 8x10 ⁻⁹ 9x10 ⁻⁹ - A Quantum Efficiency at 4000 angstroms - 22 - % Type 4517 - 22 - % Radiant ^k at 4000 angstroms - 0.079 - A/W Luminous ^m (2870°K) - 6.7x10 ⁻⁵ - A/Im Current with blue light source ⁿ (2870°K + C.S. No.5-58) 8x10 ⁻¹⁰ 1x10 ⁻⁹ - A Quantum Efficiency at 4000 angstroms - 24 - % Type 4516 - - 2x10 ⁻¹⁰ A Equivalent Anode Dark Current Amplification - 8x10 ⁵ - - Anode Dark Current at 7 A/Im - 2.9x10 ⁻¹¹ 8.6x10 ⁻¹¹ M Equivalent Noise Input ^f - 2.9x10 ⁻¹¹ 8.6x10 ⁻¹¹ M Equivalent Noise Input ^f - 2.5x10 ⁻¹⁶ W - 3.5x10 ⁻¹⁶ W		Cathode Sensitivity:				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Type 4516				
Current with blue light source ⁿ (2870° K + C.S. No.5-58)		4000 angstroms	-	0.071		A/W
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Luminous ^m (2870 ^o K)	5.3x10-5	6x10 ⁻⁵		A/Im
4000 angstroms. - 22 - % Type 4517 Radiant ^k at 4000 angstroms - 0.079 - A/W Luminous ^m (2870° K) - 6.7x10 ⁻⁵ - A/Im Current with blue light source ⁿ (2870° K + C.S. No.5-58) . 8x10 ⁻¹⁰ 1x10 ⁻⁹ - A Quantum Efficiency at 4000 angstroms - 24 - % Type 4516 Eurrent Amplification - 8x10 ⁵ - - Anode Dark Current at - 2x10 ⁻¹⁰ 6x10 ⁻¹⁰ A Equivalent Anode Dark - 2.9x10 ^{-11P} 8.6x10 ^{-11P} Im 7 A/Im - 2.9x10 ^{-11P} 8.6x10 ^{-11P} Im 7 A/Im - 2.9x10 ^{-11P} 8.6x10 ^{-11P} W Equivalent Noise Input ^f - 4.1x10 ⁻¹³ Im W Dark Pulse Summation: ^t 1 to 32 photoelectrons - 250 cps (See Typical Dark-Pulse Spectrum) Pulse Height Resolution ^u - 8.5 - % A		source ⁿ (2870 ⁰ K + C.S. No.5-58)	8×10 ⁻⁹	9×10 ⁻⁹	-	A
Radiantk at 4000 angstroms - 0.079 - A/W Luminous ^m (2870° K) - 6.7x10-5 - A/Im Current with blue light source ⁿ (2870° K + C.S. No.5-58) 8x10-10 1x10-9 - A Quantum Efficiency at 4000 angstroms - 24 - % Type 4516 - - 24 - % Current Amplification - 8x10 ⁵ - - Anode Dark Current at 7 A/ImP - 2x10 ⁻¹⁰ 6x10 ⁻¹⁰ A Equivalent Anode Dark Current Input at 7 A/Im - 2.9x10 ⁻¹¹¹ 8.6x10 ⁻¹¹¹ M Equivalent Noise Input ^r . { - 4.1x10 ⁻¹³ - Im Dark Pulse Summation: ^t 1 to 32 photoelectrons - 250 - cps Isee Typical Dark-Pulse Spectrum) Pulse Height Resolution ^u - 8.5 - % Anode-Pulse Rise Time ^v .w - 1.7 x10 ⁻⁹ - s Electron Transit Time ^v .x - 1.7 x10 ⁻⁹ - s				22	_	%
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Type 4517				
Luminous ^m (2870°K) - $6.7x10^{-5}$ - A/Im Current with blue light source ⁿ (2870°K + C.S. No.5-58). 8x10 ⁻¹⁰ $1x10^{-9}$ - A Quantum Efficiency at 4000 angstroms - 24 - % Type 4516 - 24 - % Current Amplification - $8x10^{-10}$ A A Anode Dark Current at 7 A/Im - $2x10^{-10}$ $6x10^{-10}$ A Equivalent Anode Dark Current Input at 7 A/Im - $2.9x10^{-11P}$ $8.6x10^{-11P}$ Im - $2.4x10^{-149}$ $7.2x10^{-149}$ W Equivalent Noise Input ^r . $\begin{cases} - 4.1x10^{-13} Im - 3.5x10^{-16s} - W W Dark Pulse Summation:t 1 10.32 photoelectrons - 250 - cps Isee Typical Dark-Pulse Spectrum) - 8.5 - % Anode-Pulse Rise TimeV.W a 1.7 \times 10^{-9} s s Electron Transit TimeV.X - 1.7 \times 10^{-9} - s $			_	0.079	_	A/W
Current with blue light source ⁿ (2870° K + C.S. No.5-58). $8x10^{-10}$ $1x10^{-9}$ A Quantum Efficiency at 4000 angstroms $ 24$ $-$ % Type 4516 $ 24$ $-$ % Current Amplification $ 8x10^{-5}$ $-$ Anode Dark Current at 7 A/ImP $ 2x10^{-10}$ $6x10^{-10}$ A Equivalent Anode Dark Current Input at 7 A/Im $ 2.9x10^{-11P}$ $8.6x10^{-11P}$ Im $ 2.4x10^{-149}$ $7.2x10^{-149}$ W Equivalent Noise Input ^r . $\left\{ 4.1x10^{-13}$ $-$ Im $ 3.5x10^{-16s}$ $ W$ Dark Pulse Summation: [‡] $ 250$ $-$ cps (See Typical Dark-Pulse Spectrum) $ 8.5$ $-$ % Pulse Height Resolution ^u $ 8.5$ $-$ % Anode-Pulse Rise Time ^v , w $ 1.7 \times 10^{-9}$ $ s$		Luminous ^m (2870 ^o K)		6.7×10 ⁻⁵	-	
Quantum Efficiency at 4000 angstroms - 24 - % Type 4516 - - 8x10 ⁵ - Current Amplification - 8x10 ⁵ - Anode Dark Current at 7 A/ImP - 2x10 ⁻¹⁰ 6x10 ⁻¹⁰ A Equivalent Anode Dark Current Input at 7 A/Im - 2.9x10 ^{-11P} 8.6x10 ^{-11P} Im 7 A/Im - 2.9x10 ^{-11P} 8.6x10 ^{-11P} Im - 2.4x10 ⁻¹⁴⁹ 7.2x10 ⁻¹⁴⁹ W Equivalent Noise Input ^F - 4.1x10 ⁻¹³ - Im Dark Pulse Summation: ^t 1 to 32 photoelectrons - 250 - cps (See Typical Dark-Pulse Spectrum) Pulse Height Resolution ^U - 8.5 - % Anode-Pulse Rise Time ^V . ^W at 1800 V - 1.7 x10 ⁻⁹ - s Electron Transit Time ^V . ^X - 1.7 x10 ⁻⁹ - s		source ⁿ (2870 ^o K + C.S. No.5-58)	8x10-1	0 1x10-9	_	
Anode Dark Current at 7 A/ImP - 2×10^{-10} 6×10^{-10} A Equivalent Anode Dark Current Input at 7 A/Im - 2.9×10^{-11P} 8.6×10^{-11P} Im - 2.4×10^{-14P} 7.2×10^{-14P} W Equivalent Noise Input! - 4.1×10^{-13} - Im - 3.5×10^{-16s} - W Dark Pulse Summation: ^t 1 to 32 photoelectrons - 250 - cps (See Typical Dark-Pulse Spectrum) Pulse Height Resolution ^U - 8.5 - % Anode-Pulse Rise Time ^V .W - 1.7×10^{-9} - s Electron Transit Time ^V .X - 1.7×10^{-9} - s		Quantum Efficiency at 4000 angstroms	_	24	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Current Amplification		8×10 ⁵	_	
Current Input at 7 A/Im. - 2.9×10^{-11P} 8.6×10^{-11P} Im - 2.4×10^{-144} 7.2×10^{-149} W Equivalent Noise Input ^r . - 4.1×10^{-13} - Im Dark Pulse Summation: ^t - 3.5×10^{-168} - W Dark Pulse Summation: ^t - 250 - cps (See <i>Typical Dark-Pulse Spectrum</i>) - 8.5 - % Anode-Pulse Rise Time ^V , ^W - 1.7×10^{-9} - s Electron Transit Time ^V , ^X - 1.7×10^{-9} - s		Anode Dark Current at 7 A/ImP	-	2×10-10	6×10-10	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,			
$\begin{cases} - & 2.4 \times 10^{-144} & 7.2 \times 10^{-144} & W \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			{-			Im
Equivalent Noise Input! - 3.5x10 ^{-16s} - W Dark Pulse Summation:t - 3.5x10 ^{-16s} - W 1 to 32 photoelectrons - 250 - cps (See Typical Dark-Pulse Spectrum) - 8.5 - % Anode-Pulse Rise TimeV,W - 1.7 x10 ⁻⁹ - s Electron Transit TimeV,X - 1.7 x10 ⁻⁹ - s			(-		7.2×10-149	W
Dark Pulse Summation: ^t 1 to 32 photoelectrons – 250 – cps (See <i>Typical Dark-Pulse Spectrum</i>) Pulse Height Resolution ^u . – 8.5 – % Anode-Pulse Rise Time ^v , ^w at 1800 V		Equivalent Noise Input ^r .	{-		_	lm
1 to 32 photoelectrons - 250 - cps (See Typical Dark-Pulse Spectrum) Pulse Height Resolution ^u - 8.5 - % Anode-Pulse Rise Time ^v , ^w - 1.7 x10 ⁻⁹ - s Electron Transit Time ^v , ^x - 1.7 x10 ⁻⁹ - s		Dark D. L. C	1 -	3.5×10-163		W
Pulse Height Resolution ^U . – 8.5 – % Anode-Pulse Rise Time ^V , ^W at 1800 V – 1.7 x10 ⁻⁹ – s Electron Transit Time ^V , ^X).	1 to 32 photoelectrons	_ nectrum)	250	-	cps
Anode-Pulse Rise Time ^V , ^W at 1800 V – 1.7 x10 ⁻⁹ – s Electron Transit Time ^V , ^X			-			%
Electron Transit Time ^V , ^x at 1800 V		Anode-Pulse Rise Time ^{v,w} at 1800 V	_	1.7 ×10 ⁻⁹	_	
		Electron Transit Time ^{v,x} at 1800 V	-	1.8 × 10 ⁻⁸	-	S
Indicates a change or addition.		Indicates a change or addi	tion.			

1

RB/ Electronic Components

CHARACTERISTIC RANGE VALUES (Cont'd) Type 4517 Min. Typical Max. 7×105 -Current Amplification ... Anode Dark Current at 2×10-10 7×10-10 ►7 A/ImP..... A Equivalent Anode Dark 2.9x10-11P 1x10-10P Current Input at Im -7 A/Im. 2.4×10-139 84x10-129 W 3.9x10-13 Im - Equivalent Noise Inputr. . 3.3x10-16s W Dark Pulse Summation:t 250 1 to 32 photoelectrons . CDS (See Typical Dark-Pulse Spectrum) Pulse Height Resolution^U. 8.5 % Anode-Pulse Rise TimeV,W 2.1x10-9 at 1800 V S Electron Transit TimeV,X at 1800 V 24×10-8 s **Typical Potential Distribution** Type 4516 Type 4517 8.25% of Supply 8.13% of Supply Between: Voltage (E) Voltage (E) Multiplied by: Multiplied by: Cathode and Dynode No.1 1.2 1.7 1.2 1.3 Dynode No.1 and Dynode No.2 1.3 Dynode No.2 and Dynode No.3 1.7 Dynode No.3 and Dynode No.4 1.0 1.0

a Made by Corning Glass Works, Corning, NY 14830.

Dynode No.4 and Dynode No.5

Dynode No.5 and Dynode No.6

Dynode No.6 and Dynode No.7

Dynode No.7 and Dynode No.8

Dynode No.8 and Dynode No.9

Dynode No.9 and Dynode No.10

Dynode No.10 and Anode

Anode and Cathode

b Made by Hugh H. Eby Company, 4701 Germantown Avenue, Philadelphia, PA 19144.

1.0

1.0

1.0

1.0

1.0

1.0

1.0

12.1

c Made by James Millen Manufacturing Company, 150 Exchange Street, Malden, MA 02148.

> Electronic Components

DATA 2

1.0

10

1.0

1.0

1.0

1.0

1.0

12.3

- e Averaged over any interval of 30 seconds maximum.
- ^f Tube operation at room temperature or below is recommended.
- 9 This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 1190 lumens per watt.
- h These values are calculated as shown below:

Anode Current (with blue light source) (A)

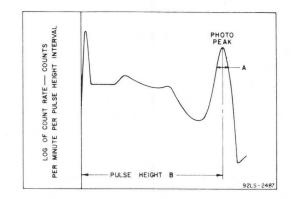
Luminous Sensitivity (A/Im) =

0.15 x Light Flux of 1 x 10⁻⁵ (Im)

The value of 0.15 is the average value of the ratio of the anode current measured under the conditions specified in footnote (j) to the anode current measured under the same conditions but with the blue filter removed.

- J Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness – Manufactured by the Corning Glass Works, Corning, NY 14830) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 1 x 10⁻⁵ lumen.
- k This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1190 lumens per watt.
- m This value is calculated as shown below:

Cathode Luminous Sensitivity (A/Im) = Cathode Current (with blue light source) (A)


0.15 x Light Flux of 1 x 10-4

The value of 0.15 is the average value of the ratio of the cathode current measured under the conditions specified in footnote (n) to the cathode current measured under the same conditions but with the blue filter removed.

ⁿ Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness – Manufactured by the Corning Glass Works, Corning, NY 14830) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 1 x 10⁻⁴ lumen and 200 volts are applied between cathode and all other electrodes connected as anode.

RBA Electronic Components

- P Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness). The light flux incident on the filter is 10 microlumens. The supply voltage (E) is adjusted to obtain an anode current of 10 microamperes. Sensitivity of the tube under these conditions is approximately equivalent to 7 amperes per lumen. Dark current is measured with no light incident on the tube.
- 9 At 4000 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 1190 lumens per watt.
- ^r Under the following conditions: External shield connected to cathode, an equivalent bandwidth of 1 Hz, tungsten light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- S At 4000 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 1190 lumens per watt.
- t Measured with the tube in complete darkness. The pulse height for the single photoelectron equivalent is determined by using a light source operated at a low color temperature to assure the high probability of single photoelectron emission from the photocathode of the tube. The intensity of the light source is adjusted for approximately 10⁴ photons per second. This light is removed before the dark pulse summation is measured.
- u The 662 keV photon from an isotope of cesium having an atomic mass of 137 (Cs¹³⁷) and a cylindrical 1-1/2" x 1-1/2" thalliumactivated sodium-iodide scintillator [Nal (TI) -type 6D6] are used. This scintillator is manufactured by the Harshaw Chemical Corporation, 1945 East 97 Street, Cleveland 6, OH 44106, and is rated by the manufacturer as having a resolution capability of 8.5%. The Cs137 source is in direct contact with the metal end of the scintillator. The faceplate end of the crystal is coupled to the tube by a coupling fluid such as Dow Corning Corp., Type DC200 (viscosity of 60,000 centistokes) - Manufactured by the Dow Corning Corp., Midland, MI 48640, or equivalent, Pulse height resolution in per cent is defined as 100 times the ratio of the width of the photopeak at half the maximum count rate in the photopeak height (A) to the pulse height at maximum photopeak count rate (B).

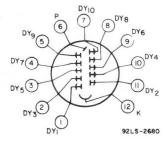
- Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of (E) between cathode and dynode No.1; 1/12 of (E) for each succeeding dynode stage; and 1/12 of (E) between dynode No.10 and anode.
- W Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- X The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

RBA Electronic Components

OPERATING CONSIDERATIONS

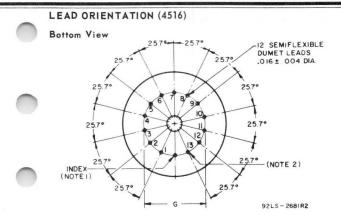
SHIELDING

Electrostatic shielding of the 4516 and 4517 is ordinarily required. When a shield is used, it must be connected to the cathode terminal.


Magnetic shielding of the 4516 and 4517 is ordinarily required. See accompanying curves for the effect of variation in magnetic field intensity on the anode current for a tube with no magnetic shielding.

OPERATING VOLTAGES

In general, the operating potential between anode and cathode should not be less than 500 volts. The suggested voltage distribution shown in Table I is a typical, average distribution for obtaining a good compromise between output current and time and energy resolution. However, it may be necessary to individually adjust these distribution voltages by as much as $\pm 15\%$ to obtain optimum current amplification, pulse-height resolution, or time resolution.


LEAD CONNECTIONS (4516)

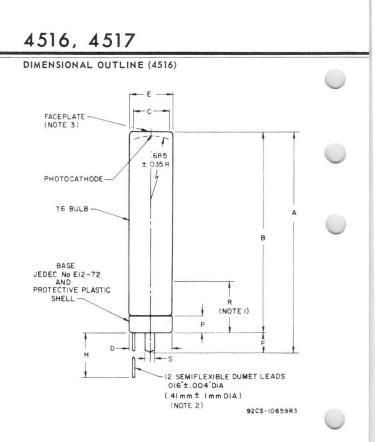
Bottom View

Lead 1: Dynode No.1 Lead 2: Dynode No.3 Lead 3: Dynode No.5 Lead 4: Dynode No.7 Lead 5: Dynode No.9 Lead 6: Anode

RBA Electronic Components Lead 7: Dynode No.10 Lead 8: Dynode No.8 Lead 9: Dynode No.6 Lead 10: Dynode No.4 Lead 11: Dynode No.2 Lead 12: Photocathode

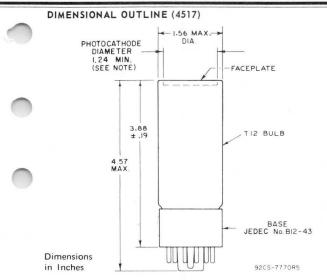
Note 1: Lead No.14 is cut off within 0.04 inch of the glass button for indexing.

Note 2: Lead No.13 is cut off within 0.04 inch of the glass button.


Dimensions	Inches	mm
A	3.94 max.	100.0 max.
в	3.50 + .06 12	88.9 ^{+ 1.5} - 3
С	.5 min. dia.	12.7 min. dia.
D	.78 max. dia.	19.8 max. dia.
E	.755 max. dia.	19.18 max. dia.
F	.38 max.	9.7 max.
G	.47 ± .01 dia.	11.9 ± .25 dia.
н	.75 min.	19.0 min.
P	.30 max.	7.6 max.
R	1.0 max.	25 max.
S	.17 max.	4.3 max.

OUTLINE DIMENSIONS(4516)

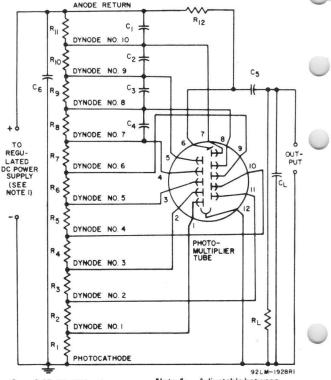
The dimensions in millimeters are derived from the basic inch dimensions (1 inch = 25.4 mm)


日/Л

Note 1: Within this length, maximum diameter of tube is 0.78".

Note 2: The semiflexible leads of the tube may be soldered or welded into the associated circuit. If desired, the leads may be trimmed to within 1/4 inch of the protective shell. Care must be exercised when making such connections to prevent tube destruction due to thermal stress of the glass-metal seals. A heat sink placed in contact with the semiflexible leads between the point being soldered, or welded, and the protective shell is recommended. Excessive bending of the leads is to be avoided.

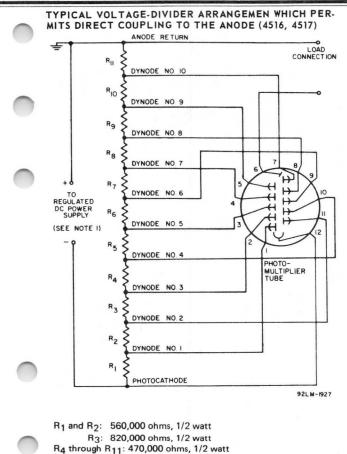
Note 3: Deviation from flatness will not exceed 0.006" from peak to valley.


Note: Deviation from flatness will not exceed 0.010" from peak to valley.

€ of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

•	PIN CONNECTIONS (4517) Bottom View DIRECTION OF LIGHT: INTO END OF BULB				DY9 5 DY7 4	P (O)	DYIO AAAA	DY8 9DY6
	D				DY5 3 DY5 3	DYI		(10) DY4
	Pin	1:	Dynode			Pin	7:	Dynode No.10
	Pin	2:	Dynode	No.3		Pin	8:	Dynode No.8
\frown	Pin	3:	Dynode	No.5		Pin	9:	Dynode No.6
	Pin	4:	Dynode	No.7		Pin	10:	Dynode No.4
	Pin	5:	Dynode	No.9		Pin	11:	Dynode No.2
	Pin	6:	Anode			Pin	12:	Photocathode
	[]	30	BAD	Electronic Componen	its			DATA 6 11-70

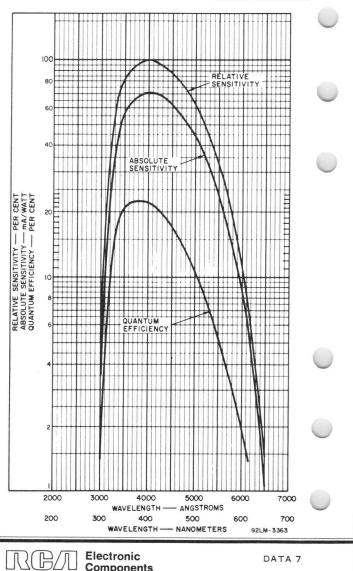
11-70


TYPICAL VOLTAGE-DIVIDER ARRANGEMENT FOR USE IN SCINTILLATION-COUNTING APPLICATIONS (4516, 4517)

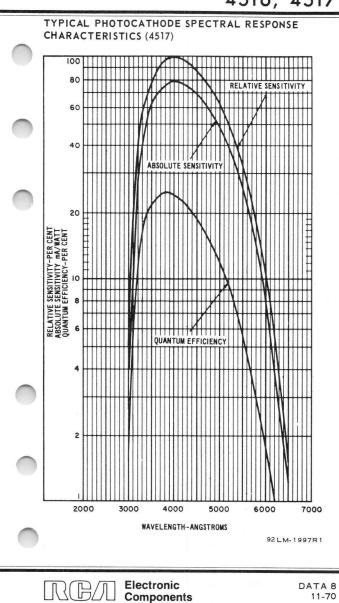
 $\begin{array}{cccc} C_1: & 0.05 \ \mu\text{F}, 500 \ \text{volts} \\ C_2: & 0.02 \ \mu\text{F}, 500 \ \text{volts} \\ C_3: & 0.01 \ \mu\text{F}, 500 \ \text{volts} \\ C_4: & 0.005 \ \mu\text{F}, 500 \ \text{volts} \\ C_5 \ \text{and} \ C_6: 0.005 \ \mu\text{F}, 3000 \ \text{volts} \\ R_1 \ \text{and} \ R_2: \ 560,000 \ \text{ohms}, \\ 1/2 \ \text{watt} \\ R_3: \ 820,000 \ \text{ohms}, 1/2 \ \text{watt} \\ R_4 \ \text{through} \ R_{11}: \ 470,000 \ \text{ohms}, \\ 1/2 \ \text{watt} \\ R_{12}: \ 1 \ \text{megohm}, 1/2 \ \text{watt} \\ R_{13}: \ 100,000 \ \text{ohms}, 1/2 \ \text{watt} \\ \end{array}$

Note 1: Adjustable between approximately 500 and 1800 V dc. Note 2: Capacitors C1 through C6 should be connected at tube socket for optimum high-frequency performance. Note 3: Component values are dependent upon nature of application and output signal desired. Note 4: The value of the load elements, RL and CL, depend on the application: BL CL = 10 microseconds for

R_LC_L = 10 microseconds for most applications

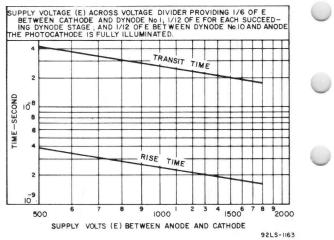


Note 1: Adjustable between approximately 500 and 1800 volts dc. Note 2: Component values are dependent upon nature of application and output signal desired.

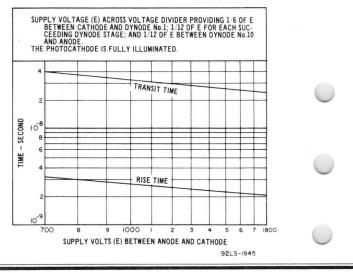

> Electronic Components

日/几

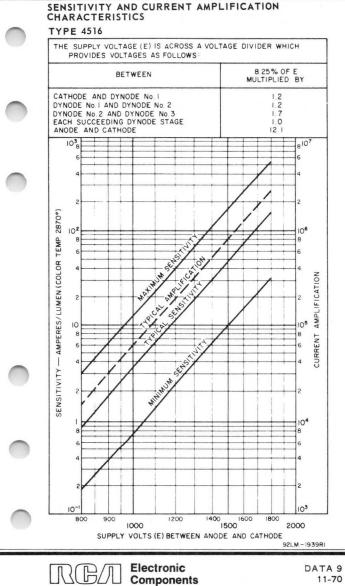
TYPICAL SPECTRAL RESPONSE CHARACTERISTICS (4516)



Electronic Components

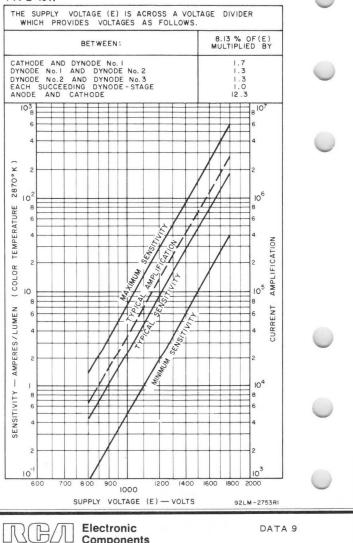

11-70

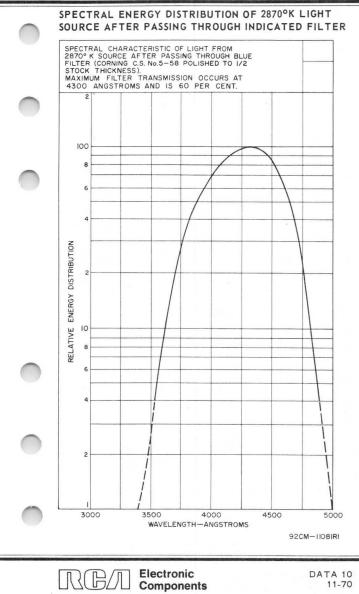
TYPICAL TIME-RESOLUTION CHARACTERISTICS TYPE 4516



TYPE 4517

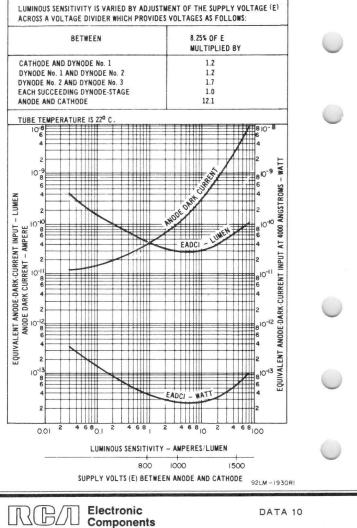
{

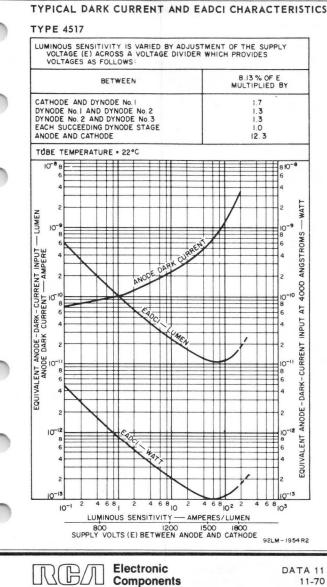

BA Electronic Components


11-70

TYPICAL SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS

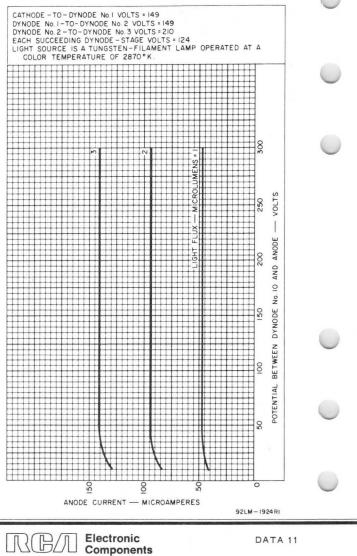
TYPE 4517

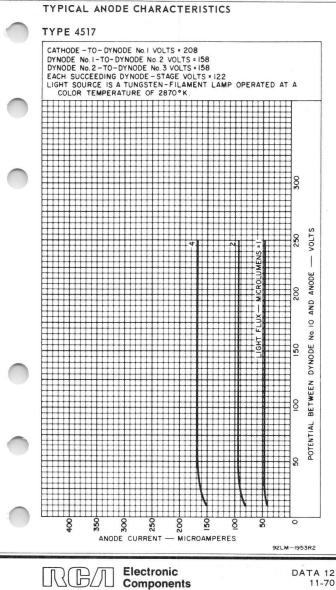



Components

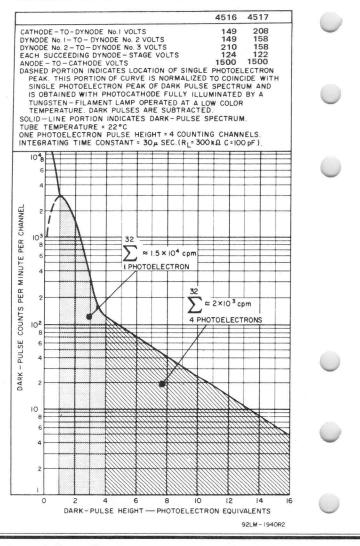
TYPICAL ANODE DARK CURRENT AND EADCI CHARACTERISTICS

TYPE 4516

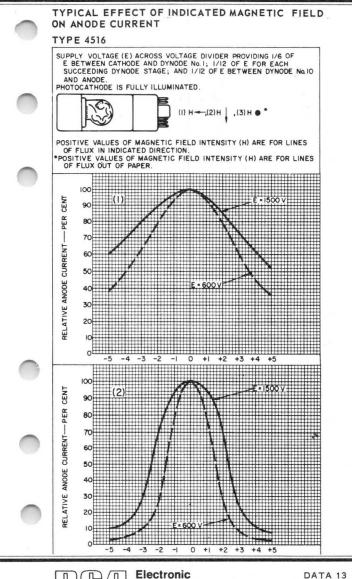




11-70


TYPICAL ANODE CHARACTERISTICS

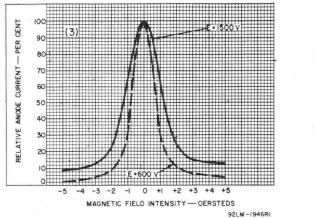
TYPE 4516


TYPICAL DARK-PULSE SPECTRUM

Electronic Components

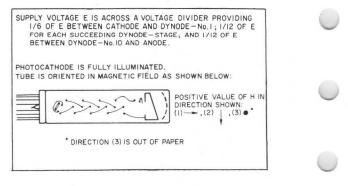
RGЛ

DATA 12

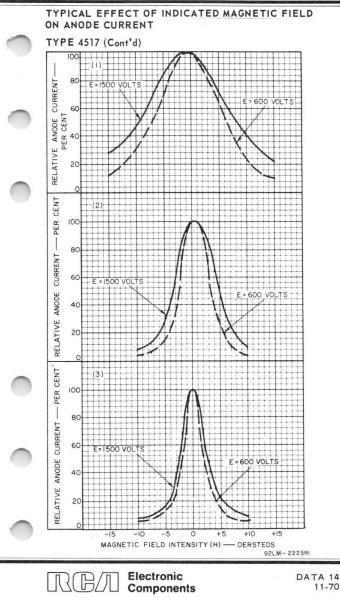


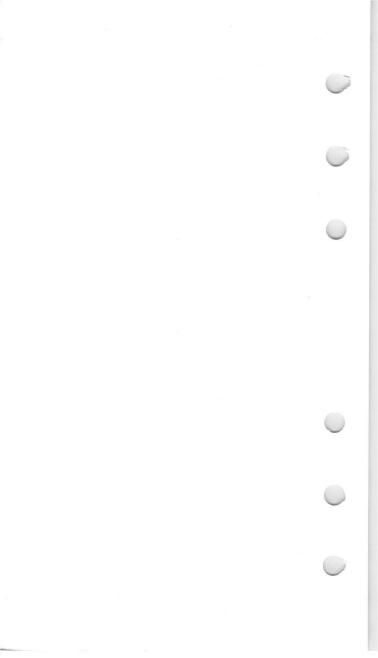
Components

DATA 13 11-70


TYPICAL EFFECT OF INDICATED MAGNETIC FIELD ON ANODE CURRENT

TYPE 4516 (Cont'd)


TYPICAL EFFECT OF INDICATED MAGNETIC FIELD ON ANODE CURRENT


TYPE 4517

BA Electronic Components

DATA 13

Photomu	ltiplie	r Tube
---------	---------	--------

5	
7	2-Inch Diameter, 10-Stage, Head-On Type
	Bialkali Photocathode of High Quantum Efficiency
	Circular-Cage Electrostatically-Focused Dynode Structure
	For use in pulse counting and other low light
	level detection and measurement systems
3	GENERAL
	Spectral Response See accompanying Spectral
	Response Characteristics
	Wavelength of Maximum Response 4000 ± 500 angstroms
	Cathode, Semitransparent Cesium-Potassium-Antimony (Bialkali)
	Shape Spherical Section
•	Minimum projected area 2.2 in ²
	Minimum diameter
	Window Corning ^a No.0080, or equivalent
	Shape Plano-Concave
	Index of refraction at 4360 angstroms 1.523
	Dynodes:
	SubstrateCopper-Beryllium
	Secondary-Emitting Surface Beryllium-Oxide
	Structure Circular-Cage Electrostatic-Focus Type
	Direct Interelectrode Capacitances (Approx.):
	Anode to dynode No.10
	Anode to all other electrodes
	Maximum Overall Length. 5.81 in.Seated Length 4.87 in. ± 0.19 in.
	Maximum Diameter
	Bulb
2	SocketCinch-Jones ^b No.3M14, or equivalent
7	Magnetic Shield Millen ^c No.80802B, or equivalent
	Operating Position Any
	Weight (Approx.) 5.2 oz
	Base
	(JEDEC No.B14-38), Non-hygroscopic
5	ABSOLUTE-MAXIMUM RATINGS
1	DC Voltage:
	Between anode and cathode 2000 max. V

Between anode and cathode	2000 max.	V
Between anode and dynode No.10	250 max.	V
Between consecutive dynodes	400 max.	V
Between dynode No.1 and cathode	300 max.	V
Between focusing electrode and cathode .	400 max.	V
Average Anode Current ^e	0.5 max.	$\mathbf{m}\mathbf{A}$
Ambient-Temperature Range ^f	-100 to +85	oC

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing voltages as shown in Table I, except as noted. With E = 1500 volts except as noted

	Min.	Typ.	Max.		
Sensitivity					
Radiant ^g at					
4000 angstroms	-	3.9×10^4	-	A/W	0
Cathode Radiant ^h					-
at 4000 angstroms	-	0.079	-	A/W	
Luminous:					
With tungsten					
light source!	13 _	33 _	200	A/lm	
With blue light source ^k	2x10 ⁻⁵	5x10-5	3x10-4	Α	()
Cathode Luminous:					~
With tungsten					
light source ^m	-	6.7×10^{-5}	-	A/lm	
With blue light source ⁿ 8	8x10 ⁻¹⁰	1×10^{-9}	-	Α	
Quantum Efficiency					
at 4000 angstroms	-	24 _	-	%	
Current Amplification	-	5×10^{5}	-		
Anode Dark Current ^P	-	2.4x10-10	5x10-10	A	
Equivalent Anode-	,	3x10-11q		lm	
Dark-Current Input	}-	2.5x10-14r	-	W	
Dark Dulas Sastars	(-	(x)	-	**	
Dark-Pulse Spectrum ^s	-		-	07	
Pulse-Height Resolution [†] .	-	9	-	%	
Anode-Pulse Rise Time ^{U,V} .	-	2.3×10^{-9}	-	S	
Electron Transit Time ^{u,w}	-	2.7×10^{-8}	-	S	
					6

 ^aMade by Corning Glass Works, Corning, New York 14830.
 ^bMade by Cinch Manufacturing Co., 1026 S. Homan Ave., Chicago, Ill. 60624

^cMade by James Millen Manufacturing Co., 150 Exchange St., Malden, Mass. 02148

^eAveraged over any interval of 30 seconds maximum.

^fTube operation at room temperature or below is recommended.

⁹This value is calculated from the typical luminous sensitivity rating using a conversion factor of 1190 lumens per watt. ^hThis value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1190 lumens per watt.

These values are calculated as shown below:

	Anode Current (with blue light source) (A)
Luminous Sensitivity (A/lm) =	0.15 x Light Flux of 1 x 10-5 (lm)

The value of 0.15 is the average value of the ratio of the anode current measured under the conditions specified in footnote (k) to the anode current measured under the same conditions but with the blue filter removed.

^kUnder the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C. S. No.5-58, polished to 1/2 stock thickness — Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 10 microlumens.

^mThis value is calculated as shown below:

Cathode Luminous Sensitivity (A/lm) =	Cathode Current (with blue light source) (A)		
	0.15 x Light Flux of 1 x 10-4 (lm)		

The value of 0.15 is the average value of the ratio of the cathode current measured under the conditions specified in footnote (m) to the cathode current measured under the same conditions but with the blue filter removed.

ⁿUnder the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C. S. No.5-58, polished to 1/2 stock thickness – Manufactured by the Corning Glass Works, Corning, New York) from a tungstenfilament lamp operated at a color temperature of 2870[°] K. The value of light flux incident on the filter is 100 microlumens and 200 volts are applied between cathode and all other electrodes connected as anode.

At a tube temperature of 22° C. Light incident on the cathode is transmitted through a blue filter (Corning C. S. No.5-58, polished to 1/2 stock thickness). The light flux incident on

the filter is 10 microlumens. The supply voltage (E) is adjusted to obtain an anode current of 10 microamperes. Sensitivity of the 4518 under these conditions is approximately equivalent to 7 amperes per lumen. Dark current is measured with no light incident on the tube.

- **q**With supply voltage (E) adjusted to give an equivalent luminous sensitivity of 7 amperes per lumen.
- ^r At 4000 angstroms. This value is calculated from the EADCI value in lumens using a conversion factor of 1190 lumens per watt.
- ⁵Measured under the following conditions: A Nuclear Data Model No.ND-180 Multichannel Pulse-Height Analyzer is used. The single-photoelectron pulse height is established by fully illuminating the photocathode with a weak light source, such as a tungsten-filament lamp operated at a low color temperature, to assure the high probability of single photoelectron emission from the photocathode of the 4518. The intensity of the light source is adjusted for approximately 50 per cent counting loss. The dark-pulse spectrum is then obtained, using the same gain setting of the Multichannel Pulse-Height Analyzer, with the light source removed.
- [†] Pulse-height resolution is defined as the quotient of the full width of the photopeak at half height by the pulse height at maximum count rate under the following conditions: The 662 keV photon from an isotope of cesium having an atomic mass of 137 (Cs¹³⁷) and a cylindrical 2" x 2" thallium-activated sodium-iodide scintillator [NaI(T1)-type 8D8] are used. This scintillator is manufactured by the Harshaw Chemical Corporation, 1945 East 97 Street, Cleveland 6, Ohio, and is rated by the manufacturer as having a resolution capability of 7.5%. The Cs¹³⁷ source is in direct contact with the metal end of the scintillator. The faceplate end of the crystal is coupled to the 4518 by a coupling fluid such as Dow Corning Corp., Type DC200 (viscosity of 60,000 centistokes) - Manufactured by the Dow Corning Corp., Midland, Michigan, or equivalent.
- ^UUnder conditions with dc supply voltage (E) across a voltage divider providing 1/6 of (E) between cathode and dynode No.1; 1/12 of (E) for each succeeding dynode stage; and 1/12 of (E) between dynode No.10 and anode. Focusing electrode potential is adjusted as shown in Table I.
- Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primaril a function of transit time variation and is measured under

conditions with the incident light fully illuminating the photocathode.

"The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

*See accompanying Typical Dark-Pulse Spectrum.

-	Υ.	-		-		
- T	А	в	L	E.	1	

TYPICAL POTENTIAL DI	
Between:	7.75% of Supply Voltage (E) Multiplied by:
Cathode and Dynode No.1	1.8
Dynode No.1 and Dynode No.2	1.4
Dynode No.2 and Dynode No.3	1.5
Dynode No.3 and Dynode No.4	1.2
Dynode No.4 and Dynode No.5	1.0
Dynode No.5 and Dynode No.6	1.0
Dynode No.6 and Dynode No.7	1.0
Dynode No.7 and Dynode No.8	1.0
Dynode No.8 and Dynode No.9	1.0
Dynode No.9 and Dynode No.10	1.0
Dynode No.10 and Anode	1.0
Anode and Cathode	12.9

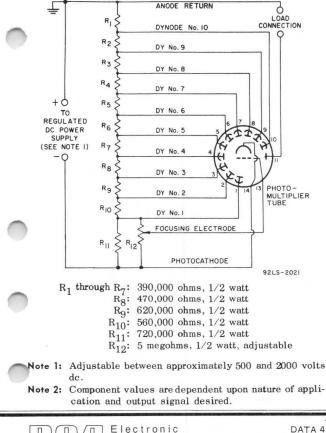
Focusing Electrode is connected to arm of potentiometer between cathode and dynode No.1. The focusing-electrode voltage is varied between 10% and 60% of dynode No.1 potential (referred to cathode) to give maximum anode current.

OPERATING CONSIDERATIONS

The *base pins* of the 4518 fit a diheptal 14-contact socket, such as Cinch-Jones No.3M14 or equivalent. The socket should be made of high-grade, low-leakage material, and should be installed so that incident light falls on the face end of the tube.

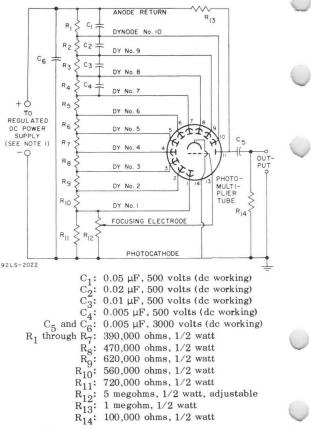
The operating stability of the 4518 is dependent on the magnitude of the anode current. The use of an

average anode current well below the maximum rated value of 0.5 milliampere is recommended when stability of operation is important. When stability is of prime importance, the use of an average anode current of 1 microampere or less is recommended.

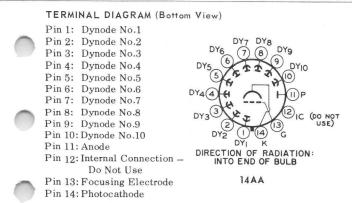

Electrostatic and magnetic shielding of the 4518 is ordinarily required. When a shield is used, it must be at cathode potential.

The *high voltages* at which the 4518 is operated are very dangerous. Care should be taken in the design of apparatus to prevent the operator from coming in contact with these high voltages. Precautions should include the enclosure of high-potential terminals and the use of interlock switches to break the primary circuit of the high-voltage power supply when access to the apparatus is required.

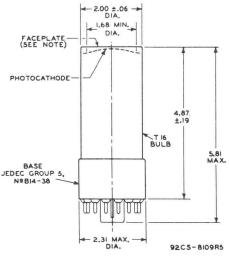
Accompanying typical voltage-divider arrangements are recommended for use with the 4518. The resistance values for the voltage dividers range from 10,000 ohms per stage to 1,000,000 ohms per stage. The choice of resistance values for any voltage-divider network is usually a compromise. If low values of resistance per stage are utilized, the power drawn from the regulated power supply and the required power rating of the resistors increase. Phototube noise may also increase due to heating if the divider network is mounted near the photocathode.


The use of high resistance values per stage may cause deviation from linearity if the voltage-divider current is not maintained at a value of at least 10 times that of the maximum value of anode current, and may limit anode-current response to pulsed light. The latter effect may be reduced by connecting capacitors between the tube socket terminals for dynodes No.7 and No.8, dynodes No.8 and No.9, dynodes No.9 and No.10, and between dynode No.10 and anode return. In addition to non-linearity and pulse-limiting effects, the use of resistance values exceeding 10 megohms per stage make the 4518 more susceptible to leakage effects between terminals with possible resulting deviation in interstage voltage leading to a loss of current amplification.

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT WHICH PERMITS DIRECT COUPLING TO THE ANODE

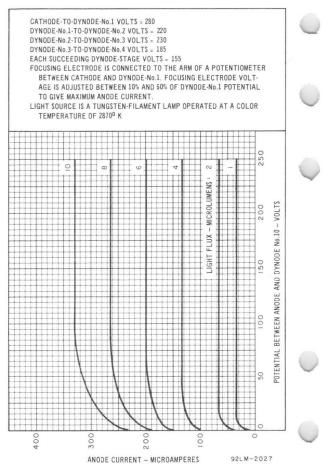


Components

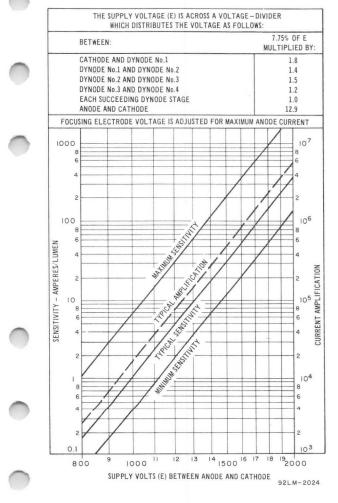


- Note 1: Adjustable between approximately 500 and 2000 volts dc.
- Note 2: Capacitors C₁ through C₆ should be connected at tube socket for optimum high-frequency performance.
- Note 3: Component values are dependent upon nature of application and output signal desired.

DIMENSIONAL OUTLINE

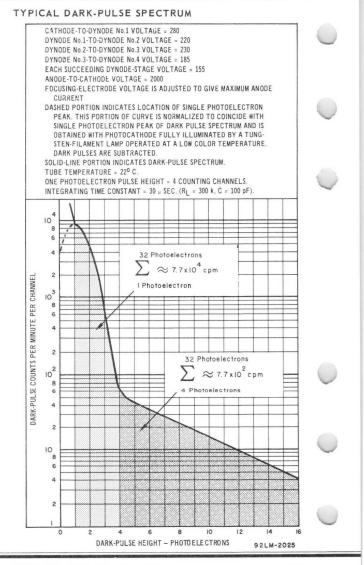

DIMENSIONS IN INCHES

Note: Within 1.68" diameter, deviation from flatness of external surface of faceplate will not exceed 0.010" from peak to valley.

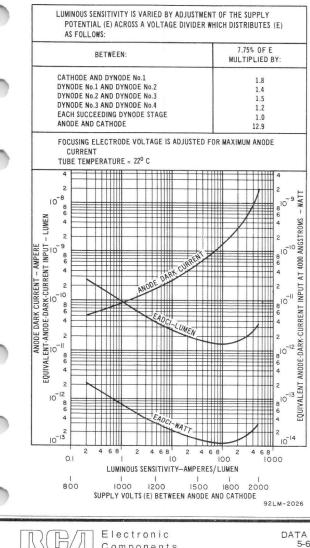

RBA Electronic Components

DATA 5 5-68

TYPICAL ANODE CHARACTERISTICS

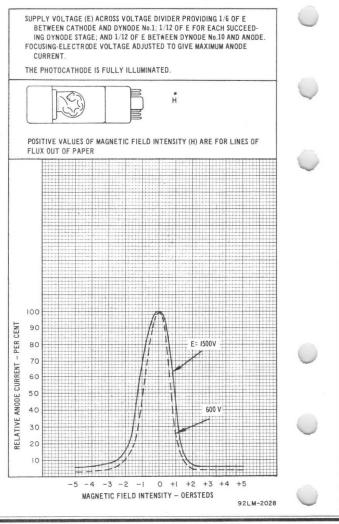


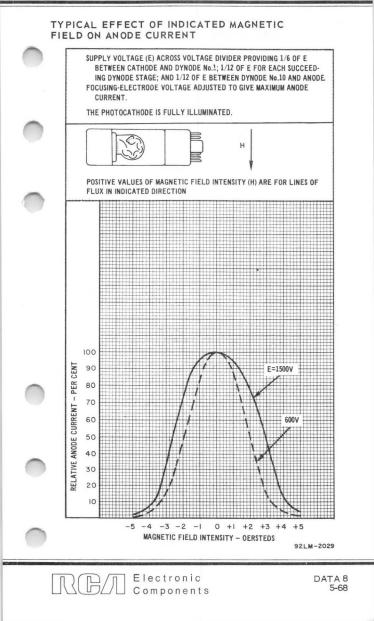
SENSITIVITY AND CURRENT-AMPLIFICATION CHARACTERISTICS


RBA Electronic Components

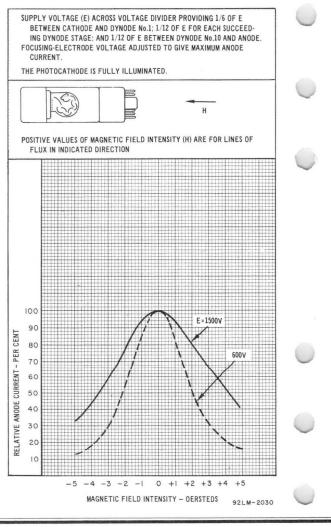
DATA 6 5-68

Electronic Components DATA 6


TYPICAL DARK CURRENT AND EADCI CHARACTERISTICS

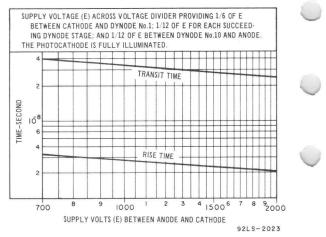


Components


DATA 7 5-68

TYPICAL EFFECT OF INDICATED MAGNETIC FIELD ON ANODE CURRENT

TYPICAL EFFECT OF INDICATED MAGNETIC FIELD ON ANODE CURRENT



SPECTRAL RESPONSE CHARACTERISTICS 100 ITT 80 RELATIVE SENS ITIVIT 60 40 ABSOLUTE SENSITI VIT 20 E SENSITIVITY-PER CENT E SENSITIVITY mA/WATT A EFFICIENCY-PER CENT 10 τ 8 RELATIVE S ABSOLUTE S QUANTUM EI 6 П Ш 1 QUANTUM EFFICIENCY 4 2 2000 3000 4000 6000 5000 7000 WAVELENGTH-ANGSTROMS 92LM-1997

> RBA Electronic Components

4518

TYPICAL TIME-RESOLUTION CHARACTERISTICS

Photomultiplier Tube

3"-Diameter, 10-Stage, Venetian-Blind Type Having a Bialkali Photocathode and Aluminum-Oxide Window

GENERAL

Spectral Response See Accompanying Typical Spectral Response Charac-
teristics
Wavelength of Maximum Response
Minimum area 5.27 in ² (34.1 cm ²)
Minimum diameter 2.59 in (6.6 cm)
Window
Shape
Dynodes:
Substrate Copper-Beryllium
Secondary-Emitting Surface Beryllium-Oxide
Structure Venetian-Blind
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.10 3.3 pF
Anode to all other electrodes
Maximum Overall Length 5.86 in (14.8 cm)
Maximum Diameter
Bulb See Dimensional Outline
Base (Temporary) Small-Shell Diheptal 14-Pin
(JEDEC Group 5, No.B14-45)
Socket
Magnetic Shield See Footnote b
Operating Position
Weight (Approx.) 10.6 oz (300 g)
MAXIMUM RATINGS, Absolute-Maximum Values: DC Supply Voltage:
Between anode and cathode 2000 max. V
Between anode and dynode No.10 300 max. V Between consecutive dynodes 250 max. V
Between consecutive dynodes 250 max. V Between dynode No.1 and cathode 600 max. V
Between focusing electrode and cathode 600 max. V
Average Anode Current ^d 0.5 max. mA
Ambient-Temperature Range ^e

Electronic Components

RB/J

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing the electrode voltages shown in Table I, except as noted, and at a temperature of 22° C.

With E = 1500 volts (Except as noted)

	Min.	Typical	Max.		
Anode Sensitivity:					
Radiant ^f at 4000 angstroms	_	1.9×10 ⁴	_	A/W	
Luminous9 (2870° K)	7.5	18	165	A/Im	
Current with blue light source ^h (2870 ^o K + C.S. No.5-58)	9x10 ⁻⁶	2.2x10 ⁻⁵	2x10 ⁻⁴	А	
Cathode Sensitivity:					
Radiant ^j at 4000 angstroms	_	0.087	-	A/Im	
Luminousk (2870°K)	6.7x10 ⁻⁵	8.3x10 ⁻⁵	-	A/Im	
Current with blue light source ^m (2870 ^o K + C.S. No.5-58)	8x10-10	0 1×10-9	-	А	
Quantum Efficiency at 4000 angstroms	_	27	-	%	
Current Amplification	-	2.2×10 ⁵	-		
Anode Dark Current ⁿ	-	2×10-9	6x10 ⁻⁹	A	
Equivalent Anode Dark	(-	2.7×10-10	8x10-10	Im	
Current Input ⁿ	{-	2.6x10-13p	7.7x10-13p	w	
	}_	1.8×10-12	-	Im	0
Equivalent Noise Input ⁸ .	1-	1.7×10-15r	-	w	•
Pulse Height Resolution ^q .	`-	7.5		%	
Mean Gain Deviation:t					
With count rate change of 10,000 to 1,000 cps ^u	-	1	-	%	
For period of 16 hours at a count rate of 10,000 cps ^v	_	1	_	%	
Anode-Pulse Rise Time ^{W,X} at 2000 V	-	1.3x10 ⁻⁸		s	
Electron Transit Time ^{w,y} at 2000 V	_	5.8x10-8		s	0

RBA Electronic Components

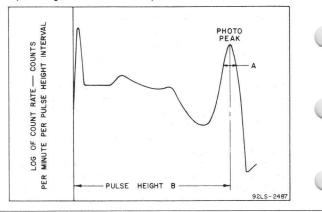
DATA 1

- ^a Made by Cinch Manufacturing Company, 1501 Morse Avenue, Elk Grove Village, IL 60007.
- b Magnetic shielding material in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1322 North Elston Avenue, Chicago, IL, 60622, or equivalent.
- d Averaged over any interval of 30 seconds maximum.
- e Tube operation at room temperature or below is recommended.
- f This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 1040 lumens per watt.
- 9 These values are calculated as shown below:

Anode Current with blue light source) (A)

Luminous Sensitivity (A/Im) =

0.12 x Light Flux of 1 x 10-5 (Im)


The value of 0.12 is the average value of the ratio of the anode current measured under the conditions specified in footnote (h) to the anode current measured with the blue filter removed.

- h Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 10 microlumens.
- j This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1040 lumens per watt.
- k This value is calculated as shown below:

Cathode Luminous Sensitivity (A/Im) = The value of 0.12 is the average value of the ratio of the cathode current measured under the conditions specified in footnote (m) to the cathode current measured under the same conditions but with the blue filter removed.

^m Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 1 x 10⁻⁴ lumen and 300 volts are applied between cathode and all other electrodes connected as anode.

- ⁿ Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness). The light flux incident on the filter is 10 microlumens. The supply voltage E is adjusted to obtain an anode current of 9 microamperes. Sensitivity of the 4521 under these conditions is approximately equivalent to 7.5 amperes per lumen. Dark current is measured with no light incident on the tube.
- P At 4000 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 1040 lumens per watt.
- a With a supply voltage E of 1100 volts. Anode load is a 100-kilohm resistor in parallel with a total capacitance of 100 pF. Under pulse conditions, the interstage voltages of the tube should not deviate more than 2% from the interstage voltage values during no-signal conditions. The 662 keV photon from an isotope of cesium having an atomic mass of 137 (Cs¹³⁷) and a cylindrical 3" x 3" thallium-activated sodium-iodide scintillator [Nal (TI)type 12A12, Serial No.DH184 or equivalent] are used. This scintillator is manufactured by the Harshaw Chemical Corporation, 1945 East 97th Street, Cleveland 6, OH. The Cs137 source is in direct contact with the metal end of the scintillator. The faceplate end of the crystal is coupled to the tube by a coupling fluid such as Dow Corning Corp. Type DC200 (Viscosity of 60,000 centistokes) - Manufactured by the Dow Corning Corp., Midland, MI, or equivalent, Pulse-height resolution in per cent is defined at 100 times the ratio of the width of the photopeak at half the maximum count rate in the photopeak height (A) to the pulse height at maximum photopeak count rate (B).

Electronic Components

DATA 2

- r At 4000 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 1040 lumens per watt.
- S Under the following conditions: External shield connected to cathode, an equivalent bandwidth of 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.

t Mean gain deviation is defined as follows:

$$\frac{\Sigma |\overline{p} - p_i|}{MGD} = \frac{i=1}{n}$$

Where: p = mean pulse height p_i = pulse height at the "ith" reading n = total number of

readings

- ^u Under the following conditions: The scintillator and Cs¹³⁷ radiation source of (s) are employed. The radiation source is initially centered, on the major axis of the tube and the scintillator, at a point providing a pulse count rate of 10,000 cps. The pulse height of the photopeak is measured under this condition. Next, the radiation source is moved rapidly, in approximately 30 seconds, to a new position that is equivalent to a count rate of 1,000 cps. The pulse height under this condition is measured. Mean gain deviation is defined as shown in (t).
- V Under the same conditions as shown in (u) except the tube is operated for a period of 1/2 hour with the radiation source located at the point providing a pulse count rate of 10,000 cps. Following this time interval, the pulse height is sampled, at this count rate, at 1-hour intervals for a period of 16 hours. Mean gain deviation is defined as shown in (t).
- Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode.
- Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- Y The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

Electronic

Components

比/Л

OPERATING CONSIDERATIONS

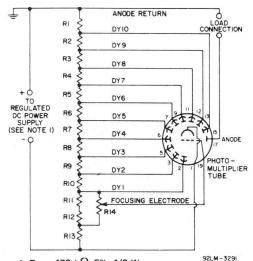
Terminal Connections

The 4521 is supplied with a small-shell diheptal base attached to semiflexible leads to facilitate testing. After testing, the attached base should be removed prior to installing the 4521 in a given system.

SHIELDING

Electrostatic and magnetic shielding of the 4521 is usually required. When a shield is used it must be at cathode potential.

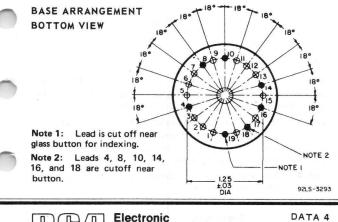
OPERATING VOLTAGES


The high voltages at which the 4521 is operated are very dangerous. Care should be taken in the design of apparatus to prevent the operator from coming in contact with these high voltages.

For additional information on this type write to RCA Commercial Engineering, Harrison, N.J. 07029 for technical bulletin.

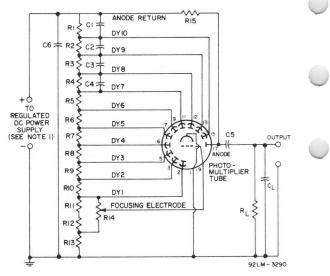
Between	7.7% of Supply Voltage (E) Multiplied by
Cathode and Dynode No.1	3
Dynode No.1 and Dynode No.2	1
Dynode No.2 and Dynode No.3	1
Dynode No.3 and Dynode No.4	1
Dynode No.4 and Dynode No.5	1
Dynode No.5 and Dynode No.6	1
Dynode No.6 and Dynode No.7	1
Dynode No.7 and Dynode No.8	1
Dynode No.8 and Dynode No.9	1 The second second second
Dynode No.9 and Dynode No.10	1
Dynode No.10 and Anode	1
Anode and Cathode	13

maximum anode current and is between 70 and 100 per cent of dynode No.1 potential (referred to cathode).


TYPICAL VOLTAGE-DIVIDER ARRANGEMENT FOR GENERAL PHOTOMETRIC APPLICATIONS

R1 through R13: 470 kΩ, 5%, 1/2 W R14: 5 MΩ, 20%, 1/2 W, (Adjustable)

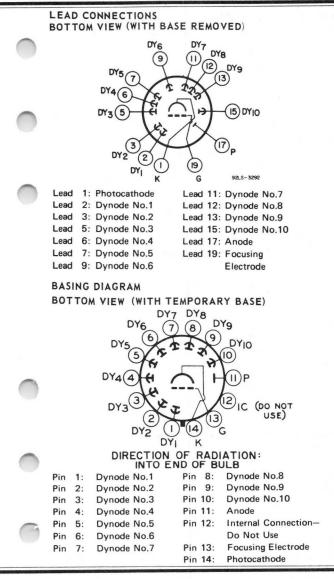
В/Л


Note 1: Adjustable between approximately 800 and 2000 volts dc. Note 2: Component values are dependent upon nature of application and output signal desired.

Components

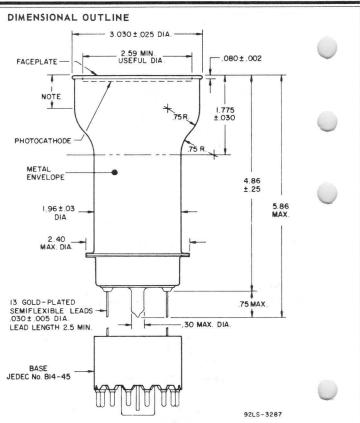
DATA 4 2-70

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT FOR SCINTILLATION-COUNTING APPLICATIONS



 $\begin{array}{rrrr} C_1: & 0.05 \ \mu\text{F}, 500 \ \text{volts} \\ C_2: & 0.02 \ \mu\text{F}, 500 \ \text{volts} \\ C_3: & 0.01 \ \mu\text{F}, 500 \ \text{volts} \\ C_4: & 0.005 \ \mu\text{F}, 500 \ \text{volts} \\ C_5 \ \text{and} \ C_6: & 0.005 \ \mu\text{F}, 3000 \ \text{volts} \\ R_1 \ \text{through} \ R_{13}: \ 470 \ k\Omega, 5\%, 1/2 \ W \\ R_{15}: \ 1 \ M\Omega, 5\%, 1/2 \ W \\ R_{L}: \ 100 \ k\Omega, 5\%, 1/2 \ W \end{array}$

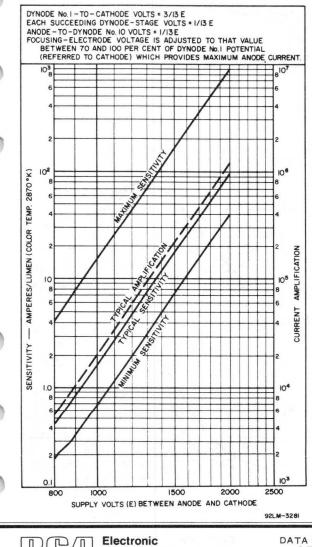
Note 1:Adjustable between approximately 800 and 2000 volts dc.Note 2:Capacitors C1 through C6 should be connected at tubesocket for optimum high-frequency performance.


Note 3: The value of the load elements, R_L and C_L , depend on the application. For most applications, $R_L \times C_L = 10$ microseconds. It is to be noted that R_{15} is in parallel with R_L and must be considered when selecting the R_L value.

Note 4: Component values are dependent upon nature of application and output signal desired.

Electronic Components

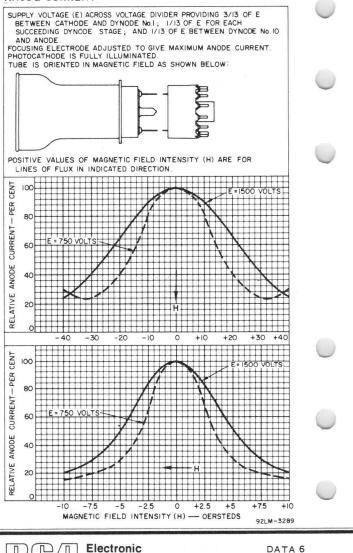
出//



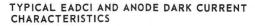
Dimensions are in inches unless otherwise stated.

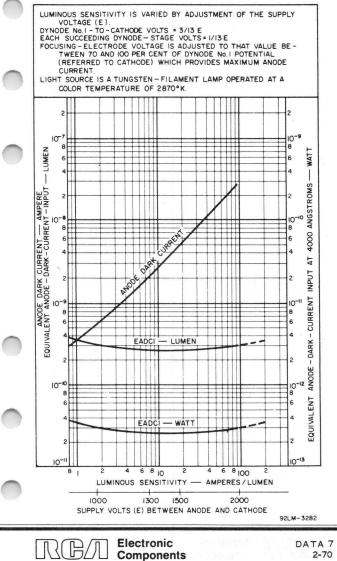
mm	Inch	mm	Inch
59.4	2.34	.127	.005
60.9	2.40	.63	.025
63.5	2.5	.76	.030
66	2.59	2.0	.08
 76.9	3.03	6.3	.25
123.4	4.86	19.1	.75
148.8	5.86	50,8	2.0

Electronic Components

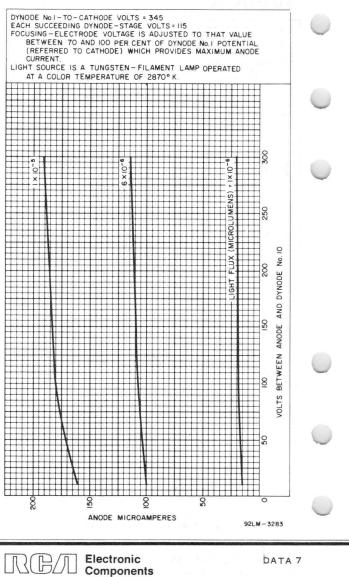


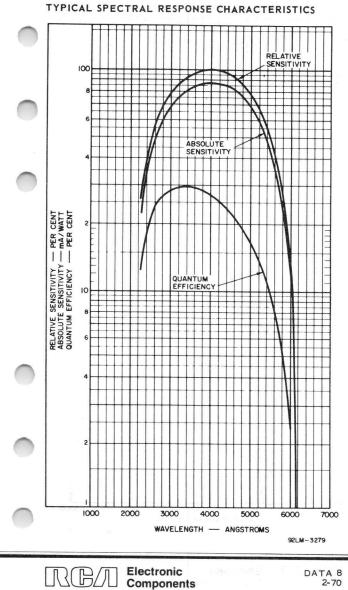
Components


RB/J

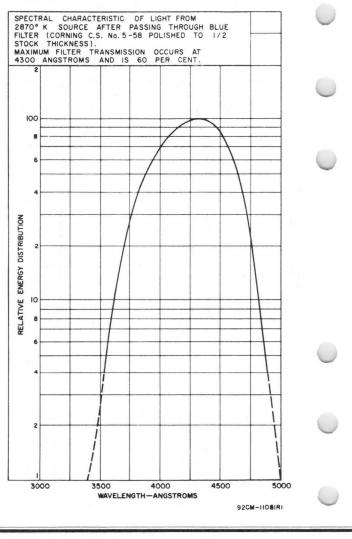

DATA 6 2-70

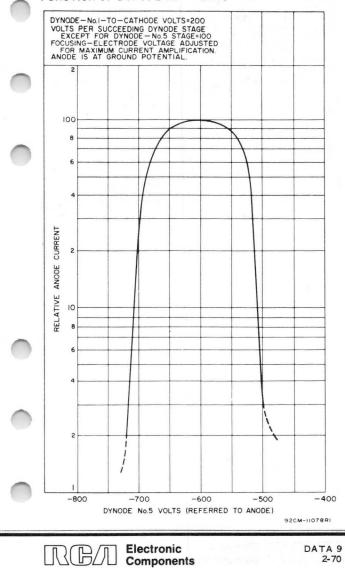
TYPICAL EFFECT OF INDICATED MAGNETIC FIELD ON ANODE CURRENT


Components

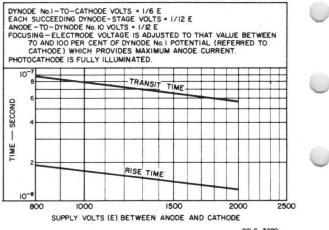


2-70


TYPICAL ANODE CHARACTERISTICS


2-70

SPECTRAL ENERGY DISTRIBUTION OF 2870° K LIGHT SOURCE AFTER PASSING THROUGH INDICATED FILTER



RBA Electronic Components

TYPICAL CHARACTERISTIC OF OUTPUT CURRENT AS A FUNCTION OF DYNODE-NO.5 VOLTS

TYPICAL TIME RESOLUTION CHARACTERISTICS

92LS-3280

BA Electronic Components

Photomultiplier Tube

5-Inch Diameter, 14-Stage, Head-On Type High Quantum Efficiency Bialkali Photocathode In-Line Electrostatically-Focused Dynode Structure

For Use in Nuclear Physics Applications, Especially When a High Degree of Time Definition is Required

GENERAL

GENERAL	
Spectral Response See accompanying	
Typical Spectral Response Characteristics	
Wavelength of Maximum Response 4000 ± 500 Å	
Cathode, Semitransparent Cs-K-Sb(Bialkali)	
Shape Spherical Section	
Minimum projected area 16 sq. in (103 sq. cm)	
Minimum diameter 4.5 in (11.4 cm)	
Window UV-transmitting, Corning ^a No.9741, or Equivalent	
Shape Spherical Section	
Index of refraction at 4047 angstroms 1.48	
Dynodes:	
Substrate Copper-Beryllium	
Secondary-Emitting Surface Beryllium-Oxide	
Structure In-Line Electrostatic-Focus	
Direct Interelectrode Capacitances (Approx.):	
Anode to dynode No.14 5.5 pF	
Anode to all other electrodes	
Maximum Overall Length 12 in (30.5 cm)	
Maximum Diameter	
Socket RCA-AJ2144 or AJ2145	
Magnetic Shield See Note (b)	
Operating Position Any	
Weight (Approx.)	
MAXIMUM AND MINIMUM RATINGS, Absolute-Maximum Values	
DC Supply Voltage:	
Between anode and cathode:	
With Voltage Distribution A or B, shown in Table I 3000 max. V	
With Voltage Distribution	
C. shown in Table I 3500 max. V	
Between anode and dynodeNo.14 600 max. V	
Between dynode No.14 & dynode No.13 800 max. V Between other consecutive dynodes. 400 max. V	
Between dunied No.1	
\ 800 max. V	
and cathode 300 min. V	
Average Anode Current ^d 0.5 max. mA	
Ambient-Temperature Range100 to +85 °C	

Electronic Components

CHARACTERISTICS RANGE	V A Min		Max.		
With a DC Supply Voltage (E)					
Voltage Distribution A, Tabl	– 20 le I	JUU volts (Exc	ept as no	oted)	\bigcirc
Anode Sensitivity:		C			
Radiant ^e at 4000 Å ^c	-	2.6 x 10 ⁶	-	A/W	
Luminous f (2870°K) . 6.5	5 x 1	10^2 2.3 x 10^3	6.5 x 10	3 A/lm	
With blue light					
source ⁹ (2870 ⁰ K + C.S. No.5-58) 8.5		0-6 2 10-5	0 5 - 10	-5 ^	
+ C.S. No.5-58) 8.5 Cathode Sensitivity:	X I	0 ³ x 10 ³	8.5 X 10	A	-
Radiant ^h at 4000 Å	_	8.8 x 10 ⁻²	_	A/W	
		7.7×10^{-5}		A/lm	
With blue light source k		7.7 X 10		A/ III	
$(2870^{\circ} \text{ K} + \text{C.S.})$					
No.5-58) 8 2	10	-10 1 10 -9	-	А	
	K 10	I X 10		A	
Cathode Quantum					
Efficiency at		20		01	
3600 A		$ 3 \times 10^{7} $		%	
Current Amplification • • •	-	3×10^{-8} 6×10^{-8}	-	6	
Equivalent Anode	_	3 x 10 ⁻¹¹ n	5 x 10	10n lm	
Dark Current Input	-	2.6 x 10 ⁻¹⁴ p		W	
With E = 2500 volts					
Voltage Distribution B, Table	e I				
Pulse Height Resolution ⁹	-	7.5	-	%	
Mean Gain Deviation ^r		1	—	%	
Dark Pulse Spectrum		See Typical	Dark Pui	lse	\smile
		Spect	rum		
With E = 3000 volts					
Voltage Distribution A, Table	e I				
Anode-Pulse Rise Time .	-	2.9 x 10 ⁻⁹	_	s	
Electron Transit Time		6.6 x 10 ⁻⁸	—	s	-
With E = 3000 volts					
Voltage Distribution C, Table	21				
Palse Current: "					
$Linear^{\vee}$	-	0.13	-	А	
Saturated	-	0.32	-	А	
[n] (n] Electron	ic		D	ATA 1	on sol around a sol

RBA Electronic Components

- ^a Made by Corning Glass Works, Corning, New York 14830.
- ^b Magnetic shielding is available from manufacturers such as the Magnetic Shield Division, Perfection Mica Co., 1322 North Elston, Chicago 22, Illinois.
- ^d Averaged over any 500-microsecond interval.
- ^e This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 1140 lumens per watt.
- f These values are calculated as shown below: Luminous Sensitivity (A/lm) = Anode Current (with blue light source) (A)

0.13 x Light Flux of 1 x 10-7 (lm)

The value of 0.13 is an average value. It is the ratio of the cathode current measured under the conditions specified in footnote (k) to the cathode current measured under the same conditions but with the blue filter removed.

- 9 Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58 polished to 1/2 stock thickness) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.1 microlumen.
- h This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1140 lumens per watt.
- i These values are calculated as shown below: Cathode Luminous Sensitivity (A/lm) = Cathode Current (with blue light source) (A)

0.13 x Light Flux of 1 x 10-4 (lm)

The value of 0.13 is an average value. (See footnote f).

- k Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 100 microlumens and 300 volts are applied between cathode and all other electrodes connected as anode.
- ^m At a tube temperature of 22° C. Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness). The light flux incident on the filter is 0.1 microlumen. The supply voltage E is adjusted to obtain an anode current of 26 micro-amperes. Luminous sensitivity of the tube under these conditions is approximately equivalent to 2000 amperes per lumen. Dark current is measured with incident light removed.

RBA Electronic Components

DATA 2 12-68

- N With supply voltage E adjusted to give a calculated value of anode luminous sensitivity of 2000 amperes per lumen.
- P At 4000 Å. Calculated from the luminous EADCI value using a conversion factor of 1140 lumens per watt.
- 9 With a supply voltage E of 2500 volts across a voltage divider providing electrode voltages shown in Table I, Distribution B. Anode load is a 10-kilohm resistor in parallel with a total capacitance of 1000 pF. Under pulse conditions, the interstage voltages of the tube should not deviate more than 2% from the interstage voltage values during no-signal conditions. 662 keV photons from a one-microcurie Cs¹³⁷ source and a cylindrical 5" dia. x 4" thallium-activated sodium-iodide scintillator NaI (TI)-type Harshaw^{III} 20A16, Serial No.CW-675 or equivalent are used. The Cs¹³⁷ source is in direct contact with the metal end of the scintillator container. The faceplate end of the crystal is coupled to the faceplate adapter (RCA-AJ2142) by an optical coupling material such as Dow Corning* *20-057.
- ^r Under the same conditions as shown in (q) except the tube is operated for a period of 1 hour with the radiation source located at the point providing a pulse count rate of 1000 counts per second. Following this time interval, the pulse height is sampled at 1-hour intervals for a period of 24 hours.
- Using a pulsed light source having a pulse duration of 0.5 microsecond and repetition rate of 30 pulses per second. The interstage voltages of the tube should not deviate more than 2 per cent from the recommended voltage distribution shown by Voltage Distribution C of Table I. Capacitors are connected across the individual resistors making up the voltage-divider arrangement to insure this operating condition.
- Maximum deviation from linearity is 5 per cent.
- Made by Harshaw Chemical Corporation, 1945 East 97 Street, Cleveland 6, Ohio.
- *Made by Dow Corning Corp., Midland, Michigan.

OPERATING CONSIDERATIONS

The base pins of the tube fit a 21-contact socket such as the RCA-AJ2144 and AJ2145. The 4522 can replace types 58AVP and 580VP by use of Socket Adapter, RCA-AJ2143.

The operating stability of the 4522 is dependent on the magnitude of the average anode current.

The use of an average anode current well below the

the maximum rated value of 500 microamperes is recommended when stability of operation is important. When maximum stability is required, the average anode current should not exceed 0.1 microampere.

Magnetic shielding of the tube is generally required. Magnetic shielding materials are available from manufacturers such as the Magnetic Shield Division, Perfection Mica Company, 1322 North Elston, Chicago 22, Illinois. The curves under *Typical Voltage-Divider arrangements* show the effect of magnetic fields on anode current under the conditions indicated. With increase in voltage between anode and cathode, the effect of a given magnetic field will cause less decrease in anode current.

The high voltages at which the tube is operated are very dangerous. Care should be taken in the design of apparatus to prevent personnel from coming in contact with these high voltages. Precautions should include the enclosure of high-voltage terminals and the use of interlock switches to break the primary circuit of the high-voltage power supply when access to the apparatur is required.

Accompanying typical voltage-divider arrangements are recommended for use with the 4522. The choice of resistance values for the voltage-divider string is usually a compromise. If low values of resistance per stage are utilized, the power drawn from the supply and the required wattage rating of the resistors increase. Phototube mice may also increase, due to heating, if the divider metwork is mounted near the tube. The use of high values of resistance per stage may cause deviation from linearity if the voltage-divider current is not maintained at a value of at least 10 times that of the maximum average anode current and may limit anode current response to pulsed light.

The supply voltage may be applied in 500-volt steps up to 2000 volts, and 200-volt steps from 2000 to 3000

RBA Electronic Components

volts and with no less than 1 minute between each step.

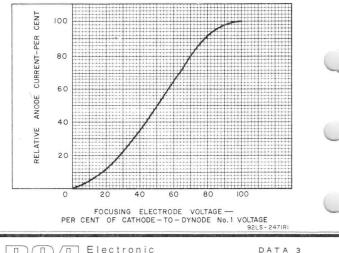
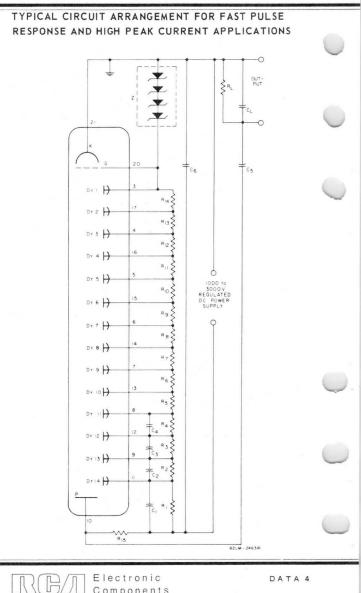

OPERATING VOLTAGES

Table I shows three electrode voltage distributions recommended for the 4522.

Voltage Distribution A is used to measure the tube performance values listed under *Characteristic Range Values* and is suggested for general purpose applications.

Voltage Distribution B is recommended where high dynode-No.1 gain is important, such as in low light level and scintillation counting applications. Voltage Distribution B maintains the cathode-to-dynode-No.1 voltage at 660 volts; it is especially useful when the supply voltage is adjusted over a wide range to achieve large changes in anode sensitivity. A suggested circuit using voltage distribution B is shown under *Typical Circuit Arrangement for Scintillation-Counting Applications*.

Voltage Distribution C is recommended for high peakpulse current applications.



TYPICAL FOCUSING ELECTRODE CHARACTERISTIC

Components

	TABLEI					
	Voltage Distribution					
	Between the	А	в●	с		
	following Electrodes: Cathode (K), Dynode (Dy), and Anode (P)	5.9% of K-P Voltage (E) Multiplied by:	6.9% of Dyl-P Voltage (E) Multiplied by:	3.85% of K-P Voltage (E) Multiplied by:		
0	K - Dy1 Dy1 - Dy2 Dy2 - Dy3 Dy3 - Dy4 Dy4 - Dy5	3 1 1 1 1	1 1.5 1 1	6 1 1.5 1 1		
	Dy5 - Dy6 Dy6 - Dy7 Dy7 - Dy8 Dy8 - Dy9 Dy9 - Dy10	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1		
	Dy10 - Dy11 Dy11 - Dy12 Dy12 - Dy13 Dy13 - Dy14 Dy14 - P	1 1 1 1 1	1 1 1 1 1	1 1.5 2 4 2		
	Dy1 - P K - P	- 17	14.5 —	26		
	Focusing elec	trode≜ is conne	ected to Dynode	e-No.1 voltage.		
	 Use distribution B for optimum pulse-height resolution performance. See Operating Voltages. Cathode-to-Dynode-No.1 Voltage maintained at 660 volts. Focusing electrode may be connected to arm of potenti- 					

Focusing electrode may be connected to arm of potentiometer between cathode and dynode No.1; the focusingelectrode voltage is varied to give maximum anode current.

Electronic Components

21

PARTS LIST FOR TYPICAL CIRCUIT ARRANGEMENTS FOR SCINTILLATION COUNTING APPLICATIONS

C₁: 0.05 μF, 20%, 500 V dc Ceramic-Disc Type C₂: 0.02 μF, 20%, 500 V dc Ceramic-Disc Type C₃: 0.01 μF, 20%, 500 V dc Ceramic-Disc Type C₄: 0.005 μF, 20%, 500 V dc Ceramic-Disc Type C₅ & C₆: 0.0047 μF, 20%, 6000 V dc Ceramic-Disc Type

 R_1 through R_{12} : 51 K Ω , 5% 1W

R₁₃: 75 KΩ, 5% 1W

R₁₄: 51 KΩ, 5% 1W

R₁₅: 100 KΩ, 5% 1/2 W

Z: (2)-150 V, 1W zener diodes, or equivalent (2)-180 V, 1W zener diodes, or equivalent

Note: The value of the load elements, ${\rm R}_L$ and ${\rm C}_L$, depend on the application:

 $R_{I} C_{I} = 10$ microseconds for most applications

PARTS LIST FOR TYPICAL CIRCUIT ARRANGEMENT FOR FAST PULSE RESPONSE AND HIGH PEAK CURRENT APPLICATIONS

Fast Pulse Response Applications, to 3000V

C1: 0.005 µF, Ceramic Disc, 500 V

C₂: 0.01 μF, Ceramic Disc, 500 V

C₃: 0.02 μF, Ceramic Disc, 500 V

C₄: 0.05 μF, Ceramic Disc, 500 V

 R_1 : 300 K Ω (3-100 K Ω , 5%, 1/2 W in series)

R₂ through R₁₅: 100 KΩ, 5%, 1/2 W

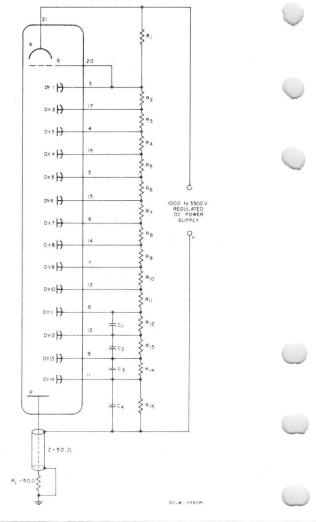
High Peak Current Applications, to 3500V

 $C_1: \ 0.005 \ \mu\text{F}, \ Ceramic \ Disc, \ 500 \ V \\ C_2: \ 0.01 \ \mu\text{F}, \ Ceramic \ Disc, \ 500 \ V \\ C_3: \ 0.02 \ \mu\text{F}, \ Ceramic \ Disc, \ 1000 \ V \\ C_4: \ 0.05 \ \mu\text{F}, \ Ceramic \ Disc, \ 500 \ V \\$

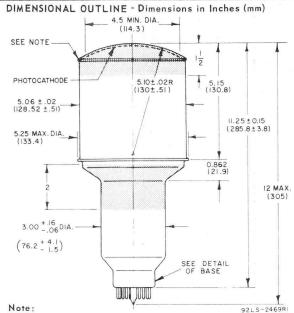
 R_1 : 168 KΩ (3-56 KΩ, 5%, 2 W, in series)

R₂, R₄ through R₁₁: 27 KΩ, 5%, 1 W

R₃, R₁₂: 39 KΩ, 5%, 2 W

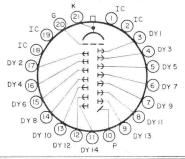

 R_{13} , R_{15} : 54 K Ω (2-27 K Ω , 5%, 1 W, in series)

 R_{14} : 108 KΩ (4-27 KΩ, 5%, 1 W, in series)


Note: Leads to all capacitors should be as short as possible to minimize inductance effects. Location and spacing of capacitors is critical and may require adjustment for optimum results.

Components

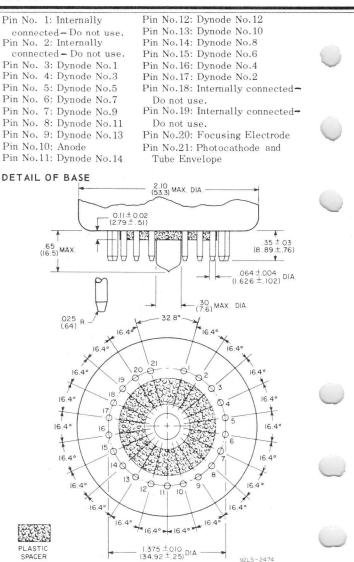
TYPICAL CIRCUIT ARRANGEMENT FOR FAST PULSE RESPONSE AND HIGH PEAK CURRENT APPLICATIONS



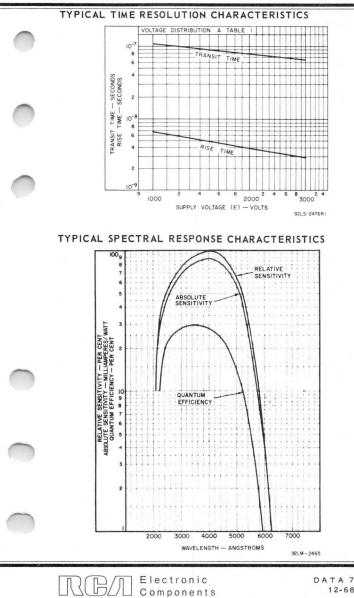
RBA Electronic Components

Care must be taken in mounting the tube so that the tube envelope is not subjected to excessive pressure which could strip the glass-to-metal seals. In no case should mounting supports be used in the shaded areas.

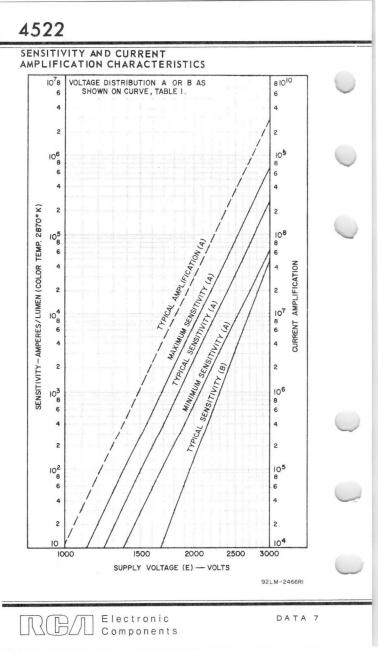
BASING DIAGRAM (Bottom View)

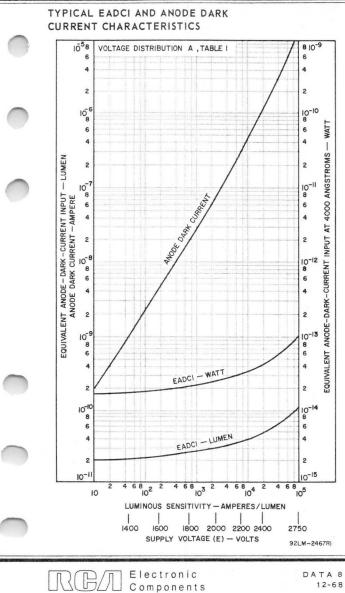


92LS-1258RI

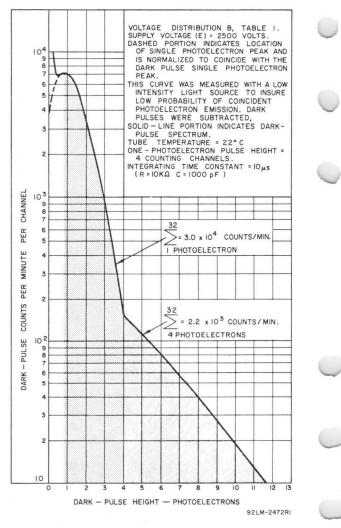

Electronic Components

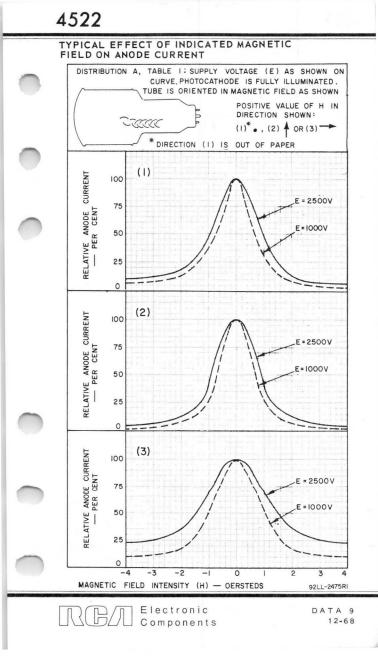
日//


DATA 6 12-68

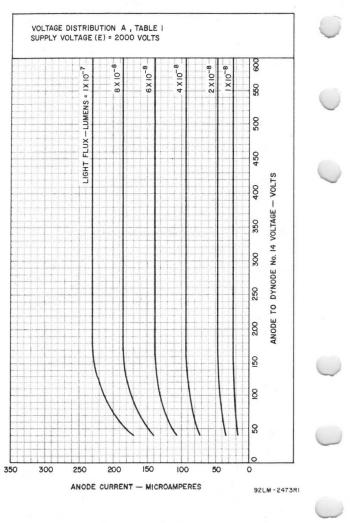


RBA Electronic Components


12-68



12-68


TYPICAL DARK-PULSE SPECTRUM

RBA Electronic Components

RBA Electronic Components

4523, 4524, 4525

Photomultiplier Tubes

2-INCH DIAMETER-4523 3-INCH DIAMETER-4524 5-INCH DIAMETER-4525

IO-STAGE, HEAD-ON TYPE VENETIAN-BLIND DYNODE STRUCTURE BIALKALI PHOTOCATHODE OF HIGH QUANTUM EFFICIENCY

For Use in Scintillation Counters for the Detection and Measurement of Nuclear Radiation

GENERAL

Spectral Response See Typical Spectral Response Characteristics
Wavelength of Maximum Response 4000 ± 500 angstroms
Cathode, Semitransparent
Shape
Minimum area:
4523
4524
4525
Minimum diameter:
4523
4524
4525
Window Corning ^a No.0080, or equivalent
Shape
Index of refraction at 4360 angstroms
Dynodes
Substrate
Secondary-emitting surface
Structure
Direct Interelectrode Capacitances (Approx.)
Anode to dynode No.10

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA | 2-67

4523, 4524, 4525

4524	.JAN ^c Part No.S-2004, or equivalent lillen ^d Part No.80803J, or equivalent lillen ^d Part No.80805M, or equivalent
Weight (Approx.) 4523	0
4524	1 lb 7 oz
Base	Medium-Shell Diheptal 14-Pin (JEDEC Group 5, No.B14-38)
	DIAGRAM (Bottom View)
Pin 1-Dynode No.1 Pin 2-Dynode No.2	DY6 (7) (8) DY9
Pin 3-Dynode No.3 Pin 4-Dynode No.4 Pin 5-Dynode No.5 Pin 6-Dynode No.6	
Pin 7-Dynode No.7 Pin 8-Dynode No.8 Pin 9-Dynode No.9	DY3 DY3 DY2 () () () () () () () () () () () () ()
Pin 10 - Dynode No.10 Pin 11 - Anode Pin 12 - Internal Connec	
Do Not Use Pin 13-Focusing Electr Pin 14-Photocathode	rode I4AA

Unless indicated otherwise, the following ratings and characteristic range values apply to all types

ABSOLUTE-MAXIMUM RATINGS

DC Supply	Voltage	
Between	anode and cathode	۷
Between	anode and dynode No.10	۷
	consecutive dynodes	٧
	dynode No.1 and cathode 600	٧
Between	focusing electrode and cathode 600	۷
verage Ar	ode Current ^e 0.5	mΑ
		°C

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

CHARACTERISTIC RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1, 1/12 of E for each succeeding dynode stage, and 1/12 of E between dynode No.10 and anode, except as noted. Focusing-electrode voltage is adjusted to that value between 50 and 100 per cent of dynode-No.1 potential (Referred to cathode) which provides maximum anode current.

With E = 1500 volts except as noted

	Min	Typ	Max	
Sensitivity Radiant ^g at 4000 angstroms Cathode radiant ^h	-	3.2×10 ⁴	-	A/W
at 4000 angstroms: 4523, 4524 4525 Luminous:	-	0.071	-	A/W A/W
With tungsten light source ^j With blue light source ^k . Cathode luminous:		27 4x10 ⁻⁵	100 1.5x10 ⁻⁴	A/1m A
With tungsten light source ^m 4523, 4524 4525 With blue light source ⁿ	:	6x10 ⁻⁵ 6.7x10 ⁻⁵	-	A/lm A/lm
4523, 4524 4525 Quantum efficiency at	7x10-10 7x10-10	9×10-9 1×10-10	-	A A
4000 angstroms: 4523, 4524 4525	-	22 25	1	5% 5%
Current Amplification 4523, 4524 4525 Anode Dark Current ^p	2	4.5×10 ⁵ 4×10 ⁵	-	
4523	-	5×10 ⁻¹⁰ 1×10 ⁻⁹ 1.5×10 ⁻⁹	3×10 ⁻⁹ 3×10 ⁻⁹ 4×10 ⁻⁹	A A A
Current Input 4523	{ -	3.8x10-119 3.2x10-14r	Ξ	lm W
4524		7.7x10-11 ⁹ 6.5x10 ^{-14^r} 1.1x10 ⁻¹⁰⁹ 9.3x10 ^{-14^r}	-	lm W Im W
Dark-Pulse Spectrum ^s Pulse Height Resolution ^{s,t} .	. See Ty	pical Dark- 7.5	Pulse Spe -	

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA 2 2-67

4523, 4524, 4525

	Min	Typ	Max	
Mean Gain Deviation ^{s, u}				
With count rate change				
of 10,000 to 1,000 HzV .	-	1	-	%
For period of 16 hours at				
a count rate of 10,000 HzW	-	I	-	%
Anode Pulse Rise Time ^x				
4523	-	1.2×10 ⁻⁸	-	S
4524	-	1.4×10 ⁻⁸	-	S
4525	-	1.8x10 ⁻⁸	-	S
Electron Transit Time ^y				
4523	-	5.9x10-8	-	S
4524	-	6.5×10-8	-	s s
4525	-	1.1×10-7	-	S
^a Made by Corning Glass Works, Corn	ning, Ne	w York.		
h				

b Made by Cinch Manufacturing Company, 1026 South Homan Avenue, Chicago 24, Illinois.

C Made by JAN Hardware Manufacturing Corp., 38-01, Queens Blvd., Long Island City 1, N.Y.

^d Made by James Millen Manufacturing Company, 150 Exchange Street, Malden 48, Mass.

e Averaged over any interval of 30 seconds maximum.

[†] Tube operation at or below room temperature is recommended.

g This value is calculated from the typical luminous sensitivity rating using a conversion factor of 1190 lumens per watt.

^h This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1190 lumens per watt.

^J These values are calculated as shown below:

Luminous Sensitivity (A/lm) = Anode Current (with blue light source)(A)

0.15 x Light Flux of 1 x 10-5 (1m)

The value of 0.15 is the average value of the ratio of the anode current measured under the conditions specified in footnote (k) to the anode current measured under the same conditions but with the blue filter removed.

k Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness — Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2810°K. The value of light flux incident on the filter is 10 microlumens.

^m This value is calculated as shown below:

Cathode Current (with blue light source)(A)

Cathode Luminous Sensitivity $(A/lm) = \frac{1}{0.15 \times \text{Light Flux of } 1 \times 10^{-4} (lm)}$

The value of 0.15 is the average value of the ratio of the cathode current measured under the conditions specified in footnote (Π) to the cathode current measured under the same conditions but with the blue filter removed.

- ⁿ Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness — Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870°K. The value of light flux incident on the filter is 1 x 10⁻⁴ lumen and 300 volts are applied between cathode and all other electrodes connected as anode.
- At a tube temperature of 22 °C. Light incident on the cathode is transmitted through a blue filter (Corning C.S. No. 5-58, polished to 1/2 stock thickness). The light flux incident on the filter is 10 microlumens. The supply voltage E is adjusted to obtain an anode current of 20 microamperes. Sensitivity of these types under these conditions is approximately equivalent to 13 amperes per lumen. Dark current is measured with no light incident on the tube.

DATA 2

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

- 9 With supply voltage E adjusted to give an equivalent luminous sensitivity of 13 amperes per lumen.
- r At 4000 angstroms. This value is calculated from the EADCI value in lumens using a conversion factor of 1190 lumens per watt.
- ⁵ With the following voltage distribution: 3/13 of E between cathode and dynode No.1, 1/13 of E for each succeeding dynode stage, and 1/13 of E between dynode No.10 and anode. Focusing-electrode voltage is adjusted to that value between 50 and 100 per cent of dynode-No.1 potential (referred to cathode) which provides maximum anode current.
- Pulse height resolution is defined as the quotient of the full width of the photopeak at half height by the pulse height at maximum anode current rate under the following conditions: The 662 keV photon from an isotope of cesium having an atomic mass of 137 (Cs137) and a cylindrical 2 inch x 2 inch (for 4523), 3 inch x 3 inch for 4524 or 4525) thallium and the for 452 inch x 3 inch x 3 inch x 3 inch for 4524 or 4525) thallium and the for 452 her 4524 or 4525 (for 4525), and a cylindrical 2 inch x 3 inch x 3 inch x 3 inch for 4524 or 4525) thallium and the for 4524 or 4525 (for 4524) and a cylindrical 2 inch x 3 inch x 3 inch for 4524 or 4525 (for 4524), 3 inch x 3 inch x 3 inch for 4524 or 4525 (for 4524), 3 inch x 3 inch x 3 inch x 4 inch for 4524 or 4525 (for 4525), and is rated by the manufacturer as having a resolution capability of 7.5%. The Ca13 source is in direct contact with the metal end of the scintillator. The faceplate end of the crystal is coupled to the types by a coupling fluid such as Dow Corning Corp., Type DC200 (viscosity of 100 centipoise) Manufactured by the Dow Corning Corp.,
- W Mean Gain Deviation is defined as follows:

$$MGD = \frac{i \stackrel{\text{s}}{\sum} n}{i \stackrel{\text{s}}{=} 1} \left| \overline{p} - p_i \right| \cdot \frac{100}{\overline{p}}$$

where \overline{p} = mean pulse height p_i = pulse height at the "ith" reading n = total number of readings

- ${\bf v}$ under the following conditions: The scintillator and Cs¹³⁷ radiation source of (t) are employed. The radiation source is initially centered on the major axis of the tube and the scintillator, at a point providing a pulse count rate of 10,000 Hz. The pulse height of the photopeak is measured under this condition. Next, the radiation source is moved rapidly, in approximately 30 seconds, to a new position that is equivalent to a count rate of 1,000 Hz. The pulse height under this condition is measured. Mean gain deviation is defined as shown in (U).
- Under the same conditions as shown in (v) except the tube is operated for a period of 1/2 hour with the radiation source located at the point providing a pulse count rate of 10,000 Hz. Following this time interval, the pulse height is sampled at this count rate at 1-hour intervals for a period of 16 hours. Mean gain deviation is defined as shown in (U).
- X Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- ^y The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

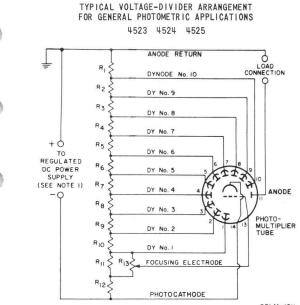
OPERATING CONSIDERATIONS

The base pins of these types fit a diheptal 14-contact socket, such as Cinch No.3M14, or equivalent. The socket should be made of high-grade, low-leakage material, and should be installed so that incident light falls on the face end of the tube.

The operating stability of these types are dependent on the magnitude of the anode current. The use of an average anode current well below the maximum rated value of 0.5 milliampere is recommended when stability of operation is important. When stability is of prime importance, the use of an average anode current of 1 microampere or less, commensurate with

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 2-67 satisfactory output signal, is recommended.

Electrostatic and magnetic shielding of these types may be required in some applications. When a shield is used, it must be at cathode potential.

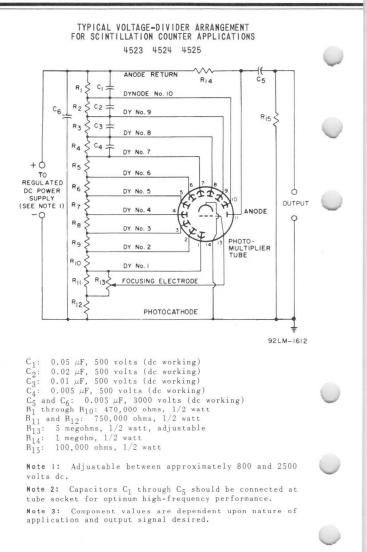

The high voltages at which these types are operated are very dangerous. Care should be taken in the design of apparatus to prevent the operator from coming in contact with these high voltages. Precautions should include the enclosure of high-potential terminals and the use of interlock switches to break the primary circuit of the high-voltage power supply when access to the apparatus is required.

Accompanying Typical Voltage-Divider Arrangements are recommended for use with these types. Recommended resistance values for the voltage dividers range from 10,000 ohms per stage to 1,000,000 ohms per stage. The choice of resistance values for any voltage-divider network is usually a compromise. If low values of resistance per stage are utilized, the power drawn from the regulated power supply and the required wattage rating of the resistors increase. Phototube noise may also increase due to heating if the divider network is mounted near the photocathode. The use of resistance values near 1 megohm per stage may cause deviation from linearity if the voltage-divider current is not maintained at a value of at least 10 times that of the maximum value of anode current, and may limit anode-current response to pulsed light. The latter effect may be reduced by connecting capacitors between the tube socket terminals for dynodes No.7 and No.8, dynodes No.8 and No.9, dynodes No.9 and No.10, and between dynode No.10 and anode return. In addition to nonlinearity and pulse-limiting effects, the use of resistance values exceeding 1 megohm per stage make these types more susceptible to leakage effects between terminals with possible resulting deviation in interstage voltage leading to a loss of current amplification.

DATA 3

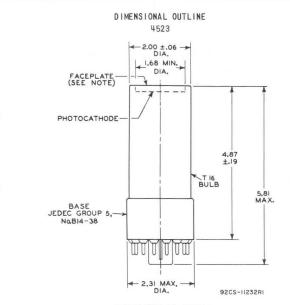
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

92LM-1611


 $\rm R_1$ through $\rm R_{12}$: 470,000 ohms, 1/2 watt $\rm R_{13}$: 5 megohms, 1/2 watt, adjustable

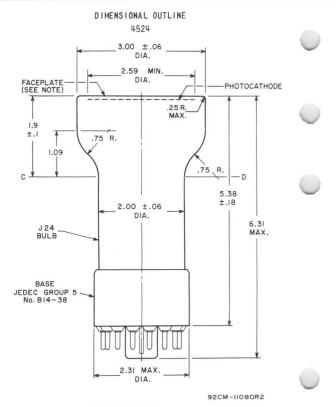
Note I: Adjustable between approximately 800 and 2500 volts dc.

Note 2: Component values are dependent upon nature of application and output signal desired.


DATA 4 2-67

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

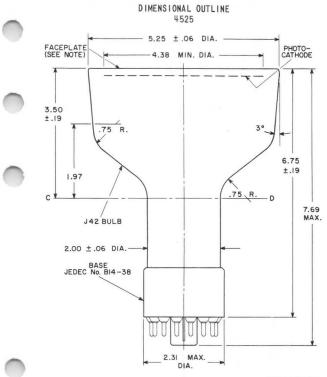
DATA 4


DIMENSIONS IN INCHES

Center line of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

Note: Within 1.68-inch diameter, deviation from flatness of external surface of faceplate will not exceed 0.100 inch from peak to valley.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 5 2-67



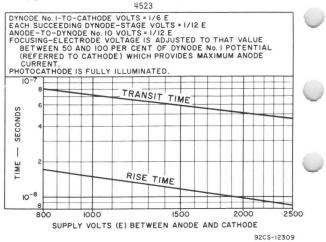
DIMENSIONS IN INCHES

Center line of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

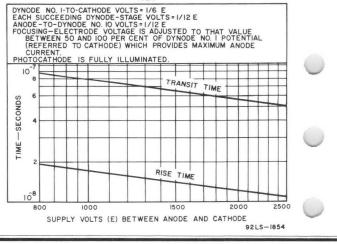
Note: Within 2.59-inch diameter, deviation from flatness of external surface of faceplate will not exceed 0.010 inch from peak to valley.

92CM-11148R2

DIMENSIONS IN INCHES

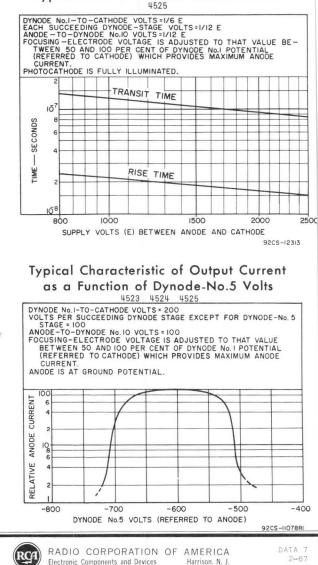

Center line of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

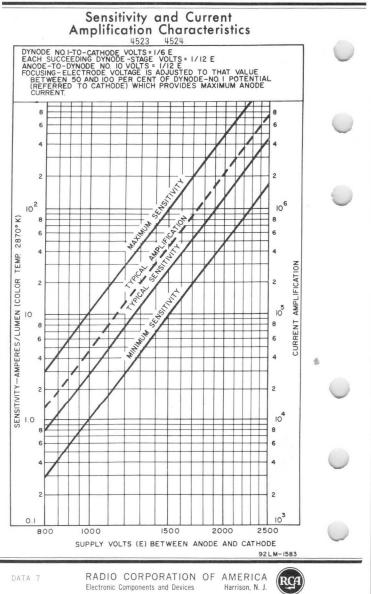
Note: Within 4.38-inch diameter, deviation from flatness of external surface of faceplate will not exceed 0.010 inch from peak to valley.

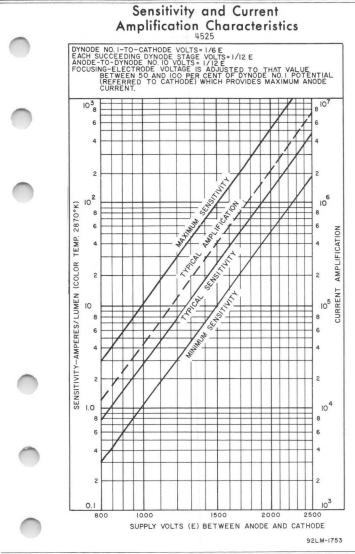

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 6 2-67

Typical Time Resolution Characteristics

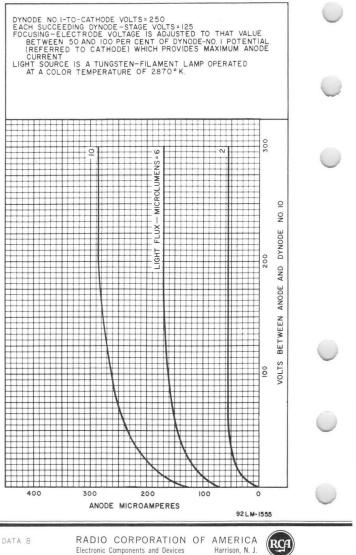
Typical Time Resolution Characteristics


4524

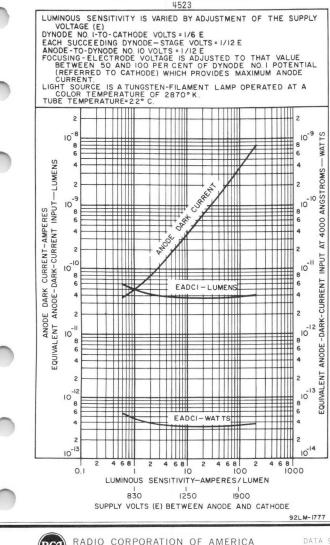



DATA 6

Typical Time Resolution Characteristics

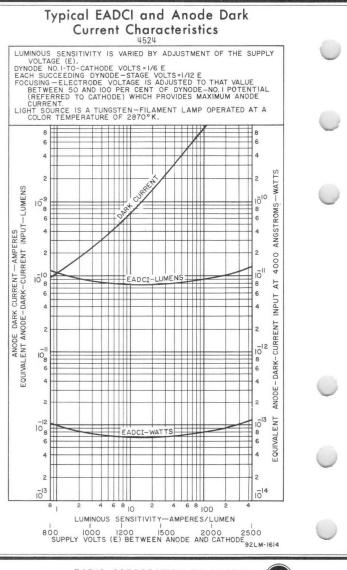


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

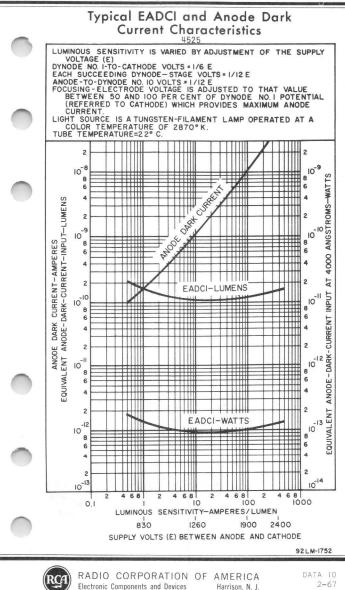

DATA 8 2-67

Typical Anode Characteristics

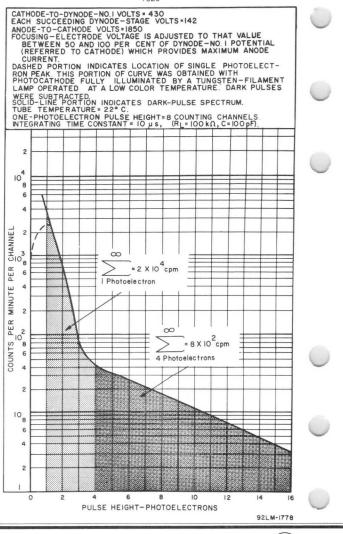
4523 4524 4525



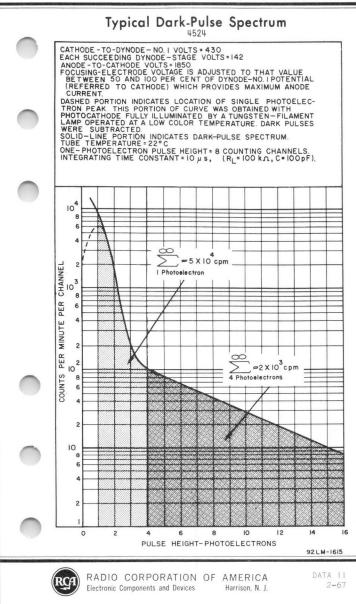
Typical EADCI and Anode Dark Current Characteristics


Electronic Components and Devices Harrison, N. J.

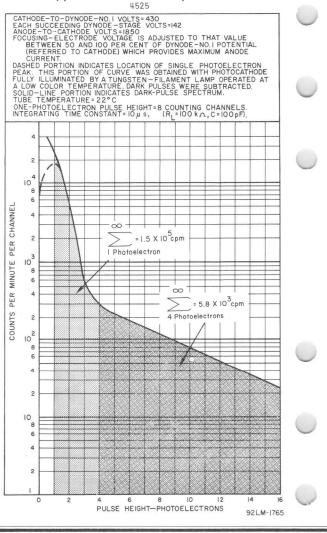
DATA 9 2-67



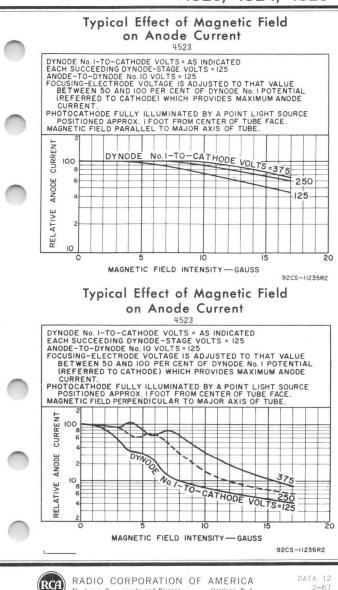
DATA 9



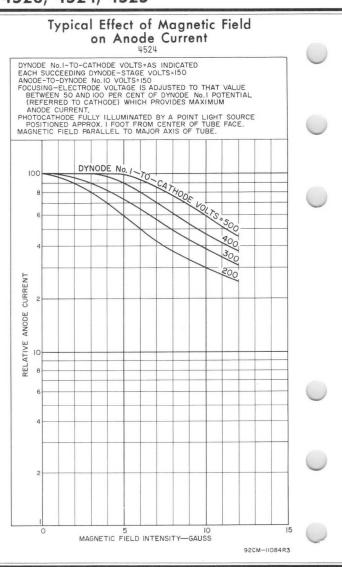
Typical Dark-Pulse Spectrum

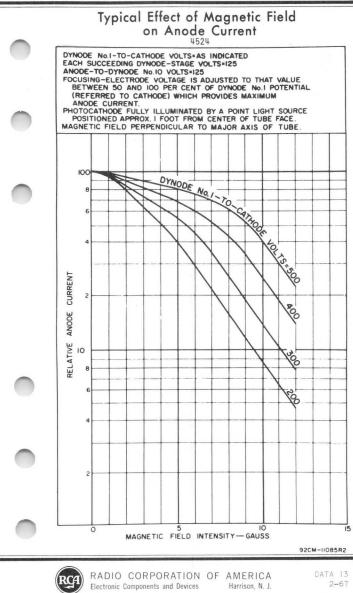


DATA 10



Typical Dark-Pulse Spectrum

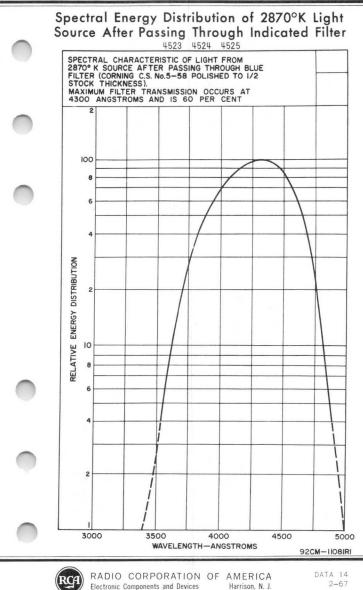

DATA II

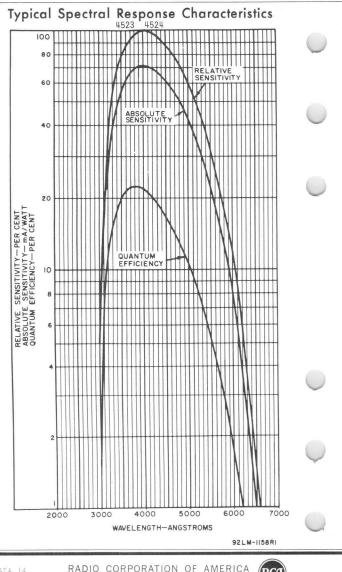

Electronic Components and Devices

Harrison, N. J.



DATA 12




Typical Effect of Magnetic Field on Anode Current

Electronic Components and Devices Harrison, N. J.

DATA 14

Electronic Components and Devices Harrison, N. J.

	Photomultiplier Tube
	10-Stage Dormer-Window Type Having Multialkali Photocathode Deposited on a Reflective Substrate
	Detects Low-Level Light Signals in Presence of Relatively High Background Illumination
	Highly Suitable for Star-Tracking and Laser Detection Systems to Approximately 8000 Angstroms
	General Data Spectral Response
0	Cathode, Semitransparent Potassium-Sodium-Cesium- on Reflective Substrate Antimony (Multialkali) Shape Concave Spherical Surface Minimum projected length on plane of window 0.65 in (16.5 mm) Minimum projected width on plane of window 0.50 in (12.7 mm)
	Window
	Substrate
	Direct Interelectrode Capacitances (Approx.): Anode to dynode No.10
	Maximum Overall Length (Excluding leads and attached base)
•	Base (Temporary) Small-Shell Duodecal 12-Pin JEDEC No.B12-43 Socket Ebyb Part No.9058, or equivalent Bulb T12 with Special End Contour Magnetic Shield Millen ^c Part No.80802M, or equivalent Operating Position Any Weight (Approx.): State
	With base attached $3 \text{ oz } (85.1 \text{ g})$ Without base $2 \text{ oz } (56.7 \text{ g})$
	Maximum Ratings, Absolute-Maximum Values: ^d DC Supply Voltage: Between anode and cathode Between anode and dynode No.10 Between consecutive dynodes 300 max. V Between dynode No.1 and cathode Work of the dynomes Between dynode No.1 and cathode Between dynode No.1 and cathode
	Average Anode Current ^e

RBA Electronic Components Characteristics Range Values for Equipment Design:

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage, and 1/12 of E between dynode No.10 and anode.

With E = 1250 volts except as noted

	Min.	Typical	Max.	
Anode Sensitivity:				
Radiant [†] at 5300 angstroms	-	4.4×10^3	-	A/W
Luminous (2870 [°] K) ⁹	5	15	75	A/lm
Cathode Sensitivity:				
Radiant ^h at 5300 angstroms	-	8.9 x 10 ⁻²	· _	A/W
Luminous (2870 ⁰ K) ¹	2 x 10 ⁻⁴	3×10^{-4}	-	A/lm
With red light (2870° K + C.S.		-		
No.2-62 filter) ^k	8 x 10 ⁻⁸	1.2 x 10 ⁻⁷	-	A
With blue light (2870° K + C.S.				
No.5-58 filter) ^m	7 x 10 ⁻⁹	9 x 10 ⁻⁹	_	A
Quantum Efficiency at 5000				
angstroms		21	-	9%
Current Amplification		5×10^4	- 0	
Anode Dark Current ⁿ		2 x 10 ⁻⁹	1×10^{-8}	А
Equivalent Anode-Dark-Current Input "	1-	1×10^{-10} 3.4 x 10 ⁻¹³ ^P	5×10^{-10}	lm
Input"	{	3.4 x 10 ⁻¹³ P	1.7 x 10 ⁻¹²	w
Equivalent Noise Input ^q	1-	1.5 x 10 ⁻¹² 5.1 x 10 ⁻¹⁵	-	lm
	1_	5.1 x 10 ⁻¹⁵	-	W
With E = 1500 volts	a			
Anode Pulse Rise Time ^{\$}	-	2 x 10 ⁻⁹	-	s
Electron Transit Time	-	2×10^{-8}		s

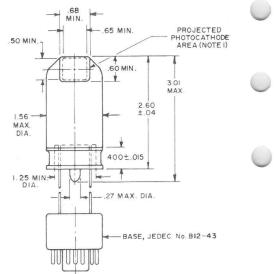
^a Made by Corning Glass Works, Corning, New York.

^b Made by Hugh H. Eby Company, 4701 Germantown Avenue, Philadelphia 44, Pa. This socket mates with the temporary B12-43 base and is not required after initial testing of the tube.

^c Made by James Millen Manufacturing Co., 150 Exchange Street, Malden 48, Mass.

d A description of the Absolute-Maximum Rating is given in the General Section, titled Rating Systems for Electron Tubes.

e Averaged over any interval of 30 seconds maximum.

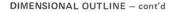

^f This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 295 lumens per watt.

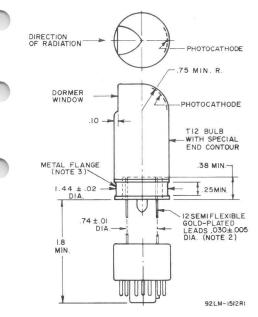
⁹ Under the following conditions: The light source is a tungsten-filament lamphaving a lime-glass envelope. It is operated at a color temperature of 2870[°] K and a light input of 1 microlumen is used.

- ^h This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 295 lumens per watt.
- ⁱ Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870^o K. The value of light flux is 0.001 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ^k Under the following conditions: Light incident on the cathode is transmitted through a red filter (Corning C.S. No.2-62 Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870[°] K. The value of light flux incident on the filter is 0.001 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ^m Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, New York) from a tungstenfilament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.001 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- At a tube temperature of 22^o C. With supply voltage adjusted to give a luminous sensitivity of 20 amperes per lumen.
- At5300 angstroms. This value is calculated from the EADCI value in lumens using a conversion factor of 295 lumens per watt.
- ^q Under the following conditions: Supply voltage (E) is as shown, 22° C tube temperature, external shield connected to cathode, bandwidth 1 Hz, tungsten light source at a color temperature of 2870°K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- ^r At 5300 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 295 lumens per watt.
- ⁵ Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.

13(円/川

DIMENSIONAL OUTLINE

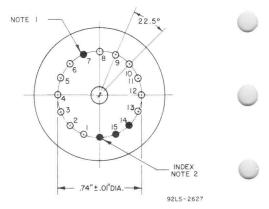

Dimensions are in inches unless otherwise stated. Dimensions tabulated below are in millimeters and are derived from the basic inch dimensions (1 inch = 25.4 mm).


Inch Dimension Equivalents in Millimeters

mm	Inch	mm	Inch	mm	nch
36.5	1.44	9.65	.38	.127	005
39.6	1.56	10.1	.40	.38	015
45.7	1.80	12.7	.50	.50	.02
66.0	2.60	15.2	.60	.76	.03
76.4	3.01	16.5	.65	1.0	.04
		17.2	.68	2.5	.10
		19.0	.75	6.3	.25
	1	31.7	1.25	6.8	.27

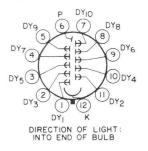
Electronic Components

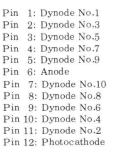
H



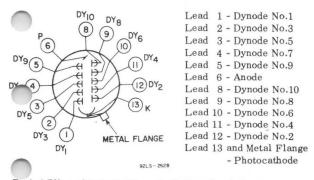
ote 1: Projected area lies between dashed lines.

Note 2: The semiflexible leads of the 4526 may be soldered, welded, or crimp connected into the associated circuit. However, when soldering or welding is employed for making such connections, care should be exercised to prevent tube deuction due to thermal stress of the glass-metal seals. A ...eat sink placed in contact with the semiflexible leads between the point being soldered, or welded, and the glassmetal seals is recommended.

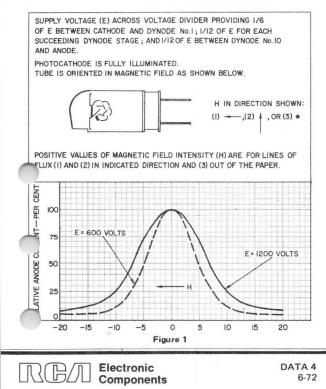

Note 3: Metal flange is connected internally to the photocathode, Lead Orientation Bottom View



Note 1: Leads 7, 14, and 15 are cut off within 0.16" (4 mm) of the glass button.


Note 2: Lead is cut off within 0.16" (4 mm) of the glass button for indexing.

Basing Diagram Bottom View (With Temporary Base)



Lead Connections Bottom View (With Base Removed)

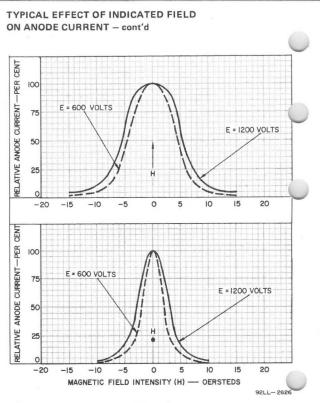


Figure 2

Electronic Components

RB/J

DATA 4

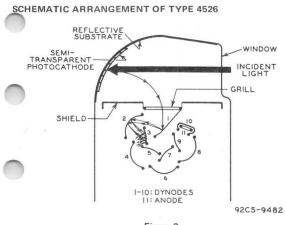
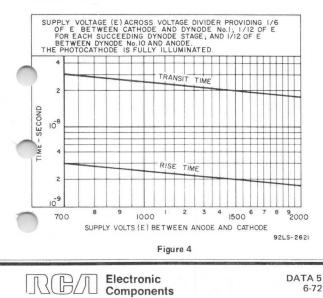
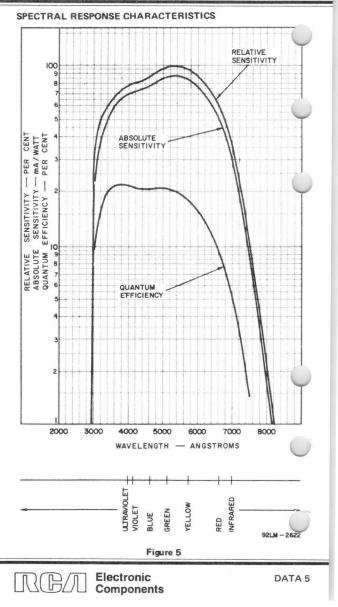
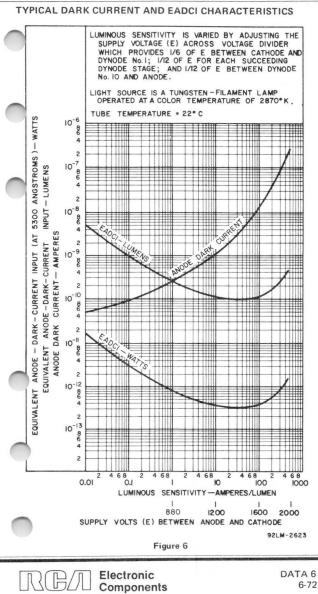
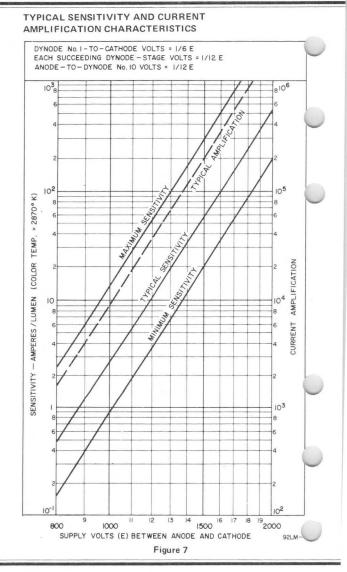
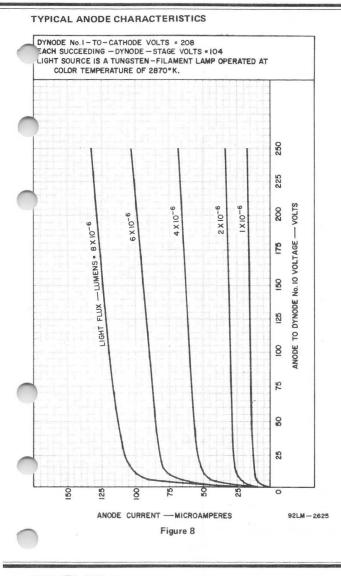
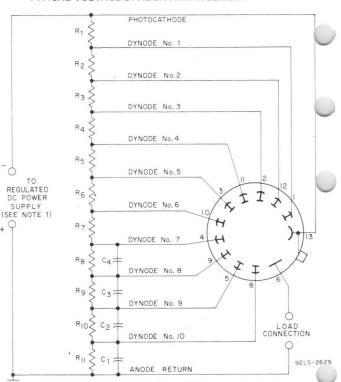





Figure 3


TYPICAL TIME-RESOLUTION CHARACTERISTICS


6-72


Electronic Components

RG/1

DATA 6

RBA Electronic Components

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT

 $\begin{array}{l} C_1\colon 0.05 \ \mu\text{F}, 500 \ \text{volts} \ (\text{dc working}) \ \text{ceramic-disc type} \\ C_2\colon 0.02 \ \mu\text{F}, 500 \ \text{volts} \ (\text{dc working}) \ \text{ceramic-disc type} \\ C_3\colon 0.01 \ \mu\text{F}, 500 \ \text{volts} \ (\text{dc working}) \ \text{ceramic-disc type} \\ C_4\colon 0.005 \ \mu\text{F}, 500 \ \text{volts} \ (\text{dc working}) \ \text{ceramic-disc type} \\ R_1\colon 330 \ \text{k}\Omega \pm 5\%, 1 \ \text{W} \\ R_2 \ \text{through} \ R_{11}\colon 160 \ \text{k}\Omega \pm 5\%, 1 \ \text{W} \end{array}$

Note 1: Adjustable between approximately 500 and 2000 volts dc.

Note 2: Component values are dependent upon nature of application and output signal desired. See discussion on Typical Voltage Divider Arrangements - Page 5.

Figure 9

Electronic Components

日/Л

Image Orthicon

4-1/2-Inch Diameter Type

For RCA TK-42 and TK-43 TV Color Cameras Type 4536 is Unilaterally Interchangeable with Types 4492, 4492V1, and 4492V2

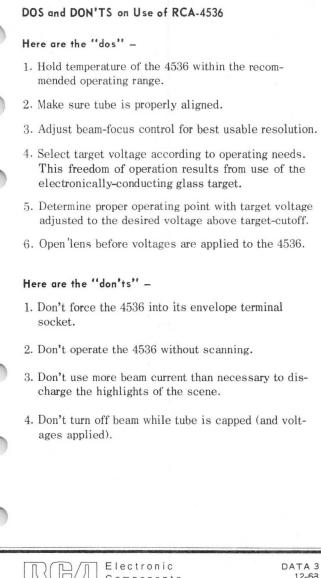
GENERAL
Heater, for Unipotential Cathode:
Voltage (AC or DC) $\dots \dots \dots$
Current 0.6 A
Direct Interelectrode Capacitance:
Anode to all other electrodes 12 pF
Target-to-Mesh Spacing 0.001 in
(0.0254 mm)
Spectral Response S-10
Wavelength of Maximum Response . 4500 ± 300 angstroms
Photocathode, Semitransparent:
Rectangular image (4 x 3 aspect ratio):
Useful size of 1.6 in (41 mm) max. Diagonal
Note: The size of the optical image focused on the
photocathode should be adjusted so that its maxi-
mum diagonal does not exceed the specified value.
Focusing Method Magnetic
Deflection Method Magnetic
Overall Length 19.375 in (492 mm) \pm 0.310 in
Greatest Diameter of Bulb 4.500 in (114 mm) ± 0.094 in
Envelope Terminals
(JEDEC Group 5, No.B14-45)
Socket Cinch Part No.3M14, or equivalent
Operating Position The tube should never be operated
in a vertical position with the diheptal-base end up nor in
any other position where the axis of the tube with the base
up makes an angle of less than 20 ⁰ with the vertical.
Weight (Approx.) 2.3 lb (993 g)
Minimum Inside Diameter of
Deflecting Coil 3.2 in (81 mm)
Deflecting-Coil Length7 in(178 mm)Focusing-Coil Length15 in(381 mm)
Alignment Coil:
Position on neck Centerline of magnetic field should be located 9.25 in (235 mm) from the flat area
of the shoulder

ABSOLUTE MAXIMUM AND MINIMUM RATINGS	
Operating Temperature: ^b Any part of bulb 65 max. ^o C Of bulb at large end of tube (Image section) 35 min. ^o C	0
Temperature Difference: Between image section and any part of bulb hotter than image section	
Photocathode: Illumination	
Target Voltage: 10 max. V Positive value 10 max. V Negative value 10 max. V Field-Mesh Voltage ^C 30 max. V Grid-No.5 Voltage 300 max. V Grid-No.4 Voltage 350 max. V Grid-No.3 Voltage 400 max. V Grid-No.2 & Dynode-No.1 Voltage 350 max. V	
Grid-No.1 Voltage: 125 max. V Negative bias value 0 max. V Positive bias value 0 max. V Voltage Between Consecutive 0 max. V Dynodes 350 max. V Anode-Supply Voltage 1650 max. V	
Peak Heater-Cathode Voltage: Heater negative with respect to cathode 125 max. V Heater positive with respect to cathode 10 max. V	Q
TYPICAL OPERATING VALUES ^d Heater Voltage Photocathode Voltage Grid-No.6 Voltage (Image Focus) Approx. 70% of Photocathode	0
Voltage ^e	0

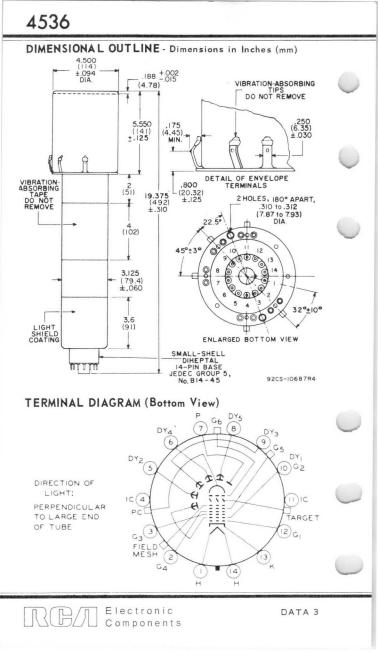
RBA Electronic Components

Grid-No.3 Voltage ⁹	250 to 275	V
Grid-No.2 & Dynode-No.1 Voltage.	280	V
Grid-No.1 Voltage for Picture Cutoff -	-45 to -115	V
Dynode-No.2 Voltage	600	V
Dynode-No.2 Voltage	800	V
	1000	V
Dynode-No.4 Voltage	1200	V
Anode Voltage	1250	V
Recommended Target Temperature		
Range ^b	35 to 45	°C
Peak-to-Peak Blanking Voltage	8	V
Field Strength of Focusing Coil: At center of scanning section		
(Approx.) In plane of photocathode	60	G
(Approx.)	120	G
Field Strength of Alignment Coil .	0 to 3	G

PERFORMANCE DATA


With conditions shown under Typical Operating Values including Recommended Target Temperature Range; target voltage adjusted to 3 volts above cutoff; and operation in a 525line, 30-frame TV system; except as otherwise indicated.

	Min.	Max.	
Signal-Output Current (Peak to Peak)			
at Maximum Multiplier Gain	15	100	μA
Ratio of Peak-to-Peak Highlight			
Video-Signal Current to RMS			
Noise Current ^k	39.5	_	dB
Photocathode Illumination at 2870° K			
Required to Bring Picture High-			
lights to the "Knee" of Light			
Transfer Characteristic		0.052	lm/ft ²
		0.002	(fc)
Amplitude Response at 400 TV Lines			(10)
per Picture Height (Per cent of			
large-area black to large-area			
white) ^m	45	_	%
Uniformity:			
Ratio of Shading (Background			
Signal to Highlight Signal):			
Over full scanned area	-	0.12	
Between center and peripheral.			
areas		0.07	
Variation of Highlight Signal (Per			
cent of maximum highlight			
signal over full scanned area)		20	%

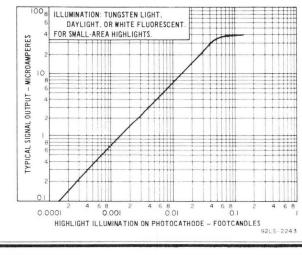

- ^b Operation outside of the *Recommended Target Temperature Range* shown under *Typical Operating Values* will not damage the 4536 provided the *Maximum Temperature Ratings* of the tube are not exceeded. Optimum performance, however, is only obtained when the tube is operated within the *Recommended Target Temperature Range*.
- ^c With respect to grid No.4.
- ^d With the 4536 operated in an RCA MI-557770-A1 deflection assembly, or equivalent, and at fixed photocathode voltage.
- e Adjust for optimum focus.
- $^{\sf f}$ The target supply voltage should be adjustable from -5 to +5 volts.
- ^g Adjust to give the most uniformly shaded picture near maximum signal.
- h The voltages shown provide maximum multiplier gain. Nor mally, dynode-No.3 and dynode-No.5 voltages are simultaneously adjusted to obtain the required value of signal current at the video-amplifier input.
- ⁱ Direction of current should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- k Signal-to-noise ratio is dependent upon tube operating conditions and on the method of measurement. Significant factors affecting this ratio include target voltage, bandwidth, system line number and frame time, and the choice of reference signal black level. The value shown is measured under the following conditions using a Video Noise Meter, Model UPSF (North American Version), or equivalent. This meter is manufactured by Rohde and Schwarz, Munich, West Germany.
 - Signal: Blanked video, 0.7 V peak-to-peak including 0.07 V set-up.
 - Noise Meter: Gated with horizontal and vertical blanking signal of camera system. Video pass band is shaped by means of self-contained 100 kHz high-pass and 4.2 MHz low-pass filters.

Weighting filters matching the response of the human eye (CCIR Rec.421, Annex III) are not used and the color subcarrier, 3.58 MHz, is not present during the measurement.

^m Measured with amplifier having flat frequency response.

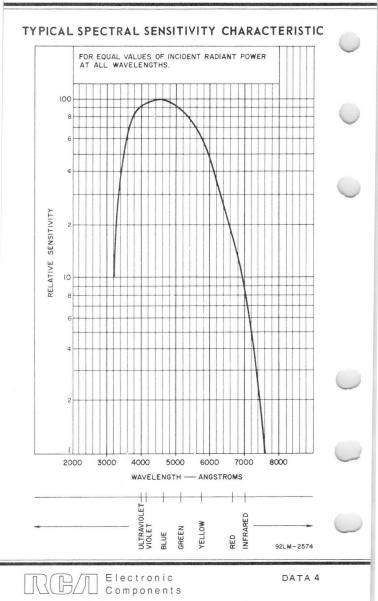
Components

SMALL-SHELL DIHEPTAL 14-PIN BASE


- Pin 1: Heater
- Pin 2: Grid No.4
- Pin 3: Grid No.3
- Pin 4: Internal Connection - Do Not Use
- Pin 5: Dynode No.2
- Pin 6: Dynode No.4
- Pin 7: Anode
- Pin 8: Dynode No.5

Pin 9: Dynode No.3 Pin 10: Dynode No.1, Grid No.2 Pin 11: Internal Connection - Do Not Use Pin 12: Grid No.1 Pin 13: Cathode Pin 14: Heater

ENVELOPE TERMINALS


Terminal over Pin 2: Field Mesh Terminal over Pin 4: Photocathode Terminal on side of envelope opposite base key: Grid No.6 Terminal over Pin 9: Grid No.5 Terminal over Pin 11: Target

BASIC LIGHT TRANSFER CHARACTERISTIC

BA Electronic Components

 $\left| \right|$

Vidicon

	¥ Idicon
	1''-Diameter, Magnetic Focus and Deflection
	Vidicon for Signal-Storage Applications
	GENERAL
	Heater, for Unipotential Cathode:
	Voltage (AC or DC) 6.3 ± 10% V
	Current at 6.3 volts 0.1 A
	Direct Interelectrode Capacitance: ^a
	Target to all other electrodes 4.6 pF
	Spectral Response See RCA Type IV Spectral Response at front of this section
	Photoconductive Layer:
	Maximum useful diagonal of rectangular image (1 x 1 aspect ratio)
	Orientation of quality rectangle-Proper orientation is ob- tained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short index pin. The masking is for ori- entation only and does not define the proper scanned area of the photoconductive layer.
	Focusing Method Magnetic
	Deflection Method Magnetic
	Overall Length 6.250 in ± 0.125 in
	Greatest Diameter 1.125 in \pm 0.010 in
	Bulb T8
	Base Small-Button Ditetrar 8-Pin, (JEDEC No.E8-11)
	Socket Cinch ^b No.54A18088, or equivalent
	Alignment Coil Assembly Cleveland Electronics ^{c,c} No.VYFA-355-2, or equivalent
	Operating Position Any
5	Weight (Approx.) 2 oz
2	ABSOLUTE-MAXIMUM RATINGS For scanned area of 5/8" x 5/8"
	Grid-No.4 Voltage ^f 1000 max. V
	Grid-No.3 Voltage ^f 1000 max. V
	Grid-No.2 Voltage
)	Grid-No.1 Voltage: Negative bias value
	Components DATA 1 12-68

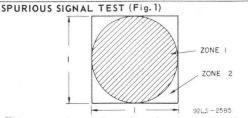
Peak Heater-Cathode	V	ol	ta	ge	e :					
Heater negative wirespect to cathod										125 max. V
Heater positive wi respect to cathod										10 max. V
Target Voltage	• •							•		100 max. V
Dark Current		•								0.25 max. μA
Peak Target Currents					•				•	0.75 max. μA
Faceplate:										
Illumination ^h						•				5000 max. fc
Temperature						•				71 max. ^O C

TYPICAL OPERATION AND PERFORMANCE DATA

For scanned area of 5/8" x 5/8" Faceplate temperature of 30° to 35° C	0
and Standard TV Scanning Rate	
Grid-No.4 (Decelerator) Voltage ^f 750 V	
Grid-No.3 (Beam-Focus Electrode) Voltage [†]	
Grid-No.2 (Accelerator) Voltage 300 V	
Grid-No.1 Voltage for Picture Cutoff ¹	
Average "Gamma" of Transfer Characteristic for Signal-Output Current Between 0.02 μA and 0.2 μA. 0.7	
Visual Equivalent Signal-to-Noise Ratio (Approx.)*	
Lag-Per Cent of Initial Value of Signal-Output Current: ^m	0
1 second after illumination is removed	0
15 seconds after illumination is removed	
30 seconds after illumination is removed 10 max. %	0
Minimum Peak-to-Peak Blanking Voltage:	\bigcirc
When applied to grid No.1	
When applied to cathode 20 V	
Limiting Resolution:	6
At center of picture 1000 TV Lines	

RBA Electronic Components

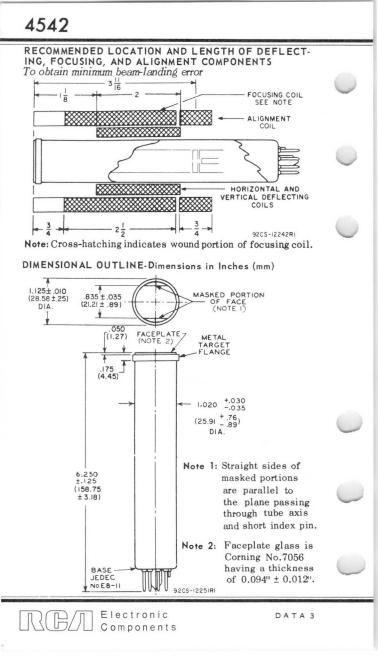
Amplitude Response to a 400 TV Line Square-Wave Test Pattern at Center of Picture ⁿ	%
Field Strength at Center of Focusing Coil ^p	G
Peak Deflecting-Coil Current:	
Horizontal 225	mA
Vertical	mA
Field Strength of Adjustable Alignment Coil9 0 to 4	G
High-Sensitivity Operation — 0.1 Footcandle on Faceplate	
Faceplate Illumination (Highlight)0.1	\mathbf{fc}
Target Voltage ^{r, s}	V
Dark Current [†] 0.02	μA
Signal-Output Current: ^u	
Typical 0.2	μA
Minimum 0.15	μA


- ^a This capacitance, which effectively is the output impedance of the tube, is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohms.
- ^b Made by Cinch Manufacturing Corporation, 1026 S. Homan Avenue, Chicago 24, Illinois.
- ^c Made by Cleveland Electronics Inc., 2000 Highland Road, Twinsburg, Ohio 44087.
- d These components are chosen to provide tube operation with minimum beam-landing error when mounted in the recommended position along the tube axis.
- ^f Grid-No.4 voltage must always be greater than grid-No.3 voltage. The maximum voltage difference between these electrodes, however, should not exceed 600 volts. The recommended ratio of grid-No.3 to grid-No.4 voltage is 6/10 to 5/10; best geometry being provided when the ratio is 6/10, and most uniform signal output when the ratio is 5/10. The operator should select the ratio within this range which provides the desired performance.
- 9 Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.

- ^h For conditions where "white light" is uniformly diffused over entire tube face.
- i With no blanking voltage on grid No.1.
- ^k Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 MHz and a peak signaloutput current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3.
- ^m For initial signal-output current of 0.20 microampere and a dark current of 0.02 microampere.
- ⁿ Amplitude response is the signal amplitude from a given TV line number (fine picture detail) expressed as a per cent of the signal amplitude from a very-low-frequency (largearea) picture element. In practice, the large-detail reference is usually 15 TV lines with signal amplitude set equal to 100 per cent. The TV line numbers are determined by the number of equal-width black and white lines that will fit into the physical height of the image focused on the cameratube faceplate.
- ^p The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- ^q The alignment coil should be located on the tube so that its center is at a distance of 3-11/16 inches from the face of the tube and be positioned so that its axis is coincident with the axis of the tube, the deflecting yoke, and the focusing coil.
- ^r The target voltage for each tube must be adjusted to that value which gives the desired operating dark current.
- ⁵ Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- [†] The deflecting circuits must provide extremely linear scanning for good signal reproduction because both dark current and signal are proportional to scanning velocity.
- ^U Defined as the component of the highlight target current after the dark-current component has been subtracted.

Electronic Components

113(円/川


This test is performed using a uniformly diffused white test pattern that is separated into two zones as shown in Fig.1. The target is adjusted to provide a dark current of 0.1 µA with no light on the vidicon faceplate. The test pattern shown in Fig.1, is then focused on the vidicon faceplate and the iris is opened to provide a total target current of 0.4 µA (signal current of 0.3 µA). The 4542 is adjusted to provide maximum picture resolution. Spurious signals are evaluated by size which is represented by equivalent numbers of raster lines in a 525 TV line system. Allowable spot size for each zone is shown in Table 1. To be classified as a spot, a contrast ratio of 1.5:1 must exist for both white and black spots. Smudges, streaks, or mottled and grainy background must have a contrast of at least 10% of a 0.3 µA peak signal amplitude to constitute a reject item.

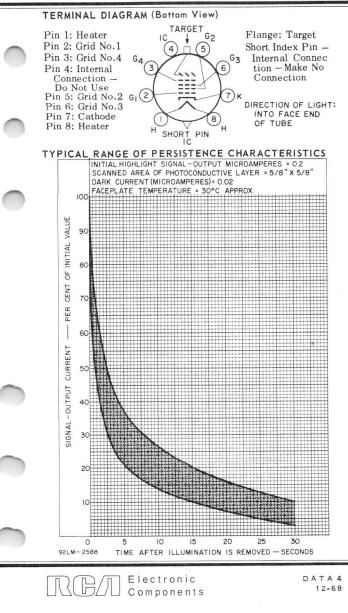
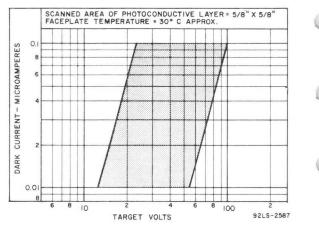
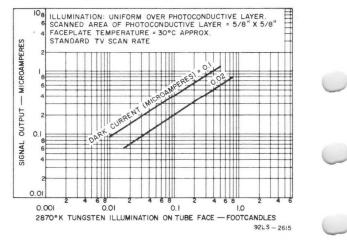
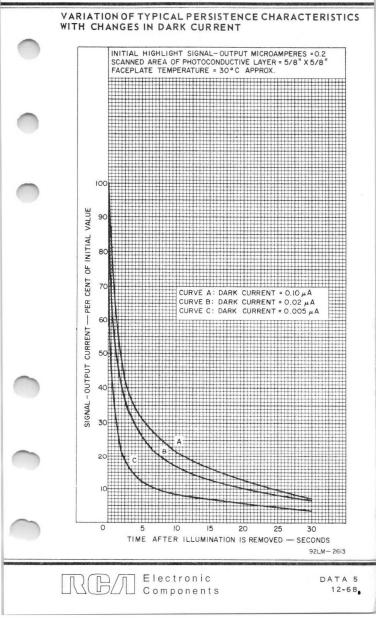

) Any Number
Number
Allowed
Under 4 T Lines (Max

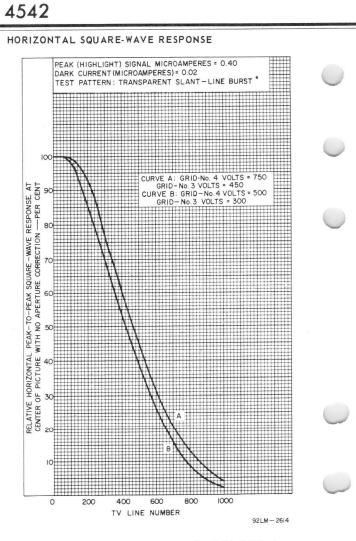
Table 1 For scanned area of 5/8" x 5/8"


Electronic

Components






RANGE OF DARK CURRENT

LIGHT TRANSFER CHARACTERISTICS

*Amplitude response measured using the RCA P200 slantline burst pattern with horizontal center response balanced on the 400 line chevrons.

RBA Electronic Components

Image Intensifier Tube

- Variant of 8606 Having Automatic Brightness Control
- Integral Oscillator and Voltage Multiplier
- Fiber-Optic Input and Output Faceplates
- Ruggedized Construction
- ERMA Photocathode

P20 Phosphor Screen

The 4549 is available with ERMA spectral responses to provide the minimum photocathode sensitivities specified in the table below.

	1	Radiant -	– mA/W
Spectral Response	Luminous — µA/Im	At 800 nm	At 850 nm
ERMA6-1	175	6	1
ERMA12-5	200	12	5
ERMA20-12	225	20	12
ERMA25-15	250	25	15

General Data

R(B/A

Spectral Response S-20 with extended red response
Wavelength of Maximum Response 500 + 140 nanometers - 70 nanometers
Photocathode:
Material
Minimum useful area
Minimum useful diameter 37.5 mm (1.47 in)
Image surface:
Shape Flat, Circular
Material Fiber-Optics
Fluorescent Screen:
Minimum useful area 13.8 cm ² (2.14 in ²)
Minimum useful diameter 42 mm (1.65 in)
Phosphor P20, Aluminized
Fluorescence and phosphorescence Yellow-Green
Persistence Medium to Medium Short
Image surface:
ShapeFlat, Circular
Material Fiber-Optics
Focusing Method Electrostatic

Maximum Ratings, Absolute-Maximum Values:									
Weight (Approx.) 4 lbs 8 oz (2.04 kg)									
Operating Position Any	1								
Maximum diameter	1								
Maximum overall length 12.028 in (302.51 mm)									
Tube Dimensions:									

DC Input Voltage	7.0 max. V
Ambient-Temperature Range:	
Non-operating	4° to +68° C
Operating -54	^o to +52 ^o C

Typical Performance Characteristics

Under conditions with 6.75 volts dc applied and at an ambient temperature of 22^{0} C, unless otherwise noted.

	Min.	Typical	Max.		•
Resolution:					
Center ^b	25	35	-	Line- Pairs/mm	
Edge ^c (Peripheral)	23	30	- F	Line- Pairs/mm	
Maximum Screen Luminance (Brightness) See Figure 3	-	140	-	fL	
Luminance Gain: ^d					
At 22 ⁰ C	3.5×10 ⁴	8×10 ⁴	-	fL/fc	
At -54 ⁰ C	2.8×10 ⁴	-	-	fL/fc	
Equivalent Screen Back- ground Input:					
Luminous ^e	-	- 2×	10-11	Im/cm ²	
Photocathode Sensitivity:					\bigcirc
Radiant:					
At 470 nm ^f	-	4.6×10-2	-	A/W	
At 800 nm	6×10-3		-	A/W	
At 850 nm	1×10-3		-	A/W	
Luminous ⁹	1.75×10-4	2×10-4	-	A/Im	
Luminance Uniformity	-	- 3	:1 ^h		
Modulation Transfer Function (MTF): J (See Figure 4)	n				
For 2.5 Line-Pairs/mm	90	95	-	%	
For 7.5 Line-Pairs/mm	55	60	-	%	
For 16 Line-Pairs/mm	10	20	-	%	

Paraxial Image Magnification (Cmx) ^k	0.82	-	1.0	
Edge Image Magnification ^m .	1.0	-	-	
Image Alignment ⁿ	-		0.06	in
Image Stability in 30 Sec- ondsP	_	-	0.005	in
Distortion ^q		-	21	%

Cathode and Screen Quality Tests

Cathode and screen quality are measured under the following conditions: The photocathode is fully illuminated with the light level adjusted to sharply define on the screen any dark spots, bright spots, streaks, or blemishes. The size and quantities of such spots, streaks, and blemishes are observed by means of a 10-power microscope fitted with a reticle and shall not exceed the size and quantities shown in Table I.

Size of dark spots, bright spots, streaks, or blemishes observed	Number of dark spots, bright spots, streaks, or blemishes			
at screen. Note 1	Area "A" Note 2	Area "B" Note 3	Area "C" Note 4	
Greater than 0.015"	0	0	0	
0.012" to and including 0.015"	0	1	2	
0.009" to less than 0.012"	0	3	8	
0.006" to less than 0.009"	0	12	24	
0.003" to less than 0.006"	3	55	Min.	
Less than 0.003"	Min.	Min.	Min.	

- Note 1 Two spots separated by a distance of less than the maximum dimension of either spot are considered one spot with a size equal to the sum of the maximum dimensions of the two spots plus the distance separating them.
- Note 2 Area "A" is defined as the area within a 0.76 cm (0.30")diameter circle concentric with the major axis of the tube.
- Note 3 Area "B" is defined as the area bounded by a 0.76 cm (0.30")-diameter circle and a 3.0 cm (1.2")-diameter circle both of which are concentric with the major axis of the tube.
- Note 4 Area "C" is defined as the area bounded by a 3.0 cm (1.2")-diameter circle and a 3.75 cm (1.47")-diameter circle both of which are concentric with the major axis of the tube.

Electronic Components

[円/]

Environmental Testing

The C33088P1 is designed to withstand military environmental requirements of 75 g's shock (peak amplitude), vibration at a frequency of 10 to 55 Hz at a double amplitude of 0.10", and temperature extremes of -54° C to $+68^{\circ}$ C. Military environmental test procedures can be supplied on request, and customer environmental requirements may be submitted for these devices if desired. Unless requested, environmental tests will not be performed.

- b The resolution, both horizontal and vertical, is determined with a test pattern consisting of alternate black and white lines of equal width. Any two adjacent lines are designated a "line-pair."
- ^c This minimum value applies at a distance of 11 mm from the major (optical) axis of the tube.
- d Luminance Gain is defined as the quotient of screen brightness in footlamberts by the photocathode illumination in footcandles provided by a tungsten-filament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2854° K. The value of light input radiation on the photocathode image surface is in the range of 1×10⁻⁵ to 3×10⁻⁵ footcandle.
- e Defined as the equivalent value of luminous flux from a tungstenfilament lamp operating at 2854° K that would be required to cause an increase in screen brightness equal to screen background brightness.
- f For incident radiation at the wavelength of maximum response of the spectral sensitivity characteristic.
- 9 Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2854° K. The light spot has a minimum diameter of 1.1".
- h The light source is a tungsten-filament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2854° K. Luminance uniformity will not vary more than the ratio stated over a circular area 32.5 mm in diameter centered on the image screen. No distinct line of demarcation between light and dark areas is permitted. Alternatively, tubes will conform to MIL-E-55493 (EL) Uniformity Specification dated 26 November, 1968.

J A two-dimensional resolution pattern, providing constant illumination in the Y direction, and sinusoidal variation of intensity in the X direction is projected on the photocathode. Per cent image modulation M may then be defined as:

$$M = \frac{W - B}{W + B} \times 100$$

where W = maximum illumination in white line

B = minimum illumination in black line

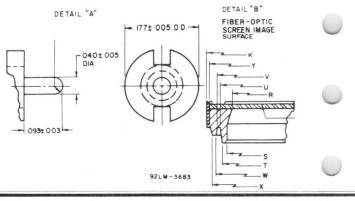
Output image brightness is also a sinusoidal function of the distance across one direction of the pattern, and the output modulation is equal to or less than the input modulation. The modula-

tion transfer function (MTF) is defined as the ratio of the output modulation to input modulation expressed as a function of the spatial frequency of the incident illumination pattern. MTF for the C33088P1 is measured using Modulation Transfer Function Analyzer Model No.K1-b, a product of Optics Technology, Inc., Belmont, CA, using the specified procedure for that instrument.

- k Paraxial Image Magnification (Cmx) is defined as the ratio of the separation of two diametrically opposite image points on the screen to the separation of the two corresponding image points on the photocathode. The image points on the photocathode are separated by a distance of 2 mm and are located equal distances from the major axis of the tube.
- ^m Under the same conditions as shown in footnote (k) except the test points on the photocathode are separated by 32 mm.
- ⁿ The center of an image produced on the screen by focusing a test pattern on the optical axis of the photocathode will fall within a circle concentric with the optical axis of the screen having the specified diameter.
- p The center of the image produced on the screen of the tube as specified in footnote (n) will not shift more than the specified value during 30 seconds of operation.
- 9 A second magnification value (Emx) is obtained as stated in footnote (n) except the image points on the photocathode are separated by a distance of 32 mm. Per-cent distortion is defined by the equation

Per-cent Distortion = Cmx x 100

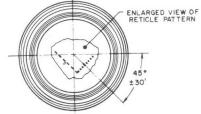
Operating Considerations


Magnetic shielding of these tubes may be required to minimize the effects of extraneous fields on tube performance. It is to be noted that ac magnetic fields are particularly objectionable in that they seriously impair tube resolution. If an iron or steel case is used, care should be taken to insure that the case is completely demagnetized.

Response time for the automatic brightness control to adjust to incident illumination is dependent on the level of incident illumination but never exceeds a few seconds. Response time as a function of incident illumination is shown in Figure I.

While the gain of the typical 8606 falls rapidly at input illumination levels above 10^{-3} footcandle and falls to unity at approximately 10^{-2} footcandle, the 4549 can operate at input illumination levels up to about 7 footcandles. Screen brightness as a function of incident illumination is shown in Figure 3.

The characteristic of Figure 2 shows battery current as a function of incident illumination. At normal tube operating light levels battery drain is low allowing power conservation.


DIMENSIONAL OUTLINE DETAILS

DIMENSIONAL OUTLINE

BOTTOM VIEW

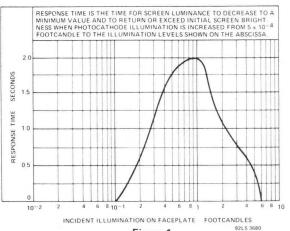
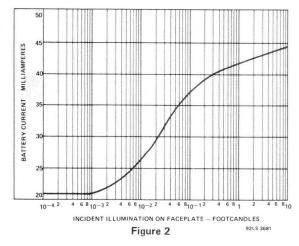
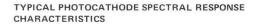
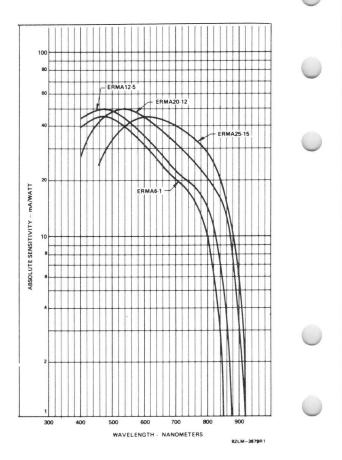
OUTLINE DIMENSIONS

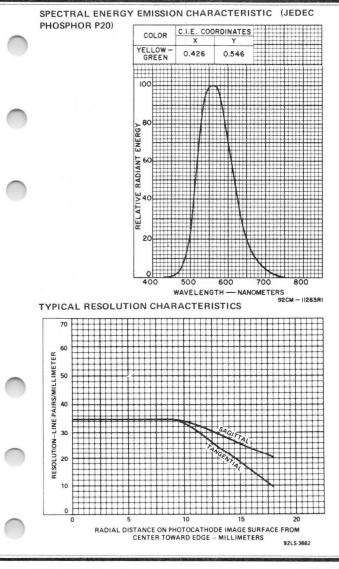
Dimen-	Inches		mm		
sions	Min.	Max.	Min.	Max.	
А	11.906	12.028	302.512	305.511	
В	11.025	11.115	280.035	282.321	
C	2.372	2.398	60.249	60.909	
D	3.742 Dia.	3.747 Dia.	95.047 Dia.	95.174 Dia.	
E	2.095 Dia.	2.105 Dia.	53.213 Dia.	53.467 Dia.	
F	.237	.243	6.020	6.172	
G	.082	.092	2.082	2.336	
J	.093	.113	2.362	2.870	
K	3.737 Dia.	3.747 Dia.	94.92 Dia.	95.10 Dia.	
M	2.950 Dia.	3.050 Dia.	74.930 Dia.	77.470 Dia.	
N	.620 Dia.	.630 Dia.	15.748 Dia.	16.002 Dia.	
0	.120 Dia.	.123 Dia.	3.048 Dia.	3.124 Dia.	
Р	.208	.218	5.283	5.537	
Q	.370	.380	9.398	9.652	
R	2.51 Dia.	2.55 Dia.	63.75 Dia.	64.77 Dia.	
S	2.781 Dia.	2.791 Dia.	70.637 Dia.	70.891 Dia.	
Т	2.979 Dia.	2.994 Dia.	75.666 Dia.	76.047 Dia.	
U	3.083 Dia.	3.098 Dia.	78.308 Dia.	78.689 Dia.	
V	3.245 Dia.	3.260 Dia.	82.423 Dia.	82.804 Dia.	
W	3.297 Dia.	3.312 Dia.	83.743 Dia.	84.124 Dia.	
Х	3.500 Dia.	3.520 Dia.	88.900 Dia.	89.408 Dia.	
Y	3.54 Dia.	3.58 Dia.	89.91 Dia.	90.93 Dia.	
Z	.183	.193	4.648	4.902	
AA	1.47 Dia.	-	37.5 Dia.	-	
BB	1.65 Dia.	-	42 Dia.	-	
	the second s	1	and a second		

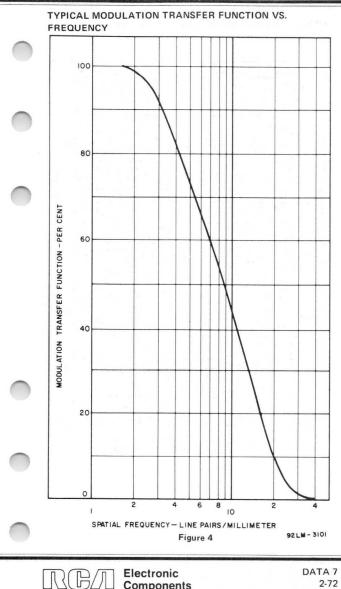
The dimensions in millimeters are derived from the basic inch dimensions (1 inch = 25,4 mm)

> Electronic Components

R(B/J

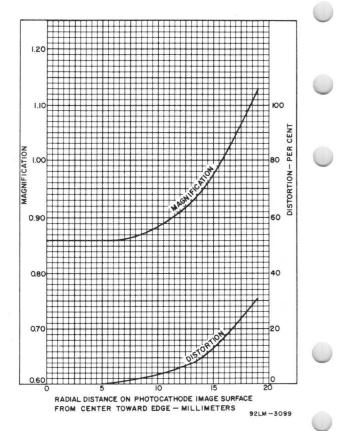

Figure 1



Electronic Components

RB/A

2 4 6 9 2 4 6 1 2 4 6	Figure 3
SCHEEN LOUNINATED PHOTOCATHODE AREA = 1.1 "DIA ILLUMINATED PHOTOCATHODE AREA = 1.1 "DIA ILLUMINATED PHOTOCATHODE AREA = 1.1 "DIA OCTOBER = 1.0 - 1 = 0.0 - 1	
	0
SCREEN LUMINANCE - FOOTLAMBERTS	


RBA Electronic Components

Components

DATA 7 2-72

TYPICAL MAGNIFICATION AND DISTORTION CHARACTERISTICS

Photomultiplier Tube

	r noronnonipitor robo
	1-1/8" Diameter, Side-On Type Having Bialkali Photocathode
	Spectral ResponseSee accompanying Typical Photocathode Spectral Response Characteristics
	Wavelength of Maximum Response 400 ± 50 nm
	Cathode, OpaquePotassium-Cesium-Antimony (Bialkali)
	Window Corning No.0080, or equivalent
	Dynodes:
	Substrate Nickel
	Secondary-emitting surface Cesium-Antimony
	Structure Circular-Cage, Electrostatic-Focus Type
-	Direct Interelectrode Capacitances:
	Anode to dynode No.9 4.4 pF
	Anode to all other electrodes 6.0 pF
	Socket Cinch-Jones No.12CS-M, or equivalent
	Magnetic Shield See footnote a
	Maximum Ratings, Absolute-Maximum Values:
	DC Supply Voltage:
	Between anode and cathode 1250 max. V
	Between anode and dynode No.9
	Between consecutive dynodes
	Between dynode No.1 and cathode 250 max. V
	Average Anode Current (30 seconds max.
	averaging time) 0.5 max. mA
	Ambient-Temperature Range
	Characteristics Range Values for Equipment Design:
1	Under conditions with dc supply voltage (E) across a voltage divider
	providing 1/10 of E between cathode and dynode No.1; 1/10 of E
	for each succeeding dynode stage; and $1/10$ of E between dynode No.9 and anode, and at a temperature of 22° C.
0	With $E = 1000$ volts (Except as noted).
	Min. Typ. Max.
	Anode Sensit, vity:
	Radiant, at 400 nanometers – 1.7x10 ⁵ – A/W
	Voltage required to pro-
	vide an anode current of
	100 μA ^b 250 – 500 V
Ber Adda Sta	DATA 1
	Components 10-71

Cathode Sensitivity:				
Radiant, at 400 nanometers	_	0.054	-	A/W
With blue light source $^{\rm C}$ (2870° K + UG-5 and BG-12) (See Figure 2)	3.0×10 ⁻⁶	4.5×10 ⁻⁶	_	A/incident Im
Quantum Efficiency at 400 nanometers		17	_	%
Current Amplification	-	3×10 ⁶	-	
Anode Dark Current, at 800 V	-	8×10-10	1×10 ⁻⁸	А

- ^a Magnetic shielding material in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1322 N. Elston Avenue, Chicago, IL, 60622, or equivalent.
- ^b Under the following conditions: Light incident on the cathode is transmitted through a blue filter combination (Jena UG-5 and Jena BG-12, manufactured by Jena^{er} Glaswerk, Schott & Gen, Mainz, West Germany) from a tungsten-filament lamp operated at a color temperature of 2870° K. This filter combination is interposed between a 0.172" x 0.700" aperture and the tube entrance window. The light input incident on the filter combination is 1 x 10⁻² lumen. The tube is rotated about its major axis to obtain maximum output current.
- c Under the same conditions as footnote (b) except 60 volts are applied between cathode and all other electrodes connected as anode.

When the ratio of peak anode current to average anode current is high, non-inductive capacitors should be employed across the latter stages of the tube. The values of these capacitors should be chosen so that sufficient charge is available to prevent a change of more than a few per cent in interstage voltages throughout the pulse duration. The capacitor values across the dynode stages will depend upon the shape and the amplitude of the anode current pulse, and the time duration of the pulse, or train of pulses. When the output pulse is assumed to be rectangular in shape, the following formula applies:

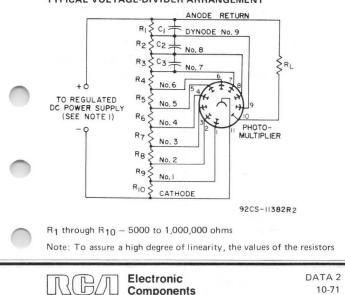
$$C = 100 \frac{i \cdot t}{V}$$

where C is in farads

i is the amplitude of anode current in amperes

and

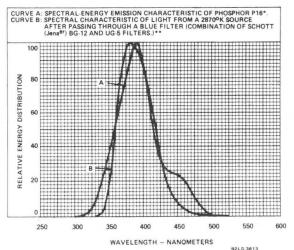
V is the voltage across the capacitor in volts t is the time duration of the pulse in seconds


This formula applies for the anode-to-final dynode capacitor. The factor 100 is used to limit the voltage change across the capacitor to 1% maximum during a pulse. Capacitor values for preceding stages should take into account the smaller values of dynode currents in these stages. Conservatively, a factor of approximately 2 per stage is used. Capacitors are not required across those dynode stages where the dynode current is less than 1/10 of the current through the voltage-divider network.

For other shaped pulses or for a train of pulses, the total charge q should be substituted for $(i \cdot t)$ and the following formula applies:

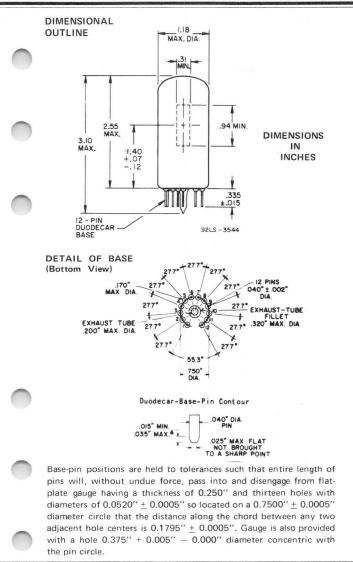
 $C = 100 \frac{q}{V}$

where $q = \int i(t) dt$ coulombs

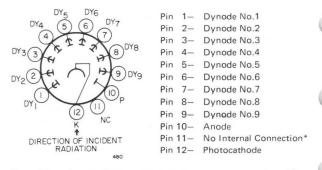

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT

making up the voltage-divider network should be such that the current through the network, for the selected operating supply voltage, is at least 10 times greater than the maximum average anode current required.

Note: Capacitors C₁ through C₃ should be connected at the tube socket for optimum high-frequency performance. Leads to all capacitors should be as short as possible to minimize inductance effects.

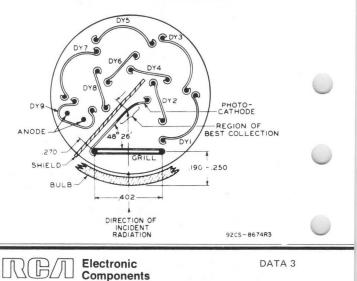

TYPICAL P16 SPECTRAL DISTRIBUTION CHARACTERISTIC AND THE SPECTRAL CHARACTERISTIC OF LIGHT FROM A 2870° K SOURCE AFTER PASSING THROUGH INDICATED FILTERS.

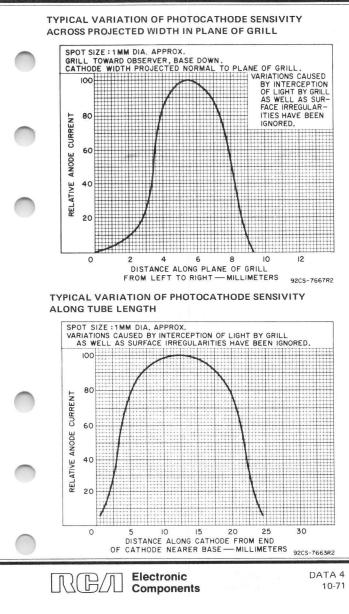
* JEDEC Publication 16A, January 1966.


** Curve B is the product of the transmission characteristics of a combination of a BG-12 filter (1 mm thick) and a UG-5 filter (1mm thick) and the emission characteristics of a 2870° K tungsten-filament lamp. The filters are not in optical contact. The transmission characteristics of the filter combination include reflection losses at the air-glass interfaces. Some transmission occurs above 700 nanometers but is not indicated because it is beyond the spectral sensitivity range of the 4555. Information is obtained from "Color Glass Filters", Jena^{er} Glaswerk, Schott & Gen, 200 Park Avenue, NY 10017.

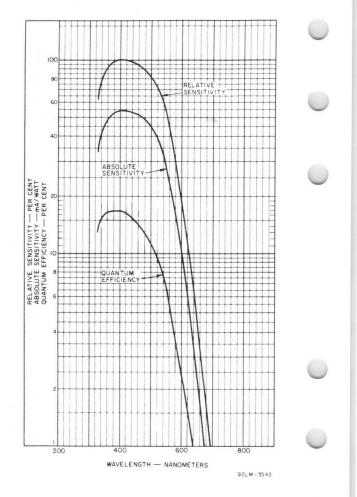
BA Electronic Components

RBA Electronic Components DATA 3 10-71

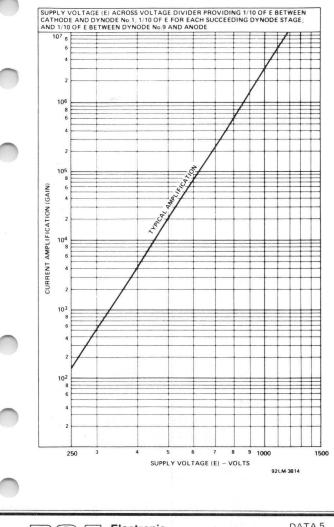

TERMINAL DIAGRAM (Bottom View)



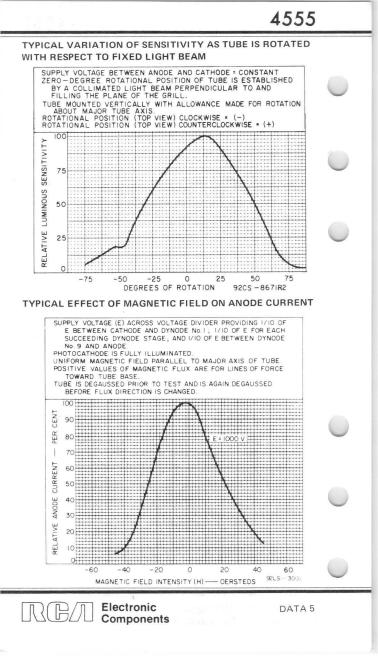
Note: The tube should be rotated about its major axis to provide maximum anode current.


* The socket terminal for Pin 11 may be used as a tie point for the voltage-divider resistor from dynode No.9 to the positive dc supply voltage and the load resistor from the anode to the positive dc supply voltage.

SCHEMATIC REPRESENTATION OF TUBE STRUCTURE



TYPICAL PHOTOCATHODE SPECTRAL RESPONSE CHARACTERISTICS



RBA Electronic Components

TYPICAL CURRENT AMPLIFICATION CHARACTERISTIC

RBA Electronic Components DATA 5 10-71

Vidicon

Variant of Type 8507A Having a Fiber-Optic Faceplate

ELECTRICAL

Heater Voltage
Heater Current at 6.3 Volts, ac or dc 0.6 nominal A
Focusing Method Magnetic
Deflection Method Magnetic
Direct Interelectrode Capacitance:a
Target to all other electrodes 4.6 pF

OPTICAL

Faceplate (Image Surface) Material Dark-Clad Fiber-Optics
Flatness Within 0.5 μ m
Pitch (Center-to-center spacing) \ldots 5.5 ± 1.0 μ m
Maximum tilt
Spectral Response RCA Type II, See accompanying
Typical Spectral Sensitivity Characteristics
Photoconductor Antimony Trisulfide

PHOTOCONDUCTIVE LAYER

Maximum useful diagonal of image 0.625 in (16 mm) Orientation of quality rectangle – Proper orientation is obtained when the horizontal scan is essentially parallel to the plane passing through the tube axis and short index pin.

MECHANICAL

Overall Length 6.250 \pm 0.125 in (158.75 \pm 3.19 mm)
Greatest Diameter 1.210 \pm 0.010 in (30.73 \pm 0.25 mm)
Bulb Diameter 1.025 ± 0.003 in (26.04 ± 0.08 mm)
Base Small-Button Ditetrar 8-Pin (JEDEC No.E8-11)
Socket Cinch ^b No.8VT (133-98-11-015), or equivalent
Deflecting Yoke – Focusing Coil –
Alignment Coil – Assembly · · · · · · Cleveland Electronics ^{C,d}
No.VYFA-355-2, or equivalent
Operating Position
Weight (Approx.) 2 oz

MAXIMUM AND MINIMUM RATINGS Absolute-Maximum Values

For scanned area of 1/2" x 3/8" (12.7 mm x 9.5 mm)

	Min.	Max.	
Grid-No.4 Voltage ^f	 _	1000	V

Electronic Components

Grid-No.4 and Grid-No.3				
Voltage Difference	-	600	V	
Grid-No.3 Voltage ^f	-	1000	V	
Grid-No.2 Voltage	-	350	V	
Grid-No.2 Power Dissipation	-	1	W	
Grid-No.1 Voltage	-150	0	V	
Heater-Cathode Voltage	-125	10	V	
Target Voltage	_	100	V	()
Dark Current	-	0.25	μΑ	
Peak Target Current ^g	-	0.75	μΑ	
Faceplate:	-	5000 lr	m/ft2	
Illumination ^h	-	50000	lux	
Temperature:				
Operating and storage	-	71	°C	

TYPICAL OPERATION

With tube operated in a Cleveland Electronics Assembly Type VYFA-355-2, scanned area of 1/2" \times 3/8" (12.7 mm \times 9.5 mm), faceplate temperature of 30 to 35° C, and standard CCIR "M", or EIA, TV scanning rate (525 lines, interlaced 2:1, frame time 1/30 second)

	Low-Voltage Mode	High-Voltage Mode	1	
Grid-No.4 (Decelerator) Voltage ^f	500	900	V	
Grid-No.3 ^f (Beam-Focus Electrode) Voltage	300	540	V	
Grid-No.2 (Accelerator) Voltage	300	300	V	
Peak-to-Peak Blanking Voltage:				
When applied to grid-No.1	75	75	V	
When applied to cathode	20	20	V	
Field Strength at Center of Focusing Coil	40 ± 4	58 ± 4	G	\bigcirc
Peak-to-Peak Deflecting- Coil Current:				
Horizontal	350	480	mA	
Vertical	20	28	mA	
Field Strength of Adjustable Alignment Coil ^k	0 to 4	0 to 4	G	

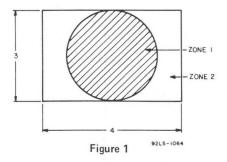
RBA Electronic Components

Color States of		and the second se	State of the local division of the local div		A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY.
	TYPICAL PERFORMANCE DA	ATA			
	Under the conditions shown unde Typical Operation	er			
	Grid-No.1 Voltage for Picture Cutoff ^m	-65 to -1	00	-65 t	o -100 V
	Average ''Gamma' of Transfer Characteristic for a Signal- Output Current Between 20 nA and 200 nA	0.65		0.65	
	Lag – Per Cent of Initial Value of Signal-Output Current 1/20 Second After Illumination is Removed ⁿ	20		20	%
	Limiting Resolution:				
	At center of picture 1	000		1100	TV Lines
	At corner of picture	600		700	TV Lines
	Amplitude Response to a 400 TV Line Square-Wave Test Pattern at Center of PictureP	45		55	%
	High-Sensitivity Operation				
	Conditions				
	Faceplate Illumination (Highlight)		0.1		Im/ft ² (fc)
	Dark Current ^q		0.10		μΑ
	Performance				
	Target Voltage ^{r,s}		30	to 60	V
	Typical Signal-Output Current	::t			
	For collimated light ^u		0.08		μΑ
	Average-Sensitivity Operation				
	Conditions				
	Faceplate Illumination (Highlight	ght)	1.0		Im/ft ² (fc)
-	Dark Currentq		0.02		μΑ
	Performance				
	Target Voltage ^{r,s}		20	to 40	V
	Typical Signal-Output Current	t:t			
	For collimated light ^u		0.16		μΑ
	For diffused light ^u		0.11		μΑ

RBA Electronic Components

- ⁸ This capacitance, which effectively is the output impedance of the 4589, is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohms.
- ^b Made by Cinch Manufacturing Company, 1501 Morse Avenue, Elk Grove, Village, IL 60007.
- ^c Made by Cleveland Electronics Inc., 2000 Highland Road, Twinsburg, Ohio 44087.
- d These components are chosen to provide tube operation with minimum beam-landing error when mounted in the recommended position along the tube axis.
- f Grid-No.4 voltage must always be greater than grid-No.3 voltage. The maximum voltage difference between these electrodes, however, should not exceed 600 volts. When the 4589 is positioned within the magnetic assembly, the recommended ratio of grid-No.3 to grid-No.4 voltage is 6/10 to 5/10; best geometry being provided when the ratio is 6/10, and most uniform signal output when the ratio is 5/10. The operator should select the ratio within this range which provides the desired perfor + mance.
- 9 Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.
- h For conditions where "white light" is uniformly diffused over entire tube face.
- j The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- k The alignment coil should be located on the tube so that its center is at a distance of 3-11/16 inches from the face of the tube, and be positioned so that its axis is coincident with the axis of the tube, the deflecting yoke, and the focusing coil.
- M With no blanking voltage on grid No.1.

RBA Electronic Components


- ⁿ For an initial signal-output current of 300 nanoamperes and a dark current of 20 nanoamperes. Lag will increase with a decrease in initial signal current and/or an increase in dark current.
- P Amplitude response is the signal amplitude from a given TV line number (fine picture detail) expressed as a per cent of the signal amplitude from a very-low-frequency (large-area) picture element. In practice, the largedetail reference is usually 15 TV lines with signal amplitude set equal to 100 per cent. The TV line numbers are determined by the number of equal-width black and white lines that will fit into the physical height of the image focused on the camera-tube faceplate.
- 9 The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.

- The target voltage for each 4589 must be adjusted to that value which gives the desired operating dark current.
- ⁵ Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- t Defined as the component of the highlight target current after the darkcurrent component has been subtracted.
- ^u Fiber-optic faceplates have the following transmission values:

	Min.	Typical
To collimated light	68%	80%
To diffused light*	50%	55%

*Representative of light output from a phosphor screen fiber-optically coupled.

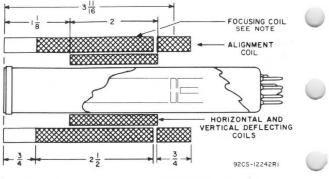
SPURIOUS SIGNAL TEST

This test is performed using a uniformly diffused white test pattern that is separated into two zones as shown in **Figure 1**. To be counted as a spot, the spurious signal amplitude must be greater than 10% of a peak white signal of 300 nanoamperes under either highlight or capped conditions, and lines or streaks must be greater than 5%. Lines or streaks having an area not exceeding that of a 6-TV line round spot are counted as spots and are subject to the spot criteria shown below. Grainy or mottled background having a spurious signal amplitude greater than 3% of the peak white signal (300 nA) and block lines and multifiber shading signal amplitudes greater than 5% constitute reject items.

TABLE 1

For scanned area of 1/2" x 3/8" (12.7 mm x 9.5 mm)

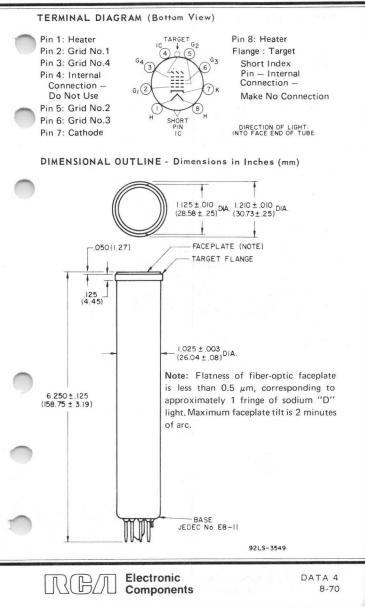
Equivalent Number of Raster Lines	Zone 1 Allowed Spots	Zone 2 Allowed Spots
over 6	0	0
6 but not including 4	0	2
4 but not including 2	6	6
2 but not including 1	25	25
1 or less	*	*

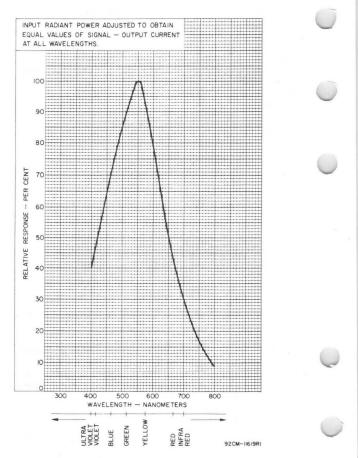

Minimum separation between any 2 spots greater than 1 raster line is limited to 16 raster lines.

*Spots of this size are allowed unless concentration causes a smudged appearance.

Fiber-Optic Distortion Errors are normally negligible. In exceptional cases, a typical distortion of 2 TV lines may occur.

RECOMMENDED LOCATION AND LENGTH OF DEFLECT-ING, FOCUSING, AND ALIGNMENT COMPONENTS


To obtain minimum beam-landing error.


Note: Cross-hatching indicates wound portion of focusing coil.

Electronic

Components

RBA Electronic Components

Photomultiplier Tube

3/4"-Diameter, 12-Stage Type Having S-11 Spectral Response and Copper-Beryllium Dynodes

- Typical Current Amplification: 4 x 106
- Typical Quantum Efficiency: 17% at 440 nm
- Tube Size: 0.78" Max. Diameter, 3.8" Max. Length
- Flat Faceplate for Mounting Scintillators

General Data

Spectral Response See Figure 1
Wavelength of Maximum Response $\dots \dots \dots 440 \pm 50$ nm
Cathode, Semitransparent Cesium-Antimony
Minimum projected area 0.2 in ² (1.26 cm ²)
Minimum diameter 0.5 in (1.27 cm)
WindowBorosilicate Glass (Corning ^a No.7056), or equivalent
Shape Plano-Concave
Index of refraction at 436 nanometers
Dynodes:
Substrate Copper-Beryllium
Secondary-emitting surface Beryllium-Oxide
Structure In-Line, Electrostatic-Focus Type
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.12 2.4 pF
Anode to all other electrodes 3.2 pF
Maximum Overall Length (Excluding Semiflexible Leads) 3.8 in (96.5 mm)
Maximum Diameter
Base (Temporary) Small-Shell Bidecal 20-Pin (JEDEC No.B20-102)
Socket Cinch ^b No.20-PM, or equivalent
Magnetic Shield Perfection Mica ^c No.10P40, or equivalent
Operating Position
Weight (Approx.):
With temporary base removed 1 oz

Electronic Components

R

Maximum Ratings, Absolute-Maximum Valuesd

DC Supply Voltage:

Between anode and cathode	2000	max.	V
Between anode and dynode No.12	300	max.	V
Between adjacent dynodes	200	max.	V
Between dynode No.1 and cathode	400	max.	V
Average Anode Current ^e	0.5	max.	mA
Ambient Temperature ^f	75	max,	oC

Characteristics Range Values for Equipment Design

Under conditions with a DC supply voltage (E) across a voltage divider providing the electrode voltages as shown in Table I and at an ambient temperature of 22° C, except as noted.

With E = 1500 volts (except as noted)

	Min.	Typical	Max.		
Anode Sensitivity:					
Radiant9 at 440 nanometers	-	2.4×10 ⁵	_	A/W	
Luminous ^h (2854 ⁰ K)	100	300	3500	A/Im	
Cathode Sensitivity:					
Radiant ^j at 440 nanometers	-	6×10 ⁻²	_	A/W	
Luminous ^k (2854° K)	5x10 ⁻⁵	7.5×10 ⁻⁵	-	A/Im	
Blue responsem (2854° K + C.S. No.5-58, 1/2 stock thickness)	5x10-6	7.5x10 ⁻⁶	_	A/inci- dent Im	0
Quantum efficiency at 440 nanometers	_	17	_	%	
Current Amplification	-	4×106			\bigcirc
Anode Dark Current ⁿ at 200 A/Im	_	5×10 ⁻⁸	5×10 ⁻⁷	A	
Equivalent Anode Dark Current Input ⁿ at 200 A/Im	{ _	2.5x10-10 3.1x10-13p	2.5x10 ⁻⁹ 3.1x10 ^{-12p}	lm W	

Typical Potential Distribution					
Between:	7.1% of Supply Voltage (E Multiplied by:				
Cathode to Dynode No.1	1.2				
Dynode No.1 to Dynode No.2	1.2				
Dynode No.2 to Dynode No.3	1.7				
Dynode No.3 to Dynode No.4	1.0				
Dynode No.4 to Dynode No.5	1.0				
Dynode No.5 to Dynode No.6	1.0				
Dynode No.6 to Dynode No.7	1.0				
Dynode No.7 to Dynode No.8	1.0				
Dynode No.8 to Dynode No.9	1.0				
Dynode No.9 to Dynode No.10	1.0				
Dynode No.10 to Dynode No.11	1.0				
Dynode No.11 to Dynode No.12	1.0				
Dynode No.12 to Anode	1.0				
Anode to Cathode	14.1				

a Made by Corning Glass Works, Corning, NY 14830.

- b Made by Cinch Manufacturing Company, 1501 Morse Avenue, Elk Grove Village, IL 60007.
- c Made by Magnetic Shield Division, Perfection Mica Company, 1322 N. Elston Avenue, Chicago 22, IL 60622.
- d A description of the Absolute Maximum Rating is given in the General Section, titled Rating Systems for Electron Tubes.
- e Averaged over any interval of 30 seconds maximum.
- f Tube operation at room temperature or below is recommended.
- g This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 803 lumens per watt.
- h Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. It is operated at a color temperature of 2854° K and a light input of 1 microlumen is used.
- j This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 803 lumens per watt.
- k Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. It is operated at a color temperature of 2854° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- m Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, pol-

ished to 1/2 stock thickness – Manufactured by the Corning Glass Works, Corning, NY 14830) from a tungsten-filament lamp operated at a color temperature of 2854° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.

- N With supply voltage adjusted to give a luminous sensitivity of 200 amperes per lumen. Dark current caused by thermionic emission may be reduced by use of a refrigerant.
- P At 440 nanometers. These values are calculated from the EADCI values in lumens using a conversion factor of 803 lumens per watt.

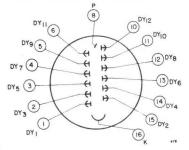
Operating Considerations Shielding

Electrostatic shielding of the tube is ordinarily required. When a shield is used, it must be connected to the cathode terminal. The application of high voltage, with respect to cathode, to insulating or other materials supporting or shielding the tube at the photocathode end should not be permitted unless such materials are chosen to limit leakage current to the tube envelope to 1×10^{-12} ampere or less.

In addition to increasing dark current and noise output because of voltage gradients developed across the bulb wall, such high voltage may produce minute leakage current to the cathode, through the tube envelope and insulating materials, which can permanently damage the tube.

Ambient Atmosphere

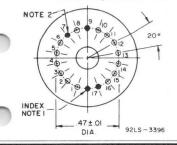
Operation or storage of this tube in environments where helium is present should be avoided. Helium may permeate the tube envelope and may lead to eventual tube destruction.


Lead Connections

The semiflexible leads of the tube may be soldered or welded into the associated circuit. Care must be exercised when making such connections to prevent tube destruction due to thermal stress of the glass-metal seals. A heat sink placed in contact with the semiflexible leads between the point being soldered, or welded, and the protective shell is recommended. Excessive bending of the leads is to be avoided.

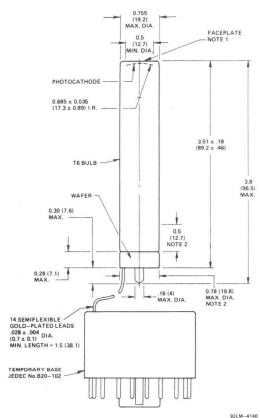
Basing Diagram - Bottom View (With Temporary Base)

- NC NC DY12 NC 10 DYIO 9 12 8 DY H DY8 7 H 4 е H DY6 DY9 (6 H 15 H H 16 DY7 5) DY4 H H H 17 DY5 NC DY3 NC DY NC Pin 13: Dynode No.10 Pin 14: Dynode No. 8 Pin 15: Dynode No. 6 Pin 16: Dynode No. 4
- Pin 1: No Connection Pin 2: Dynode No. 1 Dynode No. 3 Pin 3: Pin 4. Dynode No. 5 Pin 5: Dynode No. 7 Pin 6: Dynode No. 9 Pin 7: Dynode No.11 8. Pin Anode Pin 9. No Connection Pin 10: No Connection Pin 11: No Connection Pin 12: Dynode No.12 Pin 17: Dynode No. 2 Pin 18: No Connection
- Pin 19: No Connection
- Pin 20: Photocathode


Lead Connections - Bottom View (With Base Removed)

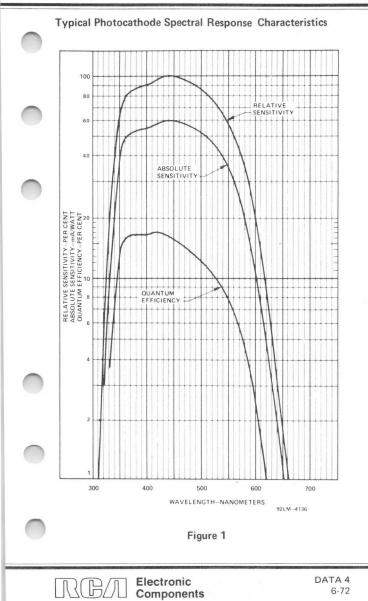
Lead 15: Dynode No. 2

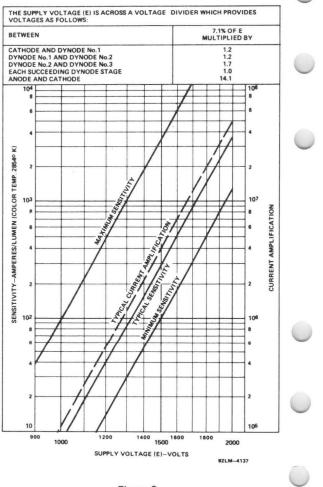
Lead 1: Dynode No. 1 Dvnode No. 3 Lead 2: Lead 3: Dynode No. 5 Dynode No. 7 Lead 4: Lead 5: Dynode No. 9 Lead 6: Dynode No.11 Lead 8: Anode Lead 10: Dynode No.12 Lead 11: Dynode No.10 Lead 12: Dynode No. 8 Lead 13: Dynode No. 6 Lead 14: Dynode No. 4 Lead 16: Photocathode


Lead Orientation, Bottom View

Note 1 – Lead is cut off within 0.12" of glass button for indexing. Note 2 – Lead Nos.7,9, and 17 are cut off within 0.12" of the glass button.

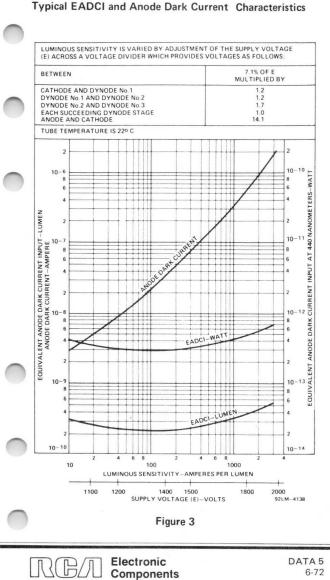
Electronic Components DATA 3 6-72


Dimensional Outline

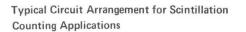

92LM-414

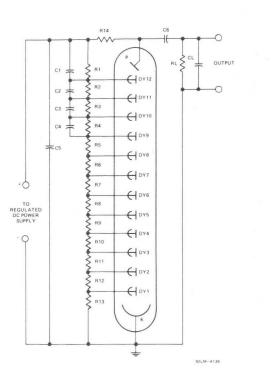
Dimensions are in inches unless otherwise stated. Dimensions tabulated below are in millimeters and are derived from the basic inch dimensions (1 inch = 25.4 mm).

- Note 1 Deviation from flatness will not exceed 0.006" from peak to valley.
- Note 2 Within this length, maximum diameter of tube is 0.78".



Sensitivity and Current Amplification Characteristics




Figure 2

RBA Electronic Components

6-72

C1: 0.05, 500 VDC, Ceramic Disc C2: 0.02, 500 VDC, Ceramic Disc C3: 0.01, 500 VDC, Ceramic Disc R1 through R10: 270 kΩ±5%,

C4: 0.005, 500 VDC, Ceramic Disc

1/2 W R11: 470 kΩ±5%, 1/2 W R₁₂, R₁₃: 330 kΩ±5%, 1/2 W

R14: 1 MΩ±5%, 1/2 W C5, C6: 0.005, 2500 VDC, Ceramic Disc

Note 1 – The value of the load elements R_L and C_L , depend on the application. $R_L \times C_L = 10$ microseconds for most applications.

Note 2 – Tolerance of all capacitors is $\pm 20\%$.

Electronic Components

SIT Camera Tubes

Silicon-Intensifier Target (SIT), 16-Millimeter Fiber-Optic Faceplate Types

- Very High Sensitivity
 Sturdy Compact Structure
- Excellent Discharge Capability
 Low Lag
- High Resolution Low-Power 0.6 Watt Dark Heater

The 4804A is similar to the 4804, except that the spurious signal (spot) rejection of the 4804A is more stringent than that of the 4804 and where indicated otherwise. The 4804A/P2 and 4804/P2 are potted versions of the 4804A and 4804, respectively.

General Data

The majority of these data apply to both potted and non-potted versions. Where exceptions exist, the data are labeled appropriately. S-20 Spectral Response Wavelength of Maximum Response 420 ± 50 nm Photocathode: Na-K-Cs-Sb (Multialkali) Material Maximum useful diagonal of rectangular 16 mm (0.625 in) image Orientation of quality rectangle-Proper orientation is obtained when the horizontal scan is essentially parallel to the plane passing through the tube axis and the short index pin. Image Surface: Flat, Circular Shape Material Dark-clad Fiber Optics Pitch (Nominal center-to-center spacing) 6 µm Direct Interelectrode Capacitance (Approx.): Target to all other electrodes 10 pF Maximum Overall Length: Potted 7.880 in (200 mm) Non-potted 7.500 in (190.5 mm) Maximum Diameter: Potted 2.080 in (52.8 mm)

> Electronic Components

Non-potted . . . (See Figure 11 Note a)

日/八

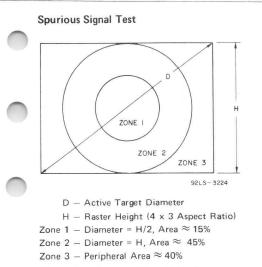
1.515 in (38.5 mm)

Image Section:
Focusing method Electrostatic
Configuration :
Potted Diode-connected Triode
Non-potted Triode
Internal Focus Bleeder (potted only) 1.00 \pm 0.10 G Ω
Scanning Section:
Focusing method Magnetic
Deflection method Magnetic
Base Small-Button Ditetrar 8-Pin, (JEDEC No.E8-11)
Socket Cinch ^a No.8VT (133-98-11-015), or equivalent
Deflecting Yoke-Focusing Coil Alignment Coil Assembly:
Potted Cleveland Electronics No.SVDA-2037-1 or Penn Tran No.1490-1
Non-Potted Cleveland Electronics, ^b No.SVDA-2037, or Penn Tran ^c , No.1490, or equivalent
Operating Position
Approximate Weight:
Potted
Non-potted 4.5 oz (127 g)

Maximum Ratings, Absolute-Maximum Values:d

	Min.	Max.		
Temperature:				
Operating	-10	60	oC	
Non-operating range	-54	71	oC	
Image Section:				
Photocathode voltage (negative with respect to anode):				
4804A/P2, 4804A	-	-10,000	V	
4804/P2, 4804	-	-9,000	V	
DC photocathode current	_	350	nA	0
Focus Electrode (negative with respect to anode, non-potted):				
4804A	_	-10,000	V	
4804	—	-9,000	V	
Anode voltage (zero with respect to thermionic cathode)	_	Ground		0
Exposure ^e	-	104	fc-s	

Electronic Components


RB/J

		4804A 4804A/I	480 2 480		2
·····	Scanning Section:				
	Heater-Voltage	6.0	6.6	V	
	Grid-No.4 Voltage ^f		350	V	
	Grid-No.3 Voltage ^f	-	350	V	
	Grid-No.2 Voltage	-	350	V	
	Grid-No.2 Dissipation	-	1	W	
	Grid-No.1 Voltage		0	V	
	Heater-Cathode Voltage	-125	10	V	
	Target Voltage	-	3009	V	
	Peak Target Current	-	750	nA	
	Typical Operation				
•	With tube operated in a Cleveland E No.SVDA-2037, or equivalent, faceplate (12.7 mm x 9.53 mm), and standard CC ning rate (525 lines, interlaced 2:1, frame	e image size 1 CIR ''M'', or E	1/2" x 3 1A, TV	8/8''	
	Temperature	25	to 31	oC	
	Image Section:				
	Photocathode voltage (negative with respect to anode)	-9000 to	-2500	v	
	Focusing-grid voltage (positive with respect to photocathode	photoca			
	Anode voltage (zero with respect to thermionic cathode	*******	Gr	ound	
	Scanning Section:				
	Heater, for unipotential cathode:				
	Current		0.1	A	
	Nominal voltage for current of 0.	See Sectors Construction	6.3	V	
	Grid-No.4 (Decelerator) Voltage [†]		340	V	
	Grid-No.3 (Beam-Focus Electrode) Volta		300	V	
	Grid-No.2 (Accelerator) Voltage		300	V	
	Peak-to-Peak Blanking Voltage:		75		
	When applied to grid No.1		75 20	v	
	When applied to cathode		300	nA	
	Target Voltage ^{9,h}		to 10	V	
	Focusing-Coil Current ^j (Approx.)		40	mA	
	Peak-to-Peak Deflecting-Coil Current:		40	mA	
	Horizontal		180	mA	
	Vertical		20	mA	
and the second second			20		
				ATA 0	

RBA Electronic Components

4804A 4804 4804A/P2 4804/P2					
Field Strength of Each Adjustat Alignment Coil: 4804A/P2, 4804A 4804/P2, 4804				to 3 G to 4 G	
Performance Data					
Under conditions shown under	Typical	Operation			
N	lin.	Typical	Max.		\bigcirc
Grid-No.1 Voltage for Picture Cutoff ^k	-65	-80	-120	V	
Gain Ratio for Photocathode Voltage Swing from -9 to -2.5 kV	100	400	_		
Average "Gamma" of Transfer Characteristic for Signal Output Current between 1.0 nA and 700 nA (See Figure 7)		1	_		0
Lag-Per Cent of Initial Signal Output Current 1/20 Second After Illumination is Removed ^{IN} (See Figure 3)	n 	7	12	%	
Contrast Transfer (Amplitude Response) to a 400 TV Line Square-Wave Test Pattern at Center of Picture ⁿ (See Figure	2)				
4804A/P2, 4804A	24	30	-	%	
4804/P2, 4804	20	30		%	
Resolution (See Figure 6) .	600	700	-	TV Lines	
Sensitivity (See Figure 7)	250	350	-	μΑ/Im/ft ² (μΑ/fc)	
Target Current Gain at 9 kV (See Figure 5):	90,000	270,000	-	μA/Im	\bigcirc
4804A/P2, 4804A	1100	1600	_		
4804/P2, 4804		1600			
Dark Current for Target Voltage of 8 Volts (See Figure 4)	_	7	15	nA	
Photocathode Responsivity:					
Luminous (2854° K Tungsten Source)P: 4804A/P2, 4804A 4804/P2, 4804 Luminous (See Figure 8)	_2.6	3.2 3.2		mA/W- 2854 ⁰ K	
4804A/P2, 4804A .	130	160	-	μA/Im	
4804/P2, 4804	. –	160	-	μA/Im	

RBA Electronic Components

Figure 1 – Spurious Signal Test Pattern

This test is performed with the tube viewing a uniformly diffused white test pattern that identifies the three zones shown in **Figure 1**. The tube is operated under the conditions specified under Typical Operating Values and is illuminated to provide a peak highlight signal current of 300 nanoamperes. The tube is adjusted to provide maximum picture resolution. Spurious signals are evaluated by size which is represented by equivalent numbers of raster lines in a 525 TV line system.

4804A/P2, 4804A

Allowable spot size for each zone is shown in Table I. To be classified as a spot, the spurious signal amplitude must be at least 10% of the peak white signal under either highlight or capped conditions. Smudges, streaks, or mottled and grainy background must have a spurious signal amplitude of at least 5% to constitute a reject item.

Table I - 4804A/P2, 4804A

Blemish Size (Equivalent Number of Raster Lines)	Zone 1 Allowed Spots	Zone 2 Allowed Spots	Zone3 Allowed Spots
over 8	0	0	0
over 6	1	2	2
over 4	3	7	7
over 1	6	17	22
1 or less	*	*	*

Minimum separation between any 2 spots greater than 1 raster line is limited to 16 raster lines.

*Spots of this size are allowed unless concentration causes a smudged appearance.

4804/P2, 4804

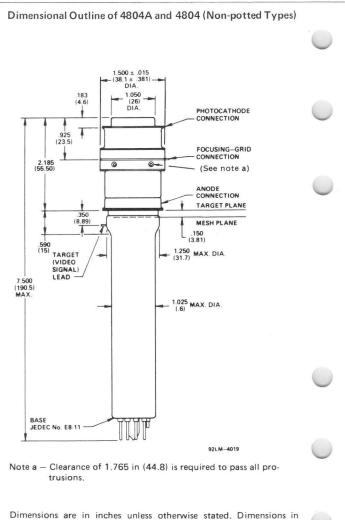
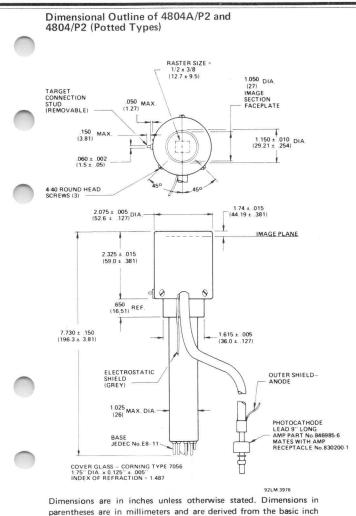

Allowable spot size for each zone is shown in Table II. To be classified as a spot, the spurious signal amplitude must be at least 10% of the peak white signal under either highlight or capped conditions. Smudges, streaks, or mottled and grainy background (except fiber-optics block lines) must have a spurious signal amplitude of at least 10% to constitute a reject item. Fiber optics block lines under 30% amplitude are not counted.

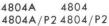
Table	11	-	4804	/P2,	4804
-------	----	---	------	------	------

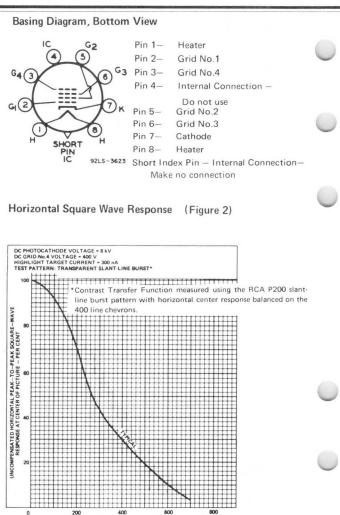
Blemish Size (Equivalent Number of Raster Lines)	Zone 1 Allowed Spots	Zone 2 Allowed Spots	Zone 3 Allowed Spots
over 12	0	0	0
over 8	0	1	2
over 6	1	3	4
over 4	3	8	9
over 2	11	17	17
2 or less	*	*	*


*Spots of this size are allowed unless concentration causes a smudged appearance.

- a Made by Cinch Manufacturing Corporation, 1501 Morse Ave., Elk Grove Village, IL 60007.
- b Made by Cleveland Electronics Inc., 2000 Highland Road, Twinsburg, OH 44087.
- c Made by Penn-Tran Inc., 1155 Zion Road, Bellefonte, PA.
- d A description of the Absolute-Maximum Rating is given in the General Section, titled Rating Systems for Electron Tubes.
- e Excessive faceplate exposure for long periods of time should be prevented whenever possible. For applications covering wide ranges of illumination, suitable combinations of lens stop, light filters and photocathode voltage should be chosen to provide close to typical signal currents.
- f Grid-No.4 voltage must always be greater than grid-No.3 voltage. The recommended ratio of grid-No.3 to grid-No.4 voltage is 9/10 to 8/10. The optimum ratio is that ratio providing the most uniform center-to-edge highlight discharge.
- 9 In normal operation, the target voltage should not exceed 15 volts.
- h With respect to thermionic cathode.
- J The polarity of the focusing coil should be such that a northseeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- k For picture cutoff with no blanking voltage on grid No.1.
- ^m For an initial signal output current of 300 nanoamperes.
- Measured under the following conditions. Photocathode voltage
 = 8.0 kV, signal current = 300 nanoamperes, and an RCA P200 slant-burst test pattern is employed.
- P The unit, watts-2854° K, is used to designate the total radiated power in watts, integrated over all wavelengths, from a tungstenfilament lamp operated at a color temperature of 2854° K. This unit is directly converted into lumens by the following relationship: 1 watt-2854° K = 20 lumens. From this relationship, sensitivity can be expressed in units of either amperes/lumen or amperes/watt-2854° K.

Dimensions are in inches unless otherwise stated. Dimensions in parentheses are in millimeters and are derived from the basic inch dimension. (One inch = 25.4 mm)


RBA Electronic Components

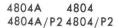


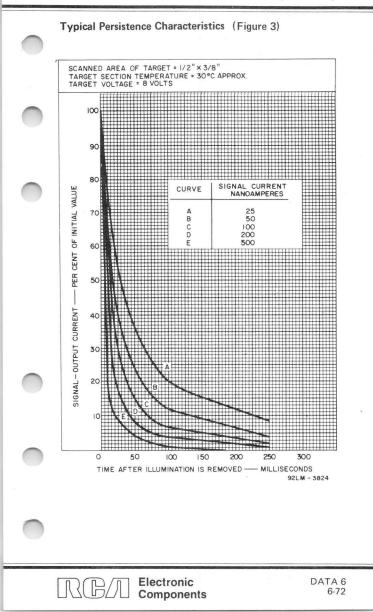
dimension. (One inch = 25.4 mm).

日/八

Electronic Components

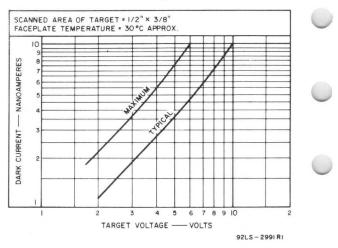
Electronic

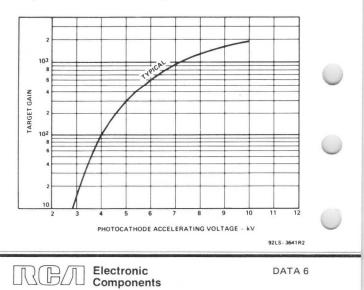

Components

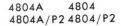

日/八

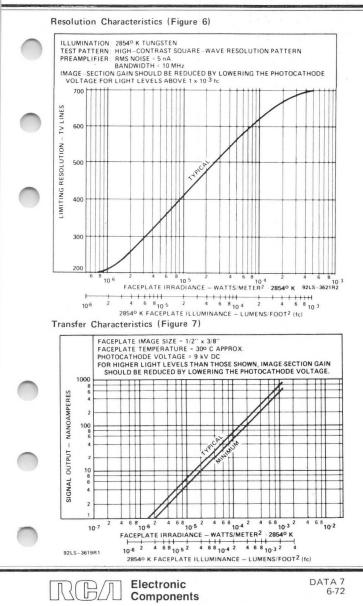
TV LINE NUMBER

DATA 5

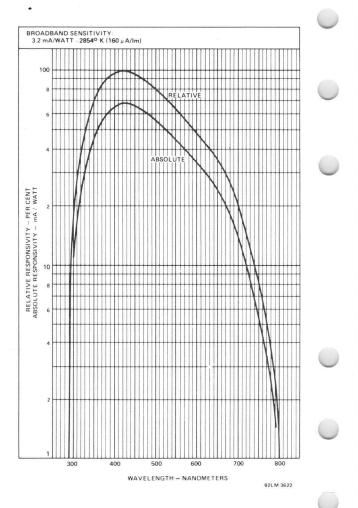

92LS-3620R2




4804A 4804 4804A/P2 4804/P2



Target Gain Characteristics (Figure 5)



4804A 4804 4804A/P2 4804/P2

Electronic

Components

日/Л

2

DATA 7

Image Isocon Camera Tubes

For High-Resolution, Real-Time, "Low-Light-Level" TV Systems

For High-Resolution, Real-Time, "Low-Light-Level" TV Systems

- Choice of "Flying Lead" or Permanent Base Types
- Flat Fiber-Optic Faceplate Allowing Excellent Coupling
- Extremely Simple Set-Up Procedure
- No Background Shading
- Single Non-Critical Beam-Current Adjustment
- Very High Signal-to-Noise Ratio
- Extremely High and Uniform Resolution
- Sturdy Target Highly Resistant to Intense Bursts of Light
- Low Lag
- Ruggedized
- Designed for Use With P20 Phosphor-Screen Image Intensifier
- Large Intrascene Dynamic Range Capability
- Especially useful for Coupling With an Image Intensifier
- Types 4807 and 4807A Differ Only in Certain Aspects of Performance Specifications
- Types 4807/V1 and 4807A/V1 Are Permanent Base Versions of Types 4807 and 4807A, Respectively

General Data

Direct Interelectrode Capacitance:

Anode to all other electrodes (output capacitance):
Potted 24 pF
Non-Potted (including tube base) 12 pF
Target-to-Mesh Spacing (Nominal) 0.02 in (0.5 mm)
Spectral Response (See Figure 10) Modified S-20
Photocathode, Semitransparent:
Material Na-K-Cs-Sb (Multialkali)
Useful Size of Image:
Maximum target diagonal 1.4 in (35 mm)
Maximum photocathode diagonal 1.4 in (35 mm)
Note: The size of the optical image focused on the photo- cathode should be adjusted so its maximum diagonal does not exceed the specified value. The corresponding electron image on the target should have a size such that the corners of the rec- tangle just touch the target ring.

Electronic Components

Orientation: Proper orientation is obtained when the vertical scan is essentially parallel to the plane passing through the center of the faceplate and the index position of the shoulder base. The horizontal and vertical scan should start at the corner of the raster between the unused lead positions 2 and 3 of the shoulder base. See RCA-AJ2206 yoke assembly bulletin for proper tubeyoke orientation.

Image Surface:

Material Dark-Clad Fiber-Optics
Pitch (nominal center-to-center spacing)
Flatness Within 0.5 μ m
Focusing Method Magnetic
Deflection Method Magnetic
Shoulder Base Annular 3-leads (See Dimensional Outline)
End Base (4807, 4807A) Semiflexible leads potted in silicone rubber (See Dimensional Outline)
Element Decoupling See Footnote a
Associated Scanning-and Focusing- Coil Assembly RCA Type AJ2206, or Equivalent
Operating and Storage Position Any
Weight (Approx.) 1.5 lbs (680 kg)

Maximum and Minimum Ratings.

Absolute-Maximum Valuesb

Voltages are with respect to thermionic cathode unless otherwise specified. All ratings are maximum unless otherwise stated.

Faceplate: 50 lm/ft² (fc) Illuminance^c..... Temperature: Any part of bulb^d 65 °C Temperature Difference: Between target section and any part of bulb hotter than target 5 °C section Heater, for Unipotential Thermionic Cathode: AC or DC current (pin No.1 0.63 A 0.57 min. A and pin No.20 or lead No.16 and 17)

Electronic Components

DATA 1

	Peak Heater-Cathode Voltage:	
)	Heater negative with respect to cathode	125 V
	Heater positive with respect to cathode	10 V
	Photocathode Voltage (Epc)	1000 V
	Grid-No.6 Voltage (Eg6)	-750 V
í.	Target Voltage (Et):	
	Positive value	10 V
	Negative value	10 V
	Grid-No.5 (Field-Mesh) Voltage ^e (Eg5)	600 V
	Grid-No.4 Voltage (Eg4)	600 V
6	Grid-No.3 Voltage (Eg3)	600 V
2	Grid-No.2 Voltage (Eg2)	450 V
	Grid-No.1 Voltage (Eg1)150 to	-40 V
	Steering-Plate Voltages:	
	Plate SX ₁ (E _{sx1})	600 V
	Plate SX ₂ (E _{sx2})	600 V
	Misalignment-Plate Voltages:	
	Plate SY ₁ (E _{sy1})	600 V
	Plate SY ₂ (E _{sv2})	600 V
	Anode Voltage (Eb)	1800 V
	Voltage Between Adjacent Dynodes ^f	600 V
	Regulation of power supply and divider network circuitry sh such that the operating values specified below are held wi limits shown.	ould be thin the
2	Heater Current ±5	%
	Focus Coil Current (The values of currents to which this regulation requirement applies are contained in the data sheet describing the	
	magnetic component, e.g., AJ2206 ±0.3	%
1	Grid-No.4 Voltage (As adjusted) ±0.2	%
	Other DC Voltages (Fixed or as adjusted) ± 1.0	%
	Beam Blanking Pulse Voltage	%
	Voltages are with respect to thermionic cathodes unless of	%
	voltages are with respect to thermome cathodes unless of	1101 44196

specified. For circuit design purposes, nominal electrode currents are 10 μ A or less, including leakage, except where otherwise noted.

Electronic Components

B//

Heater for Unipotential Cathode (Between Pins 1 and 20):			
Current 0.6		A	
Voltage (nominal, for current of 0.6 A) 6.3		V	
Photocathode Voltage (Image focus) ^h 900 to -650		V	
Grid-No.6 Voltage (Accelerator – approximately 63% of cathode voltage) ¹		V	
Target Voltage ^k		V	
Grid-No.5 (Field-mesh) Voltage ^e $\dots E_{g4} + 12$		v	
Grid-No.4 Voltage ^m		v	
Grid-No.3 Voltage (Max. output) \ldots E ₀₄ + 120		v	
Grid-No.2 Voltage		v	
Current		μĂ	\bigcirc
		por	
Grid-No.1 Voltage for Picture Cutoff		V	
Steering Plate Difference Voltage (Center voltage same value as grid No.4):			
$E_{sx1} - E_{sx2} \cdots 0$ to +60	max.	V	
Misalignment Plate Difference Voltage (Center voltage same value as grid No.4):			
$E_{sy1} - E_{sy2} - \dots 0$ to +60	max.	V	
Dynode-No.1 Voltage 375		V	
Dynode-No.2 Voltage 700		V	
Dynode-No.3 Voltage ⁿ 750 to 1050		V	
Dynode-No.4 Voltage 1350		V	
Dynode-No.5 Voltage ^p 1650		V	
Anode Voltage 1700		V	\bigcirc
Current 25		μΑ	
Target Temperature Range 30 to 50		oC	
Beam Blanking Voltage (Applied to grid No.1):			
Peak-to-peak 30		V	\bigcirc
Field Strength at Center of Focusing Coil (Approx.)9		G	

CB/A

Performance Characteristics Range Values

With conditions shown under Typical Operating Values, picture highlights at 2 \times 10^{-3} Im/ft² at the photocathode, 525 line scanning, interlaced 2:1, frame time 1/30 second, and 1.4" photocathode diagonal with 4 \times 3 aspect ratio.

		Min.	Тур.	Max.		
1	Photocathode Radiant Responsivity at 440 nanometers	_	60	-	mA/W	
	Photocathode Luminous Responsivity (2854° K	(130	160	_	µA/Im	
	tungsten source)W	2.6	3,2	-	mA/W- 2854º K	
5	Signal-Output Current (Peak-to-peak)	3	5	_	μA	
	Photocathode Illuminance at 2854 ^o K Required to Reach "Knee" of Transfer Char- acteristic	_	.001	.002	lm/ft ²	
	Photocathode Irradiance at 440 Nanometers Required to Reach "Knee" of Trans- fer Characteristic ^s	_	_	5.7×10 ⁻⁵	W/m ²	
	Signal-To-Noise Ratio:t					
	Signal to noise-in-signal for highlights:					
	4807A, 4807A/V1	26	30	-	dB	
	4807, 4807/V1	30	32	-	dB	
	Highlight signal-to-dark current noise	40	46	_	dB	
	Amplitude Response (Con- trast transfer) at 400 TV Lines Per Picture Height (Percent of response to large-area black to large-					
	area white transition) ^u	70	80	-	%	
	Limiting Resolution:					
)	At center of picture	1000	1100	-	TV Line	
	At corner of picture	850	900	-	TV Line	
	Geometric Distortion	-	1	-	%	
	Lag-Percent of Initial Signal Output Current 1/20 Second After Illum- inance is Removed	5 -	_	3% at 2x10 ⁻³		
		5 -	-	10% at 5x10 ⁻⁴		

Electronic Components

RB/Л

DATA 3 11/72

Shading (Uniformity):V Black level:					
Variation of output current with tube capped (Percent of maximum highlight signal):					
4807A, 4807A/V1	_	2	5	%	
4807, 4807/V1	-	1	2	%	\bigcirc
Shading (Uniformity):V					
White level:					
Variation of highlight signal (Percent of maximum highlight signal):					0
4807A, 4807A/V1	_	15	30	%	
4807, 4807/V1	-	12	15	%	

- ^a See figure showing Suggested Tube End-Base Decoupling Networks.
- b A description of the Absolute Maximum Rating is given in the General Section, titled Rating Systems for Electron Tubes.
- c Faceplate illuminance is limited to 50 Im/ft² continuously. An exposure of 10⁴ Im/ft² for a maximum period of 5 seconds can be tolerated provided the duty cycle limits the average value to 50 Im/ft². See Figure 4 for time-illuminance relationship for continuously illuminated scenes.
- d Operation outside of the recommended target temperature range shown under Typical Operating Values will not damage the 4807 series tubes provided the maximum temperature ratings of the tubes are not exceeded. Optimum performance, however, is only obtained when the tube is operated within the recommended target temperature range.
- With respect to grid No.4. Grid-No.5 (field mesh) voltage must never be less than that of grid No.4.
- f Dynode-voltage values are shown under Typical Operating Values.
- 9 With the isocon within a RCA-AJ2206 scanning and focusing-coil assembly.
- h Adjust for best focus. Nominal value is -750 V. This value is dependent upon the location of the tube within the yoke assembly with respect to the end of the focusing field.

RBA Electronic Components

- j Nominal value is -470 V. This voltage should be obtained by means of a voltage-divider network between photocathode and "ground". The resistance values should be chosen to set the grid-No.6 voltage at the recommended 63% of photocathode voltage which provides best focus.
 - k Normal setting of target voltage is +3.5 volts from thermionic cathode potential. Target cutoff is normally within one volt of thermionic cathode potential. The target supply voltage should be adjustable from -3 to +5 volts. The target connection must never be interrupted while the tube is operating.
 - M Adjust for best focus. The focusing current of the associated assembly, e.g., AJ2206, should be adjusted to keep grid-No.4 voltage within its recommended voltage range.
 - n Adjust for required signal current.
 - P The gain of the electron multiplier may be varied to obtain the signal output current from a given tube most suitable for the associated video amplifier. Gain can be controlled by adjusting the voltage on one or two ot the latter dynode stages; dynode No.3 is the preferred stage. To increase the range of gain control, the voltages on dynode Nos. 3 and 5 may be simultaneously adjusted. Overall multiplier gain varies approximately as the 3rd power of anode voltage.
 - 9 Direction of current must be such that a north-seeking pole is attracted to the image end of the focusing coil.
 - Pynode-No.3 voltage is adjusted for maximum signal output (approximately 1050 volts).
 - ^S The photocathode irradiance at 440 nanometers (the peak of photocathode responsivity) is related to photocathode illuminance at 2854° K by the factor 0.02865 (1/35) derived as follows:

$$\frac{\frac{1 \text{ Im}}{\text{ft}^2} \times \frac{10.76 \text{ ft}^2}{\text{m}^2} \times \frac{160 \mu\text{A}}{\text{Im}}}{\frac{60 \text{ mA}}{\text{W}}} = 0.02865 \frac{\text{W}}{\text{m}^2}$$

When the photocathode is irradiated at some wavelength other than 440 nanometers, the factor will differ as the relative photocathode responsivity.

RBA Electronic Components

t The values shown are measured under the following conditions using a Video Noise Meter, Model UPSF (North American Version), or equivalent. This meter is manufactured by Rohde and Schwarz, Munich, West Germany.

Noise Meter: Video pass band is shaped by means of self-contained 100 kHz high-pass and 4.2 MHz low-pass filters.

Signal to noise-in-signal for highlights is measured with lens uncapped viewing a uniform white field; highlight signal to dark current noise, with the lens capped.

- ^u Measured using an RCA test pattern style P200 with the frequency response of the video amplifier systems (essentially "flat") adjusted for uniform response to all scan-generated video frequencies. Substantially identical measurements will be obtained by using a "multi-burst" test pattern with an amplifier having flat (± 0.1 dB) frequency response to at least 14 MHz.
- Variation of responses over scanned area.
- The unit, watts-2854° K, is used to designate the total radiated power in watts, integrated over all wavelengths, from a tungstenfilament lamp operated at a color temperature of 2854° K. This unit is directly converted into lumens by the following relationship: 1 watt-2854° K = 20 lumens. From this relationship, responsivity can be expressed in units of either amperes/lumen or amperes/watt-2854° K.

For example, a responsivity of 160 $\mu\text{A}/\text{Im}$ is equivalent to a responsivity of

 $\frac{160 \ \mu A}{Im} \times \frac{20 \ lumens}{watt-2854^{\circ}K} = 3.2 \ mA/watt-2854^{\circ}K$

Also an illuminance of 1 Im/ft^2 (fc) is equivalent to an irradiance of

 $\frac{1 \text{ Im}}{\text{ft}^2} \times \frac{\text{watts-2854° K}}{20 \text{ lumens}} \times \frac{10 \text{ ft}^2}{\text{M}^2} = 0.5 \text{ watt-2854° K/meter}^2$

Therefore, all references to illuminance in Im/ft² may be converted to watts/meter²-2854° K by multiplication factor 0.5.

Amperes/watt-2854° K responsivity to the entire spectral output of a tungsten-filament lamp at a color temperature of 2854° K should not be confused with the unit of responsivity at a single wavelength, amperes/watt.

Spurious Signal (Blemish) Tests

This test is performed using a uniformly diffused white test pattern that is separated into three zones as shown in **Figure 1**. The tubes are operated under the conditions specified

Set-Up Procedure

The set-up procedure described below should be followed refully to obtain optimum performance. Before the specified voltages shown under Typical Operating Values are applied to the tube, the scanning coil, tube filament, and focusing coil should be energized. Focusing coil current, using the RCA assembly AJ2206, should be adjusted to 600 pilliamperes. The following steps should then be followed equentially.

- Step 1: Light should be admitted to provide a nominal faceplate illumination of 0.01 to 0.1 lumen/ft² (footcandle). This is a very important step for all image orthicons and image isocons. Control of target potential may be lost if the tube is started without light on the photocathode. To regain control, turn off the beam and apply light to the photocathode (all voltages applied) for 20 to 30 seconds, then resume normal operation.
- Step 2: The voltage values specified under Typical Operating Values may then be applied to the tube with the exception that the steering-plate and misalignment plate differential voltages are set to the voltage values supplied with the tube or to +25 volts.
- Step 3: Grid-No.1 voltage is adjusted to provide a small amount of beam current so that video information appears on the monitor.
- Step 4: To center the image on the target, adjust the deflection circuits so that the beam will "overscan" the target. Note that overscanning the target results in a smaller-than-normal picture on the monitor. After centering the image, return to normal scan size.
- Step 5: Grid-No.1 voltage is readjusted to fully discharge the target.

Step 6: Optical elements, photocathode voltage (imagesection focus), and grid-No.4 voltage (scanning-

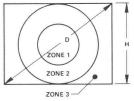
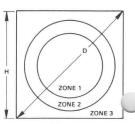

under Typical Operating Values. The tubes are adjusted to provide maximum picture resolution. Spurious signals are evaluated by size which is represented by equivalent numb of raster lines in a 525 TV line system. Allowable spots shown in Table I. To be classified as a spot, a contrast ratio of 1.5:1 must exist for white spots and 2:1 for black spots.

Table 1

Equivalent Number of Raster Lines	Zone 1 Allowed Spots	Zone 2 Allowed Spots	Zone 3 Allowed Spots
Over 6	0	0	0
6 but not including 4	0	0	4
4 but not including 1	2	6	6
1 or less	Spots of this size causes a smudg		less concentration

Minimum separation between any 2 spots greater than 1 raster line is limited to 16 raster lines.


Spurious Signal Zones

A - 4807, 4807A

4807A, 4807A/V1

D: Active Target Diameter

B-4807/V1, 4807A/V1

- H: Raster Height (4 x 3 Aspect Ratio)
- Zone 1: Diameter H/2, Area \approx 15%
- Zone 2: Diameter = H, Area \approx 45%
- Zone 3: Area \approx 40%

4807, 4807/V1

- D: Active Target Diameter
- H: Raster Height (1 x 1 Aspect Ratio)
- Zone 1: Diameter = .62H, Area \approx 30%
- Zone 2: Diameter = .87H, Area \approx 30%
- Zone 3: Area ≈40%

Electronic Components DATA 5 11/72

section focus) are adjusted to provide best focus. The proper setting for grid No.4, about 420 volts, is that value providing best resolution regardless of picture polarity.

- Step 7: Increase positive E_{sx1} E_{sx2} to picture cut-off and back off to best picture.
- Step 8: Reduce target voltage to cut-off and set $E_{sx1} E_{sx2}$ to the minimum positive value that eliminates bright edges.
- Step 10: Reduce target voltage to determine new cut-off value. Target cut-off voltage is changed by the adjustment of E_{SY1} - E_{SY2} . (It should not exceed +1.0 volt). Set target voltage to 3.5 ± 0.2 volts.

Principles of Operation

Similar to the conventional image orthicon, the isocon has three functional sections — an image section, a scanning section, and an electron-multiplier-type signal current amplifier section — as shown in **Figure 3**. Operation of both the image section and the multiplier section is identical to that of the conventional image orthicon. The behavior of the scanning beam of the image isocon, however, differs from that encountered in the image orthicon.

Scanning Operation

日/Л

The charged target is scanned by a low-velocity electron beam produced by a conventional electron gun. The primary (outbound) beam receives the required amount of transverse energy and the proper trajectory to pass through the beam-separation structure by means of transverse fields established by the electrostatic alignment plates.

The beam emerging from the beam-separation structure is focused at the target by the magnetic field of the external focusing coils, the electrostatic field of the wall electrode

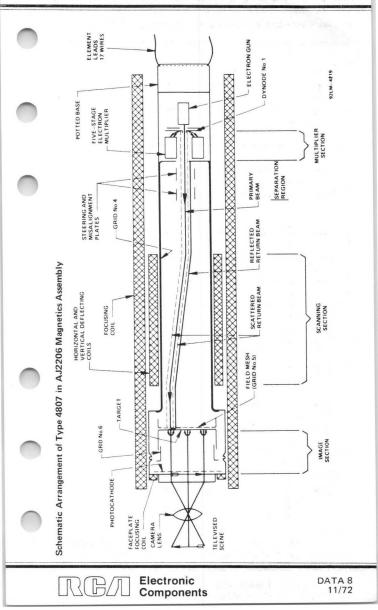
> Electronic Components

(grid No.4), and the field mesh (grid No.5). Under the influence of these fields, each electron traverses a helical path; the paths converging at the target. The fields of the steering plates are used to deflect electrons of the primary and return beams to allow control over beam trajectory. Scanning is accomplished by transverse magnetic fields produced by the external scanning coils.

By proper adjustment of electrode voltages including those of the field mesh (grid No.5) and grid No.4, the beam, regardless of its lateral deflection, is caused to approach the target at a fixed angle with zero or nearly zero velocity. The beam deposits sufficient electrons to neutralize the positive charges accumulated during the preceding frame time. Beam electrons having insufficient energy to reach the target are specularly reflected and constitute part of the return beam. Beam electrons reaching the target at positively charged areas but not captured are scattered and also become part of the return beam.

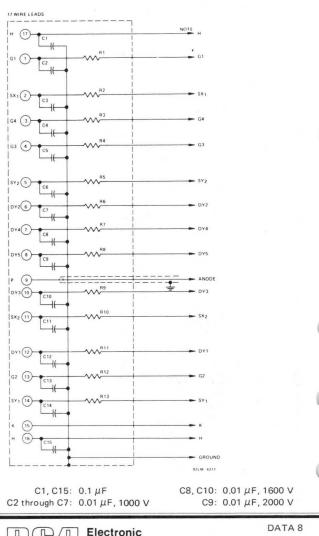
The term scattered electrons applies exclusively to the nonspecularly reflected electrons obtained when the beam interacts with the surface of the target and are thus distinguished from the remainder of the returning electrons which are termed reflected electrons. The number of scattered electrons obtained is at a maximum in the lighted portions (positively charged areas) and essentially zero in the dark portions of the target. (It is to be noted that although the total return beam is a minimum in the bright areas of the target where electrons are deposited, the number of scattered electrons is a maximum). The total return beam remains under the influence of the magnetic field of the focusing coil and the electrostatic field of grid No.4. The helices described by the scattered electron portion have greater diameters than those described by the reflected electrons. The return beam now comes under the influence of the field of the steering plates and is directed toward the beam-separation edge. The beam-separation edge passes the scattered electron portion of the return beam and captures the reflected electron portion. The scattered electrons accordingly strike the first dynode of the multiplier section. As a result, secondary emission occurs. The emitted secondaries, after multiplication, are collected by the anode as the signal output current.

Camera Design Notes

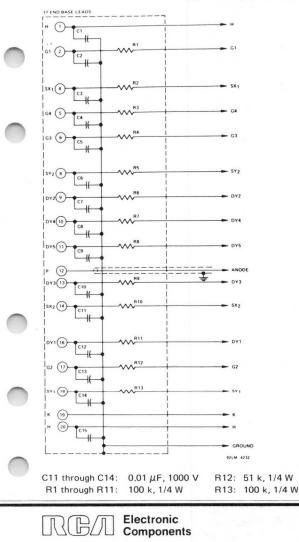

- Unless otherwise noted, the specified voltage values are referenced directly to the thermionic cathode which is grounded. No significant impedances should be introduced between the cathode and power-supply return points ("grounds"). The resistance of normal circuit conductors is deemed insignificant.
 - Designers familiar with conventional image orthicon circuitry are urged to note the following differences when designing circuits for use with the isocon:
 - Gun (beam) blanking is used instead of target blanking.
 - b. The polarity (sense) of the isocon output video signal is the inverse of that of conventional image orthicons. Maximum light produces maximum anode current.
 - c. A separate connection is provided for the "persuader" multiplier focus electrode G3. Its design is such that it may be tied to G4. Maximum output may require it to be more positive than G4.
 - d. The annular decelerator electrode, G₅, featured in most image orthicons is not used, nor provided in the 4807 series. The designator "G₅" has been reassigned to the field mesh.
 - e. The insertion of shading signals is neither recommended nor necessary. This eliminates 2 or 4 controls.
 - f. These tubes will NOT operate properly at any beam focus loop number other than that obtained by the application of the magnetic and electric focus fields shown under Typical Operation.
 - g. Automatic beam control is not needed.
 - 3. The gain of the electron multiplier output section is readily varied by adjustment of its operating voltages. Depending on the range of control required, the voltage on one or several dynodes may be made adjustable. The following precautions should be observed:

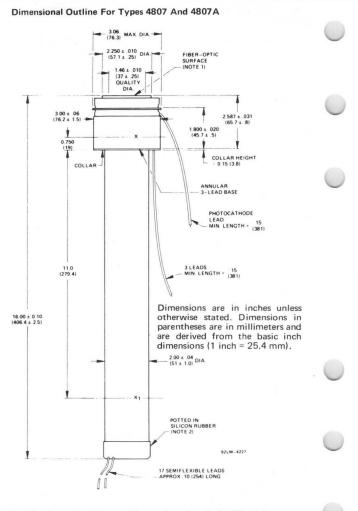
- Do not vary dynode No.1 voltage for gain-control purposes.
- Under most conditions, adjustment of only dynode No.3 voltage is the preferred gain control mode.
- c. Under no circumstances should operation be attempted where the voltage on a given dynode is outside the range established by the two adjacent dynodes, i.e., $E_{dy}(n-1) \leq E_{dy}(n) \leq E_{dy}(n+1)$.

Operation outside of these limits will not damage the tube but will result in entirely unsatisfactory multiplier action. (This requirement is not unique to these tubes — the principle applies generally to electron multiplier equipped tubes).


- d. If several dynode voltages, including that of dynode No.5 are varied simultaneously, care should be taken to avoid allowing the voltage between dynode No.5 and anode to vary to the point where anode collection efficiency is reduced. A practical minimum voltage for E_b-E_{dyn5} is 35 volts.
- 4. "Raster Zoom", at least 4:1, can be employed without damage to the tube. Resolution degradation can be expected to the same degree as the change in scan size.
- Raster orientation (See Data) is extremely important. Vertical scan reversal is normally not recommended and should not be used without contacting your RCA field representative for factory recommendations concerning your system.
- 6. Scan-failure protection. Nothing elaborate is needed as long as grid No.1 voltage does not fall to zero. In this context, note that a normal shutdown of equipment could cause damage unless the coupling time constants are such that the (negative) G₁ voltage will decay more slowly than the (positive) voltages on G₂ and/or G₄.

Suggested Tube End-Base Decoupling Networks for 4807, 4807A

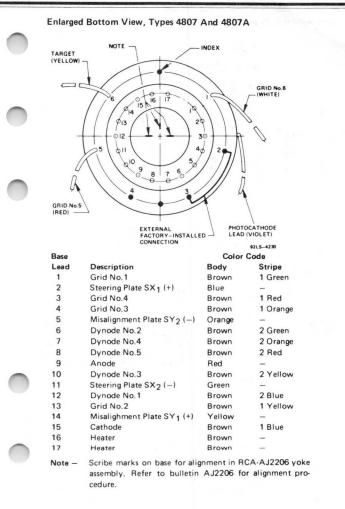

Each lead is identified. Leads are approximately 9" (230 mm) long.


Components

Suggested Tube End-Base Decoupling Networks For 4807/V1, 4807A/V1

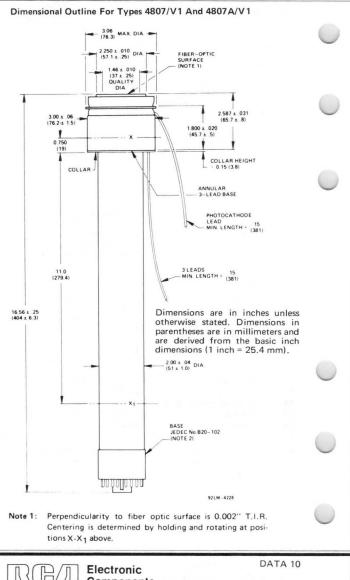
Each Lead is identified. Leads are approximately 9" (230 mm) long.

DATA 9 11/72

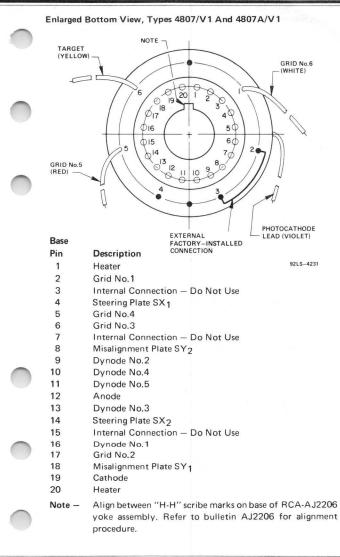


Note 1: Perpendicularity to fiber optic surface is 0.002" T.I.R. Centering is determined by holding and rotating at positions X-X₁ above.

> Electronic Components

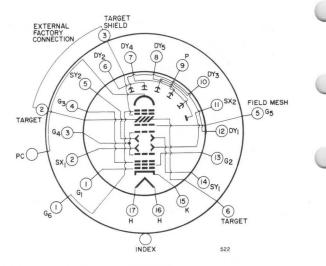

3/)

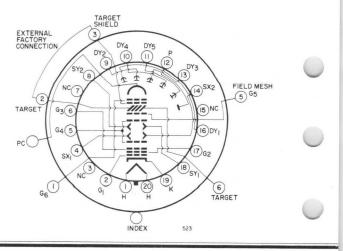
DATA 9



Electronic Components

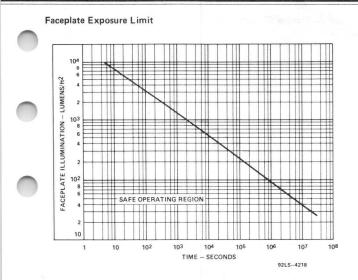
日/Л

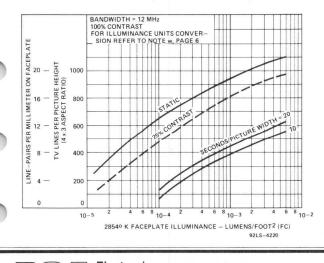

Electronic Components


Electronic Components

日/

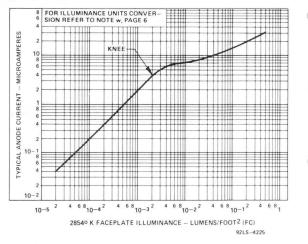
Basing Schematic For Types 4807 And 4807A


Basing Schematic For Types 4807/V1 And 4807A/V1


Electronic Components

R

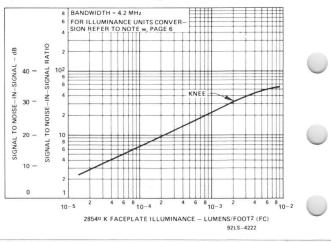
DATA 11


Typical Dynamic Limiting Resolution

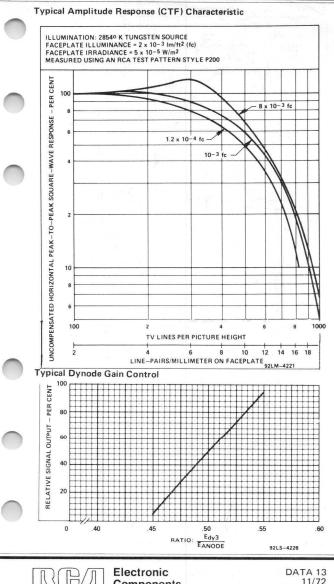
Electronic Components

DATA 12 11/72

Typical Transfer Characteristic

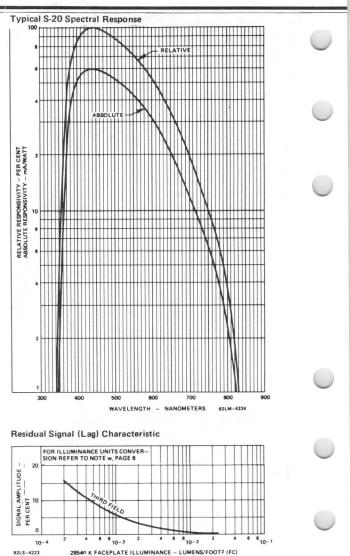

Typical Signal to Noise-In-Signal Ratio As A Function of Faceplate Illuminance or Irradiance From Flux Levels Within A Given Scene. (Beam Adjustment Fixed At 2 x Knee Setting)

Electronic


Components

157

B/Л



DATA 12

Components

11/72

Electronic Components

ŀ

DATA 13

4818

Photomultiplier

Variant of 1P28 Having a Bialkali Photocathode

- Spectral Response Range 200 to 650 nm
- Anode Current Drift ± 1.5% maximum for an initial anode current of 3 μA
- High Current Amplification 5 x 10⁶ at 1000 volts
- Fast Time Resolution Characteristics Anode Pulse Rise Time, 1.6 × 10⁻⁹ s at 1250 volts Electron Transit Time, 1.6 × 10⁻⁸ s at 1250 volts

General Data

Spectral Response See Figure 1
Wavelength of Maximum Response $\ldots\ldots$ 400 \pm 50 nm
Cathode, Opaque Potassium-Cesium-Antimony (Bialkali)
Minimum projected length 0.94 in (2.4 cm)
Minimum projected width 0.31 in (0.8 cm)
Window Ultraviolet-Transmitting Glass (Corning ^a No.9741), or equivalent
Index of refraction at 589.3 nanometers 1.47
Dynodes:
Substrate Nickel
Secondary-emitting surface Cesium-Antimony
Structure Circular-Cage, Electrostatic-Focus Type
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.9 4.4 pF
Anode to all other electrodes 6.0 pF
Maximum Overall Length 3.68 in (9.3 cm)
Maximum Seated Length
Maximum Diameter 1.31 in (3.3 cm)
Base Small-Shell Submagnal 11-Pin, (JEDEC Group 2, No.B11-88) DAP (Di-Allyl Phthalate) Non-Hygroscopic Material
Socket Amphenol ^b No.78S11T, or equivalent
Magnetic Shield Millen ^c No.80801B, or equivalent
Magnetic Stheid
Operating Position Any

Electronic

Components

R(B/Л

DATA 1 11/72

Maximum Ratings, Absolute-Maximum Valuesd

DC Supply Voltage:

Between anode and cathode	1250	max.	V
Between dynode No.9 and anode	250	max.	V
Between consecutive dynodes	250	max.	V
Between dynode No.1 and cathode	250	max.	V
Average Anode Current ^e	0.5	max.	mA
Ambient Temperature	85		oC

Characteristics Range Values for Equipment Design

Under conditions with dc supply voltage (E) across a voltage divider providing 1/10 of E between cathode and dynode No.1; 1/10 of E for each succeeding dynode stage; and 1/10 of E between dynode No.9 and anode, and at a temperature of 22° C.

With E = 1000 volts (Except as noted)

	Min.	Тур.	Max.	
Anode Sensitivity:				
Radiant ^f at 400 nm	-	2.7x10 ⁵	-	A/W
Luminous ^g (2854 ^o K)	100	300	1200	A/Im
Cathode Sensitivity:				
Radiant ^h at 400 nm	-	5.4×10 ⁻²	-	A/W
Luminous ^j (2854 ^o K)	2.5×10 ⁻⁵	6×10 ⁻⁵	-	A/Im
Quantum efficiency at 400 nm	-	16.5	-	%
Anode-Current Drift: k				
For an initial anode current (I _b) of 3 µA	-	-	±1.5	%
Current Amplification	-	5x10 ⁶	-	
Anode Dark Current at 1000 Volts	-	2×10 ⁻⁹	1.5×10 ⁻⁸	А
Equivalent Anode Dark Curren Input ^m at 1000 Volts	t _	6.6×10-12	-	Im
Anode Pulse Rise Time ⁿ , at 1250 Volts	-	1.6×10 ⁻⁹	_	s
Electron Transit TimeP, at 1250 Volts	-	1.6×10 ⁻⁸	-	s

a Made by Corning Glass Works, Corning, NY 14830.

Electronic

Components

吕/Л

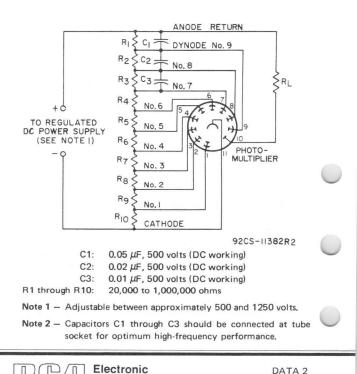
b Made by Amphenol Electronics Corporation, 1830 South 54th Avenue, Chicago 50, IL 60650.

DATA 1

- C Made by James Millen Manufacturing Company, 150 Exchange Street, Malden 48, MA 02148.
- d A description of the Absolute-Maximum Rating is given in the General Section, titled Rating Systems for Electron Tubes.
- e Averaged over any interval of 30 seconds maximum.
- f This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 900 lumens per watt.
- 9 Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. It is operated at a color temperature of 2854° K and a light input of 1 microlumen is used.
- h This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 900 lumens per watt.
- J Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. It is operated at a color temperature of 2854° K. The value of light flux is 0.01 lumen and 100 volts are applied between cathode and all other electrodes connected as anode.
- k Anode Current Drift is measured under the following conditions: The tube is operated at a supply voltage of 1000 volts for 30 minutes with the incident light level adjusted initially to provide an anode current (I_b) of 3 microamperes. The change in anode current for the next 12 minutes is continuously recorded and must not vary more than $\pm 1.5\%$. Anode current drift is defined as follows:

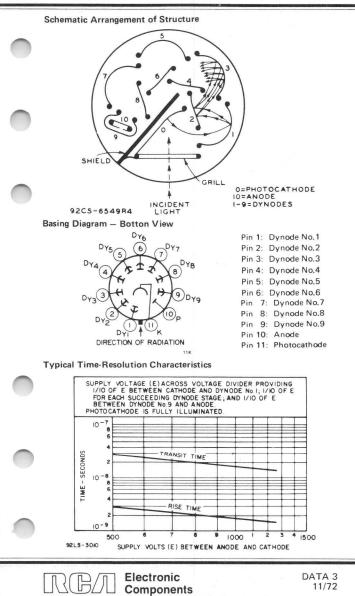
Anode Current Drift = $\frac{\triangle I_b (30 \text{ to } 42 \text{ minutes})}{I_b (\text{at 30 minutes})}$

where $\triangle I_{b}$ = the incremental change in anode current

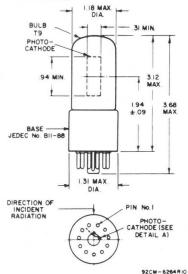

This test is performed on an active sampling basis (10% of the total product).

- m Equivalent Anode Dark Current Input is the quotient of anode dark current at a given anode luminous sensitivity by the anode luminous sensitivity.
- ⁿ Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- P The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

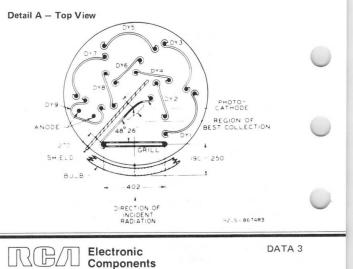
RBA Electronic Components


Operating Consideration Operating Stability

The operating stability of the tube is dependent on the magnitude of the anode current. The use of an average anode current well below the maximum rated value of 0.5 milliampere is recommended when stability of operation is important. When maximum stability is required, operation at an average anode current of 1 microampere is suggested.

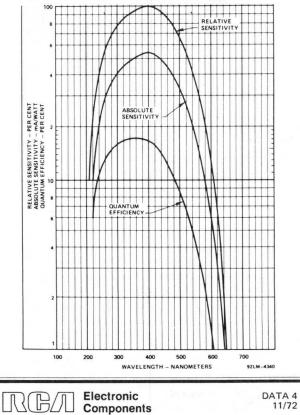

Components

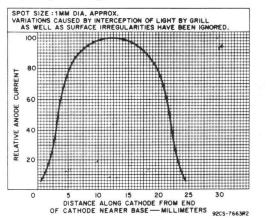
Typical Voltage-Divider Arrangement



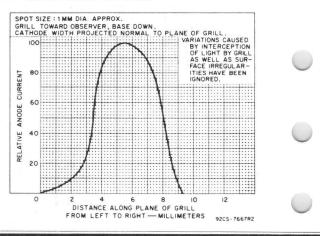
4818

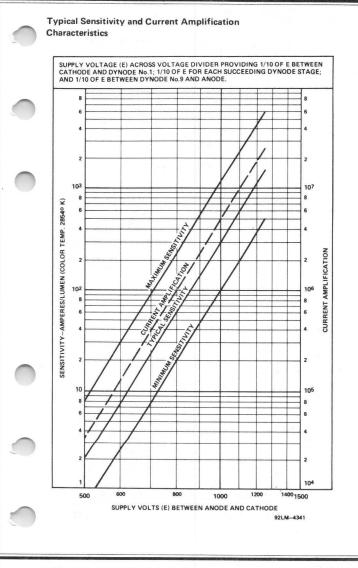
Dimensional Outline


 \mathcal{Q} of bulb will not deviate more than 2° in any direction from the perpendicular erected at center of bottom of base.

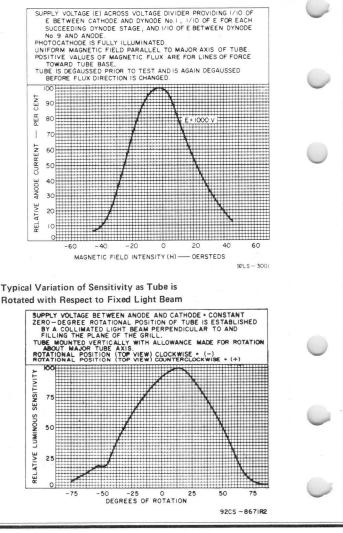

Dimensions are in inches unless otherwise stated. Dimensions tabulated below are in millimeters and are derived from the basic inch dimensions (1 inch = 25.4 mm).

Inch	mm	Inch	mm	Inch	mm
.09	2.3	.31	7,9	1.31	33.2
.190	4.8	.402	10.2	1.94	49.2
.250	6.3	.94	23.8	3.12	79.2
.270	6.8	1.18	29.9	3.68	93.4


Typical Photocathode Spectral Response Characteristics


Typical Variation of Photocathode Sensitivity Along Tube Length

Typical Variation of Photocathode Sensitivity Across Projected Width in Plane of Grill


Electronic Components DATA 4

Electronic Components

RG/Л

Electronic Components DATA 5

Gas Phototube

SIDE-ON TYPE HAVING S-4 RESPONSE

DATA

	General:
	Spectral Response
	Shape.
	Maximum Diameter
	Basing Designation for BOTTOM VIEW
	DIRECTION OF LIGHT
	Pin 1-No Connection Pin 2-No Connection Pin 4-Anode Pin 4-Anode Pin 6-No Connection Pin 8-Photocathode
	Maximum Ratings, Absolute-Maximum Values:
	ANODE-SUPPLY VOLTAGE
	(DC or Peak AC) 80 max. 100 max. volts AVERAGE CATHODE-CURRENT
	DENSITY ^b
	AVERAGE CATHODE CURRENT [▶] . 6 max. 3 max. µa AMBIENT TEMPERATURE 75 max. 75 max. °C
	Characteristics:
	With an anode-supply voltage of 90 volts unless otherwise specified
	Min. Median Max.
	Sensitivity:
	Radiant, at 4000 angstroms
	At 0 cps 75 135 205 μa/lumen
1	At 5000 cps 124 - μα/lumen
	At 10000 cps 108 - $\mu a/l$ umen - Indicates a change

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA | 3-61

Gas Amplification Factor ^d Anode Dark Current		an Max. 5.5 0.05	μa	0
Minimum Circuit Values: With an anode-supply				
voltage of	80 or less	100	volts	
DC Load Resistance: For dc currents above				
3μa For dc currents below	0.1 min.	-	megohm	0
3 μa	0 min.	-	megohms	
1 μa	_	2.5 min.	megohms	
for dc currents below 1 μa	-	0.1 min.	megohm	

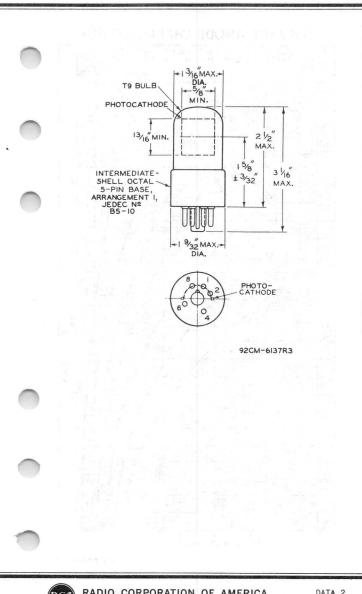
a On plane perpendicular to indicated direction of incident light.

Averaged over any interval of 30 seconds maximum.

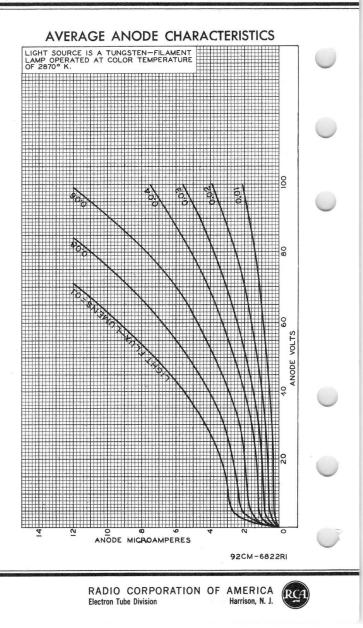
C For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A dc anode supply voltage of 90 volts and a 1-megohm load resistor are used. For the 0-cycle measurement, a light input of 0.1 lumen is used. For the 5000- and 10,000-cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean value.

d The ratio of luminous sensitivity at an anode supply voltage of 90 volts to luminous sensitivity at an anode supply voltage of 25 volts. In each case, sensitivity is obtained under conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K, the light input is 0.1 lumen, and the load resistor has a value of 1 megohm.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-4 RESPONSE


and

FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES


are shown at the front of this section

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 2 3-61

5582

GAS PHOTOTUBE

CARTRIDGE TYPE WITH S-4 RESPONSE

For sound reproduction involving a dye-image sound track in conjunction with an incandescent light source

	DATA			
General:				
Spectral Response				S-4
Wavelength of Maximum Resp	nonse		.000 + 50	00 angstroms
Cathode:		· · · ·	000 1 00	o angeromo
Shape			Sem	icylindrical
Minimum projected length	n*			5/8"
Minimum projected width'	*			1/2"
Direct Interelectrode Capa	acitance.			1 μμf
Overall Length			. 1-21	/32" ± 1/16"
Seated Length			. 1-13	/32" ± 1/32"
Length from Center of Use				
to Plane A-A' (See Dimen				/16" ± 1/16"
Maximum Diameter				0.890"
Weight (Approx.)			• • •	0.4 oz
Mounting Position				· · · · Any
Recessed cap				TEC No.J1-23
Protruding cap				TEC No.J1-24
Basing Designation				240
	П			
-				
Recessed Anode) PI	rotruding	G Cathode
Cap J Anouc	$\left(\cdot \right)$)	Cap]
	$\backslash \uparrow \bullet$	/		
	V	·		
DIR	ECTION OF L	IGHT:		
INT	CONCAVE OF CATHODI	E		
Maximum Ratings, Absolute	Values:			
ANODE-SUPPLY VOLTAGE (DC	or Peak A	C). 10	00 max.	volts
AVERAGE CATHODE-CURRENT D				µamp/sq.in.
AVERAGE CATHODE CURRENTO			2 max.	μamp
AMBIENT TEMPERATURE		• •	75 max. [.]	°C
	lts on An	ode.		
Characteristics, At 90 Vo		oue.		
Characteristics, At 90 Vo	Min.	Median	Max.	
	Min.		Max.	
Sensitivity:	Min.		Max.	
	Min.		Max.	μamp/μwatt
Sensitivity: Radiant, at	Min. • –	Median	Max.	µamp/µwatt
Sensitivity: Radiant, at 4000 angstroms Luminous:▲ At 0 cps	Min. • - • 80	Median 0.12 120	Max. - 175	µamp/lumen
Sensitivity: Radiant, at 4000 angstroms Luminous: At 0 cps At 5000 cps		Median 0.12 120 110		μamp/lumen μamp/lumen
Sensitivity: Radiant, at 4000 angstroms Luminous: At 0 cps At 5000 cps At 10000 cps		Median 0.12 120	- 175 -	µamp/lumen
Sensitivity: Radiant, at 4000 angstroms Luminous: At 0 cps At 5000 cps Gas Amplification Factor		Median 0.12 120 110	- 175	μamp/lumen μamp/lumen
Sensitivity: Radiant, at 4000 angstroms Luminous: At 0 cps At 5000 cps Gas Amplification Factor Anode Dark Current		Median 0.12 120 110	- 175 - 5.5	μamp/lumen μamp/lumen μamp/lumen
Sensitivity: Radiant, at 4000 angstroms Luminous: At 0 cps At 5000 cps Gas Amplification Factor Anode Dark Current at 25°C	. – . 80 . – . –	Median 0.12 120 110 96 -	175 - 5.5 0.05	μamp/lumen μamp/lumen μamp/lumen μamp
Sensitivity: Radiant, at 4000 angstroms Luminous: At 0 cps At 5000 cps Gas Amplification Factor Anode Dark Current	. – . 80 . – . –	Median 0.12 120 110 96 -	175 - 5.5 0.05 f incident	μamp/lumen μamp/lumen μamp/lumen μamp

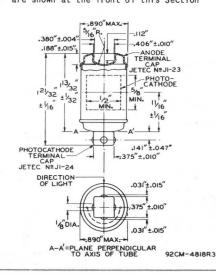
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

RCA 5582

GAS PHOTOTUBE

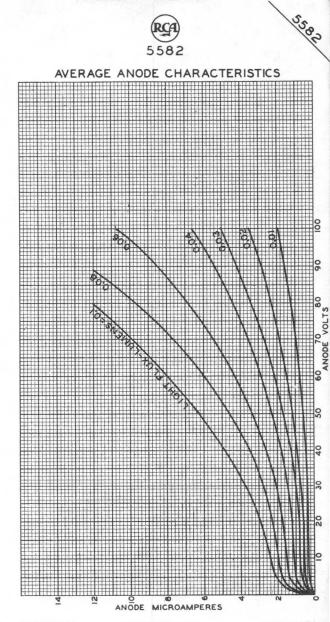
Minimum Circuit Values:

5582

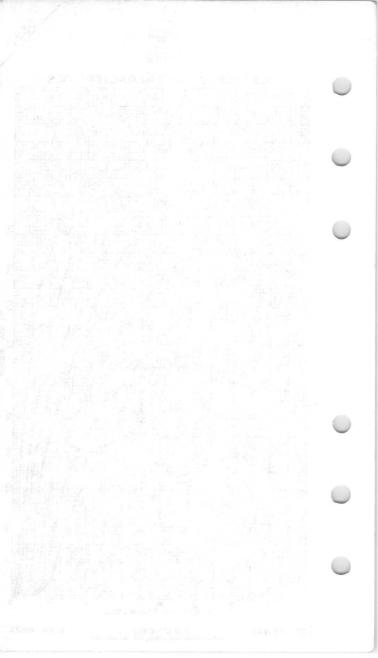

With anode-supply voltage of	80 or less	100	volts
DC Load Resistance: For dc currents above			
3 μamp	0.1 min.	-	megohm
3 μamp	0 min.	-	megohm
1 μamp	-	2.5 min.	megohms
1 μamp	-	0.1 min.	megohm

^D Averaged over any interval of 30 seconds maximum. This value may be doubled when anode-supply voltage is limited to 80 volts.

For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870%. A dc anode supply of 90 volts and a 1-megohn load resistor are used. For the 0-cycle measurements, a light input of 0.1 lumen is used. For the 5000-and 10000-cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean.


> SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-4 Response and

FREQUENCY-RESPONSE CHARACTERISTICS of Gas Phototubes are shown at the front of this Section


12-56

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY DATA

DEC.27,1946

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6823

Gas Phototube

SIDE-ON TYPE HAVING S-4 RESPONSE

DATA

	General:
	Spectral Response
	Cathode: ShapeSemicylindrical Minimum projected length ^a
	Maximum Overall Length 2-13/32" Maximum Seated Length 1-15/16" Seated Length to Center of Cathode 1-1/4" ± 3/32" Maximum Diameter 0.669" Operating Position 0.3 oz Bulb T5-1/4 Socket Small-Shell Peewee 3-Pin (JEDEC No.A3-1) Basing Designation for BOTTOM VIEW 2F
	DIRECTION OF LIGHT
	Pin 1 - No Connection Pin 3 - Photocathode
	Pin 2 - Anode
	Maximum Ratings, Absolute-Naximum Values: 🛥
	Rating I Rating II
	ANODE-SUPPLY VOLTAGE (DC or Peak AC)
	AVERAGE CATHODE CURRENT ^b 4 max, 2 max, ua
	AMBIENT TEMPERATURE 75 max. 75 max. °C
_	Characteristics:
	With an anode-supply voltage of 90 volts unless otherwise specified
	Min. Median Max.
	Sensitivity: Radiant, at 4000 angstroms 0.13 - amp/watt Luminous:°
	At 0 cps
	-Indicates a change.

RADIO CORPORATION OF AMERICA **Electron Tube Division** Harrison, N. J.

DATA I 3-61

Cas Photoich	Min. Medi		
Gas Amplification Factor ^d		5.5	
Anode Dark Current at 25° C		0.05	μa
Minimum Circuit Values: With an anode-supply			
voltage of	80 or less	100	volts
DC_Load Resistance:			
For dc currents above			
3 μa For dc currents below	0.1 min.	-	megohm
3 μa	0 min.	-	megohms
1 μa	-	2.5 min.	megohms
1 μ a	-	0.1 min.	megohm

 a On plane perpendicular to indicated direction of incident light.

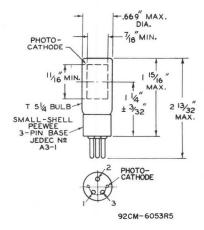
b Averaged over any interval of 30 seconds maximum.

C For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A dc anode supply voltage of 90 volts and a 1-megohm load resistor are used. For the 0-cycle measurement, a light input of 0.1 lumen is used. For the 5000- and 10,000-cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean value.

The ratio of luminous sensitivity at an anode supply voltage of 90 volts to luminous sensitivity at an anode supply voltage of 25 volts. In each case, sensitivity is obtained under conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K, the light input is 0.1 lumen, and the load resistor has a value of 1 megohm.

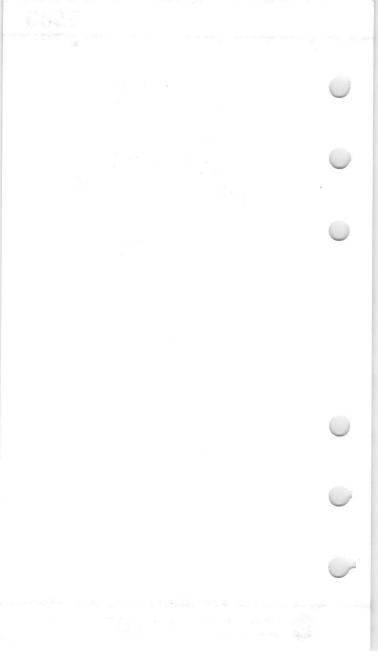
SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-4 RESPONSE

and


FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES

are shown at the front of this section

AVERAGE-ANODE-CHARACTERISTICS CURVE shown under Type 5581 also applies to the 5583



RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 2 3-61

Vacuum Phototube

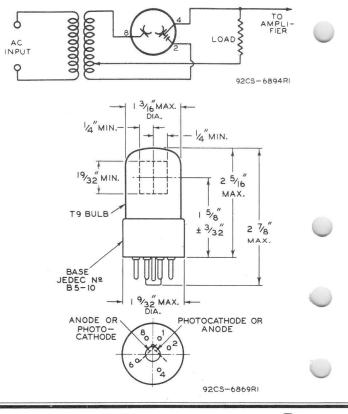
COMPOSITE-ANODE-CATHODE, SIDE-ON TYPE HAVING S-4 RESPONSE

DATA

	DATA
	General:
	Spectral Response
	Shape <td< th=""></td<>
	Basing Designation for BOTTOM VIEW
	Pin 1 - No Internal Connection Pin 2 - Balancing Capacitance Pin 4 - Anode or Photo- Cathode
	Maximum Ratings, Absolute-Maximum Values: -
	ANODE-SUPPLY VOLTAGE (DC or Peak AC) 250 max. volts AVERAGE CATHODE-CURRENT DENSITY ^e 30 max. μa/sq.in. AVERAGE CATHODE CURRENT ^e 4 max. μa AMBIENT TEMPERATURE
1	Characteristics: +
	With an anode-supply voltage of 250 volts.
	Min. Median Max. Sensitivity: Radiant, at 4400 angstroms. - 0.044 - amp/watt Luminous ^d . . 19 45 70 µa/lumen Ratio of Cathode Luminous sensitivities . 0.42 1.0 2.4 Anode Dark Current at 25° C - - 0.01 µa

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 3-62

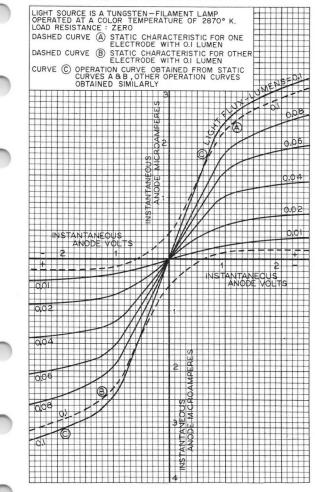
a On plane perpendicular to indicated direction of incident light.


b Measured between pins 2 and 4.

^C Averaged over any interval of 30 seconds maximum.

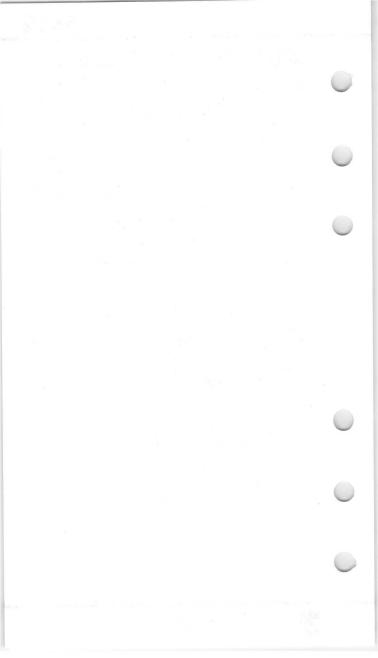
d For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A 1-megohm load resistor and a light input of 0.02 lumen are used.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-4 RESPONSE is shown at the front of this section


TYPICAL CIRCUIT

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

TYPICAL OPERATION CHARACTERISTICS With AC Voltage Applied Between the Two Electrodes


92CM-6895RI

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA 2 9-63

Vacuum Phototube

SIDE-ON TYPE HAVING S-4 RESPONSE

DATA

General:

Spectral Response
Cathode:
Shape Semicylindrical
Minimum projected length ^a
Minimum projected width ^a
Direct Interelectrode Capacitance (Approx.) 2.6 μμf
Maximum Overall Length
Maximum Seated Length
Seated Length to Center of Cathode 1-5/8" ± 3/32"
Maximum Diameter
Operating Position
Weight (Approx.)
Bulb
Socket Cinch No.8JM-1, or equivalent -
Base Intermediate-Shell Octal 5-Pin, Arrangement 1
(JEDEC Group 1, No.B5-10)
Basing Designation for BOTTOM VIEW
DIRECTION OF LIGHT
DIRECTION OF LIGHT
(4) +
Pin 1 - No Internal Pin 4 - Anode
Connection () Pin 6-No Internal
Pin 2 – No Internal Connection
Connection d V Pin 9 Photosethode
(2) (2) (2) (2)

Maximum Ratings, Absolute-Maximum Values:

	2 1				
)	ANODE-SUPPLY VOLTAGE (DC or Peak AC). AVERAGE CATHODE-CURRENT DENSITY ^b . AVERAGE CATHODE CURRENT ^b . AMBIENT TEMPERATURE.	: :	25 5		volts ua/sq. in. µa oc
	Characteristics:				-
í	With an anode-supply vol	tage	of 250	volts	
Ζ.	Мі	72 .	Median	Max.	
	Sensitivity: Radiant, at 4000 angstroms. Luminous ⁶	20	0.044 45		amp/watt μa/lumen μa

🛥 Indicates a change.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 3-62

a On plane perpendicular to indicated direction of incident light.

b Averaged over any interval of 30 seconds maximum.

 $^{\rm C}$ For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A 1-megohm load resistor and a light input of 0.1 lumen are used.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-4 RESPONSE is shown at front of this section

DIMENSIONAL OUTLINE shown under Type 5581 also applies to the 5653

AVERAGE-ANODE-CHARACTERISTICS CURVE shown under Type 929 also applies to the 5653

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

Photomultiplier Tube

5819

S-11 Spectral Response

For use in the detection and measurement of nuclear radiation and other applications involving low-level light sources GENERAL Spectral Response S-11 Wavelength of Maximum Response 4400 ± 500 Å Cathode, Semitransparent Cesium-Antimony $2.2 \text{ in}^2 (14.1 \text{ cm}^2)$ Minimum projected area 1.69 in (4.3 cm) Minimum diameter Window Corning^a No.0080, or equivalent Convexo-Concave Shape Index of refraction at 4360 angstroms 1.523 Dynodes: Nickel Substrate Secondary-Emitting Surface Cesium-Antimony Structure Circular-Cage, Electrostatic-Focus Type Direct Interelectrode Capacitances (Approx.): 4.2 pF Anode to dynode No.10 Anode to all other electrodes 6.5 pF Maximum Overall Length 5.81 in (14.8 cm) 4.88 ± 0.19 in (12.4 \pm 0.5 cm) Seated Length 2.31 in (5.9 cm) Maximum Diameter T16 Bulb Medium-Shell Diheptal 14-pin Base . . . (JEDEC No.B14-38) Non-hygroscopic Ebv^b No.9709-7, or equivalent Socket Magnetic Shield JAN^c No.S-2004, or equivalent Operating Position Anv Weight (Approx.) 5.2 oz (174 g) MAXIMUM RATINGS. Absolute-Maximum Values: DC Supply Voltage: Between anode and cathode 1250 max. V 250 max. v Between anode and dynode No.10 V Between consecutive dynodes 250 max. 300 max. V Between dynode No.1 and cathode Average Anode Current^e 0.75 max. mA Ambient Temperature^f 75 max. °C

Electronic

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode.

With E = 1000 volts (Except as noted)

Anode Sensitivity:	Min.	Typical	Max.	
Radiant ^g at 4400 angstroms Luminous ^h (2870 ^o K)	10	8x10 ⁴ 100	- 300	A/W O A/lm
Cathode Sensitivity:				
Radiant ^İ at 4400 angstroms Luminous ^k (2870 ^o K)	- 4x10 ⁻⁵	0.040 5x10 ⁻⁵	_	A/W A/lm
Current with blue light source ^m (2870° K+C.S. No.5-58)	4x10 ⁻⁸	-	_	A
Quantum Efficiency at 4200 angstroms .	-	11.5	-	%
Current Amplification	-	2×10^{6}	-	
Anode Dark Current ⁿ	-	6×10^{-9}	4×10^{-8}	A
Equivalent Anode Dark Current Input ⁿ	{	3x10 ⁻¹⁰ 3.7x10 ⁻¹³ p	2x10 ⁻⁹ 2.5x10 ⁻¹² p	lm W
Equivalent Noise Input9	{	1.7×10^{-12} 2×10^{-15} r	-	lm W
^a Made by Corning Gla	age Worl	ce Corning	NV 14830	

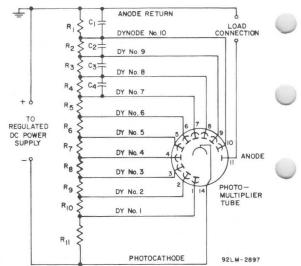
^a Made by Corning Glass Works, Corning, NY 14830.

- ^b Made by Hugh H. Eby Company, 4701 Germantown Avenue, Philadelphia, PA 19144.
- ^c Made by JAN Hardware Mfg. Co., Inc., 47-27 36th Street, Long Island City, NY 11101.
- ^e Averaged over any interval of 30 seconds maximum.
- ${\sf f}$ Tube operation at room temperature or below is recommended.
- 9 This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 804 lumens per watt.
- h Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is

operated at a color temperature of 2870° K and a light input of 10 microlumens is used.

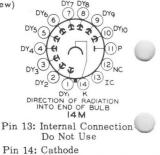
- This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 804 lumens per watt.
- ^k Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ^m Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, NY 14830) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ⁿ At a tube temperature of 22^o C. With supply voltage adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission may be reduced by use of a refrigerant.
- P At 4400 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 804 lumens per watt.
- ^q Under the following conditions: Tube temperature 22° C, external shield connected to cathode, bandwidth 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- At 4400 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 804 lumens per watt.

TERMINAL CONNECTIONS

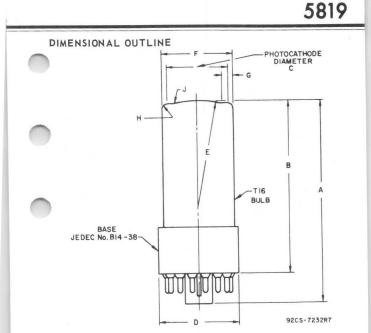

The base pins of the 5819 fit a diheptal 14-contact socket, such as Eby No.9709-7, or equivalent. The socket should be made of high-grade, low-leakage material.

Electronic Components

DATA 2 11-69



C₁: 0.05 μ F, 20%, 500 volts (dc working), ceramic disc C₂: 0.02 μ F, 20%, 500 volts (dc working), ceramic disc C₃: 0.01 μ F, 20%, 500 volts (dc working), ceramic disc C₄: 0.005 μ F, 20%, 500 volts (dc working), ceramic disc R₁ through R₁₀: 390,000 ohms, 5%, 1/2 watt R₁₁: 910,000 ohms, 5%, 1/2 watt

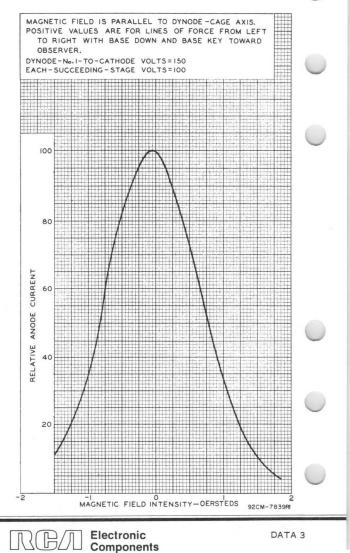

 Leads to all capacitors should be as short as possible to minimize inductance effects. The location and spacing of capacitor is critical and may require adjustment for optimum results.

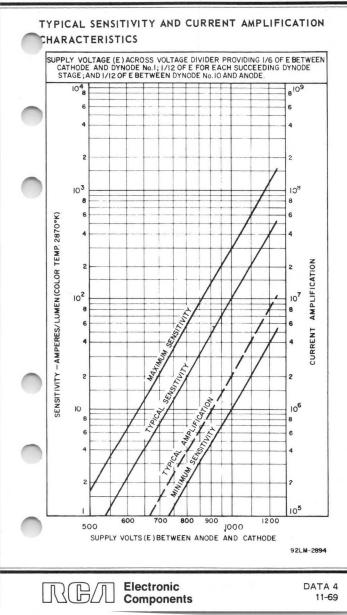
TERMINAL DIAGRAM (Bottom View)

Pin 1: Dynode No.1 Pin 2: Dynode No.2 Pin 3: Dynode No.3 Pin 4: Dynode No.4 Pin 5: Dynode No.5 Pin 6: Dynode No.6 Pin 7: Dynode No.7 Pin 8: Dynode No.8 Pin 9: Dynode No.9 Pin 10: Dynode No.10 Pin 11: Anode Pin 12: No Connection

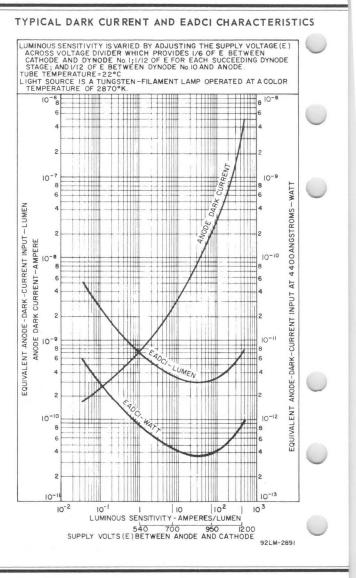
Electronic Components

E of bulb will not deviate more than 2⁰ in any direction from the perpendicular erected at the center of bottom of the base.

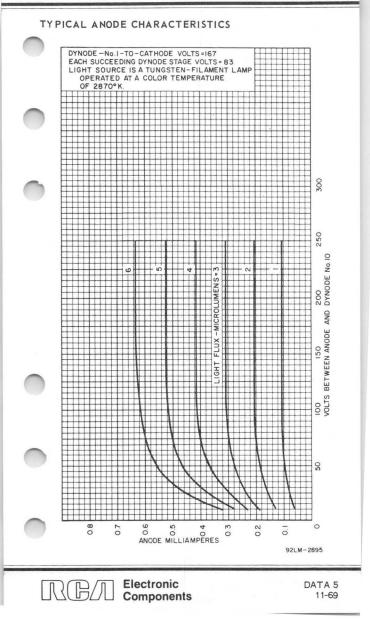

The dimensions in millimeters are derived from the basic inch dimensions (1 inch = 25.4 mm)

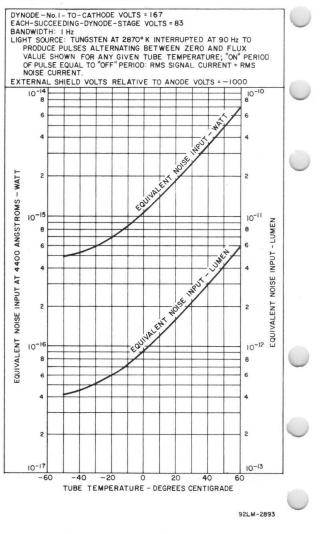

Dimensions	Inches	mm
А	5.81 max.	147.6 max.
В	$4.88 \pm .19$	123.9 ± 4.7
C	1.69 min. dia.	42.9 min. dia.
D	2.31 max. dia.	58.7 max. dia.
E	3.00 ± 1.00 R.	76.2 ± 25.4 R.
F	2.00 ± .06 dia.	50.8 ± 1.5 dia.
G	.312	7.92
Н	.15 ± .05 R.	3.8 ± 1.2 R.
J	.50 R.	12.7 R.

RBA Electronic Components


DATA 3 11-69

TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE CURRENT


and the second state of the se


Electronic Components

B/J

DATA 4

TYPICAL ENI CHARACTERISTICS

RBA Electronic Components

Image Orthicon

MAGNETIC DEFLECTION

MAGNETIC FOCUS

For Outdoor and Studio Pickup. The 5820A is Unilaterally Interchangeable with Type 5820.

DATA

General:

Heater, for Unipotential Cathode: Voltage (AC or DC)
Current at 6.3 volts 0.6 amp
Direct Interelectrode Capacitance:
Anode to all other electrodes 12 $\mu\mu f$ Spectral Response
Wavelength of Maximum Response 4500 ± 300 angstroms
Photocathode, Semitransparent:
Rectangular image (4 x 3 aspect ratio):
Useful size of 1.8" max. diagonal
Note: The size of the optical image focused on the
photocathode should be adjusted so that its maximum
diagonal does not exceed the specified value. The
corresponding electron image on the target should have a size such that the corners of the rectangle
just touch the target ring.
Orientation of Proper orientation is obtained when the
vertical scan is essentially parallel to
the plane passing through center of face-
plate and pin 7 of the shoulder base.
Focusing Method
Deflection Method
Overall Length
Minimum Deflecting-Coil Inside Diameter
Deflecting-Coil Length
Focusing-Coil Length
Alianment-Coil Length
Photocathode Distance Inside End of Focusing Coil 1/2"
Operating Position The tube should never be operated in a
vertical position with the Diheptal-base end up
nor in any other position where the axis of the
tube with the base up makes an angle of less than
20° with the vertical.
Weight (Approx.)
Shoulder Base Keyed Jumbo Annular 7-Pin BOTTOM VIEW ^a
Pin 1-Grid No.6 Pin 5-Grid No.5
Pin 2 - Photocathode
Pin 3-Internal Connec- Pin 6-Target
tion—Do Not Use
Pin 4 – Internal Connec- Pin 7 – Internal Connec- tion—Do Not Use tion—Do Not Use
tion—Do Not Use tion—Do Not Use

a See basing diagram on next page.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA I 5-61

End Base		
Pin 2 - Grid No.4 Pin 3 - Grid No.3 Pin 4 - Internal Connec- tion—Do Not Use Pin 5 - Dynode No.2 Pin 6 - Dynode No.5 Pin 9 - Dynode No.1, Grid No.2	5	
Pin 11- Internal Connec- tion—Do Not Use Pin 12- Grid No.1 Pin 13- Cathode Pin 14- Heater WHITE INDEX LINE ON FACE	6)	
Maximum and Minimum Ratings, Absolute-Maximum Values:		
PHOTOCATHODE:		
Voltage -550 max. Illumination 50 max. OPERATING TEMPERATURE: 50 max.	volts fc	
Of any part of bulb	oC	
(Target section)	°C	
Between target section and any part	0.0	
of bulb hotter than target section 5 max.	OC	
GRID-No.6 VOLTAGE	volts	
Positive value 10 max.	volts	
Negative value 10 max.	volts	
GRID-No.5 VOLTAGE	volts	
GRID-No.4 VOLTAGE	volts	
GRID-No.3 VOLTAGE	volts	
GRID-No.2 & DYNODE-No.1 VOLTAGE 350 max. GRID-No.1 VOLTAGE:	volts	
	volts	
Positive-bias value 0 max.	volts	
PEAK HEATER-CATHODE VOLTAGE:		-
Heater negative with respect to cathode. 125 max.	volts	•
Heater positive with respect to cathode. 10 max.	volts	
ANODE SUPPLY VOLTAGE ^b	volts	
VOLTAGE PER MULTIPLIER STAGE	volts	
Typical Operation:		
	volts	
	volts.	
· · · · · · · · · · · · · · · · · · ·		

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

DATA 2 4-66

Target-Cutoff Vo						-3 to +1	volts
Grid-No.5 Voltag	e (Dece)	erati	or)			0 to 125	volts
Grid-No.4 Voltag	e (Beam	Focu	s).			140 to 180	volts
Grid-No.3 Voltag						225 to 330	volts
Grid-No.2 & Dyno						300	volts
Grid-No.1 Voltag						-45 to -115	volts
Dynode-No.2 Volt						600	volts
Dynode-No.3 Volt						800	volts
Dynode-No.4 Volt						1000	volts
Dynode-No.5 Volt	ade					1200	volts
Anode Voltage .						1250	volts
Minimum Peak-to-						5	volts
Field Strength a			0	0			
of Focusing Co					 	75	qausses
Field Strength o						0 to 3	qausses
	3						

Performance Data: f

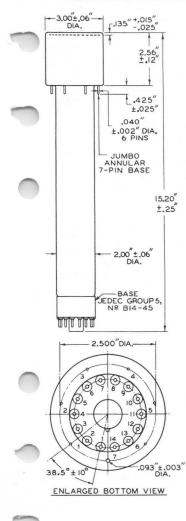
With conditions shown under Typical Operation and with camera lens set to bring the picture highlights one stop above the "knee" of the light transfer characteristic

Min. Average Max	2.	
------------------	----	--

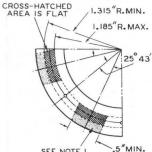
Cathode Radiant Sensitivity at 4500 angstroms Luminous Sensitivity Anode Current (DC)	30	0.03 60 30	/	µа/µw µа/lumen µа
Signal-Output Current (Peak-to-peak)	. 3	8	24	μа
Ratio of Peak-to-Peak High- light Video-Signal Current to RMS Noise Current for				
Bandwidth of 4.5 Mc Photocathode Illumination at 2870° K Required to	. 35:1	45:1	-	*
Bring Picture Highlights One Stop Above "Knee" of Light Transfer Characteristic		0.02	0.04	fc
Peak-to-Peak Response to Square-Wave Test Pattern at 400 TV Lines per Picture Height (Per cent of large-				
area black to large-area white)9 Uniformity: Ratio of Shading (Back- ground) Signal to High-	. 35	60	-	% +
light Signal Variation of Highlight Signal (Per centiof		0.12	0.15	
maximum highlight signal) ^h	. –	20	25	%
b Dynode-voltage values are shown u c Normal setting of target voltage target supply voltage should be a d voltage the voltage should be a	is +2 volt djustable f	s from ta from -3 to	rget cuto +5 volt	
^d Adjust to give the most uniformly	shaded pi		r maximu dicates a	

RADIO CORPORATION OF AMERICA

Harrison, N. J.


Electronic Components and Devices

- e Direction of current should be such that a north-seeking pole is attracted to the image end of the focusing coll, with the indicator located outside of and at the image end of the focusing coll.
- f With 5820A operated in properly adjusted RCA TK-31 camera.
- g Measured with amplifier having flat frequency response.
- h variation of response over scanned area.


SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-10 RESPONSE is shown at front of this Section

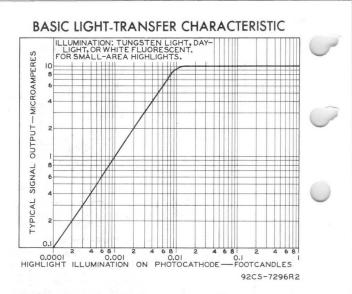
> RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

DETAIL OF BOTTOM VIEW OF JUMBO ANNULAR BASE

SEE NOTE I

DOTTED AREA IS FLAT NOTE 1: OR EXTENDS TOWARD DIHEPTAL-BASE END OF TUBE BY 0.060" MAX.

ANNULAR-BASE GAUGE


ANGULAR VARIATIONS BETWEEN PINS AS WELL AS ECCENTRICITY OF NECK CYLINDER WITH RESPECT TO PHOTO-CATHODE CYLINDER ARE HELD TO TOLERANCES SUCH THAT PINS AND NECK CYLINDER WILL FIT FLAT-PLATE GAUGE WITH:

- a. SIX HOLES HAVING DIAMETER OF 0.065" ± 0.001" AND ONE HOLE HAVING DIAMETER OF 0.150" ± 0.001". ALL HOLES HAVE DEPTH OF 0.265" ± 0.001". THE SIX 0.065" HOLES ARE ENLARGED BY 450 TAPER TO DEPTH OF 0.047". ALL HOLES ARE SPACED AT ANGLES OF 510261 ± 5' ON CIRCLE DIAMETER OF 2.500" ± 0.001".
- b. SEVEN STOPS HAVING HEIGHT OF 0.187" ± 0.001", CENTERED BETWEEN PIN HOLES TO BEAR AGAINST FLAT AREAS OF BASE.
- c. RIM EXTENDING OUT A MINIMUM OF 0.125" FROM 2.812" DIAM-ETER AND HAVING HEIGHT OF 0.126" ± 0.001".
- d. NECK-CYLINDER CLEARANCE HOLE HAVING DIAMETER OF 2.200" ± 0.001".

92CM-8293R3

RADIO CORPORATION OF AMERICA **Electron Tube Division** Harrison, N. J. DATA 3 5-61

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

Image Orthicon

LONG-LIFE NON-DETERIORATING TARGET

MAGNETIC FOCUS

MAGNETIC DEFLECTION

For Outdoor and Studio Pickup with Black-and-White TV Cameras. The 5820A/L is Directly Interchangeable with the 5820 and 5820A in All Cameras.

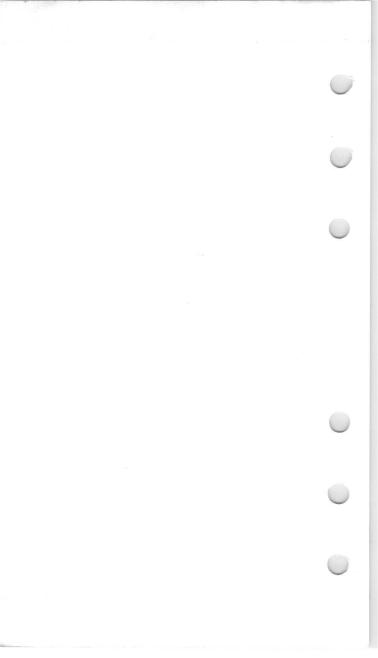
The 5820A/L is the same as the 5820A except it utilizes a longer-life non-deteriorating glass target.

The sturdy, long-life, non-deteriorating, glass target of type 5820A/L is characterized by high gain, resistance to "burn-in", and the absence of any granular structure. Because charge transportation through this target material is electronic rather than ionic as in ordinary glass targets, the electrical characteristics of the target, such as secondary emission and resistivity, are essentially constant and sensitivity of the 5820A/L is stable throughout life.

Other important advantages of this target are that the undesirable characteristics of scene retention or "sticking picture" and raster "burn-in" due to underscanning are significantly reduced. The resistance of the 5820A/L to image "burn-in" provides a highly desirable operational feature because it is not necessary to use an orbiter or continually move the camera when focused on a stationary scene.

OPERATING CONSIDERATIONS

Dos and Don'ts on Use of RCA-5820A/L


Dos

- 1. Allow the 5820A/L to warm up prior to operation.
- 2. Hold temperature of the 5820A/L within operating range.
- 3. Make sure alignment coil is properly adjusted.
- 4. Adjust beam-focus control for best usable resolution.
- Condition spare 5820A/L's by operating several hours once each month.
- Determine proper operating point with target voltage adjusted to exactly 2 volts above target cutoff.
- 7. Cap lens during standby operation.

Don'ts

- 1. Don't force the 5820A/L into its shoulder socket.
- 2. Don't operate the 5820A/L without scanning.
- 3. Don't operate a 5820A/L having an ion spot.
- Don't use more beam current than necessary to discharge the highlights of the scene.
- Don't turn off beam while voltages are applied to photocathode, grid No.6, target, dynodes, and anode during warmup or standby operation.

Photomultiplier Tube

IO-STAGE, HEAD-ON, FLAT-FACEPLATE TYPE HAVING S-II RESPONSE 1,24-INCH MINIMUM DIAMETER FLAT PHOTOCATHODE

For Detection and Measurement of Nuclear Radiation and Other Low-Level Light Sources in Portable Scintillation Counters

GENERAL

Spectral Response
Wavelength of Maximum Response 4400 ± 500 angstroms
Cathode, Semitransparent
Shape
Minimum area
Minimum diameter
Window Lime Glass, Corning ^a No.0080, or equivalent
Shape
Index of refraction at 5893 angstroms
Dynodes
Substrate
Secondary-emitting surface
Structure Circular-Cage
Direct Interelectrode Capacitances (Approx.)
Anode to dynode No.10
Anode to all other electrodes
Maximum Overall Length
Seated Length
Maximum Diameter
Operating Position
Weight (Approx.)
Envelope
Base Small-Shell Duodecal 12-Pin, (JEDEC No.B12-43),
Non-hydroscopic
Socket
Magnetic Shield Millen ^c Part No.80802C, or equivalent
magnetic Shield Millen Part No.808020, or equivalent -
TERMINAL DIAGRAM (Bottom View)
Pin 1-Dynode No.1 P DY10
Pin 2 Dupada No 2
Dig (b) (1) Old
Rig 1 Dunada No 7
Pin 5 Dynada Na 9
Pin 6-Anode
Pin 7 Dynada No 10 Dy-37 (His 10)
Pin 8- Dynade No.8
Pin 9 - Dynada No 6
Pin 10 – Dynode No.4
Pip 11 - Dynodo No 2
DIRECTION OF RADIATION:
PIn 12 - Photocathode INTO END OF BULB
I 2 A E

- Indicates a change.

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA ! 10-66

ABSOLUTE-MAXIMUM RATINGS

DC Supply Voltage

Between anode and cathode					1250	V
Between dynode No.10 and anode.					250	V
Between consecutive dynodes					200	٧
Between dynode No.1 and cathode					300	٧
Average Anode Current ^d					0.75	mA
Ambient Temperature ^e						°C

CHARACTERISTICS RANGE VALUES

Under conditions with supply voltage (E) across voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode.

With E = 1000 V (Except as noted)

	Min	Typ	Max		-
Sensitivity Radiant ^f at 4400 angstrom Cathode radiant ^g at 4400		3.6×10 ⁴	-	A/W	
angstroms Luminous ^h Cathode luminous:	10	0.036 45	300	A/W A/lm	
With tungsten light source ^j With blue light	3x10 ⁻⁵	4.5x10 ⁻⁵	-	A/lm	
source ^k	2.8x10 ⁻⁸	-	-	A	
Quantum Efficiency at 4200 angstroms Current Amplification	-	10 1×10 ⁶	2	A/lm	
Equivalent Anode-Dark- Current Input ^m	{ -	2.3x10 ^{-10ⁿ} 2.8x10 ^{-13^p}	2.5x10 ^{-9ⁿ} 3.1x10 ^{-12^p}	lm W	
Anode Dark Current ^{m, n} Dark Current to Any Electrode Except Anode	-	4.5×10 ⁻⁹	-	А	6
(at 22°C)		4×10-12	7.5×10-7	A 1 m	-
Equivalent Noise Input ^q .) -	5×10-15 ^p	2.1×10-14 ^p	W	
Anode-Pulse Rise Time ^r Electron-Transit Time ^s	-	2.8×10 ⁻⁹ 3.3×10 ⁻⁸	-	s s	

^a Made by Corning Glass Works, Corning, New York.

^b Made by Hugh H. Eby Company, 4701 Germantown Avenue, Philadelphia 44, Pennsylvania.

^C Made by James Millen Manufacturing Company, 150 Exchange Street, Walden 48, Massachusetts.

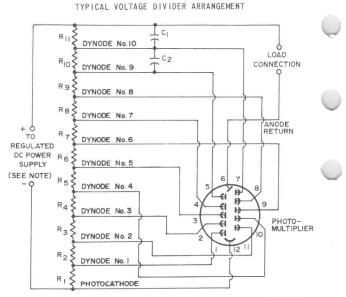
^d Averaged over any interval of 30 seconds maximum.

e Tube operation at room temperature or below is recommended.

f This value is calculated from the typical value for luminous sensitivity using a conversion factor of 804 lumens per watt.

9 This value is calculated from the typical value for cathode luminous sensitivity using a conversion factor of 804 lumens per watt.

- Indicates a change.

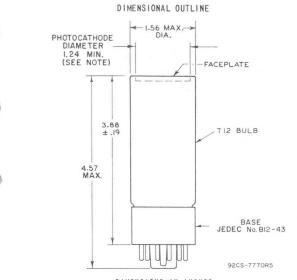

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

DATA I

- h Under the following conditions: The light source is a tungsten filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870°K and a light input of 10 microlumens is used.
- Under the following conditions: The light source is a tungsten filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870 k. The value of light flux is 0.01 lumen and 167 volts are applied between cathode and all other electrodes connected as anode.
- as anode. & Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, Glass Code No.5113 polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870°K. The value of light flux incident on the filter is 0.01 lumen and 167 volts are applied between cathode and all other electrodes connected as anode.
- $^{\rm m}$ Measured at a tube temperature of 22°C. Dark current may be reduced by use of a refrigerant.
- ⁿ Measured with supply voltage (E) adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current is measured with no incident light on tube.
- P At 4400 angstroms. This value is calculated from the rating in lumen using a conversion factor of 804 lumens per watt.
- Q Under the following conditions: Supply voltage (E) is as shown, 22°C tube temperature, external shield connected to cathode, bandwidth 1 Hz, tungsten-light source at a color temperature of 2870°K interrupted at low audio-frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- r Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- 8 The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

Typical Effect of Magnetic Field on Anode Current

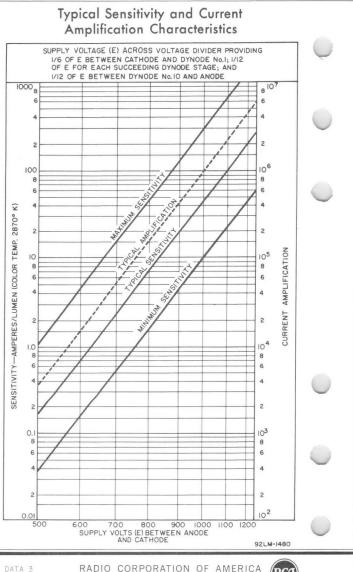
92LS-1506


Note: Adjustable between approximately 500 and 1250 volts dc.

C1, C2: 0.01 µF, non-inductive type, 400 volts (dc working) — Values dependent on amplitude and duration of pulse.

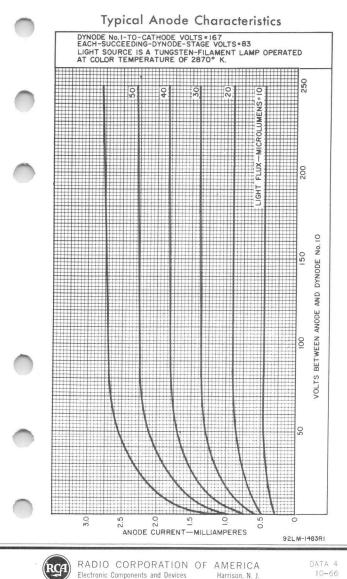
R1: 91,000 ohms, 2 watts

R2 through R11: 47,000 ohms, 1 watt

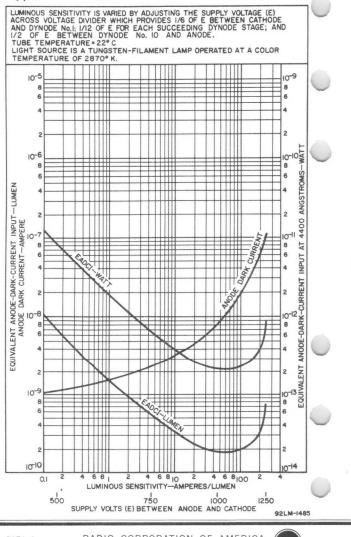


DIMENSIONS IN INCHES

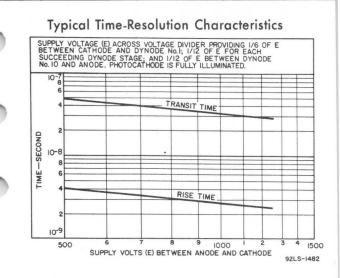
Note: Deviation from flatness within the 1.24-inch diameter area will not exceed 0.010 inch from peak to valley. Center line of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

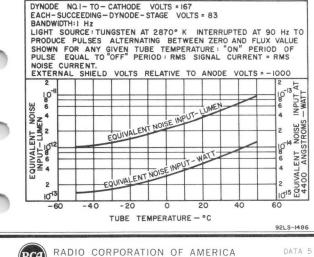


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 10-66

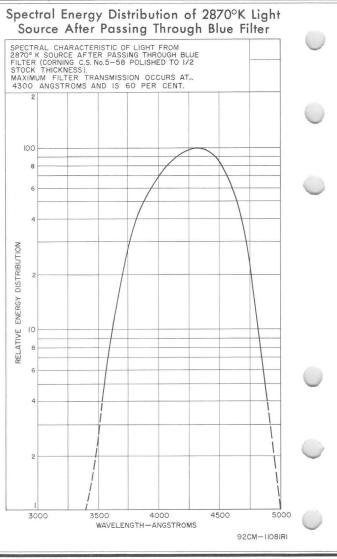


Electronic Components and Devices


Harrison, N. J.


Typical Dark Current and EADCI Characteristics

DATA 4



Typical ENI Characteristics

Electronic Components and Devices

Harrison, N. J.

DATA 5

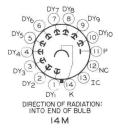
Photomultiplier Tube

IO-STAGE, CURVED-FACEPLATE TYPE HAVING S-10 RESPONSE 1-11/16 INCH MINIMUM DIAMETER CURVED PHOTOCATHODE

GENERAL

Spectral Response
Wavelength of Maximum Response 4500 \pm 300 angstroms
Cathode, Semitransparent Ag-Bi-O-Cs
Shape
Minimum area
Minimum diameter
Window Lime Glass (Corning ^a No.0080), or equivalent -
Index of refraction
Dynode Material
Direct Interelectrode Capacitances (Approx.)
Anode to dynode No.10
Anode to all other electrodes 6.5 pF
Maximum Overall Length
Seated Length 4.87 \pm 0.19 in
Maximum Diameter
Operating Position
Weight (Approx.)
Envelope JEDEC TI6
Base . Medium-Shell Diheptal 14-Pin (JEDEC Group 5, No.B14-38),
Non-hygroscopic
Socket
Magnetic Shield JAN ^C No.S-2004, or equivalent -

ABSOLUTE-MAXIMUM RATINGS


DC or Peak AC Supply Voltage

Between anode and cathode	1250	V
Between dynode No.10 and anode	250	٧
Between dynode No.1 and cathode.	300	۷ 🖛
Average Anode Current ^d	0.75	mA
Ambient Temperature	75	°C

TERMINAL DIAGRAM (Bottom View)

Pin	1 -	Dynode	No.1
Pin	2 -	Dynode	e No.2
Pin	3 -	Dynode	e No.3
Pin	4 -	Dynode	No.4
Pin	5 -	Dynode	No.5
Pin	6 -	Dynode	e No.6
Pin	7 -	Dynode	e No.7
Pin	8 -	Dynode	No.8
Pin	9 -	Dynode	No.9
			e No.10
		Anode	
Pin	12-	No Cor	nnectior
		Do Not	

-Indicates a change.

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA I 2-66

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode

With E = 1000 V (Except as noted)

	Min	Тур	Max	
Sensitivity Radiant, at 4500 angstroms	-	5.1 x 10 ⁴	-	A/W
Cathode radiant, at 4500 angstroms Luminous, at0 c/s ^e Cathode luminous	10	0.02 100	300	A/W A/1m
With tungsten light source ^f With red-infrared	2x10-5	4x10 ⁻⁵	-	A/1m
light source ^g	5x10-8	-	-	A
Current Amplification	-	2.5 x 10 ⁶		
Equivalent Anode-Dark- Current Input ^h At a luminous sensitivity of 20 A/lm	-	1.4×10 ⁻⁹	2.5 x 10 ⁻⁸	lm
Equivalent Noise Input ^j . Dark Current To any electrode except anode at 25 °C	-	4 x 10-11 -	1.7x10 ⁻¹⁰ 7.5x10 ⁻⁷	1 m A
With E = 750 V (Except as n	oted)	Min	Typ Max	

Sensitivity	111 674	ryp	MULA	
Radiant, at 4500 angstroms Cathode radiant, at 4500	-	5.1x10 ³	-	A/W
angstroms	-	0.02	-	A/W
Luminous, at 0 c/s ^e	-	10	-	A/lm
Cathode luminous				
With tungsten light source ^f .	2 x 10 ⁻⁵	4 x 10 ⁻⁵	-	A/1m
With red-infrared light				
source ^g	5×10^{-8}	-	-	Δ
Current Amplification	-	2.5×10 ⁵	-	

^a Made by Corning Glass Works, Corning, New York.

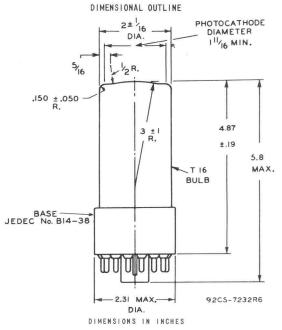
b Made by Hugh H. Eby Company, 4701 Germantown Avenue, Philadelphia 44, Pa.

C Made by JAN Hardware Manufacturing Company, 38-01 Queens Blvd, Long Island City 1, New York.

d Averaged over any interval of 30 seconds maximum. For best stability, the average anode current value should not exceed 100 microamperes.

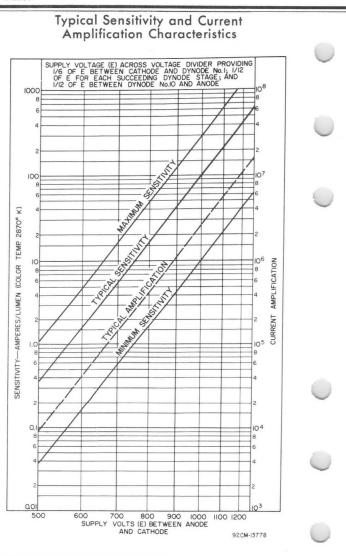
^e Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870% and a light input of 10 microlumens is used.

¹ Under the following conditions: The light source is a tungsten-filament lamphaving a lime-glass envelope. It is operated at a color temperature of 2870°K. The value of light flux is 0.01 lumen and lof? volts are applied between cathode and all other electrodes connected as anode.


- Indicates a change.

incident on the filter is $0.\,01$ lumen and 167 volts are applied between cathode and all other electrodes connected at anode.

- ${\sf h}$ At a tube temperature of $25^{\circ}{\rm C}.$ Prior to measurement, tube is stored in dark for a period of 30 minutes. Dark current may be reduced by use of , a refrigerant.
- a reirigerant. J Under the following conditions: Supply voltage (E) is as shown, 25°C tube temperature, external shield connected to cathode, bandwidth 1 cycle per second, tungsten-light source at a color temperature of 2870°K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.


Center line of bulb will not deviate more than 2° in any direction from perpendicular erected at the center of bottom of the base.

SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-10 Response is shown at the front of this Section

TYPICAL ANODE CHARACTERISTICS are the same as those shown for Type 6199

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 2-66

Electronic Components and Devices

RADIO CORPORATION OF AMERICA Harrison, N. J.

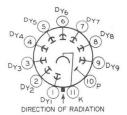
Photomultiplier Tube

9-STAGE, SIDE-ON TYPE HAVING S-4 RESPONSE

For AC-Operated Control Applications Such as Automobile-Headlight Control

GENERAL

Spectral Response
Wavelength of Maximum Response 4000 \pm 500 angstroms
Cathode, Opaque
Minimum projected length ^a 0.93 in
Minimum projected width 0.31 in Window Lime Glass, (Corning ^b No.0080), or equivalent -
Window Lime Glass, (Corning ^D No.0080), or equivalent -
Dynode Material
Direct Interelectrode Capacitances (Approx.)
Anode to dynode No.9
Anode to all other electrodes 5.5 pF
Maximum Overall Length
Maximum Seated Length
Length
From base seat to center of useful cathode area
Maximum Diameter
Operating Position Any
Weight (Approx.)
Envelope
BaseSmall-Shell Neosubmagnal II-Pin (JEDEC No.BII-104),
Non-hygroscopic
Socket Amphenol ^C No.78SIIT, or equivalent -
Magnetic Shield Millen ^d No.80801B, or equivalent -


ABSOLUTE-MAXIMUM RATINGS

Peak AC Supply Voltage

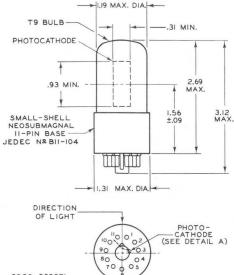
Between anode and cathode	1400 V 🔶
Between dynode No.9 and anode	250 V 🖛
Between consecutive dynodes	
Between dynode No.1 and cathode	250 V 🖛
Average Anode Current ^e	O.I mA
Ambient-Temperature	75 °C

TERMINAL DIAGRAM (Bottom View)

Pin	1 - Dynode No.1
Pin	2 - Dynode No.2
Pin	3-Dynode No.3
Pin	4 - Dynode No.4
Pin	5 - Dynode No.5
Pin	6 - Dynode No.6
Pin	7 - Dynode No.7
Pin	8 - Dynode No.8
Pin	9 - Dynode No.9
Pin	10 - Anode
Pin	11 - Photocathode

-Indicates a change.

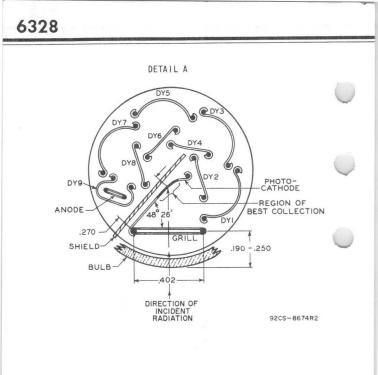
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.


DATA 1 12-65

	CHARACTERISTICS RANGE VALUES	
	Under conditions with dc supply voltage (E) across a voltage divider providing I/10 of E between cathode and dynode No.1; I/10 of E for each succeeding dynode stage; and I/10 of E between dynode No.9 and anode	0
	With $E = 1000 V dc$	
	Sensitivity Min Typ Max	
+	Radiant, at 4000 angstroms - 3.4x10 ⁴ - A/W Luminous, at 0 c/s ¹ 35 - A/Im Dark Current to Any Electrode - 7.5 x 10 ⁻⁷ A At 25°C	
+	With E = Adjustable 60 c/s ac Voltage	
	$\begin{array}{rrrr} & \mbox{Min Typ} & \mbox{Max} \\ \mbox{Anode-to-Cathode Voltage}^g. & \dots & \dots & 525 $750 $990 V \\ \mbox{RMS values} \\ \mbox{Anode Dark Current}^h. & \dots & \dots & - $- $I $ $x $ 10^{-7} $ A \\ \mbox{At $25^{\circ}C$} \end{array}$	0
	 a On plane perpendicular to the indicated direction of incident light and passing through the major axis of the tube. b Made by Corning Glass Works, Corning, New York. c Made by Amphenol Electronics Corporation, 1830 South 54th Avenue, Chicago 54, 11linois. d Made by James Millen Manufacturing Company, 150 Exchange Street, Malden 48, Massachusetts. e Averaged over any interval of 30 seconds maximum. f Under the following conditions: The light source is a tungsten-filament lamphaving a lime-glass envelope. It is operated at a color temperature of 2870°K and a light input of 10 microlumens is used. g Under the following conditions: Light incident on the cathode is transmitted through a filter (Corning C.S. No. 2-62, Glass Code No. 2418 which has an effective transmission of luminois flux of 55—Manufactured by which corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at color temperature of 2870°K. The value of light flux incident on the filter is 10 microlumens. Supply voltage (E) is adjusted to give an anode current of 8 microamperes. h For conditions same as (g) except no radiant flux on photocathode. 	

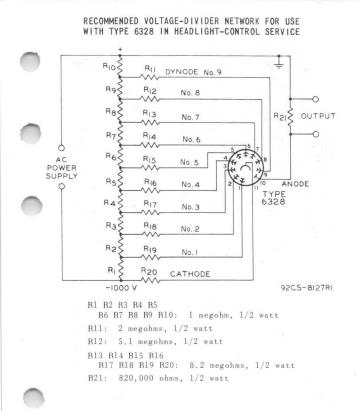
DIMENSIONAL OUTLINE

92CS-8028RI

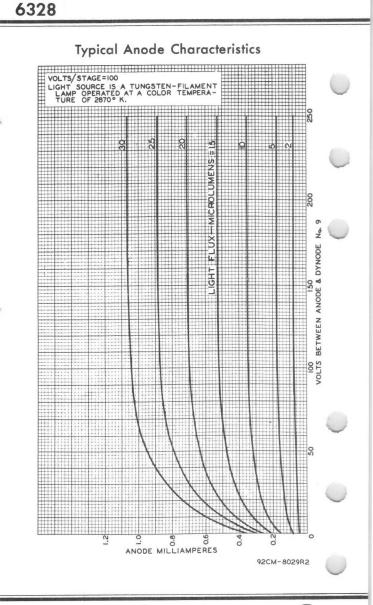

Center line of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

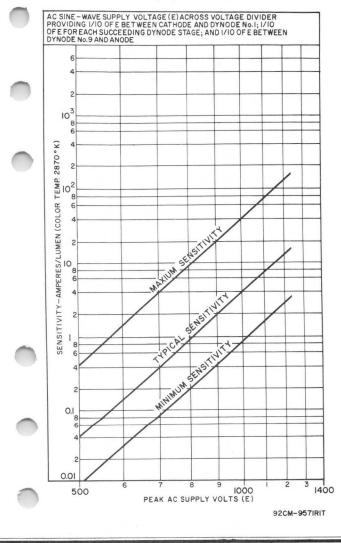
Note: The maximum angular variation between the planes through pins 1 and 11 and the plane of the grill will not exceed 6° .

DIMENSIONS IN INCHES


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 12-65

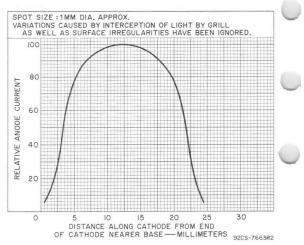
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.


DATA 2

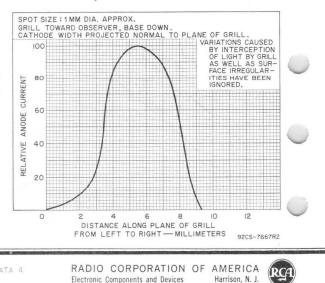

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

DATA 3 12-65

Sensitivity Characteristics



RADIO CORPORATION OF AMERICA Electronic Components and Devices


Harrison, N. J.

DATA 4 12-65

Variation in Photocathode Sensitivity Across Its Projected Width in Plane of Grill

Multiplier Phototube

IO-STAGE, HEAD-ON, FLAT-FACEPLATE

ELECTROSTATICALLY FOCUSED DYNODE STAGES

For Detection and Measurement of Nuclear Radiation and other Low-Level Light Sources in Scintillation Counters

DATA

General:
Spectral Response
Wavelength of Maximum Response 4400 ± 500 angstroms
Cathode, Semitransparent Cesium-Antimony
Shape Curved, Circular
Minimum area
Minimum diameter
Window Lime Glass (Corning ^a No.0080),
or equivalent
Dynode Material
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.10
Anode to all other electrodes
Maximum Overall Length
Seated Length
Maximum Diameter
Operating Position
Weight (Approx.)
Bulb
Socket Loranger ^D No.2274, or equivalent
Magnetic Shield Millen ^c No.80802B, or equivalent
Base Medium-Shell Diheptal 14-Pin, (JEDEC Group 5, No.B14-38), Non-hygroscopic
Basing Designation for BOTTOM VIEW
basting bestghatton for borrow view
Pin 1-Dynode No.1
Pin 2 - Dynode No.2 DY7 DY8
Pin 3-Dynode No.3 DY6 (7) (8) DY9
Pin 4 - Dynode No.4 DY5 O DY10
Pin 5-Dynode No.5
Pin 7 - Dynode No.7 PY44 H HUP
Pin 8 - Dynode No.8
Pin 9 - Dynode No.9 DY3 2 2 /2 IC (DO NOT
Pin 10 - Dynode No.10
Pin 11 - Anode
Pin 12 - Do Not Use DIRECTION OF RADIATION:
Pin 13 – Focusing INTO END OF BULB
Electrode
Pin 14 – Photocathode

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA I 6-66

Maximum Ratings, Absolute-Maximum Values		
SUPPLY VOLTAGE BETWEEN ANODE AND		
	0 max.	volts
SUPPLY VOLTAGE BETWEEN DYNODE No.10		
	io max.	volts
SUPPLY VOLTAGE BETWEEN DYNODE No.1		
	0 max.	volts
SUPPLY VOLTAGE BETWEEN FOCUSING		
ELECTRODE AND CATHODE	0	
	0 max.	
AVERAGE ANODE CURRENI [®]	2 max.	
AMBIENT TEMPERATURE	5 max.	oC

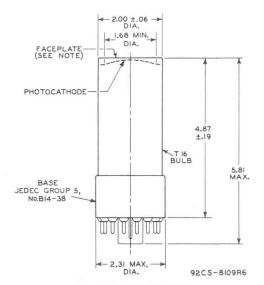
- Characteristics Range Values:

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode. Focusing-electrode voltage is adjusted to that value between 10 and 60 per cent of dynode No.1 potential (referred to cathode) which provides maximum anode current.

With E = 1250 volts (Except as noted)

	Min.	Telinal	11		
	MIN.	Typical	Max.		
Sensitivity:					
Radiant, at					
4400 angstroms	. –	2.5×10^4		a/w	
Cathode radiant at		0.004			
4400 angstroms	. –	0.064		a/w	
Luminous:	15	31	200	/1	
At 0 cps ^e	. 15	21	200	a/lm	
With dynode No.10 as output electrode ^f		22		a/lm	
Cathode Luminous:		22	-	d/ III	
With tungsten light					
source9	5 10-5	8×10^{-5}		a/lm	
source ⁹ With blue light	. J X 10	O X TO		a/ IIII	
source ^h , s	5×10^{-8}	-	_	а	
Current Amplification .	. 0 / 10	3.9×10^{5}		u	
Equivalent Anode-		2.0 / 10			
Dark-Current	c	0.10-10k	0 10 0	k ,	
Input ^j	.{ -	2×10 ⁻¹⁰ ^k 2.5×10 ^{-13^m}	2 x 10-9	°_m lm	
	(-	2.5 X 10	2.5 X 10 '	∠ w	
Equivalent Noise	(7 . 10-12	1 7 2 10-	11 lm	
Input ⁿ	.{ _	8 7 0 10-15P	2 1 × 10-1	4 P W	
	(-	7 × 10 ⁻¹² 8.7 × 10 ⁻¹⁵ 3 × 10 ⁻⁹	2.1 / 10	ŶŶ	
Anode-Pulse Rise Time9.	• -	3 X 10 -		sec	
Greatest Delay Between Anode Pulses:					
Due to position from					
which electrons are					
simultaneously release	od				
within a circle cen-	eu				
tered on tube face have	-				
ing a diameter of —	N			the destruction of the second	
ing a draneter or		+	Indicates a	cnange.	

RADIO CORPORATION OF AMERICA Electronic Components and Devices

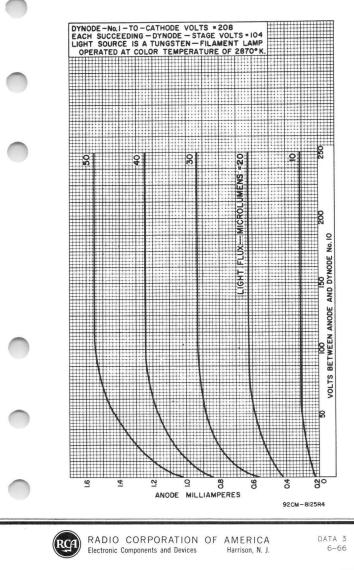

Harrison, N. J.

				Min.	Typical	Max.	
1-1/8".				-	1.3 × 10 ⁻⁹ 4 × 10 ⁻⁹	-	sec
1-9/16"				-	4×10^{-9}	-	sec

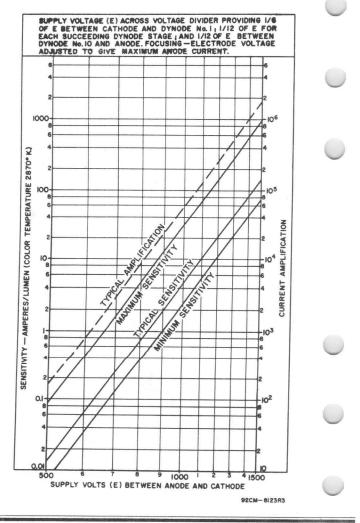
- A Made by Corning Glass Works, Corning, New York.
- b Made by Loranger Manufacturing Corporation, 36 Clark Street, Warren, Pennsylvania.
- C Made by James Millen Manufacturing Company, 150 Exchange Street, Malden 48, Massachusetts.
- d Averaged over any interval of 30 seconds maximum.
- ^e Under the following conditions: The light source is a tungsten-filament lamp haying a lime-glass envelope. It is operated at a color temperature of 2870% K and a light input of 10 microlumens is used.
- f An output current of opposite polarity to that obtained at the anode may be provided by using dynode No.10 as the output electrode. With this arrangement, the load is connected in the dynode No.10 circuit and the anode serves only as a collector. The curves under Typical Anode Characteristics do not apply when dynode No.10 is used as the output electrode.
- g Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870 K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- h Under the following conditions: Light incident on the cathoge is transmitted through a blue filter (Corning C.S. No.5-58, Glass Code No.5113 polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870 K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- J For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1250 volts is recommended.
- k Measured at a tube temperature of 25° C and with a supply voltage (E) adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current may be reduced by use of a refrigerant.
- m Determined at 4400 angstroms.
- Determined at 4400 angettoms: Supply voltage (E) is as shown, 25° C tube temperature, external shield connected to cathode, bandwidth 1 cycle per second, tungsten-light source at a color temperature of 2870K interrupted at a low audio-frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- Determined under the same conditions shown under (p) except that use is made of a monochromatic source having radiation at 4400 angstroms.
- 9 Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise lime is primarily a function of transittime variations in the multiplier stages and is measured under conditions with an incident-light spot approximately 1 millimeter in diameter centered on the photocathode.
- These values also represent the difference in time of transit between the photocathode and dynode No.1 for electrons simultaneously relased from the center and from the periphery of the specified areas.
- See Spectral Characteristic of 2870° K Light Source and Spectral Characteristic of Light from 2870° K Source after passing through Indicated Blue Filter at front of this Section.

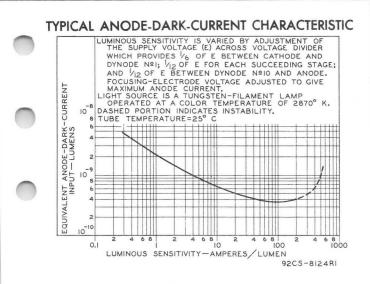
SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-11 RESPONSE is shown at the front of this Section

ALL DIMENSIONS IN INCHES


CENTER LINE OF BULB WILL NOT DEVIATE MORE THAN 2° IN ANY DIRECTION FROM THE PERPENDICULAR ERECTED AT THE CENTER OF BOTTOM OF THE BASE.

NOTE: WITHIN 1.68" DIAMETER, DEVIATION FROM FLATNESS OF EXTERNAL SURFACE OF FACEPLATE WILL NOT EXCEED 0.010" FROM PEAK TO VALLEY.





CHARACTERISTICS

DATA 4 7-63

6405/1640

Gas Phototube

SIDE-ON TYPE

S-I RESPONSE

For Industrial Applications Critical as to Microphonics and Sensitivity Gradient

DATA

General:

Spectral Response
Wavelength of Maximum Response 8000 ± 1000 angstroms
Cathode:
Shape
Minimum projected length ^a
Minimum projected width ^a
Direct Interelectrode Capacitance (Approx.) 2.6 pf
Maximum Overall Length
Maximum Seated Length
Seated Length to Center of Cathode 2-1/8" ± 3/32"
Maximum Diameter
Operating Position
Weight (Approx.)
Bulb
Socket Amphenol No.77-MIP-4-T, or equivalent
Base
Non-hygroscopic

Basing Designation for BOTTOM VIEW. .

Pin 1-No Internal Connection Pin 2-Anode

Pin 3-No Internal Connection Pin 4-Photocathode

2K

DIRECTION OF RADIATION

Maximum Ratings, Absolute-Maximum Values:

Rating I Rating II

	Characteristics!									
	AMBIENT TEMPERATURE	5	•	÷	•	100	max.	100	max.	OC
i.										μa oC
	DENSITY ^b	2			•	50	max.	25	max.	μa/sq.in.
	AVERAGE CATHODE-CURRENT									
	(DC or Peak AC)								max.	volts
	ANODE SUPPLY VOLTAGE									

Characteristics:

Sensitivity:

With an anode-supply voltage of 50 volts unless otherwise specified

Min. Typical Max.

0

Radiant, at 8000 angstroms. . . - 0.0033 - a/w+

- Indicates a change.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 8-63

6405/1640

	Min.	Typica	l Max.		
Luminous: °					
At 0 cps	17.5	35	70	µa/lumen	6
At 5000 cps	-	30	-	µa/lumen	-
At 10000 cps	-	26	-	µa/lumen	
Sensitivity Difference between					
highest value and lowest			1 1	(1	
value along cathode length ^d . Gas amplification Factor ^e	-	-	1.1	µa/lumen	
Anode Dark Current at 25° C	-	_	0.1		
Anode Dark current at 25 c			0.1	μa	
Minimum Circuit Values:					-
With an anode-supply					
voltage of	70 0	r less	90	volts	
DC Load Resistance:					
For dc currents above					
_ 5 μa	0.1	min.	-	megohm	1
For dc currents below					
5 μa	C) min.		megohm	
For dc currents above					
$3 \mu a$.		-	2.5 min.	megohms	
For dc currents below			0.1 min	maaahm	
3 μa			U.I min.	megohm	

a On plane perpendicular to indicated direction of incident radiation.

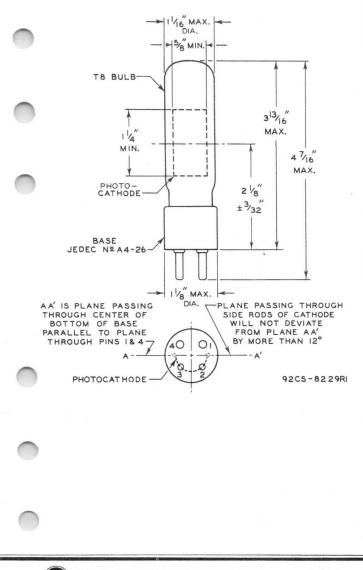
b Averaged over any interval of 30 seconds maximum.

For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A dc anode supply of 50 volts and a 1-megohn load resistor are used. For the O-cycle measurement, a light input of 0.1 lumen is used. For the 5000- and 10000-cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean value.

d Measured under the same conditions as indicated under "c" with light input of 0, 1 lumen and a rectangular light spot having awidth of 0.315 inch and a Pength sufficient to cover the length of the cathode.

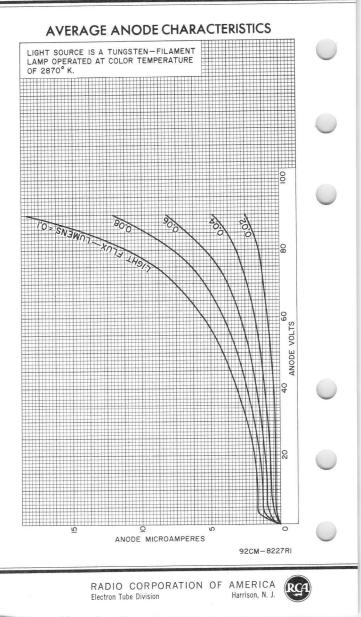
^e The ratio of luminous sensitivity at an anode-supply voltage of 50 volts to luminous sensitivity at an anode-supply voltage of 25 volts. In each case, sensitivity is obtained under conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2270° K, the light input is 0.1 lumen, and the load resistor has avalue of 1 megohm.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-I RESPONSE


and

FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES

are shown at the front of this section



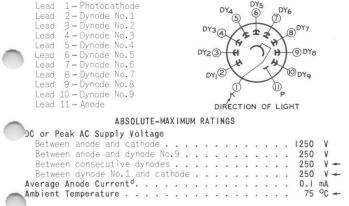
6405/1640

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 2 3-62

6405/1640

Photomultiplier Tube

S-4 RESPONSE


FLEXIBLE LEADS

SIDE-ON, 9-STAGE TYPE

For AC- or DC-Operated Control Applications Which Require High Luminous Sensitivity

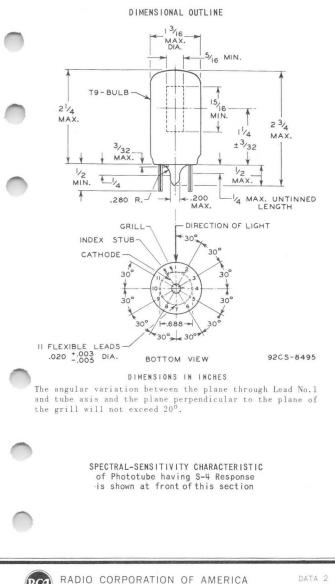
GENERAL

	Spectral Response
	Wavelength of Maximum Response
D.	Cathode, Opaque
7	Minimum projected length ^a
	Minimum projected width ^a
	Window Lime Glass, (Corning ^b No.0080), or equivalent -
	Dynode Material
	Direct Interelectrode Cappacitances (Approx.)
	Anode-to-dynode No.9
١.	Anode to all other electrodes 4.8 pF
97	Maximum Overall Length
	Excluding semiflexible leads
	Maximum Envelope Length
	Excluding tip
	Length
	From envelope seal to center of useful cathode area
	Maximum Diameter
	Operating Position
	Weight (Approx.)
	Envelope
	Magnetic Shield Perfection Mica Co., C No.P-107,
	or equivalent
	TERMINAL DIAGRAM (Bottom View)
	Lead 1 - Photocathode DY4 DY5 DY6
	Lead 2-Dynode No.1
	Lead 3 - Dynade No. 2

- Indicates a change.

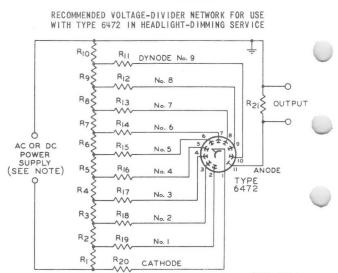
DATA | |2-65

6472


	CHARACTERISTICS	RANGE	VALUES		
	Under conditions with supply vol- vider providing 1/10 of E between of E for each succeeding dynode dynode No.9 and anode.	cathod	le and dy	node No.l;	1/10
	With $E = 1000 V dc$				
		Min	Typ	Max	
	Sensitivity Radiant, at 4000 angstroms Luminous, at 0 c/s ^e	- 5	3.4x10 ⁴ 35	- 250 7.5x ¹⁰ -7	A/W A/1m
	Dark Current to any Electrode . At 25°C	-	-	/.5X.0.	A
	With $E = Adjustable 60 c/s ac vo$	ltage			
		Min	Typ	Max	
+	Anode-to-Cathode Voltage ^f RMS Values Anode Dark Current ^g At 25°C	535 -	775	1000 2.5×10 ⁻⁷	V A
	 a On plane perpendicular to the indica passing through the major axis of the Made by Corning Glass Works, Corning 	e tube.		incident lig	ht and
	^C Made by Magnetic Shield Division, Per Bldg., 20 North Wacker Drive, Chicago	fection o 6, Il	Mica Co. linois.	, 1829 Civic	Opera
	 Averaged over any interval of 30 sec. Under the following conditions: The 1 lamp having a lime-glass envelope. ture of 2870° K and a light input of 	ight so	urce is a	tungsten-fil t a color ten is used.	ament npera-
	f Under the following conditions: The lamp having a lime-glass envelope. ture of 2870° K and a light input of 1	light s	ource is a	tungsten-fil	ament

ture of 2870° K and a light input of 1 microlumen is used. Supply V age (E) is adjusted to give an anode current of 7.5 microamperes.

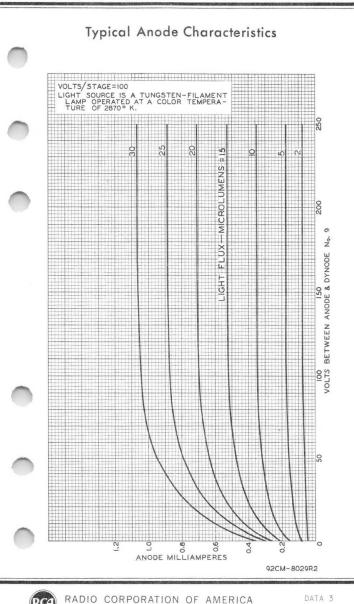
g For conditions same as (f) except no radiant flux on photocathode.



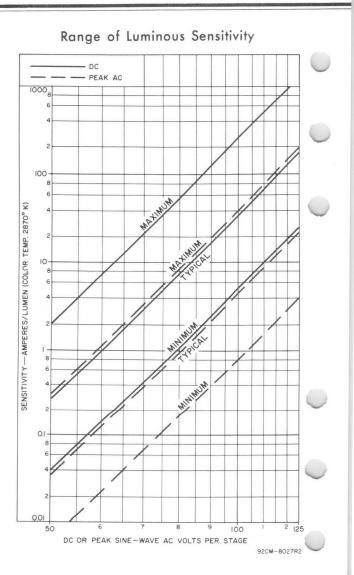
Electronic Components and Devices

Harrison, N. J.

92CS-8526

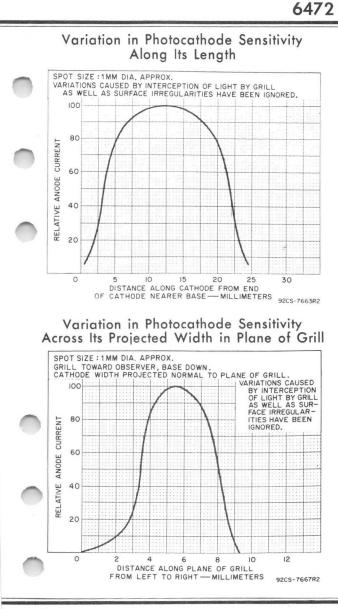

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10: 1 megohm, 1/2 watt R11: 2 megohms, 1/2 watt R12: 5.1 megohms, 1/2 watt R13 R14 R15 R16 R17 R18 R19 R20: 8.2 megohms, 1/2 watt R21: 820,000 ohms, 1/2 watt

Note: Adjustable between approximately 500 and 1000 volts dc or peak ac.

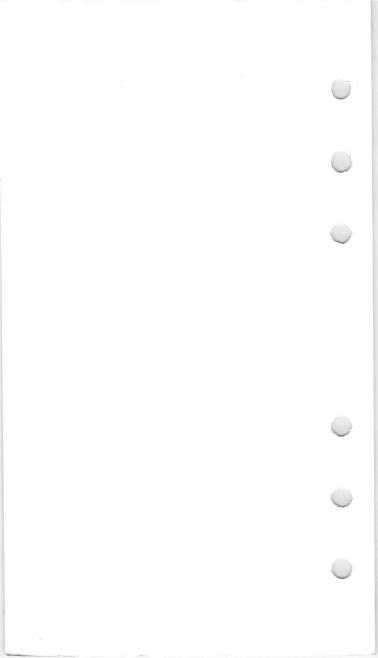

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

DATA 2

Electronic Components and Devices


Harrison, N. J.

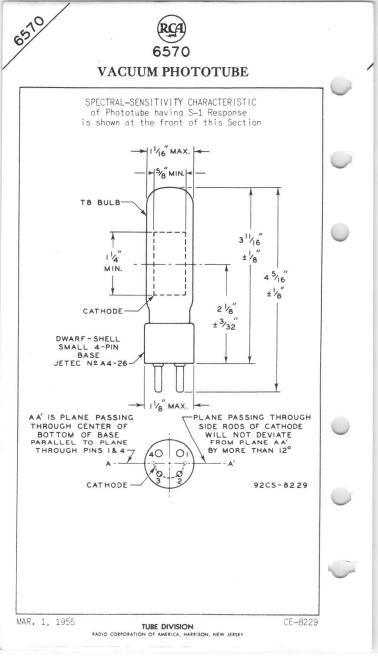
DATA 3

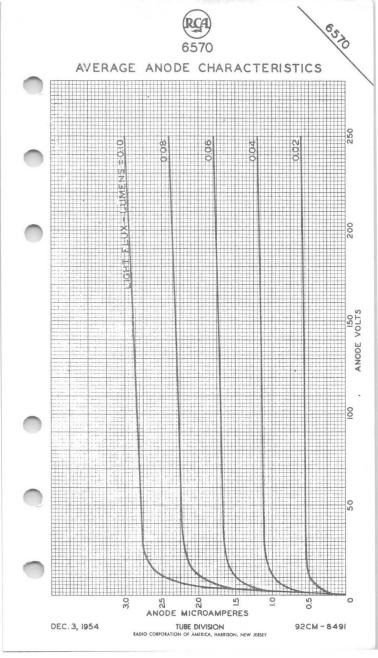

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

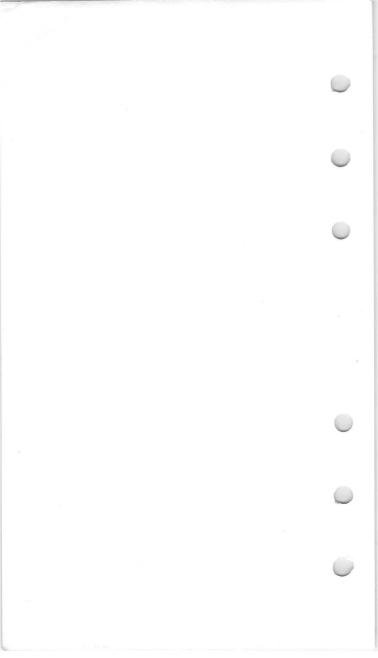
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. [

DATA 4 12-65

VACUUM PHOTOTUBE


LOW-MICROPHONIC TYPE WITH S-I RESPONSE


DATA

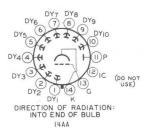

	PATA	
General:		
	um Response	8000 ± 1000 angstroms
Cathode:		Contextindation
Shape	· · · · · · · · · · · · · · ·	Semicylindrical
Minimum projected	length*	
Minimum projected	de Capacitance	
Seated Length		3-11/16" ± 1/8"
Seated Length to Ce	nter of Cathode	2-1/8" ± 3/32"
Maximum Diameter		1-1/8"
Bulb		T-8
Base	.Dwarf-Shell Small 4-	-Pin (JETEC No.A4-26),
		Non-hygroscopic
	BOTTOM VIEW	
	2 3	
Pin 1-No		Pin 3-No
Connection		Connection
Pin 2 – Anode		Pin 4 - Cathode
j		
	DIRECTION OF LIGHT	
Maulaum Dations ()		
Maximum Ratings, Ab		
ANODE-SUPPLY VOLTAG		
(DC or Peak AC) . AVERAGE CATHODE-CUR		00 max. volts
AVERAGE CATHODE-CUR		25 max. μamp/sq.in. 5 max. μamp
AMBIENT TEMPERATURE		5 max. μamp 100 max. ^Ο C
Characteristics at	250 Volts on Anode:	
C	Min. Av	. Max.
Sensitivity: Radiant at 8000 a	0.00	227
Luminous [#]	ngstroms – 0.00)27 - μamp/μwatt 30 40 μamp/lumen
Sensitivity Differer		jo to painprivation
Highest Value and		
Value Along Cathod		4.5 μamp/lumen
Anode Dark Current	at 25°C – – –	- 0.013 μamp
* On plane perpendicula	ar to indicated direction (of incident light.
O Averaged over any int	erval of 30 seconds maxim	um.
<pre># For conditions where ated at a color tempe</pre>	the light source is a tun erature of 2870 ⁰ K. A dc a stor, and a light input of	gsten-filament lamp oper- node supply of 250 volts,
a 1-megohm load resis	stor, and a light input of	U.1 lumen are used.
put of 0.1 lumen and	me conditions as indicated a light spot 1/2 inch in c	liameter.
L		
MAR. 1. 1955	THE DIS MOOL	TENTATIVE DATA

MAR. 1, 1955

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

Photomultiplier Tube

10-STAGE, HEAD-ON, FLAT-FACEPLATE TYPE HAVING S-11 RESPONSE 1.68-INCH MINIMUM DIAMETER CURVED PHOTOCATHODE


For Use in Scintillation Counters for the Detection and Measurement of Nuclear Radiation and Other Low-Level Light Sources

a	E.	N.	E	κ	А	L	

Spectral Response	
Avelength of Maximum Response 4400 ± 500 angstroms	
Cathode, Semitransparent	
Shape	
Minimum projected area 2.2 sq in	
Minimum diameter	
/indow Lime Glass, Corning ^a No.0080, or equivalent	
Shape	
Index of refraction at 5893 angstroms	
Dynodes	
SubstrateNi	
Secondary-Emitting Surface Cs-Sb	
Structure	
Direct Interelectrode Capacitances (Approx.)	
Anode to dynode No.10	
Anode to all other electrodes 7.0 pF	
Maximum Overall Length 5.81 in	
Seated Length	
Maximum Diameter	
perating Position	
/eight (Approx.)	
Envelope	
Base . Medium-Shell Diheptal 14-Pin (JEDEC Group 5, No.B14-38).	
Non-hygroscopic	
Socket Loranger ^b No.2274, or equivalent	
lagnetic Shield Millen ^C Part No.80802B,	
or equivalent	
or equivalent	

TERMINAL DIAGRAM (Bottom View)

Pin	1 - Dynode No.1
Pin	2 - Dynode No.2
Pin	3 - Dynode No.3
Pin	4 - Dynode No.4
Pin	5 - Dynode No.5
Pin	
Pin	7 - Dynode No.7
	8 - Dynode No.8
	9 - Dynode No.9
Pin	10 - Dynode No.10
	11 – Anode
Pin	12 - Do Not Use
Pin	13 - Focusing Electro
	14 - Photocathode

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA | 10-66

-Indicates a change.

ABSOLUTE-MAXIMUM RATINGS

DC Supply Voltage

Between anode and cathode		٠	٠		1250	٧
Between dynode No.10 and anode					250	۷
Between consecutive dynodes						٧
Between dynode No.1 and cathode					300	٧
Between focusing electrode and cathode						٧
Average Anode Current ^d					0.75	mA
Ambient Temperature ^e						°C

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode. Focusing-electrode voltage is adjusted to that value between 10 and 60 per cent of dynode No.1 potential (referred to cathode) which provides maximum anode current.

With E = 1000 V dc (Except as noted)

	Min	Typ	Max		
Sensitivity					
Radiant, ^f at 4400 angstroms Cathode radiant, ^g at	-	9.6x104	-	A/W	
4400 angstroms. Luminoush		0.061	300	A/W A/lm	
Cathode luminous: With tungsten light source j	4 x 10 ⁻⁵	7.6x10-5	-	A/1m	
With blue light source ^k Quantum Efficiency at		-	-	A	
4200 Angstroms Current Amplification.		17 1.6x106	Ξ	%	
Equivalent Anode-Dark- Current Input ^m	} _	3 x 10-10 ⁿ 3.7 x 10-13 ^p	2x10-9 ⁿ 2.5 x 10-12 ^p	l m W	
Anode Dark Current ^{m,n} Equivalent Noise Input ^q .	1	6 x 10-9 8x10-13 1 x 10-15 ^p	- 2.7x10 ⁻¹¹ 3.4 x 10 ^{-14^p}	A 1m W	(
Anode-Pulse Rise Time ^r . Electron Transit Time ^s .	-	3.4 x 10 ⁻⁹ 3.4 x 10 ⁻⁸	-	s s	

^a Made by Corning Glass Works, Corning, New York.

^b Made by Loranger Manufacturing Corp., 36 Clark St., Warren, Pa.

C Made by James Millen Manufacturing Company, 150 Exchange Street, Malden 48, Massachusetts.

^d Averaged over any interval of 30 seconds maximum.

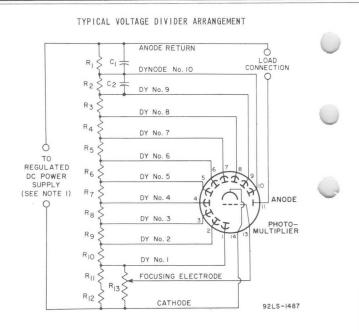
e Tube operation at room temperature or below is recommended.

f This value is calculated from the typical value for luminous sensitivity using a conversion factor of 804 lumens per watt.

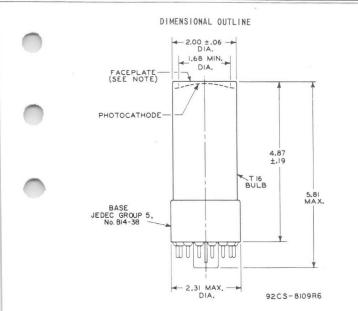
9 This value is calculated from the typical value for cathode luminous sensitivity using a conversion factor of 804 lumens per watt.

h Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 28700K and a light input of 10 microlumens is used.

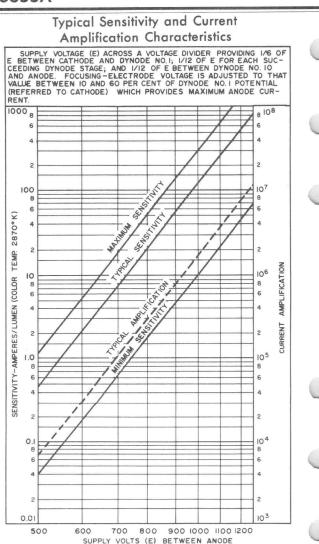
- Indicates a change.


1/

DATA I


- j Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870°K. The value of light flux is 0.01 lunen and 200 volts are applied between cathode and all other electrodes connected as anode.
- Under the following conditions: Light incident on the cathode is trans-mitted through a blue filter (Corning C.S. No.5-58, Glass Code No.5113 polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, New York, from a tungsten-filament lamp operated at a color temperature of 2870°K. The value of light flux incident on the filter is 0.01 lunen and 200 volts are applied between cathode and all other electrodes connected as anode.
- $^{\rm T\!\!M}$ Measured at a tube temperature of 22°C. Dark current may be reduced by use of a refrigerant.
- Measured with supply voltage (E) adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current is measured with no incident light on tube.
- P At 4400 angstroms. This value is calculated from the rating in lumen using a conversion factor of 804 lumens per watt.
- Under the following conditions: Supply voltage (E) is as shown, 22° C tube temperature, external shield connected to achode, bandwidth 1 Hz, tungsten-light source at a color temperature of 2270 ki nice the data a low audio-frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is "qual to the "off" period. 9 Under the following conditions:
- Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- ^S The electron transit time is the time interval between the arrival of The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

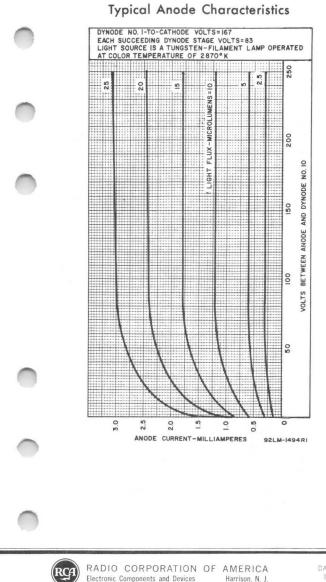
C₁, C₂: 0.01 μ F non-inductive type, 400 volts (dc working). Values dependent on amplitude and duration of pulse. R₁ through R₁₂: 33,000 ohms, 2 watts. R₁₃: 2.5 megohms, 2 watts, adjustable. Note I: Adjustable between approximately 500 and 1250 volts dc.


DIMENSIONS IN INCHES

Center line of bulb will not deviate more than $2^{\rm O}$ in any direction from the perpendicular erected at the center of bottom of the base.

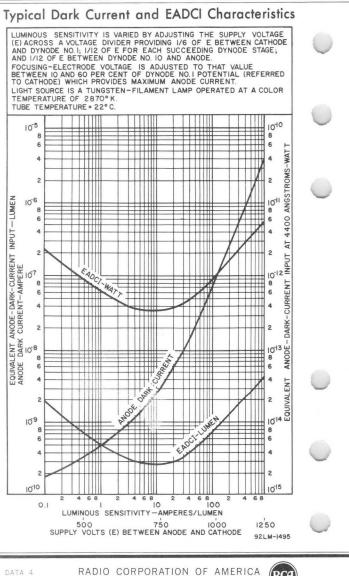
Note: Within 1.68 inch diameter, deviation from flatness of external surface of faceplate will not exceed 0.010 inch from peak to valley.

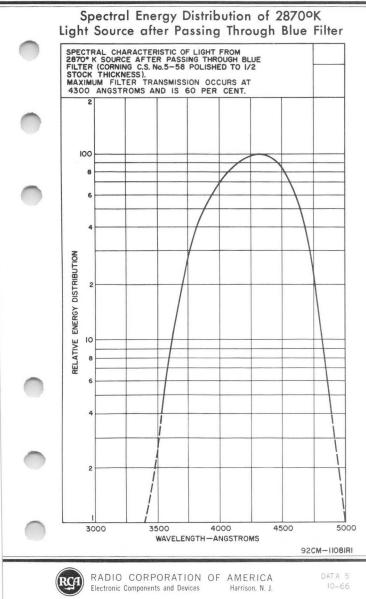
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 10-66



92LM-1484

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.


AND CATHODE


DATA 4

Harrison, N. J.

Electronic Components and Devices

Harrison, N. J.

Typical Time-Resolution Characteristics SUPPLY VOLTAGE (E) ACROSS VOLTAGE DIVIDER PROVIDING 1/6 OF E BETWEEN CATHODE AND DYNODE NO.1; 1/12 OF E FOR EACH SUCCEEDING DYNODE STAGE; AND 1/12 OF E BETWEEN DYNODE NO IO AND ANODE. FOCUSING ELECTRODE IS CONNECTED TO DYNODE NO. I POTENTIAL PHOTOCATHODE IS FULLY ILLUMINATED. 10-7 8 6 TIME - SECOND TRANSIT TIME 4 2 8 6 RISE TIME 4 10-9 9 4 1500 6 Ŕ 3 500 1000 SUPPLY VOLTS (E) BETWEEN ANODE AND CATHODE

92LS-1476

Harrison, N. J.

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Photomultiplier Tube

2"- Diameter, 14-Stage, Head-On Type Havina S-11 Spectral Response

GENERAL
Spectral Response S-11
Wavelength of Maximum Response 4400 ± 500 Å
Cathode, Semitransparent Cesium-Antimony
Minimum projected area 2.2 in ² (14.2 cm ²)
Minimum diameter 1.68 in (4.2 cm)
Window Corning ^a No.0080, or equivalent
Shape Plano-Concave
Index of refraction at 4360 angstroms 1.523
Dynodes:
Substrate Copper-Beryllium
Secondary-Emitting Surface Beryllium-Oxide
Structure In-Line, Electrostatic-Focus Type
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.14 2.8 pF
Anode to all other electrodes 6 pF
Dynode No.14 to all other electrodes 7.5 pF
Maximum Overall Length 7.5 in (19 cm)
Seated Length 6.69 in (17 cm) \pm 0.19 in
Maximum Diameter 2.38 in (6 cm)
Bulb T16
Base Small-Shell Bidecal 20-Pin, JEDEC No.B20-102
Socket Alden ^b Part 220FTC, or equivalent
Magnetic Shield Millen ^c No.80802E, or equivalent
Operating Position Any
Weight (Approx.) 8 oz (226 g)
MAXIMUM RATINGS, Absolute-Maximum Values:
DC Supply Voltage:
Between anode and cathode 2400 max. V
Between anode and dynode No.14 400 max. V
Between consecutive dynodes 500 max. V
Between accelerating electrode and
grid No.13 ±500 max. V

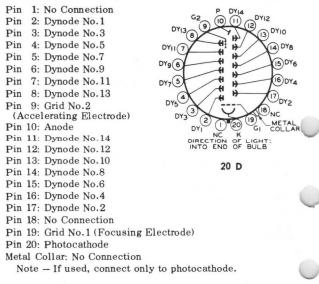
RBA

	Between dynode	No 1 and	cathode	400 ma	x. V
	Between focusin				
	Average Anode Cur				x. mA
	Ambient Temperatu				x. °C
-	CHARACTERISTIC		EVALUES		
	Voltage Distribution	n A, Tab	le 1		
	With $E = 2000$ volts	(Except	as noted)		
		Min.	Typical	Max.	
	Anode Sensitivity:				
	Radiant ^g at 4400 angstroms .	_	3 x 10 ⁶	_	A/W
	Luminous ^h (2870 ⁰ K)4	.8 x 10 ²	3.8 x 10 ³	2×10^4	A/lm
	Cathode Sensitivity	7:			
	Radiant ¹ at 4400 angstroms .		0.056	-	A/W
	Luminous ^k (2870 ^o K)	$5 \ge 10^{-5}$	7×10^{-5}	-	A/lm
	Current with blue light source ^m (2870 [°] K + C.S. No.5-58)	5 x 10 ⁻⁸	7 x 10 ⁻⁸	_	А
	Quantum Effici- ency at 4200 angstroms .	-	16	_	%
	Current Amplifi- cation	_	$5.4 \ge 10^7$	-	
	Anode Dark Current ⁿ	-	$1 \ge 10^{-6}$	3 x 10 ⁻⁶	
	Equivalent Anode Dark Current Input ⁿ		5 x 10 ⁻¹⁰ 6.2 x 10 ^{-13P}	1.5 x 10 ⁻⁹ 1.8 x 10 ⁻¹²	lm W
	Equivalent Noise	-	3.3×10^{-12}	_	lm
	Input ^q	{-	4.1 x 10 ⁻¹⁵	-	
	Anode-Pulse Rise Time ^s at 2400 V	-	3.1 x 10 ⁻⁹	_	s
	Electron Transit Time at 2400 V	-	4.4 x 10 ⁻⁸	-	s
	^a Made by Corning	Glass Wo	orks, Corning	, NY 14830.	
	^b Made by Alden P ton, MA 02403.	roducts	Co., 262 N. M	Main Street, I	Brock
			- Indicates a	change or ad	dition.
100 C 100					

RB/ Electronic Components

- ^c Made by James Millen Manufacturing Company, 150 Exchange Street, Malden, MA 02148.
- ^e Averaged over any interval of 30 seconds maximum.
- [†] Tube operation at room temperature or below is recommended.
- ⁹ This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 803 lumens per watt.
- ^h Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 0.1 microlumen is used.
- ¹ This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 803 lumens per watt.
- ^k Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870^o K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ^m Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, NY) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ⁿ At a tube temperature of 22^o C. With supply voltage adjusted to give a luminous sensitivity of 2000 amperes per lumen. Dark current caused by thermionic emission may be reduced by use of a refrigerant. Dark current is measured with incident light removed.
- At 4400 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 803 lumens per watt.
- ^q Under the following conditions: Tube temperature 22° C, external shield connected to cathode, bandwidth 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident

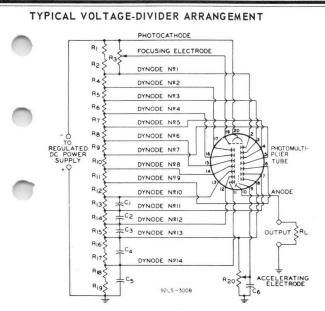
Electronic


Components

日/几

radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.

- At 4400 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 803 lumens per watt.
- ⁵ Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- [†] The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.


TERMINAL DIAGRAM (Bottom View)

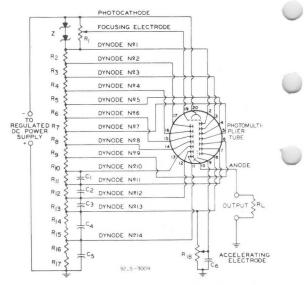
Electronic

Components

DATA 2

C₁: 25 pF, 20%, 600 volts (dc working), ceramic disc C₂: 50 pF, 20%, 600 volts (dc working), ceramic disc C₃: 100 pF, 20%, 600 volts (dc working), ceramic disc C₄: 250 pF, 20%, 600 volts (dc working), ceramic disc C₅: 500 pF, 20%, 600 volts (dc working), ceramic disc C₆: 100 pF, 20%, 1000 volts (dc working), ceramic disc R₁: 24000 ohms, 5%, 1 watt

- R2: 22000 ohms, 5%, 1 watt
- R3: 1 megohm, 20%, 2 watts, adjustable
- R₄ through R₁₃: 22000 ohms, 5%, 1 watt


R₁₄: 27000 ohms, 5%, 2 watts R₁₅: 33000 ohms, 5%, 2 watts R₁₈: 22000 ohms, 5%, 2 watts

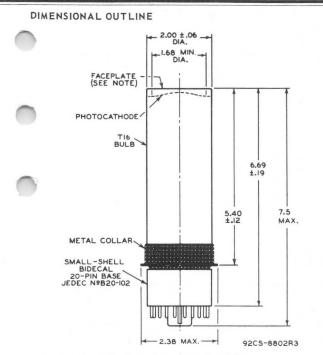
- R₁₆: 22000 ohms, 5%, 2 watts R₁₉: 22000 ohms, 5%, 2 watts
- R₂₀: 10 megohms, 2 watts, adjustable
- RL: Value will depend on magnitude of peak pulse voltage desired. For a peak pulse amplitude of 100 volts, the value is approximately 300 ohms.

Note 1: Adjustable between approximately 800 and 2400 volts dc.

Note 2: Component values are dependent upon nature of application and output signal desired.

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT FOR CONSTANT VOLTAGE BETWEEN CATHODE AND DYNODE NO. 1

 $\begin{array}{l} C_1: 25 \ \mathrm{pF}, 20\%, 600 \ \mathrm{volts} \ (\mathrm{dc} \ \mathrm{working}), \ \mathrm{ceramic} \ \mathrm{disc} \\ C_2: 50 \ \mathrm{pF}, 20\%, 600 \ \mathrm{volts} \ (\mathrm{dc} \ \mathrm{working}), \ \mathrm{ceramic} \ \mathrm{disc} \\ C_3: 100 \ \mathrm{pF}, 20\%, 600 \ \mathrm{volts} \ (\mathrm{dc} \ \mathrm{working}), \ \mathrm{ceramic} \ \mathrm{disc} \\ C_4: 250 \ \mathrm{pF}, 20\%, 600 \ \mathrm{volts} \ (\mathrm{dc} \ \mathrm{working}), \ \mathrm{ceramic} \ \mathrm{disc} \\ C_5: 500 \ \mathrm{pF}, 20\%, 600 \ \mathrm{volts} \ (\mathrm{dc} \ \mathrm{working}), \ \mathrm{ceramic} \ \mathrm{disc} \\ C_6: 100 \ \mathrm{pF}, 20\%, 1000 \ \mathrm{volts} \ (\mathrm{dc} \ \mathrm{working}), \ \mathrm{ceramic} \ \mathrm{disc} \\ R_1: 5 \ \mathrm{megohms}, 20\%, 1/2 \ \mathrm{watt}, \ \mathrm{adjustable} \\ R_2 \ \mathrm{through} \ \mathrm{R}_{11}: 22000 \ \mathrm{ohms}, 5\%, 1 \ \mathrm{watt} \end{array}$


R₁₂: 27000 ohms, 5%, 2 watts | R₁₅: 18000 ohms, 5%, 2 watts

- R₁₃: 33000 ohms, 5%, 2 watts R₁₆: 22000 ohms, 5%, 2 watts
- R₁₄: 22000 ohms, 5%, 2 watts R₁₇: 22000 ohms, 5%, 2 watts
- R₁₈: 10 megohms, 2 watts, adjustable
- R_L: Value will depend on magnitude of peak pulse voltage desired. For a peak pulse amplitude of 100 volts, the value is approximately 300 ohms.
 - Z: (2) 180 V, 2 W zener diodes, or equivalent

Note 1: Adjustable between approximately 800 and 2400 volts dc.

Note 2: Component values are dependent upon nature of application and output signal desired.

Electronic Components

 ${\mathfrak E}$ of bulb will not deviate more than 2^0 in any direction from the perpendicular erected at the center of bottom of the base.

Note: Deviation from flatness of external surface of faceplate will not exceed 0.005" from peak to valley.

Dimensions are in inches unless otherwise stated.

INCH DIMENSION EQUIVALENTS IN MILLIMETERS

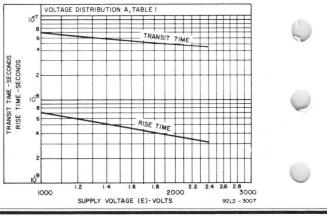
Inch	mm	Inch	mm	Inch	mm
0.06	1.5	1.68	42.6	5.40	137.1
0.12	3.0	2.00	50.8	6.69	169.9
0.19	4.8	2.38	60.4	7.5	190.5

Electronic Components

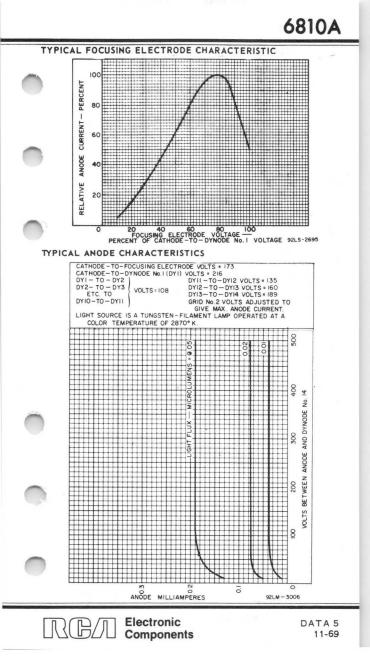
吕/Л

DATA 4 11-69

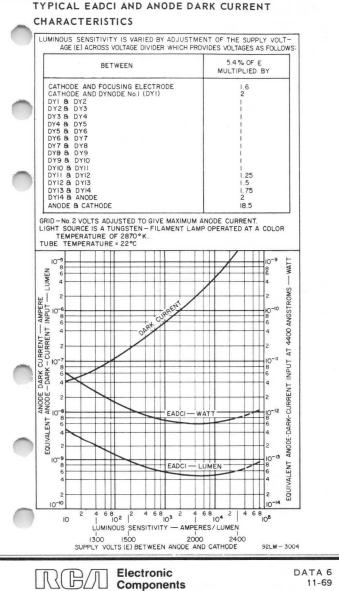
	Table 1	
	Voltage Distribution	1
Between the fol-	A	В
lowing Electrodes: Cathode (K), Dynode (Dy), and Anode (P)	5.4% of Supply Voltage (E) multiplied by	6.06% of Supply Voltage (E) multiplied by
K - Dy1	2	•
Dy1 - Dy2	1	1
Dy2 - Dy3	1	1
Dy3 - Dy4	1	1
Dy4 - Dy5	1	1
Dy5 - Dy6	1	1
Dy6 - Dy7	1	1
Dy7 - Dy8	1	1
Dy8 - Dy9	1	1
Dy9 - Dy10	1	1
Dy10 - Dy11	1	1
Dy11 - Dy12	1.25	1.25
Dy12 - Dy13	1.5	1.5
Dy13 - Dy14	1.75	1.75
Dy14 - P	2	2
Dy1 - P	-	16.5
K-P	18.5	-

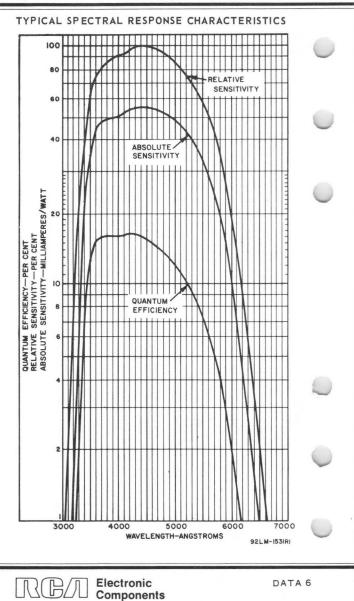

Focusing electrode is connected to arm of potentiometer between cathode and dynode No.1; the focusing electrode voltage is varied to give maximum anode current.

Cathode-to-dynode No.1 voltage is maintained at 360 volts.


TYPICAL TIME-RESOLUTION CHARACTERISTICS


Electronic Components


3(円//

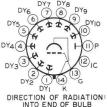

DATA 4

11-69

Photomultiplier Tube

S-13 RESPONSE

IO-STAGE, HEAD-ON, FLAT-FACEPLATE


ELECTROSTATICALLY FOCUSED DYNODE STAGES

For Detection and Measurement of Ultraviolet Radiation and Other Low-Level Radiation Sources

GENERAL

Spectral Response
Wavelength of Maximum Response
waverength of Maximum Response 4400 ± 500 angstroms
Cathode, Semitransparent Cesium-Antimony
Shape
Minimum area
Minimum diameter
Window
Maximum thickness
Index of refraction at 2000 angstroms
Dynode Material Cesium-Antimony
Direct Interelectrode Capacitances (Approx.)
Anode to dynode No.10
Anode to all other electrodes
Maximum Overall Length
Seated Length
Maximum Diameter
Operating Position
Weight (Approx.)
Bulb
Socket
Magnetic Shield . Perfection Mica Co. ^c , No.P-108, or equivalent
Base
(JEDEC Group 5, No.BI4-38), Non-hygroscopic
Basing Designation for BOTTOM VIEW
Pin 1-Dynode No.1
Din 2 Dunada No 2
Pin 2 Dynode No.2 DY7 DY8

1.0	I - Dynode No.I	
Pin	2-Dynode No.2	
Pin	3 - Dynode No.3	
Pin	4 - Dynode No.4	
Pin	5-Dynode No.5	
Pin	6 - Dynode No.6	
Pin	7 - Dynode No.7	
Pin	8 - Dynode No.8	
Pin	9 - Dynode No.9	
Pin	10 - Dynode No.10	
Pin	11 - Anode	
Pin	12-Do Not Use	
Pin	13 - Focusing Elect	
Pin	14 - Photocathode	

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA I 7-65

MAXIMUM RATINGS, ABSOLUTE-MAXIMUM VALUES DC or Peak AC Supply Voltage Between anode and cathode 1250 ۷ Between dynode No.10 and anode. 250 ۷ Between dynode No.1 and cathode 300 ٧ Between focusing electrode and cathode. 300 ٧ Average Anode Current^d. 0.75 mΔ 75 00 CHARACTERISTICS RANGE VALUES Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode. Focusing-electrode voltage is adjusted to that value between 10 and 60 per cent of dynode-No.I potential (referred to cathode) which provides maximum anode current. With E = 1000 volts (Except as noted) Min Typ Max Sensitivity Radiant, at 4400 angstroms 7.2×104 A/W Cathode radiant, at 4400 angstroms. . . . 0.047 A/W Luminous: At 0 c/s^e 300 A/lm 10 90 With dynode No.10 as output electrode^f . . 52 A/1m Cathode luminous: With tungsten light source⁹ 4x10⁻⁵ 6x10⁻⁵ With blue light A/1m A 1.5x10⁶ Current Amplification . . . -5x10-10^k Equivalent Anode-Dark-2x10-9 1 m Current Input^g. 6.3x10^{-12^m} 2.5x10⁻¹² W Equivalent Noise Input Luminousⁿ 6.7x10-12 2.7x10-11 1 m Radiant^p.... 8.4x10-15 W Dark Current to any Electrode Except Anode at 25° C. 7.5x10-7 Δ With E = 750 volts (Except as noted) Min Max Typ Sensitivity Radiant, at 4400 angstroms - 6.3x10³ A/W Cathode radiant, at 0.047 A/W 4400 angstroms. . . .

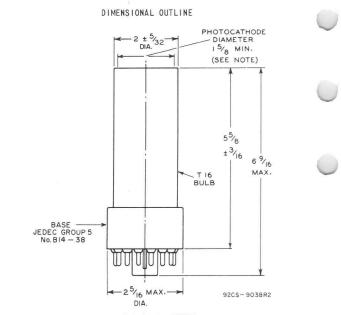
- Indicates a change.

RGA

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

	Min	Тур	Max	
Luminous: At 0 c/s ^e With dynode No.10 as	-	7.9	-	A/lm
output electrode ^f Cathode luminous:	-	4.6	-	A/1m
With tungsten light source ⁹ With blue light	4x10-5	6x10-5	-	A/1m
source ^h		- 1.3x10 ⁵	2	А

- ^a Alternate designation for Multiplier Phototube.
- b Made by Amphenol Electronics Corporation, 1830 South 54th Avenue, Chicago 54, Illinois.
- ^C Made by Magnetic Shield Division, Perfection Mica Co., 1829 Civic Opera Bldg., 20 North Wacker Drive, Chicago 6, Illinois.
- d Averaged over any interval of 30 seconds maximum.

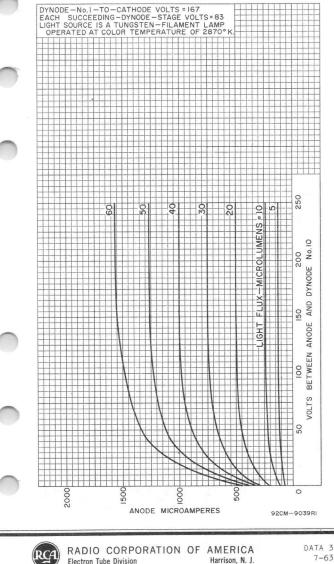

^e Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a colortemperature of 2870° K and a light input of 10 microluments is used.

- f An output current of opposite polarity to that obtained at the anode may be provided by using dynode No.10 as the output electrode. With this arrangement, the load is connected in the dynode-No.10 circuit and the anode serves only as collector. The curve shown in *Typical Anode Characteristics* does not apply when dynode No.10 is used as the output electrode.
- 9 Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- nected as anoae. h Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, Glass Code No.5113 polished to 1/2 stock thickness — Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- j For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1000 volts is recommended.
- k Measured at a tube temperature of 25° C and with supply voltage (E) adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current may be reduced by use of a refrigerant.
- ^m Determined at 4400 angstroms.
- Determined at two angestems." I Under the following conditions: Supply voltage (E) is as shown, 25° C tube temperature, external shield connected to cathode, bandwidth 1 cycle per second, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- ${\rm P}$ Under the same conditions as shown under (n) except that use is made of a monochromatic source having radiation at 2537 angstroms.
- 9 See Spectral Characteristic of 2870° K Light Source and Spectral Characteristic of Light from 2870° K Source after Passing through Indicated Blue Filter at front of this section.

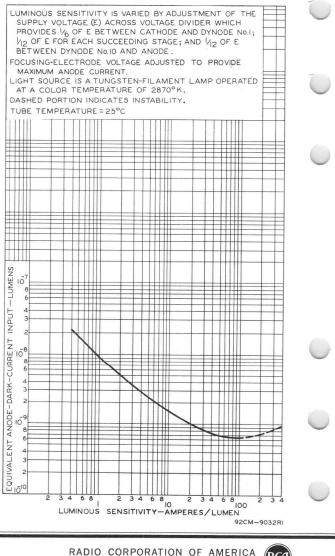
SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-13 RESPONSE is shown at the front of this section

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 7-65

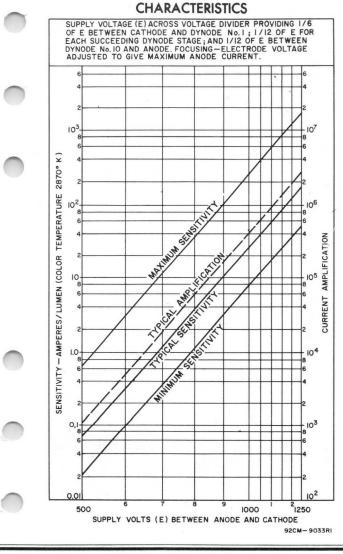
DIMENSIONS IN INCHES


Center line of bulb will not deviate more than 3° in any direction from the perpendicular erected at the center of bottom of the base.

Note: Within minimum diameter, deviation from flatness will not exceed 0.010" from peak to valley.

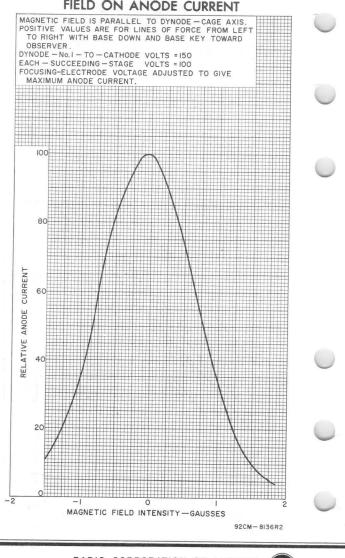


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.


TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC

Electron Tube Division

Harrison, N. J.



RADIO CORPORATION OF AMERICA **Electron Tube Division**

Harrison, N. J.

DATA 4 7-63

TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE CURRENT

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

Image Converter Tubes

Monovoltage Types Having S-1 Spectral Response

GENERAL
For Both Types
Spectral Response S-1
Wavelength of Maximum Response $\dots \dots
Photocathode:
Material Ag-O-Cs
Minimum useful diameter
Image surface:
Shape Convex
Window
Index of refraction at 589.3 nm 1.48 Fluorescent Screen:
Minimum useful diameter
Phosphor P20, Aluminized
Fluorescence and phosphorescence Yellow-Green
Persistence Medium to Medium Short
Image surface:
Shape
Window Index of refraction at 589.3 nm 1.48
Focusing Method Electrostatic
Tube Dimensions:
Overall length
Maximum diameter 1.880 in \pm 0.025 in
Operating Position Any
Weight 3 oz
MAXIMUM RATINGS, Absolute-Maximum Values for altitude up to
10,000 feet
For Both Types
Anode Voltage:b
Average (DC) 16000 max. V
Peak Instantaneous 17000 max. V
Average Photocathode Current (Continuous operation) ^c 0.35 max. μA
Peak Photocathode Current ^d 3.5 max. μA
Ambient-Temperature Range
Ambient-Temperature Range

Electronic

Components

日/八

11

DATA 1

8-70

Characteristics at Ambient Temper	rature of 22	o C		
1	Гуре 6914	Type 6914	A	
Anode Voltage (DC) ^b	16000	16000	V	4
Typical Paraxial Magnification Factor ^e	0.76	0.76		
Minimum Conversion Index ^f	15	15	_	
-Minimum Resolution ^g	50	50	line- pairs/mm	0
Maximum Quotient ^h of Screen Background by Conversion Index	2.5×10 ⁻⁷	2.5×10 ⁻⁷	Im/cm ²	
Maximum Luminous Equivalent of Infrared Radiation for Threshold Visibility ^j	_	4.1×10 ⁻¹¹	Im	
Photocathode Sensitivity:				-
- Radiant ^k	2.3	2.3	mA/W	
– Luminous ^m	25	25	μA/Im	

b Referred to photocathode.

c Averaged over any interval of 10 seconds maximum.

- d The 6914 and the 6914A should not be subjected to this peak photocathode current value more than 10 times during the useful life of the tubes. No single time period during which this current is drawn should exceed 2 minutes.
- ^e Defined as the ratio of the linear size of the image on the fluorescent screen to the linear size of the image on the photocathode. The image on the photocathode consists of two parallel lines 0.08" long, each located 0.10" from the tube axis. Size of the image on the fluorescent screen is determined by measuring the spacing between the two parallel lines.
- f Ratio of luminous flux from fluorescent screen to the product of the luminous flux incident on Corning No.2540 infrared filter (Melt No.1613, 2.61 mm thick) or equivalent, and the filter factor of 10.8 per cent. The light source is a tungsten-filament lamp operated at a color temperature of 2854^o K.
- 9 The resolution, both horizontally and vertically in a 0.24-inchdiameter circle centered on the photocathode, is determined with a pattern consisting of alternate black and white lines of equal width. Any two adjacent lines are designated as a "linepair".

Indicates a change or addition

RBA Electronic Components

- h The value of this quotient for any individual tube multiplied by the square of the magnification factor of the tube gives that value of the incident illumination from 2854° K source required to produce an increase in screen brightness equal to the screen background.
- ¹ Radiation from a tungsten lamp operating at a color temperature of 2854° K is passed through a Corning No.2540 infrared filter and focused to a point on the photocathode. The resulting image on the fluorescent screen is viewed by a dark-adapted eye through a 10-power ocular. The amount of infrared radiation for threshold visibility is determined by reducing the incident radiation until the image on the screen can just be discerned. The luminous equivalent of this amount of infrared radiation is the product of the unfiltered luminous flux from the 2854° K source and the filter factor of the Corning No.2540 infrared filter.
- k For incident radiation at the wavelength of maximum response of the spectral sensitivity characteristic.
- ^m Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2854° K. The value of light flux is 1 x 10⁻² lumen and 200 volts are applied between the photocathode and anode.

SAFETY PRECAUTIONS X-Radiation Warning

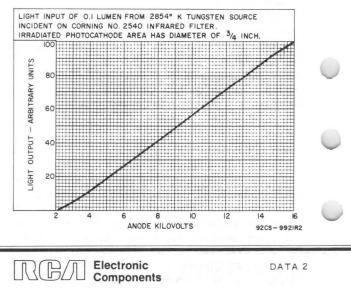
This tube in operation produces X-rays which can constitute a health hazard unless the tube is adequately shielded. Make sure the shielding provides the required protection against personal injury.

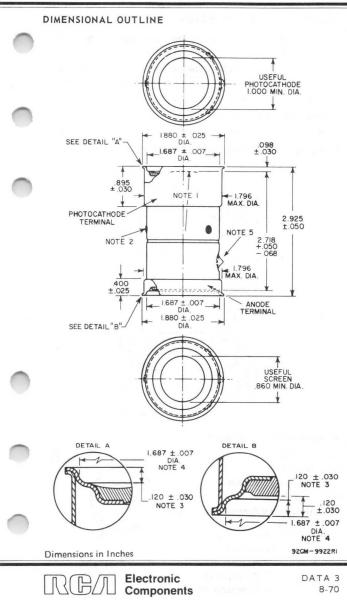
High Voltage

The high voltage at which the tube is operated may be very dangerous. Great care should be taken in the design of apparatus to prevent the user from coming in contact with the high voltage.

Operating Considerations

Handling. The tubes should be handled by the metal terminals. Fingerprints on the glass should be avoided since they cause leakage current, corona, and higher screen background. To minimize the possibility of leakage current and corona, the external surface of the glass side wall is coated with a transparent, non-hygroscopic film. This film should


be cleaned only with a soft dry cloth.


Subjecting the tubes to intense incident-radiation levels may temporarily decrease the tube's sensitivity even though there is no voltage applied. The magnitude and duration of this decrease depend on the length of exposure. Permanent damage to the tube may result if it is exposed to radiant energy so great as to cause excessive heating of the photocathode.

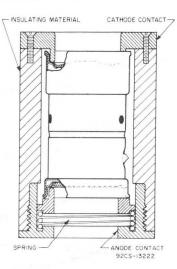
Connections to the two terminals of the tube, indicated on the Dimensional Outline, should not be soldered to the terminals. They may be made by spring fingers engaging the rim or the straight side of each terminal.

Magnetic shielding of these image tubes is required to minimize the effects of extraneous fields on tube performance. It is to be noted that ac magnetic fields are particularly objectionable in that they seriously impair tube resolution. If an iron or steel case is used, care should be taken in its construction to insure that the case is completely demagnetized.

TYPICAL CHARACTERISTIC

DIMENSIONAL OUTLINE NOTES

Note 1: Radius of curvature of faceplate is $2.38'' \pm 0.05''$. Faceplate thickness at center is $0.065'' \pm 0.004''$.


Note 2: Three insulated lead tips will not extend beyond maximum O.D. of tube. Leads are used only during tube manufacture.

Note 3: Depth is measured to tangent of the two radii.

Note 4: Diameter is measured to tangent of the two radii.

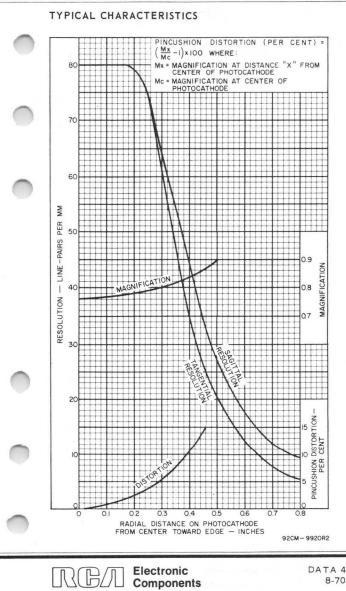
Note 5: The exhaust tip will not extend beyond max. dia. of tube.

TYPICAL MOUNTING ARRANGEMENT

TERMINAL CONNECTIONS

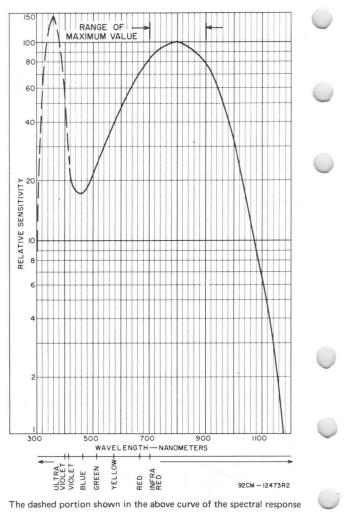
- CL: Collector
- G1: Grid No.1 (Focusing Electrode)
- G2: Grid No.2 (Focusing & Accelerating Electrode)
- K: Photocathode

Direction of incident radiation:


Perpendicular to photocathode end of tube

Electronic Components SCREEN

G2.CL


ANODE

JK,GI

8-70

TYPICAL SPECTRAL RESPONSE CHARACTERISTICS

is not controlled.

Electronic Components DATA 4

Image Converter Tube

Monovoltage Type Having S-1 Spectral Response

GENERAL
Spectral Response S-1
Wavelength of Maximum Response
Photocathode:
Material Ag-O-Cs
Minimum useful diameter
Image surface:
Shape Convex
Window
Index of refraction at 589.3 nm 1.48
Fluorescent Screen:
Minimum useful diameter 14.48 mm (0.570 in)
Phosphor P20, Aluminized
Fluorescence and phosphorescence Yellow-Green
Persistence
Image surface:
Shape Flat
Window
Index of refraction at 589.3 nm 1.48
Focusing Method Electrostatic
Tube Dimensions:
Overall length 2.285 in \pm 0.050 in
Maximum diameter 1.350 in \pm 0.025 in
Operating Position Any
Weight 1.5 oz
MAXIMUM RATINGS, Absolute-Maximum Values
Anode Voltage:b
Average (DC) 12500 max. V
Peak Instantaneous 13000 max. V
Average Photocathode Current
(Continuous operation) ^c 0.35 max. µA
Peak Photocathode Current ^d 3.5 max. μ A
Ambient Temperature

Electronic

Components

RG/1

DATA 1 8-70

CHARACTERISTICS AT AMBIENT TEMPERATURE OF 22°C

V	Anode Voltage (DC) ^b 12000
_	Typical Paraxial Magnification Factor ^e 0.75
—	Minimum Conversion Index ^f 15
line- pairs/mm	Minimum Resolution ⁹ 50
Im/cm ²	Maximum Quotient ^h of Screen Background by Conversion Index
	Sensitivity:
mA/W	Radiant ^j 2.3
μA/Im	Luminous ^k 25

b Referred to photocathode.

- c Averaged over any interval of 10 seconds maximum.
- d The 6929 should not be subjected to this peak photocathode current value more than 10 times during the useful life of the tube. No single time period during which this current is drawn should exceed 2 minutes.
- e Defined as the ratio of the linear size of the image on the fluorescent screen to the linear size of the image on the photocathode. The image on the photocathode consists of two parallel lines 0.08" long, each located 0.08" from the tube axis. Size of the image on the fluorescent screen is determined by measuring the spacing between the two parallel lines.
- ^f Ratio of luminous flux from fluorescent screen to the product of the luminous flux incident on Corning No.2540 infrared filter (Melt No.1613, 2.61 mm thick) or equivalent, and the filter factor of 10.8 per cent. The light source is a tungsten-filament lamp operated at a color temperature of 2854° K.
- 9 The resolution, both horizontally and vertically in a 0.15-inchdiameter circle centered on the photocathode, is determined with a pattern consisting of alternate black and white lines of equal width. Any two adjacent lines are designated as a "linepair".
- h The value of this quotient for any individual tube multiplied by the square of the magnification factor of the tube gives that value of the incident illumination from 2854° K source required to produce an increase in screen brightness equal to the screen background.

Indicates a change

- j For incident radiation at the wavelength of maximum response of the spectral sensitivity characteristic.
- ^k Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2854° K. The value of light flux is 0.01 lumen and 200 volts are applied between anode and cathode.

SAFETY PRECAUTIONS

X-Radiation Warning

This tube in operation produces X-rays which can constitute a health hazard unless the tube is adequately shielded. Make sure the shielding provides the required protection against personal injury.

High Voltage

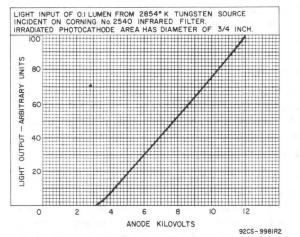
The high voltage at which the tube is operated may be very dangerous. Great care should be taken in the design of apparatus to prevent the user from coming in contact with the high voltage.

Operating Considerations

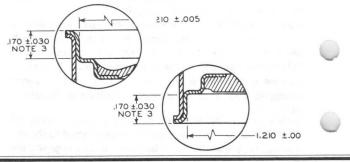
HANDLING The tubes should be handled by the metal terminals. Fingerprints on the glass should be avoided since they cause leakage current, corona, and higher screen background. To minimize the possibility of leakage current and corona, the external surface of the glass side wall is coated with a transparent, non-hygroscopic film. This film should be cleaned only with a soft dry cloth.

Subjecting the tube to intense incident-radiation levels may temporarily decrease the tube's sensitivity even though there is no voltage applied. The magnitude and duration of this decrease depend on the length of exposure. Permanent damage to the tube may result if it is exposed to radiant energy so great as to cause excessive heating of the photocathode.

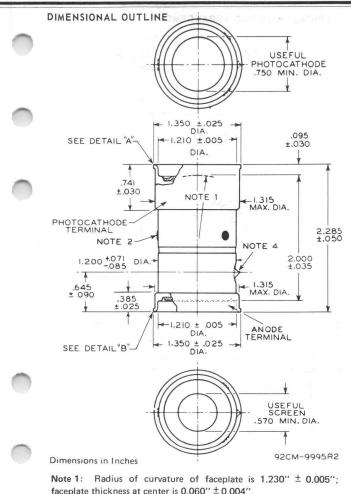
Connections to the two terminals of the tube, indicated on the Dimensional Outline, should not be soldered to the terminals. They may be made by spring fingers engaging the



Electronic Components


rim or the straight side of each terminal.

Magnetic shielding of this image tube is required to minimize the effects of extraneous fields on tube performance. It is to be noted that ac magnetic fields are particularly objectionable in that they seriously impair tube resolution. If an iron or steel case is used, care should be taken in its construction to insure that the case is completely demagnetized.

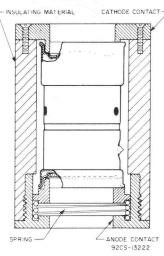

TYPICAL CHARACTERISTICS

DIMENSIONAL OUTLINE DETAILS

DATA 2

Note 2: Three insulated lead tips will not extend beyond maximum O.D. of tube. Leads are used only during tube manufacture.

Note 3: Depth is measured to tangent of the two radii.

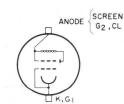

Electronic

Components

Note 4: Tip will not extend beyond maximum O.D. of tube.

DATA 3 8-70

TYPICAL MOUNTING ARRANGEMENT

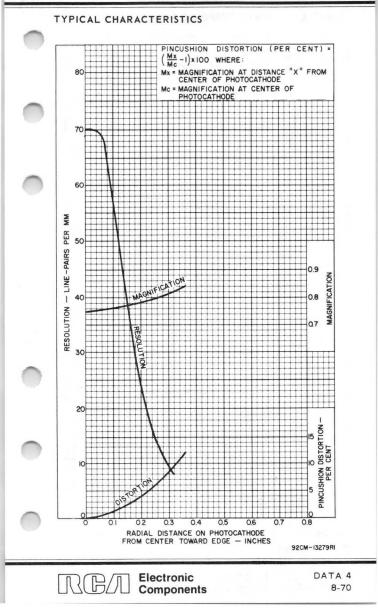


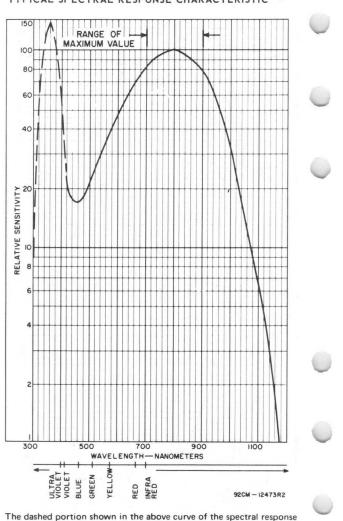
TERMINAL CONNECTIONS

- CL: Collector
- G1: Grid No.1

(Focusing Electrode)

G₂: Grid No.2 (Focusing & Accelerating Electrode)




K: Photocathode

B/Л

Direction of incident radiation: Perpendicular to photocathode end of tube

DATA 3

TYPICAL SPECTRAL RESPONSE CHARACTERISTIC

is not controlled.

Electronic Components

DATA 4

Gas Phototube

SIDE-ON TYPE HAVING UNOBSTRUCTED PHOTOCATHODE AREA AND S-I RESPONSE

DATA

	General:
	Spectral Response
	Cathode:
	Shape
	Minimum unobstructed projected length ^a
	Minimum unobstructed projected width ^a
	Direct Interelectrode Capacitance (Approx.) 3 µµf Maximum Overall Length
	Maximum Seated Length
	Seated Length to Center of Cathode 1-5/8" ± 3/32"
	Maximum Diameter
	Operating Position
	Weight (Approx.) 0.9 oz
	Bulb
	Base Intermediate-Shell Octal 5-Pin Arrangement 1,
	(JEDEC No.B5-10)
	Basing Designation for BOTTOM VIEW
	Pin 1 - No Connection Pin 4 - Anode
	Pin 2 – No Connection 🧹 🗋 🌾 Pin 6 – No Connection
	Pin 8-Photocathode
	Maximum Ratings, Absolute-Maximum Values:
	Rating 1 Rating 11
	ANODE-SUPPLY VOLTAGE
	(DC or Peak AC) 70 max. 90 max. volts
	AVERAGE CATHODE-CURRENT DENSITY ^b
	AVERAGE CATHODE CURRENT ^b . 6 max. 3 max. µa
	AMBIENT TEMPERATURE 100 max. 100 max. ^{'O} C
-	Characteristics:
	With an anode-supply voltage of go
	volts unless otherwise specified
	Min. Median Max.
	Sensitivity:
	Radiant, at 8000 angstroms 0.019 - amp/watt
	angotiono anp/watt

-Indicates a change.

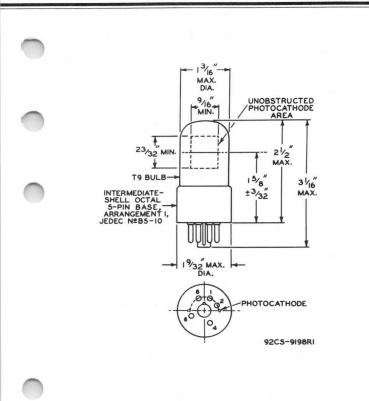
RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA | 3-61

			Min.	Median	Max.		
Luminous: ^c At 0 cps At 5000 cps At 10000 cps	:	:	140 	200 165 150	330 _ _	μa/lumen μa/lumen μa/lumen	0
Gas Amplification Factor $^{\rm d}$. Anode Dark Current at 25 $^{\rm O}$ C	:	:	-	-	.10	μa	
Minimum Circuit Values:							
With an anode-supply voltage of DC Load Resistance: For dc currents above			70 or 1	less	90	volts	0
3 μa	•		0.1 m	in.	-	megohm	
3 μa	•		0 m	in.	-	megohms	
2 μa		•	-	2.5	min.	megohms	0
2 μa			-	1	min.	megohm	-

^a On plane perpendicular to indicated direction of incident radiation.

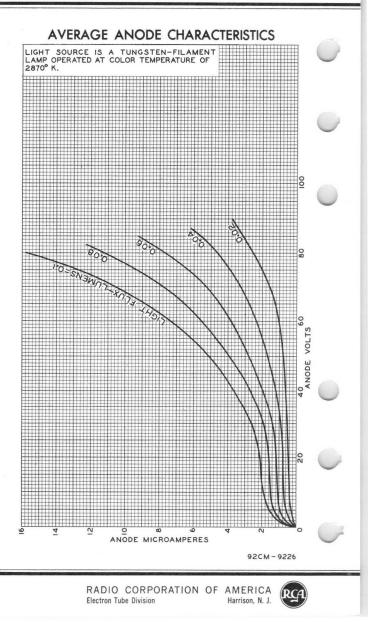
b Averaged over any interval of 30 seconds maximum.

- For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A dc anode supply voltage of 90 volts and a 1-megohm load resistor are used. For the 0-cycle measurement, a light input of 0.1 lumen is used. For the 5000- and 10,000-cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean value.
- d The ratio of luminous sensitivity at an anode supply voltage of 90 volts to luminous sensitivity at an anode supply voltage of 25 volts. In each case, sensitivity is obtained under conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K, the light input is 0.1 lumen, and the load resistor has a value of 1 megohm.


SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-I RESPONSE and

FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES

are shown at the front of this section



RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 2 3-61

Vidicon

AGNETIC FOCUS I" Diameter MAGNETIC DEFLECTION For Live and Film Pickup With Color or Black-and-White TV Cameras General: Heater, for Unipotential Cathode: Voltage (AC or DC). 6.3 ± 10% volts Current at heater volts = 6.3 0.6 amp Direct Interelectrode Capacitance:^a Target to all other electrodes. . . . 4.6 of Spectral Response See Accompanying Curves Photoconductive Layer: Maximum useful diagonal of rectangular Weight (Approx.)..... 2 oz . T8 or equivalent Deflecting Yoke Cleveland Electronics^{c,d} No.VY-111-3. or equivalent Alignment Coil. Cleveland Electronics^{c, d}No.VA-118. or equivalent Socket. Cinch®No.54A18088, or equivalent Base.Small-Button Ditetrar 8-Pin (JEDEC No.E8-11) Basing Designation for BOTTOM VIEW. 8HM TARGET IC Ga Pin 1 - Heater (5 Pin 2 - Grid No.1 Pin 3-Do Not Use IC(3 G3 6) G4 Pin 4 - Do Not Use Pin 5-Grid No.2 Pin 6-Grid No.3 G1(2 & No. 4 Pin 7 - Cathode Pin 8-Heater SHORT Flange - Target PIN IC Short Pin-Do Not Use DIRECTION OF LIGHT: INTO FACE END OF TUBE Maximum Ratings, Absolute-Maximum Values: For scanned area of 1/2" x 3/8" Grid-No.3 & Grid-No.4 Voltage 750 max. volts Grid-No.2 Voltage 750 max. volts Grid-No.1 Voltage: Negative-bias value 300 max. volts 🖛 Positive-bias value 0 max. volts - Indicates a change.

RADIO CORPORATION OF AMERICA

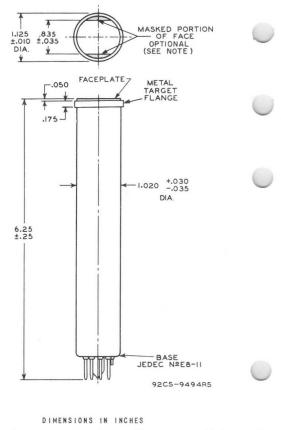
Harrison, N. J.

Electronic Components and Devices

DATA I 2-65

Peak Heater-Cathode Voltage: Heater negative with respect to cathode.125 max.Heater positive with respect to cathode.10 max.Dark Current.0.25 max.Peak Target Current0.55 max.Faceplate: Illumination1000 max.Temperature.71 max.	volts volts µa fc oC
Typical Operation:	
For scanned area of 1/2" x 3/8" and	
faceplate temperature of 30° to 35° C	
Grid-No.4 (Decelerator) & Grid-No.3 (Beam-Focus Electrode [†]) Voltage 250 ⁹ to 300 Grid-No.2 (Accelerator) Voltage 300 Grid-No.1 Voltaae for picture	volts volts
cutoff ^h 45 to-100 Average "Gamma" of Transfer Charac-	volts
teristic for signal-output current between 0.02 µa and 0.2 µa 0.65 Visual Equivalent Signal-to-Noise	
Ratio (Approx.)J	
When applied to grid No.1	volts volts
Coil (Approx.)	gauss
Alignment Coil ^k 0 to 4	gauss
Maximum-Sensitivity Operation for Live-Scene Picku	Þ
Faceplate Illumination (Highlight) 2 Maximum Target Voltage required to produce dark current of 0.2 μa	fc
in any tube ^m	volts
Target Voltage ⁿ	volts µa
Target Current (Highlight) ⁹ 0.4 to 0.5 Signal-Putput Current: ^r	μa
Peak. 0.2 to 0.3 Average 0.08 to 0.1	<i>µ</i> а <i>µ</i> а
Average-Sensitivity Operation for Live-Scene Pickup	
Faceplate Illumination (Highlight) 15 Maximum Target Voltage required to produce dark current of 0.02 μa	fc
in any tube ^m	volts
Target Voltage 30 to 50 Dark Current. 0.02	volts µa
Target Current (Highlight) [¶] 0.3 to 0.4 Signal-Output Current:	
Peak 0.3 to 0.4 Average	μa μa
→ Indicates a	

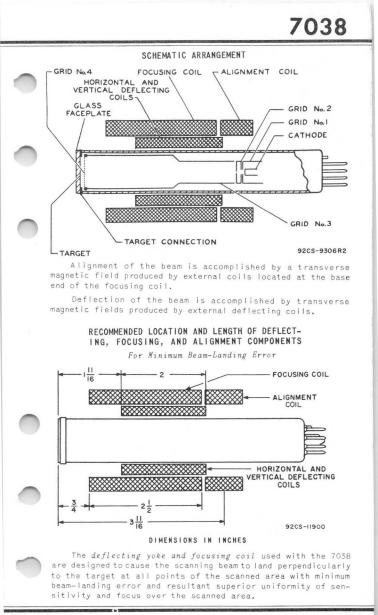
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.


RCA

Minimum	-Lag Operat	ion for Film	n Pickup	
Faceplate Illumina	tion (Highl	ight)	. 100	fc
Maximum Target Vol				
produce dark cur	rent of 0.0	04 μa		
in any tube ^m			. 30	volts
Target Voltage ⁿ .			. 15 to 25	volts
Dark Current			. 0.004	μa
Target Current (Hi Signal-Output Curr	ghlight/" .		. 0.3 to 0.4	μa
Peak	ent.		. 0.3 to 0.4	μa
Average			. 0.1 to 0.2	μa
				Pres
a This capacitance.	which effecti	velv is the	output impedance	of the
This capacitance, 7038, is increased and focusing-coil impedance is in th	when the tut	e is mounted	in the deflecti	ng-yoke
impedance is in th	e order of 10	10 megohms.	component of the	output
Proper orientation	of quality rec	tangle is obta	ined when the ho	rizontal
 Proper orientation scan is essentially of the faceplate. 	he straight s	ides are para	les of the masked plane	passing
through the tube at only and does not de	kis and short	pin. The mas	sking is for orig	entation
layer.	time the prop	ci scumed u		1000140
Cleveland Electro	nics Inc., 1	974 East 61s	t St., Clevelan	d, Ohio.
^a These components a		provide tube	operation with	minimum
e Cinch Manufacturin		South Homan	Avenue Chicano	24 111
[†] Beam focus is obta should be adjustabl an average field st	e over indica	ted range, an	d a focusing coi	1 having
9 Definition, focus	uniformity, a	nd picture a	ality decrease y	vith de-
9 Definition, focus creasing grid-No.4 grid No.3 should b	and grid-No.	3 voltage. In	n general, grid	No.4 and
ⁿ With no blanking v	oltage on gri	d No.1.		
j Measured with high having bandwidth predominately of ti to-noise ratiois t to rms noise curren	-gain, low-no	oise, cascode	-input-type amp	lifier
having bandwidth predominately of t	of 5 Mc. Bee he high-freque	cause the noi	se in such a sy	stem is
to-noise ratio is to	aken as the ra	tio of highli	ght video-signal	current
k The alignment coil	should be lo	by a factor	or 3.	contor
is at a distance o	f 3-11/16 inc	hes from the	face of the tube	, and be
k The alignment coil is at a distance o positioned so that the deflecting yok	e, and the fo	coincident wi cusing coil.	th the axis of t	he tube,
" The target voltage	for each 7038	must be adju	sted to that val	ue which
gives the desired i	operating dark	current.		
" Indicated range for the operating targe	or each type et-voltage rar	of service since normally e	erves only to il ncountered.	lustrate
				ning for
P The deflecting cir good black-level r to the scanning ve black-level error velocity	eproduction. locity. Any c	Dark-current	signal is propo ning velocity pr	ortional oduces a
black-level error velocity.	in direct p	roportion to	the change in s	canning
q Video amplifiers m	ust be design	ed properly to	o handle target	urrents
of this magnitude	to avoid ampl	ifier overloa	d or picture dis	tortion.
Defined as the com component has been	substracted.	target curre	nt after the dark	-current
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				

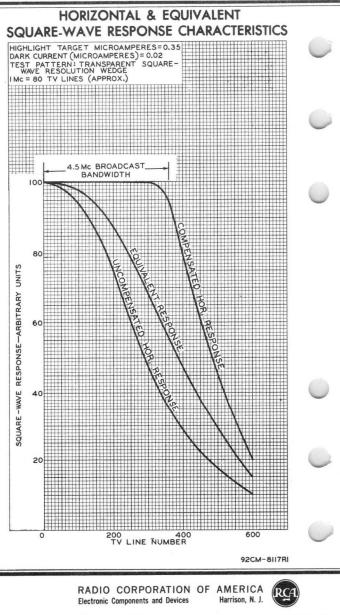
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

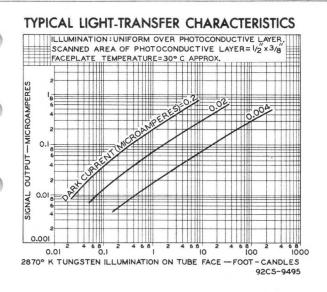
DA

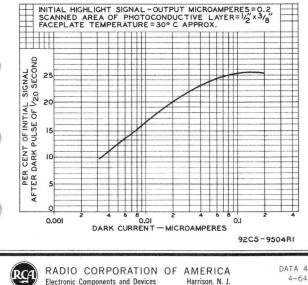


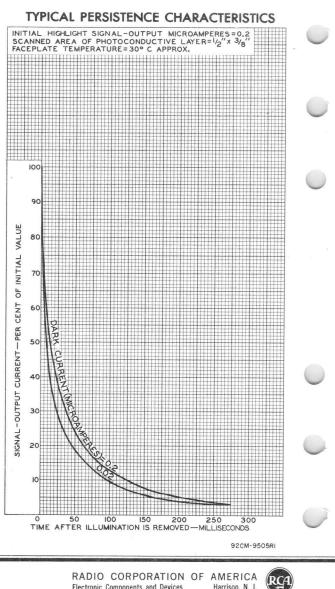
Note: Straight sides of masked portions are parallel to the plate passing through tube axis and short pin.

➡ Indicates a change.

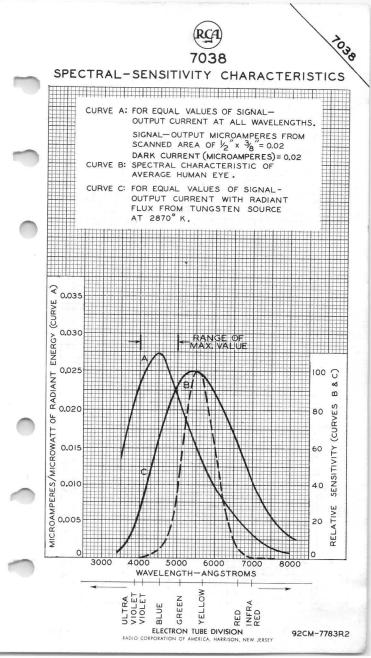

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.



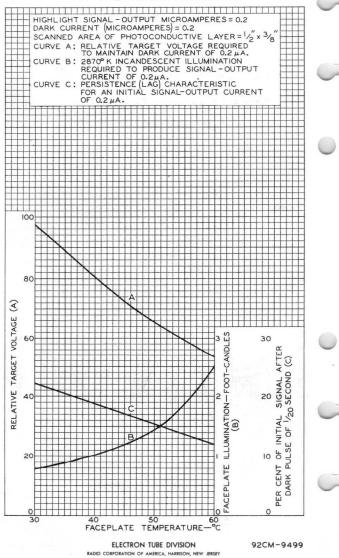

RCA

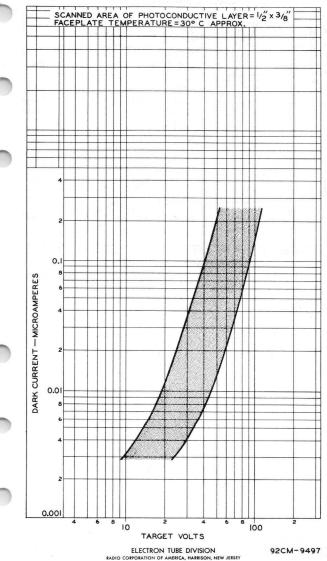

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 4-64

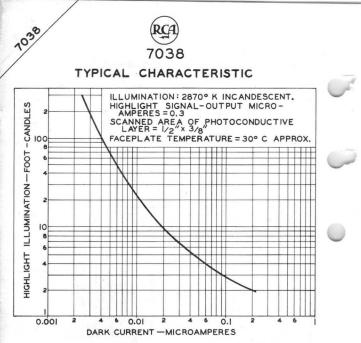
TYPICAL PERSISTENCE CHARACTERISTIC



Electronic Components and Devices


Harrison, N. J.




TYPICAL CHARACTERISTICS

DARK-CURRENT RANGE

92CS-9493

Photomultiplier Tube

10-Stage, Head-On Type Having S-1 Spectral Response

For the detection and measurement of low-level radiation extending from the visible to near-infrared region of the spectrum.

GENERAL State
Spectral Response
Cathode, Semitransparent Silver-Oxygen-Cesium
Minimum area
Minimum diameter 1.24 in (3.1 cm)
Window Lime Glass (Corning ^a No.0080) or equivalent
Shape Plano-Plano
Index of refraction at 5893 angstroms 1.512
Dynodes:
Substrate Copper-Beryllium
Secondary-Emitting Surface Beryllium-Oxide
Structure Circular-Cage, Electrostatic-Focus Type
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.10
Anode to all other electrodes
Seated Length
Maximum Diameter
Bulb
Base
Non-hygroscopic
Socket Eby ^b No.9058, or equivalent
Magnetic Shield Millen ^c No.80802C, or equivalent
Operating Position Any
Weight (Approx.) 2.2 oz (60 g)
MAXIMUM RATINGS, Absolute-Maximum Values
DC Supply Voltage:
Between anode and cathode 1500 max. V
Between anode and dynode No.10 250 max. V
Between consecutive dynodes
Between dynode No.1 and cathode 400 max. V
Average Anode Current ^e
Ambient Temperature ^f

Electronic Components

 Π

B/A

CHARACTERISTICS RANGE VALUES

Under conditions with supply voltage (E) across voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode.

With E = 1250 volts (Except as noted)

Anode Sensitivity:	Min.	Typical	Max.		
Radiant ^g at 8000 angstroms Luminous ^h (2870 ⁰ K) .	- 1	6.6×10 ² 7	 30	A/W A/Im	0
Cathode Sensitivity:					
Radiant ^j at 8000 angstroms Luminous ^k (2870 ⁰ K) .	_ 1x10 ⁻⁵	2.8x10 ⁻³ 3x10 ⁻⁵	-	A/W A/Im	
Current with infrared light source ^m (2870 ⁰ K + C.S. No.7-56)	1.2×10 ⁻⁸	4x10 ⁻⁸	_	A	
Quantum Efficiency at 7800 angstroms	-	0.43		%	
Current Amplification	-	2.3×10 ⁵	_		
Anode Dark Current ⁿ		1.9×10 ⁻⁶	6x10 ⁻⁶	A	
Equivalent Anode Dark	6 -	4.8x10 ⁻⁷	1.5×10 ⁻⁶	Im	
Current Input ⁿ	1 -	5.1x10 ^{-9p}	1.6×10 ⁻⁸	W	
	1 -	1.5x10 ⁻¹⁰	-	Im	
Equivalent Noise Input ^q	1 -	1.6x10 ^{-12r}	_	W	
Anode-Pulse Rise Time ^s at 1500 V	-	2.2x10 ⁻⁹	-	S	
Electron Transit Time ^t at 1500 V	–	2.8×10 ⁻⁸	-	s	-
2					1

- ^a Made by Corning Glass Works, Corning, NY 14830.
- ^b Made by Hugh H. Eby Company, 4701 Germantown Avenue, Philadelphia, PA 19144.
- c Made by James Millen Manufacturing Company, 150 Exchange Street, Malden, MA 02148.
- e Averaged over any interval of 30 seconds maximum. When stability of operation is important, the use of an average anode current well below the maximum rated value of 10 microamperes is recommended. This maximum rating should never be exceeded because operation at higher average output currents may cause a permanent decrease in infrared sensitivity and a consequent decrease in the tube life.

f Tube operation at room temperature or below is recommended.

Electronic

Components

日/八

Indicates a change or addition.

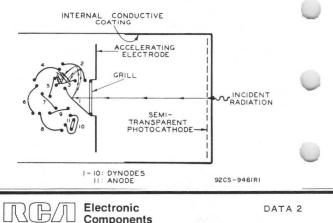
- g This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 94 lumens per watt.
 - Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 10 microlumens is used.
 - This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 94 lumens per watt.
 - Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 250 volts are applied between cathode and all other electrodes connected as anode.
 - Under the following conditions: Light incident on the cathode is transmitted through an infrared filter (C.S. No.7-56, manufactured by Corning Glass Works, Corning, NY 14830) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen, and 250 volts are applied between cathode and all other electrodes connected as anode.
- At a tube temperature of 22^o C. With supply voltage adjusted to give a luminous sensitivity of 4 amperes per lumen. Dark current caused by thermionic emission may be reduced by use of a refrigerant.
- At 8000 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 94 lumens per watt.
- ^q Under the following conditions: Tube temperature 22^o C, external shield connected to cathode, bandwidth 1 Hz, tungstenlight source at a color temperature of 2870^o K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.

At 8000 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 94 lumens per watt.

- Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
 - The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal

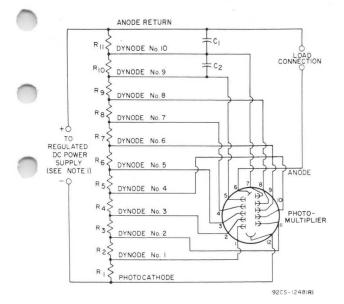
reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

TERMINAL CONNECTIONS


The base pins of the 7102 fit a duodecal 12-contact socket, such as Eby No.9058, or equivalent. The basing arrangement is such that the voltage between anode pin and adjacent pins is not more than twice the voltage per stage. As a result, external leakage between anode pin and adjacent pins is kept low.

ANODE CURRENT

The operating stability of the 7102 is dependent on the magnitude of the anode current. The use of an average anode current well below the maximum rated value of 10 microamperes is recommended when stability of operation is important. This maximum rating should never be exceeded because operation at higher average output currents may cause a permanent decrease in infrared sensitivity and a consequent decrease in the tube life.

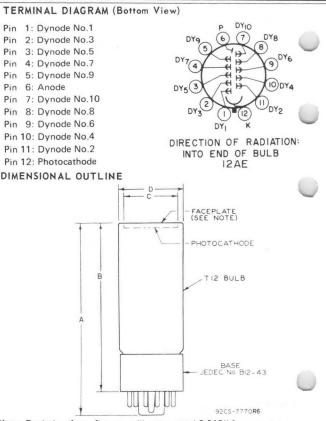

SHIELDING

Electrostatic and/or magnetic shielding of the 7102 may be necessary.

SCHEMATIC ARRANGEMENT OF STRUCTURE

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT

C₁: 0.02 μ F, 20%, 500 volts (dc working), ceramic disc C₂: 0.01 μ F, 20%, 500 volts (dc working), ceramic disc R₁: 910,000 ohms, 2 watts


R2 through R11: 470,000 ohms, 1 watt

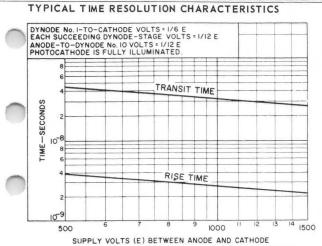
Note 1: Adjustable between approximately 500 and 1500 volts dc.

Note 2: Capacitors C_1 and C_2 should be connected at tube socket for optimum high-frequency performance.

Note 3: Component values are dependent upon nature of application and output signal desired.

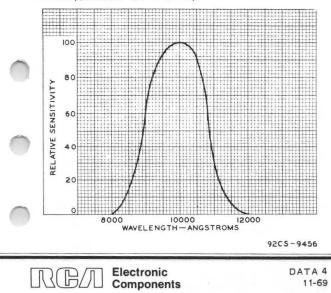
DATA 3 11-69

Note: Deviation from flatness will not exceed 0.010" from peak to valley.

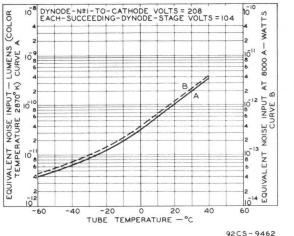

Q of bulb will not deviate more than 2^{0} in any direction from the perpendicular erected at the center of bottom of the base.

Dimensions	Inches	mm
A	4.57 max.	116.1 max.
В	3.88 <u>+</u> 0.19	98.5 <u>+</u> 4.8
С	1.24 min. dia.	31.4 min. dia.
D	1.56 max. dia.	39.6 max. dia.

Electronic Components

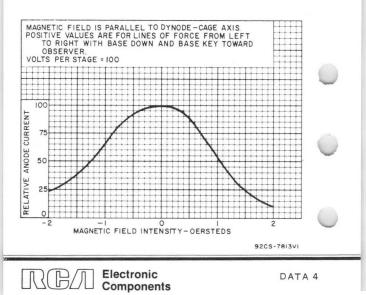

日/几

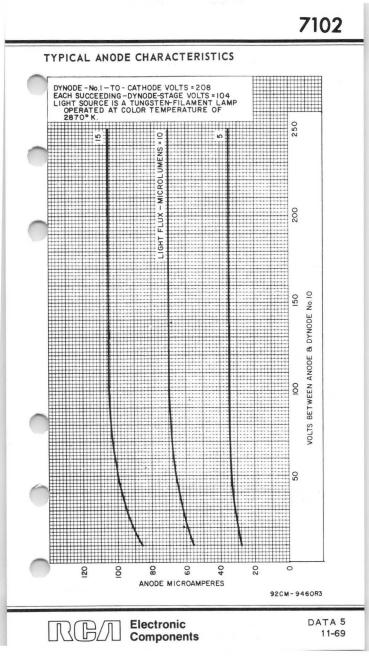
DATA 3



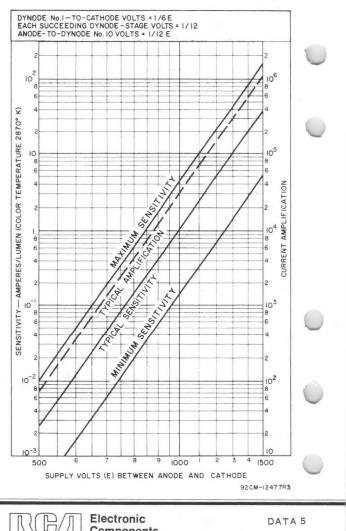
92CS-12475

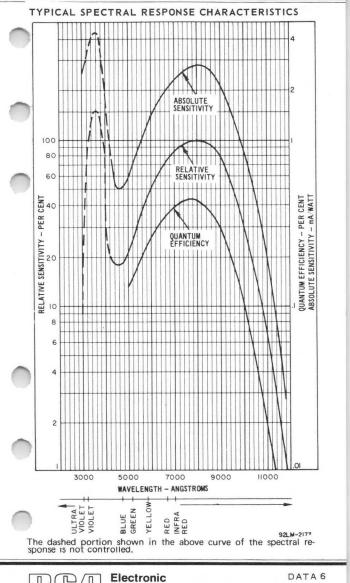
SPECTRALCHARACTERISTICOF RADIATION FROM 2870°K LIGHT SOURCE AFTER PASSING THROUGH INFRARED FILTER (CORNING C.S. NO.7-56)





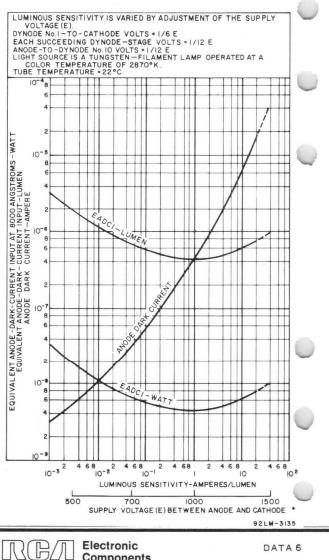
TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE


CURRENT


SENSITIVITY AND CURRENT AMPLIFICATION

CHARACTERISTICS

Electronic Components


DATA 5

Components

11-69

TYPICAL EADCI AND ANODE DARK CURRENT CHARACTERISTICS

Components

Photomultiplier Tube

9-STAGE, SIDE-ON TYPE HAVING S-4 RESPONSE

For DC-Operated Control Applications Such as Automobile-Headlight Control

GENERAL

Spectral Response
Wavelength of Maximum Response 4000 ± 500 angstroms
Cathode. Opague
Minimum projected length ^a
Minimum projected width ^a 0.31 in
Minimum projected width ^a 0.31 in Window Lime Glass, (Corning ^b No.0080), or equivalent ←
Dynode Material Cs-Sb -
Direct Interelectrode Capacitances (Approx.)
Anode to dynode No.9
Anode to all other electrodec
Anode to all other electrodes 5.5 pF
Maximum Overall Length
Maximum Seated Length
Length
From base seat to center of useful cathode area
Maximum Diameter
Operating Position Any
Weight (Approx.)
Envelope JEDEC T9
Base Small-Shell Neosubmagnal II-Pin (JEDEC No.BII-104),
BaseSmall-Shell Neosubmagnal II-Pin (JEDEC No.BII-104), Non-hygroscopic
Base Small-Shell Neosubmagnal II-Pin (JEDEC No.BII-104),

ABSOLUTE-MAXIMUM RATINGS

DC Supply Voltage

Between	anode and c	atho	de.						÷		1250	٧
Between	dynode No.9	and	an	ode.							250	V
Between	consecutive	dyr	ode	S			×.				250	٧ 🖛
	dynode No.1											٧ -
Average Ar	node Current	е.									0.1	mA
Ambient Te	emperature.					×.					75	°C

TERMINAL DIAGRAM (Bottom View)

Pin	1 – Dynode	No.1
Pin	2 – Dynode	No.2
Pin	3 – Dynode	No.3
Pin	4 – Dynode	No.4
Pin	5 – Dynode	No.5
Pin	6 – Dynode	
Pin	7 – Dynode	No.7
Pin	8 – Dynode	No.8
Pin	9 – Dynode	No.9
Pin	10 – Anode	
Pin	11 - Photoca	thode

[🗕] Indicates a change.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA | 6-66

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing 1/10 of E between cathode and dynode No.1; 1/10 of E for each succeeding dynode stage; and 1/10 of E between dynode No.9 and anode.

11 .

m

11

With E = 1000 V (except as noted)

Sensitivity	MUT	Typ	Max	
Radiant, at 4000 angstroms		3.4×10 ⁴	-	A/W
Luminous, at 0 c/s [†]	-	34	-	A/1m
Electrode Dark Current At 25°C			7	
At anode	-	-	1 x 10-7	Α
At any other electrode	-	-	x 0 ⁻⁷ 7.5x10-7	А

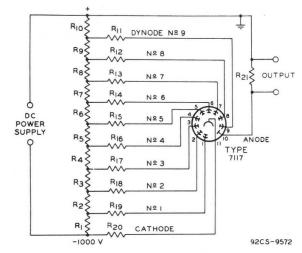
With E = Adjustable dc voltage

a On plane perpendicular to the indicated direction of incident light and passing through the major axis of the tube.

- ^D Made by Corning Glass Works, Corning, New York.
- ^C Made by Amphenol Electronics Corporation, 1830 South 54th Avenue, Chicago 54, Illinois.
- d Made by James Millen Manufacturing Company, 150 Exchange Street, Malden 48, Massachusetts.
- e Averaged over any interval of 30 seconds maximum.
- f Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870% and a light input of 10 microlumens is used.
- of 2010% and a fight input of 1 matrix index is used. 9 Under the following conditions: Light incident on the cathode is transmitted through a filter (Corning C. S. No. 3-67, Glass Code No. 3482-Manufactured by the Corning Glass Works, Corning, New York) from a tungstenfilament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 10 microlumens. Supply voltage (E) is adjusted to give an anode current of 50 microamptres.

SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-4 Response is shown at the front of this Section

DIMENSIONAL OUTLINE and AVERAGE-ANODE-CHARACTERISTICS and VARIATION-IN-SENSITIVITY-OF-PHOTOCATHODE Curves shown under Type 6328 also apply to the 7117


- Indicates a change.

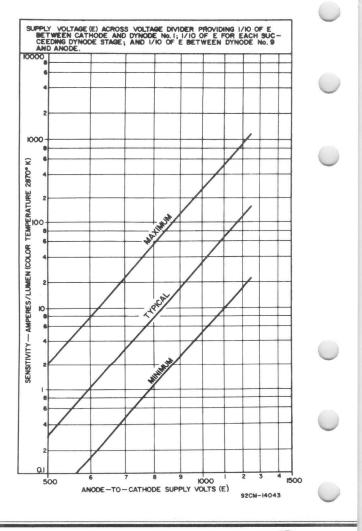
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

DATA I

RECOMMENDED VOLTAGE-DIVIDER NETWORK FOR USE WITH TYPE 7117 IN HEADLIGHT-CONTROL SERVICE

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10: 1 megohm, 1/2 watt R11: 2 megohms, 1/2 watt R12: 5.1 megohms, 1/2 watt R13 R14 R15 R16 R17 R18 R19 R20: 8.2 megohms, 1/2 watt R21: 820,000 ohms, 1/2 watt

Information furnished by RCA is believed to be accurate and re-Initiation further and by ACA for its benefities of the accurate and the liable. However, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.



RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA 2 6-66

Sensitivity Characteristics

DATA 2

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

MULTIPLIER PHOTOTUBE

9-STAGE TYPE HAVING S-19 RESPONSE

For detection and measurement of ultraviolet radiation

D	Δ	1	Δ	
~		ंग	~	

General:			
Spectral Response Wavelength of Maximu Cathode:	m Response		. S–19 gstroms
Minimum projected Minimum projected Direct Interelectrod	width•		0.94" 0.31"
Anode to dynode No Anode to all other Maximum Overall Leng Maximum Seated Lengt	.9 electrodes th	4.4	μμf μμf 5.69" 5.12"
	a		1.31" 1.8 oz
Operating Position . Bulb Socket BaseSmall-	Fused-Silica .Amphenol Part N	Section with Grade	ivalent 11-88),
Basing Designation	for BOTTOM VIEW		• •11K
Pin 1 - Dynode No.1 Pin 2 - Dynode No.2 Pin 3 - Dynode No.3	4 4 ± 2 3	Pin 7-Dynode Pin 8-Dynode Pin 9-Dynode	No.8
Pin 4 - Dynode No.4 Pin 5 - Dynode No.5		Pin 10-Anode Pin 11-Photo- catho	
Pin 6 - Dynode No.6	DIRECTION OF LIGH	T Calho	je
Maximum Ratings, Abs	olute Values:		
SUPPLY VOLTAGE BETWE (DC or Peak AC)		IODE ••• 1250 max.	volts
SUPPLY VOLTAGE BETWE DYNODE No.9 (DC or AVERAGE ANODE CURREN	Peak AC)	250 max. 0.5 max.	volts ma
AMBIENT-TEMPERATURE		-80 to +75	
• *. Soo part page			
",": See next page. 7-58		TENTATIVE	

ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

MULTIPLIER PHOTOTUBE

Characteristics:

1200

Under conditions with dc supply voltage (E) across a voltage divider providing 1/10 of E between cathode and dynode No.1; 1/10 of E for each succeeding dynode stage; and 1/10 of E between dynode No.9 and anode

With E = 1000 volts dc (except as noted)

	Min.	Median	Max.	
Sensitivity:				
Radiant, at				
3300 angstroms	-	65000		μa/μw
Cathode radiant, at				
3300 angstroms		0.065		μa/μw
Luminous:#				
At O cps	15	40	300	amp/lumen
Cathode luminous .	20	40	_	µa/lumen
Current Amplification	-	1000000	-	
Equivalent Anode-Dark-				
Current Input≜□	_	2×10^{-10}	2×10^{-9}	lumen
Equivalent Noise				
Input:				
Luminous*				
At +25° C	-	7.5×10^{-13}	-	lumen
At -78° C	-	4 × 10-14	-	lumen
Ultraviolet†—				
At +25° C	-	6.6×10^{-16}	-	watt
At -78° C	-	4×10^{-17}	-	watt

• On plane perpendicular to the indicated direction of incident light.

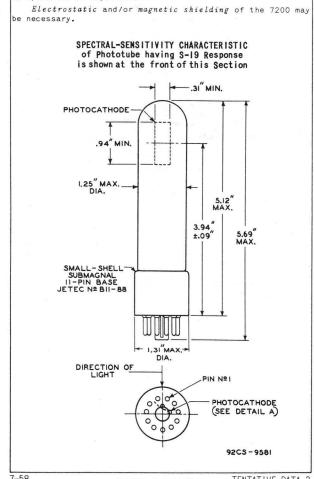
* Averaged over any interval of 30 seconds maximum.

[#] For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A light input of 10 microlumens is used. The load resistor has a value of 0.01 megohm.

For conditions the same as shown under (#) except that the value of light flux is 0.01 lumen and 100 volts are applied between cathode and all other electrodes connected together as anode.

Supply voltage (E) adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission and ion feedback may be reduced by the use of a refrigerant.

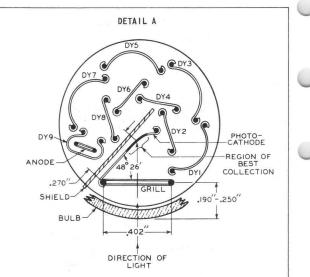
For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1000 volts is recommended.


- Under the following conditions: Supply voltage (E) is 1000 volts, external shield operated at -1000 volts with respect to anode, 25° C tube temperature, ac-amplifier bandwidth of 1 cycle per second, tungsten light source at color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.
- Determined under the same conditions as shown under (*) except that use is made of monochromatic source having radiation of 2537 angstroms.

MULTIPLIER PHOTOTUBE

OPERATING CONSIDERATIONS

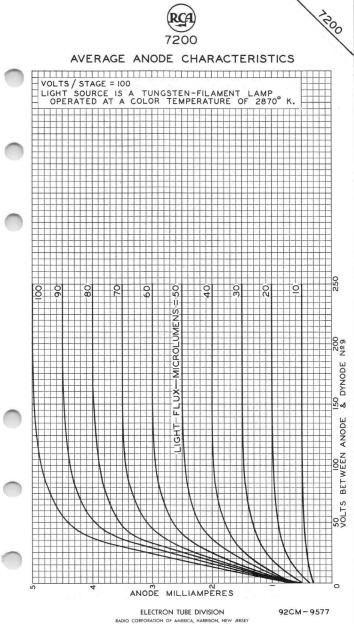
The use of an average anode current well below the maximum rated value of 0.5 milliampere is recommended when stability of operation is important.


7-58

ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

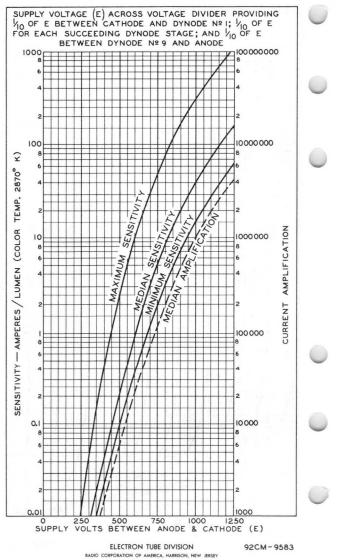
TENTATIVE DATA 2

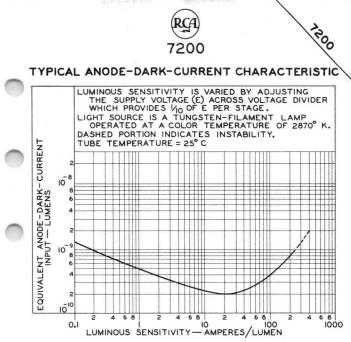
MULTIPLIER PHOTOTUBE

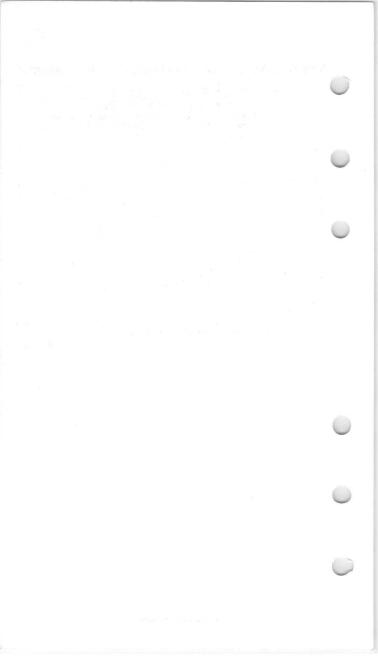

92CS-8674RI

NOTE I: CENTER LINE OF BULB WILL NOT DEVIATE MORE THAN 2° IN ANY DIRECTION FROM THE PERPENDICULAR ERECTED AT CENTER OF BOTTOM OF BASE.

NOTE 2: THE MAXIMUM ANGULAR VARIATION BETWEEN THE PLANE THROUGH PINS I AND II AND THE PLANE OF THE GRILL WILL NOT EXCEED $6^{\circ}.$


7-58


1200



CHARACTERISTICS

7262A

Vidicon

		-
)	Short, Sturdy, 1-Inch Diameter Type Magnetic Focus Low Heater Power – 0.6 watt 1000 TV Line Resolution For Compact, Low-Power Transistorized TV Cameras GENERAL	n
	Heater, for Unipotential Cathode:	
)		V A
	Direct Interelectrode Capacitance: ^a	
	Target to all other electrodes 4.6 pl	F
	Spectral Response See Typical Spectral Sensitivity	
	Photoconductive Layer: Maximum useful diagonal of rectangular image (4 x 3 as- pect ratio) 0.62 inc	
	Orientation of quality rectangle-Proper orientation is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short index pin. The masking is for orientatic only and does not define the proper scanned area of the photoconductive layer.	ne ne ne on
	Focusing Method Magneti	c
	Deflection Method Magneti	c
	Overall Length	3"
	Greatest Diameter 1.125" ± 0.010)''
	Bulb T	8
	Base Small-Button Ditetrar 8-Pin, (JEDEC No.E8-11	
	Socket Cinch ^b No.54A18088, or equivaler Focusing Coil-Deflecting Yoke-Alignment Coil Assembly Cleveland Electronics ^{cd} No VYFA-355-1, or equivaler	р.
	Operating Position An	ıy
	Weight (Approx.)	z.
	ABSOLUTE MAXIMUM RATINGS	
	For scanned area of 1/2" x 3/8"	
	Grid-No.3 & Grid-No. 4 Voltage 1000 max. volt	s
	Grid-No. 2 Voltage 1000 max. volt	s
	Grid-No. 1 Voltage:	
	Negative bias value	

RBA Electronic Components

Peak Heater-Cathode Voltage:	
Heater negative with respect to cathode 125 max. vo	olts
Heater positive with respect to cathode 10 max. vo	olts
Target Voltage 100 max. vo	olts
Dark Current 0.25 max.	μΑ
Peak Target Current [†] 0.55 max.	μΑ
Faceplate:	
Illumination ⁹	fc oC
TYPICAL OPERATION AND PERFORMANCE DATA	
For scanned area of $1/2"$ Low- High- x $3/8"$ – Faceplate tem- Voltage Voltage perature of 30° to $35^{\circ}C$ Operation Operation Grid-No.4 (Decelerator) & Grid-No.3 (Beam-Focus Electrode) Voltage 250 to 300^{h} 750 voltage	olta
Grid-No.2 (Accelerator)	olts
Grid-No.1 Voltage for	olts
Average "Gamma" of Transfer Characteristic for Signal-Output Current between 0.02µA and 0.2µA0.65 0.65	
Visual Equivalent Signal- to-Noise Ratio(Approx.)k 300:1 300:1	
Lag_Per Cent of Initial Value of Signal-Output Current 1/20 Second After Illumination is Removed: ^m	
Maximum value	% %
	olts
Limiting Resolution: At center of picture- Typical value	nes
Amplitude Response to a 400 TV Line Square-Wave Test Pattern at Center of	
Picture	%
□ □ □ □ Electronic DAT	ГА 1

RBA Electronic Components

7262A

	Field Strength at Center of Focusing Coil ⁿ	gauss	
)	Peak Deflecting-Coil Current: Horizontal	mA mA	
	Field Strength of Adjustable Alignment	mA	
	Coil0 to 4 0 to 4 High-Sensitivity Operation_	gauss	
2	0.1 Footcandle on Faceplate Faceplate Illumination (Highlight)0.1	fc	
	Target Voltage ^{P, q} 30 to 60	volts	
	Dark Current ^r	μA	
)	Signal-Output Current: ⁵ Typical0.11 Average-Sensitivity Operation-	μA	
	1.0 Footcandle on Faceplate		
	Faceplate Illumination (Highlight)	fc	
	Target Voltage ^{P, q} 20 to 40	volts	
	Dark Current ^r 0.02	μA	
	Signal-Output Current: ⁵ Typical0.2 High Light Level Operation-	μA	
	10 Footcandles on Faceplate Faceplate Illumination (Highlight)	$_{\rm fc}$	
	Target Voltage ^{P, q} 10 to 22	volts	
	Dark Current ^r	μA	
1	Signal-Output Current: ^{\$} Typical0.3	μA	

^aThis capacitance, which effectively is the output impedance, is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohms.

^bMade by Cinch Manufacturing Corporation, 1026 S. Homan Ave., Chicago 24, Illinois.

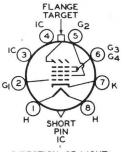
^cMade by Cleveland Electronics, Inc., 2000 Highland Road, Twinsburg, Ohio. Components are also available from companies such as Syntronic Instruments, Inc., 100 Industrial Road, Addison, Illinois and Celco-Constantine Engineering Laboratories Co., 70 Constantine Drive, Mahwah, New Jersey.

^dThese components are chosen to provide tube operation with minimum beam-landing error.

RBA Electronic Components DATA 2 1-68

7262A

- ^fVideo amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.
- ⁹For conditions where "white light" is uniformly diffused over entire tube face.
- ^hDefinition, focus uniformity, and picture quality decrease with decreasing grid-No. 4 and grid-No. 3 voltage. In general, grid No. 4 and grid No. 3 should be operated above 250 volts.


With no blanking voltage on grid No. 1.

- ^kMeasured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5MHz and a peak signal-output current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3.
- ^mFor initial signal-output current of 0.3 microampere and a dark current of 0.025 microampere.
- ⁿThe polarity of the focusing coil should be such that a northseeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- ^PThe target voltage for each 7262A must be adjusted to that value which gives the desired operating signal current.
- ^qIndicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- ^r The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.
- ⁵Defined as the component of the highlight target current after the dark-current component has been subtracted.

OPERATING CONSIDERATIONS

When operated at maximum voltage, the 7262A has a typical center resolution of 1000 TV lines and a typical corner resolution of 600 TV lines. At low operating voltage with minimum deflection and focus power employed, its center resolution will ordinarily be in excess of 650 TV lines and 350 TV lines in the corner.

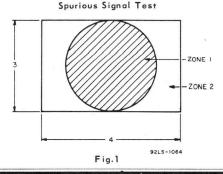
BASING DIAGRAM (Bottom View)

DIRECTION OF LIGHT: INTO FACE END OF TUBE 8HM

Pin 1: Heater

Pin 2: Grid No. 1

- Pin 3: Internal Connection Do Not Use
- Pin 4: Internal Connection Do Not Use
 - Pin 5: Grid No. 2


Pin 6: Grids No. 3 and No. 4

- Pin 7: Cathode
- Pin 8: Heater

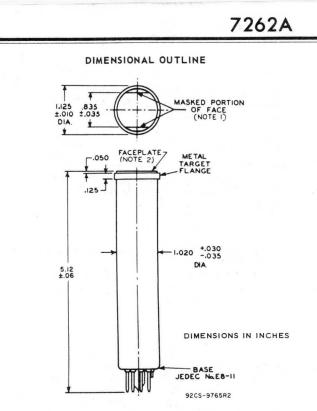
Flange: Target

日/川

Short Index Pin: Internal Connection - Make No Connection

Electronic Components DATA 3 1-68

7262A

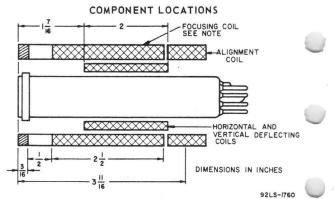

This test is performed using a uniformly diffused white test pattern that is separated into two zones as shown in *Fig.1*. The 7262A is operated under the conditions specified under *Typical Operation and Performance Data* with the lens adjusted to provide a target current of 0.3 microampere. The tubes are adjusted to provide maximum picture resolution. Spurious signals are evaluated by size which is represented by equivalent numbers of raster lines in a 525 TV line system. Allowable spot size for each zone is shown in Table 1. To be classified as a spot, a contrast ratio of 1.5:1 must exist for white spots and 2:1 for black spots. Smudges, streaks, or mottled and grainy background must have a contrast ratio of 1.5:1 to constitute a reject item.

Equivalent Number of Raster Lines	Zone 1 Allowed Spots	Zone 2 Allowed Spots
over 4	0	0
4 but not including 3	0	1
3 but not including 1	2	3
1 or less	*	*

Table 1For scanned area of 1/2" x 3/8"

Minimum separation between any 2 spots greater than 1 raster line is limited to 16 raster lines.

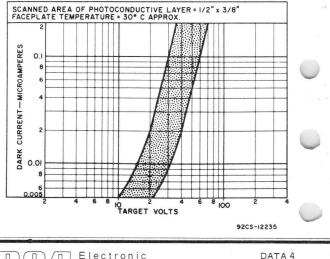
*Spots of this size are allowed unless concentration causes a smudged appearance.



Note 1: Straight sides of masked portions are parallel to the plane passing through tube axis and short index pin.

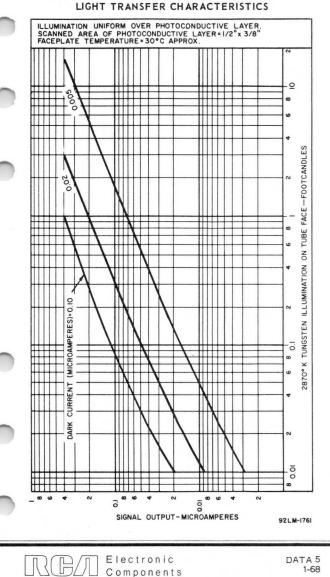
Note 2: Faceplate glass is Corning No. 7056 having a thickness of 0.094" ± 0.012".

RBA Electronic Components

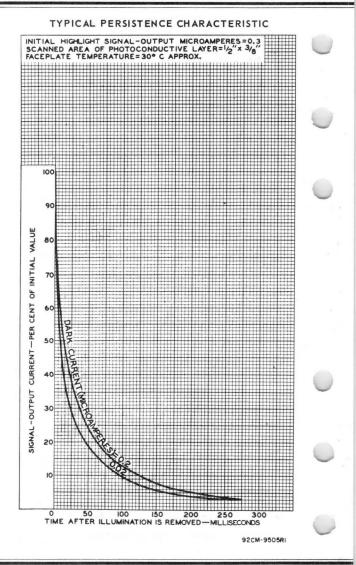


NOTE: CROSS-HATCHING INDICATES WOUND PORTION OF FOCUSING COIL.

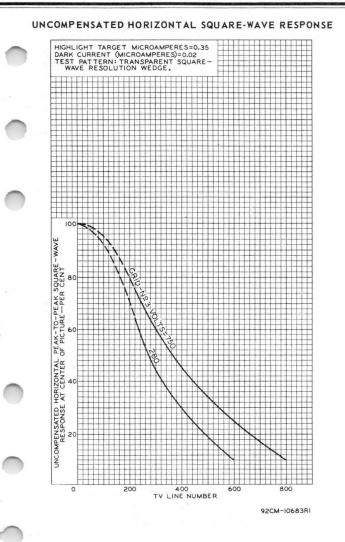
Recommended Location and Length of Deflecting,


Focusing, and Alignment Components to obtain Minimum Beam-Landing Error.

RANGE OF DARK CURRENT

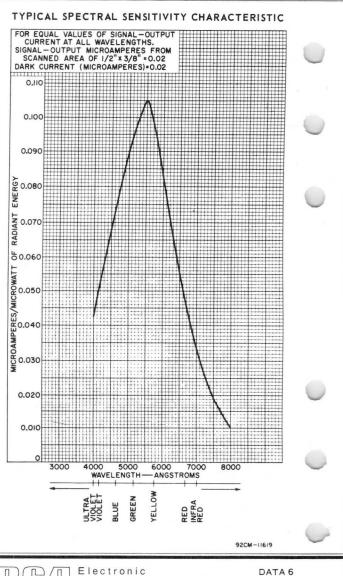

Components

7262A



Components

1-68



RBA Electronic Components

DATA 6 1-68

Components

DATA 6

7263A

Vidicon

Short, Ruggedized, 1-Inch Diameter Type Magnetic Focus Magnetic Deflection

Low-Power 0.6 W Heater

1000 TV Line Resolution

For Compact, Low-Power Transistorized TV Cameras Where Severe Shock and Vibration Conditions Exist

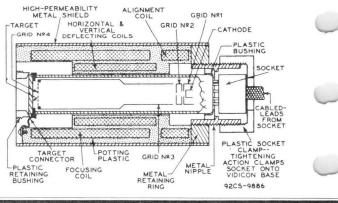
The 7263A is the same as the 7262A except for the following:

SPECIAL PERFORMANCE DATA

In connection with the following tests, sample 7263A's will maintain resolution as determined with a RETMA Resolution Chart, or equivalent, and will faithfully reproduce all resolution wedges and grey scales of the chart.

Vibration Tests These tests are performed under conditions for Average-Sensitivity Operation on a sample lot of tubes from each production run. Tubes and their associated components§ are vibrated on apparatus providing dynamic conditions similar to those described in MIL-E-5272B, par.4.7.1.

Resonance. Tubes and associated components§ are vibrated (per the method of MIL-E-5272B+, par.4.7.1.1) for 1 hour at $+25^{\circ}$ C, for 15 minutes at 0° C, and for 15 minutes at $+55^{\circ}$ C.


Cycling. Tubes and associated components§ are vibrated (per the method of MIL-E-5272B), par.4.7.1.2 pertaining to specimen without vibration isolators) for 1 hour at $+25^{\circ}$ C, for 15 minutes at 0° C, and for 15 minutes at $+55^{\circ}$ C.

Temperature-Pressure (Altitude) Tests. Tubes and associated components§ are subjected (per the method of MIL-E-5400* par.3.2.20, 3.2.20.1, and 3.2.20.1.1) to the separate and combined effects of varying temperature 0° to +55°C and varying barometric pressure 30" to 3.4" of mercury. The pressures correspond to sea level and to an altitude of 50,000 feet, respectively.

7263A

- Shock Tests. These tests are performed with no voltages applied on a sample lot of tubes from each production run. Tubes are subjected in these tests (per MIL-E-5400*, par.3.2.21.2.1) to 18 impact shocks of 15g consisting of 3 shocks in opposite directions along each of three mutually perpendicular axes of the tube. Each shock impulse has a duration of 11 ± 1 milliseconds with a maximum impact acceleration occurring at approximately 5.5 milliseconds. Tube mounting accessories assure the rigid fastening of the tube to the shock test apparatus.
- **Temperature-Humidity Tests.** These tests are performed with no voltages applied to the 7263A. The 7263A is subjected (per the method of MIL-E-5400*, par. 3.2.20.2B) to relative humidities up to and including 95 per cent at temperatures up to and including +50° C.
- § Tube socket such as Cinch No.54A18088 and RCA Assembly No.200SDU501, or equivalent, which consists of the deflecting coils, focusing coil, alignment coil, shield, and target connector.
- 5 June 1957, Procedure 1 of Military Specification.
- * 1 January 1956.

TYPICAL COMPONENT ASSEMBLY FOR TUBE OPER-ATION UNDER SEVERE ENVIRONMENTAL CONDITIONS

RBA Electronic Components DATA

MULTIPLIER PHOTOTUBE

14-STAGE, HEAD-ON, SPHERICAL-FACEPLATE TYPE WITH 1.68"-DIA., SPHERICAL, SEMITRANSPARENT PHOTOCATHODE AND S-11 RESPONSE VERY SHORT TIME-RESOLUTION CAPABILITY

n		1	r	4
υ	P	۱I	L	A

	DATA	
Genera	d:	
Spectr	ral Response	S-11
Wavele	ength of Maximum Response	. 4400 ± 500 angstroms
	5	
	de, Semitransparent: De	Spherical
Wind		
Ar	ea	2.2 sq. in.
M	inimum diameter	1.68 in.
	ndex of refraction	1.51
	Interelectrode Capacitances	
	prox.):	
	de to dynode No.14	2.4 <i>μμ</i> ⁻
	de to all other electrodes.	5.5 μμ [*]
	ode No.14 to all other	5.5 <i>µµ</i>
		7.5 <i>μμ</i>
	um Overall Length	
	d Length	
	um Diameter	
Operat	ting Position	
	t (Ăpprox.)	
Bulb .		
Socke	t Alden No.220FT with 20	contacts, or equivalen
	Small-Shell Bidecal 20	
Bas	ing Designation for BOTTOM VIEW .	
Pin	1 - No Connec-	Pin 14 - Dynode No.8
. rui	tion	Pin 15 - Dynode No.6
Pin	2 - Dynode No.1	Pin 16 - Dynode No.4
Pin		Pin 17-Dynode No.2
	3 - Dynode No.3	
Pin	4 - Dynode No.5 (12)	Pin 18-No Connec-
Pin	5 - Dynode No.7	tion
Pin	6 Dypodo No 9 7	Pin 19-Grid No.1
Pin	7 - Dynode No. 11	(Focusing
Pin	8 - Dynode No.13	Electrode)
Pin	9-Grid No.2	Fill ZU - Flotocathoue
	(Accelerating 3	Metal Collar–No
	Electrode)	Connection
	10 - Anode DIRECTION OF LIGHT:	(If used,
	11 - Dynode No.14	connect
	12 - Dynode No.12	only to
Pin	13 - Dynode No.10	photo-
		cathode)
1 m		
2-59		TENTATIVE DATA

MULTIPLIER PHOTOTUBE

<pre>VERY-LOW-LIGHT-LEVEL, LOW-NOISE, HIGH-GAIN SERVICE With subply voltage (E) across voltage divider pro- viding electrode voltages shown in Table I—Column A aximum Ratings, Absolute Values: JPPLY VOLTAGE BETWEEN ANODE AND CATHODE (DC)</pre>	-				
<pre>viding electrode voltages shown in Table I—Column A aximum Ratings, Absolute Values: JPPLY VOLTAGE BETWEEN ANODE AND CATHODE (DC)</pre>	VERY-LOW-LIGHT-LE	VEL,	LOW-NOISE, HI	GH-GAIN SER	VICE
<pre>viding electrode voltages shown in Table I—Column A aximum Ratings, Absolute Values: JPPLY VOLTAGE BETWEEN ANODE AND CATHODE (DC)</pre>	With subply voltag	e (E)	across volt	age divider	pro-
<pre>JPPLY VOLTAGE BETWEEN ANODE AND CATHODE (DC)</pre>	viding electrode v	oltag	es shown in T	able I—Col	umn A
CATHODE (DC)	laximum Ratings, Absolu	te Va	lues:		
CATHODE (DC)	, see a				
JPPLY VOLTAGE BETWEEN DYNODE No.14 AND ANODE (DC)				2400 m	ax. volts
JPPLY VOLTAGE BETWEEN CONSECUTIVE DYNODES (DC)	SUPPLY VOLTAGE BETWEEN	DYNOD	E No.14		
DYNODES (DC)	AND ANODE (DC)			400 m	ax. volts
JPPLY VOLTAGE BETWEEN ACCELERATING ELECTRODE AND DYNODE No.13 (DC) 400 max. volts (NODE-No.1 SUPPLY VOLTAGE (DC) 400 max. volts JCUSING-ELECTRODE SUPPLY VOLTAGE (DC). 400 max. volts /ERAGE ANODE CURRENT		CONSE	CUTIVE		
ELECTRODE AND DYNODE No.13 (DC) ±500 max. volts (NODE-No.1 SUPPLY VOLTAGE (DC) 400 max. volts OCUSING-ELECTRODE SUPPLY VOLTAGE (DC). 400 max. volts (ERAGE ANODE CURRENT				500 m	ax. volts
<pre>(NODE-No.1 SUPPLY VOLTAGE (DC) 400 max. volts)CUSING-ELECTRODE SUPPLY VOLTAGE (DC). 400 max. volts /ERAGE ANODE CURRENT</pre>				+500 m	ov volte
<pre>CUSING-ELECTRODE SUPPLY VOLTAGE (DC). 400 max. volts /ERAGE ANODE CURRENT[●]</pre>					
<pre>/ERAGE ANODE CURRENT</pre>	OCUSING-FLECTRODE SUPP	IY VO	TAGE (DC)		
<pre>ABIENT TEMPERATURE</pre>					
With E = 2000 volts (except as noted) and focusing-electrode as well as accelerating-electrode voltage adjusted to give maximum gain Min. Median Max. ensitivity: Radiant, at 4400 angstroms 0.7 - amp/ μ w Cathode radiant, at 4400 angstroms 0.056 - $\mu a/\mu$ w Luminouss [#] At 0 cps 120 875 4500 amp/lumen With dynode No.14 as output elec- trodel 612 - amp/lumen Cathode luminous: With tungsten light source [*] 50 70 - $\mu a/lumen$ With blue light source ^{**} 0.05 μa urrent Amplification - 12.5 x 10 ⁶ - uivalent Anode-Dark- Current Input ^{**} 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen uivalent Noise Input: [*] At +25 ⁰ C 9 x 10 ⁻¹² 1.5 x 10 ⁻¹¹ lumen at -50 ^o C 9 x 10 ⁻¹³ - lumen bode-Pulse Rise Time ^D - 3 - milli μ sec				75 m	ax. ^o C
With E = 2000 volts (except as noted) and focusing-electrode as well as accelerating-electrode voltage adjusted to give maximum gain Min. Median Max. ensitivity: Radiant, at 4400 angstroms 0.7 - amp/ μ w Cathode radiant, at 4400 angstroms 0.056 - $\mu a/\mu$ w Luminouss [#] At 0 cps 120 875 4500 amp/lumen With dynode No.14 as output elec- trodel 612 - amp/lumen Cathode luminous: With tungsten light source [*] 50 70 - $\mu a/lumen$ With blue light source ^{**} 0.05 μa urrent Amplification - 12.5 x 10 ⁶ - uivalent Anode-Dark- Current Input ^{**} 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen uivalent Noise Input: [*] At +25 ⁰ C 9 x 10 ⁻¹² 1.5 x 10 ⁻¹¹ lumen at -50 ^o C 9 x 10 ⁻¹³ - lumen bode-Pulse Rise Time ^D - 3 - milli μ sec	haracteristics Pange V	aluee	for Equipme	nt Design:	
as well as accelerating-electrode voltage adjusted to give maximum gain Min. Median Max. ensitivity: Radiant, at 4400 angstroms 0.7 - amp/uw Cathode radiant, at 4400 angstroms 0.056 - $\mu a/\mu w$ Luminous: [#] At 0 cps 120 875 4500 amp/lumen With dynode No.14 as output elec- trodel 612 - amp/lumen With tungsten light source [*] 0.05 - $\mu a/\mu w$ Lumen With blue light source ^{**} 0.05 - $\mu a/\mu w$ Lurrent Amplification - 12.5 x 10 ⁶ - $\mu a/\mu w$ Lurrent Input ^{**} 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen puivalent Noise Input: [*] At +25 ^o C 9 x 10 ⁻¹³ - lumen mode-Pulse Rise Time ^D - 3 - milliµsec			1000 C		
to give maximum gain Min. Median Nax. ensitivity: Radiant, at 4400 angstroms					
Min.MedianMax.ensitivity:Radiant, at 4400 angstroms $-$ 0.7 $-$ amp/ μ wCathode radiant, at 4400 angstroms $-$ 0.056 $ \mu a / \mu$ wLuminous:#At 0 cps. $-$ 1208754500At 0 cps. $-$ 1208754500amp/lumenWith dynode No.14 as output elec- trodef. $-$ 612 $-$ amp/lumenCathode luminous:With tungsten light source* $-$ 0.05 $ \mu a / \mu$ wWith tungsten light source* $-$ 12.5 x 106 $-$ μ uvalent Anode-Dark- Current Input* $-$ 5 x 10 ⁻¹⁰ 2×10^{-9} Current Input* $-$ 3.3 x 10 ⁻¹² 1.5×10^{-11} lumen nomemode-Pulse Rise Time" $-$ 3 $-$ milli μ sec					3004
ensitivity: Radiant, at 4400 angstroms 0.7 - $amp/\mu w$ Cathode radiant, at 4400 angstroms 0.056 - $\mu a/\mu w$ Luminous: At 0 cps 120 875 4500 amp/lumen With dynode No.14 as output elec- trodel 612 - amp/lumen Cathode luminous: With tungsten light source ⁴ 50 70 - $\mu a/lumen$ With blue light source ⁴ 0.05 μa purrent Amplification - 12.5 x 10 ⁶ - uivalent Anode-Dark- Current Input ⁴ 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen uivalent Noise Input: ⁴ At +25 ⁰ C 9 x 10 ⁻¹³ - lumen hode-Pulse Rise Time ⁰ - 3 - milli μ sec		0	0		
Radiant, at 4400 angstroms 0.7 - $amp/\mu w$ Cathode radiant, at 4400 angstroms 0.056 - $\mu a/\mu w$ Luminous:# At 0 cps 120 875 4500 amp/lumen With dynode No.14 as output elec- trodel 612 - amp/lumen Cathode luminous: With tungsten light source ⁴ 50 70 - $\mu a/lumen$ With blue light source ⁴ 0.05 μa uivalent Anode-Dark- Current Input ⁴ 5×10^{-10} 2 x 10^{-9} lumen uivalent Noise Input:* At +25° C 9×10^{-13} - lumen turen fise Time ⁰ - $3 - milli \mu sec$	Sensitivity:				
angstroms 0.7 - $amp/\mu w$ Cathode radiant, at 4400 angstroms 0.056 - $\mu a/\mu w$ Luminous: [#] At 0 cps 120 875 4500 amp/lumen With dynode No.14 as output elec- trodef 612 - amp/lumen Cathode luminous: With tungsten light source [*] 50 70 - $\mu a/lumen$ With blue light source [*] 0.05 μa urrent Amplification - 12.5 x 10 ⁶ - Lurent Input [*] 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen uivalent Anode-Dark- Current Input [*] 3.3×10^{-12} 1.5×10^{-11} lumen At +25° C 9×10^{-13} - lumen node-Pulse Rise Time ^D 3 - milliµsec					2
Cathode radiant, at 4400 angstroms 0.056 - $\mu a/\mu w$ Luminous:# At 0 cps 120 875 4500 amp/lumen With dynode No.14 as output elec- trodet 612 - amp/lumen Cathode luminous: With tungsten light source* 50 70 - $\mu a/lumen$ With blue light source* 0.05 μa urrent Amplification 12.5 x 10 ⁶ - Lurent Anode-Dark- Current Input* At +25° C 3.3×10^{-12} 1.5×10^{-11} lumen At -50° C 9×10^{-13} - lumen hode-Pulse Rise Time ^D 3 - milliµsec			0.7	_	amp/µw
Luminous: At 0 cps 120 875 4500 amp/lumen With dynode No.14 as output elec- trodel 612 - amp/lumen Cathode luminous: With tungsten light source 50 70 - μa /lumen With blue light source 0.05 μa urrent Amplification - 12.5 x 10 ⁶ - uivalent Anode-Dark- Current Input ⁶ 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen uivalent Noise Input: At +25 ⁰ C 9×10^{-13} - lumen at -50 ^o C 9×10^{-13} - milli μ sec	Cathode radiant,				
At 0 cps 120 875 4500 amp/lumen With dynode No.14 as output elec- trodef 612 - amp/lumen Cathode luminous: With tungsten light source* 50 70 - μ a/lumen With blue light source* 0.05 μ a urent Amplification - 12.5 x 10 ⁶ - uivalent Anode-Dark- Current Input* 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen uivalent Noise Input* At +25° C 9 x 10 ⁻¹² 1.5 x 10 ⁻¹¹ lumen At -50° C 9 x 10 ⁻¹³ - lumen node-Pulse Rise Time ^D 3 - milliµsec		-	0.056	-	μa/μw
With dynode No.14 as output elec- trodel 612 - amp/lumen Cathode luminous: With tungsten light source* 50 70 - μ a/lumen With blue light source* 0.05 - μ a urrent Amplification 12.5 x 10 ⁶ - Luivalent Anode-Dark- Current Input* 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen uivalent Noise Input* At +25° C 3.3 x 10 ⁻¹² 1.5 x 10 ⁻¹¹ lumen At -50° C 9 x 10 ⁻¹³ - lumen node-Pulse Rise Time ^D 3 - milliµsec		1.00	075	1500	
as output elec- trode1 612 - amp/lumen Cathode luminous: With tungsten light source* 50 70 - μa /lumen With blue light source** 0.05 μa purrent Amplification 12.5 x 10 ⁶ - quivalent Anode-Dark- Current Input* 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen quivalent Noise Input:* At +25° C 3.3 x 10 ⁻¹² 1.5 x 10 ⁻¹¹ lumen At -50° C 9 x 10 ⁻¹³ - lumen node-Pulse Rise Time ⁰ 3 - milliµsec		120	8/5	4500	amp/lumen
trode [†] – 612 – amp/lumen Cathode luminous: With tungsten light source [*] 50 70 – µa/lumen With blue light source ^{***} 0.05 – – µa urrent Amplification – 12.5 x 10 ⁶ – uivalent Anode-Dark- Current Input [®] – 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen uivalent Noise Input: [*] At +25° C – 3.3 x 10 ⁻¹² 1.5 x 10 ⁻¹¹ lumen At -50° C – 9 x 10 ⁻¹³ – lumen Node-Pulse Rise Time ^D . – 3 – milliµsec					
Cathode luminous: With tungsten light source*50 70 - μa /lumen With blue light source***0.05 μa urrent Amplification - 12.5 x 10 ⁶ - μa current Input**5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen uivalent Noise Input* At +25° C 3.3 x 10 ⁻¹² 1.5 x 10 ⁻¹¹ lumen At -50° C 9 x 10 ⁻¹³ - lumen node-Pulse Rise Time ^D 3 - milliµsec			612	_	amo/lumen
source*	Cathode luminous:				
With blue light source**♥0.05 μa urrent Amplification - 12.5 x 10 ⁶ - quivalent Anode-Dark- Current Input♥■ 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen quivalent Noise Input:* At +25° C 3.3 x 10 ⁻¹² 1.5 x 10 ⁻¹¹ lumen At -50° C 9 x 10 ⁻¹³ - lumen Node-Pulse Rise Time [□] 3 - milliµsec	With tungsten light				
source** ↓ 0.05 µa µrrent Amplification 12.5 x 10 ⁶ - µuivalent Anode-Dark- Current Input [●] 5 x 10 ⁻¹⁰ 2 x 10 ⁻⁹ lumen µuivalent Noise Input* At +25 ⁰ C 3.3 x 10 ⁻¹² 1.5 x 10 ⁻¹¹ lumen At -50 ⁰ C 9 x 10 ⁻¹³ - lumen node-Pulse Rise Time [□] 3 - milliµsec	source ⁴	50	70	-	µa/lumen
urrent Amplification . -12.5×10^{6} - uivalent Anode-Dark- Current Input ⁹ -5×10^{-10} 2 x 10 ⁻⁹ lumen uivalent Noise Input [*] At +25° C -3.3×10^{-12} 1.5 x 10 ⁻¹¹ lumen At -50° C -9×10^{-13} - lumen node-Pulse Rise Time ^D . -3 - milliµsec	with blue light	0.05			
uvivalent Anode-Dark- Current Input [®] 5x10 ⁻¹⁰ 2x10 ⁻⁹ lumen uvivalent Noise Input:* At +25° C 3.3x10 ⁻¹² 1.5x10 ⁻¹¹ lumen At -50° C 9x10 ⁻¹³ - lumen At -50° C 9x10 ⁻¹³ - lumen node-Pulse Rise Time ^D 3 - milliµsec			12 5 × 106		μα
Current Input [©] 5×10 ⁻¹⁰ 2×10 ⁻⁹ lumen uivalent Noise Input:* At +25° C 3.3×10 ⁻¹² 1.5×10 ⁻¹¹ lumen At -50° C 9×10 ⁻¹³ - lumen node-Pulse Rise Time ^D 3 - milliµsec					
Input:* At +25° C 3.3 × 10 ⁻¹² 1.5 × 10 ⁻¹¹]umen At -50° C 9 × 10 ⁻¹³ - lumen node-Pulse Rise Time ^D - 3 - milliµsec	Current Input [⊕] ■	-	5×10^{-10}	2×10^{-9}	lumen
At +25° C 3.3 × 10 ⁻¹² 1.5 × 10 ⁻¹¹ lumen At -50° C 9 × 10 ⁻¹³ - lumen Node-Pulse Rise Time ^D 3 - milliμsec	quivalent Noise				
At -50° C 9 x 10 ⁻¹³ - lumen Node-Pulse Rise Time ^D 3 - milliµsec			10		
node-Pulse Rise Time [□] 3 - milliµsec		-		1.5×10^{-11}	
	At -50° C	-	and the second second		
#,†, ▲,**,∳,⊕,■,★,□ : See next page.	node-Pulse Kise lime".	-	3	-	milliµsec
#, [†] ,▲,**,♦,⊕,■,★,□: See next page.					
#, [†] ,▲,**,♦,⊕,■,★,□: See next page.					
#, [†] ,▲,**,♦,⊕,■,★,□: See next page.					
",',-, ,',-, ,': See next page.	# t . **				
	, ", ', - , - , V , V , - , - , - ; See ne	ext pag	е.]

ELECTRON TUBE DIVISION TENTATIVE DATA 1

2-59

1204

MULTIPLIER PHOTOTUBE

				and the second second second	
		Min	. Median	Max.	
Greatest Delay Between					
Anode Pulses:					
Due to position from	whic	:h			
electrons are simult	aneou	isly			
released within a ci	rcle				
centered on tube fac	e and	1			
having a diameter of					
1.12"			0.5‡	-	milliµsec
1.5"			1‡		milliµsec
HIGH	I-OUTF	UT-PULS	E SERVICE		
With supply volta	ge (E	E) across	s voltage	divider	pro-
viding electrode	volta	iges show	on in Table	I-Col	umn B
Maximum Ratings, Absol	ute V	lalues:			
SUPPLY VOLTAGE BETWEEN					
CATHODE (DC)				2800 r	max. volts
SUPPLY VOLTAGE BETWEEN	DYNO	DDE No.1	4		
AND ANODE (DC)				400 r	nax. volts
SUPPLY VOLTAGE BETWEEN	CONS	SECULIVE			
DYNODES (DC)				500 r	max. volts
SUPPLY VOLTAGE BETWEEN	ACCE	ELERATIN	G		
ELECTRODE AND DYNODE				±500 r	max. volts
DYNODE-No.1 SUPPLY VOL				400 r	max. volts
FOCUSING-ELECTRODE SUF	PLY	VOLTAGE	(DC).		max. volts
AVERAGE ANODE CURRENT					max. ma
AMBIENT TEMPERATURE .	• •			75 r	max. ⁰ (
Characteristics Range	Value	es for E	quipment [esign:	
With E = 2400 volts (e	except	t as note	d) and foo	using-	electrode
as well as accei				age adj	usted
t	to giv	e maximu			
		Min.	Median	Max.	
Sensitivity:					
Radiant, at					
4400 angstroms		-	0.7	-	amp/μ
Cathode radiant, at			0.050		
4400 angstroms	• •		0.056		μa/μ
Luminous:#			875		amp/lumer
At O cps With dynode No.14			075		amp/ rumer
as output,					
electrode [†]		-	612	-	amp/lumer
Cathode luminous:	• •		OIL		ampr amo
With tungsten					
light source▲ .		50	70	-	µa/lume
With blue light					,
source**♦		0.05	-	-	μ
With blue light source**♥		0.05	-	_	μ

**,♦,⊕,■,★,□,‡: See next page.

59

TENTATIVE DATA 2

ELECTRON TUBE DIVISION

MULTIPLIER PHOTOTUBE

							Min.		Med	ian	A	lax.		
Cu	rrent Am	plif	icat	ior	1		-	1	2.5	x 10	6	-		
Eq	uivalent	Ano	de-[Dark										
	Current						-		1.1×	10-9		-	lu	men
Eq	uivalent	Noi	se	Inpu	it:*	*					-			
	At +250						-			10-1				men
	At -50° (C	• •		• •	•	-	1	.2 ×	10-13	2	-	lu	men
•	Averaged	over	anv	int	orva	1 of	30 60	conde	maxi	mum				
#											ce is	a tu	inast	en-
	Under the filament input of 0.01 mego	1amp 0.1 hm.	ope	olu	ed a men	t a is u	color used.	tempe The 1	oad oad	re of resis	2870 tor h	o K. as a v	A li value	ght of
Ť	An output may be pr this arra and the a	ovid	ed b. ent,	y us the	ing 10a	dyna ad i	ode No. s conn	14 as ected	o tha the in t	at obt outpu he dy	ained it ele node-	at t ctrod No.14	he ar e. V circ	node Vith Suit
•	Under the filament of light and all of sistor ha	lamp flux other s a v	ope is (ele	rate 0.01 ctro e of	d at lum odes 0.0	a c en a con 1 me	color t ind 200 nected gohm.	volt: toge	ature s are ther	e of 2 appl as an	870 ⁰ ied be ode.	The	he va cath load	hode re-
**	Under the transmitt to 1/2 st color tem is 0.01 200 volts ed togeth	e fol ed th ock ipera lumer are a er as	low thic ture appl s and	ing ghai knes of The ied l ode.	cond blue ss) 2870 load betw	liti fil from K. Fre een	ons: ter (C a tun The sistor cathod	Light orning gsten- value has e and	inci , Gl -fila of l a val all o	ident ass Co ment light ue of ther e	on th de No. lamp flux 0.0: electr	ne cat 5113 opera on th L mego odes	hode polis ted a e fil conne	shed shed it a lter and ect-
•	For spect ACTERIST LIGHT FRO at front	of tr	115 5	sect	ion.									
	Measured (E) adjus Dark curr of a refr	ent d	causi	e te ve a ed b	lum y th	inou ierm	re of is sens ionic	25 ⁰ C itivi emiss	and ty of ion m	with 2000 ay be	the s amper reduc	upply es pe ed by	volt r lur the	age men. use
	For maxin (E) below	2000) voi	lts	is r	econ	mended							
	Under the 25°-C tub ac-amplif of 2870° radiation "on" peri currentis frequency	K in F puls iod o meas	band terr ses i f th sured	widt upte alte ie pi i th	ch o' ed at rnat ulse roug	itic ext f 1 t a ing is h a	ons: S ernal- cycle low au betwee equal filter	Supply shiel per so dio f in zer to th which	vol d pot econd reque o and o and n pas	tage centia , tun ncy t the ff" pi ses or	(E) is gsten o pro value eriod hly th	5 2000 -2000 ligh duce stat The fun) vol) vol t sou incid ed. e out damen	ts, ts, irce jent The put ntal
-	Measured height. time vari spot appro	betw This atio xima	een anoo ns i tely	10 p de-p n th 1 mi	ulse ne mu 11im	rise ulti meter	and 9 etimei plier rin di	0 per s dete stage: ameter	cent ermin s and r cent	of m ed pri with ered o	aximu imaril an i on the	m ano y by ncide photo	je-pu trans nt-li catho	ilse sit- ight ode.
‡	These val the photo from the	ues a catho	also de a	rep nd d	rese	nt t e No	he dif	ference	ce in trons	time simu	of tr taneo	ansit usly	betw	veen
€	For maxim (E) below	num s	igna	1-to	o-no	ise	ratio,	oper						age
**	Same as external-	(★) e shiel	d po	pt t oten	he : tial	supp is	1y vol -2400	tage volts.	(E)	is 24	00 vc	lts,	and	the

1204

TENTATIVE DATA 2

MULTIPLIER PHOTOTUBE

VOLTAGE TO E	BE PROVIDED BY DIV	IDER
	COLUMN A	COLUMN B
Between	5.4% of Supply Voltage (E) multiplied by	2.75% of Supply Voltage (E) multiplied by
Cathode and Focusing Electrode	*	÷
Cathode and Dynode No.1	2	2
Dynode No.1 and Dynode No.2	1	1
Dynode No.2 and Dynode No.3	1	1
Dynode No.3 and Dynode No.4	1	1
Dynode No.4 and Dynode No.5	1	1
Dynode No.5 and Dynode No.6	1	1
Dynode No.6 and Dynode No.7	1	1.2
Dynode No.7 and Dynode No.8	1	1.5
Dynode No.8 and Dynode No.9	1	1.9
Dynode No.9 and Dynode No.10	1	2.4
Dynode No.10 and Dynode No.11	1	3
Dynode No.11 and Dynode No.12	1.25	3.8
Dynode No.12 and Dynode No.13	1.5	4.8
Dynode No.13 and Dynode		
No.14 Dynode No.14 and Anode	1.75	6 4.8
Anode and Cathode	18.5	36.4

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

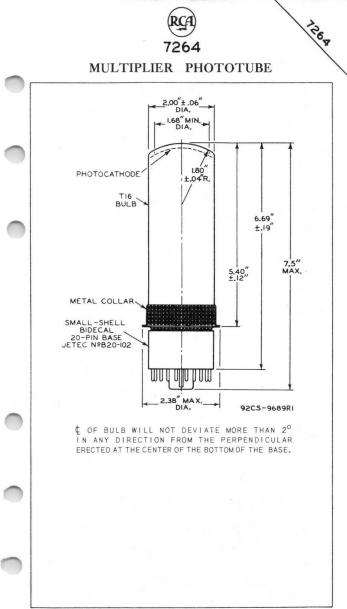
MULTIPLIER PHOTOTUBE

OPERATING CONSIDERATIONS

Exposure of the 7264 to strong ultraviolet radiation may cause an increase in anode dark current. After cessation of such irradiation, the dark current drops rapidly.

The operating stability of the 7264 depends on the magnitude and duration of the anode current. When the 7264 is operated at high average values of anode current, adrop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 7264 usually recovers a substantial percentage of such loss in sensitivity.

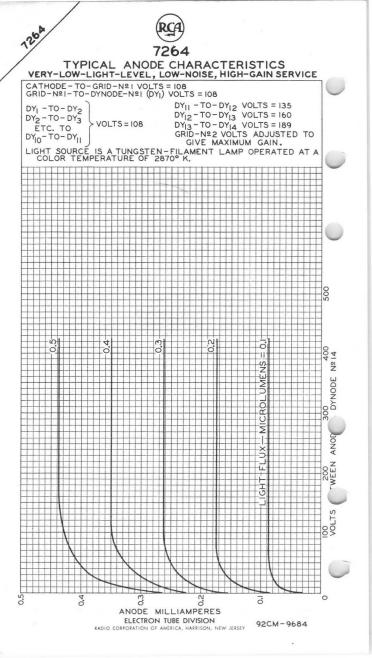
Operation at an average anode current well below the maximum rated value of 2 milliamperes is recommended when stability is important. When maximum stability is required, the anode current should not exceed 250 microamperes.

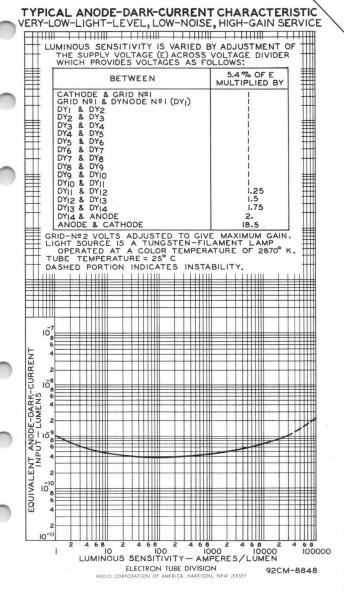

Electrostatic and/or magnetic shielding of the 7264 may be necessary. It is to be noted that the use of an external magnetic and/or electrostatic shield at high negative potential is a safety hazard unless the shield is connected to the potential source through an impedance in the order of 10 megohms. If the shield is not so connected, extreme care should be observed in providing adequate safeguards to prevent personnel from coming in contact with the high potential of the shield.

> SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-II Response is shown at the front of this Section

ELECTRON TUBE DIVISION TENTATIVE DATA 3 RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

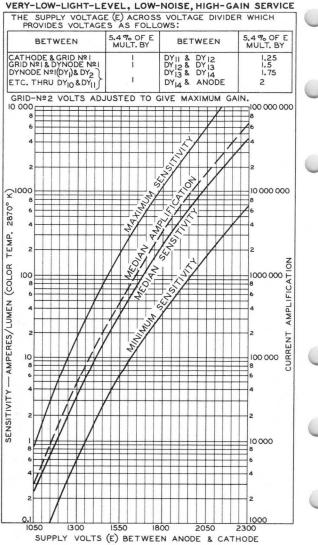
2-59

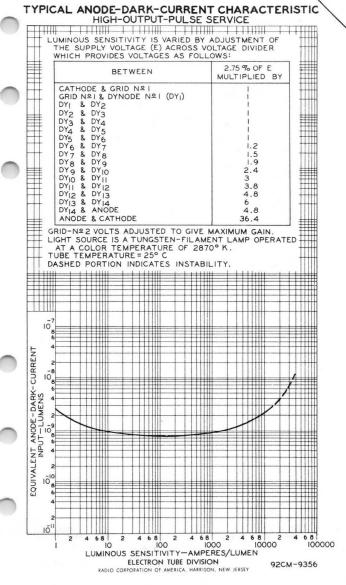

1204


2-59

ELECTRON TUBE DIVISION

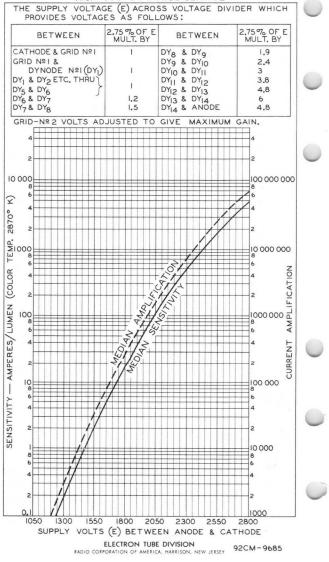
CE-9689R1





1204

ELECTRON TUBE DIVISION 92CM-9687



12:04

CHARACTERISTICS

Photomultiplier Tube

7265

14-Stage, Head-On Type Having S-20 Spectral Response

GENERAL

Spectral Response S-20
Wavelength of Maximum Response 4200 ± 500 Å Cathode, Semitransparent Potassium-Sodium Cesium-Antimony (Multialkali)
Minimum projected area 2.2 in ² (14.2 cm ²)
Minimum diameter 1.68 in (4.2 cm)
Window Corning ^a No.0080, or equivalent
Shape Plano-Concave
Index of refraction at 5893 angstroms 1.512
Dynodes:
Substrate Copper-Beryllium
Secondary-Emitting Surface Beryllium Oxide
Structure In-Line Electrostatic-Focus Type
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.14 2.8 pF
Anode to all other electrodes 6 pF
Dynode No.14 to all other electrodes 7.5 pF
Maximum Overall Length 7.5 in (19 cm)
Seated Length $6.69 \text{ in } (17 \text{ cm}) \pm 0.19 \text{ in}$
Maximum Diameter 2.38 in (6 cm)
Bulb T16
Base Small-Shell Bidecal 20-Pin, JEDEC No.B20-102
Socket Alden ^b Part 220FTC, or equivalent
Magnetic Shield Millen ^c No.80802E, or equivalent
Operating Position Any
Weight (Approx.) 8 oz (226 g)

ABSOLUTE-MAXIMUM RATINGS

RВЛ

DC Supply Voltage:	
Between Anode and Cathode 3000 max	x. V
Between Anode and Dynode No.14 500 max	x. V
Between Consecutive Dynodes 600 ma:	x. V
Between Accelerating Electrode	
and Dynode No.13 <u>±600 ma</u>	x. V
Between Dynode No.1 and Cathode 500 max	x. V
Between Focusing-Electrode	
and Cathode 500 max	x. V
Average Anode Current ^e 1 max	x. mA
Ambient Temperature ^f 85 max	x. °C

Electronic Components

DATA 1 2-69

CHARACTERISTICS RANG	E VALUES			
With $E = 2400$ volts (Except	as noted)			
Voltage Distribution A (See Min.	Table) Typical	Max.		
Anode Sensitivity: Radiant ⁹ at 4200 angstroms	3 x 10 ⁶	-	A/W	
Luminous ^h $8 \ge 10^2$	$7.2 \ge 10^3$	3.3×10^4	A/lm	1
Cathode Sensitivity: Radiant ^j at 4200				
angstroms –	0.064	-	A/W	
Luminous ^k 1×10^{-4}	$1.5 \ge 10^{-4}$	_	A/lm	
With red light ^m . $3 \ge 10^{-7}$	-	-	Α	
With blue light ⁿ . 5 x 10 ⁻⁸ Cathode Quantum Efficiency at	-	-	A	
4000 angstroms –	19	-	%	
Current Amplifica-	_			
tion – Anode Dark Current ^P –	4.8×10^7 5 x 10 ⁻⁸	8 x 10-7	A	
Equivalent Anode- Dark-Current Input ^P }	5 x 10 ⁻¹¹ 1.2 x 10 ⁻¹³ q	8 x 10 ⁻¹⁰ 1.9 x 10 ⁻¹² q	lm W	
Equivalent Noise Input ^r	9 x 10 ⁻¹³ 2.1 x 10 ⁻¹⁵ s	-	lm W	
Anode Pulse Rise Time at 3000 V [†] – Electron Transit	2.7 x 10 ⁻⁹	-	8	
Time at 3000 V ^u -	4 x 10 ⁻⁸	-	s	

- ^a Made by Corning Glass Works, Corning, New York.
- ^b Made by Alden Products Co., 262 N. Main St., Brockton, Mass. 02403.
- ^c Made by James Millen Manufacturing Co., 150 Exchange Street, Malden 48, Mass.
- ^e Averaged over any interval of 30 seconds maximum.
- [†] Tube operation at room temperature or below is recommended.
- 9 This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 428 lumens per watt.
- ^h Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 0.1 microlumen is used.

GL/

- ⁱ This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 428 lumens per watt.
- k Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ^m Under the following conditions: Light incident on the cathole is transmitted through a red filter (Corning C.S. No.2-62 Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ⁿ Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, New York) from a tungstenfilament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- P At a tube temperature of 22° C. With supply voltage adjusted to give a luminous sensitivity of 1000 amperes per lumen. Dark current caused by thermionic emission may be reduced by use of a refrigerant. Dark current is measured with incident light removed.
- **q** At 4200 angstroms. This value is calculated from the EADCI value in lumens using a conversion factor of 428 lumens per watt.
- ^r Under the following conditions: Tube temperature 22° C, external shield connected to cathode, bandwidth 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
 - ⁵ At 4200 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 428 lumens per watt.
 - [†] Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.

^U The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

١	oltage Distribution	
Between the fol-	A	B _.
lowing Electrodes: Cathode (K), Dynode (Dy), and Anode (P)	5.4% of Supply Voltage (E) multiplied by	6.06% of Supply Voltage (E) multiplied by
K - Dy1	2	•
Dy1 - Dy2	1	1
Dy2 - Dy3	1	1
Dy3 - Dy4	1	1
Dy4 - Dy5	1	1
Dy5 - Dy6	1	1
Dy6 - Dy7	1	1
Dy7 - Dy8	1	1
Dy8 - Dy9	1	1
Dy9 - Dy10	1	1
Dy10 - Dy11	1	1
Dy11 - Dy12	1.25	1.25
Dy12 - Dy13	1.5	1.5
Dy13 - Dy14	1.75	1.75
Dy14 - P	2	2
Dy1 - P	_	16.5
K - P	18.5	-

Focusing electrode is connected to arm of potentiometer between cathode and dynode No.1; the focusing electrode voltage is varied to give maximum anode current.

The metal collar (See Dimensional Outline) is connected internally to the focusing electrode. Extreme care should be taken in the design of apparatus to prevent operating personnel from coming in contact with the collar when the circuit application is such that the collar is at high potential.

Cathode-to-dynode No.1 voltage is maintained at 330 volts.

OPERATING CONSIDERATIONS

The base pins of the 7265 fit a bidecal 20-contact socket, such as Alden No.220FTC or equivalent.

The socket should be made of high-grade, low-leakage material.

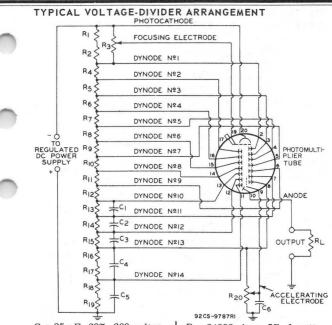
The operating stability of the 7265 is dependent on the magnitude of the anode current. The use of an average anode current well below the maximum rated value of 1 milliampere is recommended when stability of operation is important. When stability is of prime importance, the use of an average anode current of 1 microampere or less, commensurate with satisfactory output signal, is recommended.

Electrostatic shielding of the tube is ordinarily required. When a shield is used, it must be connected to the cathode terminal. The application of high voltage, with respect to cathode, to insulating or other materials supporting or shielding the tube at the photocathode end should not be permitted unless such materials are chosen to limit leakage current to the tube envelope to $1 \ge 12^{-12}$ ampere or less.

Accompanying voltage-divider arrangements are recommended for use with the 7265. Recommended resistance values for the voltage divider range from 10 kilohms per stage to 10 megohms per stage. The choice of resistance values for any voltage-divider network is usually a compromise. If low values of resistance per stage are utilized, the power drawn from the regulated power supply and the required power rating of the resistors increase. Phototube noise may also increase due to heating if the divider network is mounted near the photocathode. The use of high resistance values per stage may cause deviation from linearity if the voltage-divider current is not maintained at a value of at least 10 times that of the maximum value of average anode current, and may limit anode-current response to pulsed light. The latter effect may be reduced by con-

> BA Electronic Components

necting capacitors between the tube socket terminals for dynodes No.11 and No.12, dynodes No.12 and No.13, dynodes No.13 and No.14, and between dynode No.14 and anode return.


In addition to nonlinearity and pulse-limiting effects, the use of resistance values exceeding 10 megohms per stage make the 7265 more susceptible to leakage effects between terminals with possible resulting deviation in interstage voltage leading to a loss of current amplification.

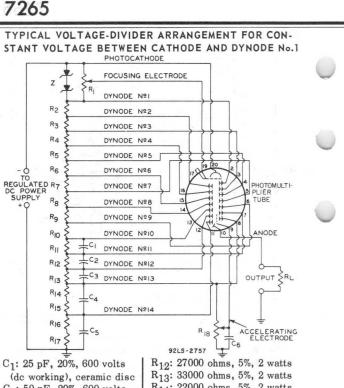
Voltage Distribution B is recommended where high dynode-No.1 gain is important, such as low light level and scintillation counting applications. Voltage Distribution B maintains the cathode to dynode-No.1 voltage constant at 330 volts; it is especially useful when the supply voltage is adjusted over a wide range to achieve large changes in anode sensitivity.

The high voltages at which the 7265 is operated are very dangerous. Care should be taken in the design of apparatus to prevent the operator from coming in contact with these high voltages. Precautions should include the enclosure of high-potential terminals and the use of interlock switches to break the primary circuit of the high-voltage power supply when access to the apparatus is required.

In the use of the 7265 as with other tubes requiring high voltages, it should always be remembered that these high voltages may appear at points in the circuit which are normally at low potential, because of defective circuit parts or incorrect circuit connections.

Therefore, before any part of the circuit is touched, the power-supply switch should be turned off and both terminals of any capacitors grounded.

 $\begin{array}{c} C_1:\ 25 \ \mathrm{pF},\ 20\%,\ 600 \ \mathrm{volts}\\ (\mathrm{dc} \ \mathrm{working}),\ \mathrm{ceramic} \ \mathrm{disc}\\ C_2:\ 50 \ \mathrm{pF},\ 20\%,\ 600 \ \mathrm{volts}\\ (\mathrm{dc} \ \mathrm{working}),\ \mathrm{ceramic} \ \mathrm{disc}\\ C_3:\ 100 \ \mathrm{pF},\ 20\%,\ 600 \ \mathrm{volts}\\ (\mathrm{dc} \ \mathrm{working}),\ \mathrm{ceramic} \ \mathrm{disc}\\ C_4:\ 250 \ \mathrm{pF},\ 20\%,\ 600 \ \mathrm{volts}\\ (\mathrm{dc} \ \mathrm{working}),\ \mathrm{ceramic} \ \mathrm{disc}\\ C_5:\ 500 \ \mathrm{pF},\ 20\%,\ 600 \ \mathrm{volts}\\ (\mathrm{dc} \ \mathrm{working}),\ \mathrm{ceramic} \ \mathrm{disc}\\ C_6:\ 100 \ \mathrm{pF},\ 20\%,\ 1000 \ \mathrm{volts}\\ (\mathrm{dc} \ \mathrm{working}),\ \mathrm{ceramic} \ \mathrm{disc}\\ \end{array}$


R₁: 24000 ohms, 5%, 1 watt R₂: 22000 ohms, 5%, 1 watt R₃: 1 megohm, 20%, 2 watts, adjustable R₄ through R₁₃: 22000 ohms, 5%, 1 watt R₁₄: 27000 ohms, 5%, 2 watts

R15: 33000 ohms, 5%, 2 watts R16: 22000 ohms, 5%, 2 watts R17: 18000 ohms, 5%, 2 watts R18: 22000 ohms, 5%, 2 watts R18: 22000 ohms, 5%, 2 watts R19: 22000 ohms, 5%, 2 watts R20: 10 megohms, 2 watts, adjustable

R_L: Value will depend on magnitude of peak pulse voltage desired. For a peak pulse amplitude of 100 volts, the value is approximately 300 ohms.

Note 1: Adjustable between approximately 800 and 3000 V dc. Note 2: Component values are dependent upon nature of application and output signal desired.

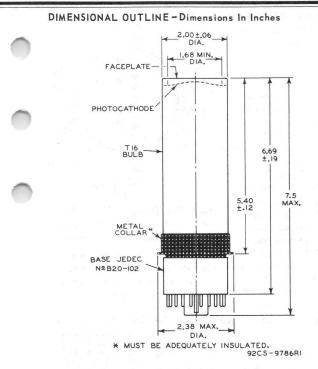
> Electronic Components

C₂: 50 pF, 20%, 600 volts (dc working), ceramic disc C₃: 100 pF, 20%, 600 volts

(dc working), ceramic disc C_4 : 250 pF, 20%, 600 volts (dc working), ceramic disc C_5 : 500 pF, 20%, 600 volts

(dc working), ceramic disc C₆: 100 pF, 20%, 1000 volts (dc working), ceramic disc

R₁: 5 megohms, 20%,


1/2 watt, adjustable

R₂ through R₁₁: 22000 ohms, 5%, 1 watt $\begin{array}{l} R_{12} : 27000 \mbox{ ohms}, 5\%, 2 \mbox{ watts} \\ R_{13} : 33000 \mbox{ ohms}, 5\%, 2 \mbox{ watts} \\ R_{14} : 22000 \mbox{ ohms}, 5\%, 2 \mbox{ watts} \\ R_{15} : 18000 \mbox{ ohms}, 5\%, 2 \mbox{ watts} \\ R_{16} : 22000 \mbox{ ohms}, 5\%, 2 \mbox{ watts} \\ R_{17} : 22000 \mbox{ ohms}, 5\%, 2 \mbox{ watts} \\ R_{18} : 10 \mbox{ megohms}, 2 \mbox{ watts}, \\ adjustable \end{array}$

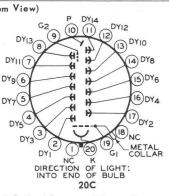
- R_L: Value will depend on magnitude of peak pulse voltage desired. For a peak pulse amplitude of 100 volts, the value is approximately 300 ohms.
- Z: (1) 150 V, 1 W zener diode, or equivalent
 - 180 V, 1 W zener diode, or equivalent

Note 1: Adjustable between approximately 800 and 3000 V dc. **Note 2:** Component values are dependent upon nature of application and output signal desired.

> Electronic Components

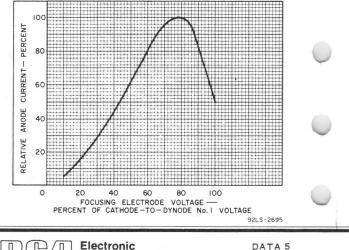
 $\ensuremath{\mathbb{Q}}$ of bulb will not deviate more than 2^o in any direction from the perpendicular erected at the center of bottom of the base.

Note: Within 1.68" diameter, deviation from flatness of external surface of faceplate will not exceed 0.005" from peak to valley.

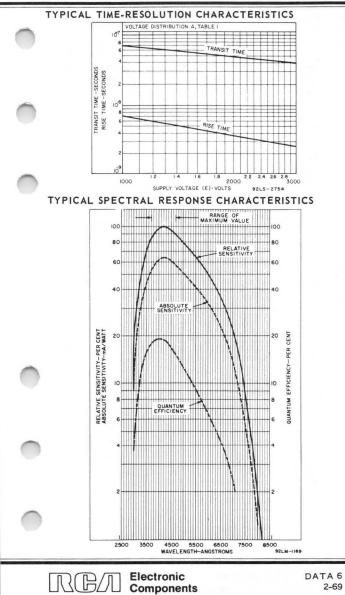

Inch Dimension Equivalents in Millimeters

Inch	mm	Inch	mm	Inch	mm
0.06	1.5	1.68	42.6	5.40	137.1
0.12	3.0	2.00	50.8	6.69	169.9
0.19	4.8	2.38	60.4	7.5	190.5

Electronic Components

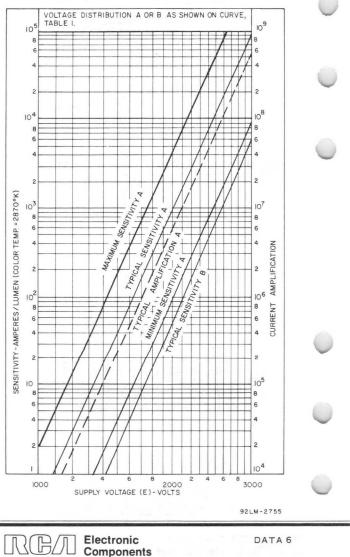

日/八

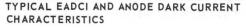
- TERMINAL DIAGRAM (Bottom View)
- Pin 1: No Connection Pin 2: Dynode No.1
- Pin 3: Dynode No.3
- Pin 4: Dynode No.5
- Pin 5: Dynode No.7
- Pin 6: Dynode No.9
- Pin 7: Dynode No.11
- Pin 8: Dynode No.13
- Pin 9: Grid No.2
 - (Accelerating Electrode)
- Pin 10: Anode
- Pin 11: Dynode No.14
- Pin 12: Dynode No.12
- Pin 13: Dynode No.10
- Pin 14: Dynode No.8
- Pin 15: Dynode No.6
- Pin 16: Dynode No.4
- Pin 17: Dynode No.2
- Pin 18: No Connection
- Pin 19: Grid No.1 (Focusing Electrode)
- Pin 20: Photocathode
- Pin 20: Photocathode

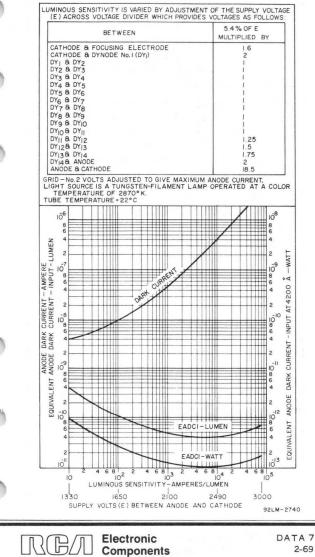


- Metal Collar: Connected Internally to Focusing Electrode - Do Not Make Electrical Connection to Collar.
- Note: The Metal Collar May be at High Potential Depending on the Circuit Application and Should be Insulated Accordingly.

TYPICAL FOCUSING ELECTRODE CHARACTERISTIC

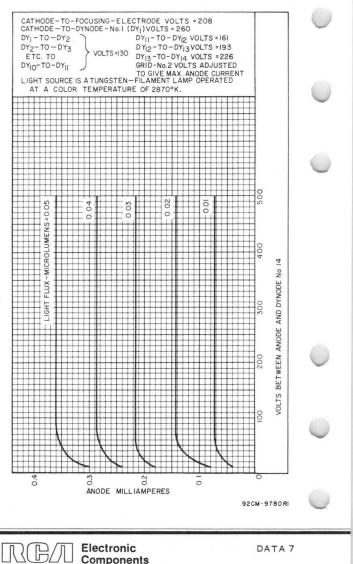



Electronic Components



2-69

SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS



2-69

TYPICAL ANODE CHARACTERISTICS

Electronic Components

DATA 7

Image Orthicon

MAGNETIC FOCUS

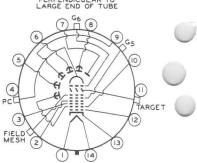
ň

S MAGNETIC DEFLECTION EXCELLENT RESOLUTION CAPABILITY

For Outdoor and Studio Pickup with High-Quality Black-and-White TV Cameras. The 7295B is Unilaterally Interchangeable with Types 7295 and 7295A.

DATA

	DATA
	General:
	Heater, for Unipotential Cathode: Voltage (AC or DC)
_	Target-to-Mesh Spacing, 0.002 inch
	Spectral Response
	Useful size
	Note: The size of the optical image focused on the photocathode should be adjusted so that its maximum diagonal does not exceed the specified value. The
	corresponding electron image on the target should
	have a size such that the corners of the rectangle
	just touch the target ring. Orientation Proper orientation is obtained when the
	vertical scan is essentially parallel to the plane
	passing through center of the faceplate and the grid-
	No.6 envelope terminal. The horizontal and vertical
	scan should start at the corner of the picture between the grid-No.6 and the photocathode envelope terminals.
	Focusing Method
	Deflection Method
-	Overall Length
	Greatest Diameter of Bulb 4.500" ± 0.094" Minimum Deflecting-Coil Inside Diameter
	Deflecting-Coil Length
	Focusing-Coil Length
	Alignment-Coil:
~	Position on neckCenterline of magnetic field should be located 9.25" from the flat area of the shoulder.
	Operating Position See Operating Considerations
	Weight (Approx.)
	Envelope lerminals
	Terminal Over Pin 2-Field Mesh
	Terminal Over Pin 4 - Photocathode (PC)
	Terminal On Side of Envelope Opposite Base Key -Grid No.6 (G ₆)
	See basing diagram on next page.



RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA | 6-63

Terminal Over Pin 9-Grid No.5 (G5) Terminal Over Pin 11-Target

	3	
End Base	Small-Shell Diheptal 14-Pin (JEDEC Group 5, No.B14-45) BOTTOM VIEW	0
Pin 1-Heater	DIRECTION OF LIGHT: PERPENDICULAR TO LARGE END OF TUBE	

PIN	1 – Heater
Pin	2-Grid No.4
Pin	3-Grid No.3
Pin	4 – Do Not Use
Pin	5 - Dynode No.2
Pin	6 - Dynode No.4
Pin	7 – Anode
Pin	8 - Dynode No.5
Pin	9-Dynode No.3
Pin	10 - Dynode No.1,
	Grid No.2
Pin	11 - Do Not Use
	12-Grid No.1
	13 – Cathode
	14 - Heater

Maximum and Minimum Ratings, Absolute-Maximum Values:							
PHOTOCATHODE:							
Voltage	max. volts						
	max. fc						
OPERATING TEMPERATURE: •							
Any part of bulb 65 m	max. ^o C						
Of bulb at large end of tube							
(Image section)	min. ^o C						
TEMPERATURE DIFFERENCE:							
Between image section and any part							
of bulb hotter than image section 5	max. ^o C						
GRID-No.6 VOLTAGE	max. volts	6					
TARGET VOLTAGE:							
	max. volts						
	max. volts						
	max. volts						
GRID-No.5 VOLTAGE							
GRID-No.4 VOLTAGE							
GRID-No.3 VOLTAGE							
GRID-No.2 & DYNODE-No.1 VOLTAGE 350	max. volts						
GRID-No.1 VOLTAGE:	1.						
Negative-bias value							
Positive-bias value 0							
VOLTAGE PER MULTIPLIER STAGE							
ANODE SUPPLY VOLTAGE ^d 1650	max. volts						
PEAK HEATER-CATHODE VOLTAGE:	1.1	- 20					
	max. volts						
Heater positive with respect to cathode . 10	max. volts						

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

Max

Typical Operating Values:^e

Photocathode Voltage		-600	volts
Grid-No.6 Voltage (Image Focus) Approx			
50% of photocathode voltage [†]		-250 to -350	volts
Target Voltage Above Cutoff ^g	×.	2.3	volts
Field-Mesh Voltage ^c		15 to 25	volts
Grid-No.5 Voltage (Decelerator)		40	volts
Grid-No.4 Voltage (Beam Focus)	2	70 to 90	volts
Grid-No.3 Voltage ^h		250 to 275	volts
Grid-No.2 & Dynode-No.1 Voltage		280	volts
Grid-No.1 Voltage for picture cutoff.		-45 to-115	volts
Dynode-No.2 Voltage		600	volts
		800	volts
Dynode-No.3 Voltage	*		
vnode-No.4 Voltage		1000	volts
ynode-No.5 Voltage		1200	volts
Anode Voltage	×.	1250	volts
Recommended Target-Temperature Range ^b		35 to 45	°C
Minimum Peak-to-Peak Blanking Voltage		5	volts
Field Strength of Focusing Coil			
(Approx.): j			
At center of scanning section		60	qausses
In plane of photocathode		120	qausses
Field Strength of Alignment Coil		0 to 3	gausses
i ford our ongen of Arrighmente oorri	•	0.00 /	94400000

Performance Data:

With conditions shown under Typical Operating Values including Recommended Target-Temperature Range, target voltage adjusted to 2.3 volts above cutoff, and with the camera lens set to bring picture highlights one stop above the "knee" of the accompanying Basic Light-Transfer-Characteristic Curve Min Average

		M1171.	Average	max.	
	Cathode Radiant Sensitivity		8		
	at 4500 angstroms	Second Second	0.030		a/w
	Luminous Sensitivity	30	60	-	µa/lm
	Signal-Output Current				
	(Peak to Peak)	10		40	μa
1	Ratio of Peak-to-Peak High-				
	light Video Signal Current				
	to RMS Noise Current for	-			
	Bandwidth of 4.5 Mc	60.1	75.1		
	Photocathode Illumination				
	at 2870° K Required to				
-	bring Picture Highlights				
	One Stop above "Knee" of			0 440	<i>c</i>
	Light-Transfer Characteristic.	-		0.110	fc
	Amplitude Response at 400 TV				
	Lines per Picture Height				
	(Per cent of large-area black to large-area white) ^k .	60	75		01
	Uniformity: ^m	00	75	-	70
	Ratio of Shading (Back-				
1	ground) Signal to				
	Highlight Signal	-	0.10	0.15	
			0.10	0.10	

RADIO CORPORATION OF AMERICA **Electron Tube Division**

Harrison, N. J.

DATA 2 6-63

Min. Average Max.

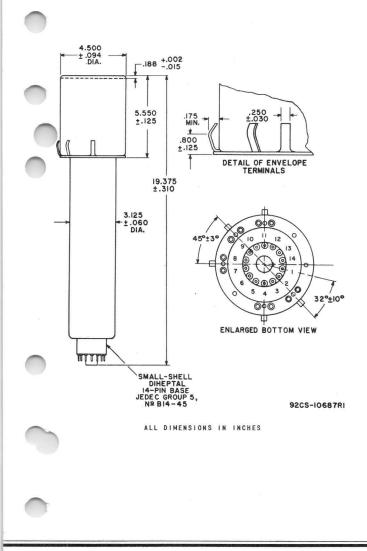
Decrease from Peak Highlight Signal Level of Signal from any Point 25 on Scanned Area of Target. .

^a Cinch Manufacturing Corporation, 1026 South Homan Avenue, Chicago 24, Illinois.

Deperating outside the Recommended Target-Temperature Range shown under fypical Operating Values will not damage the 7295B provided the Maximum Temperature Ratings of the tube are not exceeded. Optimum performance, however, is only obtained when the tube is operated within the Recommended Target-Temperature Range.

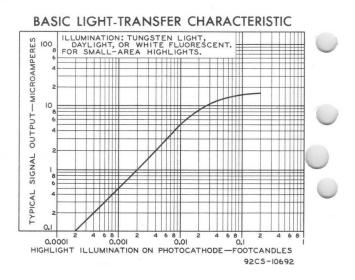
c With respect to grid No.4.

7295B


- d Dynode-voltage values are shown under Typical Operating Values.
- e With 7295B operated in RCA TK-60 camera at fixed photocathode voltage
- f Adjust for optimum focus.
- ${f g}$ The target supply voltage should be adjustable from -5 to 5 volts.
- $^{f h}$ Adjust to give the most uniformly shaded picture near maximum signal.
- J Direction of current should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- ${f k}$ Measured with amplifier having flat frequency response.
- ^m With uniform illumination on photocathode.

OPERATING CONSIDERATIONS

The tube should never be operated in a vertical position with the Diheptal/base end up nor in any other position where the axis of the tube with base up makes an angle of less than 20° with the vertical.


> SPECTRAL-SENSITIVITY CHARACTERISTIC of Photosensitive Device having S-10 Response is shown at the front of this Section

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 3 6-63

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

Image Orthicon

LONG-LIFE TARGET MAGNETIC FOCUS

FIELD-MESH TYPE MAGNETIC DEFLECTION

For High-Quality Black-and-White TV Pickup in Studio or Outdoor Service. The 7295C, is Directly Interchangeable with the 7295, 7295A, and 7295B in all Cameras.

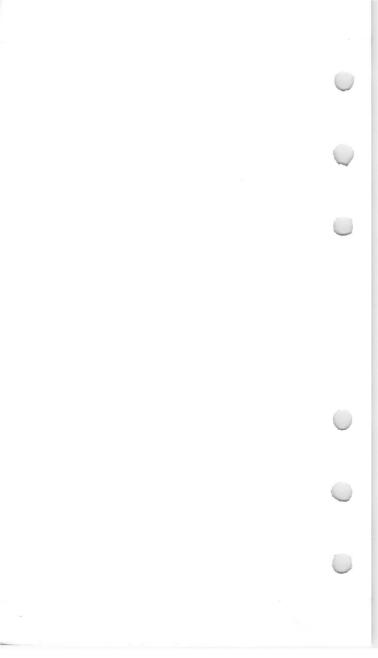
The 7295C is the same as the 7295B except utilizes a stable, long-life target.

The stable, long-life, glass target of type 7295C is characterized by high gain, resistance to "burn-in", and the absence of any granular structure. Because charge transportation through this target material is electronic rather than ionic as in ordinary glass targets, the electrical characteristics of the target, such as secondary emission and resistivity, are essentially constant and sensitivity of the 7295C is stable throughout life.

Other important advantages of this target are that the undesirable characteristics of scene retention or "sticking picture" and raster "burn-in" due to underscanning are significantly reduced. The resistance of the 7295C to image "burnin" provides a highly desirable operational feature because it is not necessary to use an orbiter or continually move the camera when focused on a stationary scene.

OPERATING CONSIDERATIONS

Dos and Don'ts on Use of RCA-7295C


Dos

- 1. Allow the 7295C to warm up prior to operation.
- 2. Hold temperature of the 7295C within operation range.
- 3. Make sure alignment coil is properly adjusted.
- 4. Adjust beam-focus control for best usable resolution.
- 5. Condition spare $7295\mathrm{C}'\,\mathrm{s}$ by operating several hours once each month.
- Determine proper operating point with target voltage adjusted to the desired voltage above target cutoff.
- 7. Uncap lens before voltages are applied to the 7295C.

Don'ts

- 1. Don't force the 7295C into its shoulder socket.
- 2. Don't operate the 7295C without scanning.
- 3. Don't operate a 7295C having an ion spot.
- Don't use more beam current than necessary to discharge the highlights of the scene.
- Don't turn off beam while voltages are applied to photocathode, grid No.6, target, dynodes, and anode during warm-up or standby operation.

1320

MULTIPLIER PHOTOTUBE

10-STAGE, HEAD-ON, FLAT-FACEPLATE TYPE WITH 1.68"-DIAMETER, CURVED, CIRCULAR, SEMITRANS-PARENT PHOTOCATHODE AND S-20 RESPONSE

DATA

General:

General:	
Spectral Response	S-20
Wavelength of Maximum Response	. 4200 + 500 angstroms
Cathode. Semitransparent:	. 1200 1 000 anger and
	Curved Circular
Window:	
Area	2.2 sq. in.
Minimum diameter	
Index of refraction	
Direct Interelectrode Capacitances (App	prox.):
Anode to dynode No.10	
Anode to all other electrodes	
Dynode No.10 to all other electrodes	
Maximum Overall Length	
Seated Length	
Maximum Diameter	
Weight (Approx.)	
Bulb	
Base	
Basing Designation for BOTTOM VIEW .	314-38), Non-hygroscopic
basing besignation for borrow view .	••••••••••••••••••••••••••••••••••••••
Pin 1-Dynode No.1	Pin 12 - Internal
Pin 2-Dynode No.2	Connection-
Pin 3-Dynode No.3 - 700-	Do Not Use
	Pin 13-Focusing
Pin 5-Dynode No.5 5	Electrode
Pin 6-Dynode No.6 (He)Hm	Pin 14 - Photo-
Pin 7-Dynode No.7	cathode
Pin 8-Dynode No.8	Metal
	Collar - No Connection
Pin 10 - Dynode No. 10 DIRECTION OF LIGHT:	110
Pin 11 - Anode INTO END OF BULB	connect only
	to photo-
	cathode)
	·
Aaximum Ratings, Absolute Values:	
SUPPLY VOLTAGE BETWEEN ANODE AND	
CATHODE (DC)	2400 max. volts
SUPPLY VOLTAGE BETWEEN DYNODE No. 10	
AND ANODE (DC)	500 max. volts
SUPPLY VOLTAGE BETWEEN CONSECUTIVE	
DYNODES (DC)	600 max. volts
	500 max. volts
DYNODE-No. 1 SUPPLY VOLTAGE (DC)	
DYNODE-NO.1 SUPPLY VOLTAGE (DC)	
FOCUSING-ELECTRODE SUPPLY VOLTAGE (DC)	500 max. volts
FOCUSING-ELECTRODE SUPPLY VOLTAGE (DC) AVERAGE ANODE CURRENT	500 max. volts 1 max. ma
DYNODE-NO.1 SUPPLY VOLTAGE (DC) FOCUSING-ELECTRODE SUPPLY VOLTAGE (DC) AVERAGE ANODE CURRENT AMBIENT TEMPERATURE ©; see next page.	500 max. volts 1 max. ma

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

MULTIPLIER PHOTOTUBE

Characteristics Range Values for Equipment Design:

1320

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No. 1: 1/8 of E between cathode and focusing electrode; 1/12 of E for each succeeding dynode stage; and 1/12 of E between dynode No.10 and anode

With E = 1800 volts (Except as noted) Min. Median Max. Sensitivity: Radiant, at 4200 angstroms. . . . 9600 µa/µw Cathode radiant. at 4200 0.064 µa/µw angstroms. . . . Luminous. 5 22.5 150 amp/lumen Cathode luminous: With tunasten light source^A. 120 150 µa/lumen With blue light source**♦... 0.05 μa With red light source^{n§} . . . 0.3 μa Current Amplification. . . 1.5×10^{5} _ Equivalent Anode-Dark-Current Input[⊕]■.... 3 x 10⁻¹⁰ 1.4×10^{-9} lumen Equivalent Noise Input:* At +25° C. 1.9×10^{-12} 4.3×10-12 lumen At -80° C. 6×10^{-13} 3 × 10-13 lumen Anode-Pulse Rise Time[⊕]... 2.5 milliµsec Greatest Delay Between Anode Pulses: Due to position from which electrons are simultaneously released within a circle centered on tube face and

> milliµsec milliµsec

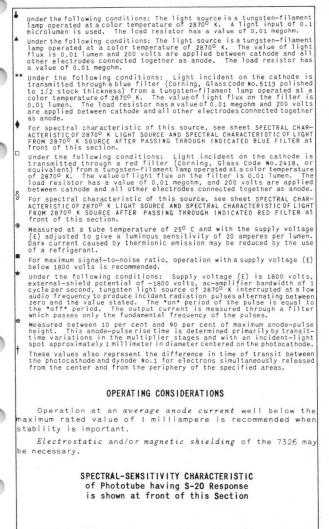
Averaged over any interval of 30 seconds maximum.

▲ ** ♦ □ § ⊕ ■ ★ ⊕ †: see next page. TENTATIVE DATA 1 ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

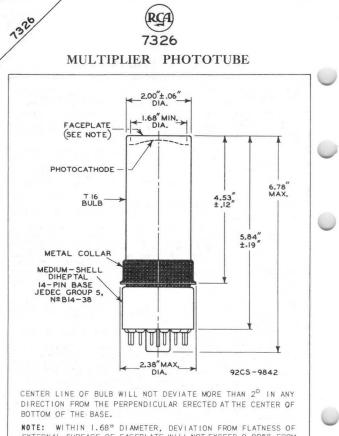
11

3

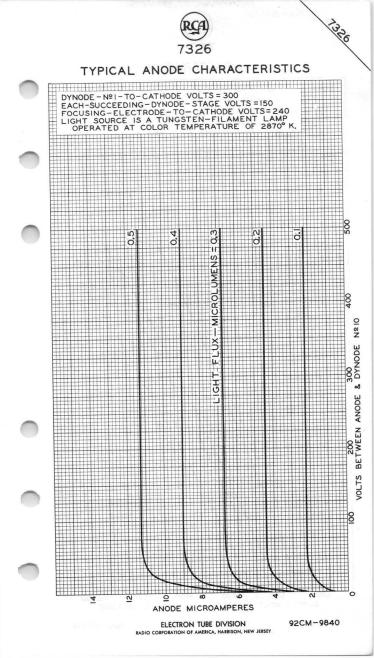
2-59


having a diameter of-1.12". . .

1.56".

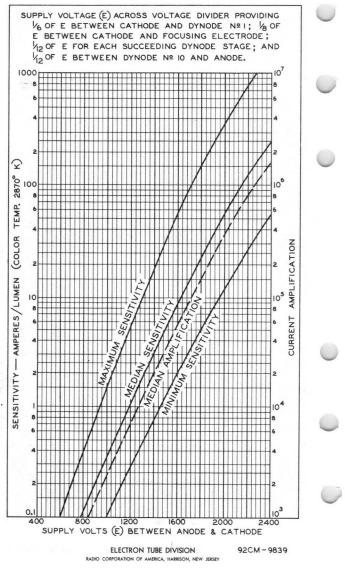

1320

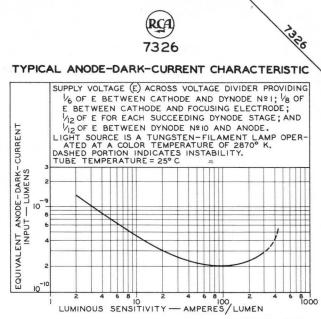
MULTIPLIER PHOTOTUBE

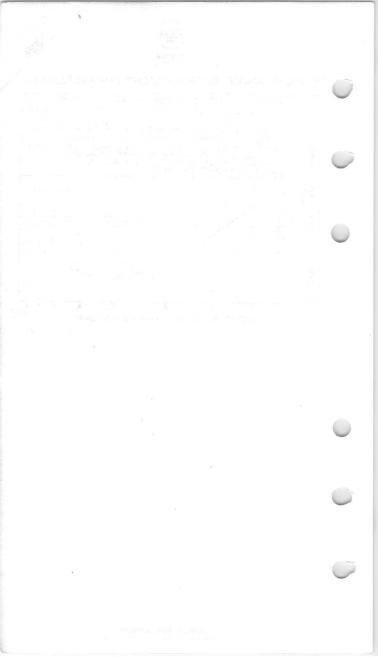


ELECTRON TUBE DIVISION

TENTATIVE DATA 2


NOTE: WITHIN 1.68" DIAMETER, DEVIATION FROM FLATNESS OF EXTERNAL SURFACE OF FACEPLATE WILL NOT EXCEED 0.005" FROM PEAK TO VALLEY.




1320

CHARACTERISTICS

92CS-9841

6	Anode-Supply Voltage ^d 1650 max. Voltage Per Multiplier Stage 350 max.	volts volts
1	Typical Operating Values: ^e	
	Photocathode Voltage	volts
j	Grid-No.6 Voltage (Image focus) Approx. -370 to -470 70% of photocathode voltage f -370 to -470 Target Voltage Above Cutoff ⁹ 2.3 Field-Mesh Voltage ⁶ 15 to 25 Grid-No.5 Voltage (Decelerator) 40 Grid-No.4 Voltage ⁶ 70 to 90 Grid-No.3 Voltage ⁶ 250 to 275 Grid-No.2 & Dynode-No.1 Voltage 280	volts volts volts volts volts volts volts
	Grid-No.1 Voltage for Picture Cutoff45 to -115 ynode-No.2 Voltage	volts volts volts volts volts volts volts volts
	At center of scanning section: 60 In plane of photocathode 120 Field Strength of Alignment Coil 0 to 3	gausses gausses gausses

Performance Data:

With conditions shown under Typical Operating Values including Recommended Target-Temperature Range, target voltage adjusted to 2.3 volts above cutoff, and with the camera lens set to bring the picture highlights 1/2 stop above the "knee" of the accompanying Basic Light-Transfer-Characteristic Curve

		Min.	Typ.	Max.	
	Cathode Radiant Sensitivity at 4500 angstroms Luminous Sensitivity Anode Current (DC) Signal-Output Current (Peak	- 30 -	0.030 60 30		a/w μa/lm μa
	ťo Peak)	10	-	40	μa
	Ratio of Peak-to-Peak High- light Video-Signal Current to RMS Noise Current for Bandwidth of 4.5 Mc notocathode Illumination at 2870° K Required to bring Picture Highlights	85:1	95:1	-	
	1/2 Štop above "Knee" of Light Transfer Character- istic Amplitude Response at 400 TV Lines per Picture Height (Per	-	0.070	0.130	fc
	cent of large-area black to large-area white) ^k	60	75	-	×
Support of		and the second second			The subscription of the

RADIO CORPORATION OF AMERICA **Electronic Components and Devices**

Harrison, N. J.

DATA 2 2-64

		Min.	Typ.	Max.		
U	niformity: m					
	Ratio of Shading (Back-					
	ground) Signal to Highlight Signal	-	0.10	0.15		
De	ecrease from Peak					
	Highlight Signal Level of Signal from any Point					
	on Scanned Area of Target	-	12	25	%	
	Cinch Manufacturing Corporation, 1026 South					
	Operating outside the Recommended Target-Te Typical Operating Values will not damage the Temperature Ratings of the tube are not exce however, is only obtained when the tube is mended Target-Temperature Range.	eded.	Optimum	performa	nce	
c	With respect to grid No.4.					

^d Dynode-voltage values are shown under Typical Operating Values.

 e With 7389B operated in RCA TK-60 camera at fixed photocathode voltage. f

- f Adjust for optimum focus.
- 9 The target supply voltage should be adjustable from -5 to 5 volts.
- $^{\mathsf{h}}$ Adjust to give the most uniformly shaded picture near maximum signal.
- J Direction of current should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- k Measured with amplifier having flat frequency response.
- With uniform illumination on photocathode.

OPERATING CONSIDERATIONS

The tube should never be operated in a vertical position with the Diheptal/base end up nor in any other position where the axis of the tube with base up makes an angle of less than 20° with the vertical.

SPECTRAL-SENSITIVITY CHARACTERISTIC of Photosensitive Device having S-10 Response is shown at the front of this Section

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Image Orthicon

"MICRODAMP" CONSTRUCTION FOR REDUCED MICROPHONICS

FIELD MESH FOR REDUCED "WHITE EDGE" EFFECTS

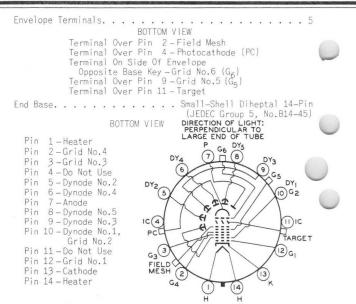
MAGNETIC FOCUS

MAGNETIC DEFLECTION

For High-Quality Black-and-White Studio TV Cameras, Live Pickup, and Magnetic Tape Recording Requiring High-Signal-to-Noise Ratio. The 7389B is Unilater-ally Interchangeable with the 7389 and 7389A.

General:

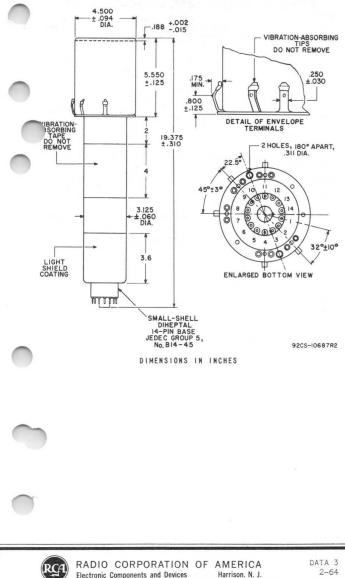
	Heater, for Unipotential Cathode:	
•	Voltage (AC or DC) 6.3 ± 10%	volts
	Current at 6.3 volts 0.6	amp
	Jirect Interelectrode Capacitance:	
	Anode to all other electrodes 12	pf
		inch
	Spectral Response	S-10
	Wavelength of Maximum Response 4500 ± 300	angstroms
	Photocathode, Semitransparent:	


Rectangular image (4 x 3 aspect ratio):

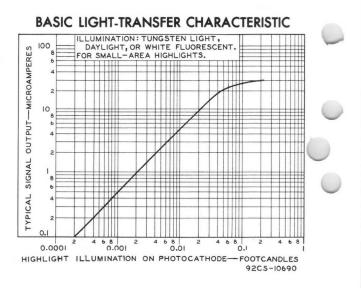
- Useful size of. 1.6" max. diagonal Note: The size of the optical image focused on the photocathode should be adjusted so that its maximum diagonal does not exceed the specified value. The corresponding electron image on the target should have a size such that the corners of the rectangle just touch the target ring.
- Orientation of. . Proper orientation is obtained when the vertical scan is essentially parallel to the plane passing through center of faceplate and the grid-No.6 envelope terminal. The horizontal and vertical scan should start at the corner of the picture between the grid-No.6 and the photocathode envelope terminals.

Focusing Method. Magnetic Deflection Method. Magnetic 19.375" ± 0.310" Overall Length Greatest Diameter of Bulb. 4.500" + 0.094"3.2" Minimum Deflecting-Coil Inside Diameter. 7" Focusing-Coil Length . Alignment-Coil: Position on neckCenterline of magnetic field should be located 9.25" from the flat area of the shoulder. . . . See Operating Considerations Operating Position .

DATA 2-64



Maximum and Minimum Ratings, Absolute-Maximum Values:


Photocathode:		
i i i i i i i i i i i i i i i i i i i		olts
Illumination 5	0 max.	fc
Operating Temperature: b		
Any part of bulb 6	5 max.	°C
Of bulb at larg end of tube		
(Image section)	5 min.	°C
Temperature Difference:		
Between image section and any part		
of our of the the start and the start of the	5 max.	°C
Grid-No.6 Voltage	0 max. v	olts
Target Voltage:		
		olts
Negative value 1	0 max. v	olts
Field-Mesh Voltage ^c	0 max. v	olt
Grid-No.5 Voltage	0 max. v	ol
Grid-No.4 Voltage	0 max. v	olts
Grid-No.3 Voltage	0 max. v	olts
Grid-No.2 & Dynode-No.1 Voltage 35	0 max. v	olts
Grid-No.1 Voltage:		
Negative-bias value	5 max. v	olts
	0 max. v	olts
Peak Heater-Cathode Voltage:		
Heater negative with respect to cathode. 12	5 max. v	olts
	0 max. v	olts

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

2-64

RADIO CORPORATION OF AMERICA **Electronic Components and Devices** Harrison, N. J.

Image Orthicon

"MICRODAMP" CONSTRUCTION FOR REDUCED MICROPHONICS FIELD MESH FOR REDUCED "WHITE EDGE" EFFECTS

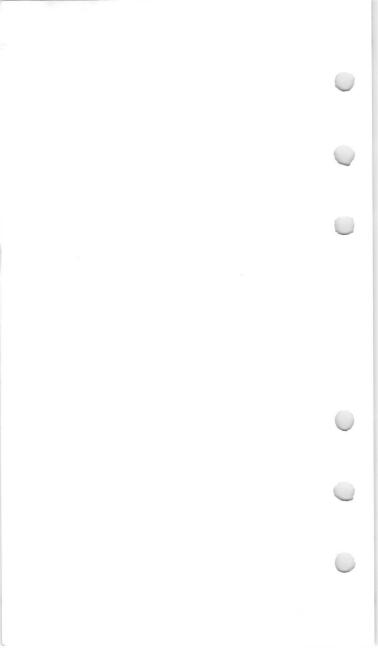
LONG-LIFE TARGET MAGNETIC FOCUS

FIELD-MESH TYPE MAGNETIC DEFLECTION

For Extremely High-Quality Performance in Black-and-White Studio TV Cameras and Television Tape-Recording Operations. The 7389C is Directly Interchangeable with the 7389, 7389A, and 7389B in all Cameras.

The 7389C is the same as the 7389B except utilizes a stable, long-life glass target.

The stable, long-life, glass target of type 7389C is characterized by high gain, resistance to "burn-in", and the absence of any granular structure. Because charge transportation through this target material is electronic rather than ionic as in ordinary glass targets, the electrical characteristics of the target, such as secondary emission and resistivity, are essentially constant and sensitivity of the 7389C is stable throughout life.


Other important advantages of this target are that the undesirable characteristics of scene retention or "sticking picture" and raster "burn-in" due to underscanning are significantly reduced. The resistance of the 7389C to image "burnin" provides a highly desirable operational feature because it is not necessary to use an orbiter or continually move the camera when focused on a stationary scene.

OPERATING CONSIDERATIONS

Dos and Don'ts on Use of RCA-7389C Dos

- 1. Allow the 7389C to warm-up prior to operation.
- 2. Hold temperature of the 7389C within operating range.
- 3. Make sure alignment coil is properly adjusted.
- 4. Adjust beam-focus control to best usable resolution.
- Condition spare 7389C's by operating several hours once each month.
- Determine proper operation point with target voltage adjusted to the desired voltage above target cutoff.
- 7. Uncap lens before voltage are applied to the 7389C.
- Don'ts
- 1. Don't force the 7389C into its shoulder socket.
- 2. Don't operate the 7389C without scanning.
- 3. Don't operate a 7389C having an ion spot.
- Don't use more beam current than necessary to discharge the highlights of the scene.
- 5. Don't turn off beam while voltages are applied to photocathode, grid-No.6, target, dynodes, and anode during warmup or standby operation.

PHOTOCONDUCTIVE CELL

CADMIUM-SULFIDE, HEAD-ON TYPE

DATA

General:

	General:
	Spectral Response
	Sensitive Surface:
)	Shape
	Width (Minimum) 0.02 in.
	Area (Minimum) 0.004 sq. in. Maximum Length (Excluding flexible leads) 1.35"
	Maximum Length (Excluding flexible leads). 1.35" Diameter 0.29" ± 0.01"
	Leads, Flexible
Ń	Minimum length
2	Operating Position
	Weight (Ăpprox.) 0.06 oz
	λ
	TERMINAL TERMINAL DIRECTION OF LIGHT:
	INTO END OF BULB
	λ indicates that the primary characteristic of the element within the envelope symbol is designed to vary under the influence of light.
	Maximum Ratings, Absolute-Maximum Values:
	VOLTAGE BETWEEN TERMINALS
	(DC or Peak AC)
	POWER DISSIPATION
	POWER DISSIPATION. 50 max. mw AMBIENT TEMPERATURE. 60 max. °C
	AMBIENT TEMPERATURE 60 max. ^O C Characteristics: With dc voltage of 12 volts between termi-
	AMBIENT TEMPERATURE
	AMBIENT TEMPERATURE
	AMBIENT TEMPERATURE 60 max. ^O C Characteristics: With dc voltage of 12 volts between terminnals and an ambient temperature of 25 [°] C Nin. Median Max. Sensitivity: Radiant ⁶ , at
	AMBIENT TEMPERATURE
	AMBIENT TEMPERATURE 60 max. ^O C Characteristics: With dc voltage of 12 volts between terminnals and an ambient temperature of 25 [°] C Nin. Median Max. Sensitivity: Radiant ⁶ , at
	AMBIENT TEMPERATURE 60 max. °C Characteristics: With dc voltage of 12 volts between termi- nals and an ambient temperature of 25° C Nin. Median Max. Sensitivity: Radiant, at 5800 angstroms 4.5
	AMBIENT TEMPERATURE 60 max. °C Characteristics: With dc voltage of 12 volts between termi- nals and an ambient temperature of 25° C Min. Median Max. Sensitivity: Radiant ⁴ , at 5800 angstroms 1580 - μa/μw Luminous ^{**} 1080 - μa/μw Luminous ^{**}
	AMBIENT TEMPERATURE 60 max. °C Characteristics: With dc voltage of 12 volts between termi- nals and an ambient temperature of 25° C Nin. Median Max. Sensitivity: Radiant, at 5800 angstroms 4.5
	AMBIENT TEMPERATURE 60 max. °C Characteristics: With dc voltage of 12 volts between termi- nals and an ambient temperature of 25° C Min. Median Max. Sensitivity: Radiant ⁴ , at 5800 angstroms 1580 - μa/μw Luminous ^{**} 1080 - μa/μw Luminous ^{**}
	AMBIENT TEMPERATURE 60 max. °C Characteristics: With dc voltage of 12 volts between termi- nals and an ambient temperature of 25° C Min. Median Max. Sensitivity: Radiant ⁴ , at 5800 angstroms 1580 - μa/μw Luminous ^{**} 1080 - μa/μw Luminous ^{**}

8-59

ELECTRON TUBE DIVISION

DATA

1812

PHOTOCONDUCTIVE CELL

For conditions where the incident power is 2 x 10^{-9} watt.

* For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870° K.

[#] Incident illumination on the sensitive surface is 0.01 footcandle.

Measured approximately 20 seconds after removal of incident-illumination level of 0.01 footcandle.

OPERATING CONSIDERATIONS

The *flexible leads* of the 7412 are usually soldered to the circuit elements. Soldering of the leads may be made close to the seals provided care is taken to conduct excessive heat away from the seals. Otherwise, the heat of soldering will break the seals and damage the cell.

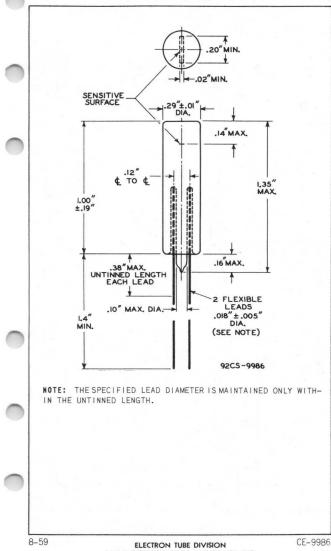
A *clamp* around the glass envelope may be used to hold the cell in position. However, care must be taken in clamping to avoid cracking the glass envelope or introducing strains in the envelope which could lead to eventual breakage.

The voltage between terminals of the 7412 may be applied without regard to polarity.

The *angle* of *view* of the 7412 may be narrowed by the use of a hood of the desired length placed in front of the cell.

If the source of radiation is some distance from the cell, the use of a lens system may be desirable to utilize more effectively the available radiation. However, the radiation should not be focused onto such a small area that localized overheating of the sensitive surface may result with consequent adverse affects on its characteristics. Exposure of the 7412 to radiation (even without voltage applied) so intense as to cause excessive heating of the cell may permanently damage it.

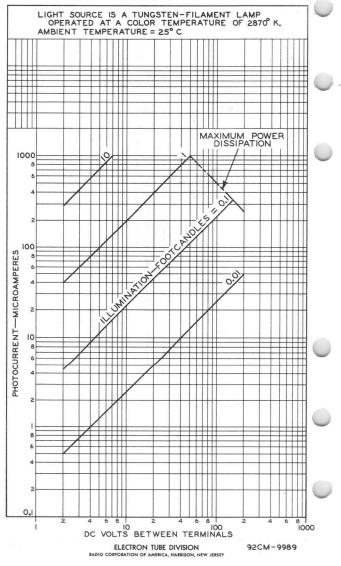
For a given illumination, the output current will have its highest value when the incident illumination is normal (angle of incidence is 90°) to the face of the cell. For smaller angles of incidence, the output current decreases. The decrease depends upon several factors including the angle of incidence of the illumination, the amount of illumination, and the area of sensitive surface illuminated.


SPECTRAL-SENSITIVITY CHARACTERISTIC of Photoconductive Cell having S-15 Response is shown at the front of this Section

1412

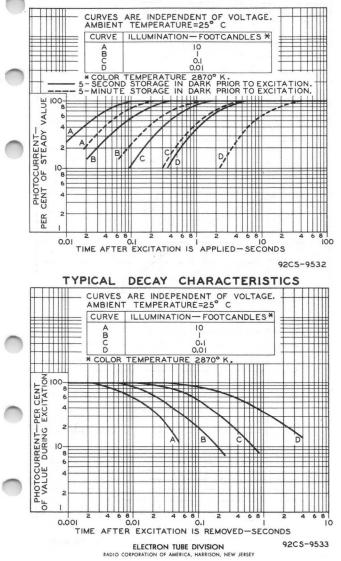
12/2

PHOTOCONDUCTIVE CELL

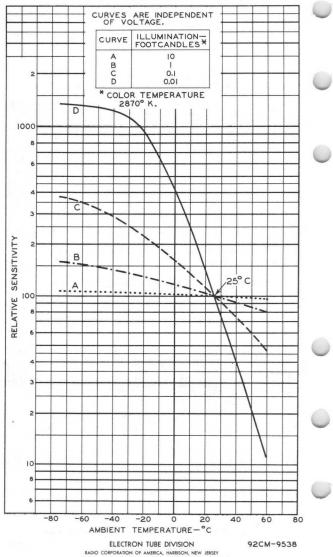


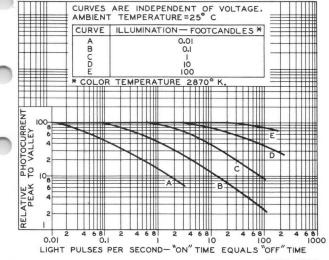
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

7012

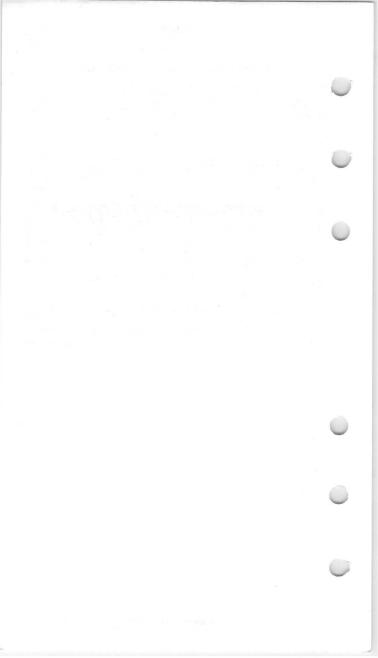

AVERAGE CHARACTERISTICS

18/2


TYPICAL RISE CHARACTERISTICS


7412

TYPICAL CHARACTERISTICS



RESPONSE CHARACTERISTICS

92CS-9534

1 P

7735, 7735A

Vidicons

Magnetic Focus 1''-Diameter Magnetic Deflection For Non-Critical Industrial and Consumer Product Closed-Circuit TV

The 7735A and 7735 are the same as the 7735B except for the following items:

TYPICAL OPERATION AND PERFORMANCE DATA

Low-Voltage Operation			
The second second	7735A	7735	
Grid No.1 Voltage for			
Picture Cutoff ^a 45	to -100	-45 to -100	V
Lag-Per Cent of Initial			
Value of Signal-Output			
Current 1/20 Second After			
Illumination is Removed: ^b			
Maximum Value	28	30	%
Limiting Resolution:			
At center of picture-			
Typical Value	700	700	TV Lines
AVERAGE SENSITIVITY OPE	RATION		
Faceplate Illumination			
(Highlight)	1	1	\mathbf{fc}
Target Voltage c,d	20to 40	15 to 55	v

- With no blanking voltage on grid No.1.
- ^b For initial signal-output current of 0.3 microampere and a dark current of 0.02 microampere.
- ^c The target voltage for each tube must be adjusted to that value which gives the desired operating signal current.

^a Indicated range serves only to illustrate the operating target-voltage range normally encountered.

RBA Electronic Components

7735, 7735A

- The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.
- f Defined as the component of the highlight target current after the dark-current component has been subtracted.

Equivalent Number of Raster Lines	Zone 1 Allowed Spots	Zone 2 Allowed Spots
over 4	0	0
4 but not including 3	0	1
3 but not including 1	2	3
1 or less	*	*

SPURIOUS SIGNAL TEST

Minimum separation between any 2 spots greater than 1 raster line is limited to 16 raster lines.

*Spots of this size are allowed unless concentration causes a smudged appearance.

Vidicon

1"-Diameter Magnetic Deflection Magnetic Focus For Live-Scene Pickup with Color or Black-and-White TV Cameras in Broadcast, Industrial, and Closed-Circuit The 7735B is Unilaterally Interchangeable Systems. with Types 7735 & 7735A. GENERAL Heater, for Unipotential Cathode: Voltage (AC or DC) $6.3 \pm 10\%$ volts Current at 6.3 volts 0.6 A Direct Interelectrode Capacitance: a Target to all other electrodes 4.6 pF Spectral Response . . See Type II Spectral Response at front of this section Photoconductive Layer: Maximum useful diagonal of rectangular image(4 x 3 aspect ratio) 0.62 inch Orientation of quality rectangle-Proper orientation is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short index pin. The masking is for orientation only and does not define the proper scanned area of the photoconductive layer. Focusing Method Magnetic Deflection Method Magnetic 6.25"± 0.25" Overall Length Greatest Diameter 1.125" ± 0.010" **T8** Base. Small-Button Ditetrar 8-Pin, (JEDEC No.E8-11) Socket Cinch^b No.54A18088, or equivalent Cleveland Electronics cd Focusing Coil No. VF-115-5, or equivalent No. VY-111-3, or equivalent Deflecting Yoke.... Alignment Coil No. VA-118, or equivalent Any Operating Position 2 oz Weight (Approx.) ABSOLUTE-MAXIMUM RATINGS For scanned area of 1/2" x 3/8" Grid-No. 3 & Grid-No. 4 Voltage ... 1000 max. volts Grid-No. 2 Voltage 1000 max. volts Grid-No. 1 Voltage: Negative bias value 300 max. volts Positive bias value 0 max. volts Peak Heater-Cathode Voltage: Heater negative with 125 max. volts respect to cathode

Electronic

Components

DATA 1 2-69

Heater positive with respect to cathode 10 max.	volts
Target Voltage 100 max.	volts
Dark Current 0.25 max.	μA
Dark Current 0.25 max. Peak Target Current 0.55 max.	μA
Faceplate:	
Illumination 1000 max.	fc
Temperature	°C

TYPICAL OPERATION AND PERFORMANCE

For scanned area of 1/2" x 3/8" - Faceplate tem- perature of 30° to 35°C	Low- Voltage Operation	High- Voltage Operation		0
Grid-No.4 (Decelerator) & Grid-No.3 (Beam-Focus Electrode) Voltage Grid-No.2 (Accelerator)	250 9 to 300	750	volts	0
Voltage	300	300	volts	
Grid-No.1 Voltage for Picture Cutoffh Average "Gamma" of Transfer Characteristic for signal-output current	-4 5 to - 100	-45 to -100	volts	
between 0.02µa and	0.05	0.05		
0.2 µa Visual Equivalent Signal-	0.65	0.65		
to-Noise Ratio (Approx.)	300:1	300:1		
Lagk	00011	00011		
	00	00	07	
Maximum value Typical value	28 23	28 23	%	
Minimum Peak-to-Peak	20	23	70	
Blanking Voltage:				
When applied to grid No.1	75	75	volts	
When applied to cathode.	20	20	volts	
Limiting Resolution:				
At center of picture-				
Typical value	750	900	TV lines	
Minimum value	700		TV lines	
Amplitude Response to a 40 TV Line Square-Wave Tes				1
→ Pattern at Center of Pictu		45	%	\sim
Field Strength at Center of	re 30	40	70	
Focusing Coil ^m	40	60	gauss	
Peak Deflecting-Coil Curre		00	gauss	
Horizontal	185	375	mA	
Vertical	25	43	mA	
Field Strength of		10		~
Adjustable Alignment Coi	1 0 to 4	0 to 4	gauss	
		- Indicates	a change.	

RBA Electronic Components

DATA 1

<form>Low Might Strate St</form>	Hi	gh-se	nsiti	ivit,	у ор	era	tic	n —	-0.	. 5	foo	otcan	dle	on	face	eplate	2	
<pre>Operation Operation. Faceplate Illumination (Highlight) 0.5 - fc Target Voltage^{0, P},</pre>																9		
 Target Voltage^{n, p.}																		
 Dark Currentā 0.10 - µA Signal-Output Current^T Typical 0.27 - µA Average-sensitivity operation-1.0 footcandle on faceplate Faceplate Illumination (Highlight) 1.0 - fc Target Voltage^{n, p} 0.025 - µA Signal-Output Current^T Typical 0.275 - µA Minimum 0.265 - µA High-Light Level Operation-10 footcandles on faceplate Faceplate Illumination (Highlight) 10 - fc Target Voltage^{n, p} 0.275 - µA Minimum 0.265 - µA High-Light Level Operation-10 footcandles on faceplate Faceplate Illumination (Highlight) 10 - fc Target Voltage^{n, p} 0.005 - µA Signal-Output Current^T Typical /li>							igh		-	t))			fc	
 Typical	Dark	Curre	nt¶.													-	μÅ	
 Faceplate Illumination (Highlight) 1.0 - fc Target Voltage^{n, p}			put (···	ent'							0	. 27				μA	
 Target Voltage^{n, p}	Ave	rage-	sensi	itiv	ity	ope	rat	io	n	- 1 .	0	footc	andl	e on	fac	cepla	e	
 Dark Current^q 0.025 - μA Signal-Output Current^r Typical 0.275 - μA Minimum 0.265 - μA High-Light Level Operation-10 footcandles on faceplate Faceplate 111umination (Highlight) 10 - fc Target Voltage^{0, P} 10 to 22 - V Dark Current^q 0.005 - μA Signal-Output Current^r Typical 0.3 - μA Signal-Output Current^r Typical 0.3 - μA a This capacitance, which effectively is the output impedance of the 7735B, is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohas. b Orientation of guality rectangle is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short pin. The masking is for orientation of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short pin. The masking is for orientation on lay and does not define the proper scanned area of the photoconductive layer. Made by Cleveland Electronics Inc., 1974 East 6lat St., Cleveland, Ohio. These components are chosen to provide tube operation with minimum beamlanding error. Made by Cinch Manufacturing Corporation, 1026 S. Homan Ave., Chicago 24, 111inois. With no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascode-input-type amplifier having because the noise in such asystem is predminately of the high-frequency type, the visual equivalence signal current to rest of a dark current of 0.025 microampere. Because the noise in such asystem is predminately of the high-frequency type, the visual equivalence signal current to rus noise, cascode-input-type amplifier having because the noise i						(H	igh	11	ght	t)				•		-		
 Signal-Output Current^r Typical						: :	: :	: :	:					0		-		
 Minimum. 0.265 - µA High-Light Level Operation-10 footcandles on faceplate Faceplate 111umination (Highlight) 10 - fc Farget Voltage^(1,p) . 10 to 22 - y Vark Current⁹ 0.005 - µA Signal-Output Current^r Typical 0.3 - µA This capacitance, which effectively is the output impedance of the 7735B, footing-coil assembly. The resistive component of the output impedance is in the order of 100 megoham. Orientation of guality results component of the output impedance of the 7735B, footing-coil assembly. The resistive component of the output insedance is in the order of 100 megoham. Orientation of guality results is obtained when the herizontal scan is essentially parallel to the straight sides of the maked portions of the faceplate. The straight sides are parallel to the plone ppace on any and does not define the proper scaned area of the photoconductive layer. Made by Cleveland Electronics Inc., 1974 East 6lat St., Cleveland, Ohio. These components are chosen to provide tube operation with minium beamlanding error. Made by Clinch Manufacturing Corporation, 1026 S. Homan Ave., Chicago 24, 111inois. Meth Vichon Annafacturing Corporation, 1026 S. Homan Ave., Chicago 24, 111inois. Mith no blanking voltage on grid No.1. Masured with high-gain, low-noise, cascode-input-type amplifier having brochadul be operated above 250 volts. Mith no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascode-input-type amplifier having because the noise in such asystemis predminately of the high-frequency type, the visual equivalent signal-output current of 0.025 microampere and a dark current 1/20 signal-output current of 0.025 microampere and a dark current of 0.025 microampere. The polarity of the focusing coil should be agenet of signal-output current 1/20 signal-output current of 0.025 microampere. The polarity of the fo				Curr	ent	r						0	075					
 High-Light Level Operation-10 footcandles on faceplate Faceplate Illumination (Highlight) 10 - fc Target Voltage^{N,P} 0.005			::	::	:				:	:						-		
 Faceplate Illumination (Highlight) 10 - fc Target Voltage^[7,P] 10 to 22 - V Dark Current⁴ 0.005 - μA Signal-Output Current⁷ Typical 0.3 - μA ^a This capacitance, which effectively is the output impedance of the 7735B, is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohas ^b Orientation of quality rectangle is obtained when the horizontal scan is essentially parallel to the straight sides of the masking is for orientation only and does not define the proper scanned area of the photoconductive layer. ^c Made by Cleveland Electronics Inc., 1974 East 6lst St., Cleveland, Ohio. These components are chosen to provide tube operation with minimum beam- landing error. ^c Made by Cleveland Electronics Inc., 1974 East 6lst St., Cleveland, Ohio. ^c These components are chosen to provide tube operation with minimum beam- landing error. ^c Made by Cleveland Electronics Inc., 1974 East 6lst St., Cleveland, Ohio. ^c These components are chosen to provide tube operation with minimum beam- landing error. ^c Made by Cleveland Electronics Inc., 1974 East 6lst St., Cleveland, Ohio. ^c These axis and milifier overload or picture distortion. ^d Definition, focus uniformity, and picture quality decrease with decreasing grid-No.4 and grid-No.3 voltage. In general, grid-No.4 and grid-No.3 should be operated above 250 volts. ^d With no blanking voltage on grid No.1. ^d Mester with the big-sgin, low-noise, code-input-type amplifier having because the noise in such asystem is predominately of the high-frequency type, the visual equivalent signal-output current of 0.35 microampere Because the noise in such asystem is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highli	ŀ	ligh-I	ight	Lei	e1 (Oner	at	ion	1	0	foo	tean	dles	on f	ace	nlate	1	
 Dark Current⁴ 0.005 - μA Signal-Output Current⁷ Typical 0.3 - μA This capacitance, which effectively is the output impedance of the 7735B, is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohas Orientation of quality rectangle is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short pin. The masking is for orientation only and does not define the proper scanned area of the photoconductive layer. Made by Cleveland Electronics Inc., 1974 East flat St., Cleveland, Ohio. These components are chosen to provide tube operation with minimum beamlanding error. Made by Cleveland Electronics Inc., 1974 East flat St., Cleveland, Ohio. These components are chosen to provide tube operation with minimum beamlanger. Made by Cleveland Electronics Inc., 1974 East flat St., Cleveland, Ohio. These components are chosen to provide tube operation with minimum beamlanger. Mide amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion. Definition, focus uniformity, and picture quality decrease with decreasing should be operated above 250 volts. With no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascode-input-type amplifier having based with defres and spati-output current of 0.3 microamper. type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3. Measured with high-gain, low-noise, cascode-input-type amplifier having based to the site of a signal-output current of 0.3 microampere, type, the visual equivalent signal-to-noise ratio is t											,	e c unit		on j	acc	-	fc	
 Signal-Output Current^r Typical				n,p		•••			٠.					2		-		
 Typical						r '	•		•			0.	005			-	$\mu \mathbf{A}$	
 is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohas Orientation of quality rectangle is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short pin. The masking is for orientation only and does not define the proper scanned area of the plane passing through the tube axis and short pin. The masking is for orientation only and does not define the proper scanned area of the photoconductive layer. Made by Cleveland Electronics Inc., 1974 East flat St., Cleveland, Ohio. These components are chosen to provide tube operation with minimum beanlanding error. Made by Cinch Manufacturing Corporation, 1026 S. Homan Ave., Chicago 24, Illinois. Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion. Definition, focus uniformity, and picture quality decrease with decreasing grid-No.4 and grid-No.3 voltage. In general, grid-No.4 and grid-No.3 should be operated above 250 volts. With no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascode-input-type amplifier having backwidth of 5 Mc/s and a peak signal-output current of 0.3 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-output current, multiplied by a factor of 3. Defined as the per cent of initial value of signal-output current 1/20 scond after illumination is removed. Values shown are for initial signal-output current of 0.025 microampere. The polarity of the focusing coil, with the indicator pocated outside of and at the image end of the focusing coil. The target voltage for each 7735B must be adjusted to the value which gives the desired operating						• •	•	•				(0.3		3	-	μ A	
 is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohas Orientation of quality rectangle is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short pin. The masking is for orientation only and does not define the proper scanned area of the plane passing through the tube axis and short pin. The masking is for orientation only and does not define the proper scanned area of the photoconductive layer. Made by Cleveland Electronics Inc., 1974 East flat St., Cleveland, Ohio. These components are chosen to provide tube operation with minimum beanlanding error. Made by Cinch Manufacturing Corporation, 1026 S. Homan Ave., Chicago 24, Illinois. Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion. Definition, focus uniformity, and picture quality decrease with decreasing grid-No.4 and grid-No.3 voltage. In general, grid-No.4 and grid-No.3 should be operated above 250 volts. With no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascode-input-type amplifier having backwidth of 5 Mc/s and a peak signal-output current of 0.3 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-output current, multiplied by a factor of 3. Defined as the per cent of initial value of signal-output current 1/20 scond after illumination is removed. Values shown are for initial signal-output current of 0.025 microampere. The polarity of the focusing coil, with the indicator pocated outside of and at the image end of the focusing coil. The target voltage for each 7735B must be adjusted to the value which gives the desired operating	o TL:											÷.			6	.1 22	250	
 is in the order of 100 megohas Drientation of quality rectangle is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short pin. The masking is for orientation only and does not define the proper scanned area of the photoconductive layer. Made by Cleveland Electronics Inc., 1974 East flat St., Cleveland, Ohio. These components are chosen to provide tube operation with minimum beamlanding error. Made by Cinch Manufacturing Corporation, 1026 S. Homan Ave., Chicago 24, Illinois. Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion. Definition, focus uniformity, and picture quality decrease with decreasing grid-No.4 and grid-No.3 voltage. In general, grid-No.4 and grid-No.3 should be operated above 250 volts. With no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascode-input-type amplifier having backath of S. and a peak signal-output current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency to the vital equivalent signal-output current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency to a factor of 3. Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.025 microampere. The polarity of the focusing coil, with the indicator polarity of the focusing coil should be such that a north-seeking pole attracted to the image end of the focusing coil. The target voltage for each 7735B must be adjusted to the value which gives the desired operating signal current. Indicated range for each 7735B must be adjusted to the value which gives the desired operating signal curren	1 5	incre	ased	when	the	a 1.11	he	is	mo	un	ted	in t	he d	efle	cti	ng-yok	e and	
 Orientation of quality rectangle is obtained when the horizontal scan is essentially parallel to the straight sides are parallel to the plane passing through the tube axis and short pin. The masking is for orientation only and does not define the proper scanned area of the photoconductive layer. Made by Cleveland Electronics Inc., 1974 East fast St., Cleveland, Ohio. These components are chosen to provide tube operation with minimum beamlanding error. Mode by Cinch Manufacturing Corporation, 1026 S. Homan Ave., Chicago 24, 111003. Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion. Definition, focus uniformity, and picture quality decrease with decreasing grid-No.4 and grid-No.3 voltage. In general, grid-No.4 and grid-No.3 while be operated above 250 volts. With no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascode-input-type amplifier having bendwidth of 5 Mc/s and a peak signal-output current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highligh video-signal current to rms noise current, multiplied by a factor of 3. Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.025 microampere. The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil. The target voltage for each 7735B must be adjusted to the value which gives the desired operating signal current. Indicated range for each 7735B must be adjusted to the value which gives the desired operating signal current. 	1 S	in the	orde	r of	100	mego	hms											
 C Made by Cleveland Electronics Inc., 1974 East 6lst St., Cleveland, Ohio. C Made by Cleveland Electronics Inc., 1974 East 6lst St., Cleveland, Ohio. C Made by Cleveland Electronics Inc., 1974 East 6lst St., Cleveland, Ohio. C Made by Cleveland Electronics Inc., 1974 East 6lst St., Cleveland, Ohio. C Made by Cleveland Electronics Inc., 1974 East 6lst St., Cleveland, Ohio. C Made by Cleveland Electronics Inc., 1974 East 6lst St., Cleveland, Ohio. C Made by Cleveland Electronics Inc., 1974 East 6lst St., Cleveland, Ohio. C Made by Cleveland Electronics. P Definition, focus uniformity, and picture quality decreases with decreasing grid-No. 4 and grid-No. 3 woltage. In general, grid-No. 4 and grid-No. 3 should be operated above 250 volts. W With no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 Mc/s and a peak signal-output current of 0.35 microampere. Type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3. k Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.35 microampere. M The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil. n The target voltage for each 7735B must be adjusted to the value which gives the desired operating signal current. P Indicated range for each 7735B must be adjusted to the value which gives the desired operating signal current. 	Oriis	entati essent	on of ially	qua para	lity	rec to t	t ang he	str	is	ol gh t	btai sid	ned w des of	hen t the	he h mask	oria	zontal portio	scan ns of	
 Made by Cleveland Electronics Inc., 1974 East 61st St., Cleveland, Ohio. These components are chosen to provide tube operation with minimum beam- landing error. Made by Cinch Manufacturing Corporation, 1026 S. Homan Ave., Chicago 24, 1110 rois. Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion. Definition, focus uniformity, and picture quality decrease with decreasing grid-No.4 and grid-No.3 voltage. In general, grid-No.4 and grid-No.3 should be operated above 250 volts. With no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascod-input-type amplifier having bendwidth of 5 Mc/s and a peak signal-output current of 0.35 microampere. Because the noise in such asystem is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3. Mende as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.025 microampere. More polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil. Me target voltage for each 7735B must be adjusted to the value which gives the desired operating signal current. Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered. 	the thr onl	e facep ough t y and	late. he tu does i	Th be a not d	e st xis lefin	raig and e th	ht sho e p	sid rt rop	es pin er	ar n. sc	e p Th anne	arall e mas ed are	el to king ea of	the is f	pla or c ohot	ine par orient ocondu	ssing ation ctive	
 These components are chosen to provide tube operation with minimum beamlanding error. Made by Cinch Manufacturing Corporation, 1026 S. Homan Ave., Chicago 24, Illinois. Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion. Definition, focus uniformity, and picture quality decrease with decreasing grid-No.4 and grid-No.3 voltage. In general, grid-No.4 and grid-No.3 should be operated above 250 volts. With no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascode-input-type amplifier having bendwidth of 5 Mc/s and a peak signal-output current of 0.35 microampere. Because the noise in such asystem is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3. Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.025 microampere. The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil. The target voltage for each 7/35B must be adjusted to the value which gives the desired operating signal current. Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered. 	C Mad	le by Cl																
 Made by Cinch Manufacturing Corporation, 1026 S. Homan Ave., Chicago 24, III inois. Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion. Definition, focus uniformity, and picture quality decrease with decreasing grid-No.4 and grid-No.3 voltage. In general, grid-No.4 and grid-No.3 should be operated above 250 volts. With no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 Mc/s and a peak signal-output current of 0.35 microampere. Because the noise in such asystem is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3. Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.025 microampere. The polarity of the focusing coil should be such that a north-seeking pole is a tracted to the image end of the focusing coil. n The target voltage for each 7735B must be adjusted to the value which gives the desired operating signal current. Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered. 	- Ihe lan	se com ding e	ponen rror.	ts ar	e cho	sen	top	rov	id	e t	ube	opera	ation	with	n min	nimum	beam-	
 Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion. Definition, focus uniformity, and picture quality decrease with decreasing grid-No.4 and grid-No.3 voltage. In general, grid-No.4 and grid-No.3 should be operated above 250 volts. With no blanking voltage on grid No.1. Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 Mc/s and a peak signal-output current of 0.35 microampere. Because the noise in such asystem is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3. Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output ourrent of 0.3 microampere. The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil. The target voltage for each 7735B must be adjusted to the value which gives the desired operating signal current. Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered. 	- Mad Ill	le by Ci inois.	nch M	anufa	ctur	ing	Cor	por	at	ion	, 10	026 S.	Homa	n Ave	., 1	Chicag	o 24,	
 9 Definition, focus uniformity, and picture quality decrease with decreasing grid-No.4 and grid-No.3 voltage. In general, grid-No.4 and grid-No.3 should be operated above 250 volts. h With no blanking voltage on grid No.1. j Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 Mc/s and a peak signal-output current of 0.35 microampere. Because the noise in such asystem is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3. k Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.3 microampere. m The polarity of the focusing coil should be such that a north-seeking pole is a tracted to the image end of the focusing coil. n The target voltage for each 7735B must be adjusted to the value which gives the desired operating signal current. n Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered. 	f Vid thi	leo amp s magn	lifie: itude	rs mu to a	st b	e de amp	sig	ned	p: o	rop	erly	y to ha	ndle	tarş re di	set	curren rtion.	ts of	
 With no blanking voltage on grid No.1. J Messured with high-gsin, low-noise, cascode-input-type amplifier having bandwidth of 5 Mc/s and a peak signal-output current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3. k Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.025 microampere. The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil. n The target voltage for each 7735B must be alforsed to the value which gives the desired operating signal current. I Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered. 	9 Def gri	initio d-No.4	n, foc and	us un grid-	No.	mity 3 vo	, an ltag	nd p ge.	ic	tur n j	e qu gene	ality ral,	decr grid-	ease No.4	with and	decre d grid	asing No.3	Ĩ
 by a factor of 3. k Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.3 microampere and a dark current of 0.025 microamperee and a dark current and	n Wit	h no b	lanki	ng vo	ltag	e or	gr	id	No	. 1.								
 by a factor of 3. k Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.3 microampere and a dark current of 0.025 microamperee and a dark current and	J Mea ban Bec typ	sured w dwidth ause t e, the	of 5 he no visu	igh-g Mc/s ise i al ec	ain, and n suc uiva	lov a pea h a s lent	-no k s yst si	ise ign em gna	al is 1-	cas ou pre	code tput dom: noi:	e-inpu t curr inatel se rat	ent of	pe an of 0.3 the s tal	npli 35 m hig ken	fier h icroam h-freq as the	aving pere. uency ratio	5
 microampere. The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil. The target voltage for each 7735B must be adjusted to the value which gives the desired operating signal current. P Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered. 	by	a fact	or of	3.											ene,	marer		
 The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil. The target voltage for each 7735B must be adjusted to the value which gives the desired operating signal current. P Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered. 	Def sec sig	ined a cond af nal-ou	s the ter i tput	per llum curr	cent inat ent	of ion of 0	ini isı .3	tia em mic	l ove roi	val d. amp	Val val	of sig lues s and	gnal- shown a dar	are are k cu	rrei	urrent or ini nt of	1/20 tial 0.025)
 The target voltage for each 7735B must be adjusted to the value which gives the desired operating signal current. Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered. 				fth	e fo	usi	ngo	oi	l s	ho	uld	be su	ch th	nat a	noi	th-se	eking	5
 In target voltage for each (133B must be adjusted to the value which gives the desired operating signal current. Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered. 	pol loc	ated o	utsid	ed to e of	and	imag at t	he	ima	ge	en	d o:	f the	focu	, wit sing	n th coi	e indi l.	cator	1
 Indicated range for each type of service serves only to flustrate the operating target-voltage range normally encountered. 	giv	es the	desi	red o	pera	ting	; si	gn a	1	cur	ren	t.						
	Ind	licated rating	rang	e for et-vo	eac ltag	h ty e ra	pe inge	of	se rm	rvi all	ce : y er	serves	s onl cered	y to	ill	ustrat	e the	•
RADIO CORPORATION OF AMERICA DATA 2			olen di sida				10.00	0.5mtrc	SIN AM	CALCULAR OF								
Electronic Components and Devices Harrison, N. J. 10–65	RGA									DF								

9 The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change is scanning velocity produces a blacklevel error in direct proportion to the change in scanning velocity.

r Defined as the component of the highlight target current after the darkcurrent component has been subtracted.

OPERATING CONSIDERATIONS

Target connection is made by a suitable spring contact bearing against the edge of the metal ring at the face end of the tube.

Faceplate-temperature should not exceed $71^{\circ}C$ ($160^{\circ}F$), either during operation or storage of the 7735B. Operation with a faceplate temperature in the range from about 25° to $35^{\circ}C$ (77° to $95^{\circ}F$) is recommended.

Provisions should also be made in the camera installation to hold the faceplate temperature of the 7735B at a steady value within the recommended range. Dark current increases with increasing temperature. It is highly desirable to operate the 7735B at a steady temperature to maintain dark current at a preselected value. This mode of operation ensures both optimum and stable day-to-day performance. If such provisions cannot be made, changes in target voltage may be required from time to time to maintain the desired picture quality.

As shown under Uncompensated Horizontal Square-Wave Response, a substantial increase in both limiting resolution and amplitude response of the 7735B may be obtained by increasing the operating voltages on grid No.4 and grid No.3. The focusing-coil field strength must be increased and more deflecting power is required at higher electrode voltages as indicated under Typical Operation and Performance Data.

Operation at higher electrode voltages may introduce additional beam-landing errors that may be partially compensated for by repositioning the deflecting components. Full compensation may require the application of a modulating voltage of suitable waveform, at both horizontal and vertical scan rates, to the cathode, grid No.1, and grid No.2 of the 7735B.

Dos and Don'ts on Use of RCA-7735B

Dos

1. Adjust camera scanning to utilize maximum useful area of photoconductive layer.

 Orient the vidicon so that horizontal scan is essentially parallel to the plane passing through tube axis and short pin.
 Align electron beam.

 With lens capped, adjust target voltage for each individual vidicon to the highest value that will still give uniform background.

5. Match any visible raster pattern of photoconductive layer with new scan by reorienting the vidicon as required.

Use only sufficient beam current to bring out picture highlights.

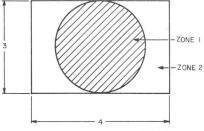
DATA 2

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. 7. Open lens iris or increase the scene illumination to obtain the "snappiest" picture without noticeable smear from moving objects. Target voltage should be reduced if light on the tube and/or resultant signal is excessive.

8. Always cap lens when transporting camera (see "Don'ts" 5).

Don'ts

1. Don't underscan the photoconductive layer.


2. Don't change camera size and centering controls once the scanned area of photoconductive layer has been properly positioned.

3. Don't rotate vidicon from its original operating position in deflecting yoke.

4. Don't turn beam of vidicon on without normal scanning or remove scanning before beam of vidicon is turned off.

5. DON'T ALLOW IMAGE OF THE SUN OR OTHER VERY INTENSE SOURCE OF ILLUMINATION TO BE FOCUSED ON PHOTOCONDUCTIVE LAYER AT ANY TIME.

SPURIOUS SIGNAL TEST

This test is performed using a uniformly diffused white test pattern that is separated into two zones as shown above. The 7735B is operated under the conditions specified under Typical Operation and Performance Data with the lens adjusted to provide a target current of 0.3 microampere. The 7735B is adjusted to provide maximum picture resolution. Spurious signals are evaluated by size which is represented by equivalent numbers of raster lines in a 525 TV line system. Allowable spot size for each zone is shown in Table 1. To be classified as a spot, a contrast ratio of 1.5:1 must exist for white spots and 2:1 for black spots. Smudges, streaks, or mottled and grainy background must have a contrast ratio of 1.5:1 to constitute a reject item.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 10-65

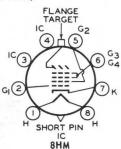
Equivalent Number of Raster Lines	ZONE Allowed Spots	ZONE 2 Allowed Spots
Over 3	0	0
but not including l	1	2
l or less	footnote s	footnote s

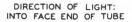
Minimum separation between any 2 spots greater than 1 raster line is limited to 16 raster lines.

\$ Spots of this size are allowed unless concentration causes a smudged appearance.

DATA 3

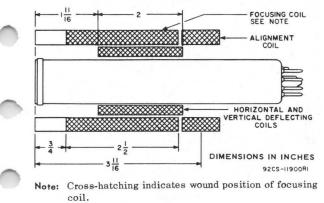
DATA 4


2-69

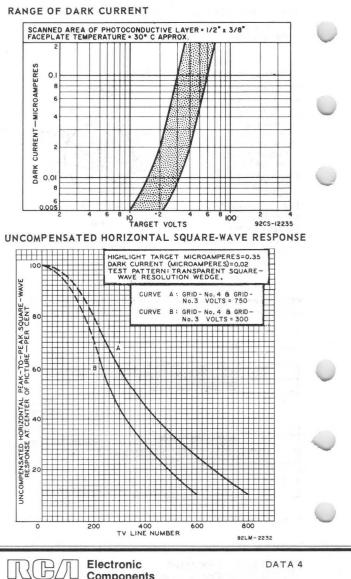

ADDITIONAL DIMENSIONAL OUTLINE NOTE:

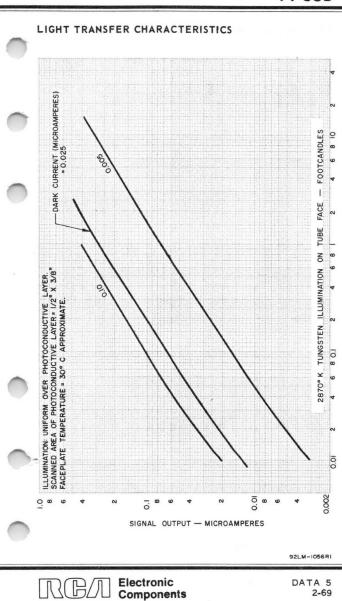
Faceplate glass is Corning No.7056 having a thickness of 0.094" ± 0.012".

TERMINAL DIAGRAM (Bottom View)

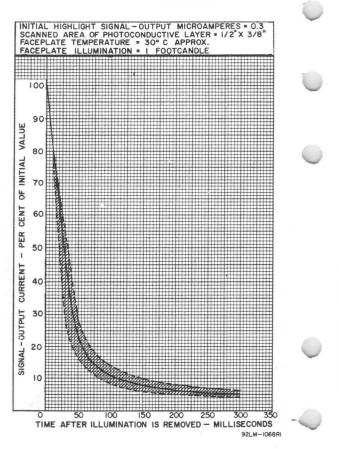

Pin 1: Heater Pin 2: Grid No.1 Pin 3: Internal Connection -Do Not Use Pin 4: Internal Connection -Do Not Use Pin 5: Grid No. 2 Pin 6: Grids No.2 and No.4 Pin 7: Cathode Pin 8: Heater Flange: Target Short Index Pin: Internal Connection - Make No. Connection

RECOMMENDED LOCATION AND LENGTH OF DEFLECT-ING, FOCUSING, AND ALIGNMENT COMPONENTS


To obtain minimum beam-landing error


Electronic Components

R(B/1


Components

7735B

7735B

TYPICAL PERSISTENCE CHARACTERISTIC

RBA Electronic Components

DATA 5

Multiplier Phototube

IO-STAGE, HEAD-ON, SPHERICAL-FACEPLATE TYPE HAVING ENCLOSED, IN-LINE DYNODE STRUCTURE, I.68"-DIAMETER, SPHERICAL, SEMITRANSPARENT PHOTOCATHODE, S-II RESPONSE, AND VERY SHORT TIME-RESOLUTION CAPABILITY

DATA

General:
Spectral Response
ShapeSpherical Window:
Area (Projected) 2.2 sq.in. Minimum diameter 1.68 in. Index of refraction 1.51 Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.10. 3.8 µµf Anode to all other electrodes. 5 µµf Dynode No.10 to all other electrodes. 6.5 µµf Maximum Overall Length 6.12" Seated Length. 5.18" ± 0.19" Maximum Diameter 2.31" Operating Position 6 oz Bulb
Basing Designation for BOTTOM VIEW
Pin 1 – Dynode No.1 Pin 2 – Dynode No.3 Pin 3 – Dynode No.5 Pin 4 – Dynode No.7 Pin 5 – Dynode No.9 Pin 6 – Anode Pin 7 – Dynode No.8 Pin 9 – Dynode No.6 Pin 9 – Dynode No.6 Pin 0 – Dynode No.4
Pin 11 – Dynode No.2 Pin 12 – Internal Con- nection- Do Not Use Pin 13 – Focusing Electrode Pin 14 – Photocathode DIRECTION OF LIGHT: INTO END OF BULB
Maximum Ratings, Absolute-Xaximum Values: SUPPLY VOLTAGE BETWEEN ANODE AND CATHODE (DC)

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA I 3-61

SUPPLY VOLTAGE BETWEEN DYNODE No.10				
AND ANODE (DC)	400	max.	volts	
SUPPLY VOLTAGE BETWEEN CONSECUTIVE				6
DYNODES (DC)	300	max.	volts	
SUPPLY VOLTAGE BETWEEN DYNODE No.1				
AND CATHODE (DC)	600	max.	volts	
SUPPLY VOLTAGE BETWEEN FOCUSING				
ELECTRODE AND CATHODE (DC)	600	max.	volts	
			ma	
AMBIENT TEMPERATURE	75	max.	°C	1

Characteristics Range Values for Equipment Design:

Under conditions with dc supply voltage (E) across a voltage divider providing electrode voltages shown in Table I

With E = 2000 volts (Except as noted) and focusing-electrode voltage adjusted to give maximum current amplification

	Min.	Median	Max.		
Sensitivity:	11 + 14 4	nearan	nex.		\bigcirc
Radiant, at 4400					$\mathbf{\mathbf{\hat{v}}}$
angstroms	-	9.6×10^5	-	amp/watt	
Cathode radiant, at		0.0 × 10		ampinare	
4400 angstroms	-	0.056	-	amp/watt	
Luminous, at 0 cps.	200	1200	6000	amp/lumen	
Cathode luminous:					
With tungsten					
	50	70	-	µa/lumen	
With blue	0.05				
light source♥* Current Amplification .	0.05	1.7×10^{7}	-	μa	
Equivalent Anode-Dark-	-	1.7 × 10	-		
Current Input at					
luminous sensitivity					
of 230 amperes/lumen.		9×10^{-10}	3.5×10^{-9}	lumen	
Equivalent Noise Input*		6×10^{-12}	-	lumen	
Anode-Pulse Rise Time* .	-	$9 \times 10^{-10}_{-12} \\ 6 \times 10^{-9}_{-2 \times 10^{-9}}$	-	sec	
Greatest Delay Between					
Anode Pulses:					
Due to position from					
which electrons are					
simultaneously re-					
leased within a circle centered on tube face					
having a diameter of-					
1.4"	-	$3 \times 10^{-10^{\oplus}}$ $5 \times 10^{-10^{\oplus}}$	-	sec	
1.6"	-	5 x 10	-	sec	
With E = 1500 volts (Exc				-electrode	
voltage adjusted to give					
corrage adjusted to give	Min.		Max.		
Sensitivity:	Min.	Mearan	Max.		
Radiant, at 4400		5			~
angstroms	-	1×10^{5}		amp/watt	6
Cathodo radiant					

angstroms.... - 1 x 10 - amp/watt Cathode radiant, at 4400 angstroms. - 0.056 - amp/watt Luminous, at 0 cps[•]. 23 130 680 amp/lumen

> RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

		Min.	Median	Max.	
	Cathode luminous: With tungsten light source* Current Amplification.	50	70 1.8 × 10 ⁶	5	µa/lumen
	Equivalent Anode-Dark- Current Input® at luminous sensitivity of 20 amperes/lumen. Equivalent Noise Input® Pulse Height Resolution#	1 1 1	8 × 10-10 4 × 10-12 8.5	2.5 × 10 ⁻⁹ 1 × 10 ⁻¹¹ 9	lumen lumen %
	With E = 1000 volts (Ex voltage adjusted to give	e maxi	mum current	amplificat	
		Min.	Median	Max.	
)	Sensitivity: Radiant, at 4400 angstroms Cathode radiant.	-	4.8×10^{3}	-	amp/watt

-	0.056	-	amp/watt
1	6	30	amp/lumen
50	70		µa/lumen
	8.6×10^{4}	-	
-	5×10^{-10}	-	lumen
	5×10^{-12}	-	lumen
	1 50 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- Averaged over any interval of 30 seconds maximum.
- Under the following conditions: The light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A light input of 0.1 microlumen is used.
- Under the following conditions: The light source is a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected together as anode.
- Under the following conditions: Light incident on the cathode is transmitted through a blue filter (corning No.C.S. 5-58, Glass Code No.5113 polished to 1/2 stock thickness) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux on the filter is 0.01 lumen. A voltage of 200 volts is applied between cathode and all other electrodes connected together as anode.
- For spectral characteristic of this source, see sheet SPECTRAL CHARACTER-ISTIC of 2870° K LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF LIGHT FROM 2870° K SOURCE AFTER PASSING THROUGH INDICATED BLUE FILTER at front of this section.
- Measured at a tube temperature of 25⁰ C. Dark current may be reduced by the use of a refrigerant.
- Under the following conditions: Supply voltage (E) is as shown, $25^{\circ}-C$ tube temperature, external shield is connected to cathode, bandwidth 1 cycle per second, tungsten light source of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.

Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transittime variations in the multiplier stages and is measured under conditions with an incident-light spot approximately 1 millimeter in diameter centered on the photocathode.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 2 3-61

These values represent the difference in time of transit between the photocathode and dynode No.1 for electrons simultaneously released from the center and from the periphery of the specified areas.

[#] Measured with supply voltage (E) = 1200 to 1300 volts; radiation source, an isotope of cesium having an atomic mass of 137 (Cs¹³⁷); scintillation counter crystal, acylindrical 2* x 2* thallium-activated sodium-iodide type [k_I[T1]] — type 80850, Scrial No.AL281, manufactured by Harshaw Chemical Co., 1945 E. 97 Street, Cleveland 6, Ohiol.

VOLTAGE TO BE PROVIDED	BY DIVIDER
Between	8.06% of Supply Voltage (E) multiplied by
Cathode and Dynode No.1	2
Dynode No.1 and Dynode No.2	1.4
Dynode No.2 and Dynode No.3	1
Dynode No.3 and Dynode No.4	1
Dynode No.4 and Dynode No.5	1
Dynode No.5 and Dynode No.6	1
Dynode No.6 and Dynode No.7	1
Dynode No.7 and Dynode No.8	1
Dynode No.8 and Dynode No.9	1
Dynode No.9 and Dynode No.10	1
Dynode No.10 and Anode	1
Anode and Cathode	12.4

TABLE I

Focusing electrode is connected to arm of potentiometer between cathode and dynode No.1. The focusing-electrode voltage is varied to give maximum current amplification.

OPERATING CONSIDERATIONS

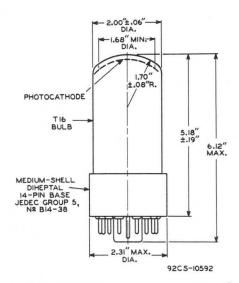
The operating stability of the 7746 is dependent on the magnitude of the anode current and its duration. When the 7746 is operated at high average values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 7746 usually recovers a substantial percentage of such loss in sensitivity.

The use of an average anode current well below the maximumrated value of 2 milliamperes is recommended when stability of operation is important. When maximum stability is required, the average anode current should not exceed IO microamperes.

Electrostatic and/or magnetic shielding of the 7746 may be necessary.

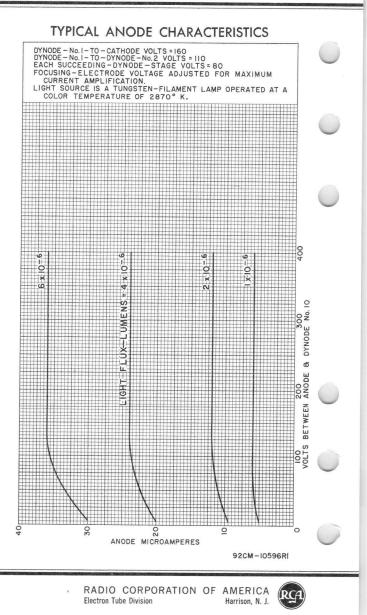
Adequate *light shielding* should be provided to prevent extraneous light from reaching any part of the 7746.

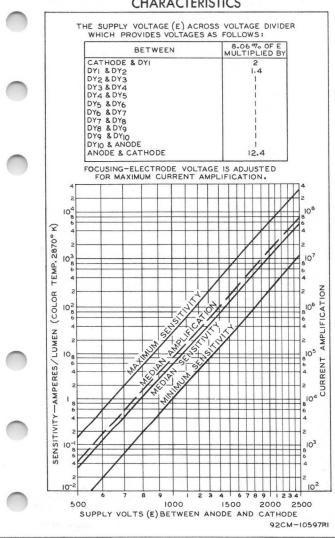
RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.



0

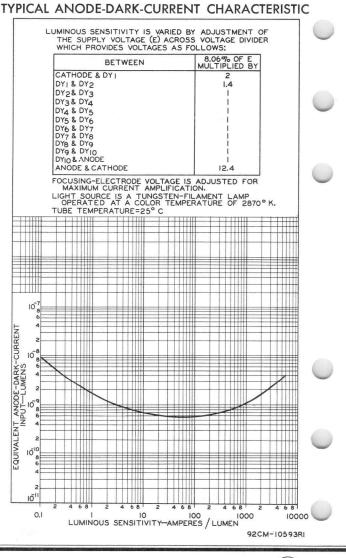
The high voltages at which the 7746 is operated are very dangerous. Care should be taken in the design of apparatus to prevent the operator from coming in contact with these high voltages. Precautions should include the enclosure of highpotential terminals and the use of interlock switches to break the primary circuit of the high-voltage power supply when access to the apparatus is required.

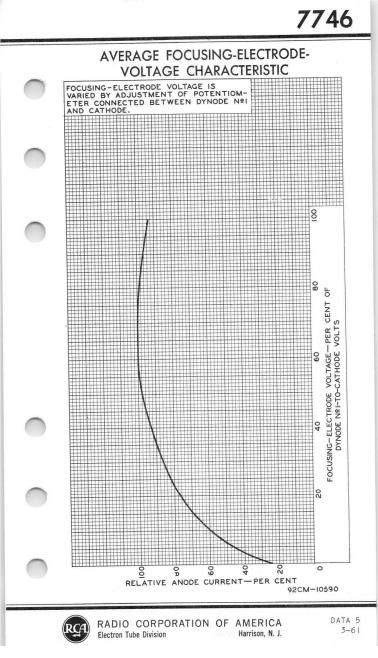

SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-II Response is shown at front of this Section

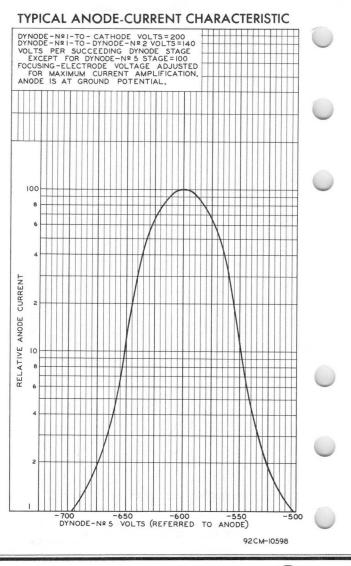


CENTER LINE OF BULB WILL NOT DEVIATE MORE THAN 2° IN ANY DIRECTION FROM THE PERPENDICULAR ERECTED AT THE CENTER OF BOTTOM OF THE BASE.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 3 3-61






RADIO CORPORATION OF AMERICA **Electron Tube Division** Harrison, N. J. DATA 4 3-61

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

Multiplier Phototube

6-STAGE, HEAD-ON, FLAT-FACEPLATE, COMPACT TYPE HAVING IN-LINE DYNODE STRUCTURE, 0.5"-DIAMETER CURVED, CIR-CULAR, SEMITRANSPARENT PHOTOCATHODE AND S-II RESPONSE

DATA

General	;
---------	---

Spectral Response
Cathode, Semitransparent:
Shape
Window:
Area 0.2 sq. in.
Minimum diameter 0.5 in.
Index of refraction 1.51
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.6 1.8 μμf
Anode to all other electrodes 2.8 μμf
Maximum Overall Length
Seated Length
Maximum Diameter
Operating Position
Weight (Approx.)
Bulb
Socket
Base
Basing Designation for BOTTOM VIEW

Pin 1 - Dynode No.1 Pin 2 - Dynode No.3 Pin 3 - Dynode No.5 Pin 4 - Anode Pin 5 - Dynode No.6 Pin 6 - Dynode No.4

Pin 7 - Dynode No.2 Pin 8 - Internal Connection-Do Not Use Pin 9 - Photocathode

Maximum Ratings, Absolute-Maximum Values:

SUPPLY VOLTAGE BETWEEN ANODE AND				
CATHODE (DC or Peak AC)			1500 max.	volts
SUPPLY VOLTAGE BETWEEN DYNODE No.6				
AND ANODE (DC or Peak AC)			300 max.	volts
SUPPLY VOLTAGE BETWEEN CONSECUTIVE				
DYNODES (DC or Peak AC)		 	200 max.	volts
SUPPLY VOLTAGE BETWEEN DYNODE No.1				
AND CATHODE (DC or Peak AC)	•	 	400 max.	volts
AVERAGE ANODE CURRENT		 	0.5 max.	ma
AMBIENT TEMPERATURE		 	75 max.	oC

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 1 10-60

Characteristics Range Values for Equipment Design:

Under conditions with dc supply voltage (E) across a voltage divider providing 1/4 of E between cathode and dynode No.1: 1/8 of E for each succeeding stage: and 1/8 of E between dynode No.6 and anode

With E = 1200 volts (Except as noted)

	A	Vin.	Median	Max.		
Sensitivity:						
Radiant, at 4400						
angstroms		-	0.00024	-	amp/µw	1
Cathode radiant, at					a free free free free free free free fre	
4400 angstroms		<u> </u>	0.048		amp/watt	
Luminous, at 0 cps.		0.1	0.3	1.0	amp/lumen	
Cathode luminous:				1.0	anpriranen	
With tungsten						
light source* .		10	60		µa/lumen	
With blue light		40	00	_	μα/Tumen	1
source *			0.00			- 63
			0.06 5 x 10 ³	-	μа	1
Current Amplification.			5 x 10 ⁻	-		
Equivalent Anode-						
Dark-Current						
Input [•]			1×10^{-8}	3×10^{-8}	lumen	
Equivalent Noise			10	· · · · · ·		
nput♠ · · · · · · ·	•		3 × 10-10	1×10^{-9}	lumen	
Server Barboserre A						

Averaged over any interval of 30 seconds maximum.

Under the following conditions: The light source is a tungsten-filament lamp operated at a color temperature of 2870° K. A light input of id microlumens is used. The load resistor has a value of 0.01 megohm.

Under the following conditions: The light source is a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected together as anode.

under the following conditions; Light incident on the cathode is tramsmitted through ablue filter (Corning, Glass Code No.5113 pollshed to 1/2 stock thickness) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux on the filter is 0.01 lumén. The load resistor has a value of 0.01 megohm and 200 volts are applied between cathode and all other electrodes connected together as anode.

For spectral characteristic of this source, see sheet SPECTRAL CHAR-ACTERISTIC OF 2870° K LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF LIGHT FROM 2870° K SOURCE AFTER PASSING THROUGH INDICATED BLUE FILTER at front of this section.

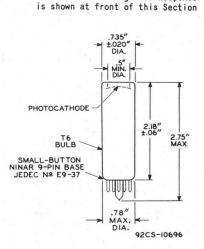
Measured at a tube temperature of 25^0 C and with the supply voltage (E) adjusted to give a luminous sensitivity of 0.3 ampere per lumen. Dark current may be reduced by the use of a refrigerant.

Under the following conditions: Supply voltage (E) is as shown, 25⁰-C tube temperature, external shield is connected to cathode, bandwidth 1 cycle per second, tungsten light source of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulses is equal to the "off" period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.

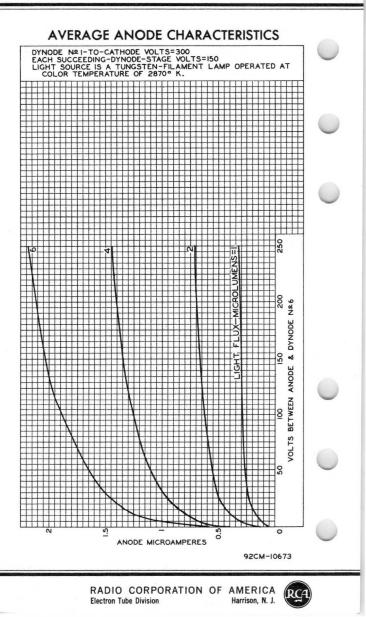
OPERATING CONSIDERATIONS

The use of an average anode current will below the maximum-rated value of 0.5 milliampere is recommended when stability of operation is important.

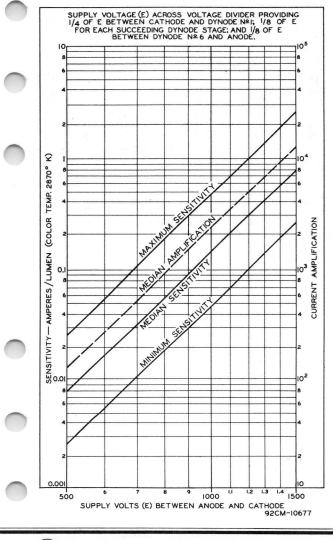
RADIO CORPORATION OF AMERICA Harrison, N. J. Electron Tube Division



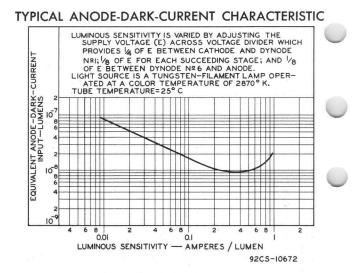
Electrostatic and/or magnetic shielding of the 7764 may be necessary.


The high voltages at which the 7764 is operated are very dangerous. Before any part of the circuit is touched, the power-supply switch should be turned off and both terminals of any capacitors grounded.

> SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-II Response



RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 2 10-60


CHARACTERISTICS

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 3

7764

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

7767 Photomultiplier Tube

Small, ¾''-Diameter, 10-Stage, Head-On Type Having S-11 Spectral Response

For Use In Compact Scintillation Counting Systems And In Other Applications Involving The Detection And Measurement Of Low-Level Light Sources

	GENERAL
	Spectral Response
	Wavelength of Maximum Response 4400 ± 500 Å
	Cathode, Semitransparent Cesium-Antimony
1	Minimum projected area $\dots \dots
	Minimum diameter 0.5 in (1.27 cm)
	WindowLime Glass (Corning ^a No.0080), or equivalent Shape
	Index of refraction at 4360 angstroms 1.523
	Dynodes: Substrate Copper-Beryllium
	Secondary-Emitting Surface Beryllium-Oxide
	Structure In-Line, Electrostatic-Focus Type
	Direct Interelectrode Capacitances (Approx.):
	Anode to dynode No.10 2.4 pF
	Anode to all other electrodes 3.2 pF Maximum Overall Length (Excluding semiflexible leads) 3.94 in (10 cm)
1	Maximum Diameter 0.78 in (2 cm) Sulb T6
	Base See Dimensional Outline
	Magnetic Shield Millen ^b Part No.80801N, or equivalent
	Operating Position Any
	Weight (Approx.)
	MAXIMUM RATINGS, Absolute-Maximum Values DC Supply voltage:
	Between anode and cathode 1500 max. V Between anode and dynode No.10 300 max. V
	Between consecutive dynodes 200 max. V
1	Between dynode No.1 and cathode 400 max. V
	Average Anode Current ^d 0.5 max. mA
	Ambient Temperature ^e

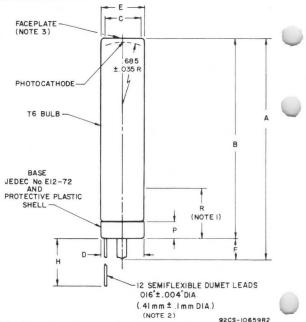
Electronic Components

RB/Л

DATA 1 11-69

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN								
	Under conditions with dc supply voltage (E) across a voltage divider providing electrode voltages shown in Table I, except							
as noted. With E = 1250 volts (Exce	ept as Min.	noted) Typical	Max.					
Anode Sensitivity:								
Radiant [†] at 4400 angstroms	-	$1.3 \ge 10^4$	-	A/W				
Luminous ⁹ (2870 [°] K) Cathode Sensitivity:	7	16	60	A/lm				
Radiant ^h at 4400 angstroms		0.048	-	A/W				
Luminous ¹ (2870 [°] K) 4 :	× 10 ^{−5}	6 x 10 ⁻⁵	-	A/lm				
Current with blue light source ^k (2870 [°] K + C.S. No.5-58) 4 x Quantum Efficiency at	< 10 ⁻⁸		-	А				
4200 angstroms	-	14 5	-	%				
Current Amplification.	-	2.7×10^5	8					
Anode Dark Current ^m .		4×10^{-9}	4×10^{-8}	A				
Equivalent Anode Dark Current Input ^m	_	5×10^{-10} 6×10^{-13} n	5 x 10 ⁻⁹ 6 x 10 ⁻¹² r	W W				
Equivalent Noise Input ^p	_	3.2×10^{-12} 4 x 10 ⁻¹⁵ q	_	lm W				
Anode-Pulse Rise Time ^r , ^s at 1500 V	-	1.8 x 10 ⁻⁹	-	8				
Electron Transit Time ^{r,†} at 1500 V		2 x 10 ⁻⁸	-	s				
^a Made by Corning Glass ^b Made by James Millen	Manu	facturing Con	lew York 1 mpany, 150	4830. 0 Ex-				
d Averaged over any inter			aximum					
 Tube operation at room mended. 				ecom-				
^f This value is calculate sensitivity rating using	ed from	n the typical	anode lum	inous imens				
per watt.	u 00.			amono				
⁹ Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 10 microlumens is used.								
		ndicates a ch	ange or add	dition.				
	- In California		and the second second second	State Street Street				

RBA Electronic Components


- ^h This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 803 lumens per watt.
 - Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
 - Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, NY 14830) from a tung-sten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- ^mAt a tube temperature of 22^o C. With supply voltage adjusted to give a luminous sensitivity of 7.5 amperes per lumen. Dark current caused by thermionic emission may be reduced by use of a refrigerant.
- ⁿ At 4400 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 803 lumens per watt.
- ^P Under the following conditions: Tube temperature 22° C, external shield connected to cathode, bandwidth 1 Hz, tungsten-light source at a color-temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- ^q At 4400 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 803 lumens per watt.
- ^r Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of (E) between cathode and dynode No.1; 1/12 of (E) for each succeeding dynode stage; and 1/12 of (E) between dynode No.10 and anode..
- ⁵ Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.

[†] The electron transit time is the time interval between the

arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

DIMENSIONAL OUTLINE

Dimensions	Inches	mm	
A	3.94 max.	100.0 max.	
В	3.50 + .06 12	88.9 + 1.5	1
С	.5 min. dia.	12.7 min. dia.	1
D	.78 max. dia.	19.8 max. dia.	
E	.755 max. dia.	19.18 max. dia.	
F	.38 max.	9.7 max.	
G	.47 ± .01 dia.	11.9 ± .25 dia.	-
H	.75 min.	19.0 min.	
Р	.30 max.	7.6 max.	
R	1.0 max.	25 max.	

B/ Electronic Components

DIMENSIONAL OUTLINE NOTES

Note 1: Within this length, maximum diameter of tube is 0.78".

Note 2: The semiflexible leads of the tube may be soldered or welded into the associated circuit. If desired, the leads may be trimmed to within 1/4 inch of the protective shell. Care must be exercised when making such connections to prevent tube destruction due to thermal stress of the glassnetal seals. A heat sink placed in contact with the semilexible leads between the point being soldered, or welded, and the protective shell is recommended. Excessive bending of the leads is to be avoided.

Note 3: Deviation from flatness will not exceed 0.006" from peak to valley.

DY9

DY5 (3

DY 2

DY

EAD CONNECTIONS (BOTTOM VIEW)

Lead 1: Dynode No.1

- Lead 2: Dynode No.3
- Lead 3: Dynode No.5
- Lead 4: Dynode No.7
- Lead 5: Dynode No.9
- Lead 6: Anode
- Lead 7: Dynode No.10
- Lead 8: Dynode No.8
- Lead 9: Dynode No.6
- Lead 10: Dynode No.4

Lead 11: Dynode No.2

Lead 12: Photocathode

DYIO

7

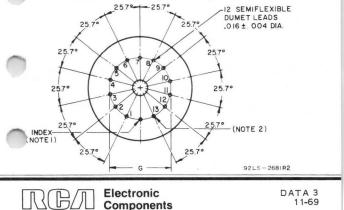
6

DY8

9

(12)

9215-2680

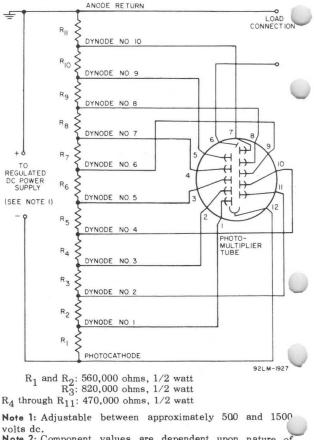

DYG

UDY2

IO DY4

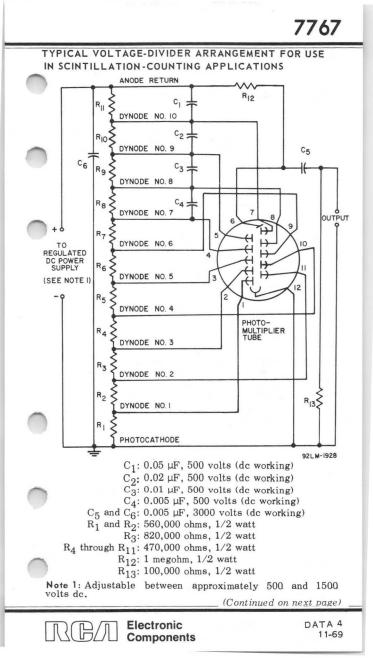
8

EAD ORIENTATION (BOTTOM VIEW)



LEAD ORIENTATION NOTES

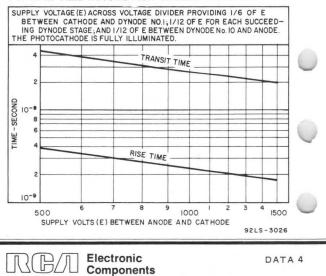
Note 1: Lead No.14 is cut off within 0.04 inch of the glass button for indexing.


Note 2: Lead No.13 is cut off within 0.04 inch of the glass button.

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT WHICH PERMITS DIRECT COUPLING TO THE ANODE

Electronic

Components



Note 2: Capacitors C_1 through C_6 should be connected at tube socket for optimum high-frequency performance.

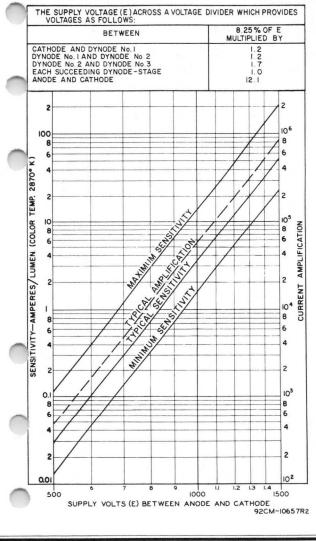
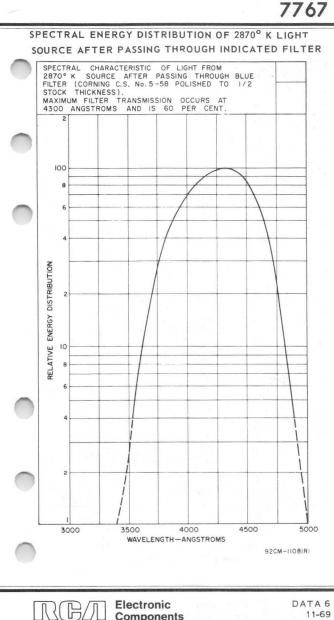

Note 3: Component values are dependent upon nature of application and output signal desired.

TABLE I	
TYPICAL POTENTIAL DIS	TRIBUTION
Between:	8.25% of Supply Voltage (E) Multiplied by:
Cathode and Dynode No.1	1.2
Dynode No.1 and Dynode No.2	1.2
Dynode No.2 and Dynode No.3	1.7
Dynode No.3 and Dynode No.4	1.0
Dynode No.4 and Dynode No.5	1.0
Dynode No.5 and Dynode No.6	1.0
Dynode No.6 and Dynode No.7	1.0
Dynode No.7 and Dynode No.8	1.0
Dynode No.8 and Dynode No.9	1.0
Dynode No.9 and Dynode No.10	1.0
Dynode No.10 and Anode	1.0
Anode and Cathode	12.1

TYPICAL TIME-RESOLUTION CHARACTERISTICS

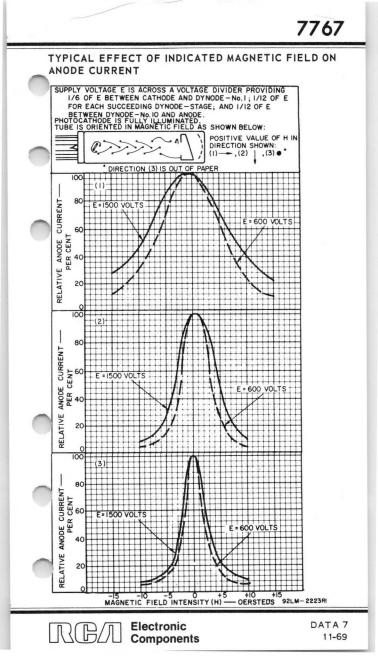
SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS

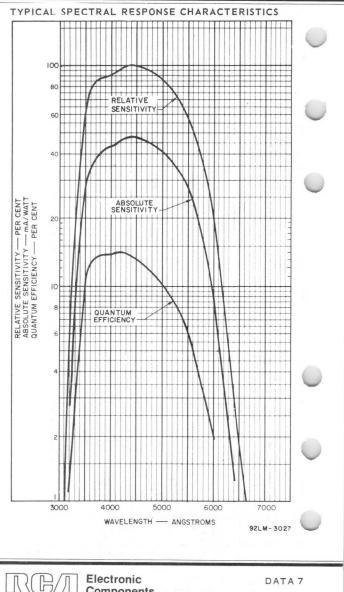


Electronic Components

RB/Л

DATA 5 11-69




11-69

Components

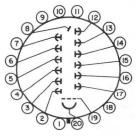
TYPICAL ANODE DARK CURRENT AND EADCI CHARACTERISTICS

LUMINOUS SENSITIVITY IS VARIED BY ADJUSTMENT OF THE SUPPLY VOLTAGE (E) ACROSS A VOLTAGE DIVIDER WHICH PROVIDES VOLTAGES AS FOLLOWS : 8.25 % OF E BETWEEN MULTIPLIED BY CATHODE AND DYNODE No.I 2 DYNODE No.I AND DYNODE No.2 1. 2 DYNODE No.2 AND DYNODE No.3 7 1. EACH SUCCEEDING DYNODE - STAGE ò 1. ANODE AND CATHODE 12 1 TUBE TEMPERATURE IS 22°C 10-88 11111 8 6 4 10-7 6 WATT 4 +++++ ttt 2 2 1 1 ANGSTROMS 10-7 - LUMEN 10 2 8 8 6 CLARENT 6 4 4 111 ΠI ANODE DARK CURRENT - AMPERE EQUIVALENT ANODE - DARK - CURRENT INPUT 2 2 tare 00 10-8 10-9 8 ANODE 8 44 6 6 EADCI AT ----4 4 LUMEN # TUPUT 2 2 10⁻⁹ 10-10 864 8 -CURRENT 6 4 2 2 10-10 - DARK 10-11 8 EADE 6 6 4 4 ANODE WAT 1 2 2 11 EQUIVALENT 10 10-12 8 8 6 6 4 4 чΠ TT тп TTT 2 2 10-12 10-13 4 6 8 2 68 2 4 4 6 8 2 4 68 10 100 LUMINOUS SENSITIVITY - AMPERES/LUMEN 600 800 1000 1500 1200 SUPPLY VOLTAGE (E) - VOLTS 92LS-3028 B/J Electronic | [] {(DATA 6 Components

Electronic Components

DATA 7

Multiplier Phototube


12-STAGE, HEAD-ON, SPHERICAL-FACEPLATE TYPE HAVING ENCLOSED, IN-LINE DYNODE STRUCTURE, I.68"-DIAMETER, SPHERICAL, SEMITRANSPARENT PHOTOCATHODE, S-II RESPONSE, HIGH CURRENT AMPLIFICATION, AND EXTREMELY SHORT RISE TIME

DATA

General:

denerali
Spectral Response
Wavelength of Maximum Response 4400 ± 500 angstroms
Cathode, Semitransparent:
Shape
Window:
Area (Projected) 2.2 sq. in.
Minimum diameter 1.68 in.
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.12
Anode to all other electrodes 5.7 $\mu\mu f$
Dynode No.12 to all other electrodes 6.8 $\mu\mu f$
Maximum Overall Length 6.31"
Seated Length 5.50" ± 0.19"
Maximum Diameter
Operating Position
Weight (Approx.)
Bulb
Socket Cinch No.CX-875 ^a , or equivalent
Base Small-Shell Bidecal 20-Pin
(JEDEC No. B20-102)
Basing Designation for BOTTOM VIEW

Pin 1 - No Connection Pin 2 - Dynode No.1 Pin 3 - Dynode No.3 Pin 4 - Dynode No.5 Pin 5 - Dynode No.7 Pin 6 - Dynode No.9 Pin 7 - Dynode No.11 Pin 8 - Anode Pin 9 - No Connection Pin 10-No Connection Pin 11-No Connection Pin 12-Dynode No.12 Pin 13-Dynode No.10 Pin 14 - Dynode No.8 Pin 15-Dynode No.6 Pin 16 - Dynode No.4 Pin 17-Dynode No.2 Pin 18-No Connection Pin 19-Grid No.1 (Focusing Electrode) Pin 20 - Photocathode

DIRECTION OF LIGHT: INTO END OF BULB

RADIO CORPORATION OF AMERICA **Electron Tube Division** Harrison, N. J.

DATA I 5-61

Maximum Ratings, Absolute-Maximum Values:

SUPPLY VOLTAGE BETWEEN ANODE AND

CATHODE (DC)				2600 max.	volts
SUPPLY VOLTAGE BETWEEN DYNODE No.12					
AND ANODE (DC)	2			400 max.	volts
SUPPLY VOLTAGE BETWEEN CONSECUTIVE					
DYNODES (DC)	5	•		300 max.	volts
SUPPLY VOLTAGE BETWEEN DYNODE No.1					
AND CATHODE (DC)			•	600 max.	volts
SUPPLY VOLTAGE BETWEEN FOCUSING					
ELECTRODE AND CATHODE (DC)					volts
AVERAGE ANODE CURRENT ^b					
AMBIENT TEMPERATURE				75 max.	

Characteristics Range Values for Equipment Design:

Under conditions with dc supply voltage (E) across a voltage divider providing electrode voltages shown in Table |

With E = 2300 volts (Except as noted) and focusing-electrode voltage adjusted to give maximum current amplification

	Min.	Median	Max.	
Sensitivity:				
Radiant, at 4400				
angstroms	-	4.8×10^{6}	-	a/w
Cathode radiant, at				
4400 angstroms Luminous, at 0 cps ^c .	- 103	0.056	- 103	a/w
	1.4×10^{-5}	6 X 10 ⁵	-01 X UC	a/im
Cathode luminous:				
With tungsten light source ^d	50	70	~ .	ua/lm
With blue light	50	10	– µ	La/ 111
source ^{e, f}	0.05		_	μa
Current Amplification.	0.00	8.6×10^7	_	μα
Equivalent Anode-Dark-		0.0 / 10		
Current Input ⁹ at				
luminous sensitiv-				
ity of 6000 a/lm		4×10^{-10}	2.5×10^{-9}	lm
Equivalent Noise Input ^h	-	3×10^{-12}	-	lm
Anode-Pulse Rise Time .	-	2×10^{-9}		sec
Greatest Delay Between Anode Pulses:				
Due to position from				
which electrons are				
simultaneously re-				
leased within a circle	9			
centered on tube face				
having a diameter of-	-	k		
1.4"	-	3 × 10-10k		sec
1.6"		5 × 10-10k	-	sec

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

		Min.	Median	Max.	
Sensitivity:					
Radiant, at 4400					
angstroms		-	5.1×10^{5}	-	a/w
Cathode radiant,	ma		0.056		a/w
at 4400 angstro Luminous, at 0 cp		-	640	-	a/w a/lm
Cathode luminous:			040		a/10
With tungsten					
light source ^d .		50	70	-	µa/ln
Current Amplificati			9.1×10^{6}	-	
quivalent Anode-Da					
Current Input ^g at luminous sensitiv					
of 160 a/lm	TLY	_	4×10^{-10}	_	10
Equivalent Noise In	puth.	-	2.4 × 10-12	_	ln
		Min.	Median	Max.	
		Min.	Median	Max.	
Radiant, at 4400		_	2.9×10^{4}	_	a/ı
		-	2.9×10^{4}	-	a/
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro	oms	Ē	0.056	-	a/
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp	oms	- - 8		- 300	a/
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp Cathode luminous:	oms	- - 8	0.056	- 300	a/
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp Cathode luminous: With tungsten	oms os ^c		0.056 36	- 300	a/ a/1
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp Cathode luminous: With tungsten light source ⁴ .	oms	. 50	0.056 36 70	- 300	a/ a/1
angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp Cathode luminous: With tungsten	oms	. 50	0.056 36	300	a/ a/1
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp Cathode luminous: With tungsten light source ^d . Current Amplificati Equivalent Anode-De Current Input ^g af	oms os ^c ion ark-	. 50	0.056 36 70	300	a/ a/1
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp Cathode luminous: With tungsten light source ^d . Current Amplificati Equivalent Anode-De Current Input ^g at luminous sensitiv	oms os ^c ion ark-	. 50	0.056 36 70 5 × 10 ⁵		a/ a/1 μa/1
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp Cathode luminous: With tungsten light source ^d . Current Amplificati Equivalent Anode-Da Current Input ^g at luminous sensiti of 9 a/lm	oms os ^c ion ark– t vity	. 50	0.056 36 70 5×10^5 5×10^{-10}	- 300 - 2 × 10 ⁻	a/i a/li µa/li 9].
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp Cathode luminous: With tungsten light source ^d . Current Amplificati Equivalent Anode-Da Current Input ^g at luminous sensitiv of 9 a/lm Equivalent Noise In	oms os ^c ark- t vity	50 - -	0.056 36 70 5 × 10 ⁵		a/ a/] μa/] 9]]
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp Cathode luminous: With tungsten light source ^d . Current Amplificati Equivalent Anode-Da Current Input ^g at luminous sensiti of 9 a/lm Equivalent Noise Ir Pulse Height Resolu	oms os ^c ark- t vity nput ^h ution ^m	. 50 . – . –	$0.056 \\ 36 \\ 70 \\ 5 \times 10^{5} \\ 5 \times 10^{-10} \\ 3 \times 10^{-12} \\ 8.5$	- - 2 × 10 ⁻ -	a/1 a/1 μa/1 9]
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp Cathode luminous: With tungsten light source ^d . Current Amplificati Equivalent Anode-De Current Input ^g at luminous sensitiv of 9 a/lm Equivalent Noise Ir Pulse Height Resolu ^a Made by Cinch Manui Chleago 24, Illinois	oms. ss ^c . ark- t vity ution ^m facturing	50 – – – g Corpor	0.056 36 70 5×10^{-10} 3×10^{-12} 8.5 ation,1026 Sou	- - 2 × 10 ⁻ -	a/ a/li μa/li 9]]
Radiant, at 4400 angstroms Cathode radiant, at 4400 angstro Luminous, at 0 cp Cathode luminous: With tungsten light source ^d . Current Amplificati Equivalent Anode-Da Current Input ^g at luminous sensiti of 9 a/lm Equivalent Noise Ir Pulse Height Resolu	oms sc ark- t vity hputh. ution ^m facturin	50 - - - g Corpor	$\begin{array}{c} 0.056\\ 36\\ &70\\ 5\times10^{-10}\\ &3\times10^{-12}\\ &8.5\\ attion, 1026\ Sou\end{array}$	- - 2 x 10 ⁻ - - th Homan	a/ a/li μa/li 9]] Avenue

and all other electrodes connected together as anote. • Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, Glass Code No.5113 polished to 1/2 stock thickness) from a tungsten-filament lamp operated at a color temperature of 2870° k. The value of light flux on the filter is 0.01 lumen. A voltage of 200 volts is applied between cathode and all other electrodes connected together as anode.

For spectral characteristic of this source, see sheet SPECTRAL CHARACTERISTIC OF 2870° K LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF LIGHT FROM 2870° K SOURCE AFTER PASSING THROUGH INDICATED BLUE FILTER at front of this section.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 2 5-61

7850

- ${\bf 9}$ Measured at a tube temperature of 25 $^{\rm O}$ C. Dark current may be reduced by the use of a refrigerant.
- b Under the following conditions: Supply voltage (È) is as shown, 25°-C tube temperature, external shield is connected to cathode, bandwidth 1 cycle per second, tungsten light source of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The 'on' period of the pulse is equal to the 'off period. The journer is measured through a filter which passes only the fundamental frequency of the pulses.
- J Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transittime variations in the multiplier stages and is measured under conditions with an incident light spot approximately 1 millimeter in diameter centered on the photocathode.
- ^K These values represent the difference in time of transit between the photocathode and dynode No.1 for electrons simultaneously released from the center and from the periphery of the specified areas.
- Measured with supply ottage (E) = 1100 to 100 volts; radiation source, an isotope of cesium having an atomic mass of 137 (Cs.137); scintillation-counter crystal, a cylindrical 2° x 2° thalium activated sodium-iodide type [Nal(T1) — type 8D8550, Serial No.4L281, manufactured by Harshaw Chemical Company, 1945 East 97 Street, Cleveland 6, Ohio].

Between	6.95% of Supply Voltage (E) multiplied by
Cathode and Dynode No.1	2
Dynode No.1 and Dynode No.2 Dynode No.2 and Dynode No.3	1.4
Dynode No.3 and Dynode No.4	1 1 1
Dynode No.4 and Dynode No.5	1 1
Dynode No.5 and Dynode No.6	1
Dynode No.6 and Dynode No.7	1
Dynode No.7 and Dynode No.8 Dynode No.8 and Dynode No.9	1
Dynode No.9 and Dynode No.9	1
Dynode No.10 and Dynode No.11	1
Dynode No.11 and Dynode No.12	1
Dynoge No.12 and Anode	1
Anode and Cathode	14.4

voltage is varied to give maximum current amplification.

TABLE I

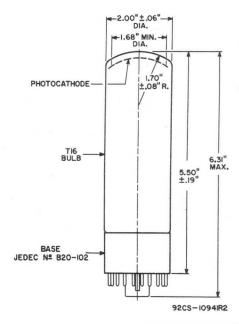
OPERATING CONSIDERATIONS

The operating stability of the 7850 is dependent on the magnitude of the anode current and its duration. When the 7850 is operated at high average values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 7850 usually recovers a substantial percentage of such loss in sensitivity.

The use of an average anode current well below the maximum-rated value of 2 milliamperes is recommended when stability of operation is important. When maximum stability is required, the average anode current should not exceed 10 microamperes.

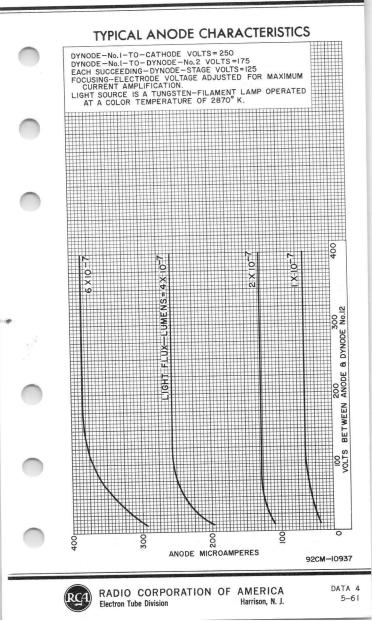
Electrostatic and/or magnetic shielding of the 7850 may be necessary.

Adequate *light shielding* should be provided to prevent extraneous light from reaching any part of the 7850-

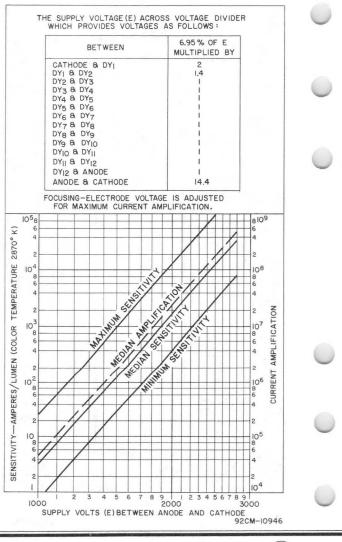

The high voltages at which the 7850 is operated are very dangerous. Care should be taken in the design of apparatus to prevent the operator from coming in contact with these high voltages. Precautions should include the enclosure of high-potential terminals and the use of interlock switches to break the primary circuit of the high-voltage power supply when access to the apparatus is required.

> SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-II Response is shown at the front of this Section

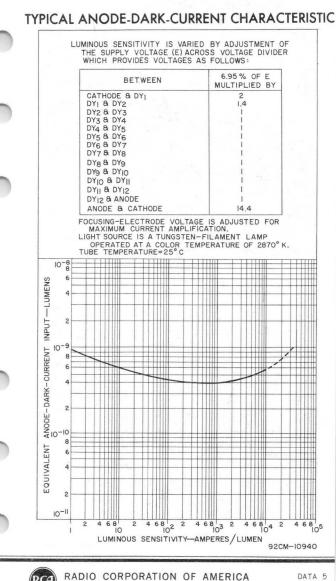
RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 3 5-61


7850

CENTER LINE OF BULB WILL NOT DEVIATE MORE THAN $2^{\rm O}$ in any direction from the perpendicular erected at the center of bottom of the base.

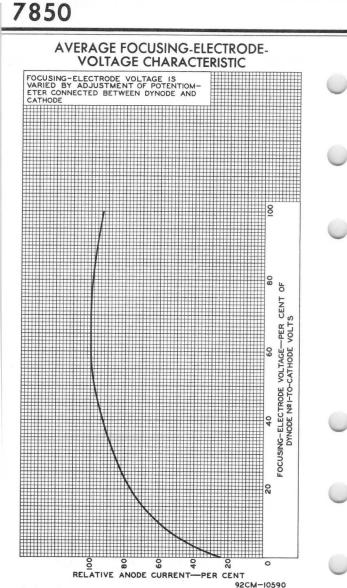


RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

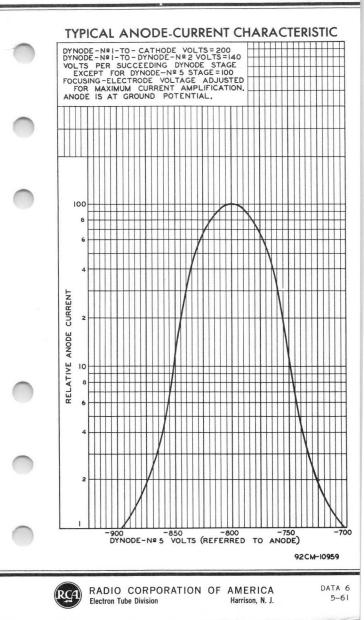


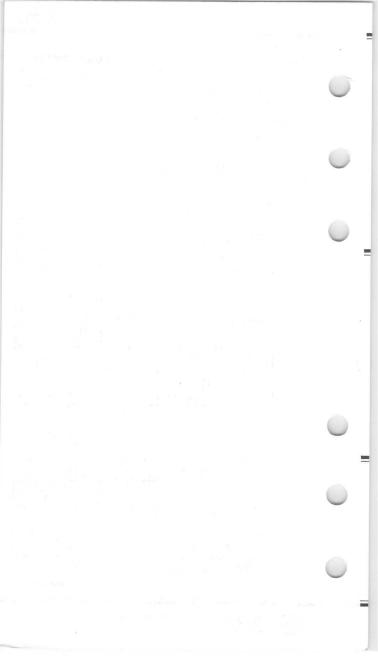
CHARACTERISTICS

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.



Electron Tube Division


5-61


Harrison, N. J.

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

Vidicon

I-I/2" DIAMETER

MAGNETIC FOCUS

MAGNETIC DEFLECTION

For Broadcast Film-Pickup or Data Transmission with Color or Black-and-White TV Cameras Requiring Resolutions of more than 1200 TV Lines

General:
Heater, for Unipotential Cathode: Voltage (AC or DC) 6.3 ± 10% volts Current at 6.3 volts 0.6 amp
Direct Interelectrode Capacitance: ^a
Target to all other electrodes 8.0 pf
Spectral Response
Wavelength of Maximum Response 4500 +500 -300 angstroms
Photoconductive Layer:
Maximum useful diagonal of rectangular
image (4 x 3 aspect ratio) ^b
Deflection Method
Overall Length 7.75" ± 0.25"
Greatest Diameter 1.59" ± 0.01"
Bulb Diameter 1.50" ± 0.01"←
Operating Position
Bulb T12
Focusing-Alignment Assembly Cleveland Electronics ^c
No.15-VFA-259, or equivalent
Deflecting Yoke ^d Cleveland Electronics ^c
No.15-VY-258, or equivalent
Socket Alden ^e No.208-SBSDC, or equivalent- Base Small-Button Super-Ditetrar 8-Pin (JEDEC No.E8-78)
Basing Designation for BOTTOM VIEW
TARGET
$G_4 \downarrow G_2 $
rin i-heater
Pin 2 - Grid No.1 Pin 3 - Do Not Use
Pin 4 - Grid No.4
Pin 5-Grid No.2 GE CK
Pin 6-Grid No.3
Pin 7-Cathode
Pin 8 – Heater H SHORT Flange – Target PIN
Short Pin - Do Not Use

DIRECTION OF LIGHT: INTO FACE END OF TUBE

Maximum Ratings, Absolute-Maximum Values:

For scanned area of 0.6" x 0.8"

Grid-No.4	Voltage.										1500	volts	
Grid-No.3	Voltage.			÷.							1500	volts	
		 	 		 	 	 _	 -	1 n	dic	ates a	change.	

RADIO CORPORATION OF AMERICA DATA I Electronic Components and Devices Harrison, N. J. 4-65

8051

		volts	
	Grid-No.1 Voltage: Negative-bias value	volts volts	0
	Peak Heater-Cathode Voltage:		-
	Heater negative with respect to cathode 125 Heater positive with respect to cathode 10	volts volts	
	Target Voltage	volts	
	Dark Current 0.25 Peak Target Current 0.60	μа µа	
	Faceplate:		
-	Illumination	fc °C	
-	Typical Operation:		
	For scanned area of $0.6" \ge 0.8"$ and		
	faceplate temperature of 30° to 35° C		
	Grid-No.4 (Decelerator) Voltage ⁹ 1400	volts	\bigcirc
	Grid-No.2 (Accelerator) Voltage	volts volts	
	Grid-No.2 (Beam-Focus Electrode) Voltage ^h 800 to 1000 Grid-No.2 (Accelerator) Voltage	volts	
	Average "Gamma" of Transfer Characteristic for signal-output current between 0.02 μa		
	and 0.6 µa 0.65		
	Minimum Peak-to-Peak Blanking Voltage: When applied to grid No.1	volts	
	When applied to cathode	volts	
	Lag: ^k Maximum value	%	
	Typical value	%	
	Limiting Resolution: At center of picture—		
	Typical value	lines	
	Minimum value 1200 TV At corners of picture—	lines	
	Typical value	lines	
	Amplitude Response to a 400 TV Line Square- Wave Test Pattern at Center of Picture:		
	Minimum value. 60	%	
	Field Strength at Center of Focusing Coil (Approx.)	qauss	
	Field Strength of Adjustable Alignment Coil ^m . O to 4	gauss	
	Peak Deflecting-Coil Current for Specified Deflecting Yoke:		
	Horizontal	ma	
	Vertical	ma	
	Average-Sensitivity Operation Faceplate Illumination (Highlight) 10	fc	
	Target Voltage ^{n, p} ,	volts	
	Dark Current ⁴	μа μа	
	orginal output outfolle (Typical)	pera	

-Indicates a change.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

DATA I

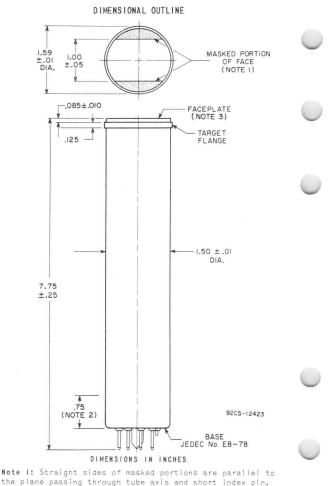
Minimum-Lag Operation

Faceplate Illumination	(Highlight)				x s	50	fc
Target Voltage ^{n, p}		÷	•			. 10 to 30	volts
Dark Current ^q							μa
Signal-Output Current ^r	(Typical) .	•		•	•	. 0.5	μa

- ^a This capacitance, which effectively is the output impedance of the 8051 is increased when the tube is mounted in the deflecting-yoke and focusing-alignment assembly. The resistive component of the output impedance is in the order of 100 megohms.
- b Proper orientation of quality rectangle is obtained when the horizontal scan is essentially parallel to the plane passing through the axis and short indexpin. Themasking is for orientation only and does not define the proper scanned area of photoconductive layer. Final orientation should be such that the image also fits inside of any internal mask of the mesh assembly.
- Cleveland Electronics Inc., 1974 East 61st St., Cleveland, Ohio.
- d For minimum geometric distortion, the deflecting yoke should be located in its proper axial position 3/4-inch from the face of the tube.
- e Alden Products Co., 9140 North Main Street, Brockton 64, Mass.

f video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.

- G Grid-No.4 voltage must always be greater than grid-No.3 voltage. For minimum "porthole" effect, grid-No.4 voltage should be adjusted to approximately 1.6 times the grid-No.3 voltage value, and the focusing alignment assembly and deflecting yoke positioned as shown in accompanying diagram.
- Beam focus is obtained by the combined effect of grid-No.3 voltage, which should be adjustable over indicated range, and a focusing coil having an average field strength of 46 gauss.
- J With no blanking voltage on grid No.1.
- & The organized constrained of the second as the period of a standard constrained of the second after illumination is removed. Values shown are for initial signal-output current of 0.2 microampere and a dark current of 0.02 microampere.
- The alignment coil should be located on the tube so that its center is at a distance of 6 inches from the face of the tube, and be positioned so that its axis is concident with the axis of the tube, the deflecting yoke, and the focusing coil.
- n Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- P The target voltage for each 8051 must be adjusted to that value which gives the desired operating dark current.
- The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a blacklevel error in direct proportion to the change in scanning velocity.
- P Defined as the component of the highlight target current after the darkcurrent component has been subtracted.

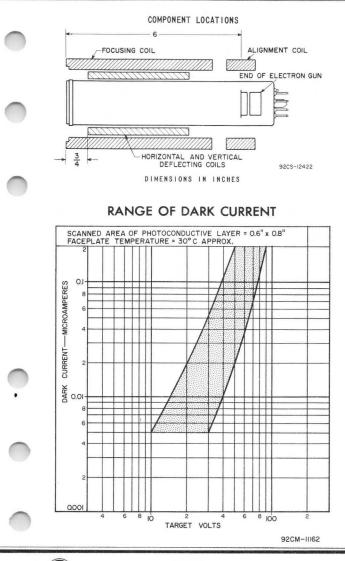

OPERATING CONSIDERATIONS

The target connection is made by a suitable spring contact bearing against the edge of the metal ring at the face end of the tube.

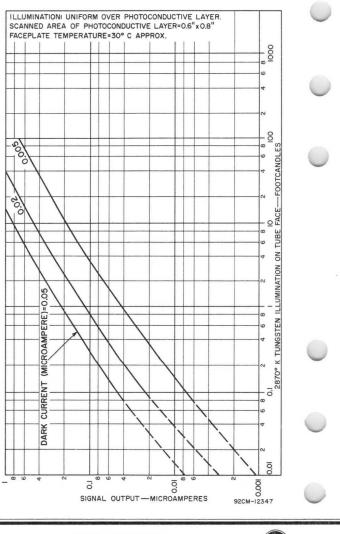
> SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-18 RESPONSE is shown at front of this section

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 4-65

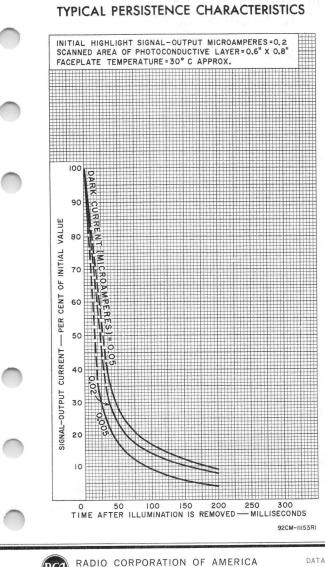
Note 2: Within this area the minimum bulb diameter dimension does not apply.


Note 3: Faceplate thickness is 0.135" ± 0.005".

Harrison, N. J.


RADIO CORPORATION OF AMERICA Electronic Components and Devices

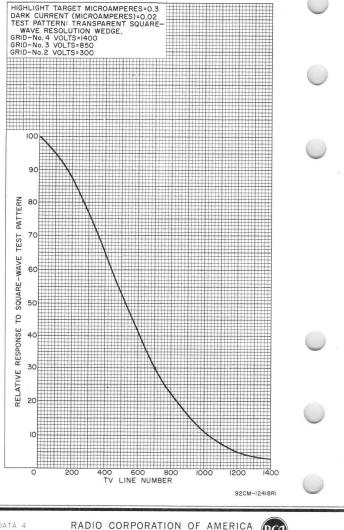
DATA 2


RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 4-65

LIGHT TRANSFER CHARACTERISTICS

DATA 3

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.



Electronic Components and Devices

Harrison, N. J.

DATA 4 4-65

UNCOMPENSATED HORIZONTAL RESPONSE TO A SQUARE-WAVE TEST PATTERN HIGHLIGHT TARGET MICROAMPERES=0.3

Electronic Components and Devices

Harrison, N. J.

DATA 4

Photomultiplier Tubes

2-INCH DIAMETER-8053 3-INCH DIAMETER-8054 5-INCH DIAMETER-8055

S-II RESPONSE 10-STAGE, HEAD-ON TYPE

VENETIAN-BLIND DYNODE STRUCTURE

For Use in Scintillation Counters for the Detection and Measurement of Nuclear Radiation

GENERAL

Spectral Response	
Cathode, Semitransparent	
Shape	
Minimum area	
8053	n
8054	
8055	
Minimum diameter	
8053	2
8054	
8055	
Window Lime glass, Corning ^a No.0080, or equivalent	1
Shape	C
	3
Dynodes	
Substrate	n
Secondary-Emitting Surface Beryllium-Oxide	Э
Structure Venetian-Blin	ł
Direct latens last and Oracity (A.)	
Direct interelectrode Gapacitances (Approx.)	
Direct Interelectrode Capacitances (Approx.) Anode to dynode No.10	F
Anode to dynode No.10	
Anode to dynode No.10	-
Anode to dynode No.10	- 1
Anode to dynode No.10	- 1
Anode to dynode No.10	- 1
Anode to dynode No.10. 7 pl Anode to all other electrodes. 8.5 pl Maximum Overall Length 8053 5.81 in 8054 6.31 ir 8055 6.31 ir 8055 7.69 ir Seated Length 7.69 ir	- - -
Anode to dynode No.10. 7 pl Anode to all other electrodes. 8.5 pl Maximum Overall Length 8053 5.81 in 8054 6.31 in 8055 6.31 in Seated Length 8053 9 9 9 9 9 Maximum Overall Length 8053 8055 9 <	-
Anode to dynode No.10. 7 pl Anode to all other electrodes. 8.5 pl Maximum Overall Length 8053 5.81 in 8054 6.31 in 8055 6.31 in Seated Length 8053 7.69 in 8053 1.01	-
Anode to dynode No.10	-
Anode to dynode No.10. 7 pl Anode to all other electrodes. 8.5 pl Maximum Overall Length 8053 5.81 in 8053 5.81 in 8055 6.31 ir 8054 6.31 ir 8055 7.69 ir 8053 9 9 9 9 10 11 <t< td=""><td>- - - - -</td></t<>	- - - - -
Anode to dynode No.10. 7 pl Anode to all other electrodes. 8.5 pl Maximum Overall Length 8053 5.81 in 8054 6.31 in 8055 6.31 in 8055 7.69 in 8053 7.69 in 8053 4.87 0.19 in 8054 1.81 in 8053 5.38 5.38 0.18 in 8055 1.91 in 8054 5.38 5.38 0.18 in 8055 1.91 in 8055 6.75 1.91 in 8055 1.91 in 8053 7.93 1.91 1.91 1.91 in 8054 6.75 1.91 in 1.91 in 8055 7.93 1.91 1.91 1.91 1.91 Maximum Diameter 8053 2.31 1.91 1.91 1.91	- - - - - - - - - - - - - - - - - - -
Anode to dynode No.10. 7 pl Anode to all other electrodes. 8.5 pl Maximum Overall Length 8053 5.81 in 8053 5.81 in 8053 6.31 in 8055 7.69 in 7.69 in 8055 8053 8.5 7.69 in 8053 8053 8.5 9.19 in 8053 8.5 9.18 in 8.638 1.019 in 8055 8.5 9.18 9.18 1.019 in 8055 1.019 in 8055 8.5 9.18 1.019 1.019 in 8055 1.019 in 8055 8.5 9.18 1.019 1.019 in 1.019 in 8055 9.101 9.101 1.019	-
Anode to dynode No.10	-
Anode to dynode No.10. 7 pl Anode to all other electrodes. 8.5 pl Maximum Overall Length 8053 5.81 in 8054 6.31 ir 8055 6.31 ir 8055 7.69 ir 8053 7.69 ir 8054 8055 7.69 ir 8053 8054 1.91 ir 8053 9.10 9.10 9.10 9.10 1.91 1	-
Anode to dynode No.10. 7 pl Anode to all other electrodes. 8.5 pl Maximum Overall Length 8053 5.81 in 8053 5.81 in 6.31 in 8055 7.69 in 5.88 0.19 in 8055 7.69 in 5.38 0.19 in 8055 8053 5.38 0.19 in 8054 0.18 in 8054 6.31 in 8055 0.19 in 8055 0.19 in 8055 6.75 1.91 in 8053 0.19 in 8054 6.75 1.91 in 8053 3.06 in 8055 8053 8053 7.31 in 8053 5.31 in	- - - - - - - - - - - - - - - - - - -
Anode to dynode No.10	- - - - - - - - - - - - - - - - - - -
Anode to dynode No.10. 7 pl Anode to all other electrodes. 8.5 pl Maximum Overall Length 8053 5.81 in 8053 5.81 in 6.31 in 8055 7.69 in 5.88 0.19 in 8055 7.69 in 5.38 0.19 in 8055 8053 5.38 0.18 in 8054 0.18 in 8054 6.31 in 8055 0.19 in 8055 0.19 in 8055 6.75 1.91 in 8053 0.19 in 8054 6.75 1.91 in 8053 3.06 in 8055 8053 8053 7.31 in 8053 5.31 in	- - - - - - - - - - - - - - - - - - -

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA I

Unless indicated otherwise, the following ratings and characteristic range values apply to all types

ABSOLUTE-MAXIMUM RATINGS

DC Supply Voltage

Pin 13 - Focusing Electrode Pin 14 - Photocathode

Between	anode	and c	ath	ode										2000	V
Between	anode	and c	lyno	de	No.	10	ž.	ŝ.		ġ.	÷.	à.	χ.	300	V
Between	consec	utive	e dy	nod	es.		÷.	x.		÷				250	٧
Between														600	V
Between														600	٧
Average Ar	ode Cu	rrent	е.	$\mathbf{x} \in \mathbf{x}$						x.				2	mA
Ambient Te	emperat	uref												75	°C

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing 1/6 of E between cathode and dynode No.1; 1/12 of E for each succeeding dynode stage; and 1/12 of E between anode and dynode No. 10, except as noted. Focusingelectrode voltage is adjusted to that value between 50 and 100 per cent of dynode-No.1 potential (referred to cathode) which provides maximum anode current.

With E = 1500 volts except as noted

HICH L 1000 VOILS CAUCH	or as norea			
	Min	Typ	Max	
Sensitivity				
Radiant ⁹ , at 4400				
angstroms				
8053	-	3.4x10 ⁴	-	A/W
8054, 8055	-	3.5x10 ⁴	-	A/W
Cathode Radiant ^h at		010/10		~/ "
4400 angstroms				
8053	-	0.056		A/W
8054	-	0.064	-	A/W
8055	-		-	A/W
Luminous:	-	0.088	-	A/W
With tungsten light				
source ^j 8053	0			. / .
	9	42	220	A/lm
8054	9	43	220	A/lm
8055	9	44	220	A/1m
With blue light				
sourcek				
8053	9x10-6	4.2x10-5	2.2x10 ⁻⁴	Α
8054	9x10-6	4.3x10-5	2.2x10-4	Α
8055	9x10-6	4.4x10 ⁻⁵	2.2x10-4	Α
Cathode Luminous:				
With tungsten light				
source				
8053	-	7x10-5	-	A/1m
8054	-	8x10-5	_	A/1m
8055	-	1.1x10-4	_	A/1m
With blue light		111/10		A/ 11
source ⁿ				
8053	6x10-8	7x10-8	-	A
8054	6x10-8	8x10-8	-	Â
8055	6x10-8	1.1x10-7	-	A
Cathode Quantum Ef-	UXIV		-	A
ficiency at 4400				
angstroms:				
8053		16	-	01
8054	-	18	-	50 50 50
0055	-	25	-	10
	-	25	-	70
Current Amplification		0.105		
8053	-	6x105	-	
8054	-	5.4x105	-	
8055	-	4x105	9	,
Anode Dark Current ^p	-	4x10-9	/x10	Α

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA 2 4-67

	Min	Typ	Max	
Equivalent Anode-Dark Current Input	.{:	4.4x10-109 5.5x10-13r	7.8x10 ⁻¹⁰⁹ 9.7x10 ⁻¹³	lm W
Equivalent Noise Input	· { _	3.4x10 ⁻¹² s 4.2x10 ⁻¹⁵ t	1.3x10 ^{-11s}	lm W
Pulse-Height Resolution ^{u, v} Mean Gain Deviation ^{u, w}	к [°] -	7.5	-	W %
With count rate change				
of 10,000 to 1,000 Ḧ́z [×] .		1	-	%
For a period of 16 hours at				
count rate of 10,000 Hz ^y	. –	1	-	%
Anode-Pulse Rise Time ^z				
8053		1.2x10 ⁻⁸	-	S
8054, 8055		.4x10 ⁻⁸	-	S
Electron Transit Time ^{a a}				
8053		5.9x10 ⁻⁸	-	S
8054, 8055		6.5x10 ⁻⁸	-	S

^a Made by Corning Glass Works, Corning, New York. 14830

^b Made by Cinch Manufacturing Company, 1026 South Homan Avenue, Chicago, Illinois. 60624

C Made by JAN Hardware Manufacturing Corp., 38-01, Queens Blvd., Long Island City 1, N. Y.

d Magnetic shielding material in the form of foil or tape as available from Magnetic Shield Division, Perfection Mica Company, 1322 N. Elston Ave., Chicago 22, 111., 60622, or equivalent.

e Averaged over any interval of 30 seconds maximum.

f Tube operation at or below room temperature is recommended.

9 This value is calculated from the typical luminous sensitivity rating using a conversion factor of 804 lumens per watt.

^h This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 804 lumens per watt.

J These values are calculated as shown below:

Anode Current (with blue light source) (A)

Luminous Sensitivity $(A/lm) = -0.10 \times Light Flux of 1 \times 10^{-5} (lm)$

The value of 0.10 is the average value of the ratio of the anode current measured under the conditions specified in footnote $\left(k\right)$ to the anode current measured under the same conditions, but with the blue filter removed.

- k Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness) from a tungsten filament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2870° K. The value of light flux incident on the filter is 10 microlumens.
- ^M This value is calculated as shown below:

Cathode Current (with blue light source) (A)

Cathode Luminous Sensitivity (A/lm) = 0.10 x Light Flux of 0.01 (lm)

The value of 0.10 is the average value of the ratio of the cathode current measured under the conditions specified in footnote (n) to the cathode current measured under the same conditions but with the blue filter removed.

ⁿ Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness) from a tungsten-filament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lume and 200 volts are applied between cathode and all other electrodes connected as anode.

DATA 2

- At a tube temperature of 22° C. Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness) from a line-glass envelope, tungsten-filament lamp operating at 2870° K. The light flux incident on the filter is 10 microlumens. The supply voltage E is adjusted to obtain an anode current of 9 microamperes. Sensitivity of these types under these conditions is approximately equivalent to 9 amperes per lumen. Dark current is measured with no light incident on the tube.
- 9 With supply voltage E adjusted to give an equivalent luminous sensitivity of 9 amperes per lumen.
- r At 4400 angstroms. This value is calculated from the EADCI value in lumens using a conversion factor of 804 lumens per watt.
- S This value is calculated from the ENI value in watts using a conversion factor of 804 lumens per watt.
- t At 4400 angstroms. Under the following conditions: Supply voltage (E) is as shown. 22° C tube temperature, external shield is connected to cathode, bandwidth Hz, light source as shown under (k) interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.
- With the following voltage distribution: 3/13 of E between cathode and dynode No.1, 1/13 of E for each succeeding dynode stage, and 1/13 of E between dynode No.10 and anode. Focusing-electrode voltage is adjusted to that value between 50 and 100 per cent of dynode-No.1 potential (referred to cathode) which provides maximum anode current.
- Y Pulse height resolution is defined as the quotient of the full width of the photopeak at half height by the pulse height at maximum count rate under the following conditions: The 662 keV photon from an isotope of cesium having an atomic mass of 137 (Cs137) and a cylindrical 3 to the full activated sodium iodide scintilator [Na1 (TI) - type 12D12] are used. This scintillator is manufactured by the Harshaw Chemical Corporation, 1945 East 97 Street, Cleveland 6, Ohio, and is rated by the manufacturer as having a resolution capability of 7.5%. The Cs137 source is in direct contact with the metal end of the scintillator. The faceplate end of the crystal is coupled to the types by a coupling fluid such as Dow Corning Corp., Type DC200 (viscosity of 60,000 centistokes) — manufactured by the Dow Corning Corp., Midland, Michigan, or equivalent.
- W Mean Gain Deviation is defined as follows:

$$MGD = \frac{\begin{vmatrix} i &= n \\ \sum \\ i &= 1 \end{vmatrix} - p_i |_{100}$$

where p = mean pulse height $p_i = pulse$ height at the "ith" reading n = total number of readings

- X Under the following conditions: The scintillator and C_s^{137} radiation source of (v) are employed. The radiation source is initially centered on the major axis of the tube and the scintillator, at a point providing a pulse count rate of 10,000 Hz. The pulse height of the photopeak is measured under this condition. Next, the radiation source is moved rapidly, in approximately 30 seconds, to a new position that is equivalent to a count rate of 1,000 Hz. The new position is also centered in the major axis of the tube. The pulse height under this condition is measured. Mean gain deviation is defined as shown in (w).
- Y Under the same conditions as shown in (x) except the tube is operated for a period of 1/2 hour with the radiation source located at the point providing a pulse count rate of 10,000 Hz. Following this time interval, the pulse height is sampled at this count rate at 1-hour intervals for a period of 16 hours. Mean gain deviation is defined as shown in (w).
- Z Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.

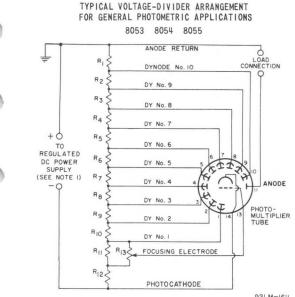
aa The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 4-67

OPERATING CONSIDERATIONS

The base pins of these types fit a diheptal 14-contact socket, such as Cinch No.3M14, or equivalent. The socket should be made of high-grade, low-leakage material, and should be installed so that incident light falls on the face end of the tube.

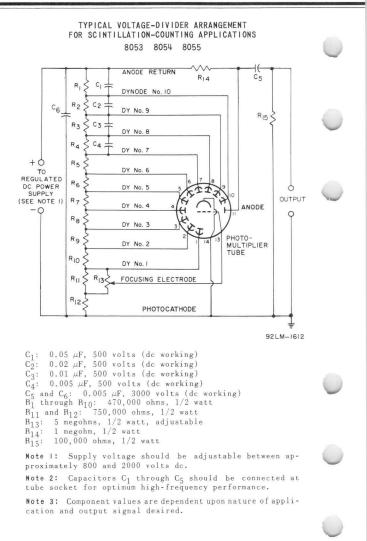
The operating stability of these types are dependent on the magnitude of the anode current. The use of an average anode current well below the maximum rated value of 2 milliamperes is recommended when stability of operation is important. When stability is of prime importance, the use of an average anode current of 10 microamperes or less, commensurate with satisfactory output signal, is recommended.


Electrostatic and magnetic shielding of these types may be required in some applications. When a shield is used, it must be at cathode potential.

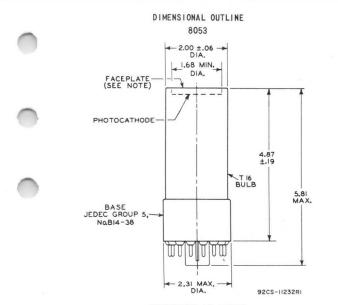
The high voltages at which these types are operated are very dangerous. Care should be taken in the design of apparatus to prevent the operator from coming in contact with these high voltages. Precautions should include the enclosure of high-potential terminals and the use of interlock switches to break the primary circuit of the high-voltage power supply when access to the apparatus is required.

Accompanying Typical Voltage-Divider Arrangements are recommended for use with these types. Recommended resistance values for the voltage dividers range from 10,000 ohms per stage to 1,000,000 ohms per stage. The choice of resistance values for any voltage-divider network is usually a compromise. If low values of resistance per stage are utilized, the power drawn from the regulated power supply and the required power rating of the resistors increase. Phototube noise may also increase due to heating if the divider network is mounted near the photocathode. The use of resistance values near 1 megohm per stage may cause deviation from linearity if the voltage-divider current is not maintained at a value of at least 10 times that of the maximum value of anode current, and may limit anode-current response to pulsed light. The latter effect may be reduced by connecting capacitors between the tube socket terminals for dynodes No.7 and No.8, dynodes No.8 and No.9, dynodes No.9 and No.10, and between dynode No.10 and anode return. In addition to nonlinearity and pulse-limiting effects, the use of resistance values exceeding 1 megohm per stage make these types more susceptible to leakage effects between terminals with possible resulting deviation in interstage voltage leading to a loss of current amplification.

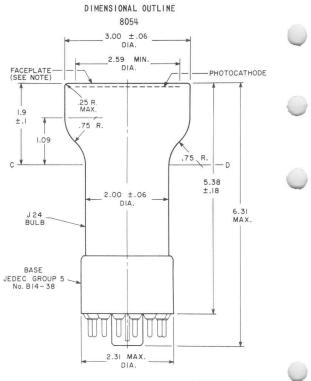
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.


92LM-1611

R1 through R12: 470,000 ohms, 1/2 watt R13: 5 megohms, 1/2 watt, adjustable


Note I: Supply voltage should be adjustable between approximately 800 and 2000 volts dc.

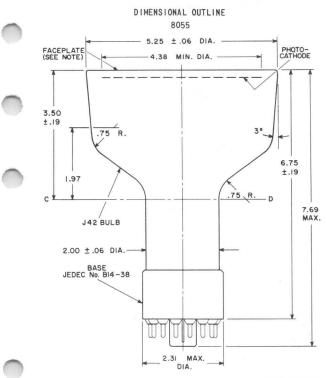
Component values are dependent upon nature of ap-Note 2: plication and output signal desired.


DIMENSIONS IN INCHES

Center line of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

Note: Within 2.59-inch diameter, deviation from flatness of external surface of faceplate will not exceed 0.010-inch from peak to valley.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 5 4-67

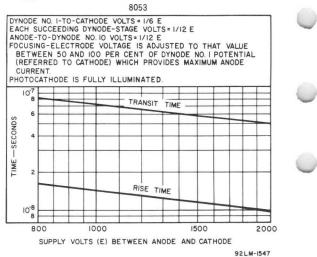

92CM-11080R2

DIMENSIONS IN INCHES

Center line of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

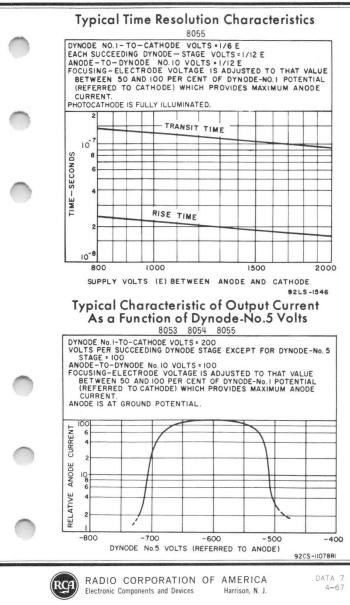
Note: Within 2.59-inch diameter, deviation from flatness of external surface of faceplate will not exceed 0.010 inch from peak to valley.

92CM-11148R2

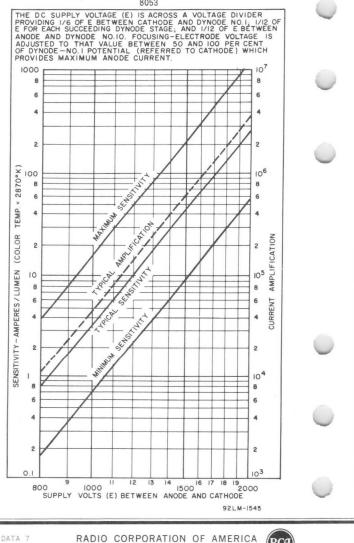

DIMENSIONS IN INCHES

Center line of bulb will not deviate more than 2° in any direction from the perpendicular erected at the center of bottom of the base.

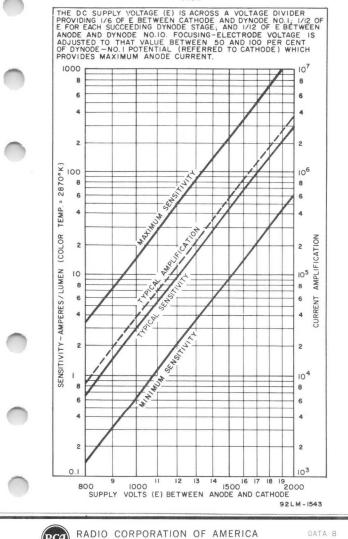
Note: Within 4.38-inch diameter, deviation from flatness of external surface of faceplate will not exceed 0.010 inch from peak to valley.



Typical Time Resolution Characteristics



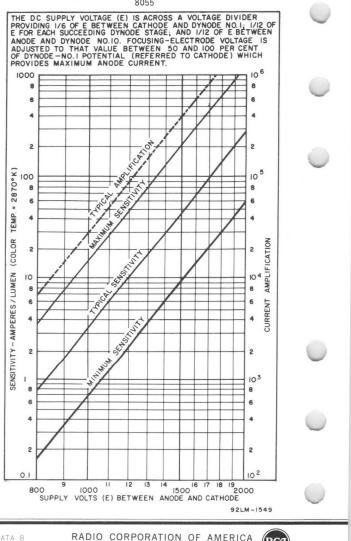
8054 DYNODE No. I - TO - CATHODE VOLTS = 1/6 E EACH SUCCEEDING DYNODE - STAGE VOLTS = 1/12 E ANODE-TO-DYNODE No. 10 VOLTS + 1/2E FOCUSING-ELECTRODE VOLTS = 1/2E BETWEEN 50 AND 100 PER CENT OF DYNODE No.1 POTENTIAL (REFERRED TO CATHODE) WHICH PROVIDES MAXIMUM ANODE CURRENT PHOTOCATHODE IS FULLY ILLUMINATED. 10-7 TRANSIT 8 TIME **TIME - SECONDS** 6 4 2 RISE TIME 10-8 800 1000 1500 SUPPLY VOLTS (E) BETWEEN ANODE AND CATHODE 2000 92LS -1541


Typical Sensitivity and Current Amplification Characteristics

Harrison, N. J.

Electronic Components and Devices

Typical Sensitivity and Current Amplification Characteristics

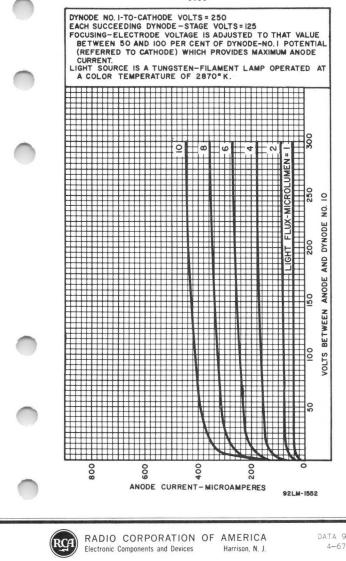


Electronic Components and Devices

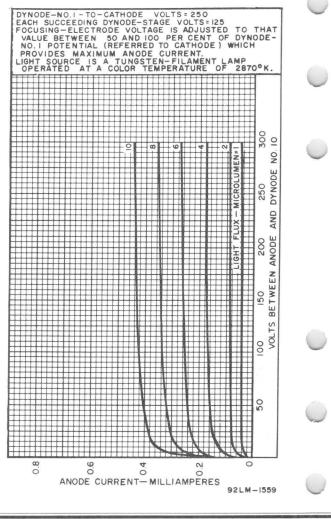
4-67

Harrison, N. J.

Typical Sensitivity and Current **Amplification Characteristics**


Electronic Components and Devices

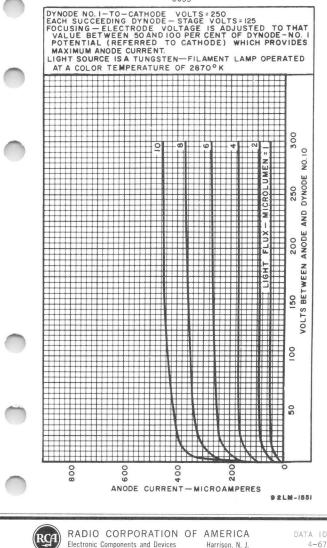
Harrison, N. J.


DATA 8

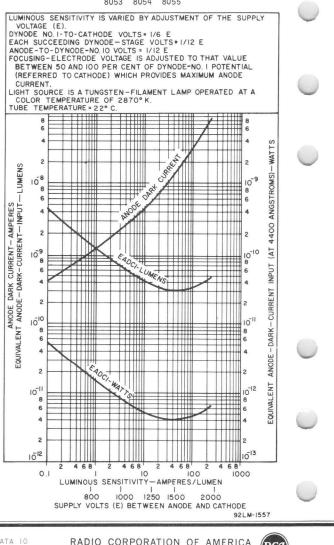
Typical Anode Characteristics

8053

Typical Anode Characteristics 8054


DATA 9

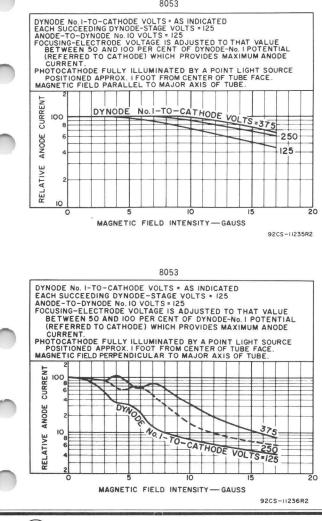
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.


Typical Anode Characteristics

8055

8053, 8054, 8055

Typical Dark Current and EADCI Characteristics 8054 8053 8055

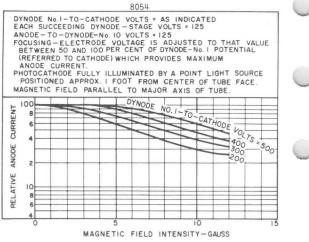


DATA 10

Electronic Components and Devices Harrison, N. J.

Typical Effect of Magnetic Field on Anode Current

8053

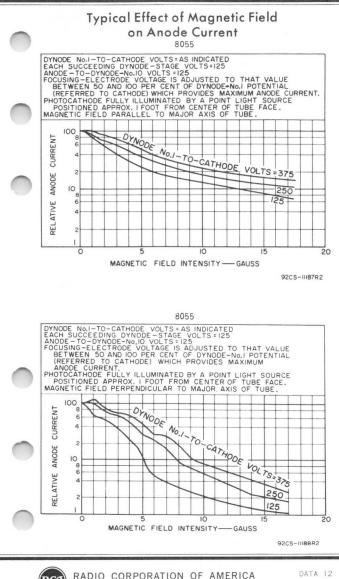

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA 11 4-67

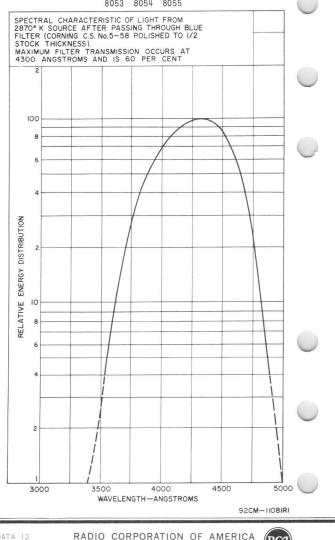
8053, 8054, 8055

Typical Effect of Magnetic Field on Anode Current


92CM-11084R3

DATA II

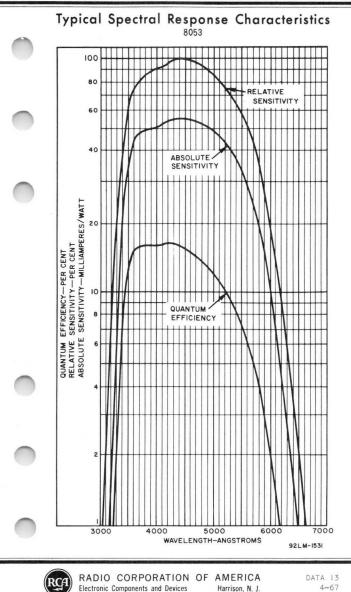
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

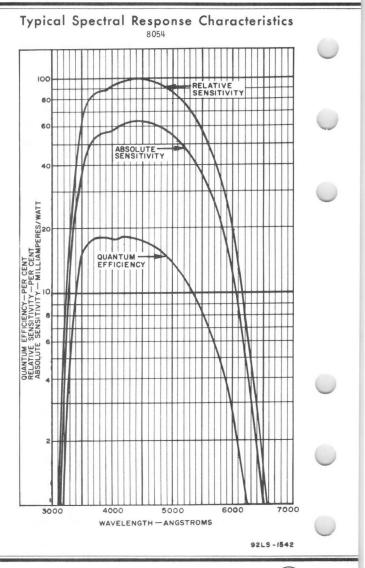

Electronic Components and Devices

DATA 12 4-67

Harrison, N. J.

8053, 8054, 8055

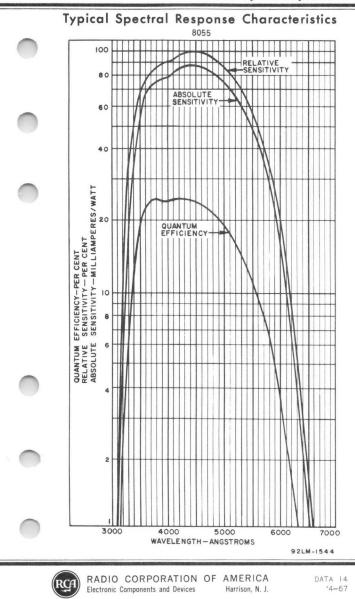

Spectral Energy Distribution of 2870°K Light Source After Passing Through Indicated Filter 8053 8054 8055

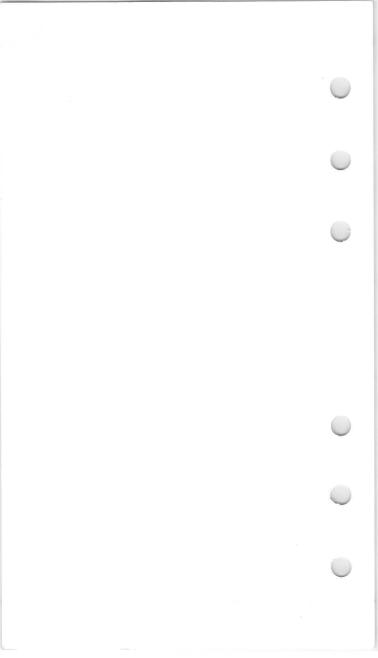


DATA 12

Electronic Components and Devices

Harrison, N. J.





DATA 13

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

8053, 8054, 8055

Image Orthicon

FIELD MESH

SEMICONDUCTIVE TARGET

MAGNETIC FOCUS MAGNETIC DEFLECTION

For Low-Light-Level Studio and Remote Color (Scene illumination—40 fc or less) and Black-and-White (Scene illumination—as low asl fc) TV Pickup Service

DATA

	General:
2	Heater, for Unipotential Cathode:
	Voltage (AC or DC) 6.3 ± 10% volts
	Current at 6.3 volts 0.6 amp
	Direct Interelectrode Capacitance:
	Anode to all other electrodes 12 pf
	Spectral Response
	Wavelength of Maximum Response 4500 ± 300 angstroms
7	Photocathode, Semitransparent:
	Rectangular image (4 x3 aspect ratio):
	Useful size of 1.8" max. diagonal
	Note: The size of the optical image focused on the
	photocathode should be adjusted so that its maximum
	diagonal does not exceed the specified value. The
	corresponding electron image on the target should have
	a size such that the corners of the rectangle just touch the target ring.
	Orientation of Proper orientation is obtained when
	the vertical scan is essentially parallel to the plane
	passing through center of faceplate and pin 7 of the
	shoulder base.
	Focusing Method
	Deflection Method
	Overall Length 15.20" ± 0.25" Greatest Diameter of Bulb 3.00" ± 0.06"
	Greatest Diameter of Bulb
	Minimum Deflecting-Coil Inside Diameter 2-378"
	Deflecting Coil
	Part No.0Y-1ª, or equivalent
	Deflecting Coil Length
	Part No.0F-2ª, or equivalent
	Focusing Coil Length
	Alignment Coil
	Part No.0A-3 ^a , or equivalent
	Alignment-Coil Length
	Alignment-Coil Length
	Operating Position The tube should never be operated in
	a vertical position with the diheptal-base end up nor
	in any other position where the axis of the tube with
	the base up makes an angle of less than 20 ⁰ with the
	vertical.
	Weight (Approx.)
)	SocketCinch Part No.3M14 ^b , or equivalent

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA I 9-63

Shoulder Base	Keyed Jumbo Annular 7-Pin BOTTOM VIEW	
Pin 1-Grid No.6 Pin 2-Photocathode Pin 3-Do Not Use Pin 4-Do Not Use	Pin 5-Grid No.5 Pin 6-Target Pin 7-Do Not Use	0
End Base	Small-Shell Diheptal 14-Pin (JEDEC No.B14-45) BOTTOM VIEW	
Pin 1 -Heater Pin 2 -Grid No.4 & Field Mesh Pin 3 -Grid No.3 Pin 4 -Do Not Use Pin 5 -Dynode No.2 Pin 6 -Dynode No.4 Pin 7 -Anode Pin 8 -Dynode No.5 Pin 9 -Dynode No.3	DIRECTION OF LIGHT: PERPENDICULAR TO LARGE END OF TUBE IC 3^{p} DY2 4^{p} 10^{c} DY2 5^{p} 2^{p} 10^{c} 10^{c} IC 3^{p} 10^{c} 10^{c} DY2 5^{p} 2^{c} 2^{c} 2^{c} 10^{c} 2^{c} 5^{c}	0
Pin 10 - Dynode No.1, Grid No.2 Pin 11 - Do Not Use Pin 12 -Grid No.1 Pin 13 - Cathode & Suppressor ^e Pin 14 - Heater	G3 3 4 4 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1	

Maximum and Minimum Ratings, *Absolute-Maximum Values:* PHOTOCATHODE -

PHUTUCATHUDE:																
Voltage											2	2	-550	max.	volts	
Illumination.						<u> </u>							50	max.	fc	
				•		8.1		•	•	•	•	•	00	max.	1 C	
OPERATING TEMPER	RATUR	χĘ:														
Of any part o	f bu	b											55	max.	°C	
Of bulb at la																
													0		00	
(Target sec	tion).				8		•			8		0	min.	°C	
TEMPERATURE DIF	FREI	NCF	1													
TENT ENTRATE BUT				2	ad	21	21/									
Between targe							Ty									
part of bull	o ho	tte	r	th	an										0	
target sect	on.							2			2	2	5	max.	oC	
GRID-No.6 VOLTA													-550		volts	
	aL .	•	•		•		•	•	•	•	•	•	-000	max.	VOICS	
TARGET VOLTAGE:																
Positive value	S												10	max.	volts	
													10	max.	volts	
Negative value																6
GRID-No.5 VOLTAG	it .	~ 10				e - 1		•				2	150	max.	volts	1
GRID-No.4 VOLTAG	GΕ.	2	3					2			Ξ.		300	max.	volts	
GRID-No.3 VOLTA	C.												400	max.	volts	
GRID-NO.5 VOLTA	aL .		•	•	•	•	•	•	•	•		•				
GRID-No.2 & DYN	ODE	No.	. 1	V)L	TA(ĞΕ						350	max.	volts	
GRID-No.1 VOLTA	GF :															
		10											125	max.	volts	
Negative bias																
Positive bias	vali	ue										5	0	max.	volts	
VOLTAGE PER MUL													350	max.	volts	6
													1350		volts	1
ANODE-SUPPLY VO	_ I AGI	<u> </u>	•	•	•			•	٠	•	•		1200	max.	voits	

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

RCA

PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode Heater positive with respect to cathode		125 max. 10 max.	volts volts
Typical Operating Values: ^e			
Photocathode Voltage (Image Focus) ^f Grid-No.6 Voltage		-400 to -540	volts
(Accelerator) - Approx. 75% photocathode voltage Target-Cutoff Voltage ⁹		-300 to -405 -3 to 1	volts
Grid-No.5 Voltage (Decelerator)		0 to 125	volts
Grid-No.4 Voltage (Beam Focus) [†] Grid-No.3 Voltage ^h		140 to 180 225 to 330	volts volts
Grid-No.2 & Dynode-No.1 Voltage		300	volts
Grid-No.1 Voltage for Picture Cutoff		-45 to -115 600	volts
Dynode-No.2 Voltage		800	volts
Dynode-No.4 Voltage	•	1000	volts
Dynode-No.5 Voltage		1200	volts
Anode Voltage		1250	volts
Minimum Peak-to-Peak			
Blanking Voltage		5	volts
Focusing Coil ^j		75	gausses
Field Strength of Alignment Coil		0 to 3	gausses
Parformana Datas			

Performance Data:

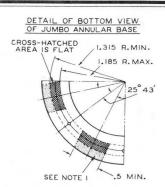
With conditions shown under Typical Operating Values and with camera lens set to bring the picture highlights one stop above the "knee" of the accompanying Basic Light-Transfer-Characteristic Curve

Min. Typical Max.

Cathode Radiant Sensi- tivity at 4500 angstroms		0.033	-	a/w
Luminous Sensitivity	40	65		µa/1m
Anode Current (DC)	-	30		μa
Signal-Output Current		-		
(Peak to Peak)	-	5	-	μa
Ratio of Peak-to-Peak Highlight Video-Signal Current to RMS Noise Current for Bandwidth of 4.5 Mc Photocathode Illumination at 2870° K Required to bring Picture High-	-	37:1	-	
lights one stop above the "Knee" of Light Transfer Characteristic	-	0.007	-	fc

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 9-63

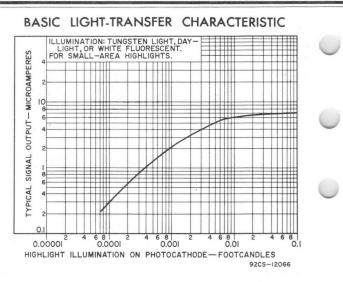
F	eak-to-reak kesponse to Square-Wave Test Pattern at 400 TV Lines per Picture Height (Per cent of large-area black to large-area
	white) ^k
	Made by Cleveland Electronics Inc., 1974 East 61st Street, Cleveland, Ohio,
	Made by Cinch Manufacturing Company, 1026 South Homan Avenue, Chicago 24, Illinois.
	The suppressor grid connected to the cathode and the field-mesh grid connected to grid No.4 are not given as numbered grids in order to conform with industry practice of associating functional camera control knobs with specific grid numbers. For example, beam-focus control is generally associated with knob identified as G4 (grid No.4), regardless of its position with respect to the cathode.
d e	Uynode-vollade values are shown under Typical Operating Values.
	With 8092A operated in RCA-TK-11 or -TK-31 camera. Other cameras may require slightly different voltage ranges.
f	Adjust for best focus.
y h	Normal setting of target voltage is ± 2 volts from target cutoff. The target supply voltage should be adjustable from -3 to 5 volts.
:	Adjust to give the most uniformly shaded picture near maximum signal.
J	Direction of current should be such that a north-seeking pole is at- tracted to the image end of the focusing coil, with indicator located outside of and at the image end of the focusing coil.
ĸ	


"Measured with amplifier having flat frequency response.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-10 RESPONSE is shown at front of this Section

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

NOTE 1: DOTTED AREA IS FLAT OR EXTENDS TOWARD DIHEPTAL-BASE END OF TUBE BY 0.060" MAX.


ANNULAR BASE GAUGE

ANGULAR VARIATIONS BETWEEN PINS AS WELL AS ECCENTRICITY OF NECK CYLINDER WITH RESPECT TO PHOTOCATHODE CYLINDER ARE HELD TO TOLERANCES SUCH THAT PINS AND NECK CYLINDER WILL FIT FLAT-PLATE GAUGE WITH:

- a. SIX HOLES HAVING DIAMETER OF 0.065" ± 0.001" AND ONE HOLE HAVING DIAMETER OF 0.150" ± 0.001". ALL HOLES HAVE DEPTH OF 0.265" ± 0.001". THE SIX 0.065" HOLES ARE ENLARGED BY 45° TAPER TO DEPTH OF 0.047". ALL HOLES ARE SPACED AT ANGLES OF 51° 26' ± 5' ON CIRCLE DIAMETER OF 2.500" ± 0.001".
- b. SEVEN STOPS HAVING HEIGHT of 0.187" ± 0.001", CENTER-ED BETWEEN PIN HOLES, TO BEAR AGAINST FLAT AREAS OF BASE.
- c. RIM EXTENDING OUT A MINI-MUM OF 0.125" FROM 2.812" DIAMETER AND HAVING HEIGHT OF 0.126" ± 0.001".
- d. NECK-CYLINDER CLEARANCE HOLE HAVING DIAMETER OF 2.200" ± 0.001".

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 9-63

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Vidicon

viaicon
For Color Television Film Pickup Service
 Electrostatic-Focus, Magnetic- Deflection Low-Power "Dark Heater" - 0.6 Watt Separate Mesh Connection Precision Outer-Diameter Glass Bulb Tested to Stringent Signal Uniformity Specifications
General Data
Dimensions See Dimensional Outline
Direct Interelectrode Capacitancea:
Target to all other electrodes
Focusing Method Electrostatic Deflection Method Magnetic
Heater Power
Maximum Useful
Picture Size
Orientation of Quality Rectangle:
Proper orientation
is obtained when the horizontal scan
is essentially parallel to the
straight sides of the masked portions
of the faceplate. The straight sides are parallel to the plane passing
through the tubes and short
axis index pin.
Base Small-Button Ditetrar 8-Pin (JEDEC No. E8-11)
Socket Cinch ^b
No. 133-98-11-015,
or equivalent Weight 2.8 (79.5 g) oz
Weight2.8 (79.5 g)ozOperating PositionAny
Deflection Alignment Assembly ^C Cleveland
Electronics No.
VYA-300, or equivalent

Electronic Components

RBЛ

Maximum Ratings, Absolute-Maximum Values:d

Grid-No.6 & 3 Voltage ^e 1350	V
Grid-No.5 Voltage	V
Grid-No.4 Voltage 400	V
Grid-No.2 Voltage ^f	V
Grid-No.1 Voltage:	
Negative bias value 300	V
Positive bias value 0	V
Peak Heater-Cathode Voltage:	
Heater negative with	
respect to cathode 125	V
Heater positive with	
respect to cathode 10	V
Heater Voltage $\dots \dots	V
Target Voltage 125	\vee
Target Dark Current0.20	μΑ
Peak Target Current90.60	μΑ
Faceplate:	
Illumination ^h	fc
Temperature	oC

Typical Operation and Performance Data

(Approximate) ^m 300:1	Grid-No.6 (Decelerator)	
Electrode) Voltage	& 3 Voltage ^e	V V
Grid-No.2 (Accelerator) Voltage ^f	Grid-No.4 (Beam-Focus	
Voltage ^f	Electrode) Voltage 90 to 150	V
Grid-No.1 Voltage (For Picture Cutoff) ^j 45 to -100 V Signal-To-Noise Ratio (Approximate) ^m 300:1 Typical Resolution:		
(For Picture Cutoff) ⁱ 45 to -100 V Signal-To-Noise Ratio (Approximate) ^m 300:1 Typical Resolution:	Voltage ^f 300	V
Signal-To-Noise Ratio (Approximate) ^m 300:1 Typical Resolution:	Grid-No.1 Voltage	
(Approximate) ^m 300:1 Typical Resolution:	(For Picture Cutoff) ⁱ –45 to –100	V
Center	Signal-To-Noise Ratio (Approximate) ^m	
	Center	nes

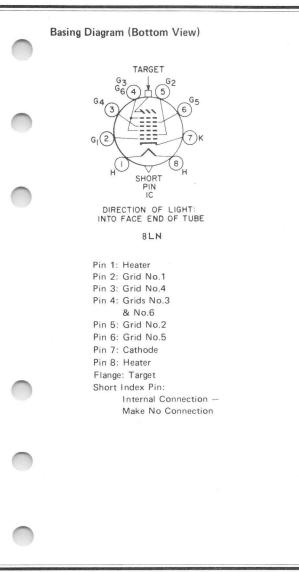
Electronic Components

RВЛ

DATA 1

Limiting Resolution:	
Center horizontal 500 (min.)	TV Lines
Center vertical	TV Lines
Amplitude Response to 400	
TV Line Square-Wave Test	
Pattern at Center of Picture ^t 30	%
Average "Gamma" of Transfer	
Characteristic 0.65	
Lag-Per Cent of	
Initial Value of Signal-Output Current	
1/20 Second after Illumination is Removed ⁿ	%
is Removed	70
Typical Sensitivity	
Faceplate Illumination	fc
Target VoltageP,9 15 to 30	V
Dark Current ^{q,r} 0.010	μΑ
Signal Output Current	
(Typical) ^s 0.30	μA

Notes

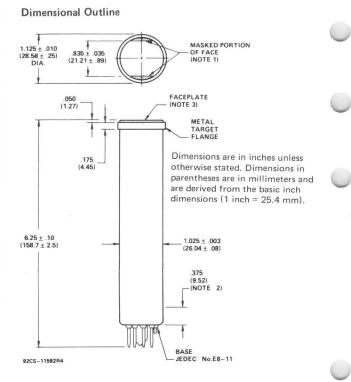

- ^a This capacitance, which effectively is the output impedance of the vidicon, is increased when the tube is mounted in the deflecting-yoke assembly. The resistive component of the output impedance is in order of 100 megohms.
- b Made by Alden Products Co., 9140 North Main St., Brockton 64, Massachusetts.
- b' Made by Cinch Manufacturing Co., 1026 S. Homan Ave., Chicago 24, Illinois.
- C Made by Cleveland Electronics Inc., 2000 Highland Road, Twinsburg, Ohio 44087.
- ^e Grid-No.6 & 3 voltage must always be greater than grid-No.5 voltage. The maximum voltage difference between these electrodes, however, should not exceed 800 volts. The recommended ratio of grid-No.5 to grid-No.6 & 3 voltage is 6/10 to 5/10; best geometry being provided when the ratio is 6/10, and most uniform signal output when the ratio is 5/10. The operator should select the ratio within this range which provides the desired performance.

Electronic

Components

RB/Л

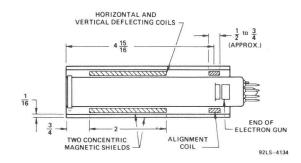
- f The power dissipation at grid No.2 should not exceed one watt, a condition normally met when the tube is operated at the specified maximum grid-No.2 rating and when the specified peak target current rating is not exceeded. However, if the vidicon is operated continuously with grid-No.1 voltage near or approaching zero bias, grid-No.2 voltage should not exceed 350 volts dc maximum.
- 9 Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.
- h For condition where "white light" is uniformly diffused over entire tube face.
- i With no blanking voltage on grid No.1.
- Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 MHz and a peak signal-output current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight videosignal current to rms noise current, multiplied by a factor of 3.
- ⁿ For initial signal-output current of 0.2 microampere and a dark current of 0.02 microampere.
- P Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- 9 The target voltage for each vidicon must be adjusted to that value which gives the desired operating dark current.
- ^r The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.
- ^S Defined as the component of the highlight target current after the dark-current component has been subtracted.
- t This typical capability may be limited by conditions external to the tube such as test pattern material, optics and/or yoke.

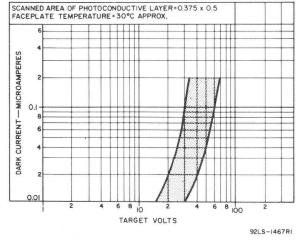

Electronic

Components

RBA

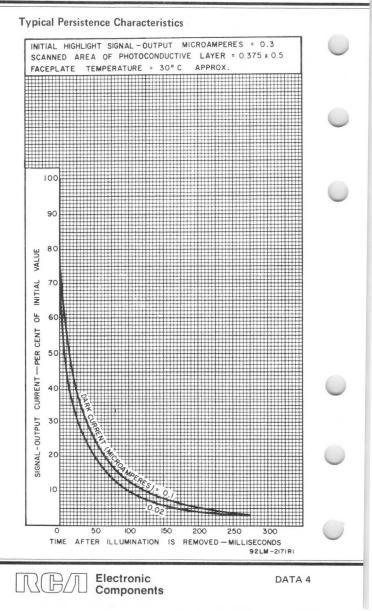
DATA 3

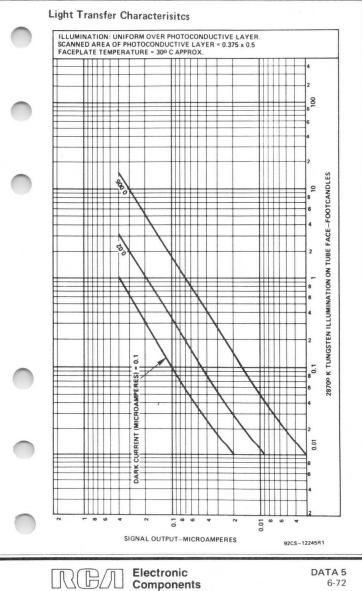

6-72


- Note 1 Straight sides of masked portions are parallel to the plane passing through tube axis and short index pin.
- Note 2 Within this distance, diameter of bulb is 1.025" + 0.003" — 0.030". Tube is acceptable regarding camber when it can be inserted into a 1"-long cylinder gauge which has an inner diameter of 1.0280" + 0.0011" — 0.0000". The gauge must pass along the tube length from the base to the metal target flange.
- Note 3 Faceplate is Corning No.7056 glass having a thickness of $0.094^{\prime\prime}\pm 0.012^{\prime\prime}.$

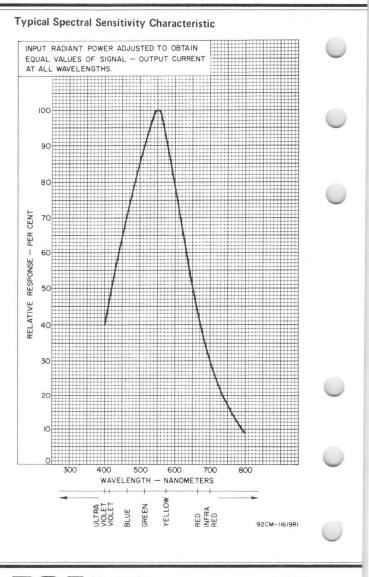
R

Recommended Location of Deflecting Yoke and Alignment Coil to Obtain Optimum Geometry and Optimum Output Signal Uniformity


Typical Range of Dark Current



Electronic Components


日几

DATA 4 6-72

6-72

Electronic Components

H

DATA 5

Vidicon

For Color Television Film Pickup Service Electrostatic-Focus, Magnetic-Deflection Low-Power "Dark Heater" - 0.6 Watt Separate Mesh Connection Precision Outer-Diameter Glass Bulb Tested to Stringent Signal Uniformity Specifications General Data Dimensions See Dimensional Outline Direct Interelectrode Capacitance^a Target to all other electrodes 11 pF Focusing Method Electrostatic Deflection Method Magnetic Heater Power 0.6 W Maximum Useful Picture Size 0.6x0.8 (15.24 x 20.32 mm) in Orientation of Quality Rectangle: Proper orientation is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short index pin. Small-Button Super Base Ditetrar 8-Pin (JEDEC No. E8-78) 'Alden^b No.208-SPEC. Socket or equivalent Weight 11 (312.4 g) oz Operating Position Anv Deflection Alignment Assembly^C **Cleveland Electronics** No.15VYA-333, or equivalent

日/Л

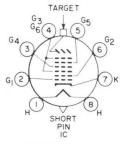
Maximum Ratings, Absolute-Maximum Values:d

Grid-No.6 & 3 Voltage ^e	1500	V	
Grid-No.5 Voltage	1500	V	
Grid-No.4 Voltage	500	V	
Grid-No.2 Voltage ^f	750	V	
Grid-No.1 Voltage:			
Negative bias value	300	V	
Positive bias value	0	V	
Peak Heater-Cathode Voltage:			
Heater negative with respect to cathode	125	V	
Heater positive with respect to cathode	10	V	
Heater Voltage	$6.3 \pm 5\%$	V	
Target Voltage	125	V	
Target Dark Current	0.25	μΑ	
Peak Target Current9	0.60	μA	
Faceplate:			
Illumination ^h	5000	fc	
Temperature		oC	

Typical Operation and Performance Data

Grid-No.6 (Decelerator) & 3 Voltage ^e 1400	V
Grid-No.5 Voltage ^e 700 to 840	V
Grid-No.4 (Beam-Focus Electrode) Voltage 230 to 260	V
Grid-No.2 (Accelerator) Voltage ^f 300	V
Grid-No.1 Voltage (For Picture Cutoff) i 45 to -100 Signal-To-Noise Ratio (Approximate) ^m 300:1	V
Typical Resolution:	
Center	TV Lines
Corner	

Amplitude Response to 400 TV Line Square-Wave Test Pattern at Center of Picture ^t	60/55	%
	0.65	
Lag Per Cent of Initial Value of Signal-Output Current 1/20 Second after Illumination is Removed ⁿ	25	%
Typical Sensitivity		
Faceplate Illumination	10	fc
Target VoltageP,q	15 to 45	V
Dark Current ^{q,r} 0.010		μΑ
	0.30	μA

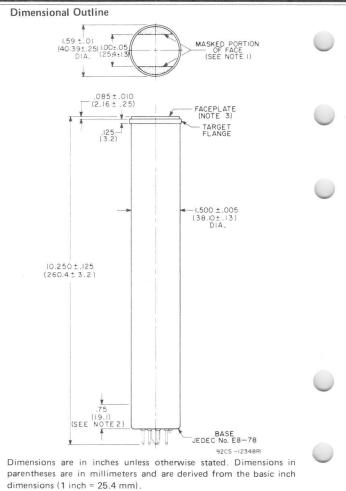

Notes

- ^a This capacitance, which effectively is the output impedance of the vidicon, is increased when the tube is mounted in the deflecting-yoke assembly. The resistive component of the output impedance is in order of 100 megohms.
- b Made by Alden Products Co., 9140 North Main St., Brockton 64, Massachusetts.
- b' Made by Cinch Manufacturing Co., 1026 S. Homan Ave., Chicago 24, Illinois.
- Made by Cleveland Electronics Inc., 2000 Highland Road, Twinsburg, Ohio 44087.
- ^e Grid-No.6 & 3 voltage must always be greater than grid-No.5 voltage. The maximum voltage difference between these electrodes, however, should not exceed 800 volts. The recommended ratio of grid-No.5 to grid-No.6 & 3 voltage is 6/10 to 5/10; best geometry being provided when the ratio is 6/10, and most uniform signal output when the ratio is 5/10. The operator should select the ratio within this range which provides the desired performance.
- f The power dissipation at grid No.2 should not exceed one watt, a condition normally met when the tube is operated at the specified maximum grid-No.2 rating and when the specified peak target current rating is not exceeded. However, if the vidicon is operated continuously with grid-No.1 voltage near or approaching zero bias, grid-No.2 voltage should not exceed 350 volts dc maximum.

R{(В/Л|

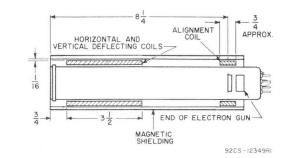
- 9 Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.
- h For condition where "white light" is uniformly diffused over entire tube face.
- With no blanking voltage on grid No.1.
- Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 MHz and a peak signal-output current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight videosignal current to rms noise current, multiplied by a factor of 3.
- ⁿ For initial signal-output current of 0.2 microampere and a dark current of 0.02 microampere.
- P Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- 9 The target voltage for each vidicon must be adjusted to that value which gives the desired operating dark current.
- ^r The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.
- ^S Defined as the component of the highlight target current after the dark-current component has been subtracted.
- t This typical capability may be limited by conditions external to the tube such as test pattern material, optics and/or yoke.

DIRECTION OF LIGHT: INTO FACE END OF TUBE

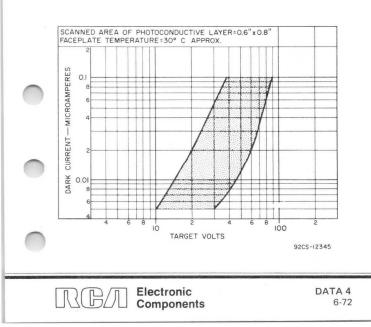

8MD

Pin 1: Heater Pin 2: Grid No.1 Pin 3: Grid No.4 Pin 4: Grids No.3 & No.6 Pin 5: Grid No.5 Pin 6: Grid No.2 Pin 7: Cathode Pin 8: Heater Flange: Target Short Index Pin: Internal Connection —

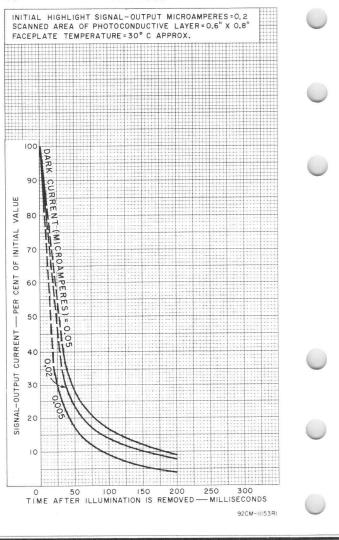
Make No Connection


Electronic Components

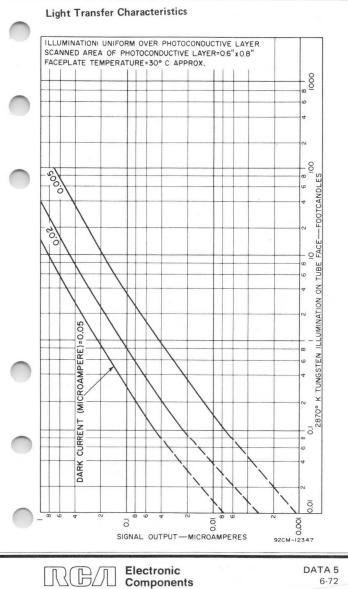
B/I



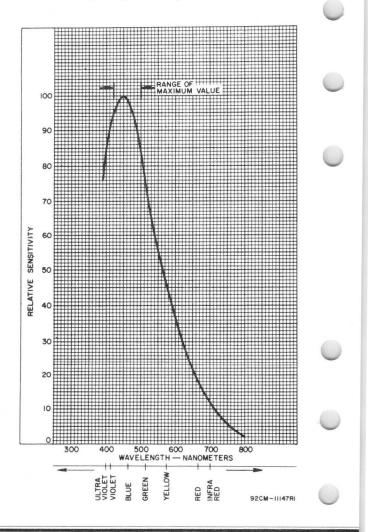
- Note 1 Straight sides of masked portions are parallel to the plane passing through tube axis and short index pin.
- Note 2 Within this area the minimum bulb diameter dimension does not apply.
- Note 3 Faceplate thickness is $0.135'' \pm 0.005''$.


Electronic Components Recommended Location of Deflecting Yoke and Alignment Coil to obtain Optimum Geometry and Optimum Output Signal Uniformity

Typical Range of Dark Current


Typical Persistence Characterisitcs

Electronic Components


RB/A

DATA 4

6-72

Typical RCA Type I Spectral Response

Electronic Components

DATA 5

Vidicon

1-Inch Digmeter

3	1-Inch Diameter		
	Magnetic Focus Magnetic Deflection		
	High-Resolution Type Having High Sensitivity and Low Lag		
	For Live Scene and Film Pickup in Black-and-White		
	and Color TV Cameras		
	The 8507A is unilaterally interchangeable with the 8507		
	GENERAL		
	Heater, for Unipotential Cathode:		
	Voltage (AC or DC) $\dots \dots		
	Current at 6.3 volts $\dots \dots		
	Direct Interelectrode Capacitance: ^a		
	Target to all other electrodes 4.6 pF		
	Spectral Response See Typical Spectral Sensitivity		
1	Photoconductive Layer: Characteristic		
	Maximum useful diagonal of		
	rectangular image (4 x 3		
	aspect ratio) 0.62 in		
	Orientation of quality rectangle—Proper orientation is ob-		
	tained when the horizontal scan is essentially parallel to		
	the straight sides of the masked portions of the face-		
	plate. The straight sides are parallel to the plane passing		
	through the tube axis and short index pin. The masking is for orientation only and does not define the proper scanned		
	area of the photoconductive layer.		
	Focusing Method Magnetic		
	Deflection Method Magnetic		
	Overall Length 6.250"±0.125"		
	Greatest Diameter 1.125"±0.010"		
	Bulb		
	Base Small-Button Ditetrar 8-Pin,		
2	(JEDEC No.E8-11)		
	Socket Cinch ^b No.54A18088, or equivalent		
Deflecting Yoke-Focusing Coil-			
	Alignment Coil Assembly Cleveland Electronics ^{c,d}		
	No.VYFA-355-2, or equivalent		
5	Operating Position Any		
7	Weight (Approx.)		
	ABSOLUTE-MAXIMUM RATINGS		
	For scanned area of $1/2'' \ge 3/8''$		
	Grid-No.4 Voltage		
	Grid-No.3 Voltage [†] 1000 max. V		
	Grid-No.2 Voltage 350 max. V		
7	Grid-No.1 Voltage:		
	Negative bias value 150 max. V		
	Positive bias value 0 max. V		

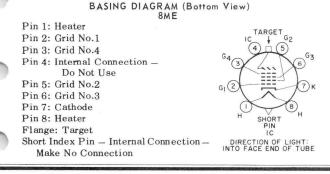
RBA Electronic Components

8507A

Peak Heater-Cathode Volta	ge:			
Heater negative with		1.0.5		
respect to cathode .		125 n	nax. V	-
Heater positive with respect to cathode .		10 -	nax. V	
Target Voltage				
Dark Current				
Peak Target Current ⁹		0.25 n		
Faceplate:				6.4
Illumination ^h		5000 n	nax. fc	
Temperature			0	
TYPICAL OPERATION		REORMANCE	DATA	
			DATA	
For scanned				
		of 30° to 35° C		
and Standard	Low-	High-		
	Voltage	Voltage		
	Mode	Mode		
Grid-No.4 (Decelerator)	Moue	Mode		
Voltage ^f	500	900	v	
Grid-No.3 (Beam-Focus				
Electrode) Voltage [†]	300	540	V	
Grid-No.2 (Accelerator)				
Voltage	300	300	V	
Grid-No.1 Voltage for				
Picture Cutoff ¹	-65 to	-65 to	V	
	-100	-100		
Average "Gamma" of				
Transfer Characteristic				
for signal-output current				
between $0.02\mu A$ and				
0.2 μΑ	0.65	0.65		
Visual Equivalent Signal-				
to-Noise Ratio (Approx.) ^k	000.1	200.1		
Lag – Per Cent of Initial	300:1	300:1		
Value of Signal-Output				
Current 1/20 Second				
After Illumination is				•
Removed ^m	20	20	%	
Minimum Peak-to-Peak	20	20	70	
Blanking Voltage:				
When applied to grid				
No.1	75	75	V	
When applied to				
cathode	20	20	V	
E Electro			DATA	1

RBA Electronic Components

DATA 1


		8	507A
0	Limiting Resolution: At center of picture 1000 At corner of picture 600 Amplitude Response to a 400 TV Line Square – Wave Test Pattern at Center of Picture ⁿ 50 Field Strength at Center of Focusing Coil ^P 40±4 Peak Deflecting-Coil	$1100 \\ 700 \\ 60 \\ 58 \pm 4$	TV lines TV lines % G
•	Current: Horizontal	250 45 0 to 4	mA mA
	High-Sensitivity (0.1 Footcandle on Faceplate Illumination (Highlight) Target Voltage ^{r, s} Dark Current [†] Signal-Output Current: ^u Typical	Faceplate 0.1 30 to 60 0.10	fc V μΑ μΑ
•	Average-Sensitivity 1.0 Footcandle or Faceplate Illumination (Highlight)	a Faceplate	fc V μΑ μΑ fc V μΑ μΑ
н с Катану се н	RBA Electronic Components	and a second	DATA 2 1-68

8507A

- ^a This capacitance, which effectively is the output impedance of the 8507A, is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohms.
- ^b Made by Cinch Manufacturing Corporation, 1026 S. Homan Avenue, Chicago 24, Illinois.
- ^c Made by Cleveland Electronics Inc., 2000 Highland Road, Twinsburg, Ohio 44087
- ^d These components are chosen to provide tube operation with minimum beam-landing error when mounted in the recommended position along the tube axis.
- ^f Grid-No.4 voltage must always be greater than grid-No.3 voltage. The maximum voltage difference between these electrodes, however, should not exceed 600 volts. The recommended ratio of grid-No.3 to grid-No.4 voltage is 6/10 to 5/10; best geometry being provided when the ratio is 6/10, and most uniform signal output when the ratio is 5/10. The operator should select the ratio within this range which provides the desired performance.
- ^g Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.
- h For conditions where "white light" is uniformly diffused over entire tube face.
- i With no blanking voltage on grid No.1.
- k Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 MHz and a peak signaloutput current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3.
- ^m For initial signal-output current of 0.3 microampere and a dark current of 0.02 microampere.
- ⁿ Amplitude response is the signal amplitude from a given TV line number (fine picture detail) expressed as a per cent of the signal amplitude from a very-low-frequency (large-

area) picture element. In practice, the large-detail reference is usually 15 TV lines with signal amplitude set equal to 100 per cent. The TV line numbers are determined by the number of equal-width black and white lines that will fit into the physical height of the image focused on the cameratube faceplate.

- **P** The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- **q** The alignment coil should be located on the tube so that its center is at a distance of 3-11/16 inches from the face of the tube, and be positioned so that its axis is coincident with the axis of the tube, the deflecting yoke, and the focusing coil.
- ^r The target voltage for each 8507A must be adjusted to that value which gives the desired operating dark current.
- ⁵ Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- [†] The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.
- ^v Defined as the component of the highlight target current after the dark-current component has been subtracted.

Electronic Components DATA 3 1-68 8507A

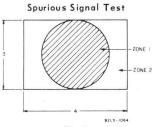


Fig.1

This test is performed using a uniformly diffused white test pattern that is separated into two zones as shown in *Fig.1*. The 8507A is operated under the conditions specified under *Typical Operation and Performance Data* with the lens adjusted to provide a target current of 0.3 microampere. The tubes are adjusted to provide maximum picture resolution. Spurious signals are evaluated by size which is represented by equivalent numbers of raster lines in a 525 TV line system. Allowable spot size for each zone is shown in Table 1. To be classified as a spot, a contrast ratio of 1.5:1 must exist for white spots and 2:1 for black spots. Smudges, streaks, or mottled and grainy background must have a contrast ratio of 1.5:1 to constitute a reject item.

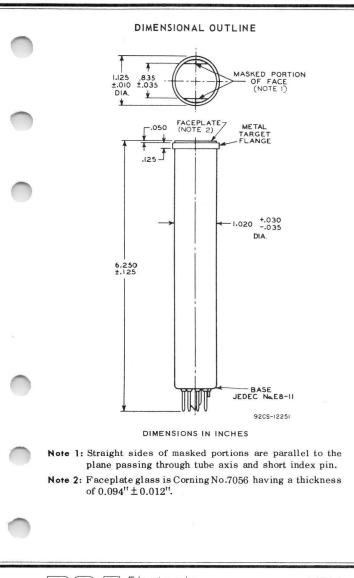
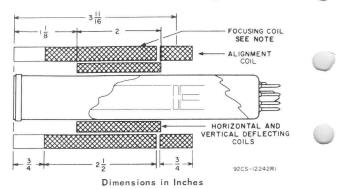
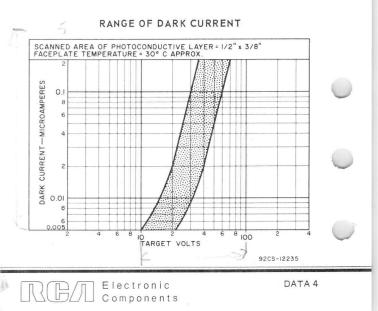

Equivalent Number of Raster Lines	Zone 1 Allowed Spots	Zone 2 Allowed Spots
over 4	0	0
4 but not including 3	0	1
3 but not including 1	2	3
1 or less		

	Table	1		
For scan	ied area	of	1/2"	x 3/8"

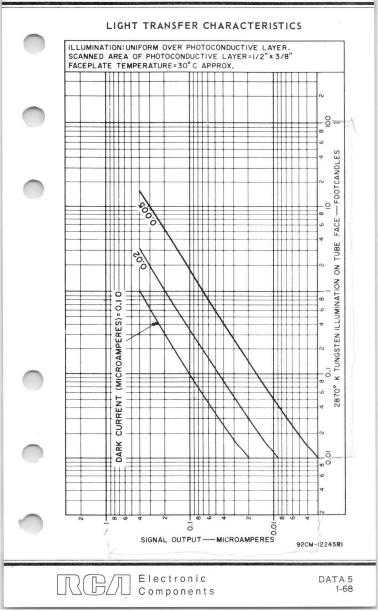
Minimum separation between any 2 spots greater than 1 raster line is limited to 16 raster lines.

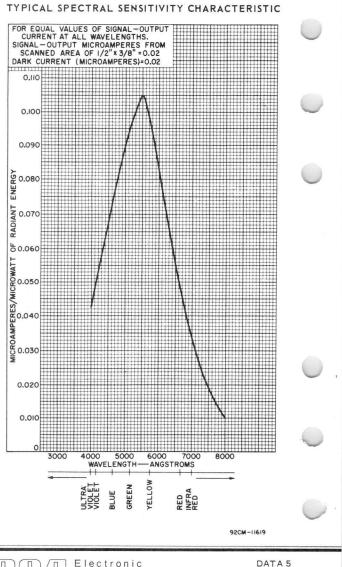

Spots of this size are allowed unless concentration causes a smudged appearance.

8507A

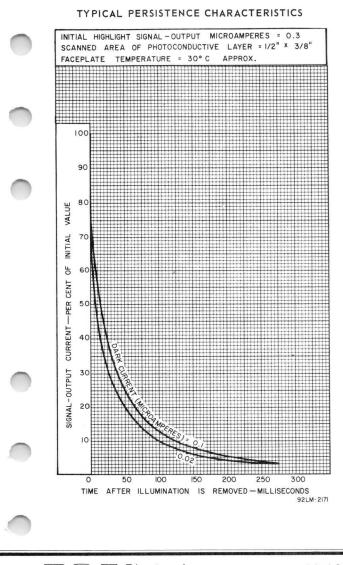


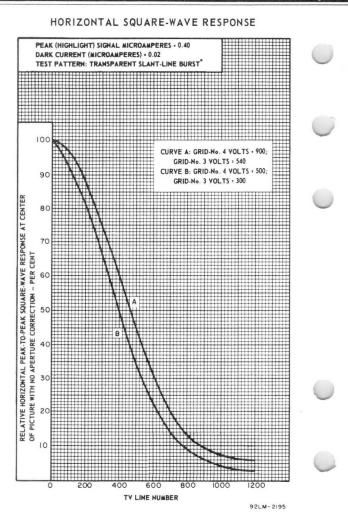
RECOMMENDED LOCATION AND LENGTH OF DEFLECT-ING, FOCUSING, AND ALIGNMENT COMPONENTS


To obtain minimum beam-landing error



Note: Cross-hatching indicates wound portion of focusing coil.


8507A



Components

8507A

RBA Electronic Components DATA 6 1-68

*Amplitude response measured using the RCA P200 slant-line burst pattern with horizontal center response balanced on the 400 line chevrons.

> Electronic Components

DATA 6

Vidicon

MAGNETIC FOCUS

I-1/2" Diameter MAGNETIC DEFLECTION

For Black-and-White Pickup in Industrial Closed-Circuit TV Systems Requiring Limiting Resolutions of more than 1200 TV Lines

General:

delleral.
Heater, for Unipotential Cathode: Voltage (AC or DC)
Pin 1 - Heater Pin 2 - Grid No.1 Pin 3 - Do Not Use Pin 4 - Grid No.4 Pin 5 - Grid No.2 Pin 6 - Grid No.3 Pin 7 - Cathode Pin 8 - Heater Flange - Target Short Index Pin - Do Not Use DIRECTION OF LIGHT:
INTO FACE END OF TUBE
Maximum Ratings, Absolute-Maximum Values:
For scanned area of 0.6" x 0.8"
Grid-No.4 Voltage

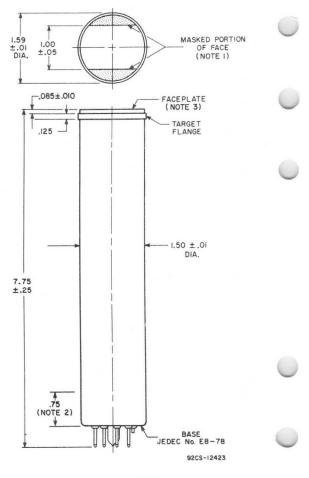
RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA I 6-64

Grid-No.1 Voltage: Negative-bias value	volts volts volts volts volts μa μa fc oc	•
Typical Operation:		
For scanned area of 0.6" x 0.8" and faceplate temperature of 28° to 34° C		
Grid-No.4 (Decelerator) Voltage ⁹ 1400 Grid-No.3 (Beam-Focus Electrode ^h) 800 to 1000 Grid-No.2 (Accelerator) Voltage 300 Grid-No.1 Voltage for	volts	
<pre>picture cutoffJ</pre>	VUILS	
0.02 μa and 0.6 μa 0.65 Minimum Peak-to-Peak Blanking Voltage:		
When applied to grid No.1	volts volts	
Maximum value	% %	
Typical value	lines lines	
Typical value	lines	0
Minimum value	%	
Field Strength at Center of Focusing Coil (Approx.)	gauss	
Field Strength of Adjustable Alignment Coil ^m 0 to 4 Peak Deflecting-Coil Current for Specified Deflections Value:	gauss	2
Specified Deflecting Yoke: Horizontal	ma ma	
Maximum-Sensitivity Operation- 0.1 Footcandle on Faceplate		0
Faceplate Illumination (Highlight)0.1	tc	<u> </u>

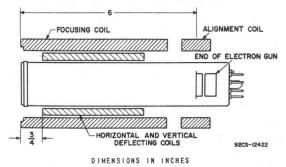
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.



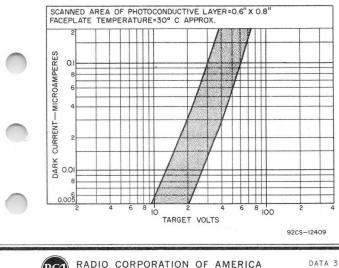
Target Voltage ^{n, p} Dark Current ^a Signal-Output Current: ^r	30 to 60 0.1	volts µa
Typical	0.2	μa
Average-Sensitivity Operation— 1.0 Footcandle on Faceplate		
Faceplate Illumination		
(Highlight)	1.0	fc
Target Voltage ^{n, p}	17 to 35	volts
Dark Current [¶] Signal-Output Current: ^r	0.02	μa
Typical	0.20	щa
Minimum	0.15	1
minimume	0.10	μa
High-Light Level Operation-		
10 Footcandles on Faceplate		
Faceplate Illumination		
(Highlight)	10	fc
Target Voltage ^{n, p}	10 to 20	volts
Dark Current [¶]	0.005	μa
Signal-Output Current:"		1
Typical	0.3	μa
THE PERSON AND A CALLER AND A CALLER A CALLER AND A CALLER AND AND A CALLER AND	-	1

- a This capacitance, which effectively is the output impedance of the 8521, is increased when the tube is mounted in the deflecting-yoke and focusing-alignment assembly. The resistive component of the output impedance is in the order of 100 megohms.
- Is in the order of two megonmo. b proper orientation of quality rectangle is obtained when the horizontal scan is essentially parallel to the plane passing through the axis and short index pin. The masking is for orientation only and does not define the proper scanned area of photoconductive layer. Final orientation should be such that the image also fits inside of any internal mask of the mesh assembly.
- C Cleveland Electronics Inc., 1974 East 61st St., Cleveland, Ohio. d For minimum geometric distortion, the deflecting yoke should be located in its proper axial position 3/4-inch from the face of the tube.
- e Alden Products Co., 9140 North Main Street, Brockton 64, Mass.
- f video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.
- 9 Grid-No.4 voltage must always be greater than grid-No.3 voltage. For minimum "porthole" effect, grid-No.4 voltage should be adjusted to approximately 1.6 times the grid-No.3 voltage value, and the focusingalignment assembly and deflecting yoke positioned as shown in accompanying diagram.
- h Beam focus is obtained by the combined effect of grid-No.3 voltage, which should be adjustable over indicated range, and a focusing coil having an average field strength of 4k gauss.
- J With no blanking voltage on grid No.1.
- ${\bf k}$ For initial signal-output current of 0.2 μa and a dark current of 0.02 μa
- The alignment coil should be located on the tube so that its center is at a distance of 6 inches from the face of the tube, and be positioned so that its axis is coincident with the axis of the tube, the deflecting yoke, and the focusing coil.
- Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- P The target voltage for each 8521 must be adjusted to that value which gives the desired operating dark current.
- The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a blacklevel error in direct proportion to the change in scanning velocity.
- Pefined as the component of the highlight target current after the darkcurrent component has been subtracted.

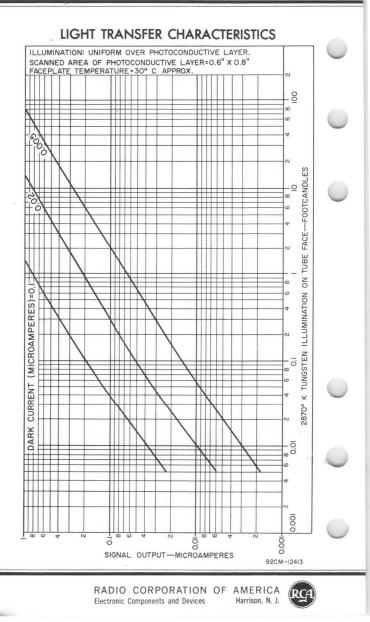
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 6-64

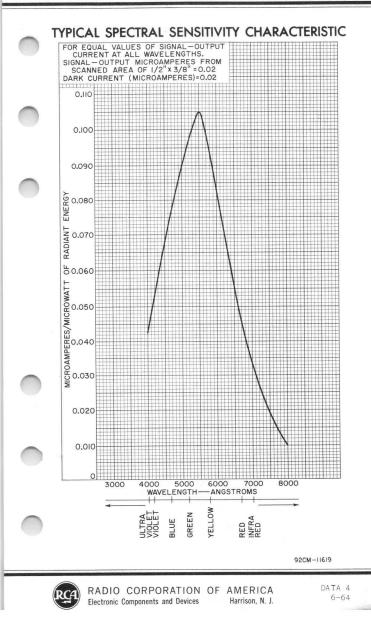

DIMENSIONS IN INCHES

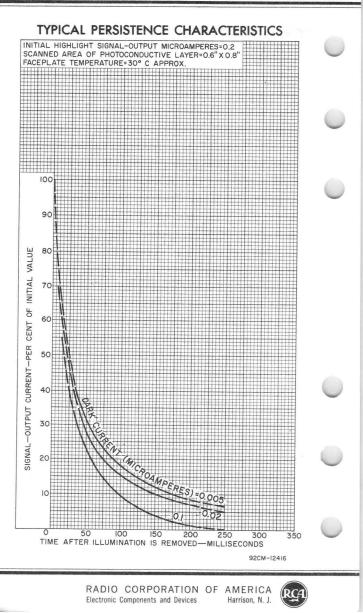
Note 1: Straight sides of masked portions are parallel to the plane passing through tube axis and short index pin. Note 2: Within this area the minimum bulb diameter dimension does not apply. Note 3: Faceplate thickness is 0.135" ± 0.005".

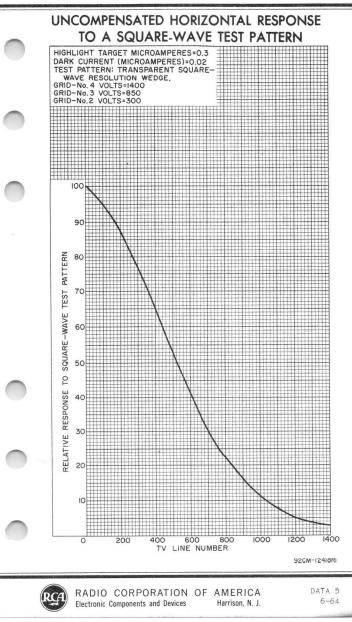

> RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

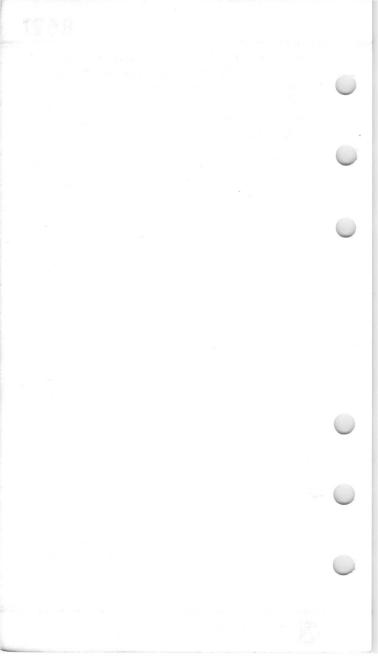
COMPONENT LOCATIONS


RANGE OF DARK CURRENT




Electronic Components and Devices


6-64


Harrison, N. J.

Vidicons

- High Resolution 1100 TV Lines (Typical at 900 Volts)
- High Amplitude Response 60% (Typical at 900 Volts)
- Separate Mesh Connection
- High Signal Output 200 Nanoamperes 1 Footcandle on Tube Face and Target Voltage of 30 Volts (Typical)
- Low Lag 20% of Initial Signal Output After 50 Milliseconds
- 0.6 Watt "Dark Heater"

General Data

Heater, for Unipotential Cathode:

Voltage (AC or DC)	6.3	± 10% V
Current at 6.3 volts		. 0.1 A
Direct Interelectrode Capacitance: ^a		
Target to all other electrodes		. 4.6 pF
Spectral Response		See Figure 5

Photoconductive Layer:

Maximum useful diagonal of rectangular

image 0.63 in (16 mm)

Orientation of quality rectangle - Proper orientation is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short index pin. The masking is for orientation only and does not define the proper scanned area of the photoconductive layer.

Focusing Method Magnetic
Deflection Method Magnetic
Dimensions See Dimensional Outline
Bulb T8
Base
Socket Cinch ^b 8VT (133-98-11-015), or equivalent
Deflecting Yoke-Focusing Coil- Alignment Coil Assembly No.VYFA-355-2, or equivalent
Operating Position Any
Weight (Approx.) 2 oz (56.6 g)

Electronic

Components

DATA 1 11-72

Maximum Ratings, Absolute-Maximum Valuese	
For scanned area of 1/2" x 3/8" (12.8 x 9.6 mm ²)	
Grid-No.4 Voltage ^f	V
Grid-No.3 Voltage ^f 1000	V
Grid-No.2 Voltage 750	V
Grid-No.2 Dissipation 1	W
Grid-No.1 Voltage:	
Negative bias value	V
Positive bias value 0	V
Peak Heater-Cathode Voltage:	
Heater negative with respect to cathode 125	V
Heater positive with respect to cathode 10	V
Target Voltage 100	V
Dark Current	nA
Peak Target Current ^g 750	nA
Faceplate:	
Illumination ^h 50,000	Ix
Illumination ^h	fc
Temperature 71	oC

Typical Operation and Performance Data

For scanned area of 1/2'' \times 3/8'' (12.8 \times 9.6 mm²) Faceplate temperature of 30° to 35° C and Standard TV Scanning Rate in VYFA-355-2 Coil Assembly

	Low Voltage Mode	High Voltage Mode		
Grid-No.4 (Decelerator) Voltage ^f	500	900	V	
Grid-No.3 (Beam-Focus Electrode) Voltage ^f	300	540	V	
Grid-No.2 (Accelerator) Voltage	300	300	V	
Field Strength at Center of Focusing CoilP	40±4	58±4	G	
Peak Deflecting-Coil Current:				
Horizontal	350	480	mA	
Vertical	20	28	mA	

Electronic Components

RBA

DATA 1

	Low Voltage Mode	High Voltage Mode	
Field Strength of Adjustable Alignment Coil9	. 0 to 4	0 to 4	G
Minimum Peak-to-Peak Blanking Voltage:			
When applied to grid No.1	. 75	75	V
When applied to cathode	. 20	20	V
Grid-No.1 Voltage for Picture Cutoff ¹ :			
8541A	-65 to -100	-65 to -100	V
8541	-40 to -100	-40 to -100	V
Average "Gamma" of Transfer Characteristic for Signal-Output Current Between 20 nA and 200 nA	0.65	0.65	
Lag-Per Cent of Initial Value of Signal-Output Current 1/20 Second After Illumination is Removed ^m :			
Typical	20	20	%
Maximum:			
8541A	25	25	%
8541	30	30	%
Limiting Resolution:			
At center of picture (Typ.)	1000	1100	TV lines
At center of picture (Min.)	950	-	TV lines
At corner of picture (Typ.)	600	700	TV lines
Amplitude Response to a 400 TV Line Square-Wave Test Pattern at Center of Picture ⁿ :			
Typical	50	60	%
Minimum:			
8541A	45	_	
8541	35	-	

Electronic Components

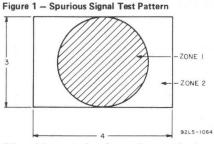
RB/A

Sensitivity:	-
See "Light Transfer Characteristics" (Figure 7)	
Performance Tests:	
Test conditions	t
Limit values:	
Min. Max.	
Target voltage:	
8541A 20 40 V	ĺ
8541 10 70 V	
Signal current:	
8541A 150 – nA	
8541 nA	
^a This capacitance, which effectively is the output impedance of the tube, is increased when the tube is mounted in the deflect- ing-yoke and focusing-coil assembly. The resistive component of	

b Made by Cinch Manufacturing Corporation, 1501 Morse Ave., Elk Grove Village, IL 60007.

the output impedance is in the order of 100 megohms.

- c Made by Cleveland Electronics Inc., 14500 Darley Rd., Cleveland, OH 44110.
- d These components are chosen to provide tube operation with minimum beam-landing error when mounted in the recommended position along the tube axis as shown in Figure 2.
- e A description of the Absolute-Maximum Rating is given in the General Section, titled Rating Systems for Electron Tubes.
- f Grid-No.4 voltage must always be greater than grid-No.3 voltage. The maximum voltage difference between these electrodes, however, should not exceed 600 volts. The recommended ratio of grid-No.3 to grid-No.4 voltage is 6/10 to 5/10; best geometry being provided when the ratio is 6/10, and most uniform signal output when the ratio is 5/10. The operator should select the ratio within this range which provides the desired performance.
- 9 Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.
- h For conditions where "white light" is uniformly diffused over entire tube face.
- With no blanking voltage on grid No.1.


BA Electronic Components

- m For initial signal-output current of 300 nanoamperes and a dark current of 20 nanoamperes.
- Amplitude response is the signal amplitude from a given TV line number (fine picture detail) expressed as a per cent of the signal amplitude from a very-low-frequency (large-area) picture element. In practice, the large-detail reference is usually 15 TV lines with signal amplitude set equal to 100 per cent. The TV line numbers are determined by the number of equal-width black and white lines that will fit into the physical height of the image focused on the camera-tube faceplate.
- P The polarity of the focusing coil should be such that a northseeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- 9 The alignment coil should be located on the tube so that its center is at a distance of 3-11/16 inches from the face of the tube, and be positioned so that its axis is coincident with the axis of the tube, the deflecting yoke, and the focusing coil.
- The target voltage for each tube must be adjusted to that value which gives the desired operating dark current.
- Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- t The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.
- ^U Defined as the component of the highlight target current after the dark-current component has been subtracted.

Spurious Signal

This test is performed using a uniformly diffused white test pattern that is separated into two zones as shown in **Figure 1**. The tubes are operated under the conditions specified under Typical Operation and Performance Data and the lens adjusted to provide a target current of 300 nanoamperes. The tubes are adjusted to provide maximum picture resolution. Spurious signals are evaluated by size which is represented by equivalent numbers of raster lines in a 525 TV line system.

RBA Electronic Components

Allowable spot size for each zone is shown in Table I for the 8541A and Table II for the 8541. To be classified as a spot, a contrast ratio of 1.5:1 must exist for white spots and 2:1 for black spots. Smudges, streaks, or mottled and grainy background must have a contrast ratio of 1.5:1 to constitute a reject item. Minimum separation between any 2 spots greater than 1 raster line is limited to 16 raster lines.

Table I – 8541A

For scanned area of 1/2" x 3/8" (12.8 mm x 9.6 mm)

Blemish Size (Equivalent Number of Raster Lines)	Zone 1 Allowed Spots	Zone 2 Allowed Spots
over 4	0	0
over 3	0	1
over 1	2	4
1 or less	-	-

Table II - 8541

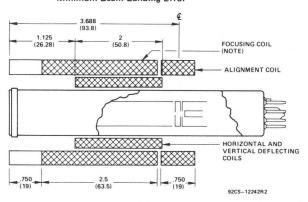
日/

For scanned area of 1/2" x 3/8" (12.8 mm x 9.6 mm)

Blemish Size (Equivalent Number of Raster Lines)	Zone 1 Allowed Spots	Zone 2 Allowed Spots
over 6	0	0
over 4	0	2
over 1	3	6
1 or less		

Spots of this size are allowed unless concentration causes a smudged appearance.

> Electronic Components


DATA 3

Operating Considerations

The target connection is made by a suitable spring contact bearing against the edge of the metal ring at the face end of the tube.

The temperature of the faceplate should not exceed 71° C (160° F), either during operation or storage of these tubes. Operation with a faceplate temperature in the range from about 25° to 35° C (77° to 95° F) is recommended.

Figure 2 – Recommended Location and Length of Deflecting, Focusing, and Alignment Components to Obtain Minimum Beam-Landing Error

Note: Cross-hatching indicates wound portion of focusing coil.

Provisions should also be made in the camera installation to hold the faceplate temperature at a steady value within the recommended range. Dark current increases with increasing temperature. It is highly desirable to operate the tube at a steady temperature to maintain dark current at a preselected value. This mode of operation insures both optimum and stable day-to-day performance. If such provisions cannot be made, changes in target voltage may be required from time to time to maintain the desired picture quality.

RBA Electronic Components

As target voltage is increased, dark current also increases. The range of target voltage for various dark current levels of different tubes is shown in **Figure 3**. It should be noted that the range of target voltage to produce a given dark current, and therefore a given sensitivity is very narrow for these tubes. Individual tubes will therefore have substantially identical performance characteristics when operated with an identical value of dark current. For proper adjustment of the target voltage on each tube see Set-Up Procedure.

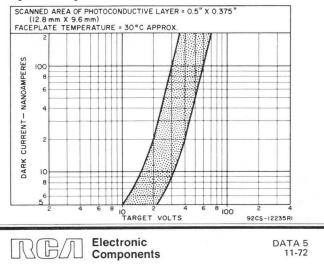
Persistence or lag of the photoconductive layer is given in **Figure 4** for two values of dark current. Each curve shows the decay in signal-output current from an initial value of 300 nanoamperes after the illumination is cut off.

The spectral response of the 8541 and 8541A is shown in Figure 5.

As shown in Figure 6, a substantial increase in both limiting resolution and amplitude response of the tubes may be obtained by increasing the operating voltages of grid No.4 and grid No.3. The focusing-coil field strength must be increased and more deflecting power is required at higher electrode voltages as indicated under Typical Operation and Performance Data. Very little additional beam-landing error is introduced at the higher voltages provided the recommended operating voltages are used and the associated components are positioned as shown in Figure 2.

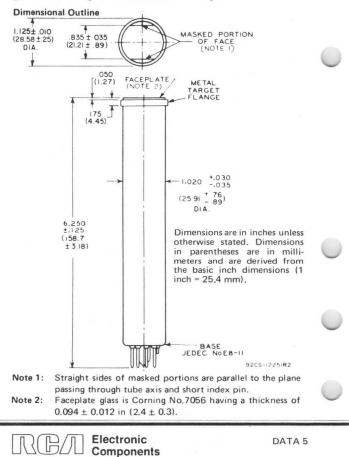
The power dissipation at grid No.2 should not exceed one watt, a condition normally met when the tube is operated at the specified maximum grid-No.2 rating and when the specified peak target current rating is not exceeded. However, if the tubes are operated continuously with grid-No.1 voltage near or approaching zero bias, grid-No.2 voltage should not exceed 350 volts dc maximum.

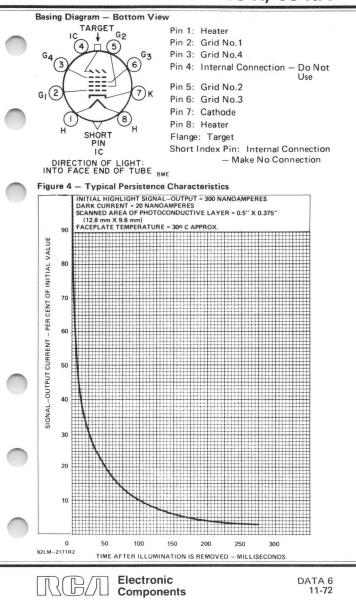
Signal-Output and Light Transfer Characteristics

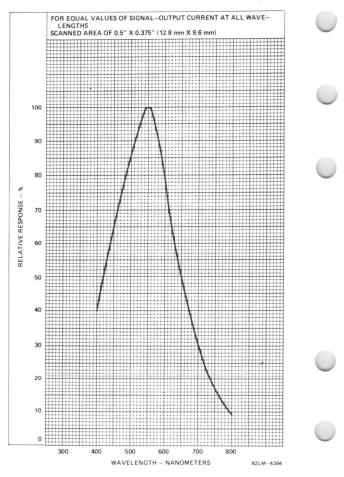

Typical signal output as a function of uniform 2854° K tungsten illumination on the photoconductive layer for different values of dark current is shown in **Figure 7**.

BA Electronic Components The average "gamma", or slope, of the light transfer characteristic curves shown in **Figure 7** is approximately 0.65. This value is relatively constant over an adjustment range of 4 to 1 in target voltage, or 50 to 1 in dark current, for a signal-output current range between 10 and 300 nanoampere.

Uniformity of the photoconductive layer of the tubes is excellent. When operated with the recommended focus and deflection components, signal output over the entire picture area is also very uniform. When other components are employed, beam-landing errors at the target may contribute to poor signal uniformity or "shading" characteristics in the generated picture. In such instances, compensation for the beam-landing errors to achieve uniform sensitivity can be obtained by supplying a modulating voltage of a suitable waveform to the cathode of the 8541 and 8541A. The desired waveform is parabolic in shape and of such a polarity that the cathode voltage is lowered as the beam approaches the edges of the scanned area.


Proper-size scanning of the photoconductive target area should always be used. Both overscanning and underscanning impair performance.




Failure of scanning even for a few seconds may permanently damage the photoconductive layer. The damaged area shows up as a spot or line in the picture during subsequent operation. To avoid damage during scanning failure, it is necessary to prevent the scanning beam from reaching the layer.

The scanning beam can conveniently be prevented from reaching the layer by increasing the grid-No.1 voltage to cutoff, biasing the target negatively, or removing grid-No.4, grid-No.3, and grid-No.2 electrode voltages.

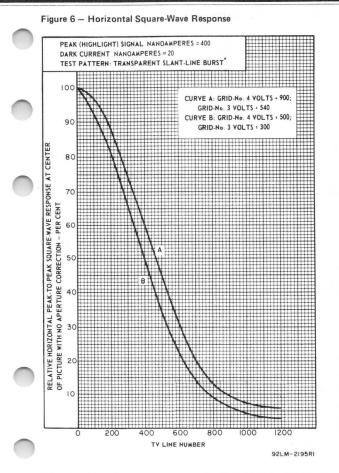
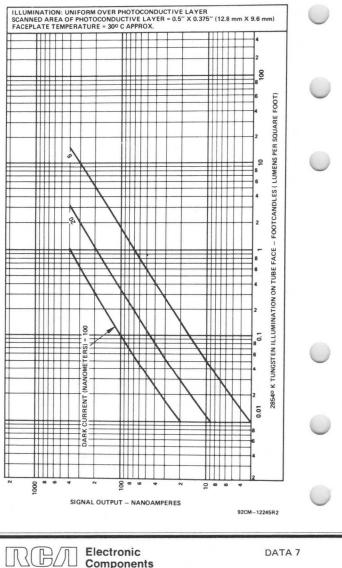


Figure 5 - Typical Spectral Response

CB/ Electronic Components


DATA 6

*Amplitude response measured using the RCA-P200 slant-line burst pattern with horizontal center response balanced on the 400 line chevrons.

Electronic Components DATA 7 11-72

Figure 7 - Light Transfer Characteristics

Electronic Components

. {(

DATA 7

Vidicon

LOW-POWER (0.6-WATT)"DARK HEATER" I" DIAMETER PRECISION BULB^a ELECTROSTATIC FOCUS RUGGEDIZED MAGNETIC DEFLECTION For Compact, Lightweight, Transistorized TV Cameras in Industrial and Other Closed-Circuit TV Systems Where Severe Environmental Conditions May be Encountered General: Heater, for Unipotential Cathode: Voltage (AC or DC) 6.3 ± 10% volts 0.095 amn Target to all other electrodes. 5.0 of Spectral Response. See Typical Spectral-Sensitivity Characteristic, shown under Type 8134 Photoconductive Layer: Maximum useful diagonal of rectangular image . . 0.62" Electrostatic Focusina Method. Overall Length 6.25" ± 0.10" Greatest Diameter. 1.125" ± 0.010" Any Operating Position 2.8 oz Deflecting-Alignment Assembly. . . . Cleveland Electronics^d No.VYA-300, or equivalent Socket Cinch^e No.133-98-11-015, or equivalent Base Small-Button Ditetrar 8-Pin (JEDEC No.E8-11) Basing Designation for BOTTOM VIEW 8LN TARGET Pin 1-Heater G3 G2 Pin 2-Grid No.1 5 Pin 3-Grid No.4 G5 Pin 4-Grid No.3 6 & No. 6 Pin 5-Grid No.2 G1(2 7 Pin 6-Grid No.5 Pin 7 - Cathode Pin 8-Heater SHORT Flange-Target PIN Short Pin-Do Not Use IC DIRECTION OF LIGHT: INTO FACE END OF TUBE Maximum Ratings, Absolute-Maximum Values: For scanned area of 1/2" x 3/8" Grid-No.6 & Grid No.3 Voltage^f . . volts Grid-No.5 Voltage^f volts Grid-No.4 Voltage. 300 volts . . volts Grid-No.2 Voltage. ÷ DATA I

RADIO CORPORATION OF AMERICA

Harrison, N. J.

4-65

Electronic Components and Devices

8567

Grid-No.1 Volta																	
Negative-bias	5 1	al	ue	2.											300	volts	
Positive-bias	S V	/al	UE	Э.								21			0	volts	- 20
Peak Heater-Cat	the	de	1	10	ta	ag	е:										
Heater negati	Ve	e v	/it	th	re	es	pe	ct	t	0	ca	the	bc	e.	125	volts	-
Heater positi	VE	e w	it	th	re	es	Der	ct	t	0	ca	the	od	е.	10	volts	
Target Voltage															100	volts	
Dark Current .		•		2				8		•		×.				μa	
Peak Target Cur	re	ent	g	8								×			0.6	μa	
Faceplate:																	
Illumination				ž.				×.	÷			2			1000	fc °C	- 6
Temperature.				8				÷							71	°C	-

Typical Operation and Performance Data:

For scanned area of 1/2" x 3/8" and faceplate temperature of 30° to 35° C and standard TV scanning rate

	Low- Voltage	Inter- mediate- Voltage	High- Voltage		C
Grid-No.6 (Decelerator) & Grid-No.3 Voltage Grid-No.5 Voltage Grid-No.4 (Beam-Focus Electrode) Voltage	300 180 20 to 60	500 300 50 to 100	750 450 90 to 150	volts volts volts	
Grid-No.2 (Accelerator) Voltage Grid-No.1 Voltage for picture cutoffh Typical Electrode Currents:	300 -45 to -100	300 -45 to -100	300 -45 to -100	volts volts	
Grid No.6 & 3 Grid No.5 Grid No.4 Grid No.2 Lag	1.7 0.05 0.0015 375	2.5 0.20 0.006 450	3 0.30 0.008 500	μа μа μа	
Maximum value Typical value Average "Gamma" of Transfer Characteristic for	20 15	20 15	20 15	% %	C
signal-output current between 0.02 & 0.2 μa Minimum Peak-to-Peak Blanking Voltage:	0.65	-	-		
Applied to grid-No.1 Applied to cathode	75 20	_	_	volts volts	0
Limiting Resolution at picture center Amplitude Response to a 400 TV Line Square Wave	600	700	750	TV lines	
Test Pattern at picture center Field Strength of	20	25	30	%	
Adjustable Alignment Coil ^k	0 to 1	0 to 1	0 to 1	gauss	

DATA I

Average-Sensitivity Operation

Under typical operating conditions specified for either low- or high-voltage operation

Faceplate Illumination	()	Hi	gh	11	gh	t)				1	fc
Target Voltage ^{m, n}											volts
Dark Current ^P										0.02	μa
Signal-Output Current ^q							•		•	0.2	μa

High-Sensitivity Operation

Under typical operating conditions specified for either low- or high-voltage operation^r

Faceplate Illumination	()	Hi	gh	lig	gh	t)			0.1	fc
Target Voltage ^{m, n}										volts
Dark Current ^p									0.10	μa
Signal-Output Current ^q									0.10	μa

^a The precision outer-diameter bulb permits the use of low-power, closefitting deflecting yokes of small size and low impedance.

b This capacitance, which effectively is the output impedance of the 8567 is increased when the tube is mounted in the deflecting-yoke assembly. The resistive component of the output impedance is in order of 100 megohms.

C Proper orientation of quality rectangle is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short pin.

d Cleveland Electronics Incorporated, 1974 East 61st Street, Cleveland Ohio. This component is not designed to withstand severe environmental conditions. It is recommended that custom components be used in such service.

- e Cinch Manufacturing Corporation, 1026 South Homan Avenue, Chicago 24, Illinois.
- [†] The maximum voltage difference between grids No.6 & 3 and No.5 should not exceed 500 volts.
- 9 Video amplifiers must be designed properly to handle peak target currents of this magnitude to avoid amplifier overload or picture distortion.
- h With no blanking voltage on grid No.1.
- j Defined as the per cent of initial value of signal-output current 1/20 second after illumination is removed. Values shown are for initial signal-output current of 0.2 microampere and a dark current of 0.02 microampere.
- B The alignment coil should be located on the tube so that its center is at a distance of 4-15/16 inches from the face of the tube, and be positioned so that its axis is coincident with the axis of the tube and the deflecting yoke.
- Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- ⁿ The target voltage for each 8567 must be adjusted to that value which gives the desired operating dark current.
- P The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark current signal is proportional to the scanning velocity. Any change in scanning velocity produces a blacklevel error in direct proportion to the change in scanning velocity.
- 9 Defined as the component of the highlight target current after the dark-current component has been subtracted.
- r Operation at this higher sensitivity level will result in a decrease in the resolution capability of the 8567.

ENVIRONMENTAL TESTS

The 8567 is designed to withstand the following operational and non-operational environmental tests.

OPERATIONAL TESTS

Rejection Criteria

Tubes are operated as specified under *Typical Operation*, Low-Voltage Operation. Throughout these tests, the amplitude of any generated spurious signals must not exceed 80 per cent of the maximum white-signal value and the tube must provide a resolution of at least 200 TV lines.

Sinusoidal Vibration

These tests are performed on apparatus which applies variable-sinusoidal frequency vibration to the tube. The tube is vibrated in each of three orthogonal axes, one axis being parallel to the major axis of the tube, according to the schedule specified below. A vibration cycle has a duration of 4.5 minutes per axis in which time the frequency is varied from 20 to 1000 and back to 20 cycles per second. One vibration cycle is performed for each axis and the total test period is 13.5 minutes.

Double Ampli- tude	Peak Acceleration	Sweep Frequencies	Sweep Cycle Duration per Axis
inches	g's	cps	minutes
0.250	-	20 to 40)
-	20	40 to 400	
-	Decreased linearly from 20 to 3	400 to 1000	4.5
-	linearly from 3 to 20	1000 to 400	
-	20	400 to 40	
0.250	-	40 to 20)

Random Vibration

The 8567 is also subjected to random vibration having a spectral density of 0.1 g²/cps in a bandwidth of 20 to 1000 cycles per second (10 g's — rms value) for a period of 3 minutes in each of the three orthogonal axes specified above. The total test period for each tube is 9 minutes.

NON-OPERATIONAL TESTS

Rejection Criteria

After completion of these tests, tubes will meet the performance characteristics specified under Typical Operation.

Shock

These tests are performed on apparatus which provides half-wave sinusoidal shock pulses. The 8567 is subjected to three impact shocks in each direction of the three orthogonal axes specified above. The peak acceleration of the impact shock is 30 g's and the time duration is II milliseconds. Each tube is subjected to a total of 18 impact shocks.

DATA 2

Sinusoidal Vibration

These tests are performed on apparatus which applies variable sinusoidal frequency vibration to the tube. The tube is vibrated in each of the three orthogonal axes previously specified. Avibration cycle has a duration of 30 minutes per axis in which time the frequency is varied from 5 to 2000 and back to 5 cycles persecond. One vibration cycle is performed for each axis and the total test period is 90 minutes.

Double Amplitude inches	Peak Accelera- tion g's	Sweep Frequencies cps	Sweep Cycle Duration per Axis minutes
0.250	_	5 to 20	7
-	5	20 to 2000	30
-	5	2000 to 20	
0.250	-	20 to 5]

Random Vibration

The 8567 is also subjected to random vibration having a spectral density of 0.05 g²/cps in a bandwidth of 20 to 2000 cycles per second (10 g's - rms value) for a period of 10 minutes in each of the three orthogonal axes specified above. The total test period for each tube is 30 minutes.

Acoustical Noise

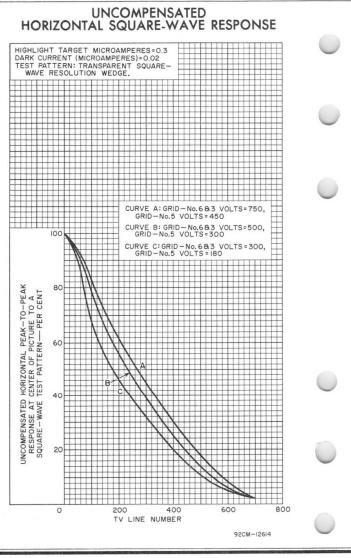
The 8567 is subjected to an overall external noise of 140 db for a period of 5 minutes.

Static Acceleration

The 8567 is subjected to a static acceleration of 20 g's in each of the three orthogonal axes specified above for a period of 5 minutes. The total test period for each tube is 15 minutes.

DIMENSIONAL OUTLINE. RECOMMENDED LOCATION OF DEFLEC-TING YOKE AND ALIGNMENT COIL. DARK-CURRENT RANGE. TYPICAL LIGHT-TRANSFER CHARACTERISTICS, TYPICAL SPECTRAL-SENSITIVITY CHARACTERISTIC, TYPICAL PERSISTENCE CHARACTERISTICS.

and


TYPICAL HORIZONTAL-DEFLECTION-CURRENT-CHARACTERISTIC shown under Type 8134 also apply to the 8567

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

DATA 3 4-65

DATA 3

8571

Photomultiplier Tube^a

S-4 RESPONSE

VERY SMALL, RUGGEDIZED, SIDE-ON, 9-STAGE TYPE TESTED FOR SHOCK, VIBRATION, CONSTANT ACCELERATION, AND TEMPERATURE CYCLING

For Ultra-Compact Systems in Low-Light Detection and Measurement Applications

GENERAL

Spectral Response
Anode-to-dynode No.9 2.5 pF Anode to all other electrodes
Excluding semiflexible leads Length 0.43 ± 0.03 in Bulb top to useful center cathode area
Maximum Diameter 0.53 in Operating Position Any Weight (Approx.) 0.17 oz Bulb T-4 Magnetic Shield T-4 Magnetic Shield See footnote (d) Base See Dimensional Outline and Base Drawing Basing Designation for BOTTOM VIEW 12FZ
Lead $1 - Anode$ Lead $3 - Dynode No.8$ Lead $4 - Dynode No.6$ Lead $5 - Dynode No.6$ Lead $7 - Dynode No.3$ Lead $9 - Dynode No.3$ Lead $10 - Dynode No.3$ Lead $11 - Photocathode$ Lead $12 - Dynode No.9$
MAXIMUM RATINGS, ABSOLUTE-MAXIMUM VALUES DC Supply Voltage Between anode and cathode ^e
Between anode and cathode"

RCA

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA I 7-65 8571

	and the second se			
Average Anode Current ^f Ambient Temperature Lead Temperature	l for 10 sec	20 75 250	ос ос	0
CHARACTERISTICS RAI	NGE VALUES			
Under conditions with dc supply voltage (E viding I/10 of E between cathode and dynod ceeding dynode stage; and I/10 of E betwee	e No.l; 1/10 en dynode No.	of E for each s		0
With $E = 1000$ volts (except as note	(d)			\checkmark
Min	Ty_P	Max		
Sensitivity Radiant, at 4000 angstroms - Cathode Radiant, at	7.3×10 ⁴	-	A/W	
4000 angstroms Luminous, at 0 c/s ^g 20	0.034 75		A/W /1m	
Cathode Luminous ^h 2x10 ⁻⁵ Cathode Quantum Effi-	3.5x10 ⁻⁵	– A	/1m	
ciency at 3800 Ang- stroms (Approx.)	10.5	-	%	
Current Amplification	2.1x10 ⁶	- k		
Equivalent Anode-Dark- Current Input ^j	1×10-10 ^k	5x10-10 m	1 m	
	1×10-13 ^m 1,4×10-9	5.1×10 ^{-13^m}	W	
Anode-Pulse Rise Time ⁿ Electron Transit Time ^p	6×10 ⁻⁹	-	S	
Election fransit fille,	0210	-	5	
With E = 750 volts (except as noted	()			
Min	Тур	Max		
Sensitivity Radiant, at 4000 angstroms	1×10 ⁴	-	A/W	
Cathode Radiant, at 4000 angstroms	0.034	-	A/W	
Luminous, at 0 c/s ^g	10		/1m	
Cathode Luminous ^h 2x10 ⁻⁵	3.5x10-5	– A	/1m	
Cathode Quantum Efficiency	10 5		et	
at 3800 Angstroms (Approx.) - Current Amplification	10.5 3×10 ⁵	-	%	
Equivalent Anode-Dark-	1x10-10k	5x10-10 ^k	1	
Current Input ^j	1×10-13 ^m	5.1x10 ^{-13^m}	l m W	
Anode-Pulse Rise Timen	1.8×10-9	-	S	
Electron Transit Time ^p	7.4x10-9	-	S	
a Alternate designation is Multiplier Pho				
On a plane parallel to the grill wires. Structure.		tic Arrangement	of	
 Made by Corning Glass Works, Corning, N Magnetic shielding material in the form of the Magnetic Shield Division, Prefection Avenue, Chicago 22, Illinois, or equiva 	foil or tape Mica Company lent	e as available f , 1322 North Els	rom	
 Operation with a supply voltage (E) of le not recommended. If such a supply voltage limited to such a value that the averag exceed approximately 5x 10⁻⁹ ampere. 	ss than 500 v e is used, il	olts dc is usua llumination must	lly be	0
		and all all all all all all all all all al		
[†] Averaged over any interval of 30 second	s maximum.			

DATA I

- 9 Under the following conditions: The light source is a tungsten-filament lamp having a lime glass envelope. It is operated at a color temperature of 2870°K. A light input of l microlumen is used and the approximate spot size of the beam incident on the tube envelope is 0.35 inch by 0.05 inch. The tube is rotated to provide maximum anode output current.
- ^h Under the following conditions: The light source is a tungsten-filament lamp having a lime glass envelope. It is operated at a color temperature of 2870°K. The value of light flux is 0.001 lumen and 100 volts is applied between cathode and all other electrodes connected as anode. The approximate spot size of the beam incident on the tube envelope is 0.35 inch by 0.05 inch. The tube is rotated to provide maximum output current.
- j At a tube temperature of 22°C. Dark current may be reduced by use of a refrigerant.
- k With supply voltage (E) adjusted to give a luminous sensitivity of 20 amperes per lumen.
- M At 4000 angstroms.
- ⁿ Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- P The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-4 RESPONSE

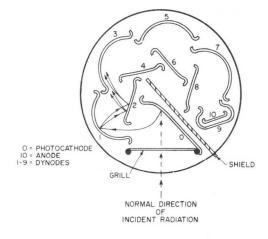
is shown at the front of this section

ENVIRONMENTAL TESTS

The 8571 is designed to withstand the following environmental tests:

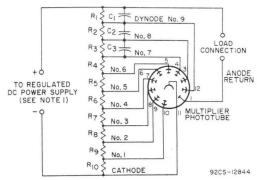
Shock. With no voltage applied, the 8571 is subjected to a total of 18 impact shocks, three in each direction of the three orthogonal axes, on apparatus which applies half-wave sinusoidal shock pulses. The peak acceleration of the impact shock is $30 \pm 3g'$'s and the time duration is 11 ± 1 milliseconds.

Vibration. With no voltage applied, the 8571 is vibrated, in each of the three orthogonal axes and as specified below, on apparatus which applies variable-sinusoidal frequency vibration to the tube. A vibration sweep has a duration of 5 minutes per axis in which time the frequency is varied logarithmically from 5 to 2000 and back to 5 cycles per second. Six vibration sweeps are performed for each axis and the total test period is 1-1/2 hours.

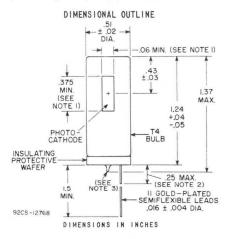

Double Amplitude inches	Accelera- tion g's	Fre- quency c/s	Total Sweep Duration Per Axis minutes
0.45	20 20	5-30 30-2000 2000-30 30-5	} 30

Constant Acceleration. With no voltage applied, the 8571 is subjected for five minutes to an acceleration test level of 15 g's in both directions of the three orthogonal axes in a centrifuge providing constant acceleration.

Temperature Cycling. With no voltage applied, the 8571 is subjected to temperature cycling from -45° C to $+75^{\circ}$ C and back to -45° C in a period of 8 hours. Three temperature cycles are performed.

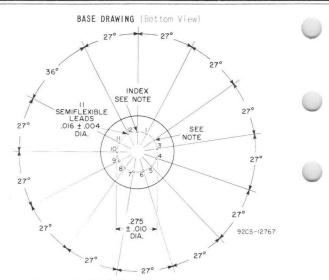

SCHEMATIC ARRANGEMENT OF STRUCTURE

(Top View)

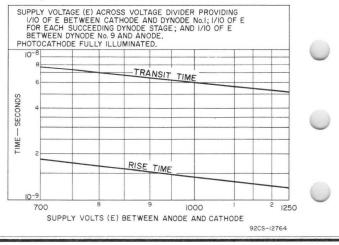


 R_1 through R_{10} = 20,000 to 5,000,000 ohms. NOTE I: Adjustable between approximately 500 and 1250 volts. NOTE 2: Capacitors C_1 through C_3 should be connected near tube base for optimum high-frequency performance.

NOTE 1: Minimum projected cathode length and width on plane parallel to grill wires. NOTE 2: Soldering or welding to the leads within this region is

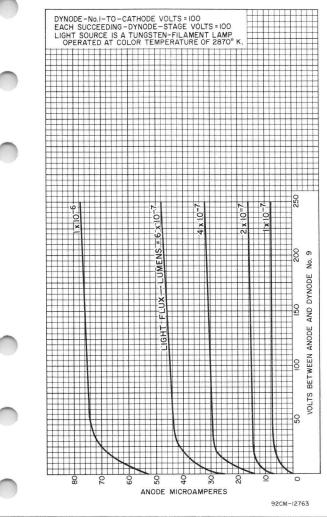

not recommended.

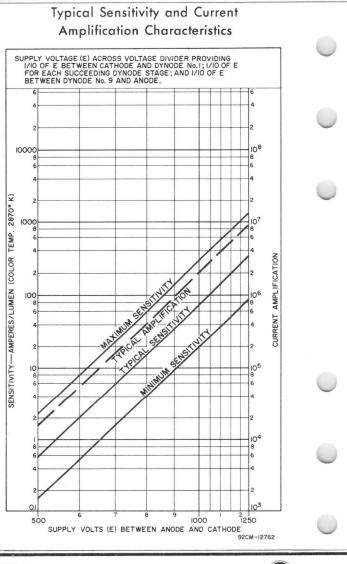
 $NOTE \; 3: \; A \; 0.15$ inch minimum hole diameter should be provided in circuit boards or similar mounting arrangements to allow for clearance of the exhaust tip of the 8571.

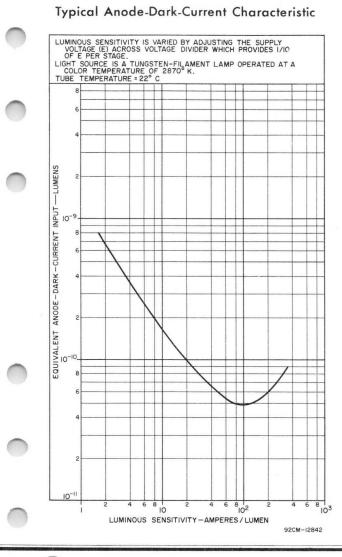

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 7-65

8571

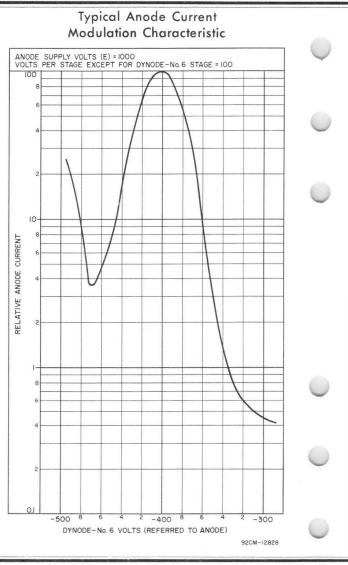
NOTE: Lead is cut off within 0.10 inch of the glass button for indexing.

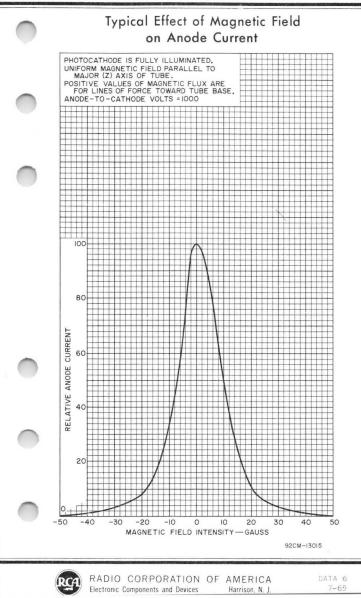

Typical Time Resolution Characteristics

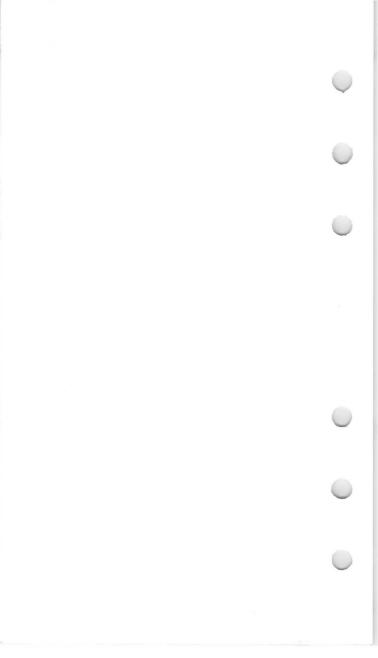




RADIO CORPORATION OF AMERICA Electronic Components and Devices


Harrison, N. J.




RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 5 7-65

DATA 5

Vidicon

High-Resolution Type for Film Pickup With Color or Black-and-White TV Cameras

GENERAL Heater, for Unipotential Cathode:
Voltage (AC or DC)
Current at 6.3 volts 0.6 A
Direct Interelectrode Capacitance: ^a
Target to all other electrodes 4.6 pF
Spectral Response See accompanying Typical RCA Type I Spectral Response
Photoconductive Layer:
Maximum useful diagonal of rectangular image (4 x 3 aspect ratio)
Orientation of quality rectangle_Proper orientation is ob- tained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short index pin. The masking is for orien- tation only and does not define the proper scanned area of the photoconductive layer.
Focusing Method Magnetic
Deflection Method Magnetic
Overall Length 6.250 in ± 0.125 in
Greatest Diameter 1.125 in ± 0.010 in
Bulb T8
Base Small-Button Ditetrar 8-Pin, (JEDEC No.E8-11)
Socket Cinch ^b No.54A18088, or equivalent
Deflecting Yoke-Focusing Coil- Alignment Coil Assembly Cleveland Electronics ^{c,d} No.VYFA-355-2, or equivalent
Operating Position Any
Weight (Approx.) 2 oz
ABSOLUTE-MAXIMUM RATINGS For scanned area of 1/2" x 3/8"
Grid-No.4 Voltage ^f 1000 max. V
Grid-No.3 Voltage ^f 1000 max. V
Grid-No.2 Voltage
Grid-No.1 Voltage:
Negative bias value
Positive bias value 0 max. V

Electronic Components

RGЛ

	COMPANY OF THE OWNER OF	And the second second second		and the supervised of the local division of the
Peak Heater-Cathode Voltage:				
Heater negative with respect to cathode		1	25 max. V	
Heater positive with respect to cathode			10 max. V	Q
Target Voltage		1	25 max. V	
Dark Current		0.	25 max. µA	
Peak Target Current ⁹		0.	75 max. µA	
Faceplate:				
Illumination ^h		50	00 max. fc	
Temperature			71 max. ^o C	
TYPICAL OPERATION AND PE	RFORM	ANCE DA	TA	
For scanned area of 1/2" x 3/8"				
Faceplate temperature of 30° to .	35 ⁰ C an	d Standar	d TV	
Scanning Rate	Low-	High-		
		Voltage Mode		
Grid-No.4 (Decelerator)			v	
	500	900	v	
Grid-No.3 (Beam-Focus Electrode) Voltage	300	540	v	
Grid-No.2 (Accelerator)				
Voltage	300	300	V	
Grid-No.1 Voltage for Picture Cutoffi	-65 to	-65 to	V	
	-100	-100		
Average "Gamma" of				
Transfer Characteristic for signal-output current between				
$0.02\mu\text{A}$ and $0.2\mu\text{A}$	0.65	0.65		
Visual Equivalent Signal-to-				
Noise Ratio (Approx.)k	300:1	300:1		
Lag_Per Cent of Initial Value of Signal-Output Current 1/20				
Second After Illumination is				
Removed: ^m				
Typical value for minimum lag operation	7.5	7.5	%	0
Minimum Peak-to-Peak Blanking Voltage:				\checkmark
When applied to grid No.1	75	75	V	
When applied to cathode	20	20	V	
Limiting Resolution:				1000
At center of picture	1000	1100	TV lines	
At corner of picture	600	700	TV lines	
			and a statement of the Property of	

RB/ Electronic Components

DATA 1

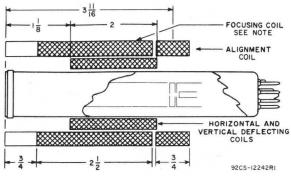
Amplitude Response to a 400 TV Line Square-Wave Test	
Pattern at Center of Picture ⁿ 50 60	%
Field Strength at Center of Focusing Coil ^p 40 ± 4 58 ± 4	G
Peak Deflecting-Coil Current:	
Horizontal	mA
Vertical 20 28	mA
Field Strength of Adjustable Alignment Coil ⁹ 0 to 4 0 to 4	G
Average-Sensitivity Operation (Live-Scene Pickup) 10 Footcandles on Faceplate Faceplate Illumination	
(Highlight) 10	\mathbf{fc}
Target Voltage ^{r, s}	V
Dark Current [†] 0.02	μA
Signal-Output Current:"	
Typical 0.3	μA
Minimum-Lag Operation (Film Pickup)	
100 Footcandles on Faceplate Faceplate Illumination	14 11 14
(Highlight) 100	fc
Target Voltage ^{r, s}	V
Dark Current [†]	μA
Signal-Output Current:	
Typical 0.3	μA
^a This capacitance, which effectively is the output im	pedance

- ^a This capacitance, which effectively is the output impedance of the tube, is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohms.
- ^b Made by Cinch Manufacturing Corporation, 1501 Morse Ave., Elk Grove Village, IL 60007.
- ^c Made by Cleveland Electronics Inc., 2000 Highland Road, Twinsburg, OH 44087.
- ^d These components are chosen to provide tube operation with minimum beam-landing error when mounted in the recommended position along the tube axis.
- [†] Grid-No.4 voltage must always be greater than grid-No.3 voltage. The maximum voltage difference between these electrodes, however, should not exceed 600 volts. The recommended ratio of grid-No.3 to grid-No.4 voltage is 6/10 to 5/10; best geometry being provided when the ratio

Electronic Components

R(B/Л)

is 6/10, and most uniform signal output when the ratio is 5/10. The operator should select the ratio within this range which provides the desired performance.


- ^g Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.
- ^h For conditions where "white light" is uniformly diffused over entire tube face.
- With no blanking voltage on grid No.1.
- ^k Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 MHz and a peak signaloutput current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3.
- ^m For initial signal-output current of 0.3 microampere and a dark current of 0.004 microampere.
- n Amplitude response is the signal amplitude from a given TV line number(fine picture detail) expressed as a per cent of the signal amplitude from a very-low-frequency (largearea) picture element. In practice, the large-detail reference is usually 15 TV lines with signal amplitude set equal to 100 per cent. The TV line numbers are determined by the number of equal-width black and white lines that will fit into the physical height of the image focused on the cameratube faceplate.
- ^p The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- ^q The alignment coil should be located on the tube so that its center is at a distance of 3-11/16 inches from the face of the tube, and be positioned so that its axis is coincident with the axis of the tube, the deflecting yoke, and the focusing coil.
- ^r The target voltage for each 8572A must be adjusted to that value which gives the desired operating dark current.
- ⁵ Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- [†] The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal

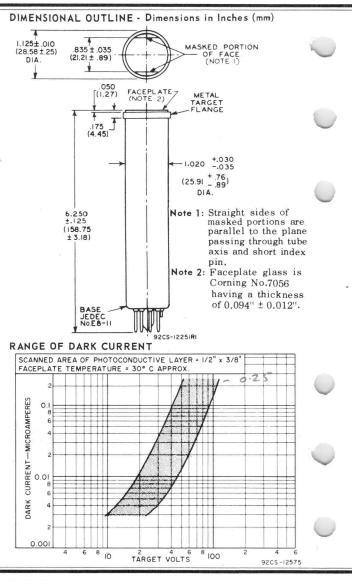
DATA 2

is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.

^o Defined as the component of the highlight target current after the dark-current component has been subtracted.

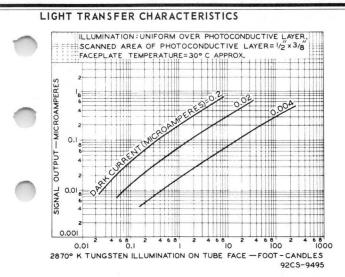

RECOMMENDED LOCATION AND LENGTH OF DEFLECTING, FOCUSING, AND ALIGNMENT COMPONENTS TO OBTAIN MINIMUM BEAM-LANDING ERROR

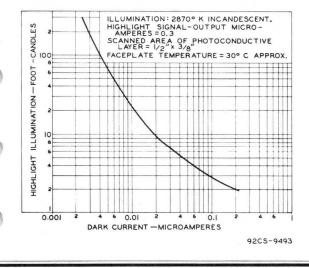
Dimensions in Inches Note: Cross-hatching indicates wound portion of focusing coil.


TERMINAL DIAGRAM (Bottom View)

Pin 1: Heater Pin 2: Grid No.1 G4 Pin 3: Grid No.4 Pin 4: Internal Connection – Do Not Use G1 Pin 5: Grid No.2 Pin 6: Grid No.3 Pin 7: Cathode Pin 8: Heater Flange: Target IN Short Index Pin – Internal Connection – Make No Connection

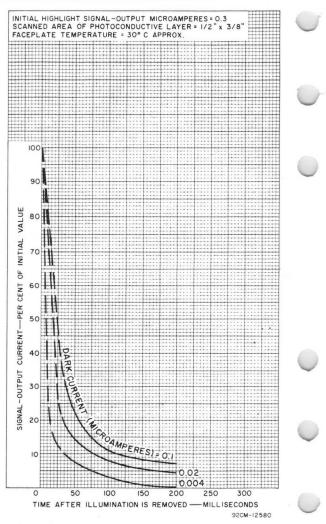
8ME

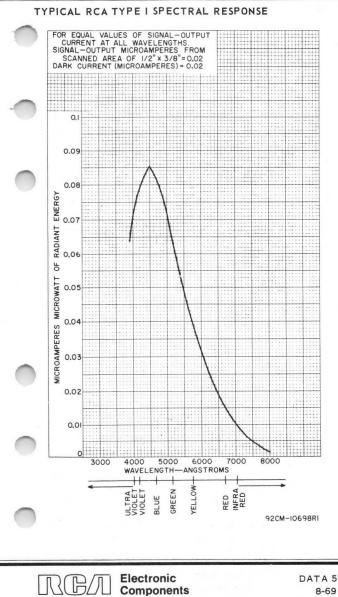

RBA Electronic Components


Electronic Components

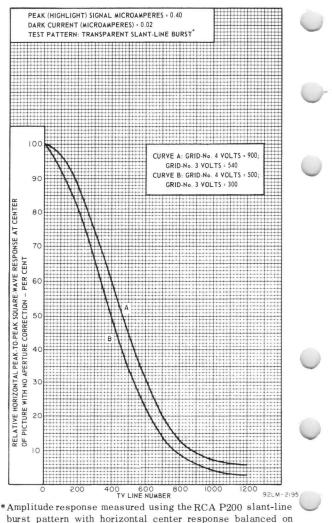
日//

DATA 3


TYPICAL CHARACTERISTIC


RBA Electronic Components

DATA 4 8-69



日/Л

8-69

the 400 line chevrons.

Electronic

Components

4

Vidicon

Short, High-Resolution Type Having High Sensitivity and Low Lag for Live Scene Pickup in Transistorized Black-and-White and Color TV Cameras in Industrial and Other Closed-Circuit TV Systems.

GENERAL

Heater, for Unipotential Cathode: Voltage (AC or DC)	6.3 ± 10% V
Current at 6.3 volts Direct Interelectrode Capacitance:	-
Target to all other electrodes	4.6 pF
Spectral Response Photoconductive Layer:	See RCA Type II Spectral Response at front of this section

Maximum useful diagonal of rectangular

Focusing Method Magnetic
Deflection Method Magnetic
Overall Length
Greatest Diameter
Bulb
Base Small-Button Ditetrar 8-Pin, (JEDEC No.E8-11)
Socket
Deflecting Yoke-Focusing Coil-
Alignment Coil Assembly Cleveland Electronics ^{c,d} No.VYFA-355-2, or equivalent
Operating Position Any

Weight (Approx.).

Electronic

Components

R (円/Л

Grid-No.4 Voltage ^f 1000 max. V	
Grid-No.3 Voltage ^f 1000 max. V	
Grid-No.2 Voltage	

DATA 1 2-70

2 oz

Grid-No.1 Voltage:		
Negative bias value	300 max. V	
Positive bias value	0 max. V	
Peak Heater-Cathode Voltage:		-
Heater negative with respect to cathode	125 max. V	
Heater positive with respect to cathode	10 max. V	
Target Voltage	100 max. V	-
Dark Current	0.25 max. μA	
Peak Target Current ^g	0.75 max. µA	
Faceplate:		
Illumination ^h	5000 max. fc	1
Temperature	71 max. ^o C	-

TYPICAL OPERATION AND PERFORMANCE DATA

For scanned area of 1/2" x 3/8" Faceplate temperature of 30° to 35° C and Standard TV Scanning Rate

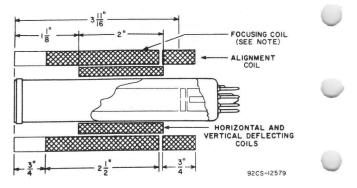
RBA Electronic Components			DATA 1	
to-Noise Ratio (Approx.) ^k	300:1	300:1		
Visual Equivalent Signal-				C
0.2 μΑ	0.65	0.65		
between 0.02 μA and				
for signal-output current				
Transfer Characteristic				0
Average "Gamma" of	-100	-100		6
Picture Cutoff ⁱ	-65 to -100	-65 to -100	v	
Grid-No.1 Voltage for	900	000		
Grid-No.2 (Accelerator) Voltage	300	300	v	-
Electrode) Voltage ^f	300	540	V	0
Grid-No.3 (Beam-Focus				
Grid-No.4 (Decelerator) Voltage ^f	500	900	V	
	Mode	Mode		
	Voltage	Voltage		
2 ·	Low-	High-		

Lag-Per Cent of Initial Value of Signal-Output Current 1/20 Second A fter Illumination is Removed ^m	
Current 1/20 Second A fter Illumination is Removed ^m 20 20 % Minimum Peak-to-Peak Blanking Voltage: When applied to grid No.1 75 75 V When applied to cathode 20 20 V Limiting Resolution: At center of picture 1000 1100 TV lines At corner of picture 600 700 TV lines At corner of picture 600 700 TV lines Amplitude Response to a 400 TV line Square- Wave Test Pattern at Center of Picture ⁿ 50 60 % Field Strength at Center of Focusing Coil ^P 40 ± 4 58 ± 4 G Peak Deflecting-Coil Current: Horizontal 350 480 mA	
A fter Illumination is Removed ^m	
Removed Minimum Peak-to-Peak Blanking Voltage:2020%When applied to grid No.17575VWhen applied to cathode2020VLimiting Resolution: At center of picture10001100TV linesAt corner of picture600700TV linesAmplitude Response to a 400 TV line Square- Wave Test Pattern at Center of Picture5060%Field Strength at Center of Focusing Coil Current: Horizontal400TM58 ± 4G	
Minimum Peak-to-Peak Blanking Voltage: When applied to grid No.1 75 75 V When applied to cathode 20 20 V Limiting Resolution: 20 1000 1100 TV lines At center of picture 1000 1100 TV lines At corner of picture 600 700 TV lines Amplitude Response to a 400 TV line Square- Wave Test Pattern at Center of Picture ⁿ	
Blanking Voltage: When applied to grid No.1 75 75 V When applied to cathode 20 20 V Limiting Resolution: 20 1000 1100 TV lines At center of picture 1000 1100 TV lines At corner of picture 600 700 TV lines Amplitude Response to a 400 TV line Square- Wave Test Pattern at Center of Picture ⁿ	
When applied to grid No.17575VWhen applied to cathode2020VLimiting Resolution:201001100TV linesAt center of picture10001100TV linesAt corner of picture600700TV linesAmplitude Response to a400TV line Square-Wave Test Pattern at5060%Field Strength at Center5060%Field Strength at Center40 ± 4 58 ± 4 GPeak Deflecting-CoilCurrent:400 ± 4 58 ± 4 G	
When applied to cathode2020VLimiting Resolution:At center of picture10001100TV linesAt corner of picture600700TV linesAmplitude Response to a400TV line Square-Wave Test Pattern atCenter of Picture ⁿ 5060Field Strength at Centerof Focusing Coil ^P	
Limiting Resolution: At center of picture 1000 1100 TV lines At corner of picture 600 700 TV lines Amplitude Response to a 400 TV line Square- Wave Test Pattern at Center of Picture ⁿ 50 60 % Field Strength at Center of Focusing Coil ^P 40 ± 4 58 ± 4 G Peak Deflecting-Coil Current: Horizontal 350 480 mA	
At center of picture 1000 1100 TV lines At corner of picture 600 700 TV lines Amplitude Response to a 400 TV line Square- Wave Test Pattern at Center of Picture ⁿ 50 60 % Field Strength at Center of Focusing Coil ^P 40 \pm 4 58 \pm 4 G Peak Deflecting-Coil Current: Horizontal 350 480 mA	
At corner of picture 600 700 TV lines Amplitude Response to a 400 TV line Square- Wave Test Pattern at Center of Picture ⁿ 50 60 % Field Strength at Center of Focusing Coil ^P 40 ± 4 58 ± 4 G Peak Deflecting-Coil Current: Horizontal 350 480 mA	
Amplitude Response to a 400 TV line Square- Wave Test Pattern at Center of Picture ⁿ	
400 TV line Square- Wave Test Pattern at Center of Picture ⁿ 0 Field Strength at Center of Focusing Coil ^P 0 Focusing Coil ^P Current: Horizontal 350 480	
Wave Test Pattern at Center of Picture ⁿ	
Center of Picture ⁿ	
Field Strength at Center of Focusing Coil ^P 40 ± 4 58 ± 4 G Peak Deflecting-Coil Current: Horizontal 350 480 mA	
of Focusing Coil ^P 40 ± 4 58 ± 4 G Peak Deflecting-Coil Current: Horizontal 350 480 mA	
Peak Deflecting-Coil Current: Horizontal 350 480 mA	
Current: Horizontal 350 480 mA	
Horizontal	
Vertical 00 00	
Vertical	
Field Strength of	
Adjustable Alignment	
Coil^{q} 0 to 4 0 to 4 G	
Maximum-Sensitivity Operation - 0.1 Footcandle on Faceplate	
Faceplate Illumination (Highlight) 0.1 fc	
Target Voltage ^{r, s} 35 to 70 V	
Dark Current [†]	
Signal-Output Current:"	
Τypical	
Intermediate-Sensitivity Operation – 0.5 Footcandle on Faceplate	
Faceplate Illumination (Highlight) 0.5 fc	
Target Voltage ^{r, s} 30 to 60 V	
Dark Current [†] 0.10 μΑ	
Signal-Output Current:"	
Typical 0.27 μΑ	

RBA Electronic Components

Average-Sensitivity Operation - 1.0 Footcandle on Faceplate			
Faceplate Illumination (Highlight)	1.0	fc	
Target Voltage ^{r, s}	20 to 40	V	
Dark Current [†]	0.02	μA	
Signal-Output Current:"			
Typical	0.20	μΑ	
High-Light Level Operation – 10 Footcandles on Faceplate			
Faceplate Illumination (Highlight)	10	fc	
Target Voltage ^{r, s}	10 to 22	V	
Dark Current [†]	0.005	μA	
Signal-Output Current:"			
Typical	0.3	μΑ	

- ^a This capacitance, which effectively is the output impedance of the 8573A, is increased when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohms.
- ^b Made by Cinch Manufacturing Corporation, 1501 Morse Ave., Elk Grove Village, IL 60007.
- ^c Made by Cleveland Electronics Inc., 2000 Highland Road, Twinsburg, OH 44087.
- d These components are chosen to provide tube operation with minimum beam-landing error when mounted in the recommended position along the tube axis.
- ^f Grid-No.4 voltage must always be greater than grid-No.3 voltage. The maximum voltage difference between these electrodes, however, should not exceed 600 volts. The recommended ratio of grid-No.3 to grid-No.4 voltage is 6/10 to 5/10; best geometry being provided when the ratio is 6/10, and most uniform signal output when the ratio is 5/10. The operator should select the ratio within this range which provides the desired performance.
- **9** Video amplifiers must be designed properly to handle target currents of this magnitude to avoid amplifier overload or picture distortion.
- h For conditions where "white light" is uniformly diffused overentire tube face.
- With no blanking voltage on grid No.1.


Electronic

Components

- ^k Measured with high-gain, low-noise, cascode-input-type amplifier having bandwidth of 5 MHz and a peak signaloutput current of 0.35 microampere. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of the highlight video-signal current to rms noise current, multiplied by a factor of 3.
 - ^m For initial signal-output current of 0.3 microampere and a dark current of 0.02 microampere.
 - ⁿ Amplitude response is the signal amplitude from a given TV line number (fine picture detail) expressed as a per cent of the signal amplitude from a very-low-frequency (largearea) picture element. In practice, the large-detail reference is usually 15 TV lines with signal amplitude set equal to 100 per cent. The TV line numbers are determined by the number of equal-width black and white lines that will fit into the physical height of the image focused on the cameratube faceplate.
 - ^P The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
 - ^q The alignment coil should be located on the tube so that its center is at a distance of 3-11/16 inches from the face of the tube, and be positioned so that its axis is coincident with the axis of the tube, the deflecting yoke, and the focusing coil.
 - ^r The target voltage for each 8573A must be adjusted to that value which gives the desired operating dark current.
 - ⁵ Indicated range for each type of service serves only to illustrate the operating target-voltage range normally encountered.
- [†] The deflecting circuits must provide extremely linear scanning for good black-level reproduction. Dark-current signal is proportional to the scanning velocity. Any change in scanning velocity produces a black-level error in direct proportion to the change in scanning velocity.
- ^U Defined as the component of the highlight target current after the dark-current component has been subtracted.



COMPONENT LOCATIONS

Note: Cross-hatching indicates wound portion of focusing coil.

DIMENSIONAL OUTLINE

Electronic Components DATA 3

NOTES FOR DIMENSIONAL OUTLINE

Note 1: Straight sides of masked portions are parallel to the plane passing through tube axis and short index pin.

Note 2: Faceplate glass is Corning No.7056 having a thickness of $0.094'' \pm 0.012''$.

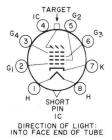
TERMINAL DIAGRAM (Bottom View)

Pin 1: Heater

Pin 2: Grid No.1

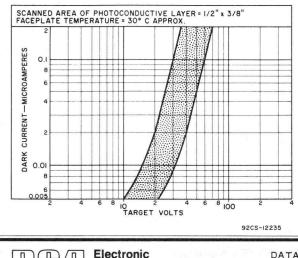
Pin 3: Grid No.4

Pin 4: Internal Connection -Do Not Use


Pin 5: Grid No.2

Pin 6: Grid No.3

Pin 7: Cathode

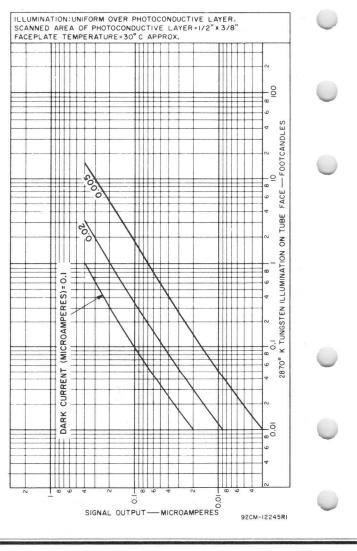

Pin 8: Heater

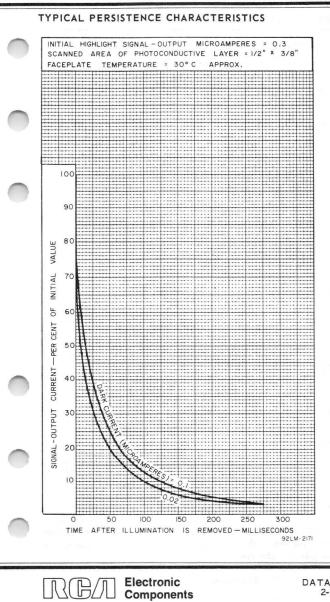
Flange: Target

Short Index Pin - Internal Connection -Make No Connection

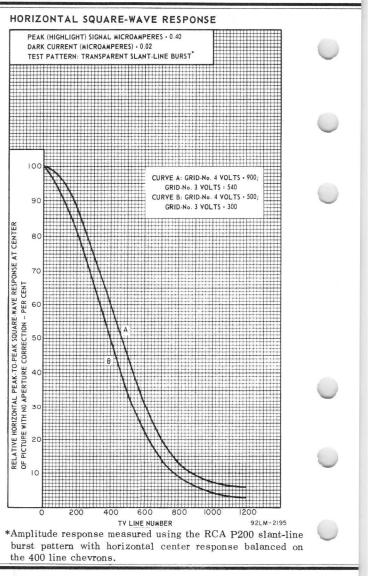
RANGE OF DARK CURRENT

Components


DATA 4 2-70


RB/1

Electronic


Components

LIGHT TRANSFER CHARACTERISTICS

<(円/ル)

Photomultiplier Tube

2"-Diameter, 12-Stage, Head-On Type Having Bialkali Photocathode and In-Line Electrostatically-Focused Dynode Structure

	GENERAL
2	Spectral Response See accompanying Typical Photocathode Spectral
	Response Characteristics
	Wavelength of Maximum Response \ldots . 3850 ± 500 angstroms
5	Cathode, Semitransparent Cesium-Potassium-Antimony (Bialkali)
Ρ.	Minimum projected area 2.54 sq. in
	Minimum diameter 1.80 in
	Window Pyrex, Corning ^a No.7740, or equivalent
	Shape Plano-Concave
	Index of refraction at 5893 angstroms1.47
	Dynodes:
	Substrate Copper-Beryllium
	Secondary-Emitting Surface Beryllium-Oxide
	Structure In-Line Electrostatic-Focus Type
	Direct Interelectrode Capacitances (Approx.):
	Anode to dynode No.12 5 pF
	Anode to all other electrodes 6 pF
	Maximum Overall Length 5.71 in
ŝ.	Seated Length
2	Maximum Diameter 2.10 in
	Bulb
	Base See Base Drawing
	Socket ····· RCA AJ2144 or AJ2145b
	Magnetic Shield
J.,	Weight (Approx.)
	 MAXIMUM AND MINIMUM RATINGS, Absolute-Maximum Values. DC Supply Voltage:
	Between anode and cathode:
١.	With Voltage Distribution A 3000 max. V shown in Table 1
1	800 min. V
	With Voltage Distribution B 3000 max. V shown in Table I
	1300 min. V

Electronic

Components

DATA 1 2-70

With Voltage Distribution C (3500	max.	V
With Voltage Distribution C \$3500 shown in Table 1 800	min.	V
Between anode and dynode No.12 800	max.	V
Between dynode No.12 and dynode No.11 800	max.	V
Between consecutive dynodes 400	max.	V
(1000	max.	V
Between dynode No.1 and cathode { 1000 300	min.	V
Between focusing electrode and cathode 1000	max.	V
Average Anode Current ^e 0.2	max.	mA
Ambient-Temperature $Range^f$ \ldots . -100 to +85		oC

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing electrode voltages shown in Table I, and at a temperature of 22° C.

With E = 2000 volts (Except as noted)

Voltage Distribution A, Table I

	Min.	Typical	Max.		
Anode Sensitivity:					
Radiant 9 at 3850 angstroms.	_	9.7x10 ⁵	_	A/W	
Luminous ^h (2870 ^o K)	100	850	3000	A/Im	
Current with blue light source ^j (2870 ^o K + C.S. No.5-58)	1.3x10 ⁻⁶	1.1×10 ⁻⁵	4×10 ⁻⁵	А	
Cathode Sensitivity:					
Radiant ^k at 3850 angstroms	_	0.097	_	A/W	0
Luminous ^m (2870 ⁰ K)	6.2×10 ⁻⁵	8.5x10 ⁻⁵	-	A/Im	
Current with blue light source ⁿ (2870 ^o K + C.S. No.5-58)	8×10-10	1.1×10 ⁻⁹	_	A	
Quantum Effi- ciency at 3850 angstroms ^p	_	31	- 12 - 5	%	
Current Amplifica-	_	1×10 ⁷	_		
Anode Dark Current9	_	1×10 ⁻⁹	4×10 ⁻⁹	А	\bigcirc
		- Indicat	tes a change or	addition.	

B/Л

	Equivalent Anode Dark Current In- put9	{ -	5x10-12 4.4x10-15r	2x10-11	lm r w
		(-		1.8210	
	Equivalent Noise Input ^s	{ -	1.8x10-13	—	Im
		(-	1.6x10-16t		W
	Dark Pulse Sum- mation ^u :				
1	1/8 photoelectron to 16 photoelectrons . See Typical Dark-F	-	660	-	counts per seconds
	Anode-Pulse Rise	aree oper			
	Time ^V at 3000 V	-	2.1×10-9	-	S
	Electron Transit Time ^w at 3000 V	1	3.1x10 ⁻⁸	_	S
	With E = 1100 volts (Except as noted)				
	Voltage Distribution A Table I	λ,			
	Pulse Height Resolution ^x	_	7.5	8	%
	Pulse Height¥	4.9x10-12	1.5x10-11	1.5x10-10	coulombs
	Peak-to-Valley Ratio of Pulse Height Spectrum with Fe ⁵⁵				
	Source ^z	-	38	-	
	Mean Gain De- viation: ^{aa}				
	With count rate change of 1000				
	to 10000 cpsbb	_	1	-	%
	For a period of 16 hours at a count rate of				
	1000 cps ^{cc}	-	1	-	%
	With E = 3000 volts				
	Voltage Distribution C, Table I				
	Pulse Current:dd				
	Linear ^{ee}		0.15	-	A
	Space-charge . limited (saturated)	-	0.50	-	А

Electronic Components

RB/1

- a Made by Corning Glass, Corning, NY 14830.
- ^b The AJ2145 is ordinarily supplied with the tube and is designed specifically for chassis mounting. The AJ2144 may be supplied as an alternate socket if requested by the user. The AJ2144 is designed for use in any desired mounting arrangement. It is supplied with an unattached clamp ring which fits to either the top or bottom of its socket body to permit chassis mounting. The ring is not normally required for other mounting arrangements and can be discarded to make such arrangements more compact.
- c Magnetic shielding material in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1322 North Elston Avenue, Chicago, IL, 60622, or equivalent.
- e Averaged over any interval of 30 seconds maximum.
- f Tube operation at room temperature or below is recommended.
- 9 This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 1140 lumens per watt.
- h These values are calculated as shown below:

Anode Current (with blue light source) (A)

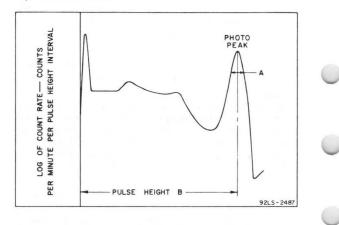
Luminous Sensitivity (A/Im) = ---

0.13 x Light Flux of 1 x 10-7 (Im)

The value of 0.13 is the average value of the ratio of the anode current measured under the conditions specified in footnote (j) to the anode current measured under the same conditions but with the blue filter removed.

- J Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, NY 14830) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 1 x 10⁻⁷ lumen.
- k This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1140 lumens per watt.
- m These values are calculated as shown below:

Cathode Luminous Sensitivity (A/Im) =


Cathode Current (with blue light source) (A)

0.13 x Light Flux of 1 x 10⁻⁴ (Im)

RBA Electronic Components The value of 0.13 is an average value. It is the ratio of the cathode current measured under the conditions specified in footnote (n) to the cathode current measured under the same conditions but with the blue filter removed.

- ⁿ Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 100 microlumens and 500 volts are applied between cathode and all other electrodes connected as anode.
- P Calculated from the cathode current measured with blue light source.
- 9 Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness). The light flux incident on the filter is 0.1 microlumen. The supply voltage E is adjusted to obtain an anode current of 2.6 microamperes. Luminous sensitivity of the tube under these conditions is approximately equivalent to 200 amperes per lumen. Dark current is measured with incident light removed.
- r At 3850 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 1140 lumens per watt.
- ^S Under the following conditions: External shield connected to cathode, an equivalent bandwidth of 1 Hz, tungsten-light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- t At 3850 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 1140 lumens per watt.
- ^u Measured as shown under (q) and with the tube in complete darkness. The pulse height for the single photoelectron equivalent is determined by using a light source operated at a low color temperature to assure the high probability of single photoelectron emission from the photocathode of the tube. The intensity of the light source is adjusted for approximately 10⁴ photons per second. This light is removed before the dark pulse summation is measured.
- V Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.

- W The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.
- × Anode load is a 100 kilohm resistor with a total capacitance of 100 ± 3% pF in parallel. Under pulse conditions, the interstage voltages of the tube should not deviate more than 2% from the interstage voltage values during no-signal conditions. The 662 keV photon from a 1 microcurie Cs¹³⁷ source and a cylindrical 2" x 2" thallium-activated sodium-iodide scintillator [Nal (TI)type 8D8S50, Serial No.BR772, or equivalent are used. This scintillator is manufactured by the Harshaw Chemical Corporation, 1945 East 97th Street, Cleveland 6, OH, and is rated by the manufacturer as having a resolving capability of 8.2 per cent to 8.3 per cent. The Cs¹³⁷ source is in direct contact with the metal end of the scintillator. The faceplate end of the crystal is coupled to the tube by a coupling fluid such as Dow Corning Corp. Type DC200 (Viscosity of 60,000 centistokes)-Manufactured by the Dow Cornign Corp., Midland, MI, or equivalent. Pulse height resolution in per cent is defined as 100 times the ratio of the width of the photopeak at half the maximum count rate in the photopeak height (A) to the pulse height at maximum photopeak count rate (B).

日/Л

- Y Pulse height is defined as the average charge collected at the anode from a pulse caused by the photoelectric absorption of a 662 keV photon from Cs¹³⁷ in a thallium-activated sodiumiodide scintillator, Nal(Tl).
- ² Measured using a Harshaw Type HG 0.005" beryllium window Nal(TI) scintillator, 0.04" thick and 7/8" in diameter and an isotope of iron having an atomic mass of 55 (Fe⁵⁵) and an effective activity at the scintillator of one microcurie.
- aa Mean gain deviation is defined as follows:

$$MGD = \frac{\begin{array}{c}i = n\\ \Sigma\\i = 1\end{array}}{n} \left| \overline{p} - p_i \right|$$

$$\frac{100}{\overline{p}}$$

where: \vec{p} = mean pulse height p_i = pulse height at the "ith" reading n = total number of readings

- bb Under the following conditions: The scintillator and Cs¹³⁷ radiation source of (x) are employed. The radiation source is initially centered, on the major axis of the tube and the scintillator, at a point providing a pulse count rate of 1000 cps. The pulse height of the photopeak is measured under this condition. Next, the radiation source is moved rapidly, in approximately 30 seconds, to a new position that is equivalent to a count rate of 10,000 cps. The new position is also centered in the major axis of the tube. The pulse height under this condition is measured. The difference in pulse height between these two measurements is typically 1 per cent.
- ^{cc} Under the same conditions as (bb) except the count rate position of 1,000 cps is maintained for 16 hours and the pulse height is sampled at 1 hour intervals.
- dd The interstage voltages of the tube should not deviate more than 2 per cent from the specified voltage distribution. Capacitors are connected across the individual resistors making up the voltage-divider arrangement to insure this operating condition.
- ee Maximum deviation from linearity is 2 per cent.

Voltages To Be P	rovided By Divider		
Between the Following	Column A	Column B	Column C
Electrodes:	6.1% of	8.06% of	4.6% of
Cathode (K),	Supply	Dy1 – P	Supply
Dynode (Dy),	Voltage (E)	Voltage (E)	Voltage (E)
and Anode (P)	multiplied by	multiplied by	multiplied by
K – Dy1	4.0		4.0
Dy1 - Dy2	1.0	1.0	1.0
Dy2 - Dy3	1.4	1.4	1.4
Dy3 - Dy4	1.0	1.0	1.0
Dy4 – Dy5	1.0	1.0	1.0
Dy5 – Dy6	1.0	1.0	1.0
Dy6 – Dy7	1.0	1.0	1.0
Dy7 – Dy8	1.0	1.0	1.0
Dy8 – Dy9	1.0	1.0	1.0
Dy9 - Dy10	1.0	1.0	1.5
Dy10 - Dy11	1.0	1.0	2.0
Dy11 - Dy12	1.0	1.0	4.0
Dy12 - P	1.0	1.0	2.0
Dy1 - P		12.4	
K – P	16.4	-	21.9

Focusing Electrode (Pin 17) connected to dynode No.1 potential. Electron Multiplier Shield (Pin 10) connected to dynode No.5 potential.

Cathode-to-Dynode-No.1 Voltage maintained at 660 volts.

TERMINAL CONNECTIONS

The base pins of the tube fit a 21-contact socket such as the RCA-AJ2144 and the AJ2145.

> TC (21

IC IC (18

G (17

DY2 (16)

K

DY

DY3

H H

Ic

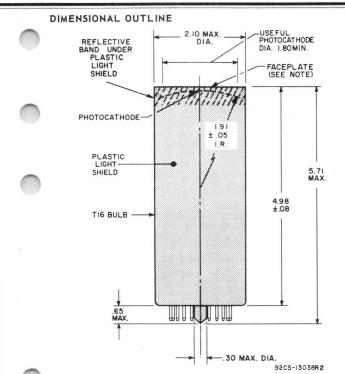
DY5

DY7 1 DYg 5

(6) DY11

7 D 8 DY12

BASING DIAGRAM (BOTTOM VIEW)


> DY4 DY6 DY8 DYIO IC SHIELD

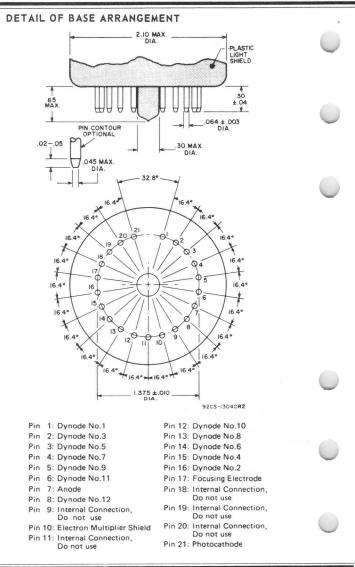
> > Electronic

Components

DIRECTION OF RADIATION: INTO END OF BULB

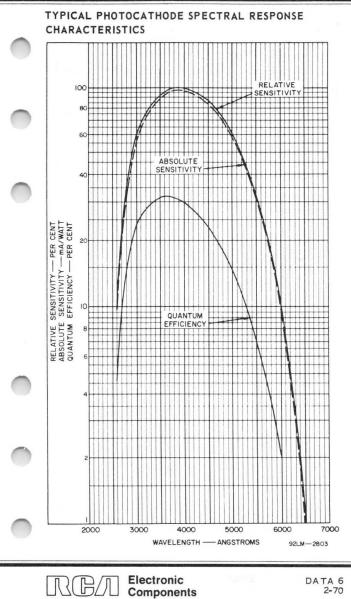
92LS-2812

Dimensions in Inches

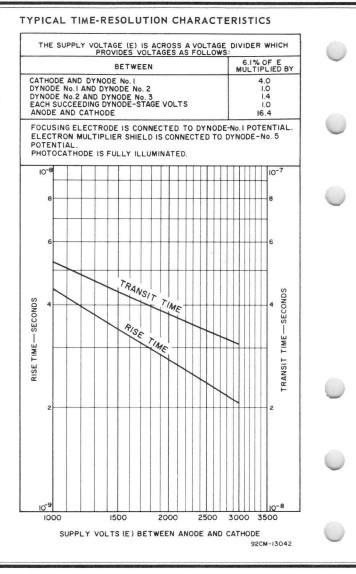

Note: Deviation from Flatness of External Surface of Faceplate will not exceed 0.010" from Peak to Valley.

The dimensions in millimeters are derived from the basic inch dimensions (1 inch = 25.4 mm).

Inch	mm	Inch	mm	Inch	mm
.003	.08	.05	1.3	1.375	34.93
.010	.25	.064	1.63	1.80	45.7
.02	.5	.08	2.0	1.91	48.5
.04	1.0	.30	7.6	2.10	53.3
.045	1.14	.65	16.5	4.98	126.5
				5.71	145.0



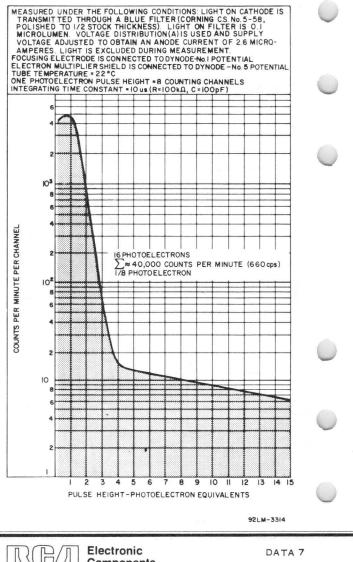
Electronic Components



Electronic

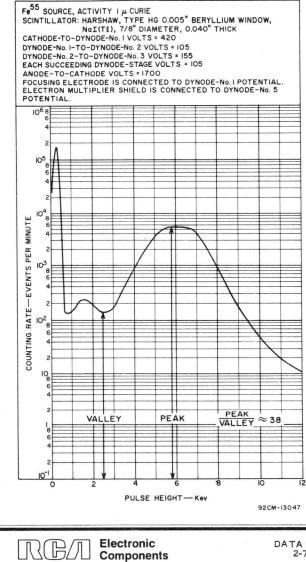
Components

2-70

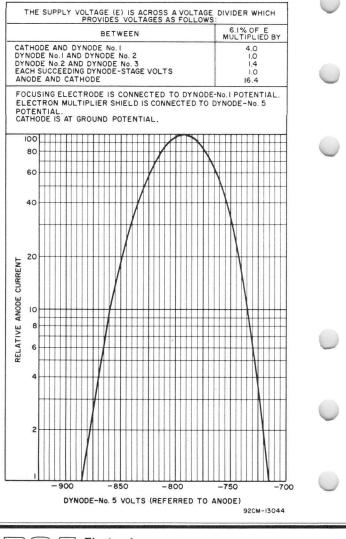

DATA 6

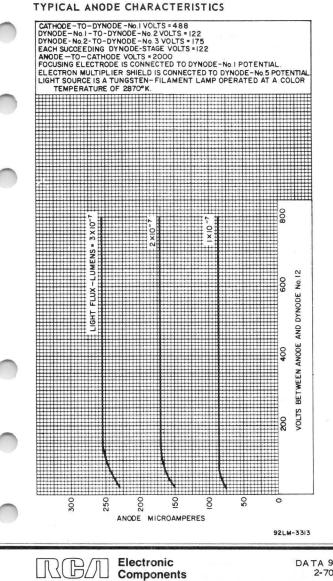
Electronic Components

日/Л

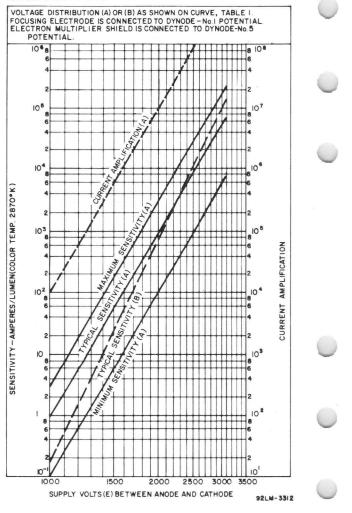

L	UMINOUS SENSITIVITY IS VARIED BY ADJUSTMENT OF T VOLTAGE (E) ACROSS A VOLTAGE DIVIDER WHICH PRO AS FOLLOWS:	
	BETWEEN MI	6.1 % OF E ULTIPLIED BY
	ATHODE AND DYNODE No.1 IYNODE No.1 AND DYNODE No.2 IYNODE No.2 AND DYNODE No.3 ACH SUCCEDING DYNODE-STAGE VOLTS INODE AND CATHODE	4.0 1.0 1.4 1.0 16.4
	LECTRON MULTIPLIER SHIELD IS CONNECTED TO DYNOE POTENTIAL. OCUSING ELECTRODE IS CONNECTED TO DYNODE No. I PI IGHT SOURCE IS A TUNGSTEN-FILAMENT LAMP OPERA COLOR TEMPERATURE OF 2870°K. UBE TEMPERATURE = 22°C	OTENTIAL.
Γ	2	2 10-10 LIN
		8 1
LUMEN		6 4 2 NG2TRONT
1	8	10-11 0
NPUT	WEERE	* 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- DARK - CURRENT INPUT		2 LID
CURR		80 ⁻¹² NO
ARK -		
0 - D		
ANOL		PARK -
ENT	✓ 2	2 HO 10 ⁻¹⁴ W
6		NIVALENT
	10-+	10-15 @
	1000 1500 2000 SUPPLY VOLTS(E) BETWEEN ANODE AND CATH	2500 IODE 92LM-331

TYPICAL DARK-PULSE SPECTRUM

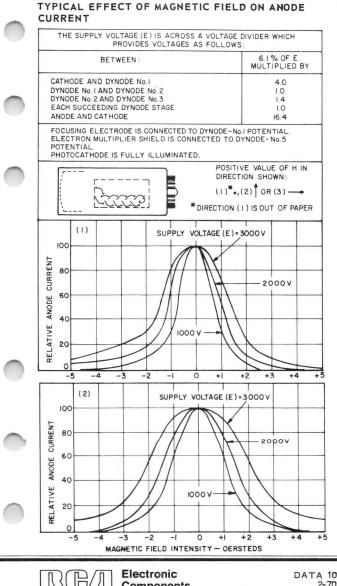

Components



DATA 8 2-70

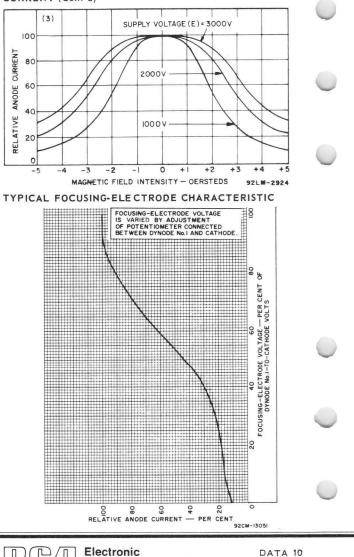

TYPICAL DYNODE MODULATION CHARACTERISTIC

Electronic Components


TYPICAL SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS

Electronic

Components


日//

Components

2-70

TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE CURRENT (Cont^od)

Components

Image Intensifier Tubes

Fiber-Optic Input and Output Faceplates Integrated Voltage Multiplier Incorporated in 8606 Ruggedized Construction S-20 Spectral Response with Extended Red Sensitivity P20 Phosphor Screen

GENERAL

	Each Type	
)	P P) with extended red response
	Wavelength of Maximum Response . 4700	- 500 Å
	Photocathode:	
	Material Na-	K-Cs-Sb(Multialkali)
	Minimum useful area Type 8606	$11.1 \text{ cm}^2 (1.70 \text{ in}^2)$
	Types 8605/V1,8605/V2 Minimum useful diameter	$12.6 \text{ cm}^2 (1.96 \text{ in}^2)$
		37.5 mm (1.47 in)
	Types 8605/V1, 8605/V2	40 mm (1.58 in)
	Image surface:	
	Shape	Flat, Circular
5	Material Fluorescent Screen:	Fiber-Optics
	Minimum useful area Minimum useful diameter Phosphor Fluorescence and phosphorescence Persistence	
	Image surface: Shape	
	Material	
5	•Note: The 8605/V1 is equivalent to fier designated 8605-1 by the milita	ry and the 8605/V2

is equivalent to the image intensifiers designated 8605-2 and 8605-3.

Electronic Components

P

Tube Dimensions:			
Maximum overall length			
Туре 8606		12.028 in (302.51	mm)
Types 8605/V1, 8605/V2		3.705 in (94.2	(mm)
Maximum diameter			
Туре 8606		3.737 in (95.10) mm)
Types 8605/V1, 8605/V2	2	3.05* in (77.5	mm)
Operating Position		Any	
Weight (Approx.)			
Туре 8606		4 lbs 8 oz (2.04	4 kg)
Types 8605/V1, 8605/V	2	14 oz (0.39	6 kg)
MAXIMUM RATINGS, Abso	olute-Maximun	n Values	
Peak-to-Peak AC Input Vo	oltage ^b		
Туре 8606	2.8	8 kV,1200 to 200	0 Hz
DC Anode-to-Cathode Volt.	age		
Types 8605/V1, 8605/V	/2	3 kV	
Screen Luminance (Brightn	ess)		
Types 8605/V1, 8605/V	/2 12	25 fL	
Each Type			
Ambient-Temperature Rang Non-operating	e:		
Operating		54 [°] to +5	2° C
ELECTRICAL CHARACTER	ISTICS, Type	8606 Only	
	Min.	Typical	Max.
Input Capacity ^c	22	-	55

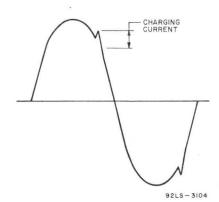
*Excluding exhaust tubulation cap.

TYPICAL PERFORMANCE CHARACTERISTICS	MANCE CHA	RACTERIST	'ICS					0		•
Characteri stic	Type 8606 Under cont \pm .05 kV 1 and at an a ature of otherwise	Type 8606 Under conditions with 2.7 \pm .05 kV 1500 Hz applied and at an ambient temper- ature of 22 ⁰ C, unless otherwise noted.	ith 2.7 applied cemper- unless	Type 8605/V1 Under conditio anode voltage at an ambient of 22°C, unles noted.	Type $8605/V1$ Under conditions with a DC anode voltage of 15 kV and at an ambient temperature of 22° C, unless otherwise noted.	h aDC kV and erature erwise	Ur Ur at of	Type $8605/V2$ Under conditions with aDC anode voltage of 15 kV and at an ambient temperature of 22° C, unless otherwise noted.	' V2 itions w age of 14 ent tem iless of	vith a DC 5 kV and perature therwise
Recolution.	Min.	Typi cal	Max.	Min.	Typi cal	Max.	Min.	Min. Typical Max.	Max.	Units
Center ^d	25	35	I	57	70	I	57	70	I	Line- Pairs∕mm
Edge ^e (Peripheral)	23	30	1	45	Ī	ł	45	Ĩ	1	Line- Pairs/mm
Screen Luminance (Brightness)	1	1	125 f	ł	1	1	1	1	I	fi.
At22 ^o C	3.5×10^4	1	1	65 ^h	I	I	ł	I	l	fL/fc
	2.8×10^{4}	I	I	1	I	1	ł	1	I	fl./fc
With green light source	1	1	1	1	1	I	22 i		I	fl ⁄ fc

DATA 2 2-71

Electronic Components

RB/1


8605/	V1,8605	/V2,	8606
-------	---------	------	------

TYPICAL PERFORM	TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)	t'd)	
Chara cterí sti c	Type 8606 Under conditions with 2.7 ± .05 kV 1500 Hz applied and at an ambient temper- ature of 22 ⁰ C, unless otherwise noted.	Type 8605/V1 Under conditions with a DC anode voltage of 15 kV and at an ambient temperature of 22 ^o C, unless otherwise noted.	Type 8605/V2 Under conditions with a DC anode voltage of 15 kV and at an ambient temperature of 22 ^o C, unless otherwise noted.
Equivalent Screen Background Input: Luminous Photocathode Sensitivity: Radiant: At4700 Å At8500 Å Luminous Luminous Uniformity Modulation Transfer Function (MTF): 1 (Sext page)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} - & - & 2 \times 10^{-11} \\ - & - & - & 2 \times 10^{-11} \\ 6 \times 10^{-3} & - & - \\ 1 \times 10^{-3} & - & - \\ 1 \times 10^{-4} 2 \times 10^{-4} & - \\ - & 1.4:1^{-4} & 2:1^{-4} \end{bmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

RCA Electronic Components

	0000	/ •	1,0	00	5/ 1	-,			
	a DC and ature wise	0/ 0/	%	%			in	in %	
	Type 8605/V2 Under conditions with a DC anode voltage of 15 kV and at an ambient temperature of 22°C, unless otherwise noted.	I	ſ	1	1.0	I	0.02	0.005 8	
	Type 8605/V2 Under condition anode voltage at an ambient of 22 ^o C, unles noted.	1	ţ	I	1	l	l	łI	
	Type E Under anode at an of 22 ^o noted.	I	1	1	0.94	I	1	1	
•	Type 8605/V1 Under conditions with a DC anode voltage of 15 kV and at an ambient temperature of 22 ⁰ C, unless otherwise noted.	I	I	l	1.0	l	0.02	0.005 8	
	5/V1 nd itions ltage of bient to unless	I	1	Ē	I	1	Т	1 1	
(q)	Type 8605/V1 Under conditio ande voltage at an ambient of 22°C, unlee noted.	I	1	I	0.94	1	~ [1	1
STICS (Cont	s with 2.7 Iz applied nt temper- C, unless	t	Ī	1	1.0	1.06	0.06	0.005	¢2
HARACTERI	Type 8606 Under conditions with 2.7 \pm .05 kV 1500 Hz applied and at an ambient temper- ature of 22 ^o C, unless otherwise noted.	95	60	20	L	I	I	I	1
) ANCE C		90	55	10	0.82	1.0	Т	I	1
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)	Ch ara cteri sti c	For 2.5 Line- Pairs/mm	For 7.5 Line- Pairs/mm	For 16 Line- Pairs/mm	Paraxial Image Magnification (Cmx) [†]	Edge Image Magnification	Image Align- ment	Image Stability in 30 seconds	Distortion
	Electronic DATA 3 Components 2-71								

- ^b Suitable oscillators providing this input voltage are available from the Microsemiconductor Corporation, Culver City, CA; Varo, Inc., Plano, TX 75074; or Venus Scientific Inc., 25 Bloomingdale Road, Hicksville, NY 11801.
- ^c At the maximum rated peak-to-peak ac input voltage of 2.8 kV, 1200 to 2000 Hz, the maximum dc charging current will not exceed 200 microamperes. Charging current is defined as the peak value of the rectified charging current after the sinusoidal component has been subtracted. See waveshape below. Input capacity is measured at a temperature of 452° C, with operating voltage applied, no light incident on the photocathode, and the tube shielded in a close-fitting, grounded metallic cylinder.

- ^d The resolution, both horizontal and vertical, is determined with a test pattern consisting of alternate black and white lines of equal width. Any two adjacent lines are designated a "line-pair."
- ^e This minimum value applies at a distance of 11 mm from the major (optical) axis of the tube.
- ^f With 1 x 10^{-3} footcandle or greater on the photocathode. The 8606 must be protected from overload by the use of a low power output oscillator when exposed to illumination levels above the specified value. Oscillators meeting the Military Specification 052374 are satisfactory. Vendors see footnote (b).

- $^{\rm g}$ LuminanceGain is defined as the quotient of screen brightness in footlamberts by the photocathode illumination in footcandles provided by a tungsten-filament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2854° K. The value of light input radiation on the photocathode image surface is in the range of 1 x 10⁻⁵ to 3 x 10⁻⁵ footcandle.
 - Under same conditions of footnote (g) except input radiation on photocathode is 5 x 10⁻² footcandle. Anode voltage is 15 kV.
- ¹Under the same conditions of footnote (g) except that a light input of 5 x 10⁻² footcandle is incident on Corning C.S. No.3-71 and C.S. No.4-67 interposed between the light source and the tube. Anode voltage is 15 kV. Use of these filters in conjunction with the 2854° K source closely approximates the P20 spectral distribution.
- ^k Defined as the equivalent value of luminous flux from a tungsten-filament lamp operating at 2854^o K that would be required to cause an increase in screen brightness equal to screen background brightness.
- ^m For incident radiation at the wavelength of maximum response of the spectral sensitivity characteristic.
- ⁿ Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2854^o K. The light spot has a minimum diameter of 1.1".
- P The light source is a tungsten-filament lamp having a limeglass envelope. The lamp is operated at a color temperature of 2854° K. Luminance uniformity will not vary more than the ratio stated over a circular area 32.5 mm in diameter centered on the image screen. No distinct line of demarcation between light and dark areas is permitted. Alternatively, tubes will conform to MIL-I-55493 (EL) Uniformity Specification dated 26 November, 1968.
- ^q The light source is a tungsten-filament lamp having a limeglass envelope. The lamp is operated at a color temperature of 2854^o K. Luminance uniformity will not vary more than the ratio stated over a circular area 38 mm in diameter centered on the image screen. No distinct line of demarcation between light and dark areas is permitted.

Under the same conditions as shown in footnote (q) except that Corning C.S. No.3-71 and C.S. No.4-67 filters are interposed between the light source and the tube.

| Л. Х. С. Г./Л.

⁵ A two-dimensional resolution pattern, providing constant illumination in the Y direction, and sinusoidal variation of intensity in the X direction is projected on the photocathode. Per cent image modulation M may then be defined as:

$$M = \frac{W - B}{W + B} \times 100$$

where W = maximum illumination in white line B = minimum illumination in black line

Output image brightness is also a sinusoidal function of the distance across one direction of the pattern, and the output modulation is equal to or less than the input modulation. The modulation transfer function (MTF) is defined as the ratio of the output modulation to input modulation expressed as a function of the spatial frequency of the incident illumination pattern. MTF for type 8606 is measured using Modulation Transfer Function Analyzer Model No.K1-b, a product of Optics Technology, Inc., Belmont, CA, using the specified procedure for that instrument.

- Paraxial Image Magnification (Cmx) is defined as the ratio of the separation of two diametrically opposite image points on the screen to the separation of the two corresponding image points on the photocathode. The image points on the photocathode are separated by a distance of 2 mm and are located equal distances from the major axis of the tube.
- ^U Under the same conditions as shown in footnote (t) except the test points on the photocathode are separated by 32 mm.
- Y The center of an image produced on the screen by focusing a test pattern on the optical axis of the photocathode will fall within a circle concentric with the optical axis of the screen having the specified diameter.
- The center of the image produced on the screen of the tube as specified in footnote (v) will not shift more than the specified value during 30 seconds of operation.
- * A second magnification value (Emx) is obtained as stated in footnote (v) except the image points on the photocathode are separated by a distance of 32 mm. Per-cent distortion is defined by the equation

Electronic

Components

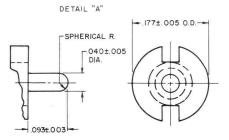
| 1. (円/

Per-cent Distortion = $\frac{\text{Emx-Cmx}}{\text{Cmx}} \times 100$

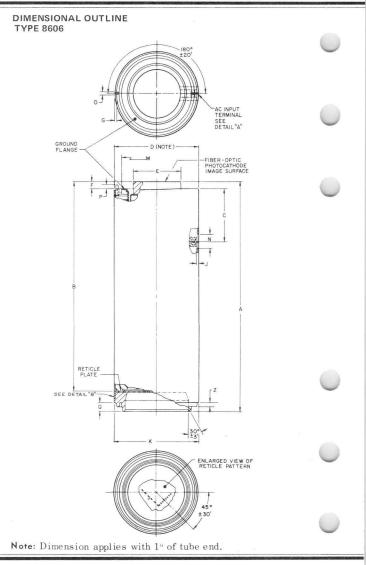
OPERATING CONSIDERATIONS

Magnetic Shielding

Magnetic shielding of these tubes may be required to minimize the effects of extraneous fields on tube performance. It is to be noted that ac magnetic fields are particularly objectionable in that they seriously impair tube resolution. If an iron or steel case is used, care should be taken to insure that the case is completely demagnetized.

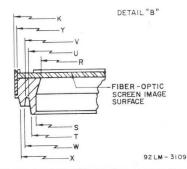

High Humidity for Types 8605/V1 and 8605/V2

To avoid possible corona effects, it is recommended that these tubes not be operated under conditions of high humidity unless potted in silicone rubber, or equivalent, and that sharp bends in terminal connection leads be avoided.


DC Power Supply for Types 8605/V1 and 8605/V2 The dc supply voltage for these tubes may be obtained from a suitable high-voltage power-supply unit. Such units are offered commercially by several manufacturers listed in buyers' guides.

DIMENSIONAL OUTLINE TYPE 8606

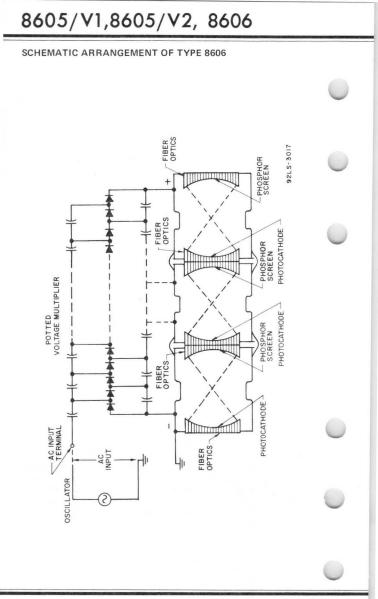
R(B/J



Electronic Components

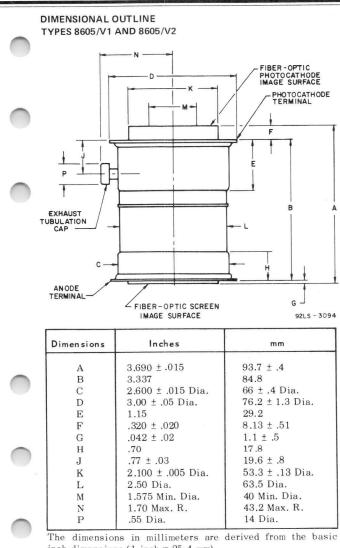
RBA Electronic Components

DIMENSIONAL OUTLINE TYPE 8606



Dimen-	Inc	hes	mm			
sions	Min. Max.		Min.	Max.		
А	11.906	12.028	302.512	305.511		
В	11.025	11.115	280.035	282.321		
С	2.372	2.398	60.249	60.909		
D	3.742 Dia.	3.747 Dia.	95.047 Dia.	95.174 Dia.		
E	2.095 Dia.	2.105 Dia.	53.213 Dia.	53.467 Dia.		
F	.237	.243	6.020	6.172		
G	.082	.092	2.082	2.336		
J	.093	.113	2.362	2.870		
K	3.737 Dia.	3.747 Dia.	94.92 Dia.	95.10 Dia.		
М	2.950 Dia.	3.050 Dia.	74.930 Dia.	77.470 Dia.		
N	.620 Dia.	.630 Dia.	15.748 Dia.	16.002 Dia.		
0	.120 Dia.	.123 Dia.	3.048 Dia.	3.124 Dia.		
Р	.208	.218	5.283	5.537		
Q	.370	.380	9.398	9.652		
R	2.51 Dia.	2.55 Dia.	63.75 Dia.	64.77 Dia.		
S	2.781 Dia.	2.791 Dia.	70.637 Dia.	70.891 Dia.		
Т	2.979 Dia.	2.994 Dia.	75.666 Dia.	76.047 Dia.		
U	3.083 Dia.	3.098 Dia.	78.308 Dia.	78.689 Dia.		
V	3.245 Dia.	3.260 Dia.	82.423 Dia.	82.804 Dia.		
W	3.297 Dia.	3.312 Dia.	83.743 Dia.	84.124 Dia.		
X	3.500 Dia.	3.520 Dia.	88.900 Dia.	89.408 Dia.		
Y	3.54 Dia.	3.58 Dia.	89.91 Dia.	90.93 Dia.		
Z	.183	.193	4.648	4.902		

The dimensions in millimeters are derived from the basic inch dimensions (1 inch = 25.4 mm).

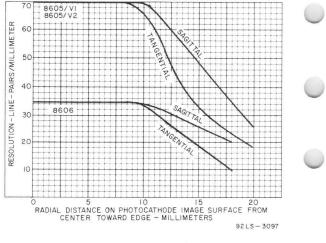


B/ſ

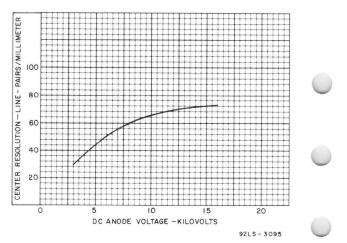
BA Electronic Components

Π {

inch dimensions (1 inch = 25.4 mm).


日//

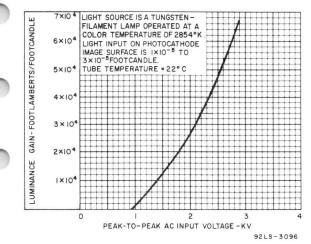
Electronic

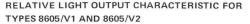

Components

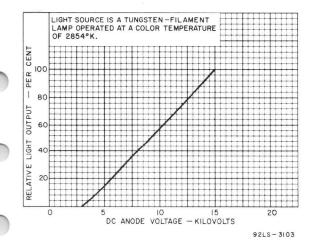
DATA 7 2-71

TYPICAL RESOLUTION CHARACTERISTICS FOR ALL TYPES

TYPICAL RESOLUTION CHARACTERISTICS FOR TYPES 8605/V1 AND 8605/V2

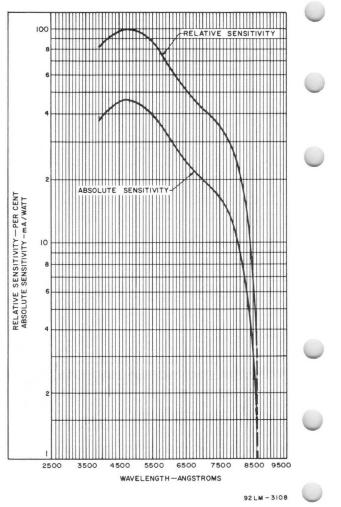



Electronic Components


BЛ

157

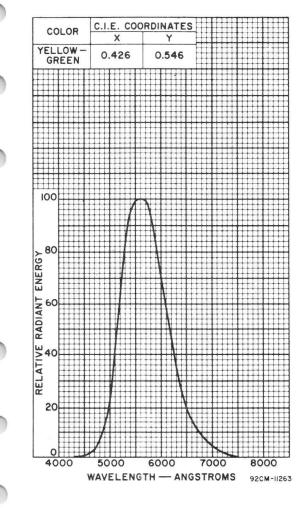
LUMINANCE GAIN AS A FUNCTION OF VOLTAGE FOR TYPE 8606



RBA Electronic Components

DATA 8 2-71

TYPICAL SPECTRAL RESPONSE CHARACTERISTIC FOR ALL TYPES

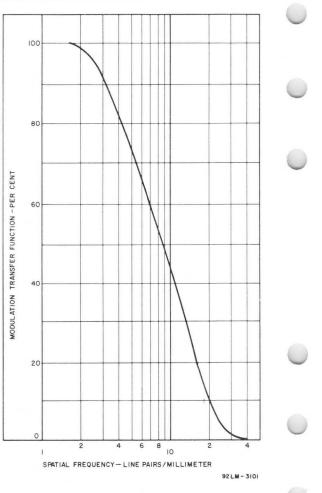


Electronic

Components

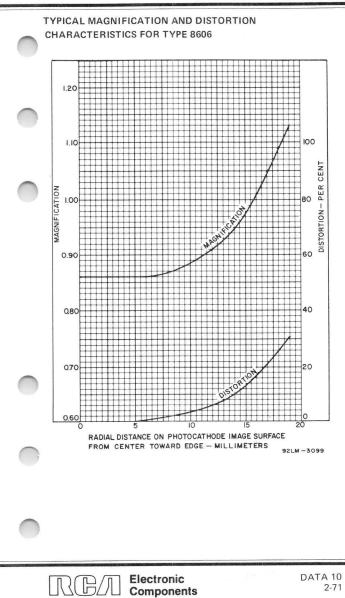
哈//

SPECTRAL ENERGY EMISSION CHARACTERISTICS (JEDED PHOSPHOR P20) FOR ALL TYPES

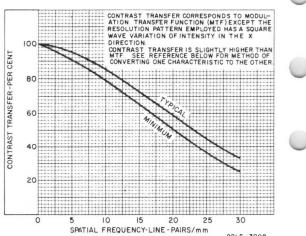


Electronic Components

RB/1


DATA 9 2-71

TYPICAL MODULATION TRANSFER FUNCTION VERSUS FREQUENCY FOR TYPE 8606



Electronic Components

RB/J

CONTRAST TRANSFER CHARACTERISTICS FOR TYPES 8605/V1 AND 8605/V2

92LS-3098

Photomultiplier Tubes

3/4 Inch Diameter, 10-Stage, Head-On Types Multialkali Photocathode of High Quantum Efficiency In-Line Electrostatically-Focused Dynode Structure

For miniaturized low-level light detection and measurement systems and laser detection equipment to approximately 8000 angstroms. Typical quantum efficiency of these tubes at 6943 angstroms, is 2.5 per cent.

GENERAL Spectral Response S-20 Wavelength of Maximum Response. . . . 4200 ± 500 angstroms Cathode, Semitransparent Potassium-Sodium-Cesium-Antimony (Multialkali) Shape Sperical Section Minimum area..... 0.2 sq.in (129 sq.mm) Window..... Borosilicate, Corning^a No.7056. or equivalentPlano-Concave Shape..... Dynodes: Substrate.....Copper-Beryllium Secondary-Emitting Surface Beryllium-Oxide Structure In-Line Electrostatic-Focus Type Direct Interelectrode Capacitances (Approx.): Maximum Overall Length (Excluding leads): Maximum Diameter: 8645.....0.95 in (24.1 mm) Lead Connections..... (See Dimensional Outline) Temporary Base Small-Shell Duodecal, JEDEC B12-43 Magnetic Shield See footnote (b) Weight (Approx.): 8644 8645. Indicates, a change,

Electronic Components

ABSOLUTE-MAXIMUM RATINGS				
	8644	8645		
Supply Voltage (DC or Peak AC):				
Between Anode and Cathode	2100 max.	1800 max.	v 🗸	/
Between Anode and				
Dynode No.10	300 max.	300 max.	V	
Between Consecutive Dynodes.	200 max.		V	
Between Dynode No.1				
and Cathode	400 max.	-	V	1
\rightarrow Average Anode Current ^d	0.5 max.	0.1 max.		
Ambient Temperature	85 max.	55 max.	oC	
CHARACTERISTICS RANGE VAI	LUES			
→ Under conditions with dc supply	voltage (E) ac	ross a voli	tage	
divider as shown in Table I. Th				
vided by the integral voltage-d			 	2
With E = 1500 volts dc (Except a)		01 05 00		
For Both Types: Min.	Typ.	Max.		
Sensitivity:	76.	mux.		
Radiant, at				
4200 angstroms	$5.1 \ge 10^3$	_	A/W	
Cathode radiant,	0.1 X 10			
at 4200 angstroms	0.064	_	A/W	
Luminous ^f 4	12	60 A	/lm	
Cathode luminous:	14			
With tungsten				
light source g 1.2 x 10 ⁻⁶	$4 1.5 \times 10^{-4}$	— A	/lm	
With blue	1.0 4 10		.,	
light source ^h 5.5 x 10 ⁻⁴	88.5×10^{-8}	-	А	
With red	010 11 20			
light source ⁱ 4 x 10 ⁻	7 5.2 x 10 ⁻⁷	_	A	
Current Amplification	8×10^{4}	-		
Equivalent Anode-	4 x 10 ⁻¹¹	6 x 10 ⁻¹⁰	lm	
Dark-Current Input ^k ,m {	9.4 x 10 ⁻¹⁴ n	1.4 x 10 ⁻¹²	W	
→ Anode Dark Current ^k , ^m . –	1.2 x 10 ⁻⁹	-	A	
Equivalent Noise Input P {	2.5 x 10-12	_	lm	2
	6 x 10 ⁻¹⁵ⁿ	-	W 🤍	P
Anode-Pulse Rise Time 9 -	1.8×10^{-9}	-	S	
Electron Transit Timer	2×10^{-8}	-	S	
With E = 2000 volts dc (Except as	noted)			
For Type 8644 Only: Min.	Typ.	Max.		
Sensitivity:				ŝ
Radiant, at			-	0
4200 angstroms	4.7×10^4		A/W	
	- Indic	ates a cha	nge.	
		DAT	- A 1	
Components		DAI	AI	

Cathode radiant,			
at 4200 angstroms	0.064	– A	/W
Luminous [†]	110	– A/	/lm
Cathode luminous:			
With tungsten			
light source ⁹ 1.2 x 10 ⁻⁴	$1.5 \ge 10^{-4}$	– A/	lm
With blue	2		
light source ^h 5.5 x 10 ⁻⁸	8.5 x 10 ⁻⁸	-	А
With red	7		
light source ⁱ 4 x 10 ⁻⁷	5.2 x 10 ⁻	-	А
Current Amplification	7.3×10^{5}	- 10	
Equivalent Anode-	4×10^{-11}	6 x 10 ⁻¹⁰	lm
Dark-Current Input ^{k,m} (-	9.4 x 10 ⁻¹⁴ n	1.4 x 10 ⁻¹²ⁿ	W
Anode Dark Current	$5 \ge 10^{-9}$		А
Anode-Pulse Rise Time 9 -	1.5 x 10 ⁻⁹	- •	s
Electron Transit Timer	1.7 x 10 ⁻⁸	-	s

^a Made by Corning Glass Works, Corning, New York.

- ^b Magnetic shielding material, for type 8644, in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1322 North Elston, Chicago 24, Illinois, or equivalent. Type 8645 has an integral magnetic shield.
- d Averaged over any interval of 30 seconds maximum.
- ^e Tube operation at room temperature or below is recommended.
- ^f Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K and a light input of 1 microlumen is used.
- 9 Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. It is operated at a color temperature of 2870°K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode. This characteristic can not be measured after type 8645 is encapsulated in its potting compound.
- ^h Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode. This characteristic can not be measured after type 8645 is encapsulated in its potting compound.
- I Under the following conditions: Light incident on the cathode is transmitted through a red filter (Corning C.S. No.2-62-Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K.

Electronic

Components

The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode. This characteristic can not be measured after type 8645 is encapsulated in its potting compound.

- ^k At a tube temperature of 22° C. Dark current may be reduced by use of a refrigerant.
- ^mWith supply voltage (E) adjusted to give a luminous sensitivity of 30 amperes per lumen.
- At 4200 angstroms. This value is calculated using a conversion factor of 428 lumens per watt.
- P Under the following conditions: Supply voltage (E) is as shown, 22° C tube temperature, external shield connected to cathode, bandwidth 1 cycle per second, tungsten-light source at a color temperature of 2870°K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- ^q Measured between 10 per cent and 90 per cent of maximum anodepulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- ^r The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

OPERATING CONSIDERATIONS Terminal Connections and Mounting Considerations:

Туре 8644

The 8644 is supplied with a small-shell duodecal base attached to semiflexible leads to facilitate testing. After testing, the attached base should be removed prior to installing the 8644 in a given system.

The semiflexible leads of the 8644 may be soldered or welded into the associated circuit. However, extreme caution must be exercised when making such connections to the leads to prevent tube destruction due to thermal stress of the glass-metal seals. A heat sink placed in contact with the semiflexible leads between the point being soldered, or welded, and the glass button is recommended.

Excessive bending of the leads-especially in the region close to the glass button-must be avoided.

Direct clamping to the bulb for mounting purposes is not recommended. It is suggested that a resilient material, such as Silastic* RTV 881, RTV 882, or equivalent, be used between the bulb and clamp.

The application of high voltage, with respect to cathode, to insulating or other materials supporting or shielding the 8644 at the photocathode end of the tube should not be permitted unless such materials are chosen to limit leakage current to the tube envelope to 1×10^{-12} ampere or less. In addition to increasing dark current and noise output because of voltage gradients developed across the bulb wall, such high voltage may produce minute leakage current to the cathode through the tube envelope and insulating materials which can permanently damage the tube.

Type 8645

Support for the 8645 may be effected by clamping directly to the magnetic shield. However, only that amount of uniformly distributed pressure necessary to hold the tube firmly in position should be employed.

Shielding:

Type 8644

Electrostatic and magnetic shielding of the 8644 is usually required. When a shield is used it must be at cathode potential.

See accompanying curves which show the effect of magnetic fields on anode current of the 8644 under the conditions indicated. The effects of hysteresis due to residual magnetism of the materials used in the tube structure have been neglected.

Туре 8645

The 8645 is encapsulated with an insulating plastic potting compound in a magnetic shield and has

* Trademark of Dow Corning Corporation, Midland, Michigan.

Electronic Components

an integral voltage-divider network. The magnetic shield is electrically connected to the photocathode.

See accompanying curve which shows the effect of magnetic fields on anode current of the 8645 under the conditions indicated. The effects of hysteresis due to residual magnetism of the materials used in the tube have been neglected.

See accompanying voltage-divider network and supply voltage connections for the 8645.

Dark Current:

A very small *anode dark current* is observed when voltage is applied to the electrodes of these tubes in complete darkness. Among the components contributing to dark current are ohmic leakage between the anode and adjacent elements and pulses produced by electrons thermionically released from the cathode, secondary electrons released by ionic bombardment of the dynodes, support rods, or cathode, and by cold emission from the electrodes.

Typical anode dark current as a function of luminous sensitivity at a temperature of +22^o C is shown in accompanying Typical-Dark Current and EADCI Characteristics.

A temporary increase in anode dark current by as much as 3 orders of magnitude may occur if these tubes are exposed momentarily to high-intensity ultraviolet radiation from sources such as fluorescent room lighting even though voltage is not applied to the tubes. The increase in dark current may persist for a period of 24 to 48 hours following such irradiation.

For *optimum tube performance* it is also recommended that the 8644 and 8645 be operated at or below room temperature. Dark current may be reduced by use of a refrigerant such as dry ice.

Operating Stability:

The operating stability of the 8644 and the 8645 is dependent on the magnitude of the anode current.

The use of an average anode current well below the maximum rated value of 0.5 milliampere is recommended when stability of operation is important. When maximum stability is required, operation at an average anode current of 0.5 microampere is recommended.

Operating Voltages:

The 8645 is supplied with an integral voltagedivider network. The following considerations, accordingly, apply only to type 8644.

The voltage applied between cathode and dynode No.1 should be nearly constant and have a value of at least 150 volts to insure high conversion efficiency, i.e., high photon quantum efficiency, high collection efficiency, and high first dynode gain. Zener diodes, or other constant voltage sources, may be employed across these elements to provide constant voltage in applications where tube sensitivity is varied by adjusting the supply voltage.

The operating voltage between dynode No.10 and anode should be kept as low as will permit operation over the knee of the accompanying anode characteristic curves. With low operating voltage between dynode No.10 and anode, the ohmic leakage current to the anode is reduced. Operation over the knee occurs in the approximate range of 100 to 150 volts for the light level range shown. Under high pulse current conditions, saturation due to space-charge limitations will occur and higher voltage will be required. To obtain the suggested operating voltage between dynode No.10 and anode, it is necessary to increase the supply voltage between these electrodes by an amount equal to the voltage drop across a particular output load.

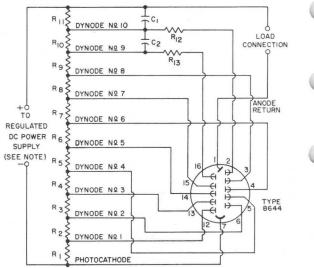
The operating voltages for the 8644 can be supplied by spaced taps on a voltage divider across a regulated dc power supply. The current through the voltage divider will depend on the applied voltage and the

linearity required by the application. In general, the current in the divider should be at least 5 times greater than the maximum average value of anode current. The resistance value of the voltage divider should be adequate to prevent variation of dynode potentials by signal current. Resistance values greater than 10 megohms should not be employed between adjacent tube elements. Location of the voltage-divider arrangement should be such that the power dissipated in the resistor string does not increase the temperature of the tube. In pulse applications requiring low-noise operation, it is recommended that the *negative high-voltage terminal be* grounded.

See *Typical voltage-divider arrangement* for use with the 8644. The choice of resistance values for the voltage-divider string is usually a compromise. If low values of resistance per stage are utilized, the power drawn from the supply and the required wattage rating of the resistors increase. Phototube noise may also increase, due to heating, if the divider network is mounted near the tube. The use of high values of resistance per stage may cause deviation from linearity if the voltage-divider current is not maintained at a value of at least 5 times that of the maximum average anode current and may limit anode current response to pulsed light.

When the ratio of peak anode current to average anode current is high, non-inductive high-quality capacitors should be employed across the latter stages of the tube. The values of these capacitors should be chosen so that sufficient charge is available to prevent a change of more than a few per cent in the interstage voltages throughout the pulse duration.

Damping resistors in series with each of the dynode leads of the latter stages of the tube may be used to suppress spurious oscillations under high peak current conditions. Typical values for these resistors are in the range of 5 to 50 ohms. These values are chosen to provide sufficient damping while minimizing the voltage drop across the resistors.


The high voltages at which these tubes are operated are very dangerous. Care should be taken in the design of apparatus to prevent the operator from coming in contact with these high voltages. Precautions should include the enclosure of high-potential terminals and the use of interlock switches to break the primary circuit of the high-voltage power supply when access to the apparatus is required.

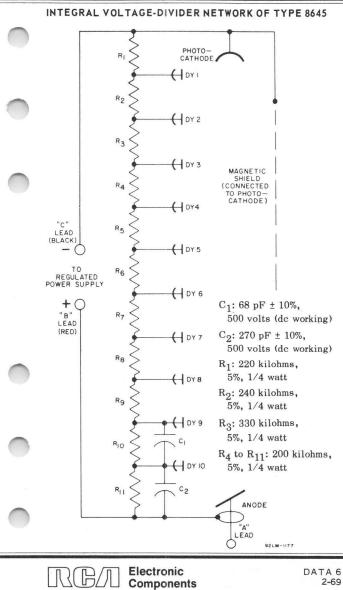
In the use of the 8644 and the 8645, as with other tubes requiring high voltages, it should always be remembered that these high voltages may appear at points in the circuit which are normally at low potential, because of defective circuit parts or incorrect circuit connections. Therefore, before any part of the circuit is touched, the power-supply switch should be turned off and both terminals of any capacitors grounded.

TABLE I	
TYPICAL VOLTAGE DIST	RIBUTION
Between:	8.33% of Supply Voltage (E) Multiplied by:
Cathode and Dynode No.1	1.1
Dynode No.1 and Dynode No.2	1.2
Dynode No.2 and Dynode No.3	1.7
Dynode No.3 and Dynode No.4	1.0
Dynode No.4 and Dynode No.5	1.0
Dynode No.5 and Dynode No.6	1.0
Dynode No.6 and Dynode No.7	1.0
Dynode No.7 and Dynode No.8	1.0
Dynode No.8 and Dynode No.9	1.0
Dynode No.9 and Dynode No.10	1.0
Dynode No.10 and Anode	1.0
Anode and Cathode	12,0

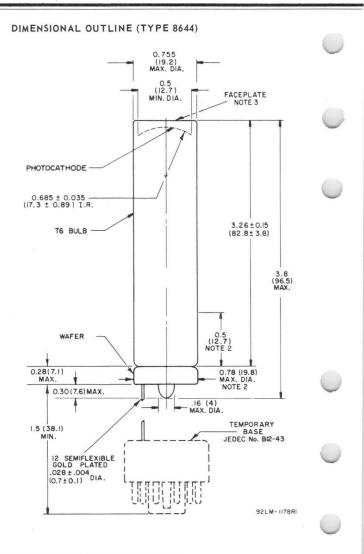
RBA Electronic Components

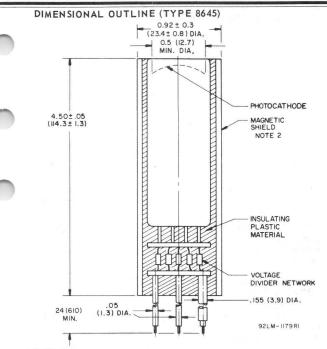
92LM-1176

NOTE: Adjustable between approximately 500 and 2100 volts dc.

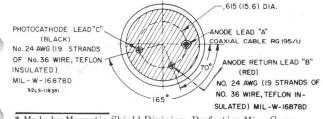

C₁, C₂: 0.01 μ F, non-inductive type, 400 volts (dc working)

R₁: 51 kilohms, 5%, 1 watt R₂: 56 kilohms, 5%, 1 watt R₃: 82 kilohms, 5%, 2 watt R₄ through R₁₁: 47 kilohms, 5%, 1 watt R₁₂, R₁₃: 10 to 50 ohms, 10%, 1/2 watt


(See Damping resistors under Operating Considerations, Operating Voltages)

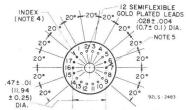

Electronic Components

DATA 5


2-69

NOTE 1: Dimensions are in inches unless otherwise stated. Dimensions in parentheses are in millimeters.

NOTE 2: Wall thickness of magnetic shield is 0.020" (0.5 mm) Netic* and 0.014" (0.355) Conetic*.



Made by Magnetic Shield Division, Perfection Mica Company, 1322 North Elston, Chicago 24, Illinois, or equivalent material.

> Electronic Components

日/)

LEAD ORIENTATION (Bottom View)

NOTE 1: Dimensions are in inches unless otherwise stated. Dimensions in parentheses are in millimeters.

NOTE 2: Within this length, maximum diameter of tube is 0.78 inch (19.8 mm).

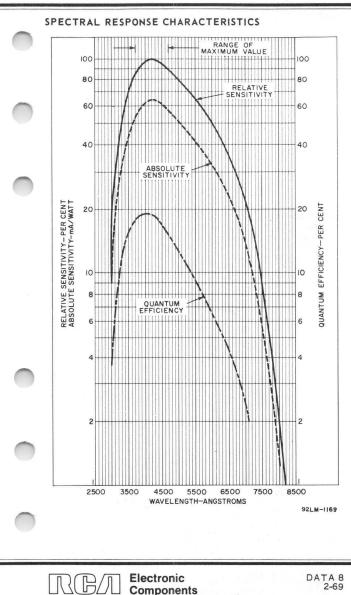
NOTE 3: Deviation from flatness within a concentric circle, 0.55 inch (14 mm) diameter will not exceed 0.006 inches (0.15 mm) peak to valley.

NOTE 4: Lead is cut off within 0.06 inch (1.5 mm) of glass button for indexing.

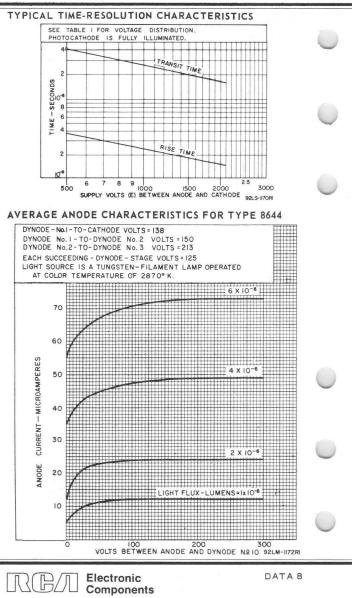
NOTE 5: Leads 6, 7, 15, 16, and 17 are cut off within 0.06 inch (1.5 mm) of glass button.

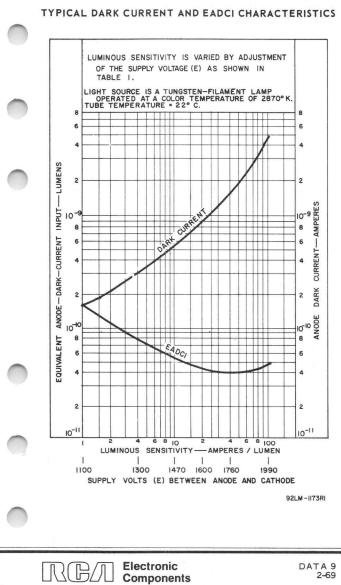
TERMINAL DIAGRAM With Temporary Base,

JEDEC B12-43, Bottom View

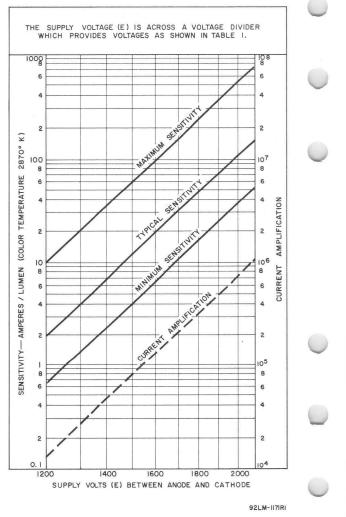

Pin 1: Dynode No.1 Pin 9: Dynode No.6 DYIO (7 Pin 2: Dynode No.3 DYa 6 DYA Pin 10: Dynode No.4 8) Pin 3: Dynode No.5 Pin 11: Dynode No.2 4 DY7 4 DY6 4 ₽ 9 Pin 4: Dynode No.7 Pin 12: Photocathode 4 H 4 5: Dynode No.9 DY5 3 H Pin H H 10) DY4 e Pin 6: Anode DIRECTION OF LIGHT DY3 Pin 7: Dynode No.10 DY Pin 8: Dynode No.8

LEAD TERMINAL CONNECTIONS (Bottom View)

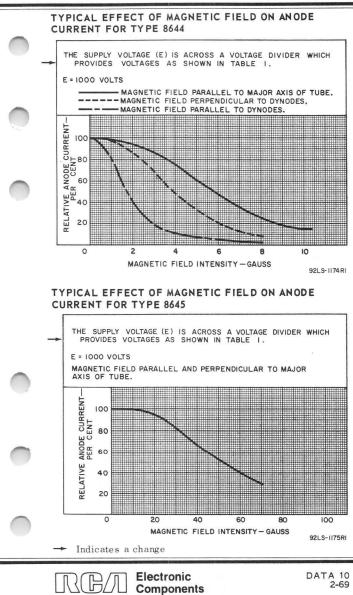

Lead 1: Dynode No.1 Lead 2: Dynode No.3 Lead 3: Dynode No.5 DYIO DY8 P DY6 6 Lead 4: Dynode No.7 (8 m Lead 5: Dynode No.9 DY4 Lead 8: Anode DY9 (5 (3) DY 2 9: Dynode No.10 Lead Lead 10: Dynode No.8 DY 7 (4) 14) K Lead 11: Dynode No.6 DY 5 3 Lead 12: Dynode No.4 DIRECTION OF LIGHT . DY3 INTO END OF BULB Lead 13: Dynode No.2 DY Lead 14: Photocathode

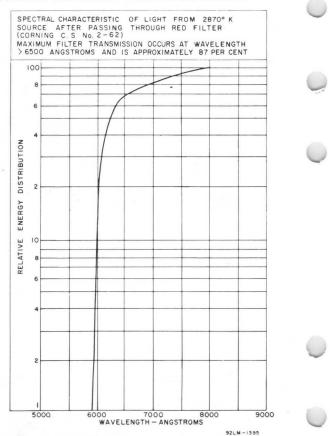

> Electronic Components

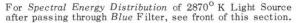
DATA 7



Components




TYPICAL SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS



RBA Electronic Components

SPECTRAL ENERGY DISTRIBUTION OF 2870° K LIGHT SOURCE AFTER PASSING THROUGH RED FILTER

BA Electronic Components DATA 10

8664

Photomultiplier Tube

Ruggedized, 2"-Diameter, 10-Stage Type

GENERAL

Spectral Response
Wavelength of Maximum Response 4000 ± 500 Å
Cathode, Semitransparent Cesium-Potassium-Antimony (Bialkali)
Minimum area 2.54 in ² (16.4 cm ²)
Minimum diameter 1.8 in (4.6 cm)
Window UV-Grade Sapphire
Shape Plano-Plano
Index of refraction See Table I
Dynodes
Substrate Copper-Beryllium
Secondary-Emitting Surface Beryllium-Oxide
Structure Venetian-Blind
Direct Interelectrode Capacitances (Approx.):
Anode to dynode No.10 and guard ring 9.5 pF
Anode to all other electrodes 9.5 pF
Maximum Overall Length 4.00 in (10.2 cm)
Maximum Diameter 2.06 in (5.2 cm)
Magnetic Shield See footnote a
Operating Position Any
Weight (Approx.) 7 oz (190 g)
MAXIMUM RATINGS, Absolute-Maximum Values:
DC Supply Voltage:
Between anode and cathode 2000 max. V
Between anode and dynode No.10 300 max. V
Between anode and guard ring ^c 300 max. V
Between consecutive dynodes 250 max. V
Between dynode No.1 and cathode 600 max. V
Average Anode Current ^d 2 max. mA
Ambient-Temperature Range ^e 100 to + 75 max. ^o C

Electronic Components

 $[\Pi]$

B/

CHARACTERISTICS RANGE VALUES

Under conditions with dc supply voltage (E) across a voltage divider providing 3/13 of E between cathode and dynode No.1; 1/13 of E for each succeeding dynode stage; and 1/13 of E between dynode No.10 and anode. The guard ring is operated at or near anode potential.

With E = 1500 Volts (Except as noted)

	Min.	Typical	Max.		
Anode Sensitivity:					
Radiant ^f at 4000 angstroms	-	1.8×10^4	-	A/W	
Luminous ^g (2870 ^o K)	7	17	165	A/lm	
Current with blue light source (2870°K+C.S. No. 5-58)	9x10 ⁻⁶	2x10 ⁻⁵	2x10 ⁻⁴	А	
Cathode Sensitivity:					
Radiant ¹ at 4000 angstroms	-	$6.9 \ge 10^{-2}$	-	A/W	
Luminous ^k (2870 [°] K) 5	.8 x 10 ⁻⁵	$6.7 \ge 10^{-5}$	-	A/lm	
Current with blue light source ^m (2870 ^o K+C.S.	7x10 ⁻¹¹	8x10 ⁻¹¹			
No.5-58)	7x10	8x10 11	-	A	
Quantum Effi- ciency ⁿ at 3750 angstroms	_	22	_	%	
Current Amplification	-	2.6×10^{5}	—		
Anode Dark Current ^p	-	1x10 ⁻⁹	9x10 ⁻⁹	A	
Equivalent Anode Dark Current Input ^P	(1.3x10 ⁻¹⁰ 1.3x10 ⁻¹³ q	1.2x10 ⁻⁹ 1.2x10 ⁻¹² q	lm W	
Equivalent Noise Input ¹	-	1.4x10 ⁻¹² 1.4 x 10 ⁻¹⁵	-	lm W	
Peak-to-Valley Ratio of Pulse Height Spectrum with Fe Source	10	30			(
Dark Pulse Spectrum		See accompa	anying Typica	l Dark	
Anode-Pulse Rise		Pulse Sp	ectrum		
Time ^U at 2000 V	-	7x10 ⁻⁹	-	s	1
Electron Transit Time at 2000 V	-	4x10 ⁻⁸	-	8	

Electronic Components

RG/1

DATA 1

8664

With $E = 1100$ Volts				
Pulse Height Reso- lution ^w				
lution ^w	-	7.7	8	%
Pulse Height [×]	6×10^{-12}			coulombs

Under conditions with dc supply voltage (E) across a voltage divider providing the following cathode-to-anode voltage distribution: 2, 1, 1, 1, 1, 1, 4, 3.5, 4, and 4.8. The guardring is connected at or near anode potential.

With E = 2000 Volts

	Min.	Typical	Max.	
Pulse Current:				
Space-Charge Limite (Saturated)	ed			
(Saturated)'	-	0.5	-	A
Linear ^z	-	0.033	-	Α

- ^a Magnetic shielding material in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1322 N. Elston Avenue, Chicago, Ill., 60622, or equivalent.
- ^c The guard ring is an electrode located between dynode No.10 and anode. Its function is to minimize leakage current flowing to the anode.
- d Averaged over any interval of 30 seconds maximum. When stability of operation is important, the use of an average anode current well below the maximum rated value is recommended.
- e Tube operation at room temperature or below is recommended.
- f This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 1030 lumens per watt.
- ⁹ These values are calculated as shown below:

Anode Current (with blue light source) (A)

DATA 2 8-70

Luminous Sensitivity (A/lm) = -

RBA Electronic Components 0.12 x Light Flux of 1×10^{-5} (lm)

8664

The value of 0.12 is the average value of the ratio of the anode current measured under the conditions specified in footnote (h) to the anode current measured under the same conditions but with the blue filter removed.

- ^h Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness - Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 1 x 10⁻⁵ lumen.
- ⁱ This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1030 lumens per watt.
- k These values are calculated as shown below:

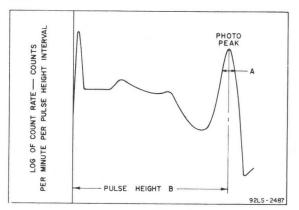
Cathode Current (with blue light source) (A)

Cathode Luminous Sensitivity (A/lm) =

 $0.12 \text{ x Light Flux of } 1 \text{ x } 10^{-5} \text{ (lm)}$

The value of 0.12 is the average value of the ratio of the cathode current measured under the conditions specified in footnote (m) to the cathode current measured under the same conditions but with the blue filter removed.

- ^m Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C. S. No.5-58, polished to 1/2 stock thickness Manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 1 x 10⁻⁵ lumen and 250 volts are applied between cathode and all other electrodes connected as anode.
- ⁿ Calculated from the typical cathode radiant sensitivity value.
- P At a tube temperature of 22° C. Light incident on the cathode is transmitted through a blue filter (Corning C. S. No.5-58, polished to 1/2 stock thickness). The light flux incident on the filter is 10 microlumens. The supply voltage (E) is adjusted to obtain an anode current of 9 micro-amperes. Sensitivity of the 8664 under these conditions is approximately equivalent to 7.5 amperes per lumen. Dark current is measured with no light incident on the tube.


- 9 At 4000 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 1030 lumens per watt.
- ^r Under the following conditions: Supply voltage (E) is as shown, 22° C tube temperature, external shield connected to cathode, bandwidth 1 Hz, tungsten light source at a color temperature of 2870° K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period.
- ⁵ At 4000 angstroms. This value is calculated from the ENI value in lumens using a conversion factor of 1030 lumens per watt.
- [†] Light incident on the photocathode is obtained from a Harshaw Type HG 0.005" beryllium window NaI(T1) scintillator, 0.04" thick and 7/8" in diameter (or equivalent) and an isotope of iron having an atomic mass of 55 (Fe⁵⁵) and an effective activity of 1 µcurie.
- Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- ✓ The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.
- With a supply voltage E of 1100 volts. Anode load is a 100-kilohm resistor in parallel with a total capacitance of 100 pF. Under pulse conditions, the interstage voltages of the tube should not deviate more than 2% from the interstage voltage values during no-signal conditions. The 662 keV photons from a one-microcuire Cs¹³⁷ source and a cylindrical 2" x 2" thallium-activated sodium-iodide scintillator NaI(T1)-type Harshaw Type 8D8550, Serial No. CJ-156, or equivalent, are used. The Cs¹³⁷ source is in direct contact with the metal end of the scintillator container. The faceplate end of the crystal is coupled to the faceplate of the tube using a coupling fluid such as Nujol mineral oil, or equivalent. Pulse-height resolution in per cent is de-

Electronic

Components

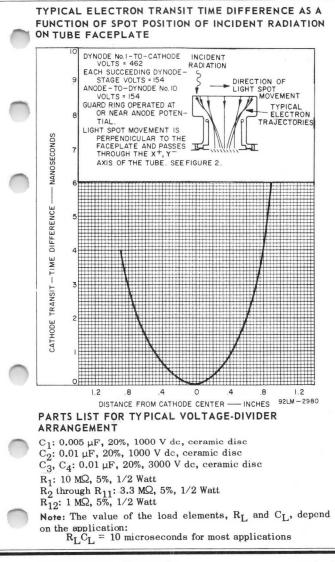
8664

fined at 100 times the ratio of the width of the photopeak at half the maximum count rate in the photopeak height (A) to the pulse height at maximum photopeak count rate (B).

- * Pulse height is defined as the average charge collected at the anode from a pulse caused by the photoelectric absorption of a 662 keV photon from Cs¹³⁷ in a thallium-activated sodium-iodide scintillator, NaI(T1).
- Y The interstage voltages of the 8664 should not deviate more than 2 per cent from the recommended voltage distribution. Capacitors are connected across the individual resistors making up the voltage-divider arrangement to insure the operating condition.
- ^z Maximum deviation from linearity is 5 per cent.

TABLE 1

Wavelength - Å	1830	2652	3021	4046	5461	6438	7065
Index of Re- fraction for Sap- phire Window	3.0	1.83	1.81	1.79	1.77	1.77	1.76

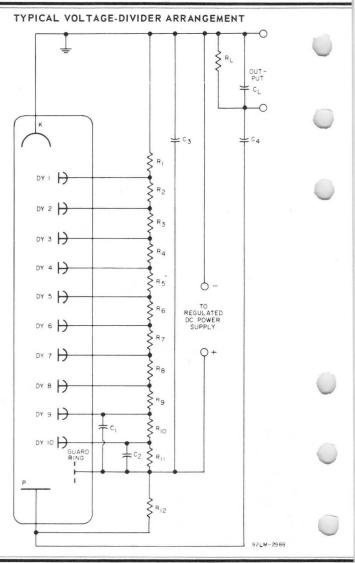

For additional information on this type write for Technical Bulletin to RCA Commercial Engineering, Harrison, N. J. 07029

DATA 3

Electronic

Components

日/川

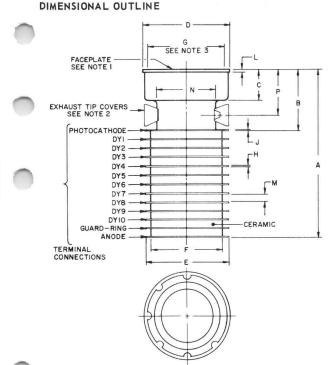


Electronic Components

日/

DATA 4 8-70

8664



Electronic Components

15 Л

B/Л

DATA 4

92LM-2989

The dimensions in millimeters are derived from the basic inch dimensions (1 inch = 25.4 mm)

Note 1: Deviation from flatness of external surface of faceplate will not exceed 0.005" from peak to valley.

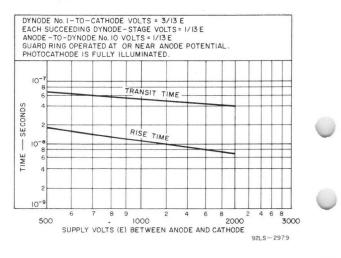
Note 2: The maximum dimension of both exhaust tip covers will not extend beyond the maximum diameter of the tube. Care should be exercised not to subject these covers to any stress or strain.

Note 3: Minimum useful photocathode diameter.

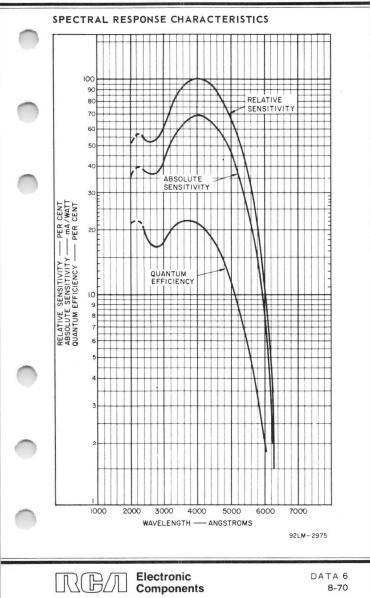
Electronic

Components

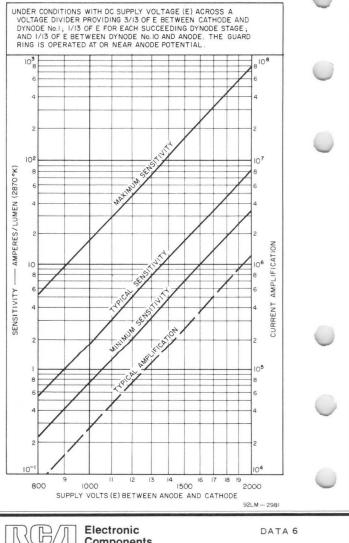
日//


||

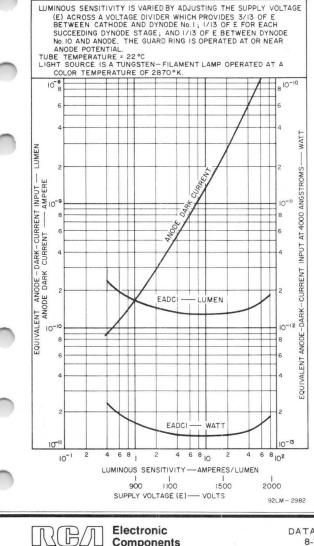
DATA 5 8-70


OUTLINE DIMENSIONS

Dimensions	Inches	mm	
A	4.00 Max.	101.6 Max.	
В	1.45	36.8	
C	.73	18.5	
D	2.06 Max. Dia.	52.3 Max. Dia.	1
E	2.00 Dia.	50.8 Dia.	
F	1.80 Max. Dia.	45.7 Max. Dia.	
G	1.80 Max. Dia.	45.7 Max. Dia.	
н	.02	.5	
J	.03	.8	
L	.06	1.5	1
M	.18	4.6	
N	1.37 Dia.	34.8 Dia.	
P	1.075	27.3	

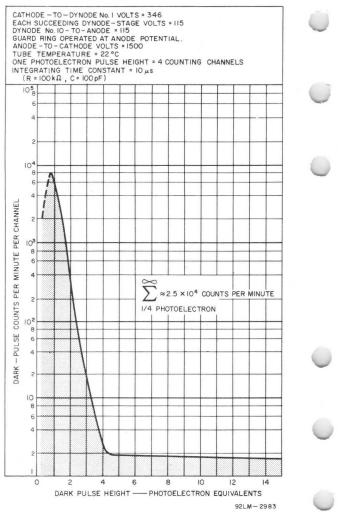

TYPICAL TIME-RESOLUTION CHARACTERISTICS

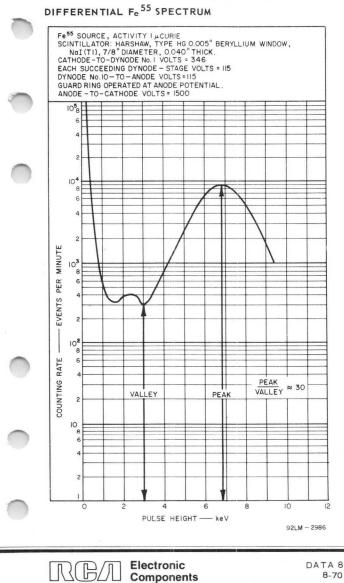
RBA Electronic Components



TYPICAL SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS

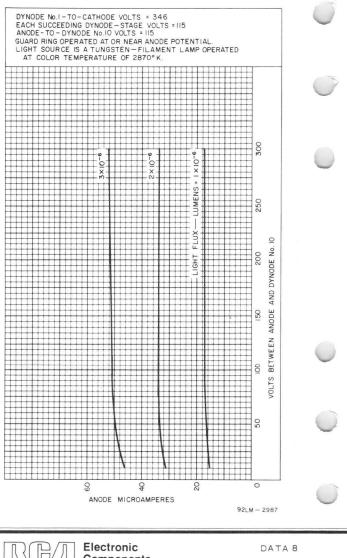
Components

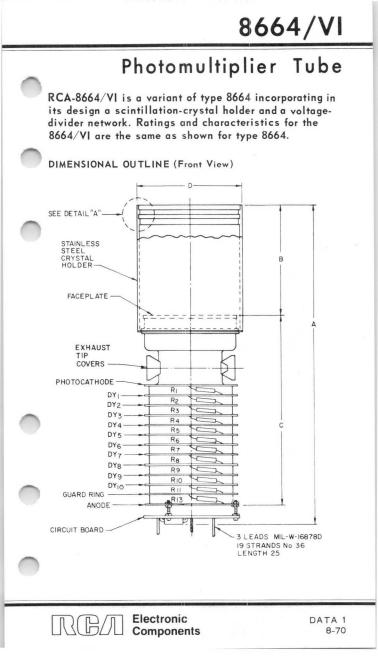



Components

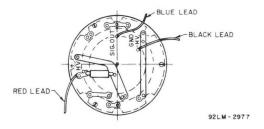
DATA 7 8-70

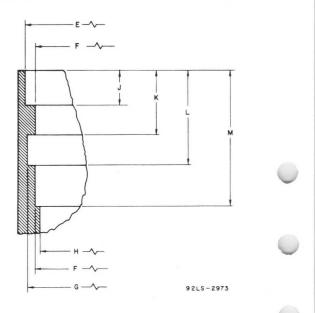
TYPICAL DARK PULSE SPECTRUM


RBA Electronic Components



8-70


TYPICAL ANODE CHARACTERISTICS


Components

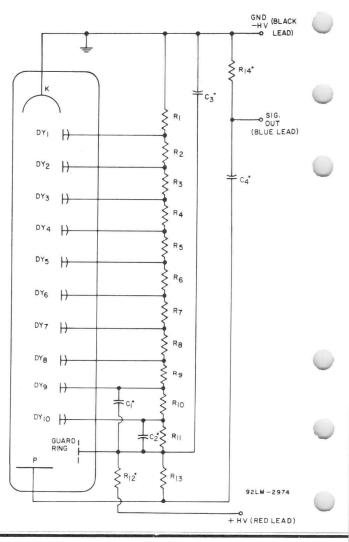
DIMENSIONAL OUTLINE (Bottom View)

DETAIL "A"

RBA Electronic Components

OUTLINE DIMENSIONS

Dimensions	Inches	mm
A	6.99 Max.	177.5 Max.
В	$2.352 \pm .005$	$59.740 \pm .127$
C	4.00 Max.	102 Max.
D	2.250 ± .010 Dia.	57.15 ± .25 Dia.
E	2.210 ± .005 Dia.	56.134 ± .127 Dia.
F	2.150 ± .005 Dia.	54.610 ± .127 Dia.
G	2.190 ± .005 Dia.	55.626 ± .127 Dia.
H	2.120 Dia.	53.85 Dia.
J	$.098 \pm .005$	$2.499 \pm .127$
K	$.188 \pm .005$	$4.775 \pm .127$
L	.280 + .005	7.112 + .127
М	{.406 + .030 000	$ \left\{ \begin{array}{c} 10.31 + .76 \\00 \end{array} \right. $


PARTS LIST FOR ACCOMPANYING TYPICAL VOLTAGE-DIVIDER ARRANGEMENT

C₁: 0.005 μ F, 20%, 1000 V dc, ceramic disc C₂: 0.01 μ F, 20%, 1000 V dc, ceramic disc C₃, C₄: 0.01 μ F, 20%, 3000 V dc, ceramic disc

 $\begin{array}{l} {\rm R}_1:\; 22\; M\Omega,\; 5\%,\; 1/2\; {\rm Watt} \\ {\rm R}_2\; {\rm through}\; {\rm R}_{10}:\; 8.2\; M\Omega,\; 5\%,\; 1/2\; {\rm Watt} \\ {\rm R}_{11}:\; 2.4\; M\Omega,\; 5\%,\; 1/2\; {\rm Watt} \\ {\rm R}_{12}:\; 1\; M\Omega,\; 5\%,\; 1/2\; {\rm Watt} \\ {\rm R}_{13}:\; 1.1\; M\Omega,\; 5\%,\; 1/2\; {\rm Watt} \\ {\rm R}_{14}:\; 10\; M\Omega,\; 5\%,\; 1/2\; {\rm Watt} \end{array}$

8664/VI

Electronic Components

RB/J

Image Orthicon

3-INCH DIAMETER MAGNETIC FOCUS LONG-LIFE TYPE MAGNETIC DEFLECTION

For Exceptionally High-Quality Performance in Color and Blackand-White Studio Television

The 8673 is designed to replace types 4513, 7513, 7513/L, 8093, $8093A, {\rm ~and} ~8093A/L$

GENERAL

Heater, for Unipotential	Cathode
Voltage (AC or DC)	••••••••••••••••••••••••••••••••••••••
Current at 6.3 V	
Direct Interelectrode Car	
Anode to all other elec	
	See Typical Spectral
spectral Response	Sensitivity Characteristic
With days Mathematical	Corning ^a No.7056, or equivalent
WINDOW MATERIAL	corning No. 7056, or equivalent
Photocathode Material.	Bialkali (Cs-K-Sb)
Photocathode Semitranspar	rent
Rectangular image (4 × 3	3 aspect ratio):
Usetul Size	I.8-inch max.diagonal
	Magnetic
Deflection Method	Magnetic
Overall Length	•••• 15.2 in (386 mm) ± 0.25 in
Greatest Diameter of Bulb	3.00 in (76.2 mm) ± 0.06 in
Minimum Deflecting Coil	Inside Diameter
Deflecting Coil	. Cleveland Electronics, OV-Series, ^d
	or or ivalant
Deflecting-Coil Length	
Focusing Coil	. Cleveland Electronics, OF-Series, ^d
	or equivalent
Focusing Coil Longth	
Alignment Coil	. Cleveland Electronics, OA-Series, ^d
Arighment corr	. creverand Erectronics, UA-Series,-
Lowest	or equivalent
Length	••••••••••••••••••••••••••••••••••••••
Location	. Axially centered II inches to rear
	of tube faceplace
Photocathode Distance Ins	ide End of Focusing Coil 1/2 in
Operating Position	The tube should never be operated in
a vertical position with	h the diheptal-base end up nor in any
other position where the	e axis of the tube with base up makes
an angle of less than 20	
	. Cinch Part No.3MI4, ^e or equivalent
	I 1b 6 oz (600 g)
neight (Applox.)	· · · · · · · · · · · · · · · · · · ·

RCA

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 1 12-66

DATA -

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Target Voltage		
Positive value	V	
Negative value	v	
Grid-No.5 Voltage	v	
Grid-No.4 Voltage	v	
Grid-No.3 Voltage	v	
Grid-No.2 & Dynode-No. Voltage	v	
Grid-No. Voltage	•	
Negative-bias value	v	
Positive-bias value 0	v	
Peak Heater-Cathode Voltage		
Heater negative with respect to cathode 125	V	
Heater positive with respect to cathode 10	v	
	v	
	v	
Voltage Between Consecutive Dynodes 400	۷	
TYPICAL OPERATING VALUES		
Photocathode Voltage (Image focus) ^f 400 to -540	V	
Grid-No.6 Voltage (Accelerator)-		
Approx. 59% to 60% of photocathode voltage ^g -235 to -325	V	
Target Voltage Above Cutoff ^h	v	
Grid-No.5 Voltage (Decelerator) 0 to 150	v	
Grid-No.4 Voltage (Beam focus) ^f	v	
Grid-No.3 Voltagej	v	
Grid-No.2 & Dynode-No.1 Voltage	v	
Grid-No. Voltage for Picture Cutoff45 to -115	v	
Dynode-No.2 Voltage	v	
Dynode-No.3 Voltage	v	
Dynode-No.4 Voltage	v	
Dynode-No.5 Voltage	v	
Anode Voltage	v	
Target-Temperature Range	°C	
Peak-to-Peak Target Blanking Voltage 6	v	
Field Strength at Center of Focusing	•	
Coil $(Approx.)^k$	G	
Field Strength of Alignment Coil (Approx.) . 0 to 3	G	
	-	
PERFORMANCE DATA		
With conditions shown under Typical Operating Values, pic	ture	
highlights at the "knee" of the light-transfer characteris	tic,	
525-line scanning, interlaced 2:1, frame time of 1/30 seco		
and 1.8-inch picture diagonal with 4x3 aspect ratio. Chan		
teristics are measured in an RCA Model TK-31A camera,		
equivalent.		
Min Typ Max		

	Min	Typ	Max	
Cathode Radiant Sensitivity at 4000 angstroms	-	0.08	-	μ Α/ μ₩
Cathode Luminous Sensitivity ^m	60	100	-	μA
Signal-Output Current (Peak to Peak)	5 38:1	- 45:1	32	μA
	(31.6 dB)	(33.1 dB)		

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 12-66

Photocathode Illumination at	Min	Тур	Max		
2870 ⁰ K Required to Reach "Knee" of Light-Transfer Characteristic	-	-	0.035	fc(lm/ft ²)	(
(Per cent of large-area black to large-area white) ^p Uniformity	38	55	_	%	
Ratio of Shading (Background) Signal to Highlight Signal Variation of Highlight Signal	-	-	0.15		(
(Per cent of maximum high- light signal) ⁹	-	_	25	%	

a Made by Corning Glass Works, Corning, New York.

b Proper orientation is obtained when the vertical scan is essentially parallel to the plane passing through center of faceplate and pin 7 of the shoulder base. The horizontal and vertical scan should preferably start at the corner of the raster nearest pin 6 of the shoulder base.

C The size of the optical image focused on the photocathode should be adjusted so that its maximum diagonal does not exceed the specified value. The corresponsing electron image on the target should have a size such that the corners of the rectangle just touch the target ring; a condition that may be achieved in some camera designs with a 1.6 inch diagonal image on the photocathode.

d Made by Cleveland Electronics Inc., 1974 East 61st St., Cleveland, Ohio.

e Made by Cinch Manufacturing Company, 1026 South Homan Ave., Chicago 24, Ill. f Adjust for best focus.

9 For minimum highlight flare of "ghost" the grid-No.6 voltage should be 59% of the photocathode voltage.

h Normal setting of target voltage is +2 volts from target cutoff. The target supply voltage should be adjustable from -3 volts to +5 volts.

J Adjust to give the most uniformly shaded picture near maximum signal.

k Direction of current should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.

^m Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870°K. The value of light flux is 1 x 10°4 lumen and -90 to -175 volts are applied between photocathode and grounded grid No.6 and target.

With a noise equivalent bandwidth of 4.5 MHz. Peak signal output is measured with respect to "picture" black. Signal-to-noise ratio is dependent upon tube operating conditions and on the method of measurement. Significant factors affecting this ratio include target voltage, bandwidth, system line number and frame time, and the choice of reference signal black level.

 $^{\ensuremath{\mathsf{p}}}$ Measured with amplifier having flat frequency responses.

9 Variation of response over scanned area.

OPERATING TECHNIQUES

With lens uncapped and lens iris opened, proper voltages should beapplied to the 8673, and the grid-No.1 voltage should immediately be adjusted to produce a small amount of beam current. This prevents the mesh from being electrostatically pulled into contact with the glass disc. Adjust the deflection circuits so that the beam "overscans" the target, i.e., so that the area of the target scanned is greater than its sensitive area. Note that overscanning the target results in a smaller-than-normal picture on the monitor. The lens should

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

be capped and the tube should be allowed to warm up for 10 minutes before used or before adjustments are made.

Care should be taken to avoid operating the camera with the lens turret removed, or swinging the tube and focusing coil away from the optical system of a color camera, when voltages are applied to the tube. Excessive illumination for short periods of time under these conditions may damage the photocathode of the 8673.

Next, uncap the lens and partially open the lens iris. Increase the target voltage until information appears on the monitor. Then adjust beam focus, image focus, and optical focus until detail can be discerned in the picture. Adjust alignment-coil current controls until picture response is maximum. If picture appears in negative contrast, increase the beam current. Further adjust the alignment-coil current so that the center of the picture does not move when the beamfocus control (grid No.4) is varied, but simply goes in and out of focus. During alignment of the beam, and also during operating of the tube, always keep the beam current as low as possible to give the best picture quality and also to prevent excessive noise.

Next, focus the camera on a test pattern. The camera-totest pattern distance should be set so that the corners of the test-pattern image just touch the inside of the target ring. The deflection circuits are next adjusted so that the entire test pattern just fills the TV raster. The target voltage is then advanced or reduced to the point where a reproduction of the test pattern is just discernible on the monitor. This value of target voltage is known as the "targetcutoff voltage". The target voltage should then be raised exactly two volts above the cutoff-voltage value, and the beam-current control adjusted to give just sufficient beam current to discharge the highlights.

Then adjust the lens to produce best optical focus, and the voltage on the photocathode as well as the voltage on grid No.4 to produce the sharpest picture. Grid No.4 should be adjustable in the range of 140 to 180 volts. There are several voltage values outside of this range which will provide beam focus. However, such focus modes are not recommended.

Proper adjustment for suppression of highlight flare or "ghost" and proper geometry is obtained when the grid-No.6 voltage is accurately set at 59 per cent of the photocathode voltage. This adjustment may be effected by positioning a small bright spot of light on the edge of the field to be viewed and then adjusting the grid-No.6 voltage so that the "ghost" that appears on the viewing monitor disappears as the image section is brought into sharpest focus. Improper adjustment is evident when a light spot that is observed on the right edge of the viewing monitor produces a "ghost" that appears above the spot.

Grid No.5 should then be adjusted to produce bestuniformity of signal, i.e., the absence of dark corners. Such uniformity is best obtained while viewing a uniform white card, or test

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 12-66

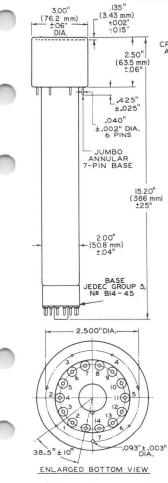
pattern, with the exposure on the tube well above the knee and with the picture monitor adjusted for low brightness.

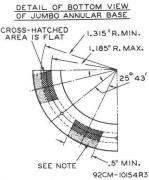
After adjustment of the image section voltages, grid-No.3 voltage should be set for maximum signal output. The deflecting yoke and 8673 should be rotated, if necessary, so that the horizontal scanning of the camera is parallel to the horizontal plane of the scene.

Finally, readjust the target voltage so that it is accurately set to 2 volts above target cutoff. In black-and-white service, the lens iris should be opened to 1/2 or 1 lens stop beyond the point where the highlights of the scene reach the knee of the light transfer characteristic. In color camera service, each tube should be operated with white-scene highlights at the knee.

Do and Don'ts on Use of RCA-8673

Dos


- 1. Allow the 8673 to warm up prior to operation.
- 2. Hold temperature of the 8673 within operating range.
- 3. Make sure alignment coil is properly adjusted.
- 4. Adjust beam-focus control for best usable resolution.
- Condition spare 8673's by operating several hours once each month.
- Determine proper operating point with target voltage adjusted to exactly 2 volts above target cutoff.
- 7. Uncap lens before voltages are applied to the 8673.
- 8. Turn off the camera or the image-section high voltage supply if the lens turret or the yoke and 8673 must be "swung out" to clean the lens of the tube faceplate.


Don'ts

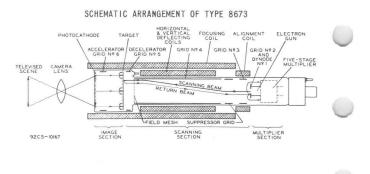
- 1. Don't force the 8673 into its shoulder socket.
- 2. Don't operate the 8673 without scanning.
- 3. Don't operate an 8673 having an ion spot.
- Don't use more beam current than necessary to discharge the highlights of the scene.
- Don't turn off beam while voltages are applied to photocathode, grid No.6, target, dynodes, and anode during warmup or standby operation.
- 6. Don't remove the lens turret or lens when the camera is turned on, or when voltages are applied to the image section of the 8673, unless the light level incident on the tube can be reduced below 50 footcandles.

Note: Dotted area is flatorextends towarddiheptal-base end of tube by 0.060 inch max.

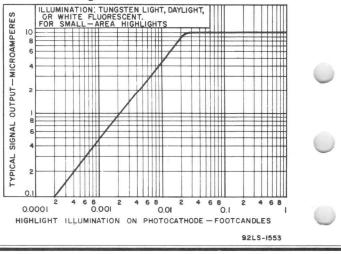
ANNULAR BASE GAUGE

Angular variations between pins as well as eccentricity of neck cylinder with respect to photocathode cylinder are held to tolerances such that pins and neck cylinder will fit flatplate gauge with:

a. Six holes having diameter of 0.065 ± 0.001 inch and one hole having diameter of 0.150 ± 0.001 inch. All holes have depth of 0.265 inch ± 0.001 inch. The six 0.065 inch holes are enlarged by 45° taper to depth of 0.047 inch. All holes are spaced at angles of 51° 26' \pm 5'oncircle diameter of 2.500 \pm 0.001 inches.

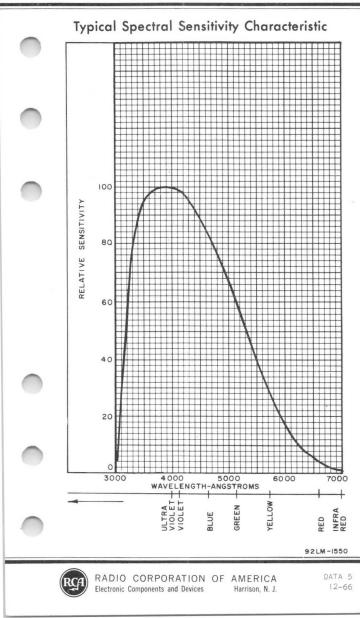

b. Seven stops having height of 0.187 ± 0.001 inch, centeredbetween pin holes, to bear against flat areas of base.

c. Rim extending out aminimum of 0.125 inch from 2.812 inch diameter and having height of 0.126 \pm 0.001 inch.


d. Neck-cylinder clearance hole having diameter of 2.200 ± 0.001 inches.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 4 12-66

Basic Light Transfer Characteristic



DATA 4

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Flect

Image Orthicon

3-INCH DIAMETER MAGNETIC FOCUS LONG-LIFE, HIGH-SENSITIVITY TYPE MAGNETIC DEFLECTION

For Superior Studio or Remote TV Pickup at Light Levels Available in Black-and-White TV Studios


The 8674 is designed to replace types 4415, 4416, 7293, 7293A, and 7293A/L.

GENERAL

Heater, for Unipotential Cathode Voltage (AC or DC)
Direct Interelectrode Capacitance
Anode to all other electrodes
Target-to-Mesh Spacing 0.002 in (0.051 mm)
Spectral Response See Typical Spectral Sensitivity
Characteristic
Window Material Corning ^a No.7056, or equivalent Photocathode Material Bialkali (Cs-K-Sb)
Photocathode Semitransparent
Rectangular image (4 x 3 aspect ratio): b
Useful Size ^c
Focusing Method
Deflection Method
Greatest Diameter of Bulb
Minimum Deflecting-Coil Inside Diameter
Deflecting Coil Cleveland Electronics, OV-Series, ^d
Deflecting-Coil Length
Focusing Coil Cleveland Electronics, OF-Series, ^d
or equivalent
Focusing-Coil Length.
Alignment Coil Cleveland Electronics, OA-Series,
or oquivalent
Length
of tube faceplate
Photocathode Distance Inside End of Focusing Coil 1/2 in
Operating Position The tube should never be operated in
a vertical position with the diheptal-base end up nor in any
other position where the axis of the tube with base up makes
an angle of less than 20° with the vertical. Socket
Weight (Approx.)
weight (Approx.)

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 1 12-66

DATA I

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Target Voltage

Positive value	V
Negative value	v
Grid-No.5 Voltage	v
Grid-No.4 Voltage	v
Grid-No.3 Voltage	v
Grid-No.2 & Dynode-No.1 Voltage 350	v
Grid-No.1 Voltage	
Negative-bias value	V
Positive-bias value 0	v
Peak Heater-Cathode Voltage	
Heater negative with respect to cathode . 125	V
Heater positive with respect to cathode . 0	v
Anode-Supply Voltage	v
Voltage Between Consecutive Dynodes 400	v

TYPICAL OPERATING VALUES

Photocathode Voltage (Image focus) ^f 400 to -540 Grid-No.6 Voltage (Accelerator)—	۷
Approx. 59% to 60% of photocathode voltage ^g -235 to -325	٧
Target Voltage above Cutoff ^h	٧
Grid-No.5 Voltage (Decelerator) 0 to 150	٧
Grid-No.4 Voltage (Beam focus)	٧
Grid-No.3 Voltage ^g	٧
Grid-No.2 & Dynode-No.1 Voltage	٧
Grid-No.1 Voltage for Picture Cutoff45 to -115	٧
Dynode-No.2 Voltage 600	٧
Dynode-No.3 Voltage	٧
Dynode-No.4 Voltage	٧
Dynode-No.5 Voltage	٧
Anode Voltage	٧
	°C
Peak-to-Peak Target Blanking Voltage 6	۷
Field Strength at Center of Focusing Coil	
(Approx.) ^k	G
Field Strength of Alignment Coil (Approx.). 0 to 3	G

PERFORMANCE DATA

With conditions shown under Typical Operating Values, picture highlights at the "knee" of the light-transfer characteristic, 525-line scanning, interlaced 2:1, frame time of 1/30 second, and 1.8-inch picture diagonal with 4x3 aspect ratio. Characteristics are measured in an RCA Model TK-31A camera, or equivalent.

	Min	Typ	Max	
Cathode Radiant Sensitivity at 4000 angstroms	-	0.08	-	μA/μW
Cathode Luminous Sensitivity ^m	60	100	-	μA
Signal-Output Current (Peak to Peak)	5	<u> </u>	32	μΑ

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

	Min	Тур	Max		
Signal-to-Noise Ratio ⁿ	35:1 (31 dB)	40:1 (32 dB)	-		
Photocathode Illumination at 2870°K Required to Reach "Knee" of Light-Transfer Characteristic Amplitude Response at 400 TV	-	-	0.022	fc(lm/ft ²)	0
Lines per Picture Height (Per cent of large-area black to large-area white) ^p Uniformity	40	60	-	%	0
Ratio of Shading (Back- ground) Signal to Highlight Signal Variation of Highlight	-	-	0.15		
Signal (Per cent of maximum highlight signal) 9	-	-	25	%	\bigcirc

^a Made by Corning Glass Works, Corning, New York.

b Proper orientation is obtained when the vertical scan is essentially parallel to the plane passing through center of faceplate and pin 7 of the shoulder base. The horizontal and vertical scan should preferably start at the corner of the raster nearest pin 6 of the shoulder base.

C The size of the optical image focused on the photocathode should be adjusted so that its maximum diagonal does not exceed the specified value. The corresponding electron image on the target should have size such that the corners of the rectangle just touch the target ring; a condition that may be achieved in some camera designs with a 1.6-inch diagonal image on the photocathode.

d Made by Cleveland Electronics Inc., 1974 East 61st St., Cleveland, Ohio.

e Made by Cinch Manufacturing Company, 1026 South Homan Ave., Chicago 24, Ill.

f Adjust for best focus.

- **9** For minimum highlight flare or "ghost" the grid-No.6 voltage should be 59% of the photocathode voltage.
- h Normal setting of target voltage is +2 volts from target cutoff. The target supply voltage should be adjustable from -3 volts to +5 volts.
- j Adjust to give the most uniformly shaded picture near maximum signal.
- k Direction of current should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.
- ^m Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870°K. The value of light flux is 1 x 10°4 lumen and -90 to -175 volts are applied between photocathode and groundedgrid No.6 and target.
- N With a noise equivalent bandwidth of 4.5 MHz. Peak signal output is measured with respect to 'picture' black. Signal-to-noise ratio is dependent upon tube operating conditions and on the method of measurement. Significant factors affecting this ratio include target voltage, bandwidth, system line number and frame time, and the choice of reference signal black level.
- P Measured with amplifier having flat frequency responses.
- ${\tt q}$ $_{\rm Variation \ of \ response \ over \ scanned \ area.}$

DATA 2

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

έc.

OPERATING TECHNIQUES

With lens uncapped and lens iris opened, proper voltages should beapplied to the 8674, and the grid-No.1 voltage should immediately be adjusted to produce a small amount of beam current. Adjust the deflection circuits so that the beam "overscans" the target, i.e., so that the area of the target scanned is greater than its sensitive area. The lens should be capped and the tube should be allowed to warm up for 10 minutes before used or before adjustments are made.

Care should be taken to avoid operating the camera with the lens turret removed, or swinging the tube and focusing coil away from the optical system of a color camera, when voltages are applied to the tube. Excessive illumination for short periods of time under these conditions may damage the photocathode of the 8674.

Next, uncap the lens and partially open the lens iris. Increase the target voltage until information appears on the monitor. Then adjust beam focus, image focus, and optical focus until detail can be discerned in the picture. Adjust alignment-coil-current controls until picture response is maximum. If picture appears in negative contrast, increase the beam current. Further adjust the alignment-coil current so that the center of the picture does not move when the beamfocus control (grid No.4) is varied, but simply goes in and out of focus. During alignment of the beam, and also during operation of the tube, always keep the beam current as low as possible to give the best picture quality and also to prevent excessive noise.

Next, focus the camera on a test pattern. The camerato-test pattern distance should be set so that the corners of the test-pattern image just touch the inside of the target ring. The deflection circuits are next adjusted so that the entire test pattern just fills the TV raster. The target voltage is then advanced or reduced to the point where a reproduction of the test pattern is just discernible on the monitor. This value of target voltage is known as the "target" cutoff voltage". The target voltage should then be raised exactly two volts above the cutoff-voltage value, and the beam-current control adjusted to give just sufficient beam current to discharge the highlights.

Then adjust the lens to produce best optical focus, and the voltage on the photocathode as well as the voltage on grid No.4 to produce the sharpest picture, Grid No.4 should be adjustable in the range of 140 to 180 volts. There are several voltage values outside of this range which will provide beam focus. However, such focus modes are not recommended.

Proper adjustment for suppression of highlight flare or "ghost" and proper geometry is obtained when the grid-No.6 voltage is accurately set at 59 per cent of the photocathode voltage. This adjustment may be effected by positioning a small bright spot of light on the edge of the field to be viewed and then adjusting the grid-No.6 voltage so that the "ghost" that appears on the viewing monitor disappears as the image section is brought into sharpest focus. Improper

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 3 12-66

adjustment is evident when a light spot that is observed on the right edge of the viewing monitor produces a "ghost" that appears above the spot and when a light spot observed on the left edge of the viewing monitor produces a "ghost" that appears below the spot.

Grid No.5 should then be adjusted to produce best uniformity of signal, i.e., the absence of dark corners. Such uniformity is best obtained while viewing a uniform white card, or test pattern, with the exposure on the tube well above the knee and with the picture monitor adjusted for low brightness.

After adjustment of the image section voltages, grid-No.3 voltage should be set for maximum signal output. The deflecting yoke and the 8674 should be rotated, if necessary, so that the horizontal scanning of the camera is parallel to the horizontal plane of the scene.

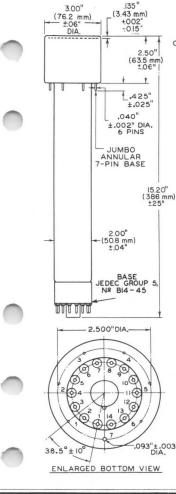
Finally, readjust the target voltage so that it is accurately set to 2 volts above target cut-off. In black-andwhite service, the lens ir is should be opened to 1/2 or 1 lens stop beyond the point where the highlights of the scene reach the knee of the light transfer characteristic. In color camera service, each tube should be operated with white-scene highlights at the knee.

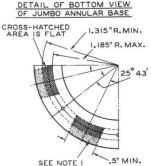
Dos and Don'ts on Use of RCA-8674

Dos

- 1. Allow the 8674 to warm up prior to operation.
- 2. Hold temperature of the 8674 within operating range.
- 3. Make sure alignment coil is properly adjusted.
- 4. Adjust beam-focus control for best usable resolution.
- Condition spare 8674's by operating several hours once each month.
- Determine proper operating point with target voltage adjusted to exactly 2 volts above target cutoff.
- 7. Uncap lens before voltages are applied to the 8674.
- Turn off the camera or the image-section high voltage supply if the lens turret or the yoke and 8674 must be "swung out" to clean the lens of the tube faceplate.

Don'ts

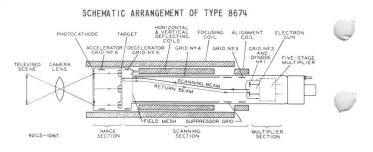

- 1. Don't force the 8674 into its shoulder socket.
- 2. Don't operate the 8674 without scanning.
- 3. Don't operate the 8674 having an ion spot.
- Don't use more beam current than necessary to discharge the highlights of the scene.
- Don't turn off beam while voltages are applied to photocathode, grid No.6, target, dynodes, and anode during warmup or standby operation.


DATA 3

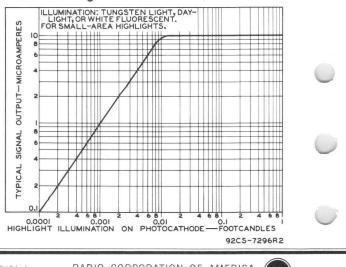
RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

6. Don't remove the lens turret or lens when the camera is turned on, or when voltages are applied to the image section of the 8674, unless the light level incident on the tube can be reduced below 50 footcandles.

Note 1: Dotted area is flat or extends toward diheptal-base end of tube by 0.060 inch max.

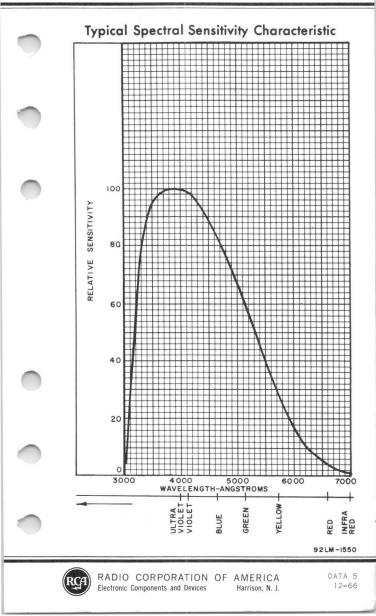

ANNULAR BASE GAUGE

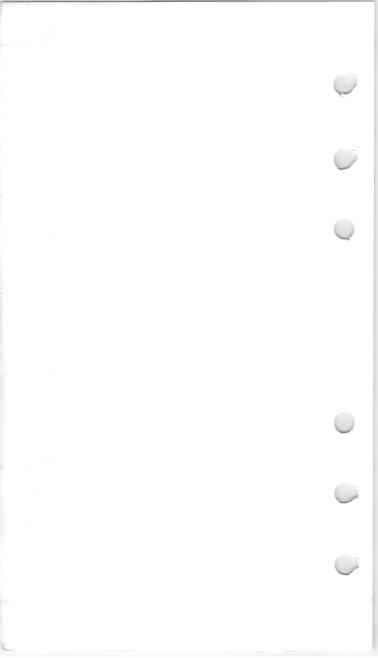
Angular variations between pins as well as eccentricity of neck cylinder with respect to photocathode cylinder are held to tolerances such that pins and neck cylinder will fit flatplate gauge with:


- a. Six holes having diameter of 0.065 \pm 0.001 inch and one hole having diameter of 0.150 \pm 0.001 inch. All holes have depth of 0.265 \pm 0.001 inch. The six holes are enlarged by 45° taper to depth of 0.047 inch. All holes are spaced at angles of 51° 26' \pm 5' on circle diameter of 2.500 \pm 0.001 inches.
- b. Seven stops having height of 0.187 ± 0.001 inch, centered between pin holes, to bear against flat areas of base.
- c. Rim extending out a minimum of 0.125 inch from 2.812 inch diameter and having height of 0.126 ± 0.001 inch.
- .093"±.003" d. Neck-cylinder clearance hole having diameter of 2.200 ± 0.001 inches

92CM-10154R3

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 4 12-66


Basic Light Transfer Characteristic



DATA 4

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Image Orthicon

"MICRODAMP" CONSTRUCTION FOR REDUCED MICROPHONICS FIELD MESH FOR REDUCED "WHITE EDGE" EFFECTS

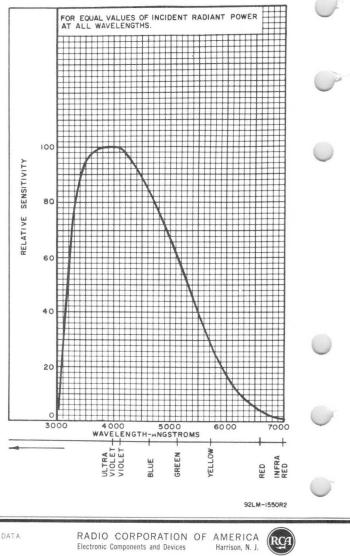
LONG-LIFE ELECTRONICALLY-CONDUCTING GLASS TARGET

MAGNETIC FOCUS MAGNETIC DEFLECTION

For Extremely High-Quality Performance in Black-and-White Studio and Television Tape-Recording Operations. The 8748 is Directly Interchangeable with the 7389, 7389A, 7389B, and 7389C.

The 8748 is the same as the 7389B except for the following paragraph, Performance Data, and Typical Spectral Sensitivity Characteristic.

Compatibility of the bialkali photocathode and the glass target of the 8748 results in constant high-resolution throughout tube life. The glass target is characterized by stable long-life, resistance to "burn-in", and the absence of granular structure. Charge transport through this target is electronic rather than ionic. Tube life is therefore extended and stable sensitivity is achieved. Other important advantages of this target are that the undesirable characteristics of scene retention or "sticking picture" and raster burn-in are significantly reduced. As a result, the need for an orbiter, or the necessity of continually moving the camera when focused on a stationary scene, is eliminated.


PERFORMANCE DATA

	Min	Typ	Max	
Cathode Radiant Sensitivity				
at 4000 angstroms	-	0.08	-	A/W
Cathode Luminous Sensitivity				
(2870 [°] K)	-	85	-	$\mu A/lm$

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 4-67

Image Orthicon

"MICRODAMP" CONSTRUCTION FOR REDUCED MICROPHONICS FIELD MESH FOR REDUCED "WHITE EDGE" EFFECTS

LONG-LIFE ELECTRONICALLY-CONDUCTIVE GLASS TARGET MAGNETIC FOCUS

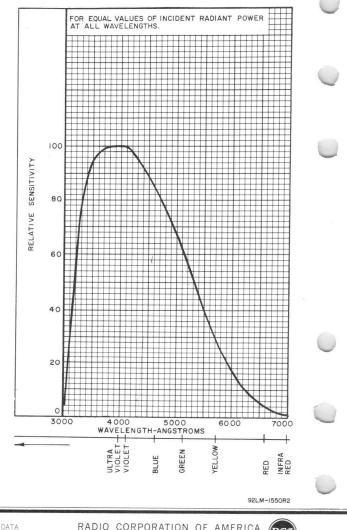
FIELD-MESH TYPE MAGNETIC DEFLECTION

For Very High-Quality Performance in Black-and-White Studio or Remote TV Cameras. The 8749 is Directly Interchangeuble with the 7295, 7295A, 7295B, and 7295C.

The 8749 is the same as the 7295B except for the following paragraph, Performance Data, and Typical Spectral Sensitivity Characteristic.

Compatibility of the bialkali photocathode and the glass target of the 8749 results in constant high resolution throughout tube life. The glass target is characterized by stable long-life, resistance to "burn-in", and the absence of granular structure. Charge transport through this target is electronic rather than ionic. Tube life is therefore extended and stable sensitivity is achieved. Other important advantages of this target are that the undesirable characteristics of scene retention or "sticking picture" and raster burn-in are significantly reduced. As a result, the need for an orbiter, or the necessity of continually moving the camera when focused on a stationary scene, is eliminated.

PERFORMANCE DATA


Min Typ Max

Cathode Radiant Sensitivity at						
4000 angstroms	2	y.	-	0.08	-	A/W
Cathode Luminous Sensitivity (2870 ^o K)					-	$\mu A/1m$

DATA 7-67

Typical Spectral Sensitivity Characteristic

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

Image Orthicon

3-Inch Diameter, Bialkali Photocathode Long-Life Type For Remote and Studio Television Service

Types 8775 is designed to replace types 5820, 5820A, 5820A/L, and 5830B

GENERAL

Direct Interelectrode Capacitance: Anode to all other electrodes 12 pF Target-to-Mesh: Spacing 0.0022 in (0.056 mm) Capacitance 100 pF Photocathode, Semitransparent: Spectral Response See Typical Bialkali Spectral Sensitivity Characteristic Window material ... Corning^a No.7056, or equivalent Photocathode material ... Bialkali (Cesium-Potassium-Antimony)

Rectangular image (4 x 3 aspect ratio):

- Useful size of 1.8 in (46 mm) max. diagonal Note: The size of the optical image focused on the photocathode should be adjusted so that its maximum diagonal does not exceed the specified value. The corresponding electron image on the target should have a size such that the corners of the rectangle just touch the target ring.
- Orientation of .. Proper orientation is obtained when the vertical scan is essentially parallel to the plane passing through center of faceplate and pin 7 of the shoulder base. The horizontal and vertical scan should preferably start at the corner of the raster nearest pin 6 of the shoulder base.

 Focusing Method
 Magnetic

 Deflection Method
 Magnetic

 Overall Length
 15.20 in (386 mm) ± 0.25 in

 Greatest Diameter of Bulb
 3.00 in (76.2 mm) ± 0.06 in

 Shoulder Base
 Small-Shell Dimeptal 14-Pin

 End Base
 JEDEC Group 5, No.B14-45

> Electronic Components

Minimum Deflecting-Coil	
Inside Diameter 2-3/8 in (61.3 mm)	
Deflecting Coil Cleveland Electronics, OY-Series ^c ,	
or equivalent	1
Deflecting-Coil Length 5 in (127 mm)	-
Focusing Coil Cleveland Electronics, OF-Series ^c ,	
or equivalent	
Focusing-Coil Length 10 in (254 mm)	
Alignment Coil Cleveland Electronics, OA-Series ^c ,	
or equivalent	
Alignment-Coil Length 15/16 in (23.8 mm)	
Alignment-Coil Location. Axially centered 11 inches to rear	
of tube faceplate	
Photocathode Distance Inside	
End of Focusing Coil	
ABSOLUTE MAXIMUM AND MINIMUM RATINGS	-
Voltages are with respect to thermionic cathode un-	
less otherwise specified.	
Heater, for Unipotential Cathode:	
Voltage (AC or DC) applied between	
end base pin No.1 and pin No.14 \dots 6.3 ± 10% V	
Current	
Operating Temperature:	
Of any part of bulb 50 max. ^o C	
Of bulb at large end of tube	
(Target section) 35 min. ^o C	
Temperature Difference:	
Between target section and	
any part of bulb hotter than	
target section	
Photocathode:	
Voltage	
Illumination	-
538 lux	
Grid-No.6 Voltage550 max. V	
Target Voltage:	
Positive value	
Negative value 10 max. V	
Grid-No.5 Voltage 150 max. V	-
Grid-No.4 Voltage 300 max. V	
Grid-No.3 Voltage 400 max. V	
Grid-No.2 & Dynode No.1 Voltage 350 max. V	
Grid-No.1 Voltage:	
Negative bias value 125 max. V	
Positive bias value 0 max. V	

RBA Electronic Components

	Peak Heater-Cathode Voltage: Heater negative with	
	respect to cathode 125 max. Heater positive with	V
-	respect to cathode 10 max.	V
	Anode-Supply Voltage 1350 max.	V
	Voltage Between Consecutive	
	Dynodes	V
\frown	TYPICAL OPERATING VALUES	
	Heater Voltage, for Unipotential	
	Cathode 6.3	V
	Photocathode Voltage	\$7
	(Image Focus) ^e	V
-	Grid-No.6 Voltage (Accelerator)-	
	Approx. 75% of photocathode	17
	voltage	V V
	Target Voltage Above Cutoff ⁹ 2	
	Grid-No.5 Voltage (Decelerator)	V V
	Grid-No.4 Voltage (Beam Focus) ^e 140 to 180	vv
	Grid-No.3 Voltage ^h	v
	Grid-No.1 Voltage for	v
	Picture Cutoff	V
	Dynode-No.2 Voltage	
	Dynode-No.3 Voltage	V
	Dynode-No.4 Voltage	V
	Dynode-No.5 Voltage 1200	V
	Anode Voltage 1250	V
	Target Temperature Range 35 to 45	°C
	Target Blanking Voltage	
-	(Peak to Peak) 5	V
	Field Strength at Center of	
	Focusing Coil (Approx.) ¹	G
	Field Strength of Alignment Coil0 to 3	G
	PERFORMANCE CHARACTERISTICS RANGE VALUES	
	With conditions shown under Typical Operating	
0	Values, picture highlights at the "knee" of the	
	light transfer characteristic, 525 line scanning,	
	interlaced 2:1, frame time of $1/30$ second, and 1.8 "	
	picture diagonal with 4 x 3 aspect ratio. Character-	
	istics are measured in an RCA Model TK-31A cam-	
	era, or equivalent Min. Typ. Max.	
0	Cathode Radiant Sen-	
	sitivity at 4000	
	angstroms 0.072 - A	./W
	n n Electronic DAT	
		A 2
		000

Cathode Luminous Sensitivity ^k	_	90	-	uA/lm	
Signal-Output Current				p	
(Peak-to-Peak)	3	12	30	μA	-
Signal-to-Noise Ratio ^m	32	34	-	dB	-
Photocathode Illumination at 2870 ⁰ K Required to Reach "Knee" of Light Transfer Characteristic	_	0.010	0.020	lm/ft ²	
Amplitude Response at 400					
TV Lines per Picture					
Height (per cent of large area black to large-area white) ⁿ	35	50	-	%	
Uniformity:					
Ratio of Shading (Back- ground) Signal to Highlight Signal Variation of Highlight Signal (Per cent of	-	0.12	0.15		0
maximum highlight signal) ^p	-	20	25	%	

^a Made by Corning Glass Works, Corning, New York.

^b Made by Cinch Manufacturing Company, 1026 South Homan Ave., Chicago 24, Ill.

- ^c Made by Cleveland Electronics Inc., 2000 Highland Road, Twinsburg, Ohio 44087.
- e Adjust for best focus.
- f For minimum highlight flare or "ghost" the grid-No.6 voltage should be 75% of the photocathode voltage.
- 9 Test setting of target voltage is +2 volts from target-cutoff. The target supply voltage should be adjustable from -3 to +5 volts to allow user choice of operating target voltage.
- h Adjust to give the most uniformly shaded picture near maximum signal.
- ⁱ Direction of current should be such that a north-seeking pole is attracted to the image end of the focusing coil, with indicator located outside of and at the image end of the focusing coil.

RBA Electronic Components

- ^k Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870° K. The value of light flux is 1 x 10⁻⁴ lumen and -90 to -175 volts are applied between photocathode and grounded grid No.6 and target.
- ^m Signal-to-noise ratio is dependent upon tube operating conditions and on the method of measurement. Significant factors affecting this ratio include target voltage, bandwidth, system line number and frame time, and the choice of reference signal black level. The value shown is measured under the following conditions using a Video Noise Meter, Model UPSF (North American Version), or equivalent. This meter is manufactured by Rohde and Schwarz, Munich, West Germany.
 - Signal: Blanked video, 0.7 V peak-to-peak including 0.07 V set-up.
 - Noise Meter: Gated with horizontal and vertical blanking signal of camera system. Video pass band is shaped by means of self-contained 100 kHz highpass and 4.2 MHz low-pass filters.

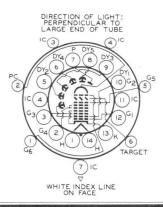
Weighting filters matching the response of the human eye (CCIR Rec.421, Annex III) are not used and the color subcarrier, 3.58 MHz, is not present during the measurement.

- ⁿ Measured with amplifier having flat frequency response.
- P Variation of response over scanned area.

DOS and DON'TS On Use of RCA-8775

Here are the ''dos''

- 1. Allow the 8775 to warm up prior to operation.
- 2. Hold temperature of the 8775 within operating range.
- 3. Make sure alignment coil is properly adjusted.
- 4. Adjust beam-focus control for best usable resolution.
- 5. Select target voltage according to operating needs. This freedom of operation results from use of the electronically-conducting glass target.
- 6. Uncap lens before voltages are applied to the 8775.


Components

7. Turn off the camera or the image-section high voltage supply as the lens turret or the yoke and 8775 must be "swung out" to clean the lens of the tube faceplate.

Hereare the ''don'ts''

- 1. Don't force the 8775 into its shoulder socket.
- 2. Don't operate the 8775 without scanning.
- 3. Don't operate an 8775 having an ion spot.
- 4. Don't use more beam current than necessary to discharge the highlights of the scene.
- 5. Don't turn off beam while voltages are applied to photocathode, grid No.6, target, dynodes, and anode during warmup or standby operation.
- 6. Don't remove the lens turret or lens when the camera is turned on, or when voltages are applied to the image section of the 8775, unless the light level incident on the tube can be reduced below 50 footcandles.

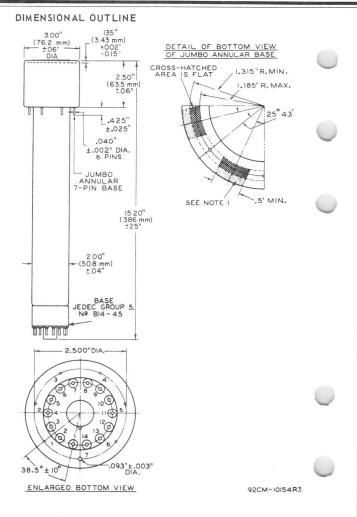
TERMINAL DIAGRAM (Bottom View)

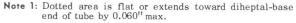
SMALL-SHELL DIHEPTAL 14-PIN BASE

- Pin 1: Heater
- Pin 2: Grid No.4
- Pin 3: Grid No.3
 - Pin 4: Internal Connection Do not use
- Pin 5: Dynode No.2
- Pin 6: Dynode No.4
- Pin 7: Anode
- Pin 8: Dynode No.5
- Pin 9: Dynode No.3
- Pin 10: Dynode No.1, Grid No.2
- Pin 11: Internal Connection Do not use
- Pin 12: Grid No.1
- Pin 13: Cathode
- Pin 14: Heater

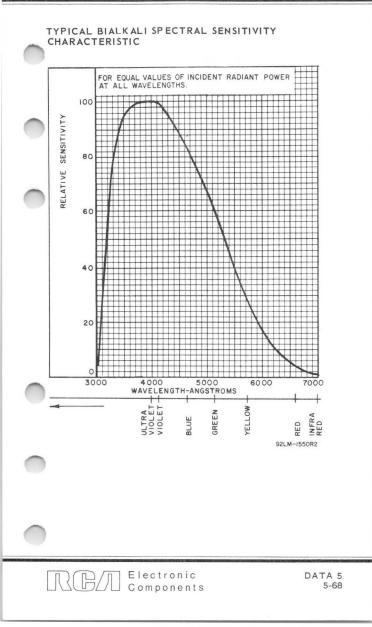
KEYED JUMBO ANNULAR 7-PIN BASE

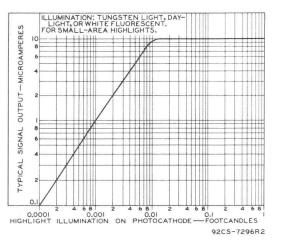
- Pin 1: Grid No.6
- Pin 2: Photocathode
- Pin 3: Internal Connection Do not use
- Pin 4: Internal Connection Do not use
- Pin 5: Grid No.5
- Pin 6: Target
- Pin 7: Internal Connection Do not use


ANNULAR BASE GAUGE


Angular variations between pins as well as eccentricity of neck cylinder with respect to photocathode cylinder are held to tolerances such that pins and neck cylinder will fit flatplate gauge with:

- a. Six holes having diameter of 0.065" ± 0.001" and one hole having diameter of 0.150" ± 0.001". All holes have depth of 0.265" ± 0.001". The six 0.065" holes are enlarged by 45° taper to depth of 0.047". All holes are spaced at angles of 51°26' ± 5' on circle diameter of 2.500" ± 0.001).
- b. Seven stops having height of $0.187^{\prime\prime}\pm0.001^{\prime\prime},$ centered between pin holes, to bear against flat areas of base.
- c. Rim extending out a minimum of 0.125" from 2.812" diameter and having height of 0.126" ± 0.001".
- d. Neck-cylinder clearance hole having diameter of 2.200" \pm 0.001".


Components



RBA Electronic Components

BASIC LIGHT TRANSFER CHARACTERISTIC

RBA Electronic Components

Photomultiplier Tube

2"-Diameter Type

RCA-8850 is a 12-stage, head-on QUANTACON* Type Having Extremely High-Gain Gallium-Phosphide First Dynode and High Quantum Efficiency Bialkali Photocathode

GENERAL

Spectral Response
Wavelength of Maximum Response
Cathode, Semitransparent Potassium-Cesium-Antimony (Bialkali)
Minimum projected area
Window Pyrex, Corning ^a No.7740, or equivalent
Shape Plano-Concave
Index of refraction at 5893 angstroms 1.47
Dynode No.1:
Secondary Emitting Surface Gallium-Phosphide, GaP
Dynode No.2 through 12: Secondary Emitting Surface Beryllium-Oxide
$\begin{array}{llllllllllllllllllllllllllllllllllll$
MAXIMUM AND MINIMUM RATINGS, Absolute-MaximumValues
DC Supply Voltage: Between anode and cathode:
With Voltage Distribution A (3000 max. V
shown in Table I $\left\{1300^{e} \text{ min. } V\right\}$
With Voltage Distribution B $\int 3000 \text{ max. V}$
shown in Table I {1800 ^e min. V

Electronic

Components

Π

日/

DATA 1 5-70

Between anode and dynode No.12	800 max. V
Between dynode No.12 and dynode No.11.	800 max. V
Between consecutive dynodes	400 max. V
	∫1000 max. V
Between dynode No.1 and cathode	(600 ^e min. V
Between focusing electrode and cathode.	1000 max. V
Average Anode Current ⁶	0.2 max. mA
Ambient-Temperature Range ⁹	-100 to +85 °C

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN:

Under conditions with dc supply voltage (E) across a voltage divider providing electrode voltages shown in Table I, Column A.

With E = 2000 volts (Except as noted)

	Min.	Typical	Max.		
Anode Sensitivity:					
Radiant ^h at 3850 angstroms	-	7.1 x 10 ⁵	-	A/W	
Luminous ¹ (2870°K)	46	620	1500	A∕lm	
Current with blue light source (2870°K +C.S. No.5-58)	6 x 10 ⁻⁷	8 x 10 ⁻⁶	_	А	
Cathode Sensitivity:					
Radiant ^m at 3850 angstroms	-	0.097	_	A/W	
Luminous ⁿ (2870° K) ' 7	7.7 x 10 ⁻⁵	8.5 x 10 ⁻⁵	-	A/lm	
Current with blue light source ^P (2870° K + C.S. No.5-58) Quantum Efficiency		1.1 x 10 ⁻⁸	-	A %	
at 3850 angstroms 9	28	31	-	70	
Current Amplifi- cation Anode Dark	-	$7.3 \mathrm{x} \mathrm{10}^{6}$	-		0
Current ^r	-	6×10^{-10}	4×10^{-9}	Α	
Equivalent-Anode- Dark-Current Input ^r	{-	3×10^{-12} 2.6 x 10 ^{-15 s}	2×10^{-11} 1.8 x 10 ^{-14^s}	Im W	
Single Photoelectron Pulse Height Resolu-					0
tion at Full-Width-Hal Maximum Point [†]	f- _	40	_	%	
	e good an anna an anna an an an an an an an an			STATISTICS.	No. of Concession, Name

Electronic Components

157

Ъ/Л

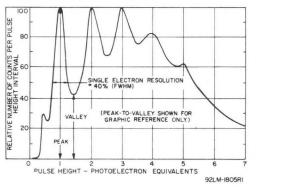
-	CONTRACTOR OF THE OWNER	ADDRESS OF TAXABLE	A Martin Street and a second second	and the second second second		
	Peak-to-Valley Ratio	Min.	Typical	Max.		
	Between Single and Double Photoelectron Pulse Height [†] Peak-to-Valley Ratio of Pulse Height Spec-	1.4	1.6	-		
	of Pulse Height Spec- trum with Fe ⁵⁵ Source ^u Dark Pulse Summation ^v at 2500 V:	-	50	-		
	1 to 128 channels. (See <i>Typical Dark-Pulse</i>)	- Spectr	150 um)	660	cps	
	Pulse Height					
	Resolution: W					
	Cs ¹³⁷ source, NaI(T scintillator	'1)	7.5	8.0	%	
	The following character to-cathode voltage dist 1, 1, 1, and 1. They are	tributic	n of 4, 1, 1.	4, 1, 1, 1, 1	1, 1, 1,	
	With $E = 1100$ volts (E	xcept a	s noted)			
	Pulse Height ^{w, x}					
	Cs ¹³⁷ source, NaI(T) scintillator){-	0.15	-	V	
	Mean Gain Deviation: ^y	(-	1.5 x 10 ⁻¹¹	-	cou- lombs	
	With count rate change of 1000 to 10000 cps ^z	-	1	_	%	
	For a period of 16 hours at a count					
	rate of 1000 cps ^{aa}	_	1		%	
	Anode-Pulse Rise Time ^{bb} at 3000 Volts	_	2.1 x 10 ⁻⁹		s	
	Electron Transit Time ^{cc} at 3000 Volts		3.1 x 10 ⁻⁸	_	s	
1	The following charact cathode voltage distrib 2, 4, and 2. They are	includ	of 4, 1, 1.4, 1 led for guida	red with an , 1, 1, 1, 1, 1, nce purpose	node-to- 1, 1.5, s only.	
	With $E = 3000$ volts (E	axcept	as noted)			
	Pulse Current: ^{dd}					

i unoc ounor	10.				
Linear ^{ee} .		_	0.25	—	A
Saturated		-	0.75	-	Α

Electronic Components

RBA

DATA 2 5-70


	Table I	
١	oltage Distribution	
Between the	Column A	Column B*
following Electrodes:	8.06% of Dyl-P Voltage (E)	5.45% of K-P Voltage
Cathode (K),	Multiplied	(E) Multiplied
Dynode (Dy),	By:	By:
and Anode (P)		
K - Dy1	•	6
Dy1 - Dy2	1	1
Dy2 - Dy3	1.4	1.4
Dy3 - Dy4	1	1
Dy4 - Dy5	1	1
Dy5 - Dy6	1	1
Dy6 - Dy7	1	1
Dy7 - Dy8	1	1
Dy8 - Dy9	1	1
Dy9 - Dy10	1	1
Dy10 - Dy11	1	1
Dy11 - Dy12	1	1
Dy12 - P	1	1
Dy1 - P	12.4	-
K - P	-	18.4

Focusing Electrode is connected to arm of potentiometer between cathode and dynode No.1. The focusing-electrode voltage is varied to give maximum anode current. Multiplier shield is operated at Dynode-No.5 potential.

Cathode-to-Dynode-No.1 Voltage maintained at 660 volts.

* To take full advantage of the operating capabilities of the 8850 it is required that the cathode-to-dynode No.1 voltage be a minimum of 600 volts.

PHOTOELECTRON PULSE HEIGHT SPECTRUM

Electronic Components

日/Л

1 1 1

- *QUANTACON is the RCA designation for photomultiplier tubes employing group III/V compounds as secondary emitters and/or photocathodes. A typical compound is gallium-phosphide.
- ^a Made by Corning Glass Works, Corning, NY 14830.
- ^b The AJ2145 is ordinarily supplied with the tube and is designed specifically for chassis mounting. The AJ2144 may be supplied as an alternate socket if requested by the user. The AJ2144 is designed for use in any desired mounting arrangement. It is supplied with an unattached clamp ring which fits to either the top or bottom of its socket body to permit chassis mounting. The ring is not normally required for other mounting arrangements and can be discarded to make such arrangements more compact.
- ^c Magnetic shielding material in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1322 North Elston Avenue, Chicago, IL, 60622, or equivalent.
- ^e To take full advantage of the performance capability of the 8850, tube operation at voltage values below these minimum specified values is not recommended.
- Averaged over any interval of 30 seconds maximum.
- ^g Tube operation at room temperature or below is recommended.
- ^h This value is calculated from the typical anode luminous sensitivity rating using a conversion factor of 1140 lumens per watt.
- I These values are calculated as shown below:

Anode Current (with blue light source) (A)

Luminous Sensitivity (A/lm) = -

0.13 x Light Flux of 1 x 10⁻⁴ (lm)

The value of 0.13 is the average value of the ratio of the anode current measured under the conditions specified in footnote (k) to the anode current measured under the same conditions but with the blue filter removed.

^K Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness-Manufactured by the Corning Glass Works, Corning, NY 14830) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 1 x 10⁻⁷ lumen.

> Electronic Components

LR(B/)

- ^m This value is calculated from the typical cathode luminous sensitivity rating using a conversion factor of 1140 lumens per watt.
- These values are calculated as shown below: Cathode Luminous Sensitivity (A/lm) = Cathode Current (with blue light source) (A)

 $0.13 \times \text{Light Flux of } 1 \times 10^{-4} \text{ (lm)}$

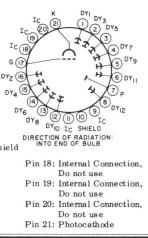
The value of 0.13 is an average value. It is the ratio of the cathode current measured under the conditions specified in footnote (**p**) to the cathode current measured under the same conditions but with the blue filter removed.

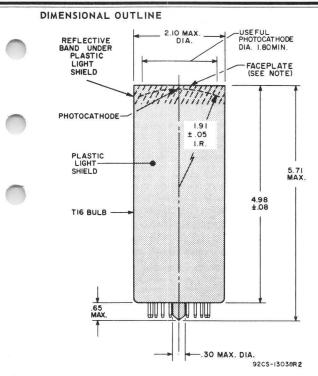
- P Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 100 microlumens and 660 volts are applied between cathode and all other electrodes connected as anode.
- **q** Calculated from the cathode current measured with blue light source.
- At a tube temperature of 22° C. Light incident on the cathode is transmitted through a blue filter (Corning C.S. No.5-58, polished to 1/2 stock thickness). The light flux incident on the filter is 0.1 microlumen. The supply voltage E is adjusted to obtain an anode current of 2.6 micro-amperes. Luminous sensitivity of the tube under these conditions is approximately equivalent to 200 amperes per lumen. Dark current is measured with incident light removed.
- ⁵ At 3850 angstroms. These values are calculated from the EADCI values in lumens using a conversion factor of 1140 lumens per watt.
- * Measured under the following conditions: Dark noise is eliminated by use of a coincidence circuit. As a result, most of the low energy pulses below one photoelectron are not counted. The light source is a gallium-phosphide lightemitting diode having peak output at a wavelength of approximately 5600 angstroms. The diode is pulsed at a rate of 30,000 pps; pulse duration is approximately 0.4 µs; anode circuit integrating time is approximately 10 µs. The light intensity from the diode is adjusted to obtain greater or fewer registered counts in a given multielectron peak to obtain an approximately equal number of counts in the first and second photoelectron peaks. A Multichannel Pulse-Height Analyzer having 256 channels is employed.

- ^U Measured using a Harshaw Type HG 0.005" beryllium window NaI (T1) scintillator, 0.04" thick and 7/8" in diameter and an isotope of iron having an atomic mass of 55 (Fe⁵⁵) and an effective activity at the scintillator of one microcurie.
- * Measured under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a low color temperature to assure the high probability of single photoelectron emission from the photocathode of the tube. The intensity of the light source is adjusted for approximately 10⁴ photons per second.
- Pulse-height resolution in per cent is defined as 100 times the ratio of the width of the photopeak at half the maximum count rate in the photopeak height to the pulse height at maximum photopeak count rate under the conditions of (x).
- Pulse height is defined as the amplitude of the anode pulse voltage (referred to anode) measured across a 100 kilohm resistor and a total capacitance of 100 + 3% pF in parallel. Under pulse conditions, the interstage voltages of the tube should not deviate more than 2% from the interstage voltage values during no-signal conditions. The 662 keV photon from an isotope of cesium having an atomic mass of 137 (Cs¹³⁷) and a cylindrical 2" x 2" thallium-activated sodiumiodide scintillator NaI (T1)-type 3D8S50, Serial No.AJ651, or equivalent are used. This scintillator is manufactured by the Harshaw Chemical Corporation, 1945 East 97th Street, Cleveland 6, OH, and is rated by the manufacturer as having a resolving capability of 8.2 per cent to 8.3 per cent. The Cs¹³⁷ source is in direct contact with the metal end of the scintillator. The faceplate end of the crystal is coupled to the tube by a coupling fluid such as Dow Corning Corp. Type DC200 (Viscosity of 60,000 centistokes)-Manufactured by the Dow Corning Corp., Midland, MI, or equivalent.
- ^y Mean gain deviation is defined as the percentage change, regardless of sign, from the average pulse height for a given radiation source and scintillator over a specified time or count rate interval.
- ^z Under the following conditions: The scintillator and Cs¹³⁷ radiation source of (x) are employed. The radiation source

is initially centered, on the major axis of the tube and the scintillator, at a point providing a pulse count rate of 1000 cps. The pulse height of the photopeak is measured under this condition. Next, the radiation source is moved rapidly, in approximately 30 seconds, to a new position that is equivalent to a count rate of 10,000 cps. The new position is also centered in the major axis of the tube. The pulse height under this condition is measured. The difference inpulse height between these two measurements is typically 1 per cent.

- ^{cc} Under the same conditions as (z) except the count rate position of 1,000 cps is maintained for 16 hours and the pulse height is sampled at 1 hour intervals.
- bb Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transit time variation and is measured under conditions with the incident light fully illuminating the photocathode.
- Cc The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.
- dd The interstage voltages of the tube should not deviate more than 2 per cent from the specified voltage distribution. Capacitors are connected across the individual resistors making up the voltage-divider arrangement to insure this operating condition.


Maximum deviation from linearity is 2 per cent.


Electronic

Components

TERMINAL DIAGRAM (Bottom View)

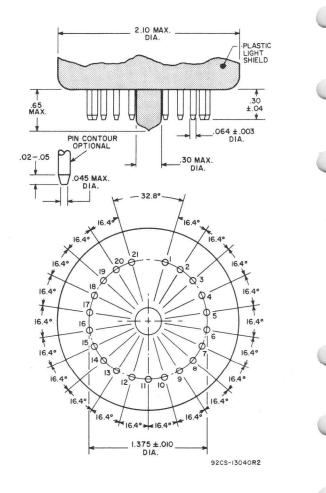
Pin 1: Dynode No.1 Pin 2: Dynode No.3 Pin 3: Dynode No.5 Pin 4: Dynode No.7 Pin 5: Dynode No.9 Pin 6: Dynode No.11 Pin 7: Anode Pin 8: Dynode No.12 Pin 9: Internal Connection, Do not use Pin 10: Electron Multiplier Shield Pin 11: Internal Connection. Do not use Pin 12: Dynode No.10 Pin 13: Dynode No.8 Pin 14: Dynode No.6 Pin 15: Dynode No.4 Pin 16: Dynode No.2 Pin 17: Focusing Electrode

Dimensions in Inches

RG/J

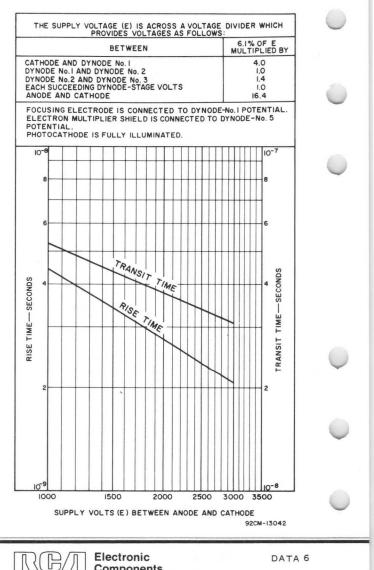
Note: Deviation from Flatness of External Surface of Faceplate will not exceed 0.010" from Peak to Valley.

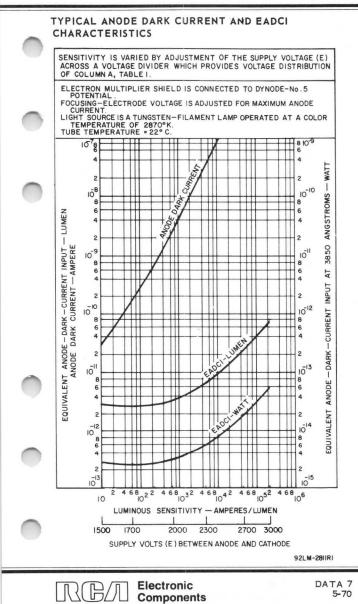
The dimensions in millimeters are derived from the basic inch dimensions (1 inch = 25.4 mm)

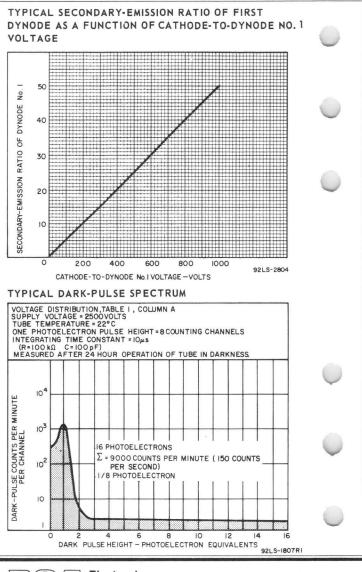

Inch	mm	Inch	mm	Inch	mm
.003	.08	.05	1.3	1.375	34.93
.010	.25	.064	1.63	1.80	45.7
.02	.5	.08	2.0	1.91	48.5
.04	1.0	.30	7.6	2.10	53.3
.045	1.14	.65	16.5	4.98	126.5
				5.71	145.0


Electronic

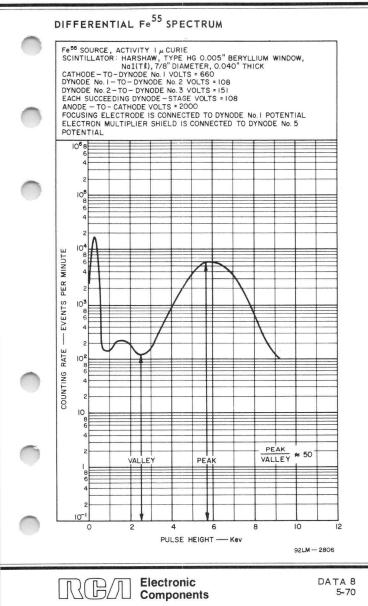
Components

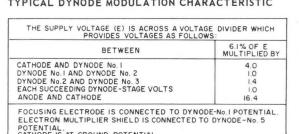

DETAIL OF BASE ARRANGEMENT

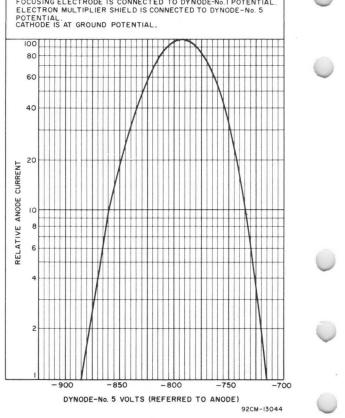



5-70

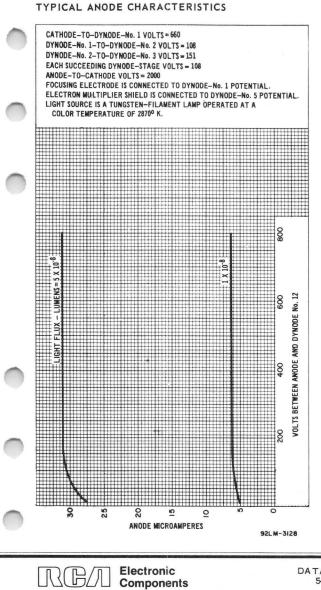
TYPICAL TIME-RESOLUTION CHARACTERISTICS



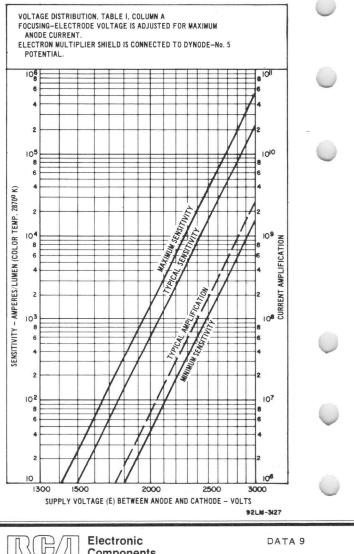

Electronic Components



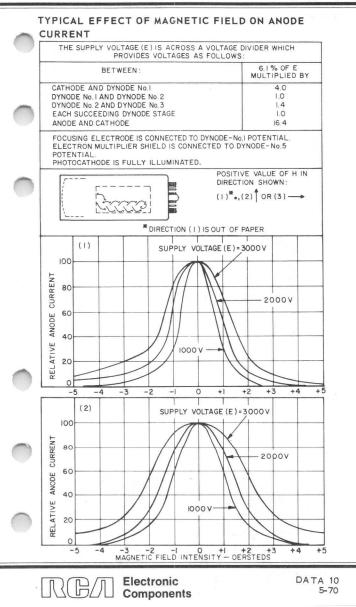
Electronic Components

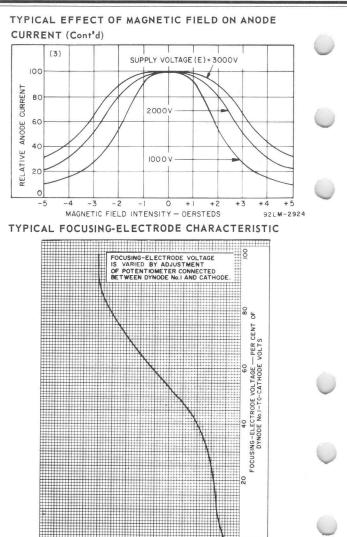


TYPICAL DYNODE MODULATION CHARACTERISTIC



Electronic RВЛ Components




DATA 9 5-70

TYPICAL SENSITIVITY AND CURRENT AMPLIFICATION CHARACTERISTICS

21

F

80

Electronic

Components

60

RELATIVE ANODE CURRENT - PER CENT

40

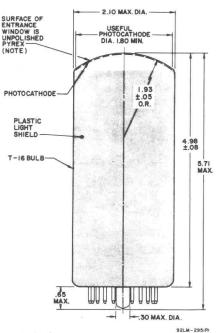
20

DATA 10

92CM-13051

Photomultiplier Tube

2"-Diameter Type


RCA-8851 is a 2"-diameter, 12-stage, head-on QUANTA-CON* photomultiplier tube having a bialkali photocathode and a pyrex entrance window. It is identical in all respects to type 8850, except for the shape of its window which is a spherical segment.

*QUANTACON is the RCA designation for photomultiplier tubes employing group III/V compounds as secondary emitters and/or photocathodes. A typical compound is gallium-phosphide.

See Dimensional Outline on Reverse Side.

DIMENSIONAL OUTLINE

Dimensions in Inches

B/J

Note: Caution must be employed when handling this tube because of the thinness of the entrance window.

The dimensions in millimeters are derived from the basic inch dimensions (1 inch = 25.4 mm).

Inch	mm	Inch	mm	Inch	mm
.003	.08	.05	1.3	1.375	34.93
.010	.25	.064	1.63	1.80	45.7
.02	.5	.08	2.0	1.93	49.0
.04	1.0	.30	7.6	2.10	53.3
.045	1.14	.65	16.5	4.98	126.5
				5.71	145.0

Electronic Components

Image Intensifier Tubes

18-mm Types Having Fiber-Optic Input and Output Faceplates

	GENERAL	
	All Types	
	Spectral Response S-20 with extended red response	
	Wavelength of Maximum Response 4700 + 1000 A -500 A	
	Photocathode:	
	Material Na-K-Cs-Sb (Multialkali)	
	Minimum useful area	
	Minimum useful diameter	
	Image surface:	
	Shape Flat, Circular	
	Material Fiber-Optics	
	Fluorescent Screen:	
	Minimum useful area 2.5 cm ² (0.4 in ²)	
	Minimum useful diameter 18 mm (0.71 in)	
	Phosphor	
	Fluorescence and phosphorescence Yellow-Green	
	Persistence Medium to Medium Short	
	Image surface:	
	Shape Flat, Circular	
	Material Fiber-Optics	
	Focusing Method Electrostatic	
	Tube Dimensions:	
	Maximum overall length	
-	Type 8858 5.93 in	
\bigcirc	Types 8857/V1, 8857/V2 1.926 in	
	Maximum diameter	
	Type 8858 2.08 in	
	Types 8857/V1, V2 1.480 in ^a	
\frown	Operating Position Any	
	Weight (Approx.)	
	Type 8858	
	Types 8857/V1, V2 3 oz	
	DATA 1	

Components

B/J

			Units	Line- Pairs/mm	Line- Pairs/mm	fL	fL/fc	fL/fc		2×10-10 Im/cm2	0
	//V2	_	Min. Typ. Max.	T	I	1	1	I		2×10 ⁻¹	
	Type 8857/V2	a dc /, and e of : noted	Typ.	73	73	1	1	l		1	
	Typ	s with 12 kV eratur erwise	Min.	64	64	1	1	22j		I	
	17	Under conditions with a dc anode voltage of 12 kV, and an ambient temperature of 220C, unless otherwise noted.	Max.	I	1	I	1	1		2×10-11	0
	Type 8857/V1	Under anode an aml 22°C,	Typ.	73	73	T	1	I		ĩ	
	Type		Min.	64	64	I	65h	I		I	
		n 2.65 V Ibient , unless	Max.	1	1	125	Ĩ	1		5×10-12 2×10-11	
LICS		itions with and an am s of 22 ^o C oted.	Typ.	36	36	-	5×10 ⁴	1		5×10 ⁻¹	
ACTERIST	Type 8858	Under conditions with 2.65 V dc applied, and an ambient temperature of 220 C, unless otherwise noted.	Min.	32	30	I	3x10 ⁴	I		ſ	
TYPICAL PERFORMANCE CHARACTERISTICS					Edge ^e (Peripheral)	Screen Luminance (Brightness) ^f .	Gain:9	With green light source	Equivalent Screen Background Input:	k	•
TYPICAL P				Resolution: Center ^d .	Edge ^e (Pei	Screen Lurr	Luminance Gain:9 At 22 ^o C	With greer	Equivalent (Luminous ^k	0

RCA Electronic Components

•					•				0	
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)	ARACTERIS	TICS (Con	t'd)							
	Type 8858			Type 8857/V1	1//1		F	Type 8857/V2	7/V2	
Photocathode Sensitivity:	Min.	Typ.	Max.	Min.	Typ.	Max. Min. Typ.	Min. T	yp.	Max.	Units
Radiant:		6			6-01-01			C-110-7		1111 V
At 4700 Åm	I	4.6×10 ⁻²	I]	4.6×10'2	I	1	4.6X10 -	1	A/W
At 8000 Å	1×10-2	1×10 ⁻² 1.3×10 ⁻²	I	1×10 ⁻²	1×10 ⁻² 1.3×10 ⁻²	I	I	I	I	A/W
At 8500 Å	3×10-3	3×10 ⁻³ 7×10 ⁻³	1	3×10 ⁻³	7×10-3	1	1	1	1	A/W
Luminous ⁿ	1.75×10-4	1.75×10-4 2.1×10-4	I	1.75×10 ⁻⁴	2.1×10 ⁻⁴	l	1	1.6×10 ⁻⁴	I	A/Im
Luminance Uniformity	I	3:1P	4:1P	1	1.4:19	2:1q	1	1.4:1 ^r 2:1 ^r	2:1 ^r	
Modulation Transfer Function (MTF): ^s (See Figures 3 and 7)										
For 2.5 Line-Pairs/mm	93	95	l	1	1	I	Г	1	I	%
For 7.5 Line-Pairs/mm	65	73	1	1	1	I	I	1	I	%
For 16 Line-Pairs/mm	25	31	I	I	I	I	I	I	1	%
Paraxial Image Magnification (Cmx)t	0.82	0.84	1.0	0.94	1	1.0	0.94	1	1.0	
Image Alignment ^u	1	1	0.06	I	I	0.02	I	ł	0.02	Ē
Image Stability in 30 Seconds ^V	- 1	i	0.005	1	1	0.005	I	I	0.005	Ē
DistortionW	I	12	20	1	I	9	I	1	9	%

RBA Electronic Components

8857/V1,V2, 8858

MAXIMUM RATINGS, Absolute-Maximum Values DC Input Voltage Type 8858	
DC Voltage: Anode with respect to photocathode Types 8857/V1,V2	C
Average Photocathode Current ^c (Continuous operation)	
Types 8857/V1, V2	
Ambient-Temperature Range:	
Non-operating	
Operating	

a Excluding exhaust tip.

- c The specified value is the maximum permitted average anode current with the photocathode uniformly illuminated. This value is averaged over any interval of 10 seconds maximum.
- d The resolution, both horizontal and vertical, is determined with a test pattern consisting of alternate black and white lines of equal width. Any two adjacent lines are designated a "line pair."
- e This minimum value applies at a distance of 7 mm from the major (optical) axis of the tube.
- f Maximum screen luminance (brightness) is limited automatically by the oscillator power supply and occurs when the input illumination is equal to or greater than 10^{-3} footcandle. Typical values are measured at 2 x 10^{-5} footcandle using a 2854° K tungsten lamp.
- **9** Luminance Gain is defined as the quotient of screen brightness in footlamberts by the photocathode illumination in footcandles provided by a tungsten-filament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2854° K. The value of light input radiation on the photocathode image surface is in the range of 1×10^{-5} to 3×10^{-5} footcandle and illuminates uniformly a 0.5"-diameter spot on the photocathode. The output is measured with a photometer centered on a 10-mm diameter spot on the screen.
- h Under same conditions of footnote (g) except input radiation on photocathode is 5 x 10⁻² footcandle. Anode voltage is 15 kV.
- j Under the same conditions of footnote (g) except that a light input of 5 x 10^{-2} footcandle is incident on Corning C.S. No.3-71 and C.S. No.4-67 interposed between the light source and the tube. Anode voltage is 12 kV. Use of these filters in conjunction with the 2854° K source closely approximates the P20 spectral distribution.

k Defined as the equivalent value of luminous flux from a tungstenfilament lamp operating at 2854° K that would be required to cause an increase in screen brightness equal to screen background brightness.

m For incident radiation at the wavelength of maximum response of the spectral sensitivity characteristic.

- ⁿ Under the following conditions: The light source is a tungstenfilament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2854^o K. The value of light flux is 0.03 lumen. The light spot has a nominal diameter of 0.5", and 300 volts are applied between anode and photocathode.
- ^P The light source is a tungsten-filament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 2854^O K. Luminance uniformity will not vary more than the ratio stated over a circular area 17 mm in diameter centered on the image screen when the photocathode is illuminated uniformly with 1 x 10⁻⁵ to 3 x 10⁻⁵ footcandle and the output is scanned with a 1 millimeter aperture in a spiral pattern.
- 9 The light source is a tungsten-filament lamp having a lime-glass envelope. The lamp is operated at a color temperature of 28540 K. Luminance uniformity will not vary more than the ratio stated over a circular area 17 mm in diameter centered on the image screen.
- ^r Under the same conditions as shown in footnote (q) except that Corning C.S. No.3-71 and C.S. No.4-67 filters are interposed between the light source and the tube.
- ^S A two-dimensional resolution pattern, providing constant illumination in the Y direction, and sinusoidal variation of intensity in the X direction is projected on the photocathode. Per cent image modulation M may then be defined as:

$$M = \frac{W - B}{W + B} \times 100$$

where W = maximum illumination in white line

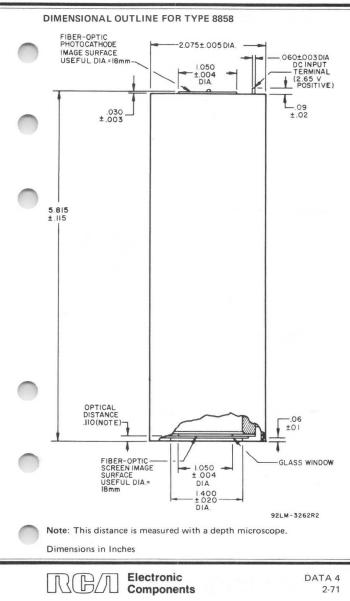
B = minimum illumination in black line

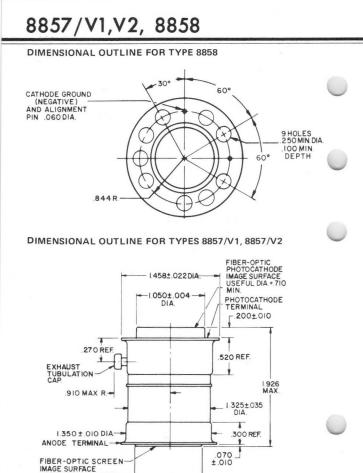
Output image brightness is also a sinusoidal function of the distance across one direction of the pattern, and the output modulation is equal to or less than the input modulation. The modulation transfer function (MTF) is defined as the ratio of the output modulation to input modulation expressed as a function of the spatial frequency of the incident illumination pattern. MTF for the tubes is measured using Modulation Transfer Function Anaylzer Model No.K1-b, a product of Optics Technology, Inc., Belmont, CA, using the specified procedure for that instrument.

RBA Electronic Components

Modulation is recorded with a square-wave resolution pattern for types 8857/V1 and 8857/V2.

In this case, modulation is expressed as a function of line frequency and is called "contrast transfer characteristic". MTF is calculated from the contrast transfer data using the following relationship.

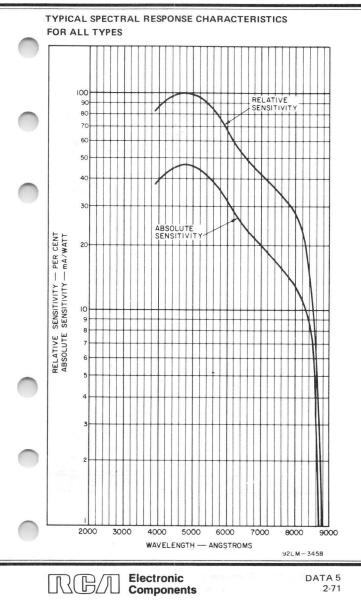

 $M(N) = \frac{\pi}{4} \left[C(N) + \frac{C(3N)}{3} - \frac{C(5N)}{5} + \frac{C(7N)}{7} \right]$


where M(N) is the MTF value at line frequency N and C(N) is the contrast transfer value at line frequency N

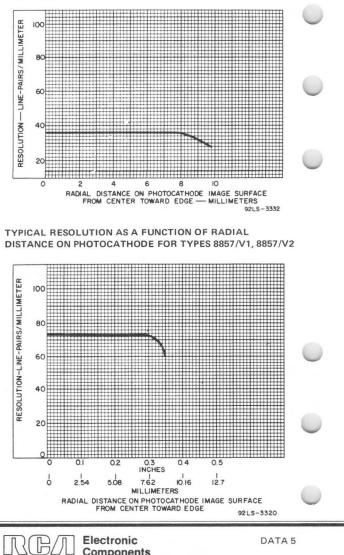
- t Paraxial Image Magnification (Cmx) is defined as the ratio of the separation of two diametrically opposite image points on the screen to the separation of the two corresponding image points on the photocathode. The image points on the photocathode are separated by a distance of 1 mm and are located equal distances from the major axis of the tube.
- ^u The center of an image produced on the screen by focusing a test pattern on the optical axis of the photocathode will fall with in a circle concentric with the optical axis of the screen having the specified diameter.
- Y The center of an image produced on the screen by focusing a test pattern on the optical axis of the photocathode will not shift more than the specified value during 30 seconds of operation.
- A second magnification value (Emx) is obtained as stated in footnote (m) except the image points on the photocathode are separated by a distance of 14 mm. Per-cent distortion is defined by the equation.

Per-Cent Distortion = $\frac{\text{Emx-Cmx}}{\text{Cmx}} \times 100$

RBA Electronic Components

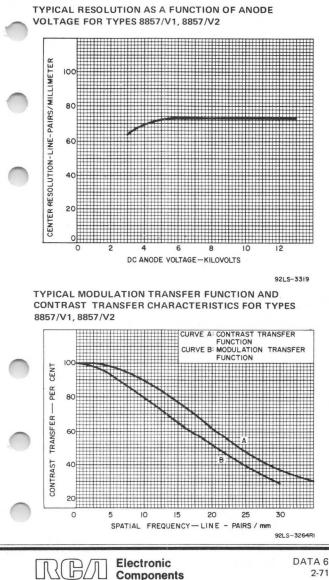

1050±.004

92LS-3256R3


Dimensions in Inches

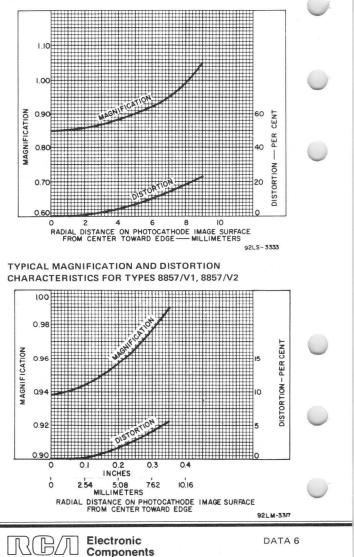
USEFUL DIA = 795 MIN

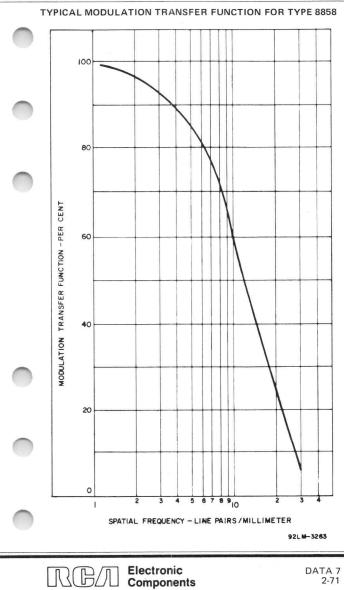
8857/V1,V2, 8858



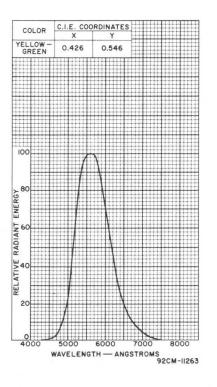
TYPICAL RESOLUTION AS A FUNCTION OF RADIAL DISTANCE ON PHOTOCATHODE FOR TYPE 8858

Components


8857/V1,V2, 8858


²⁻⁷¹

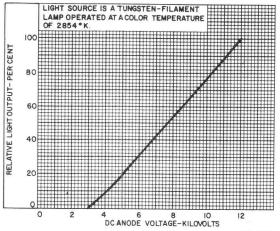
TYPICAL MAGNIFICATION AND DISTORTION CHARACTERISTICS FOR TYPE 8858



8857/V1,V2, 8858

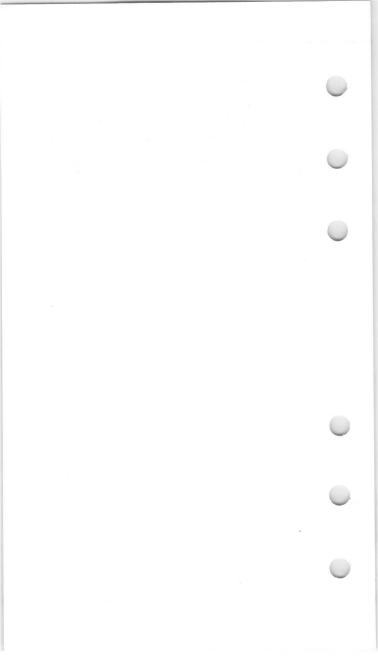
DATA 7 2-71

JEDEC PHOSPHOR P20 FOR ALL TYPES



RBA Electronic Components

DATA 7


8857/V1,V2, 8858

RELATIVE LIGHT OUTPUT CHARACTERISTIC FOR TYPES 8857/V1, 8857/V2

92L S- 3318

RG/J

RCA TUBE Handbook HB-3

0

 \bigcirc

C

0

THYRATRON, IGNITRON, & GLOW-DISCHARGE TUBE SECTION

This Section contains data on thyratrons, ignitrons, and glow-discharge (coldcathode) tubes used for voltage-regulator, relay, and voltage-reference applications.

For further Technical Information, write to Commercial Engineering, Tube Division, Radio Corporation of America, Harrison, N. J.

2-57

SEPARATOR

ischarge Lube

THYRATRONS

Triodes

	MAX	IMUM RATINGS					
Ano Curr	ent	Tempera- ture	ure Inverse or			RCA Type	
A∨ Amp	Peak Amp	Range ^O C	Anode Volts	Volts	Amp		
Mercury	-Vapor	Types					
0.5 0.64 1.8 2.5 4 6.4	2 2.5 10 15 16 40	40 to 80 25 to 70 25 to 55 40 to 80 30 to 50 40 to 80	5000 2500 15000 1000 10000 2500	2.5 F 2.5 F 5.0 F 5.0 H 5.0 H 5.0 H	5 6 10 4.5 10 10	5557 627 5563A 5559 677 676	
Gas Typ	bes		1				
0.04 0.045 0.075 1 2.5 2.5 2.5 6.4 6.4 18	0.2 35 0.3 0.3 8 30 30 30 77 77 100	-40 to +70 -50 to +90 -75 to +90 -55 to +75 -55 to +75	350 3000 350 1250 1250 1250 1250 1250 1250 1250 12	2.5 3.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	2.6 2.3 0.6 1.5 6.3 9 9 9 21 21 31	692 6130/3C 884 885 C1K/601 C3J/563 C3JA/56 C3JL C6J/5C2 C6JA/56 C16J/56	
Gas and	Mercur	-y-Vapor Types					
1 1.5 2.5 6.4	3 8 6 30 77	-40 to +80 -40 to +80 -40 to +80 -40 to +80 -40 to +80	1250 1250 1250 1500 1500	2.5 F 2.5 F 2.5 F 2.5 F 2.5 F	5 6.3 7 9 21	714/702 716/685 3C23 710/601 760/685	
		i	Tetrodes				
	/-Vapor	Types					
2.5 2.5 3.2 6.4 6.4	15 30 40 40 40	40 to 80 40 to 80 40 to 80 40 to 80 40 to 80	1000 1500 2500 2000 2500	5 H 5 H 5 H 5 H 5 H	4.5 5 10 10	5560 632B 672A 172 105	
Gas Typ	bes						
0.025 0.1 0.1 0.1	0.1 0.5 0.5 1	-55 to +90 -75 to +90 -75 to +150 -55 to +90	500 1300 1300 1300	6.3 H 6.3 H 6.3 H 6.3 H	0.15 0.6 0.6 0.6	5696 ^a 2D21 ^a 5727 ^a 502A	

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

IGN, & VAC-GA TUBE GUIDE I 7-67

	MAX	IMUM RATINGS						
Anode Current		Tempera- ture	Peak Inverse	Filame or		RCA Type		
Av	Peak	Range	Anode	Heate	r-H			
Amp			Volts	Volts	Amp			
Gas Ty	pes (Con	nt'd)						
0.1	1	-75 to +90	1300	6.3 H	0.6	2050		
0.1	1	-75 to +90	1300	6.3 H	0.6	2050A		
0.5	5	-75 to +90	1300	6.3 H	2.6	6012		
0.8	8	-75 to +90	1500	6.3 H	2.6	3D22A		

Tetrodes (Cont'd)

GLOW-DISCHARGE TUBES

Average DC Operating Volts	DC Operating Current Range Milliamperes	Average DC Starting Volts	RCA Typ			
Voltage-Regula	tor Types					
59 75 78 108 100 110 150 151 151 153	0.4 to 2 5 to 30 5 to 40 5 to 40 5 to 30 5 to 40 5 to 40 5 to 40 5 to 30 5 to 30 5 to 30 5 to 30 5 to 30 5 to 40 5	67 105 100 100 115 115 160 156 156 160	991 0C2 ^a 0A3 0B2 ^a 6074 ^{a, b} 0C3A 0D3A 0A2 ^a 6073 ^c 0D3			
Voltage-Referen	nce Types					
86.5 87	1.5 to 3.5 1.5 to 3.5	107 107	5651A ^{a,d} 5651 ^a			
Relay Types						
Maximum Peak Inverse Anode		Cathode				
Volts	Peak	Average	RCA Type			
180 200 225	100 100 100	25 25 25	1C21 ^e 5823 ^{a, f} 0A4G ^f			

THY, GLOW-DIS, IGN, & VAC-GA TUBE GUIDE I

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

IGNITRONS

		MAXIMU	M RATINGS			
For	power-sup	oply fre	equencies	of 25 to	60 Hz	
Ano Av for	de Current Time Inter-	Peak	Demand Power	RMS Supply	Peak Anode Inverse	RCA Type
, in the second	vals		1. 7. 1. 7. 1.	**FF.)	or	
Amp	Sec	Amp	KVA	Volts	Forward Volts	
Resista	nce-Weldin	ng Conti	rol Servio	ceh		
4.86 4.86 12.1 12.1	27.8 11.6 22 9.2	846 354 1692 708	150 150 300 300	250 600 250 600		5550
30.2 30.2 56 56	18 7.5 18 7.5	3400 1410 1130 466	600 600 200 200	250 600 250 600	-	555IA
75.6 75.6 140 140	14 5.8 14 5.8	6800 2830 2260 945	1200 1200 400 400	250 600 250 600		5552A
	ttent Rec cy-Change			nd		
4 5 40	10 10 6	480 600 700		-	1500 1200 500	555 I A
100	6	1600	-		500	5552Aj
Resista	nce-Weldi	ng-Capa	citor Dis	charge Se	rvice	
8 15	1.25 0.66	500 500		hgs/sec hgs/sec	k 3000	5550

VACUUM-GAUGE TUBES

Gas Pressu	Gas Pressure Range							
in mm of Hg (Torr)	in microns	Туре	RCA Type					
1 to 0.0001 1 to 0.001 ^m	1000 to 0.1 1000 to 1 ^m	Thermo- couple	1946					
1.5 to below 0.01 0.5 to 0.01 ^m	1500 to below 10 500 to 10 ^m	Pirani	1947					
0.001 to below 0.0001 0.001 and below ^m	1 to below 0.1 0.1 and below ^m	lonization (Hard Glass)	1949					

RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.

THY, GLOW-DIS, IGN, & VAC-GA TUBE GUIDE 2 7-67

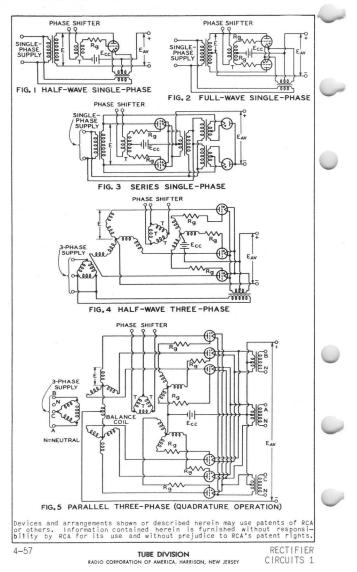
a Miniature.

- **b** "Premium" version of OB2 intended for applications critical to shock and vibration.
- C "Premium" version of OA2 intended for applications critical to shock and vibration.
- d Like the 5651 but has greater voltage stability.
- e For operation from a dc supply.
- f For operation from an ac supply.
- 9 Per tube.
- h Two tubes in inverse-parallel circuit.
- j Intermittent Rectifier Service only.
- k Forward volts = 6000, inverse volts = 3000.
- ^m Range of greatest sensitivity.

THY, GLOW-DIS, IGN, & VAC-GA TUBE GUIDE 2

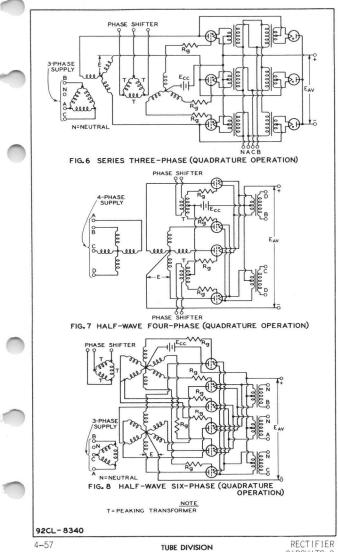
RADIO CORPORATION OF AMERICA Electronic Components and Devices

Harrison, N. J.


GRID-CONTROLLED RECTIFIER CIRCUITS

Numerical Relationships Among Electrical Quantities

$ \begin{array}{c} E = \mbox{Trans. S} \\ E_{av} = \mbox{Average} \\ E_{bmi} = \mbox{Peak Inv} \\ E_m = \mbox{Peak NC} \\ E_r = \mbox{Major Ri} \\ f = \mbox{Supply F} \\ f_r = \mbox{Major Ri} \\ Note: \mbox{Condi} \\ voltage \mbox{dro} \\ cuit; \mbox{no bac} \end{array} $	DC Outp erse An Output pple Vo requenc pple Fr tions \$ in tu	ut Volt ode Vol Voltage oltage (y Pdc = DC assume bbes; n	age tage RMS) Power d invo o loss load c	$I_{b} = I_{p} = I_{pm} = I_{pm} = I_{pm} = I_{pap} = I_{pap} = I_{as} = I$	Averag Anode Peak A Line V Trans. Trans. I _{av}) <i>ne-war</i> <i>transj</i> ; and	e Anode Current node Cu olt-Amp Pri. V Sec. V Sec. V	rrent eres olt-Ampe olt-Ampe bly; ze and ci	eres eres ro r- k.
RATIO	Fig. I	Fig.2	Fig.3	Fig.4	Fig. 5*	Fig.6	Fig.7	Fig.8
Voltage Ratios								
E/Eav	2.22	1.11	1.11	0.854	0.854	0.427	0.785	0.74
E _{bmi} /E	1.41	2.83	1.41	2.45	2.45	2.45	2.83	2.83
E _{bmi} /E _{av}	3.14	3.14	1.57	2.09	2.09	1.05	2.22	2.09
E _m /E _{av}	3.14	1.57	1.57	1.21	1.05	1.05	1.11	1.05
Er/Eav	1.11	0.472	0.472	0.177	0.04	0.04	0.106	0.04
Frequency Ratio								
fr/f	l	2	2	3	6	6	4	6
Current Ratios								
¹ p ^{/1} av	1.57	0.785	0.785	0.578	0.289	0.578	0.5	0.408
l _b /l _{av} Resistive Load	1	0.5	0.5	0.33	0.167	0.33	0.25	0.167
I pm/lav	3.14	1.57	1.57	1.21	0.52	1.05	1.11	1.05
¹ pm ^{/1} b	3.14	3.14	3.14	3.63	3.14	3.14	4.5	6.3
Inductive Load		-						
¹ pm ^{/1} av	-	1	- 1	1	0.5	1	1	1
Power Ratios								
Resistive Load				-				
Pas/Pdc	3.49	1.74	1.24			-		
Pap/Pdc	2.69	1.23	1.24	-	-	-	-	
Pal ^{/P} dc	2.69	1.23	1.24	-	-	-	-	-
Inductive Load								
Pas ^{/P} dc	-	1.57	1.11	1.71	1.48	1.05	1.57	1.81
Pap/Pdc	-	1.11	1.11	1.21	1.05	1.05	1.11	1.29
Pal ^{/P} dc		1.11	1.11	1.21	1.05	1.05	1.11	1.05
* Bleeder current for balance co The use of a la						vide ex t light	citing (loading	curren' 9∙



GRID-CONTROLLED RECTIFIER CIRCUITS



GRID-CONTROLLED RECTIFIER CIRCUITS

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

040

VOLTAGE REGULATOR

MINIATURE GLOW-DISCHARGE TYPE

GENERAL DATA

Electr	ical:								
Cathoo	ie					2 			. Cold
Mechan	lical								
Mounti Maximu Length Maximu Weight Bulb. Base.	ng Posit um Overall um Seated n, Base Sea um Diamete : (Approx.	l Length Length. at to Bulb er .) Small-	Top (on Min	 niatur	::	 in (J	:::;	. Any 2-5/8" 2-3/8" ±3/32" 3/4" 0.3 oz [-5-1/2 0.E7-1) . 580
Pin Pin	1 - Anode 2 - Cathoo 3 - Interr Connec Do Not 4 - Cathoo	nal ction- t Use	e e	Ho		Pi		Anode Interna Connect Do Not Cathode	tion- Use
Mavimu	m and Mir	imum Pat	inge	Aber	luta	Value			
	E STARTIN			AUSI		, arue		5 max.	ma
	HODE CURF					11	. {3	0 max.	ma
				• •		1.0		5 min.	ma
AMBIEN		ATURE RAN	 GE	: :		• •		0 max. 5 to +90) cps
/ IND I LI									
	t Values:								
Circui Shunt	1	r		::	 See 0	 berat		1 max. onsider	μµf ations
Circui Shunt Series	t Values: Capacitor	r r	 	 VALUI	Cest.		ing Co	onsider	ations
Circui Shunt Series	t Values: Capacitor Resistor	r r	ANGE	 VALUI	Cest.	EQUI	ing Co	onsider	ations
Circui Shunt Series DC Ano	t Values: Capacitor Resistor CHARACTER	r r RISTICS R		:: VALUI	S FOR	EQU I	ing Co PMENT	DESIGN	ations
Circui Shunt Series DC Ano Anode	t Values: Capacitor Resistor CHARACTER de-Supply Breakdowr	r RISTICS R V Voltage N Voltage		· · · Valui · · ·	S FOR <i>Min</i> . 185 	EQUI	ing Co PMENT Av. _ 156	DESIGN Max. 185*	volts volts
Circui Shunt Series DC Ano Anode Anode	t Values: Capacitor Resistor CHARACTER de-Supply Breakdowr Voltage [r RISTICS R V Voltage Drop		YALUI	S FOR	EQUI	ing Co PMENT Av. - 156 151	DESIGN Max. 	volts volts volts
Circui Shunt Series DC Ano Anode Anode	t Values: Capacitor Resistor CHARACTER de-Supply Breakdowr	r RISTICS R V Voltage Drop		YALUI	S FOR <i>Min</i> . 185 	EQUI	ing Co PMENT Av. _ 156	DESIGN Max. 185*	volts volts
Circui Shunt Series DC Ano Anode Anode Regula • Avera perio 20 mi	t Values: Capacitor Resistor CHARACTER de-Supply Breakdowr Voltage D ttion (5 t ged over s d must be for nutes, or	r RISTICS R v Voltage v Voltage Drop to 30 ma) tarting performed tube performed	riod n a stea	ot exc dy-sta will	ES FOR Min 185 . 140 	EQUI	ng Co PMENT Av. 156 151 2 conds. condi	DESIGN Nax. 	volts volts volts volts volts volts tarting t least
Circui Shunt Series DC Ano Anode Anode Regula Avera perio 20 mi	t Values: Capacitor Resistor CHARACTER de-Supply Breakdowr Voltage D ttion (5 t ged over s d must be for nutes, or	r RISTICS R v Voltage v Voltage Drop to 30 ma) tarting performed tube performed	riod n a stea	ot exc dy-sta will	ES FOR Min 185 . 140 	EQUI	ng Co PMENT Av. 156 151 2 conds. condi	DESIGN Nax. 	volts volts volts volts volts volts tarting t least
Circui Shunt Series DC Ano Anode Regula Avera perio 2 o mi Not 1 "star	t Values: Capacitor Resistor CHARACTER de-Supply Breakdowr Voltage D ttion (5 t	r RISTICS R Voltage n Voltage Drop to 30 ma) tarting per ollowed by tube perfor indicated ; ughout tube	riod n a stea rmance supply life	ot exc dy-sta will volt	S FOR <i>Nin</i> . 185 . 140 	10 se rating aired.	ing Co PMENT Av. 156 151 2 conds. condi e prov	DESIGN Nax. 	volts volts volts volts volts volts tarting t least
Circui Shunt Series DC Ano Anode Anode Regula Avera perio 20 mi * star * Maxim	t Values: Capacitor Resistor CHARACTER de-Supply Breakdowr Voltage E tion (5 t ged over s: d must be f nutes, or ess than i ting throo	r RISTICS R Voltage Voltage Drop . to 30 ma) tarting per indicated : ughout tubb ughout tubb va	riod n a stea rmance supply life alue d	ot exc dy-sta will volt uring	S FOR Nin 185 140 140 eeding te ope be imp age sho useful	EQUI 10 se rating aired. buld b life.	ing Co PMENT Av. 156 151 2 conds. condi e prov	DESIGN Nax. 	volts volts volts volts volts volts tarting t least
Circui Shunt Series DC Ano Anode Anode Regula • Avera perio 20 mi • Not 1 • star * Maxim	t Values: Capacitor Resistor CHARACTER Breakdowr Voltage D tion (5 t a must bef onutes, or nutes, or ess than i ting" throu um individu	r RISTICS R Voltage Voltage Drop . to 30 ma) tarting per indicated : ughout tubb ughout tubb va	riod n a stea rmance supply life alue d	ot exc dy-sta will volt uring	S FOR Nin 185 140 140 eeding te ope be imp age sho useful	EQUI 10 se rating aired. buld b life.	ing Co PMENT Av. 156 151 2 conds. condi e prov	DESIGN Nax. 	volts volts volts volts volts volts tarting t least
Circui Shunt Series DC Ano Anode Anode Regula • Avera perio 20 mi • Not 1 • star * Maxim	t Values: Capacitor Resistor CHARACTER Breakdowr Voltage D tion (5 t a must bef onutes, or nutes, or ess than i ting" throu um individu	r RISTICS R Voltage Voltage Drop . to 30 ma) tarting per indicated : ughout tubb ughout tubb va	riod n a stea rmance supply life alue d	ot exc dy-sta will volt uring	S FOR Nin 185 140 140 eeding te ope be imp age sho useful	EQUI 10 se rating aired. buld b life.	ing Co PMENT Av. 156 151 2 conds. condi e prov	DESIGN Nax. 	volts volts volts volts volts volts tarting t least

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

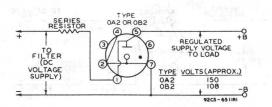
OPERATING CONSIDERATIONS

·Sufficient resistance must always be used in series with the OA2 to limit the current through the tube. The value for the series resistor is dependent on the maximum anodesupply voltage and the ratio of the current through the load to the operating current of the OA2, and should be chosen to limit the operating current through the tube to 30 milliamperes at all times after the starting period.

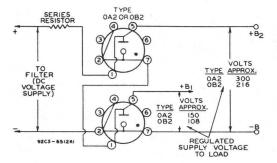
The maximum load current that can be regulated by the OA2 is determined by the minimum and maximum values of the supply voltage. After the value of series resistor for the maximum supply voltage has been calculated as indicated above, it is then in order to determine if this value will permit adequate starting voltage when the supply voltage falls to its minimum value. If adequate starting voltage is not obtained, a new load current of lower value must be used and the calculations repeated. It will be apparent from such calculations that the higher the minimum supply voltage and the smaller the difference between its minimum and maximum values, the higher will be the load current that can be regulated.

When equipment utilizing the OA2 is "turned on", a starting current in excess of the average operating current is permissible as indicated under Maximum Ratings. When the tube is subjected to such high starting currents, the regulated voltage may require up to 20 minutes to drop to its normal operating value. This performance is characteristic of voltage-regulator tubes of the glow-discharge type. Similarly, the regulation is affected by changes in current within the operating current range. For example, the regulation of a tube operated for a protracted period at 5 milliamperes and then changed to 25 milliamperes, he regulation at 25 milliamperes. Likewise, the regulation may change somewhat after a long idle period.

In order to handle more load current, two or more OA2's may be operated in parallel, but such parallel operation requires that a resistance of approximately 100 ohms be used inseries with each OA2 in order to equalize division of the current between the paralleled tubes. The disadvantage of this method, of course, is that the use of resistors impairs the regulation which can be obtained.

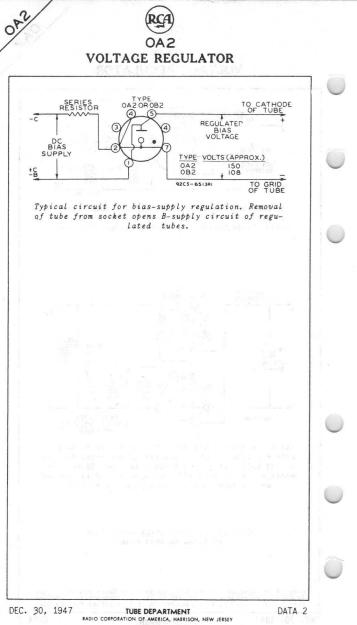

If the associated circuit has a capacitor in shunt with the OA2, the capacitor should be limited in value to 0.1 μ f. A larger value may cause the OA2 to oscillate and thus give unstable regulation performance.

NOV. 5, 1954


TUBE DIVISION

DATA 1

Typical circuit to provide regulated supply voltage of approximately 150 or 108 volts to load. Removal of tube from socket removes voltage from load.


Typical circuit using two OA2's or two OB2's to provide regulated supply voltages of approximately 300 or 216 volts and 150 or 108 volts to load. Socket connections are so made that voltage on load is removed when either tube is taken from its socket.

> CIRCUIT FOR BIAS-SUPPLY REGULATION IS SHOWN ON NEXT PAGE.

Many of the devices and arrangements shown or described herein use inventions of patents owned by RCA or others. information contained herein is furnished without assuming any responsibility for its use.

DEC. 30, 1947

OAS

GLOW-DISCHARGE TYPE

GENERAL DATA

GENERAL DATA	
Electrical:	
Cathode	d
Mechanical:	
Mounting Position	3"
Dimensional Outline See General Sectio Weight (Approx.)	n DZ
Bulb. ST-1 Base. Small-Shell Octal 6-Pin (JETEC No.B6-3 Basing Designation for BOTTOM VIEW. 44	3)
Pin 1 - No Connec- JUMPER 5 Pin 5 - Anode tion 3 Pin 7 - Jumper*	
Pin 2 - Cathode Pin 3 - Jumper (2, 9, 7) Pin 8 - No Connec- tion	
0.* 0	
Maximum and Minimum Ratings, Absolute Values:	
DC CATHODE CURRENT.	na na na
FREQUENCY O max, cp	
Circuit Values:	
Shunt Capacitor 0.1 max. μ Series Resistor See Operating Consideration	∠f Is
CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN	
Min. Av. Max.	
DC Anode-Supply Voltage 105" volt Anode Breakdown Voltage 100 105* volt Anode Voltage Drop 68° 75 85* volt Regulation(5 to 40 ma) 5 6.5* volt	ts ts
With suitable socket connections, jumper within base acts as a swite to open power-supply circuit when voltage regulator tube is removed fro socket.	om
Averaged over starting period not exceeding 10 seconds. This starting period must be followed by a steady-state operating condition of a least 20 minutes, or tube performance will be impaired.	ng at
Not less than indicated supply voltage should be provided to insur "starting" throughout tube life.	re
 Maximum individual tube value during useful life. Minimum individual tube value during useful life. 	
- Indicates a chang	
4-56 DA	IA

OF3

OPERATING CONSIDERATIONS

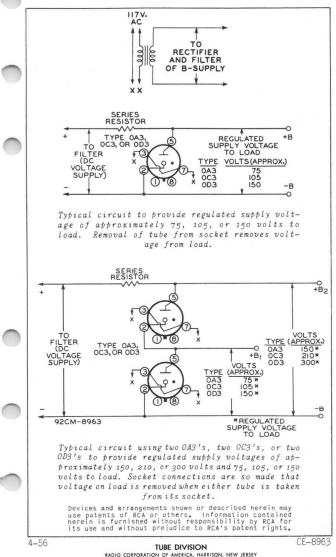
Sufficient resistance must always be used in series with the OA3 to limit the current through the tube. The value for the series resistor is dependent on the maximum anodesupply voltage and the ratio of the current through the load to the operating current of the OA3, and should be chosen to limit the operating current through the tube to 40 milliamperes at all times after the starting period.

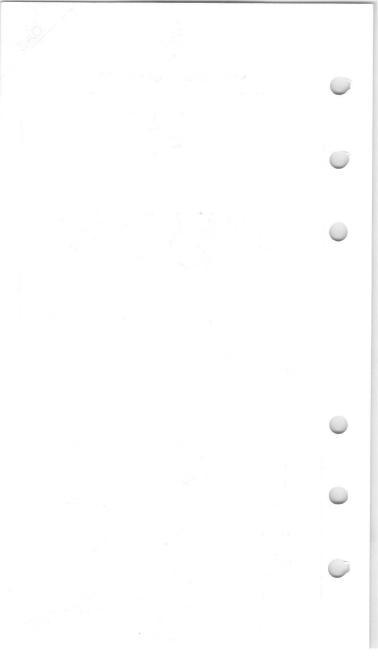
The maximum load current that can be regulated by the OA3 is determined by the minimum and maximum values of the supply voltage. After the value of series resistor for the maximum supply voltage has been calculated as indicated above, it is then in order to determine if this value will permit adequate starting voltage when the supply voltage falls to its minimum value. If adequate starting voltage is not obtained, a new load current of lower value must be used and the calculations repeated. It will be apparent from such calculations that the higher the minimum supply voltage and the smaller the difference between its minimum and maximum values, the higher will be the load current that can be regulated.

When equipment utilizing the OA3 is "turned on", a starting current in excess of the average operating current is permissible as indicated under Maximum Ratings. When the tube is subjected to such high starting currents, the regulated voltage may require up to 20 minutes to drop to its normal operating value. This performance is characteristic of voltage-regulator tubes of the glow-discharge type. Similarly, the regulation is affected by changes in current within the operating-current range. For example. the regulation of a tube operated for a protracted period at 5 milliamperes and then changed to 35 milliamperes, may be somewhat different from the value that will be obtained after a long period of operation at 35 milliamperes. Likewise, the regulation may change somewhat after a long idle period.

In order to handle more load current, two or more OA3's may be operated in parallel, but such parallel operation requires that a resistance of approximately 100 ohms be used in series with each OA3 in order to equalize division of the current between the paralleled tubes. The disadvantage of this method, of course, is that the use of resistors impairs the regulation which can be obtained.

If the associated circuit has a capacitor in shunt with the OA3, the capacitor should be limited in value to 0.1 μ f. A larger value may cause the OA3 to oscillate and thus give unstable regulation performance.


- Indicates a change.


OAS

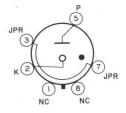
OF3

0A3A

Voltage-Regulator

GLOW-DISCHARGE TYPE

75 VOLTS


For Applications Requiring a Relatively Constant DC Output Voltage, Independent of Load and Supply-Voltage Variations

Mechanical:

	Operating Position	. Any
í.	Type of Cathode	.Cold
	Maximum Overall Length	
	Maximum Seated Length	-1/2"
	Maximum Diameter	
	Dimensional Outline See General Se	
	Bulb	
	Base Intermediate-Shell Octal 6-Pin. Arrangem	ent 1
į.	(JEDEC Group 1, No.	B6-8)
١.		4.4.1

Basing Designation for BOTTOM VIEW.

Pin 1-No Internal Pin 3 - Jumper^a Pin 5 - Anode Pin 7 - Jumper^a Pin 8-No Internal Connection

VOLTAGE REGULATOR

Maximum and Minimum Ratings, Absolute-Maximum Values:

Average Lathode					
Starting Current ^b				100 max.	ma
DC Cathode Current				∫40 max.	ma
					ma
DC or AC_Jumper Current					amp
Ambient-Temperature Range.	·	•	•	-55 to +90	oC

Circuit Values:

Shunt Capacit	or			•	•		0.1 max.	μ^{\dagger}
Series Resist	or					See	Operating	Considerations

With suitable socket connections, the jumper within the tube base (be-tween pins 3 and 7) provides for opening the power-supply circuit to protect circuit components when the voltage-regulator tube is removed from its socket.

Averaged over starting period not exceeding 10 seconds. When starting currents greatly in excess of the maximum dc-cathode-current rating of 10 milliamperes are encountered, it may be necessary to operate these tubes as much as 20 minutes under steady-state conditions to assure stable operation.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

DATA I 10-63

CHARACTERISTICS RANGE VALUES

Values are initial unless	oth	erwise	speci	ified		
N	lote	Min.	Av.	Max.		0
DC Anode Supply Voltage DC Anode Starting Voltage in:			•••	. See	Note 1	
Total darkness	-	-	-	160	volts	
(5 to 50 footcandles)	-	-	100	105	volts	
Anode Voltage Drop for dc cathode current of:						1
5 ma	-	70	-		volts	
30 ma		70 70	76 78	79 81	volts volts	
40 ma		10				
5 to 30 ma	2	-	3	4.5	volts volts	
5 to 40 ma Tube Noise for dc cathode current of	2	-	5	6.5	volts	0
40 ma	-	-	-	5	rms mv	
DC Leakage Current for dc anode supply voltage of 50 volts and anode resistor of 3000 ohms	-	-	-	10	μa	

Note 1: The minimum value to insure starting throughout useful tube life must be equal to the dc anode starting voltage plus the voltage drop across the series resistor at the maximum value of the load current.

Note 2: The maximum values for the specified regulation range apply throughout useful tube life.

OPERATING CONSIDERATIONS

In any given application, the following two considerations must be met to assure safe and reliable operation:

- The dc cathode current must be kept within the minimum (I_{kmin}) and maximum (I_{km}) ratings.
- 2. The dc anode starting voltage, E_b (stg), must be available under the worst probable conditions.

Instantaneous cathode starting currents in excess of the maximum dc-cathode-current rating (40 milliamperes) are permissible as indicated under Maximum and Minimum Ratings. When the tubes are subjected to such high starting currents, as much as 20 minutes may be required for the regulated dc voltage to reach its normal operating value. The regulated dc voltage may also change after long idle periods. To assure a constant regulated voltage a single value of operating current should be maintained.

Another effect associated with VR tubes is "spot jump", sometimes referred to as "jitter". This phenomenon is an instantaneous shift of the glow on the surface of the cathode and is responsible for small instantaneous changes in anode voltage drop. These changes can be minimized by operating the voltage-regulator tubes at dc cathode currents sufficiently above the minimum dc-cathode-current rating (5 milliamperes)

> RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

to assure that the glow covers a substantial portion of the cathode surface.

The level of ambient radiation directly affects the dc anode starting voltage of VR tubes. The maximum values required to start any tube under normal ambient-light conditions and in total darkness are given under *Characteristics Range Values*. Shielding should be considered when VR tubes are operated in the presence of strong, varying, magnetic, or nuclear-radiation fields to assure proper performance.

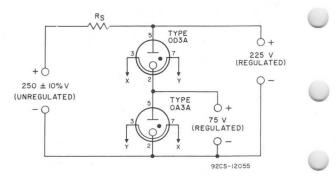
Ambient temperature should be kept relatively constant to minimize voltage drift.

Coupling effects can be minimized by shunting the VR tube with a capacitor not larger than 0.1 $\mu \rm f.$

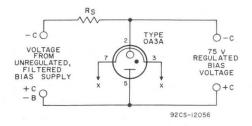
Series connection of VR tubes may be employed to obtain dc regulated voltages greater than those obtainable from a single tube. Different types may be used provided the series current is kept within the maximum dc-cathode-current rating of the lowest-rated tube.

Parallel connection of VR tubes may be employed where it is necessary to obtain dc load currents greater than those obtainable from a single tube but at a loss in regulation. This loss in regulation results from the requirement that a resistor beused inseries with each VR tube when in parallel operation.

Combinations of regulated dc voltages may also be obtained by series connection of VR tubes with tapped output as shown in Typical Circuit 1.

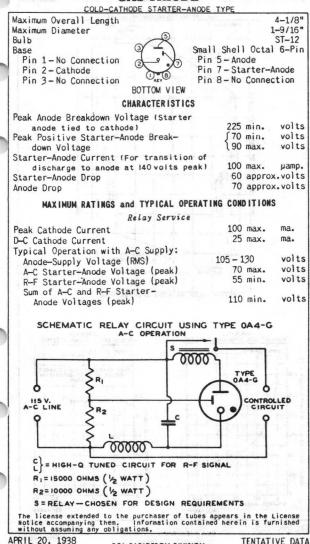

To determine the value of the series resistor for small load currents in a circuit of this type, disconnect the loads and adjust the series resistor for a tube current of not more than 40 milliamperes.

Regulated bias voltages may also be obtained as shown in Typical Circuit 2. In this circuit, a single OA3A can supply a regulated dc voltage of -75 volts.

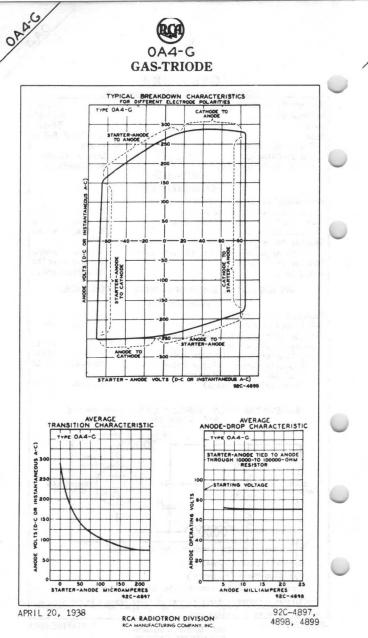

The jumper between pins 3 and 7 inside the base makes it possible with suitable socket connections, to open power-supply circuits to protect circuit components when one of the VR tubes is removed from its socket.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 10-63 TYPICAL CIRCUIT 1

TYPICAL CIRCUIT 2


Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.

> RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

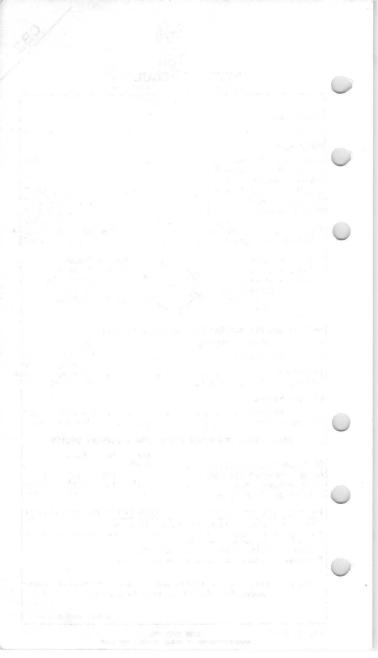


GAS-TRIODE

RCA RADIOTRON DIVISION RCA MANUFACTURING COMPANY, INC.

OFFIC

VOLTAGE REGULATOR MINIATURE GLOW-DISCHARGE TYPE


GENERAL DATA

Electrical:	
Cathode	Cold
Mechanical:	
Mounting Position. Maximum Overall Length Maximum Seated Length Length, Base Seat to Bulb Top (Excluding tip Maximum Diameter Weight (Approx.) Bulb Base Small-Button Miniature 7-Pi Basing Designation for BOTTOM VIEW	
Pin 2 - Cathode Pin 3 - Internal Connection-	- Anode - Internal Connection- Do Not Use - Cathode
Maximum and Minimum Ratings, Absolute Values	
AVERAGE STARTING CURRENT	75 max. ma ∫30 max. ma
FREQUENCY. AMBIENT-TEMPERATURE RANGE.	<pre></pre>
Circuit Values:	
Shunt Capacitor. Series Resistor.	0.1 max. µµf See note below
CHARACTERISTICS RANGE VALUES FOR EQUI	MENT DESIGN
Min. Au	
DC Anode-Supply Voltage 133 Anode Breakdown Voltage 11 Anode Voltage Drop 101 Regulation (5 to 30 ma.)	
♦ Averaged over starting period not exceeding 10 sec period must be followed by a steady-state operat least 20 minutes, or tube performance will be impa	onds. This starting ing condition of at ired.
Not less than indicated supply voltage should be "starting" throughout tube life.	
 * Maximum individual tube value during useful life. 	
• Minimum individual tube value during useful life.	
The operating considerations and circuit i under Type OA2 also apply to Typ	

JAN. 3, 1955

DATA

002

002

VOLTAGE REGULATOR

7-PIN MINIATURE, 75-VOLT, GLOW-DISCHARGE TYPE

GENERAL DATA

100 million 100									
Elect	ical:								
Catho	le							. Co	old
Mechar	ical:								
Maxim Maxim Lengtl Maxim Dimen Bulb Base	ing Positic um Overall I um Seated Lé n, Base Sea um Diameter sional Outl	Length . ength t to Bul ine Small-E	b Top	o (Exc	ature	.See 7-Pin	General	2.6 2.7 ± 0.0 Sect T5-	09" 75" ion 1/2
Pin Pin	1 - Anode 2 - Cathode 3 - Interna Connec Do Not 4 - Cathode	l tion—	3		6		Anode Internal Connect Do Not Cathode		-
	um and Minim				ute Va	alues:	75		
1	GE STARTING		- • •	• • •	• •	• •	75 ma (30 ma		ma ma
FREQU	ENCY T-TEMPERATI		е		•••		{5 mi 0 ma -55 to +	ix.	ma
FREQUI AMB I EI	ENCY	URE RANG	 E		•••		0 ma	ix.	ma cps
FREQUI AMBIEI Maxim	ENCY.	URE RANG Values:	 E	· · · ·	•••		0 ma	1×. 90	ma cps
FREQUI AMBIEI Maxim	ENCY NT-TEMPERATI um Circuit Capacitance	URE RANG Values: e		· · · ·			0 ma -55 to + 0.1 ma	1x. 90	ma cps oC
FREQUI AMBIEI Maxim	ENCY NT-TEMPERATI Jm Circuit '	URE RANG Values: e		 			0 ma -55 to + 0.1 ma NT DESIG	1x. 90	ma cps oC
FREQUI AMBIEI Maxim Shunt	ENCY. MT-TEMPERATI Jm Circuit M Capacitance CHARACTERIS	URE RANG Values: e STICS RA	 Nge \	 /ALUES	• • • • • • • • • • • • • • • • • • •	Ε QUIPME <i>Αυ</i> .	0 ma -55 to + 0.1 ma	4x. -90	ma cps οC μf
FREQUI AMBIEI Maxim Shunt DC Ani Anode	ENCY NT-TEMPERATI Jm Circuit Capacitance CHARACTERI Ode-Supply Breakdown	URE RANG Values: e STICS RA Voltage: Voltage:	 Nge \ 	 /ALUES			0 ma -55 to + 0.1 ma NT DESIG Max. -	1x. 90 1x. IN vo	ma cps οC μf
FREQUI AMBIEI Maximi Shunt DC Ani Anode Und	ENCY T—TEMPERATI Jm Circuit ! Capacitance CHARACTERI: Dede—Supply ! Breakdown ! er total da	URE RANG Values: e STICS RA Voltage: Voltage: rkness.	 Nge \ 	/ALUES			0 ma -55 to + 0.1 ma NT DESIG	1x. 90 1x. IN vo	ma cps οC μf
FREQUI AMBIEI Maxim Shunt DC And Anode Und Und	NCY NT-TEMPERATI Im Circuit 1 Capacitance CHARACTERIS Dde-Supply 1 Breakdown 1 Breakdown 1 er total da er normal ar onditions .	URE RANG Values: e STICS RA Voltage: Voltage: rkness . mbient 1	 Nge \ 	/ALUES		Av. - - 105	0 ma -55 to 4 0.1 ma NT DESIG Max. - 145** 115**	1x. 90 1x. 1N Vo Vo	ma cps οC μf lts lts lts
FREQUI AMBIEI Maxim Shunt DC An Anode Und Und C Anode	ENCY ATTTEMPERATI Im Circuit 1 Capacitance CHARACTERIS Dede-Supply 1 Breakdown 1 Breakdown 1 er total da er normal an onormal ar onoitions . Voltage Dri	URE RANG Values: e. STICS RA Voltage: rkness . mbient 1	 Nge \ 	/ALUES		Av. - 105 75	0 ma -55 to + 0.1 ma NT DESIG Max. - 145** 83	-90 1x. IN VO VO VO VO	ma cps οC μf lts lts lts lts
FREQUI AMBIEI Maximu Shunt DC Ani Anode Und Und Ca Anode Regula	NCY NT-TEMPERATI Im Circuit Capacitance CHARACTERIS Dde-Supply Breakdown Breakdown ar total da er normal ar orditions . Voltage Dru ation (5 to	URE RANG Values: e STICS RA Voltage: rkness . mblent 1 30 ma.)	NGE \ ight 	· ·	Min. * - 68• -	Av. - 105 75 3	0 ma -55 to + 0.1 ma Max. - 145** 115** 83 4.5	×. 90 ×. N vo vo vo vo	ma cps OC μf lts lts lts lts lts lts
FREQUI AMBIEI Maxim Shunt DC And Anode Regul Anode Regul	NCY NT-TEMPERATI Jm Circuit V Capacitance CHARACTERIS bde-Supply V Breakdown V er total da er normal ar onditions . Voltage Dri tion (5 to raged over st iod must be 1 2 20 minutes	URE RANG Values: e STICS RA Voltage: rkness . mbient 1 	NGE \ ight perfod n	ot exce	Min. * 68•	Av. - 105 75 3	0 ma -55 to + 0.1 ma NT DESIG Max. - 145** 83 4.5 ds. This red.	IX. 90 IX. IN VO VO VO VO VO Start ion of	ma cps oC μf lts lts lts lts lts sing f at
FREQUI AMBIEI Maxim Shunt DC And Anode Regul Anode Regul	NCY NT-TEMPERATI Im Circuit Capacitance CHARACTERIS Dde-Supply Breakdown Breakdown ar total da er normal ar orditions . Voltage Dru ation (5 to	URE RANG Values: e STICS RA Voltage: rkness . mbient 1 	NGE \ ight perfod n	ot exce	Min. * 68•	Av. - 105 75 3	0 ma -55 to + 0.1 ma NT DESIG Max. - 145** 83 4.5 ds. This red.	IX. 90 IX. IN VO VO VO VO VO Start ion of	ma cps OC μf lts lts lts lts sing f at
FREQUIAMBIEI Maximu Shunt DC Ani Anode Und Und Und C Anode Reguli Ave per reau ser * The * Max	NCY NT-TEMPERATI Jm Circuit V Capacitance CHARACTERIS bde-Supply V Breakdown V er total da er normal ar onditions . Voltage Dri tion (5 to raged over st iod must be 1 2 20 minutes	URE RANG Values: e STICS RA Voltage: Voltage	NGE \ ight perfo ure "s own vo ximum alue o	ot exce steady prmance tartin oltage value during	Min. * 	Av. - 105 75 3 10 second operatin bughout ne voltas load cut load cut load cut	0 ma -55 to + 0.1 ma NT DESIG Max. - 145** 83 4.5 ds. This red.	IX. 90 IX. IN VO VO VO VO VO Start ion of	ma cps oC μf lts lts lts lts lts sing f at

IENIALIVE DATA

OPERATING CONSIDERATIONS

Sufficient resistance must always be used in series with the OC2 to limit the current through the tube.

The value for the series resistor is dependent on the dc supply voltage, anode voltage drop, load current, and cathode current and should be chosen to limit the operating current through the tube to 30 milliamperes at all times after the starting period.

TENTATIVE DATA

7-58

002

VOLTAGE REGULATOR

GLOW-DISCHARGE TYPE

GENERAL DATA

	GENERAL DATA	
Electrical:		
Cathode		Cold
Mechanical:		
0	gth	Any 4-1/8" 3-3/8" ± 3/16"
Pin 1-No Connec-	JUMPER 5	Pin 5 – Anode
tion Pin 2–Cathode Pin 3–Jumper▲		Pin 7-Jumper▲ Pin 8-No Connec- tion
Maximum and Minimum	Ratings, Absolute Val	1105.
AVERAGE STARTING CU DC CATHODE CURRENT. FREQUENCY AMBIENT-TEMPERATURE		100 max. ma {40 max. ma 5 min. ma 0 max. cps -55 to +90 °C
Circuit Values:		
Shunt Capacitor Series Resistor		0.1 max. µf See note below
CHARACTERISTI	CS RANGE VALUES FOR EQ	
DC Anode-Supply Vol Anode Breakdown Vol Anode Voltage Drop. Regulation (5 to 40 A with suitable socket	tage	Av. Max. volts 115 133* volts 108 116* volts 2 4* volts n base acts as a switch ator tube is removed from
socket.	ng period not exceeding 10 wed by a steady-state ope tube performance will be	seconds. This starting
Not less than indica	ted supply voltage should tube life.	d be provided to insure
* Maximum individual tu	ube value during useful lit ube value during useful lit	fe.
	siderations and circui pe OA3 also apply to T	
instruction of the month		🖛 Indicates a change.
		DATA

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY D3

VOLTAGE REGULATOR

GLOW-DISCHARGE TYPE GENERAL DATA Electrical: Cathode . . Cold Mechanical: Mounting Position . Any Maximum Overall Length. 4-1/8' Seated Length . . 3/8 ± 3/16" Maximum Diameter. 1-9/16" Dimensional Outline See General Section Weight (Approx.). 1.3 oz Bulb ST-12 Small-Shell Octal Pin Base (JET FC No. B6-3) Basing Designation for BOTTOM VIEW. . 4AJ JUMPER Pin 1-No Connec-Pin 5 - Anode tion Pin 7-Jumper* (3 Pin 2 - Cathode Pin 8-No Connec-Pin 3-Jumper* tion (8 Maximum and Minimum Ratings, Absolute Values: AVERAGE STARTING CURRENT. 100 max. ma (40 max. ma DC CATHODE CURRENT. . 5 min. ma FREQUENCY . 0 max. AMBIENT-TEMPERATURE RANGE 00 -55 to +90 Circuit Values: Shunt Capacitor . 0.1 max. μf Series Resistor . See note below CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Min. Av. Max. DC Anode-Supply Voltage . 185 volts Anode Breakdown Voltage . 185* volts 165* Anode Voltage Drop. . . 142 153 volts Regulation (5 to 40 ma) 5.5 volts With suitable socket connections, jumper within base acts as a switch to open power-supply circuit when voltage regulator tube is removed from socket. Averaged over starting period not exceeding 10 seconds. This starting period must be followed by a steady state operating condition of at least 20 minutes, or tube performance will be impaired. Not less than indicated supply voltage should be provided to insure "starting" throughout tube life. Maximum individual tube value during useful life. Minimum individual tube value during useful life. The operating considerations and circuit information shown under Type OA3 also apply to Type OD3

- Indicates a change.

4-56

003

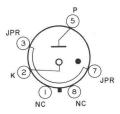
TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

0C3A

Voltage-Regulator

GLOW-DISCHARGE TYPE

105 VOLTS


For Applications Requiring a Relatively Constant DC Output Voltage, Independent of Load and Supply-Voltage Variations

Mechanical:

() perati	ng	Po	si	ti	on																			. 1	Any	
1	ype of	Ča	ath	100	le							e.													. Co	bld	
٨	laximum	01	/er	al	1	Le	ingt	th,								÷.	ž,					×.		3-	-1/:	16"	
1	lax i mum	Se	at	ec	I L	en	nath	ĩ.		5						4					2	8		2	2-1	12"	
- 1	laximum	D	ar	net	er	÷.	•	8.8			2				\mathbf{x}									1-	-97,	32	
[Dimensi	ona	a1	Οι	it]	ir	le .			10	\sim							Se	ee	Ge	e n e	200	a l	Se	ecti	ion	
f	Bulb														•	×.		•	•		•			÷		. 19	
ł	Base	•	•			l.	nte	rm	ed	ia	ate	9-0	She	el)c.	ta (Jł	i (Edi	5—1 EC	G	1, roi	۱A qL	1	anı , İ	ger Vo.	nen .B6	t 1 -8)	

Basing Designation for BOTTOM VIEW.

Pin 1 - No Internal Connection Pin 2 - Cathode Pin 3 - Jumper^a Pin 5 - Anode Pin 7 - Jumper^a Pin 8 - No Internal Connection

VOLTAGE REGULATOR

Maximum and Minimum Ratings, Absolute-Maximum Values:

	Starting Current!							100 max.	ma
DC	Cathode Current.	•	×			ŝ	÷	{40 max. 5 min.	ma ma
D	C or AC Jumper Curi	rer	٦t	÷		5		2 max.	amp
	nbient-Temperature							-55 to +90	oC

Circuit Values:

Shunt	Capacitor				\sim	×	0.1 max	. μt	
Series	s Resistor				 	.See	Operating	Considerations	

a With suitable socket connections, the jumper within the tube base (between pins 3 and 7) provides for opening the power-supply circuit to protect circuit components when the voltage-regulator tube is removed from its socket.

Averaged over starting period not exceeding 10 seconds. When starting currents greatly in excess of the maximum do-cathode-current rating of 40 milliamperes are encountered, it may be necessary to operate these tubes as much as 20 minutes under steady-state conditions to assure stable operation.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 10-63

CHARACTERISTICS RANGE VALUES

Values are initial unles	s othe	rwise	spec	ified		
DC Anode Supply Voltage	Note 				Note 1	C
DC Anode Starting Voltage in: Total darkness Normal ambient light		-	-	210	volts	
(5 to 50 footcandles) Anode Voltage Drop		-	115	127	volts	
for dc cathode current of: 5 ma				- 111 112		
current range of: 5 to 30 ma 5 to 40 ma Tube Noise for dc cathode current of	2	-	1 2		volts volts	
40 ma. DC Leakage Current for dc anode supply voltage of 50 volts and anode resistor of 3000 ohms		_	_	15 10	rms mv μa	
Note 1: The minimum value to insure	startir	ng thro	ughou	t usef	ul tube	

Note 1: The minimum value to insure starting throughout useful tube life must be equal to the dc anode starting voltage plus the voltage drop across the series resistor at the maximum value of the load current.

Note 2: The maximum values for the specified regulation range apply throughout useful tube life.

OPERATING CONSIDERATIONS

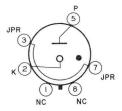
shown under Type OA3A also apply to the OC3A

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

OD3A

Voltage-Regulator

GLOW-DISCHARGE TYPE


150 VOLTS

For Applications Requiring a Relatively Constant DC Output Voltage, Independent of Load and Supply-Voltage Variations

Mechanical:

Operating Position
Type of Cathode
Maximum Overall Length
Maximum Seated Length
Maximum Diameter
Dimensional Outline See General Section
Bulb Intermediate-Shell Octal 6-Pin, Arrangement
(JEDEC Group 1, No.B6-8
Basing Designation for BOTTOM VIEW

Pin 1 - No Internal Connection Pin 2 - Cathode Pin 3-Jumper^a Pin 5 - Anode Pin 7 - Jumper^a Pin 8-No Internal Connection

VOLTAGE REGULATOR

Maximum and Minimum Ratings, Absolute-Maximum Values:

Average Cathode						
Starting Current ^b					100 max.	ma
DC Cathode Current					∫40 max.	ma
					Comm.	ma
DC or AC Jumper Current						amp
Ambient-Temperature Range.	•	•	i.	8	-55 to +90	°C

Circuit Values:

Shunt Capacitor.				×			. 0.1	max.	μf
Series Resistor.	÷	140		÷		See	Operation	ng Consid	erations

^a With suitable socket connections, the jumper within the tube base (be-tween pins 3 and 7) provides for opening the power-supply circuit to protect circuit components when the voltage-regulator tube is removed from its socket.

b Averaged over starting period not exceeding 10 seconds. When starting currents greatly in excess of the maximum dc-cathode-current rating of 40 milliamperes are encountered, it may be necessary to operate these tubes as much as 20 minutes under steady-state conditions to assure stable operation.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J.

DATA 10-63

OD3A

CHARACTERISTICS	KANGE	VALUE	3		
· Values are initial unles.	s othe	erwise	specij	cied	
	Note	Min.	Av.	Max.	
DC Anode Supply Voltage				. See	Note 1
DC Anode Starting Voltage in: Total darkness		<u> </u>	_	225	volts
Normal ambient light (5 to 50 footcandles)		-	160	180	volts
Anode Voltage Drop			100	100	10100
for dc cathode current of: 5 ma		145	-	_	volts
30 ma	277	145			volts
40 ma		145	150	102	volts
current range of: 5 to 30 ma	2	-			volts volts
5 to 40 ma Tube Noise for dc cathode current c		-	4	0.0	VOITS
40 ma	-	-	-	15	rms mv
for dc anode supply voltage of 50 volts and anode resistor of 3000 chms		-	-	10	щa

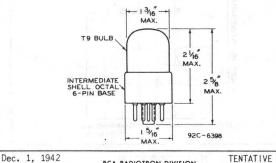
CHARACTERISTICS RANGE VALUES

The minimum value to insure starting throughout useful tube life must be equal to the dc anode starting voltage plus the voltage drop across the series resistor at the maximum value of the load current. Note 1:

Note 2: The maximum values for the specified regulation range apply throughout useful tube life.

OPERATING CONSIDERATIONS

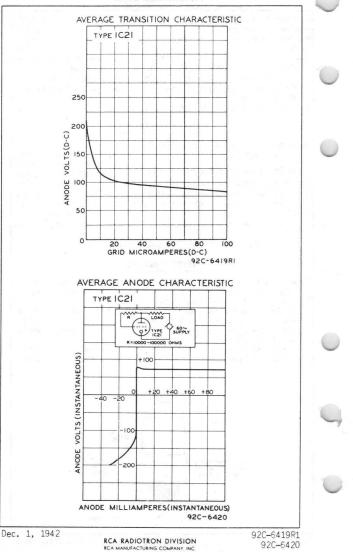
shown under Type OA3A also apply to the OD3A



RADIO CORPORATION OF AMERICA Harrison, N. J. Electronic Components and Devices

GAS-TRIODE

COLD-CATHODE GLOW-DISCH	ARGE TYPE
Maximum Overall Length Maximum Diameter Bulb Base Pin 1 - No Connection Pin 2 - Cathode Pin 3 - No Connection Pin 5 - Anode Mounting Position BOTTOM VIEW (G-4	2-5/8 2-1/16 1-5/16 T- Pin 7 - Grid Pin 8 - No Connection • - Gas Tube Type V) An
CHARACTERISTIC	S
Peak Anode Breakdown Voltage (Grid ti to cathode) Peak Positive Grid Breakdown Voltage D-C Anode Extinction Voltage Grid Current (For transition of dis- charge to anode at 100 volts peak) Anode Voltage-Drop Grid Voltage-Drop Maximum Ratings Are Design-	180 min. volt 66 min. volt 80 max. volt 73 approx. volt 25 av. µamp 50 max. µamp 73 approx. volt 55 approx. volt
MAXIMUM RATING	S
Peak Cathode Current D-C Cathode Current Typical Operation as Relay Tube:	100 max. ma. 25 max. ma.
D-C Anode-Supply Voltage	125 - 145 volts
Peak Positive Grid-Bias Voltage	66 max. volt:
Peak Grid-Signal Voltage Sum of Grid-Bias and Grid-Signal	40 min. volts
Voltages (Peak)	100 min. volts
D-C Grid Current	100 µamp.



RCA RADIOTRON DIVISION RCA MANUFACTURING COMPANY, INC.

TENTATIVE DATA

GAS-TRIODE

THYRATRON

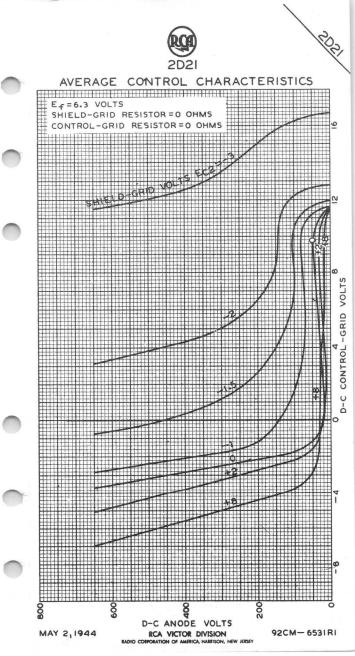
GAS TETRODE, MINIATURE TYPE

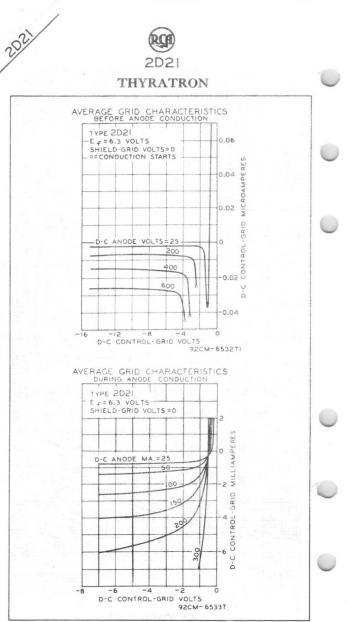
GENERAL DATA

JUNE 15, 1948	TUBE DEPART	AFLIT			DATA
- Indicates a change.					
Pin 1-Grid No.1 Pin 2-Cathode Pin 3-Heater Pin 4-Heater			Pin 6	5 - Grid 5 - Anode 7 - Grid	9
Bulb Base		mall-Bu	tton Mi	niature	- 5-1/2 7-Pin . 7BN
Mounting Position . Maximum Overall Leng Maximum Seated Lengt Length, Base Seat to B Maximum Diameter	h	ding tip) 1		. Any 2-1/8" 1-7/8" : 3/32" : 3/4"
Mechanical:					
^O Without external shie	1d.				
resistor (mego (megohms)= 0;	hms) = 0; grid- grid-No. volt	No.2 res	sistor		1000
resistor (mego Grid-No.2 Control Ra	hms) = 0; grid-1	10.2 volt	ts = 0		250
Anode Voltage Drop (Grid-No.1 Control Ra	Approx.)			8	volts
supply volts (amp. = 0.1 .	rms) = 460, and	average	anode	0.5	µamp
volts = -10; g	rid-No.1 resis	stor (of	nms) =	75	μsec
For conditions: dc volts = -100, 1000; dc anode For conditions: dc	grid-No.1 resi amp. = 0.1 .	stor (of	nmis) =	35	μsec
scuare-pulse v during conduct Deionization Time (A	volts = 50; pe ion = 0.5	ak anode	amp.	0.5	μsec
Output Ionization Time (App For conditions: dc	rox.):		- • • •	1.0	μµrf
Input				2.4	щuf
Direct Interelectrod Grid No.1 to Anode	e Capacitances			0.026	sec
Cathode: Heating Time, prio		10	_	_	sec
Heater, for Unipoten Voltage (AC or DC) Current, with heate		<u>Min.</u> 5.7 0.54	<u>Av.</u> 6.3 0.60	<u>Max.</u> 6.9 0.66	volts
Electrical:					

EADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

2021

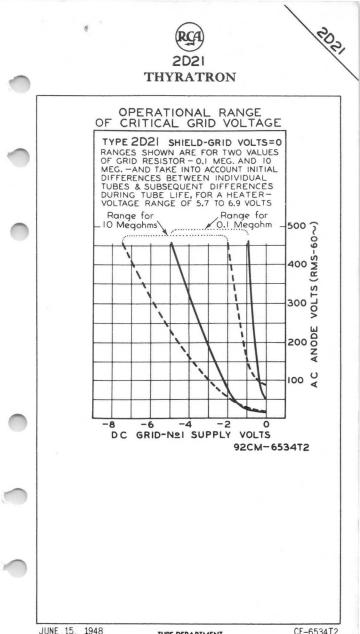

	RELAY and GRID-CONTROLLED RECTIFIER SERVICE
	Maximum Ratings, Absolute Values:
1	PEAK ANODE VOLTAGE:
1	Forward
Contraction of the local division of the loc	Inverse
ł	Peak, before anode conduction100 max. volts
	Average, during anode conduction [®] 10 max. volts GRID-No.1 (CONTROL-GRID) VOLTAGE:
1	Peak, before anode conduction100 max. volts
	Average, during anode conduction [®] , −10 max. volts CATHODE CURRENT:
1	Peak,
	Average [®] 0.1 max. amp
	Surge, for duration of 0.1 sec. max 10 max. amp GRID-No.2 CURRENT:
-	Average [®]
	Average +0.01 max. amp PEAK HEATER-CATHODE VOLTAGE:
	Heater negative with respect to cathode . 100 max. volts
1	Heater positive with respect to cathode . 25 max. volts
l	AMBIENT TEMPERATURE RANGE75 to +90 °C
1	Typical Operating Conditions for Relay Service:
	RMS Anode Voltage
ļ	Grid-No.2 Voltage 0 0 volts
	RMS Grid-No.1 Bias Voltage ⁿ 5 – volts DC Grid-No.1 Bias Voltage – 6 volts
	DC Grid-No.1 Bias Voltage6 volts
	Peak Grid-No.1 Signal Voltage 5 6 volts
	Grid-No.1-Circuit Resistance 1.0 1.0 megohm Anode-Circuit Resistance# 1200 2000 ohms
-	Maximum Circuit Values:
	Grid-No.1-Circuit Resistance 10 max. megohms
	Averaged over any interval of 30 sec. max.
-	Approximately 180° out of phase with the anode voltage.
Contraction of the local division of the loc	[#] Sufficient resistance, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings. -> indicates a change.
	a mereares a change.
1	and the second sec
	the second

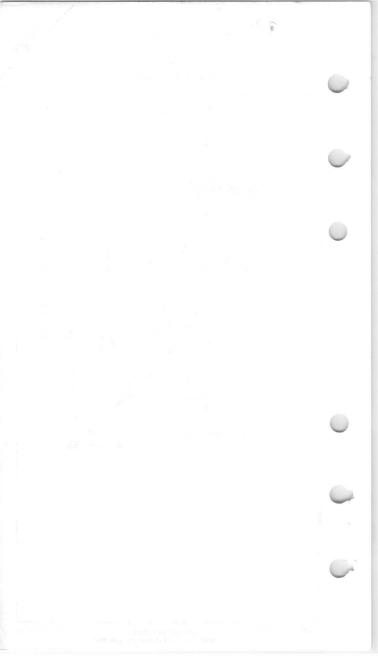

JUNE 15, 1948

2021

TUBE DEPARTMENT

DATA




APRIL 1, 1944

92CM-6532T1 92CM-6533T

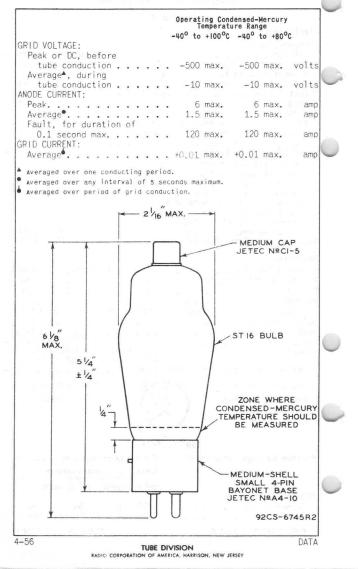
RCA VICTOR DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

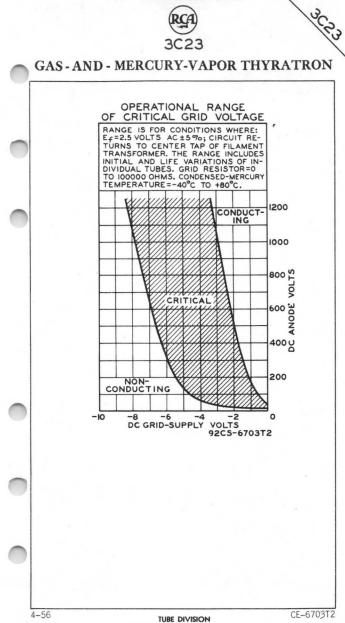
TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY CE-6534T2

ac23

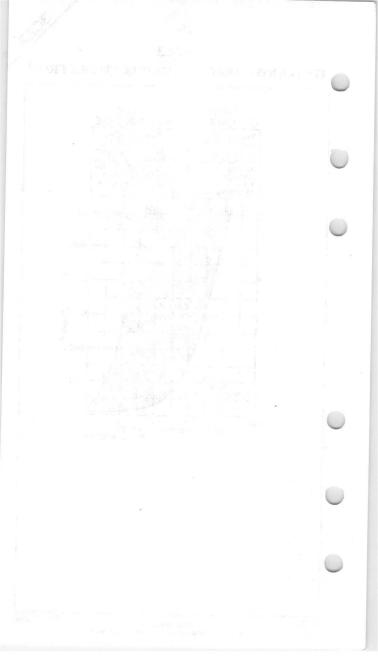
GAS-AND -MERCURY-VAPOR THYRATRON

NEGATIVE-CONTROL TRIODE TYPE


GENERAL	DATA
---------	------


GENERAL	DATA	
lectrical:		
ilament. Coated:		1.0. 0. v 180
	5 ± 5% ac	or dc volts
Current at 2.5 volts	7	amp
Minimum heating time prior to		a the set free of
tube conduction	• • • • • • • • •	15 sec
Direct Interelectrode Capacitand	e (Approx.):	1.8 μμf
onization Time (Approx.):		1.8 <i>μ</i> μf
For conditions: dc anode volt	s = 100.	
peak grid volts = +30, a		
anode amperes = 6		3 μsec
Deionization Time (Approx.):		1.00
For conditions: dc anode volt		
dc grid-supply volts = -20,		The second second
sistor (ohms) = 10000, anode amperes = 1.5		360 µsec
For conditions: dc anode volt		200 µ3000
dc grid-supply volts = -500,		
sistor (ohms) = 100000,		
anode amperes = 1.5		60 μsec
Anode Voltage Drop (Approx.)		15 volts
Mechanical:		
Mounting Position	Vortics	al. base down
Maximum Overall Length	• • • • • • • • • • • • • • • • • • •	. 6-1/8"
Seated Length		-1/4" ± 1/4"
Maximum Diameter		2-1/16"
Cooling Natural	circulation of ai	r around tube
Weight (Approx.)		3 oz
Bulb		ST-16
Cap		TEC No.C1-5) Small 4-Pin
Dase	with Bayonet (JE	
Basing Designation for BOTTOM		3G
	1 1 2 3	
Pin 1-Filament (2)	Pin 2	4 - Filament
Pin 2 - No Connec-		o – Anode
tion	· · /	
Pin 3-Grid	× (4)	
CONTROL	OF DVIOF	
Maximum Ratings, Absolute Values:		
	Operating Condensed Temperature Ram	-Mercury
	-40° to +100°C -40°	
PEAK ANODE VOLTAGE:	-40° to +100°C -40°	
	200 max. 1250	0 max. volts
PEAK ANODE VOLTAGE:	200 max. 1250	
PEAK ANODE VOLTAGE: Forward	200 max. 1250 200 max. 1250	0 max. volts

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



GAS-AND-MERCURY-VAPOR THYRATRON

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

NEGATIVE-CONTROL TETRODE TYPE

Supersedes Type 3D22

GENERAL DATA

Electrical:

Heater, 1	for Unipo	tential	Cathode:
-----------	-----------	---------	----------

Min. Av. Voltage 5.7 6.3 Current at 6.3 volts - 2.6 Cathode: - 2.6		ac	or dc	volts amp
Minimum heating time prior to tube conduction. Maximum outage time without reheating. Direct Interelectrode Capacitances (Approx.): ^o	:	30 3		sec sec
Grid No.1 to anode* Grid No.1 to cathode, grid No.2,	•	0.1		μµf
base shell, and heater	•	8.5		μµf
base shell, and heater	•	4.6		μµf
For conditions: dc anode volts = 100, grid-No.lsquare-pulsevolts = +100, and peak anode amperes during con- duction = 8. Deionization Time (Approx.):		0.5		μsec
For conditions: dc anode volts = 125, dc grid-No.lvolts = -200, grid-No.l				25.00
resistor (ohms) = 1000, and dc anode amperes = 0.8	•	150		µsec
resistor (ohms) = 1000, and dc anode amperes = 0.8	·	400		μsec
= 460 (rms), and average anode amperes = 0.8	•	0.8		µamp volts
sistor (megohms) = 0, and grid-No.2 volts = 0 Grid-No.2 Control Ratio (Approx.): For conditions: grid-No.1 resistor	•	150		
<pre>(megohms) = 0, grid-No.2 resistor (megohms) = 0 to 0.1, and grid-No.1 volts = -3 • Witnout external shield.</pre>	•	650		
 without external shield. * with all other electrodes and base shell conne 	ected t	o gro	und.	

JULY 1, 1955

(RCA) 3D22-A GAS THYRATRON

Mechanical:

3022-1

Mechanical:	-
Mounting Position	
Maximum Seated Length	
Maximum Diameter	
Weight (Approx.)	
Bulb Medium-Metal-Shell Giant 7-Pin	0
with Bayonet (JETEC No.A7-17)	
Basing Designation for BOTTOM VIEW	
Pin 1 - Heater (3) Pin 5 - Grid No.2	
Pin 2 - Grid No.2 A-A Pin 6 - Anode	
Pin 3 - Cathode	
Pin 4 - Grid No.1	-
()	
AA'= PLANE OF ELECTRODES	
RELAY AND GRID-CONTROLLED RECTIFIER SERVICE	
Maximum Ratings, Absolute Values:	
PEAK ANODE VOLTAGE:	
Forward	
Inverse. 1500 max. volts GRID-No.2 (SHIELD-GRID) VOLTAGE:	
Peak, before tube conduction100 max. volts	
Average#, during tube conduction10 max. volts	
GRID-No.1 (CONTROL-GRID) VOLTAGE:	
Peak or DC, before tube conduction200 max. volts	
Average#, during tube conduction10 max. volts CATHODE CURRENT:	
Peak	
Average# 0.8 max, amo	
Fault, for duration of 0.1 second max. 30 max. amp	
AVERAGE GRID-No.2 CURRENT# +0.1 max. amp AVERAGE GRID-No.1 CURRENT# +0.05 max. amp	
PEAK HEATER-CATHODE VOLTAGE:	
Heater pogetive with	
respect to cathode 100 max. volts	
Heater positive with	
respect to cathode 25 max. volts AMBIENT-TEMPERATURE RANGE	
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance 2 max. megohms	
# Averaged over any interval of 30 seconds maximum.	

GAS THYRATRON

SPECIAL PERFORMANCE TESTS

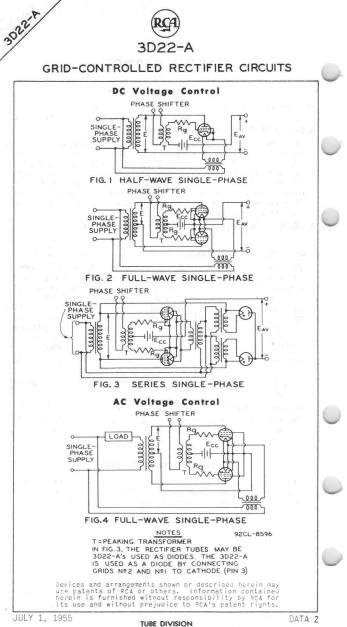
Made in conformance with indicated sections of MIL-E-1B Specifications dated 2 May 1952

4.9.19.2 (F-66) High-Frequency Vibration:

The tube is rigidly mounted on a table vibrating with simple harmonic motion at a frequency of 50 ± 2 cps with a fixed amplitude of 0.040" \pm 0.0025" (total excursion is double the amplitude). Maximum acceleration is 10g. No voltage is applied during vibration. Tube is vibrated for 10 minutes in such manner that table motion is along shortest line between anode and cathode. This test will not cause tube to be inoperative.

4.10.19 (F-64) Thyratron High-Voltage Operation:

Min. Max.


3022'A

Grid-No.1 Supply Voltage (1) -4.4 -9.2 volts This test is made after two light taps with a felt hammer (similar to type used for noise tests) in direction from cathode to anode under the following conditions: heater voltage of 6.3 volts rms, anode supply voltage of 500 volts rms, grid No.2 tied to cathode, load resistance of 2000 ohms, and grid-No.1 circuit-resistance of 2 megohms. Tube conduction is indicated by an oscilloscope connected between anode and cathode and ceases when the grid-No.1 supply voltage is increased negatively within indicated range.

Grid-No.1 Supply Voltage (2).... -4.4 -9.2 volts This test is made as for Grid-No.1 Supply Voltage (1), except that the taps are made in direction from anode to cathode.

OPERATING CONSIDERATIONS

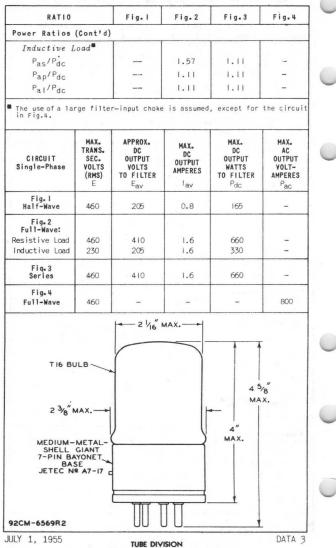
Sufficient *anode-circuit resistance*, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings of the tube.

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

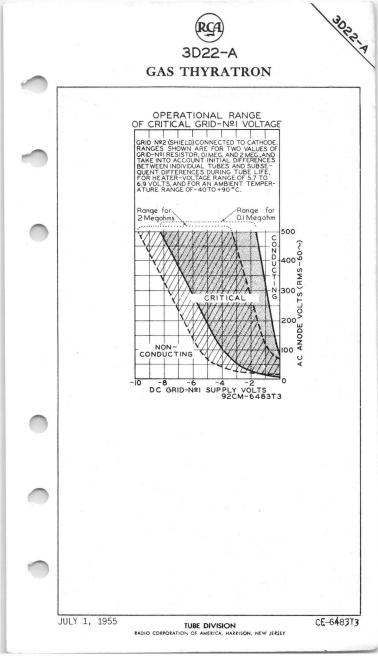
Ε	=	Trans. Sec. Voltage (RMS)	lav	=	Average DC Output Current
Eav	=	Average DC Output Voltage	Ib	=	Average Anode Current
Ebmf	=	Peak Forward Anode Voltage	1p	=	Anode Current (RMS)
Ebmi	=	Peak Inverse Anode Voltage	1 pm	=	Peak Anode Current
Em	=	Peak DC Output Voltage	Pac	=	Load Volt-Amperes
Er	=	Major Ripple Voltage (RMS)	Pal	=	Line Volt-Amperes
f	=	Supply Frequency	Pap	=	Trans. Pri. Volt-Amperes
fr	=	Major Ripple Frequency	Pas	=	Trans. Sec. Volt-Amperes
		Pdc = DC Power	(Eav	×	lav)

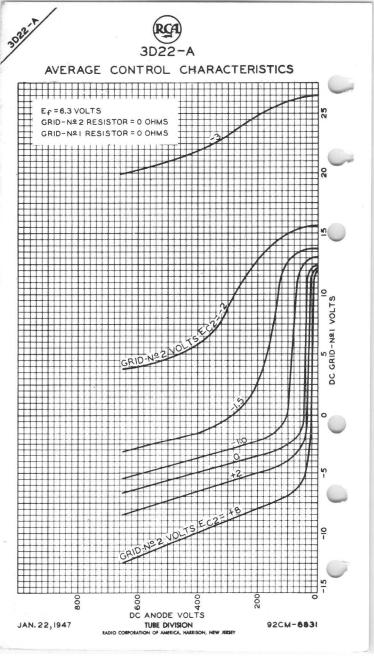
Note: Conditions assumed involve sine-wave supply; zero voltage drop in tubes; no losses in transformer and circuit; no back emf in the load circuit; and no phase-back.

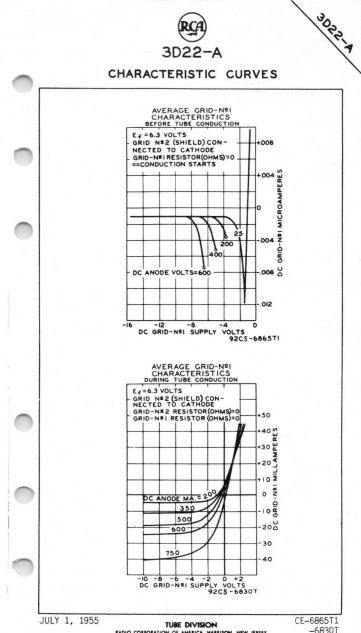
RATIO	Fig. I	Fig.2	Fig.3	Fig.4
Voltage Ratios	1897. 1997 - 1997 - 19	al areas	1 1 188 100	U.S.S. Dalar
E/Eav	2.22	1.11	1.11	-
Ebmi/E	1.41	2.83	1.41	1.41
Ebmi/Eav	3.14	3.14	1.57	1.167.13
Em/Eav	3.14	1.57	1.57	1.4
Er/Eav	1.11	0.472	0.472	-
E _{bmf} /E:			- C 1 - 1	a - 11-
Resistive Load	1.41	1.41	1.41	1.41
Inductive Load	1.41	2.83	1.41	1.41
Frequency Ratio				i la dis
fr/f	1	2	2	Street Ferry
Current Ratios		S.		1
lp/lav	1.57	0.785	0.785	-
1b/lav	1	0.5	0.5	-
Resistive Load				
Ipm/lav	3.14	1.57	1.57	-
Ipm/Ib	3.14	3.14	3.14	3.14
Inductive Load	1	1		
Ipm/lav		1	I s	1
Power Ratios	1.00			
Pac/IbEbmf		-	A STATE OF A	1.57
Resistive Load			and the second	205-
Pas/Pdc	3.49	1.74	1.24	1920
	2.69	1.23	1.24	-
Pap/Pdc		1.23	1.24	1


RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

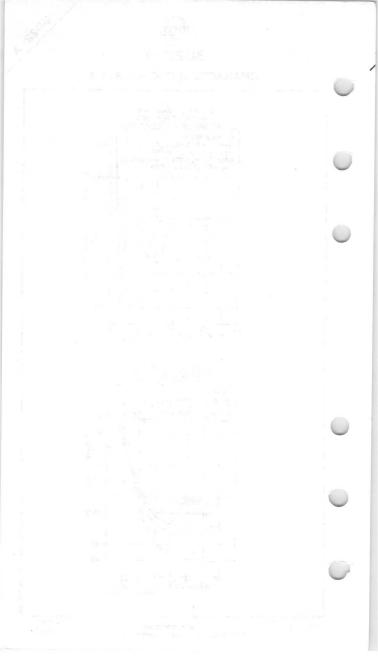
2000




3022-1

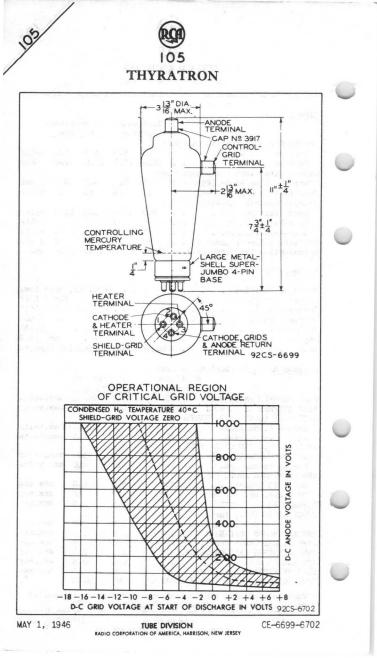

GAS THYRATRON

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

-6830T


THYRATRON MERCURY-VAPOR TETRODE

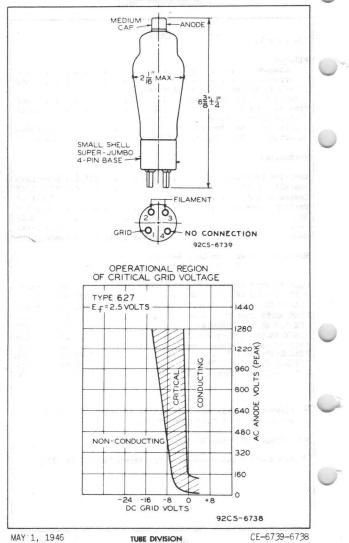
Electrical:	TA				
siectifical.	Cont	inuous	Inter	nitten	t.
		vice		vice	
leater, for Unipotential Cathode	No. of Concession, Name				
Voltage*	5.0	5.0	5.5	5.0	volts
Current	10.0	10.0	11.0	10.0	am
Direct Interelectrode Capacitan	nce:				
Grid-No.1 to Anode (Approx.)			0.3	0.3	μμ
Peak Voltage Drop (Approx.)	16	16	16	16	volts
Approx. Control Characteristics	5:				
Anode Voltage	100	1000	100	1000	volt
Grid-No.2 Voltage	0	0	0	0	volt
Grid-No.1 Voltage	+1	-9	+1	-9	volts
Ionization Time (Approx.)	10	10	10	10	µsec.
Deionization Time (Approx.)	1000	1000	1000	1000	µsec.
Mechanical:					
Mounting Position	Τ.		Vertical	. Bas	se Down
Overall Length				11"	± 1/4
Seated Length				-1/4"	± 1/4
Greatest Radius			Geo. :		13/16
Bulb					ST-30
Caps				No	. 3917
Base		Tumba	/ Dim .	diale I	in man of
		- Cuntoo	4-F 111, 1	vith E	ayone
			4-r 111, 1	VICN E	ayone
Aximum Ratings, Absolute Value Continu	es:		mitten		ayone
Maximum Ratings, Absolute Value	es: lous	Inter			a yone i
aximum Ratings, Absolute Value Continu	es: lous ce	Inter Se	mitten	t -	
Maximum Ratings, Absolute Value Continu Servia PEAK FORWARD ANODE VOLT. 250	es: lous ce	Inter Se 750	rmittent rvice 10000	t) max	.volt
Aaximum Ratings, Absolute Value Continu PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250	es: lous ce 00	Inter Se	rmittent rvice 10000	t) max	.volt
Aximum Ratings, Absolute Value Continu Servia PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 GRID-No.1 (CONT.GRID) VOLT.:	es: ious ce 00 00	Inter <u>Se</u> 750 750	rmittent rvice 10000 10000	t) max) max	.volt
Aaximum Ratings, Absolute Value Continu Servid PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 BRID-No.1 (CONT.GRID) VOLT.: Before Conduction100	es: lous ce 00 00	Inter <u>Se</u> 750 750 -1000	mitten rvice 10000 10000	t) max) max	.volt
Aaximum Ratings, Absolute Value Continu Servia PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 JRID-No.1 (CONT.GRID) VOLT.: Before Conduction100 During Conduction1	es: lous ce 00 00	Inter <u>Se</u> 750 750	rmittent rvice 10000 10000	t) max) max	.volt
Maximum Ratings, Absolute Value Continu PEAK FORWARD ANODE VOLT. 250 PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 PEAK FORWARD ANODE VOLT. 250 PEAK FORWARD ANODE VOLT. 250 During Conduction. -100 During Conduction. -20 GRID-No.2 (SH'LD GRID) VOLT.: 250	es: lous 2e 00 00 00	Inter <u>Se</u> 750 750 -1000 -10	rmittent 10000 10000 -1000 -1000	t) max) max) max) max	.volts .volts .volts
Maximum Ratings, Absolute Value Continu Service Continu Service CPEAK FORWARD ANODE VOLT. CPEAK INVERSE ANODE VOLT. CPEAK INVERSE ANODE VOLT. Selore Conduction. During Conduction. CSHLD.No.2 (SH'LD GRID) VOLT. Before Conduction. Selore Conduction. Selore Conduction. Selore Conduction.	es: 10us 2e 00 00 00 00	Inter <u>Se</u> 750 750 -1000	mitten rvice 10000 10000	t) mex) max) max) max	.volts .volts .volts .volts
Aaximum Ratings, Absolute Value Continu Service PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 SRID-No.1 (CONT.GRID) VOLT.: Before Conduction100 During Conduction50 During Conduction50 During Conduction50	es: 10us 2e 00 00 00 00	Inter <u>Se</u> 750 750 -1000 -10	rmittent 10000 10000 -1000 -1000 -1000 -500	t) mex) max) max) max	.volts .volts .volts .volts
Maximum Ratings, Absolute Value Continu Servia PEAK FORWARD ANODE VOLT. PEAK FORWARD ANODE VOLT. PEAK INVERSE ANODE VOLT. Sefore Conduction. During Conduction. JRID-No.2 (SH'LD GRID) VOLT.: Before Conduction. Sefore Conduction. JRID-No.2 (SH'LD GRID) VOLT.: Before Conduction. JRID-No.2 (SH'LD GRID) VOLT.: Before Conduction. JUTING CONDUCTION. STANTANEOUS ANODE CUR.:	es: lous ce 00 00 00 00 00 00 00	Inter <u>Se</u> 750 750 -1000 -10	rmittent 10000 10000 -1000 -1000 -1000 -500	t) mex) mex) mex) mex) mex	.volts .volts .volts .volts .volts .volts
Maximum Ratings, Absolute Value Continu Service Continu YEAK FORWARD ANODE VOLT. 250 YEAK INVERSE ANODE VOLT. 250 JRID-No.1 (CONT.GRID) VOLT.: Before Conduction. -100 During Conduction. -100 During Conduction. -50 During Conduction. <td< td=""><td>es: lous ce 00 00 00 00 00 00 00</td><td>Intes <u>Se</u> 750 750 -1000 -10 -500 -10</td><td>-1000 -1000 -1000 -1000 -10</td><td>t max max max max max max</td><td>x.volts x.volts x.volts x.volts x.volts x.volts x.volts</td></td<>	es: lous ce 00 00 00 00 00 00 00	Intes <u>Se</u> 750 750 -1000 -10 -500 -10	-1000 -1000 -1000 -1000 -10	t max max max max max max	x.volts x.volts x.volts x.volts x.volts x.volts x.volts
Maximum Ratings, Absolute Value Continu Servic Servic PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 IRID-No.1 (CONT.GRID) VOLT.: Before Conduction. -100 During Conduction. -100 During Conduction. -50 During Conduction. -	es: lous <u>ce</u> 00 00 00 00 00 00 00 00 00 00 00 00 00	Intes <u>Se</u> 750 750 -1000 -10 -500 -10 5.0	mittent 10000 10000 -1000 -100 -500 -10 8.0	t max max max max max max max	volts volts volts volts volts volts volts
Maximum Ratings, Absolute Value Continu Service Service PEAK FORWARD ANODE VOLT. 256 PEAK INVERSE ANODE VOLT. 256 SRID-No.1 (CONT.GRID) VOLT.: Before Conduction. -100 During Conduction. -100 Before Conduction. -100 During Conduction. -56 During Conduction. -56 During Conduction. -51 NUSTANTANEOUS ANODE CUR.: Below 25 Cycles. Below 25 Cycles and Higher -12	es: lous <u>ce</u> 00 00 00 00 00 00 00 00 00 00 00 00 00	Intes Se 750 750 -1000 -10 -500 -10 5.0 77	mitten <u>rvice</u> 10000 -1000 -100 -10 8.0 16	t max max max max max max max	volts volts volts volts volts volts volts
Maximum Ratings, Absolute Value Continu Servia PEAK FORWARD ANODE VOLT. 250 PEAK FORWARD ANODE VOLT. 250 PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 JRID-No.1 (CONT.GRID) VOLT.: 50 During Conduction. -100 During Conduction. -100 During Conduction. -50 During Conduction. -50 During Conduction. -50 INSTANTANEOUS ANODE CUR:: Below 25 Cycles. Below 25 Cycles. 12 25 Cycles and Higher -40 EVERAGE ANODE CURRENT. 60	es: lous ce 00 00 00 00 00 00 00 00 00 00 00 00 00	Intes Se 750 750 -1000 -10 -500 -10 5.0 77	mitten rvice 10000 -1000 -100 -	t) mex) max) max) max) max) max) max	c.volts c.volts c.volts c.volts c.volts c.volts max.amp max.amp
Maximum Ratings, Absolute Value Continu Service Service PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 IRID-No.1 (CONT.GRID) VOLT.: Before Conduction. -100 During Conduction. -100 During Conduction. -50 Stantaneous Anobe CUR.: Balow 25 Cycles. 12 25 Cycles and Higher . 40 SURGE ANODE CUR., for 50	es: 1015 20 00 00 00 00 00 00 00 00 00	Inter Se 750 750 -1000 -10 -500 -10 5.0 77 2.5	mitten rvice 10000 -1000 -100 -	t) mex) max) max) max) max) max) max	c.volts c.volt
Maximum Ratings, Absolute Value Continu Service Service PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 Before Conduction. -100 During Conduction. -100 During Conduction. -50 Before Conduction. -50 During Conduction. -50 During Conduction. -51 Below 25 Cycles. 12 25 Cycles and Higher 25 XVERAGE ANODE CURRENT. 6 SURGE ANODE CUR, for 0.1 sec., max.	es: 10us 20 20 20 20 20 20 20 20 20 20	Inter <u>Se</u> 750 750 -1000 -10 -500 -10 5.0 77 2.5 400	mitten rvice 10000 -1000 -100 -500 -10 8.0 16 16	t) mex) mex) mex) mex) mex) mex) mex) mex	c.volts c.volt
Maximum Ratings, Absolute Value Continu Service PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 Before Conduction100 During Conduction100 During Conduction100 During Conduction100 During Conduction50 During Conduction50 During Conduction50 During Conduction50 During Conduction50 Stata Conduction50 During Conduction50 Surge ANODE CURRENT	es: aous 2e 20 00 00 00 00 00 00 00 00 00 00 00 00	Inter <u>Se</u> 750 750 -1000 -10 -500 -10 5.0 77 2.5 400 1.0	mitten <u>rvice</u> 10000 10000 -1000 -100 -500 -10 8.0 16 1.0	t) mex) mex	c.volta c.volt
Maximum Ratings, Absolute Value Continu Servid Servid PEAK FORWARD ANODE VOLT. 250 PRID-No.1 (CONT.GRID) VOLT.: Before Conduction. -100 During Conduction. -50 Burlo-No.2 (SH'LD GRID) VOLT.: Before Conduction. -50 During Conduction. -50 During Conduction. -50 During Conduction. -51 Below 25 Cycles. 12 25 Cycles and Higher. 40 NURGE ANODE CUR.ENT. 60 SURGE ANODE CUR.FIT. 61 NURGE GRID-No.1 CUR. 0.7 (NSTANTANEOUS GRID-No.1 CUR. 0.7 (NSTANTANEOUS GRID-No.2 CUR. 20	es: lous 2e 00 00 00 00 00 00 00 00 00 0	Inte: <u>Se</u> 750 750 -1000 -10 5.0 77 2.5 400 1.0 0.25	mitten rvice 10000 -1000 -100 -10 8.0 16 1.6 1.6 1.6 0.29	t) mex) max) max	.volta .volta .volta .volta .volta .volta .volta .ax.amp .ax.amp .ax.amp .ax.amp .ax.amp .ax.amp
Maximum Ratings, Absolute Value Continu Servia PEAK FORWARD ANODE VOLT. 250 PEAK FORWARD ANODE VOLT. 250 PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 During Conduction. -100 State Conduction. -100 During Conduction. -100 During Conduction. -100 State Conduction. -100 During Conduction. -100 WERAGE ANODE CURRENT. 60 SURGE ANODE CURRENT. 60 SURGE ANODE CURRENT. 60 Oll sec., max. 400 Oll sec., max. 400 NVERAGE GRID-No.1 CUR. 0.1	es: lous 2e 00 00 00 00 00 00 00 00 00 0	Inte: <u>Se</u> 750 750 -1000 -10 -500 -10 5.0 77 2.5 400 1.0 0.25 2.0 0.5	mittenn rvice 10000 10000 -10 -1	t) mex) max) max	.volta .volta .volta .volta .volta .volta .volta .ax.anj .ax.anj .ax.anj .ax.anj .ax.anj .ax.anj .ax.anj .ax.anj .ax.anj .ax.anj
Maximum Ratings, Absolute Value Continu Service PEAK FORWARD ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 PEAK INVERSE ANODE VOLT. 250 PEAC Conduction100 During Con	es: lous 20 20 20 20 20 20 20 20 20 20	Intes <u>Se</u> 750 750 -1000 -10 5.0 77 2.5 400 0.25 2.0	mitten rvice 10000 10000 -1000 -10 -1	t) mex) mex	c.volt; c.volt

MAY 1, 1946

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY TENTATIVE DATA

201

THYRATRON MERCURY-VAPOR TRIODE


						_		
	ATA							
Electrical:	1.1							
Filament:								
Voltage*	.5							volt
	.0							. am
Direct Interelectrode Capacita								· can
Anode to Grid (Approx.)								· 140
Peak Voltage Drop	12							volt
Control Characteristic . Nega								
Ionization Time (Approx.)		• •	• •	• •				econd
Deionization Time (Approx.) 10	000	• •	• •	• •	•	•	μse	econd
Mechanical:								
Mounting Position								
Overall Length								
Seated Length								
Maximum Diameter							2-	-1/16
Bulb		• •						S-19
Cap								Meta.
Dase	Small	Sne.	LT S	supe	I.	Jun	100	4-P11
Maximum Ratings, Absolute Valu For frequencies		150	cy cl	Les				
PEAK FORWARD ANODE VOLTAGE				125	50	maz	(.	volt
PEAK INVERSE ANODE VOLTAGE								volt
PEAK GRID VOLT. (Before Conduc								volt
PEAK ANODE CURRENT							• •	
AVERAGE ANODE CURRENT**				0.6				
SURGE ANODE CURRENT for 0.1 se				4			.	
GRID CURRENT, Before Conductio	on (Gria	Neg	•)	0	4	mas	· ·	µamj
PEAK GRID CURRENT		•		0.0	5	CBIN	•	amj
CONDMERCURY TEMPERATURE RANG				25-				am
COND MERCORI FEMILERAIORE RAN	1E • •	•			10			
* Filament voltage must be ap before start of tube conduc		at 1	eas	t 10) s	ecc	ond	5
** Averaged over any 30-second	inter	val.						
Recommended Condensed-Mercu	iry Tem	pera	ture	e 40) t	0 4	45°(с.

MAY 1, 1946

TENTATIVE DATA

THYRATRON

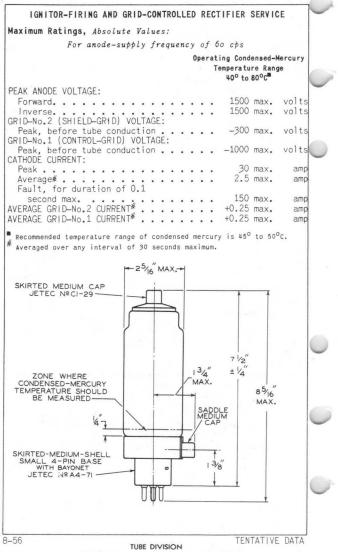
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

632.18

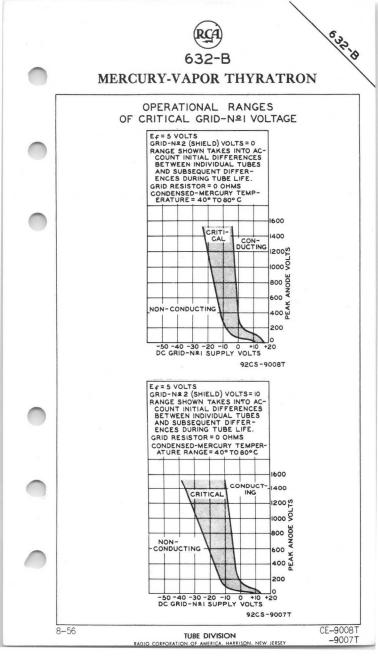
632-B

MERCURY-VAPOR THYRATRON

NEGATIVE-CONTROL TETRODE TYPE


GENERAL DATA

GENERAL DATA	
Electrical:	
Heater, for Unipotential Cathode: Voltage 5 ⁶	c volts
Current 5	amp
Minimum heating time prior to tube conduction	minutes
Offect Interfective Capacitances (Approx.): 0.04 Grid No.1 to anode. 3 Ionization Time (Approx.) 10 Deionization Time (Approx.) 1000 Maximum Critical Grid-No.1 Current. 2 Anode Voltage Drop (Approx.) 12	μμf μμf μsec μsec μamp volts
Mechanical:	
Mounting Position Vertical, ba Maximum Overall Length	8-5/16" ± 1/4" 1-3/4" • 9 oz • T-18 • C1-29) Medium 1 4-Pin
Basing Designation for BOTTOM VIEW	4CE
Pin 1-Heater (2) (3) Pin 4-Heat	er, hode e
Temperature Control:	
HeatingWhen the ambient temperature is so low tha normal rise of condensed-mercury temperature the ambient temperature will not bring the densed-mercury temperature up to the minimum of the operating range specified under Ma Ratings, some form of heat-conserving encl or auxiliary heater will be required.	above con- value ximum
CoolingWhen the operating conditions are such tha maximum value of the operating condensed-me temperature is exceeded, provision should be for forced-air cooling sufficient to preven ceeding the maximum value.	rcury made
Under operating conditions where the average anode current d exceed 0.5 ampere, the heater voltage may be increased to 5.5 v	oes not olts.
8-56 TENTATI	VE DATA

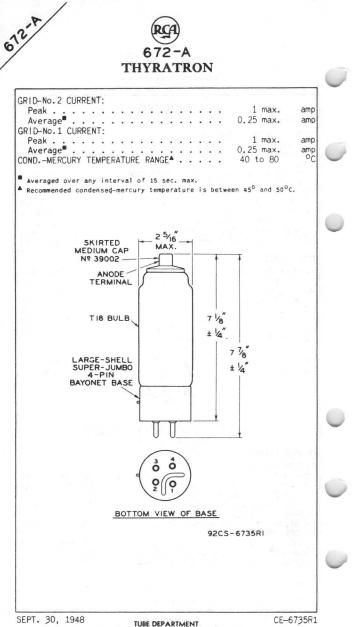


632:0

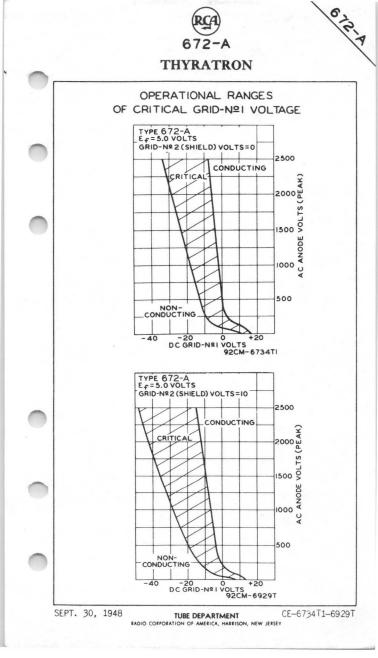
MERCURY-VAPOR THYRATRON

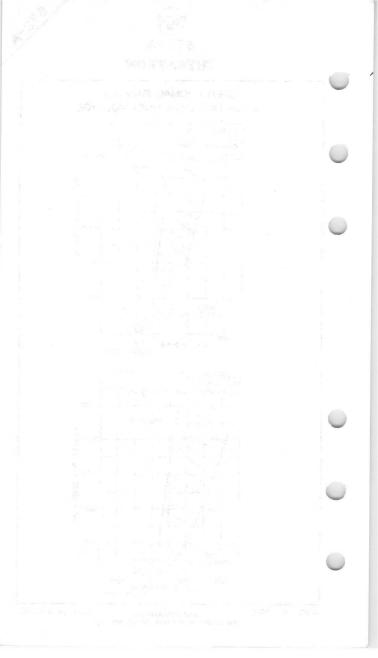
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

672-A THYRATRON



Supersedes Type 672 GENERAL DATA

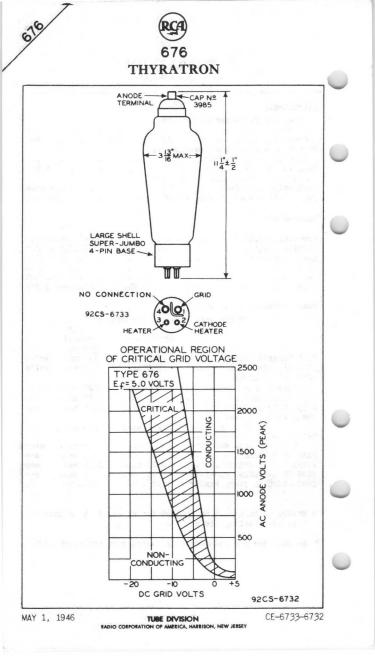

MERCURY-VAPOR TETRODE


		AL DA	1 A				
Electrical:		201					
Heater, for Unipotentia	Catho	de.					
Voltage						ic or do	volts
Current							amp
Cathode:							
Min. Heating Time, pr				duct	ion	. 5 r	ninutes
Direct Interelectrode C						10040	
Grid No.1 to Anode .				• •		. 0.	
Grid No.2 to Anode . Ionization Time (Approx	• • • • •	• •	• •	• •		•	3 µµt
Deionization Time (Approx	.)	• •	• •	• •		. 100	.0 μsec 0 μsec
Maximum Critical Grid C							2
Anode Voltage Drop (App	rox.) .	1.1				. 12	volts
Mechanical:							
Mounting Position							
Overall Length		• •	• •		• •	7 1/0"	± 1/4"
Seated Length Maximum Diameter					• •	7-1/8"	I 1/4"
Bulb							T - 18
Cap							
Base	Large-S	hell	Sup	er-J	umbo 4	-Pin. 1	Bayonet
Basing Désignation fo	r BOTTO	M VIE	W .				4CE
	2	пЭ					
Pin 1-Grid No.1	X	TY				- Heate	
Pin 2-Heater,	() :					- Grid	
Cathode	15	- X			Cap	- Anode	2
	A		4)				
	0		_				
ODID CONT	DALLED	DEAT		0 0			
GRID-CONT	RULLED	RECI	IFIE	RC	ERVICE	_	
For fri	equencie	s up t	0 15) cr	cles		
Maximum Ratings, Absolu	te Valu	es:					
Maximum Ratings, Absolu PEAK ANODE VOLTAGE:	te Valu	es:					
PEAK ANODE VOLTAGE: Forward						0 max.	
PEAK ANODE VOLTAGE: Forward			· .			0 max.	
PEAK ANODE VOLTAGE: Forward Inverse GRID-No.2 (SHIELD-GRID)	VOLTA	:: E:	::	•••	250	0 max.	volts
PEAK ANODE VOLTAGE: Forward Inverse GRID-No.2 (SHIELD-GRID) Peak. before anode co	VOLTAG	:: E:	:):		250		volts
PEAK ANODE VOLTAGE: Forward Inverse GRID-No.2 (SHIELD-GRID) Peak, before anode co GRID-No.1 (CONTROL-GRID	VOLTAG nductic	E: SE: Sn	 	••••	-30	00 max.	volts volts
PEAK ANODE VOLTAGE: Forward Inverse GRID-No.2 (SHIELD-GRID) Peak. before anode co	VOLTAG nductic	E: SE: Sn	 	••••	-30	0 max.	volts volts
PEAK ANODE VOLTAGE: Forward GRID-No.2 (SHIELD-GRID) Peak, before anode co GRID-No.1 (CONTROL-GRID Peak, before anode co CATHODE CURRENT: Peak	VOLTAC nductic) VOLTA nductic	GE: MGE: NGE:			250 30 -100	00 max. 00 max. 00 max.	volts volts volts amp
PEAK ANODE VOLTAGE: Forward GRID-No.2 (SHIELD-GRID) Peak, before anode co GRID-No.1 (CONTROL-GRID Peak, before anode co CATHODE CURRENT: Peak	VOLTAC nductic) VOLTA nductic	GE: MGE: NGE:			250 30 -100	00 max. 00 max. 00 max.	volts volts volts amp
PEAK ANODE VOLTAGE: Forward GRID-No.2 (SHIELD-GRID) Peak, before anode co GRID-No.1 (CONTROL-GRID Peak, before anode co CATHODE CURRENT:	VOLTAC nductic) VOLTA nductic	GE: MGE: NGE:			250 30 -100	00 max. 00 max. 00 max.	volts volts volts amo
PEAK ANODE VOLTAGE: Forward GRID-No.2 (SHIELD-GRID) Peak, before anode co GRID-No.1 (CONTROL-GRID Peak, before anode co CATHODE CURRENT: Peak Average 	VOLTAC nductic) VOLTA nductic	GE: MGE: NGE:			250 30 -100	00 max. 00 max. 00 max.	volts volts volts amo
PEAK ANODE VOLTAGE: Forward GRID-No.2 (SHIELD-GRID) Peak, before anode co GRID-No.1 (CONTROL-GRID Peak, before anode co CATHODE CURRENT: Peak	VOLTAC nductic) VOLTA nductic	GE: MGE: NGE:			250 30 -100	00 max. 00 max. 00 max.	volts volts volts amp
PEAK ANODE VOLTAGE: Forward GRID-No.2 (SHIELD-GRID) Peak, before anode co GRID-No.1 (CONTROL-GRID Peak, before anode co CATHODE CURRENT: Peak Average Surge, for duration o See next page.	VOLTAC nductic) VOLTA nductic	GE: M	 nax.	· · · · · · · · · · · · · · · · · · ·	250 30 -100	00 max. 00 max. 00 max.	volts volts volts amo

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

RADIO CORPORATION OF AMERICA, HARRISON NEW JERSEY

THYRATRON


MERCURY-VAPOR TRIODE

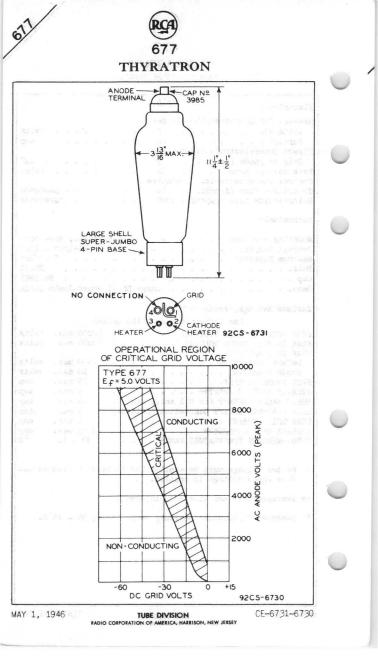
Electrical:	<u>D</u>	ATA						
Heater, for Uni	potential Cath	ode:						
Voltage*		5	• •	• •		• •	• 7	olts
Current		10	• •	• •	• •	• •	• •	amp
Direct Interele								
Grid to Anode Peak Voltage Dr	(Approx.)	12	• •	• •	• •	• •		olts
Control Charact	eristic. Ne	rative	•••	• •	•••	•••	• •	02.00
Ionization Time	(ADDrox.)	10					usec	onds
Deionization Ti	me (Approx.) 1	000			• •	• •	usec	onds
Mechanical:								
Mounting Positi				Ve	rtica	.1, B	ase	Down
Overall Length.					11	1-1/4	" ±	1/2"
Maximum Diamete	r		• •				3-13	/16*
Bulb								
Cap								
Base		Large	e Sh	e11	Super	r-Jum	bo 4	-Pin
Maximum Ratings	, Absolute Val	ues:						
Fo	r frequencies	up to 1	150	cyc]				
						lder_		
		Contin		-		ntrol		
PEAK FORWARD AN	ODE NOT MACE	Ser	VICO		Se.	rvice		01+0
PLAN FURBARD AN	ODE VOLIAGE				750			
PEAK INVERSE AN	IODE VOLTAGE				750	0 max	. v	olts
PEAK INVERSE AN PEAK GRID VOLTA	IODE VOLTAGE	2500	max	•	75	0 max	. v	rolts
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc	NODE VOLTAGE	2500 -500	max	•	-500	0 max	. v	rolts
PEAK INVERSE AN PEAK GRID VOLTA Before Conduct PEAK ANODE CURE	NODE VOLTAGE AGE: stion RENT	2500 -500 40	max max max	•	-500 -500	0 max 0 max 7 max	. v	rolts rolts amp
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURE AVERAGE ANODE C	NODE VOLTAGE GE: ction CENT CURRENT	2500 -500 40	max max max	•	-500 -500	0 max	. v	rolts rolts amp
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURF AVERAGE ANODE CUR SURGE ANODE CUR	NODE VOLTAGE AGE: CENT CURRENT REENT for	2500 -500 40 6.4	max max max max	• • •	-500 -500 7' 2.5	0 max 0 max 7 max	. v	olts amp amp
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURE AVERAGE ANODE CUR SURGE ANODE CUR	NDE VOLTAGE IGE: Stion VENT URRENT RENT for).1 sec. mex.	2500 -500 40 6.4 200	max max max max	• • •	-500 -500 7' 2.5	0 max 0 max 7 max 5 max	. v	olts amp amp
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURC AVERAGE ANODE CUR C GRID CURRENT : duction (cz	NODE VOLTAGE GE: ction CURRENT RENT for D.l sec. mex. Before con- id Negative)	2500 -500 40 6.4 200	max max max max max	•	750 -500 7' 2.9	0 max 0 max 7 max 5 max	. V . V	olts amp amp amp
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURC AVERAGE ANODE CUR C GRID CURRENT: duction (G PEAK GRID CURRENT	NODE VOLTAGE GE: Detion ENT URRENT RENT for .l sec. max. Before con- rid Negative) ENT	2500 -500 6.4 200 5 1	max max max max max max max	• • • •	750 -500 7' 2.5 200	0 max 0 max 7 max 5 max 0 max 5 max 1 max	. V . V	volts amp amp amp amp
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURF AVERAGE ANODE CURF GRID CURRENT: duction (G PEAK GRID CURRENT AVERAGE GRID CURRENT)	NODE VOLTAGE GGE: ttion NENT URRENT RENT for).1 sec. max. Before con- rid Negative) ENT	2500 -500 40 6.4 200 5 1 0.25	max max max max max max max max	• • • •	750 -500 7' 2.; 200	0 max 0 max 7 max 5 max 0 max 5 max 1 max 5 max		olts amp amp amp amp amp amp amp
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURS AVERAGE ANODE CURS GRID CURRENT: duction (Gr PEAK GRID CURRENT AVERAGE GRID CURRENT TIME OF AVERAGI	NODE VOLTAGE GGE: tion NURRENT URRENT for).1 sec. max. Before con- cid Negative) ENT JRRENT ING CURRENTS.	2500 -500 40 6.4 200 5 1 0.25 15	max max max max max max max max max max	• • • • •	750 -500 7' 2.; 200	0 max 0 max 7 max 5 max 0 max 5 max 1 max 5 max 5 max		olts amp amp amp amp amp amp amp amp sec
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURF AVERAGE ANODE CURF GRID CURRENT: duction (Gr PEAK GRID CURRENT AVERAGE GRID CURRENT)	NODE VOLTAGE GGE: tion NURRENT URRENT for).1 sec. max. Before con- cid Negative) ENT JRRENT ING CURRENTS.	2500 -500 40 6.4 200 5 1 0.25 15	max max max max max max max max max max	• • • • •	750 -500 7' 2.; 200	0 max 0 max 7 max 5 max 0 max 5 max 1 max 5 max		olts amp amp amp amp amp amp amp amp sec
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURS AVERAGE ANODE CURS GRID CURRENT: duction (Gr PEAK GRID CURRE AVERAGE GRID CU TIME OF AVERAGI CONDMERCURY 1	NODE VOLTAGE GGE: tion RENT RENT RENT for).1 sec. max. Before con- rid Negative) ENT NG CURRENTS. FEMP. RANGE ^A	2500 -500 40 6.4 200 5 1 0.25 15 40	max max max max max max max max max max	• • • •	750 -500 7' 2.5 200 0.2 40	0 max 0 max 7 max 5 max 0 max 5 max 5 max 5 max 5 max 5 max 5 max		olts amp amp amp amp amp amp amp amp amp amp
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURGE AVERAGE ANODE CUR GRID CURRENT: duction (Gr PEAK GRID CURRENT: AVERAGE GRID CU TIME OF AVERAGI CONDMERCURY 1 * Heater voltag	NODE VOLTAGE GGE: tion RENT RENT RENT for).1 sec. max. Before con- rid Negative) ENT NG CURRENTS. FEMP. RANGE ^A	2500 -500 40 6.4 200 5 1 0.25 15 40.	max max max max max max max max max max	• • • •	750 -500 7' 2.5 200 0.2 40	0 max 0 max 7 max 5 max 0 max 5 max 5 max 5 max 5 max 5 max 5 max		olts amp amp amp amp amp amp sec oc
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURGE AVERAGE ANODE CUR GRID CURRENT: duction (Gr PEAK GRID CURRENT: AVERAGE GRID CU TIME OF AVERAGI CONDMERCURY 1 * Heater voltag	IODE VOLTAGE GGE: tion NENT VURRENT RENT for l sec. max. Before con- id Negative) ENT ING CURRENTS. FURRENT ING CURRENTS. FEMP. RANGE ^A ge must be application of the second sec	2500 -500 40 6.4 200 5 1 0.25 15 40. ied fo: .ed.	mex mex max max max mex mex mex mex r at		750 -500 7' 2.: 200 0.2 40	0 max 7 max 5 max 0 max 5 max 5 max 5 max 5 max 5 max 5 max 5 max	. v.	olts amp amp amp amp amp sec oc
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURF AVERAGE ANODE CURF CURRENT: duction (G PEAK GRID CURRENT: duction (G PEAK GRID CURRENT) AVERAGE GRID CU TIME OF AVERAGI CONDMERCURY 1 * Heater voltag fore anode vo	IODE VOLTAGE GGE: tion NENT VURRENT RENT for l sec. max. Before con- id Negative) ENT ING CURRENTS. FURRENT ING CURRENTS. FEMP. RANGE ^A ge must be application of the second sec	2500 -500 40 6.4 200 5 1 0.25 15 40. ied fo: .ed.	mex mex max max max mex mex mex mex r at		750 -500 7' 2.: 200 0.2 40	0 max 7 max 5 max 0 max 5 max 5 max 5 max 5 max 5 max 5 max 5 max	. v.	olts amp amp amp amp amp sec oc
PEAK INVERSE AN PEAK GRID VOLTA Before Conduc PEAK ANODE CURF AVERAGE ANODE CURF CURRENT: duction (G PEAK GRID CURRENT: duction (G PEAK GRID CURRENT) AVERAGE GRID CU TIME OF AVERAGI CONDMERCURY 1 * Heater voltag fore anode vo	IODE VOLTAGE GGE: tion NENT VURRENT RENT for l sec. max. Before con- id Negative) ENT ING CURRENTS. FURRENT ING CURRENTS. FEMP. RANGE ^A ge must be application of the second sec	2500 -500 40 6.4 200 5 1 0.25 15 40. ied fo: .ed.	mex mex max max max mex mex mex mex r at		750 -500 7' 2.: 200 0.2 40	0 max 7 max 5 max 0 max 5 max 5 max 5 max 5 max 5 max 5 max 5 max	. v.	olts amp amp amp amp amp sec oc

MAY 1, 1946

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

TENTATIVE DATA

THYRATRON MERCURY-VAPOR TRIODE


ACORI-VALOR TRIOD

	2305	DATA	APPIN STREET		
Electrical:		1			
Heater, for Unipot					
Voltage*					volts
Current		10			. amp
Direct Interelectr					
Grid to Anode (A					. щи г
Peak Voltage Drop					volts
Control Characteri	stic. I	legative			
Ionization Time (A	(pprox.)	. 10		µв	econda
Deionization Time	(Approx.)	1000		µв	econds
Mechanical:					
Mounting Position Overall Length			V	ertical, Bas	e Down
Overall Length				. 11-1/4"	± 1/2"
Maximum Diameter.				3-	13/16"
Bulb		· • • • • • •			ST-30
Cap					
Base		. Large	Shell	Super-Jumbo	4-Pin
Maximum Ratings, A	Absolute 1	alues:			
For	frequence	Les up to]	50 cyc	les	
PEAK FORWARD ANODI	E VOLTAGE	~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		10000 max.	volts
PEAK INVERSE ANODE	E VOLTAGE			10000 max.	volts
Before Conductio	on	OLACE DAD		-500 max.	volts
Anode Necetive			120 - 2007	10 mex.	volts
PEAK ANODE CURRENT	r			15 max.	am
AVERAGE ANODE CURE	RENT**			4 max.	am
SURGE ANODE CURREN	T for O.	l sec., ma	ax	16 max.	amp
GRID CURRENT: Befo	ore Condu	ction (Gri	Ld Neg.) 5 max. 1 max.	Lam
PEAK GRID CURRENT	- DMITCHE	in Vin		1 max.	amp
AVERAGE GRID CURRI					
COND MERCURY TEM	PERATURE	RANGE .		30 - 50	~~~(
		1-1-1			
* Heater voltage	must be	applied fo	or at 1	east 5 minut	es be-
fore anode volt					
** Averaged over a	any 15-se	cond inter	rval.		
A Recommended con	ndensed-n	ercury ter	np. ran	ge, 35 - 45 ^c	°c.
	11	11			
	T		-		

MAY 1, 1946

TUBE DIVISION

TENTATIVE DATA

Gas and Mercury-Vapor Thyratron

NEGATIVE-CONTROL TRIODE TYPE

GENERAL DATA

Electrical:

Filament, Coated: Voltage (AC or DC) between pins							
1 and 4						2.5	volts
Current at 2.5 volts						9 ± 2	amp
Minimum heating time prior to							
tube conduction						20	sec
Direct Interelectrode Capacitances	()	Ap	orc	x.):		
Grid to anode						2	$\mu\mu t$
Grid to cathode						12	μµf
lonization Time (Approx.)						10	<i>µ</i> sec
Deionization Time (Approx.)		•		•	•	1000	µsec
Peak Tube Voltage Drop at anode amperes = 8						10	volts

Mechanical:

Operating Position								Vertical, base down
Maximum Overall Length								6-1/4"
Maximum Diameter								1–5/8"
Weight (Approx.)								4 oz
Bulb					•			T13
Cap	•			÷		•	•	. Medium (JEDEC No.C1-5)
Socket		•	•		•	•	•	Small 4-Contact
Base	•	•		•	•	•	•	Medium-Shell Small 4-Pin
					- 1	wi	th	Bayonet (JEDEC No. A4-10)

Pin 1 - Filament Pin 2 - Filament Tap, Circuit Returns

Pin 3.-Grid Pin 4 - Filament Cap - Anode

Thermal:

Type of Cool	ing	1.													Convection
Temperature R															
librium Abc															
No load													2	5	°C
Full load.						•	•	•	•	•	•	•	3	0	°C

GRID-CONTROLLED-RECTIFIER SERVICE

Maximum and Minimum Ratings, Absolute-Maximum Values:

For anode-supply frequency of 60 cps

PEAK	ANODE	VOLTAGE:	

Forward.							•		1500	max.	volts
Inverse.		•							1500	max.	volts

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 5-62

PEAK NEGATIVE GRID VOLTAGE:	
Before tube conduction	volts
During tube conduction	volts
CATHODE CURRENT:	
Peak	amp
Peak	amp
Fault	amp
CONDENSED-MERCURY TEMPERATURE	
RANGE (Operating) ^c	oC

a Without external shield.

b Averaged over any interval of 5 seconds maximum.

C For longest life, the operating condensed-mercury temperature range after warm-up should be kept between +40° and +80° C which corresponds approximately to +10° to +50° C ambient.

Gas and Mercury-Vapor Thyratron

NEGATIVE-CONTROL TRIODE TYPE

GENERAL DATA

Electrical: a

Filament. Coated:				
Voltage (AC or DC)			2.5	volts
Current at 2.5 volts				amp
Minimum heating time prior to				
tube conduction				sec
Direct Interelectrode Capacitance	(Appr	ox.):	b	
Grid to anode				μμf
lonization Time (Approx.)			10	<i>µ</i> sec
Deionization Time (Approx.)			1000	<i>µ</i> sec
Maximum Critical Grid Current			5	μa
Peak Tube Voltage Drop at anode				
amperes = 3			15	volts

Mechanical:

Operating Position Vertical, base down	n
Maximum Överall Length 6-1/8'	
Maximum Diameter	
Weight (Approx.)	
Bulb	5
Cap)
Socket	t
Base	n
with Bayonet (JEDEC No.A4-10))

Pin 1 - Filament Pin 2 - No Internal Connection

Pin 3-Grid Pin 4-Filament Cap-Anode

Thermal:

GRID-CONTROLLED-RECTIFIER SERVICE^a

Maximum and Minimum Ratings, Absolute-Maximum Values:

For anode-supply frequency of 60 cps

	PEAK ANODE VOLTAGE:	
	Forward	
6	Inverse	
7	PEAK NEGATIVE GRID VOLTAGE:	
	Before tube conduction 500 max. volts	
	During tube conduction 10 max. volts	

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 5-62

A	NODE CU	IRREI	NT	:																
	Peak.																3	max.	amp	
	Averag	ec.															1	max.	amp	-
	Fault																50	max.	amp	
C	ONDENSE	D-M	ER	CUF	YS	TE	MP	R	ATU	RE										$\overline{}$
	RANGE	(Op)	era	ati	inc) d											-40 to	+80	oC	
b C	With ci Without Average For lon warm-up mately	ext d ov	ern er	al	sh y i	iel nte	d. rva	1	of	5 5	sec	ond	İs	max	xin	num		ire rang ponds a	e after pproxi-	

Gas and Mercury-Vapor Thyratron

NEGATIVE-CONTROL TRIODE TYPE

GENERAL DATA

Electrical: a

Filament, Coated: Voltage (AC or DC)	2.5 volt	s
Current at 2.5 volts		np
Minimum heating time prior to		
tube conduction	15 se	2c
Direct Interelectrode Capacitance (App	prox.):	
Grid to anode	· · · 3 44	٤f
Ionization Time (Approx.)	10 μse	ec
Deionization Time (Approx.)	1000 μse	ec
Maximum Critical Grid Current	10 µ	ıa
Peak Tube Voltage Drop at anode		
amperes = 5	8 volt	S

Mechanical:

Operating Position								Vertical, base down
Maximum Överall Length.								
Diameter								
Weight (Approx.)	÷							3 oz
Bulb								
Socket					•			Small 4-Contact
Base								
			141	; + k	2 1	221	10	not (IEDEC No AA-10)

Pin 1 - Filament Pin 2 - Anode

Pin 3-Grid Pin 4-Filament

Thermal:

GRID-CONTROLLED-RECTIFIER SERVICE^a

Maximum and Minimum Ratings, Absolute-Maximum Values:

RADIO CORPORATION OF AMERICA

For anode-supply frequency of 60 cps

PEAK ANODE VOLTAGE:
Forward
Inverse
PEAK NEGATIVE GRID VOLTAGE:
Before tube conduction 500 max. volts
During tube conduction 10 max. volts

Harrison, N. J.

Electron Tube Division

DATA 5-62

CATHODE CURF	REN	IT:														
Peak													8	max.	amp	
Average ^c .													1	max.	amp	1
Fault													80	max.	amp	
CONDENSED-ME	ERC	CUF	Y?	TE	EMF	PEF	RA	TUP	RE							
RANGE (Ope	era	at i	no	1)	ď.								-40 to	o +80	oC	

 a With circuit returns to filament-transformer center-tap.

b Without external shield.

C Averaged over any interval of 5 seconds maximum.

d For longest life, the operating condensed-mercury temperature range after warm-up should be kept between +10° and +80° C which corresponds approximately to +10° to +50° C ambient.

Gas and Mercury-Vapor Thyratron

NEGATIVE-CONTROL TRIODE TYPE

GENERAL DATA

Electrical:^a

Filament, Coated:	
Voltage (AC or DC)	volts
Current at 2.5 volts	amp
Minimum heating time prior to	
tube conduction 60	sec
Direct Interelectrode Capacitance (Approx.): b	
Grid to anode 4	μµf
Ionization Time (Approx.) 10	<i>µ</i> sec
Deionization Time (Approx.) 1000	µsec.
Maximum Critical Grid Current 10	μa
Peak Tube Voltage Drop at anode	
amperes = 20	volts

Mechanical:

Operating Position Vertical, base down
Maximum Overall Length
Maximum Diameter
Weight (Approx.)
Cap
Socket Super-Jumbo 4-Contact
Base Large-Metal-Shell Super-Jumbo 4-Pin
with Bayonet (JEDEC No A4-18)

Basing Designation for BOTTOM VIEW. 4BZ

Pin 1-Grid Pin 2-Filament Pin 3-Filament

Pin 4 - No Internal Connection Cap - Anode

Thermal:

GRID-CONTROLLED-RECTIFIER SERVICE^a

Maximum and Minimum Ratings, Absolute-Maximum Values:

For anode-supply frequency of 60 cps

PEAK ANODE VOLTAGE:

FEAK ANUDE																
Forward.					2			\sim			\mathbf{x}_{i}			1500	max.	volts
Inverse.														1500	max.	volts
PEAK NEGAT	IVE	GR	ID	VC	DLT	AC	GΕ	:								
Before t	ube	. co	nd	uct	tic	n			2					500	max.	volts
During t	ube	co	nd	uct	tic	n							÷	10	max.	volts

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 5-62

CATHODE CURRENT:				
Peak			77 max.	amp
Average ^c			6.4 max.	amp
Fault				amp
CONDENSED-MERCURY	Y TEMPERATURE	RANGE		
(Operating) ^d .			40 to +80	°C

^a With circuit returns to filament-transformer center-tap.

b Without external shield.

C Averaged over any interval of 15 seconds maximum.

d For longest life, the operating condensed-mercury temperature range after warm-up should be kept between +40° and +80° C which corresponds approximately to +10° to +50° C ambient.

884, 885 HYRATRONS 000

	uipment design, GENERAL		And the second second second second second second second second second second second second second second second	
Electrical:	Type 884			
Weater Voltage Current Direct Interelec	0.6	otential Cath 2.5±10% 1.5	iode a-cord-cvcl ···· am	n.
Capacita Grid to Anode Grid to Cathod Anode to Catho Tube Voltage Dro	6 e 2 de 0.6	2 0.6	ju	μf μf μf ts
Physical:				
Mounting Positio Maximum Overall Maximum Seated L Maximum Diameter Bulb	Length 4-1/8 ength 3-9/16	1-9/16 ST-12	inch inch inch	es
Base	· · Octal 6-F	in (5-Pin		
Basing Designa	6	5A2		
Pin 1-No Conn Pin 2-Heater Pin 3-Anode Pin 5-Grid Pin 7-Heater Pin 8-Cathode		D C C C C C C C C C C C C C C C C C C C	Pin 1-Heater Pin 2-Anode Pin 3-Grid Pin 4-Cathod Pin 5-Heater	de
RELAXATIO	N OSCILLATOR	-Sweep-Circui	t Service ^A	
Maximum Ratings,	Absolute Valu	es:		
D-C HEATER-CATHO AMBIENT TEMPERAT	RRENT IT A TWEEN ANY TWO E ANY ELECTRODE A DDE POTENTIAL. FURE RANGE	LECTRODES ND HEATER10	1 max. n 350 max. vol 0 to + 25 vol 5 to + 90	na. na. lts lts
△ For best life res about 10 seconds cathode to reach	aults, it is desi after applying he normal operating	rable to delay ater voltage in temperature.	tube conduction f order to allow t	for the
Ticance.			thode current of 3 r discharge, the r comparison with 1 a maximum rating 1 no practical sign	
A	f the grid resisto antaneous volt app	or should be not blied to the gri e circuit instab	less than 1000 of d. Resistance valu ility.	hms ues
per maximum insta in excess of 5000	ooo onno may cause			
per maximum insta in excess of 5000	ooo onnis may cause			

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

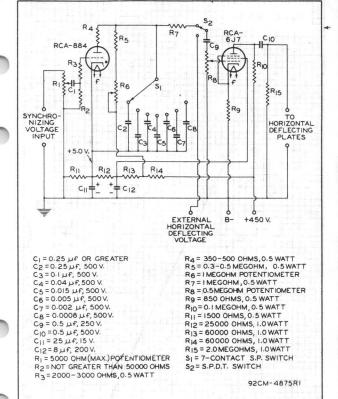
THYRATRONS

(continued from preceding page)

RELAY & GRID-CONTROLLED RECTIFIER SERVICE At Frequencies Below 75 Cycles per Second

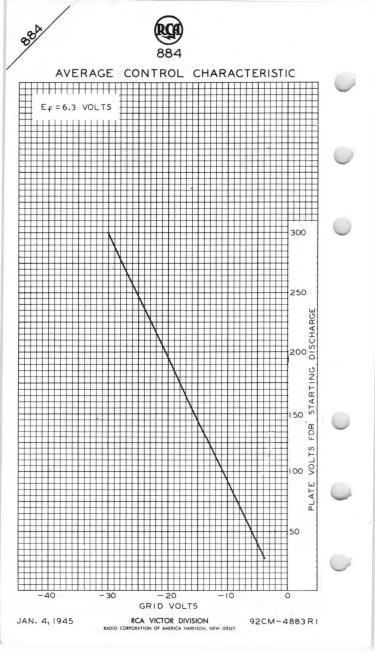
Maximum Ratings, Absolute Values:

	PEAK ANODE VOLTAGE
	PEAK CATHODE CURRENT
	AVERAGE CATHODE CURRENT #
1	PEAK VOLTAGE BETWEEN ANY TWO ELECTRODES
	OR BETWEEN ANY ELECTRODE AND HEATER 350 max. volts
-	D-C HEATER-CATHODE POTENTIAL100 to + 25 volts
-	AMBIENT TEMPERATURE RANGE75 to +90 °C
	[□] The heater voltage should be applied for 10 seconds before tube con- duction occurs.


For an averaging period of 30 seconds.

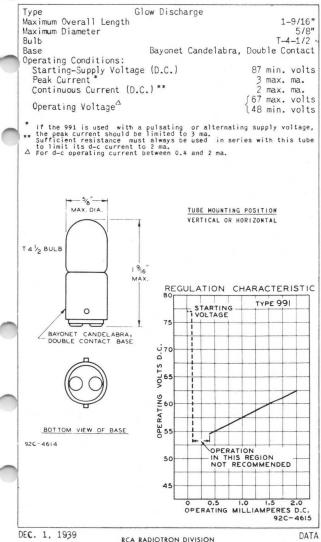
- Indicates a change.

DEC. 15, 1944

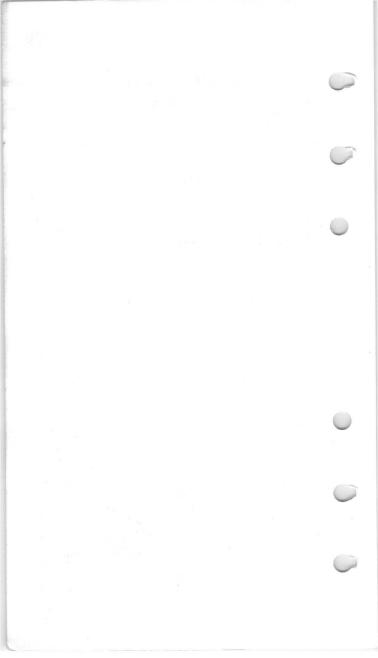

APPROXIMATE	FREQUENCY	RANGE	(CYCLES/S	EC.)
-------------	-----------	-------	-----------	------

SWITCH	(S1) ON	C ₂	°3	C ₄	°.5	C ₆	C7	C 8
R. AT	MAX.	20	40	110	280	670	1500	3600
	MIN.	60	130	340	880	2200	4900	11400

The license extended to the purchaser of tubes appears in the License Notice accompanying them. Information contained herein is furnished without assuming any obligations. — Indicates a change.

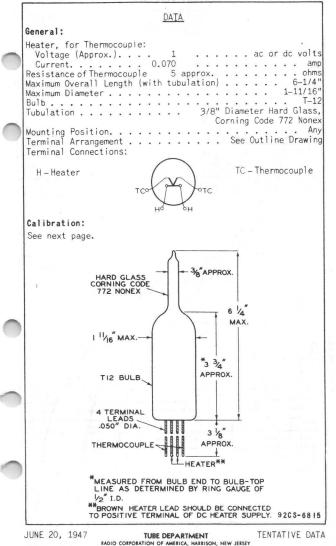

DEC. 15, 1944

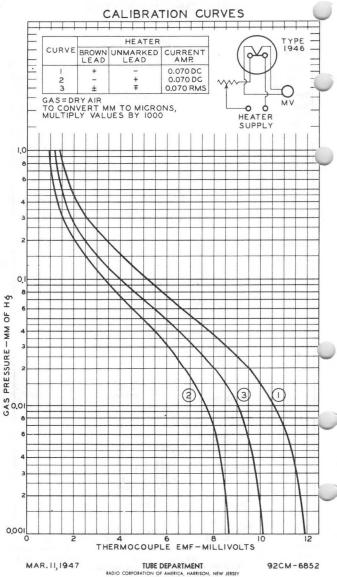
RCA VICTOR DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 884


VOLTAGE REGULATOR

RCA MANUFACTURING COMPANY, INC.

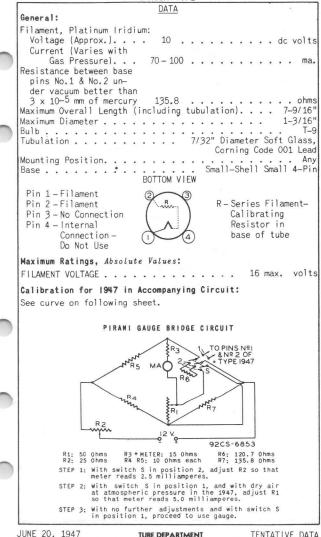
DATA

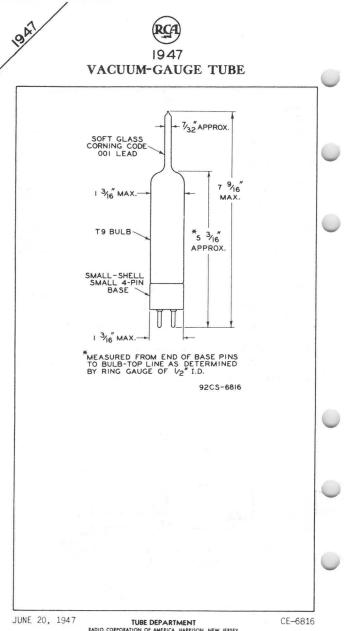

99,



VACUUM-GAUGE TUBE

THERMOCOUPLE TYPE

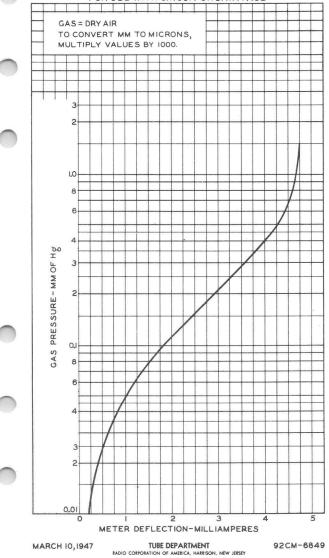



19₇

VACUUM-GAUGE TUBE

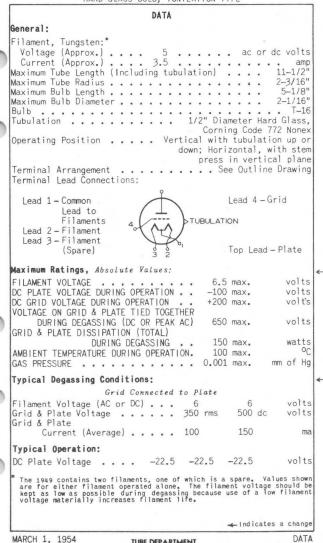
PIRANI TYPE

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY TENTATIVE DATA



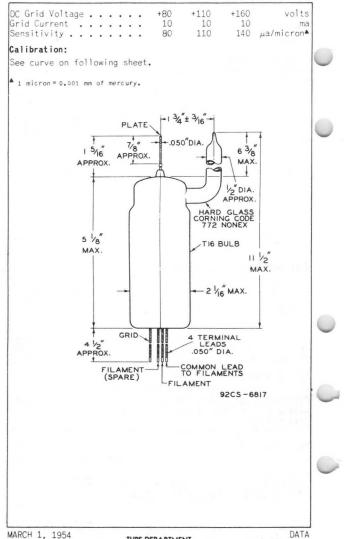

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

(Pr-



VACUUM-GAUGE TUBE

HARD-GLASS BULB, IONIZATION TYPE



904 TUBE DEPARTMENT

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

VACUUM-GAUGE TUBE

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY DATA

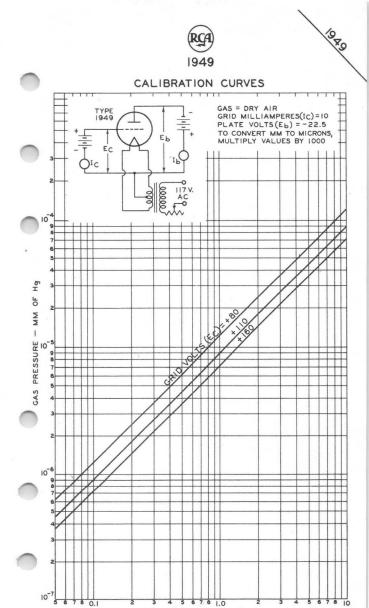
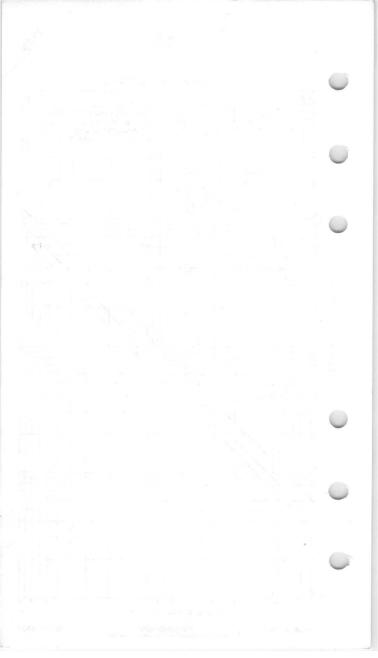



PLATE MICROAMPERES (Ib)

MAR. 11, 1947

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6851

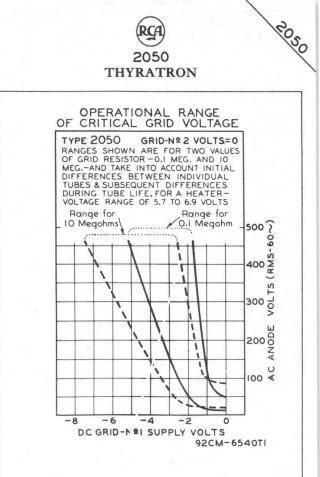
THYRATRON

GAS TETRODE

GENERAL DATA

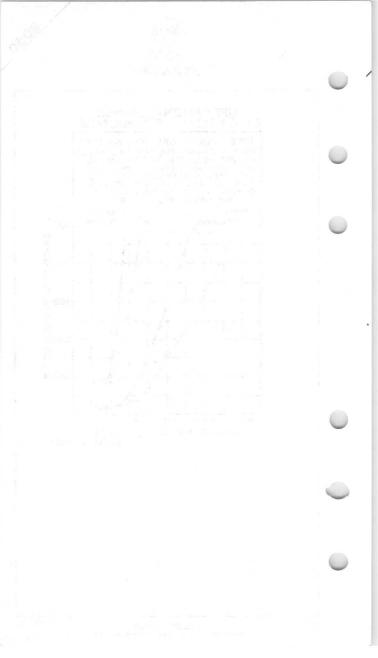
Electrical:			and increase
Heater, for Unipotential Cathode: Min.	Av.	Max.	
Voltage (AC or DC) 5.7 Current, with heater volts = 6.3 0.54		6.9	volts
Cathode:	0.60	0.00	amp
Heating Time, prior to tube conduction 10	-	- 1	sec
Direct Interelectrode Capacitances (Appro) Grid No.1 to Anode	<.):•	0.26	щuf
	• • • •	4.2	μμ
Output	• • • •	3.6	μμf
For conditions: dc anode volts = 100; gri square-pulse volts = 50; and peak anod			
during conduction = 1.0		0.5	μsec
For conditions: dc anode volts = 125; gri volts = -250; grid-No. resistor (o			
1000; dc anode amp. = 0.1 For conditions: dc anode volts = 125; gri		50	μsec
volts = - 10; grid-No. resistor (ohms)	= 1000;	100	
dc anode amp. = 0.1	anode-	100	μsec
amp. = 0.1		0.5	µamp volts
Grid-No.1 Control Ratio (Approx.) with gri resistor (megohms)=0; grid-No.2 vo Grid-No.2 Control Ratio (Approx.) with gri	ts = 0 d-No.1		250
resistor (megohms) = 0; grid-No.2 re (megohms) = 0; grid-No.1 volts = 0			800
• Without external shield.			
Mechanical:			
Maximum Seated Length	1-Shell	· · 3 · · 3 · · 1	Any 4-1/8" ⊢9/16" _9/16" ST-12 8-Pin . 6BS
Pin 1-No Connection Pin 2-Heater Pin 3-Anode Pin 4-No Connection	Pin 6 Pin 7	-Grid -Grid -Heate -Catho	No.2
← Indicates a change.			

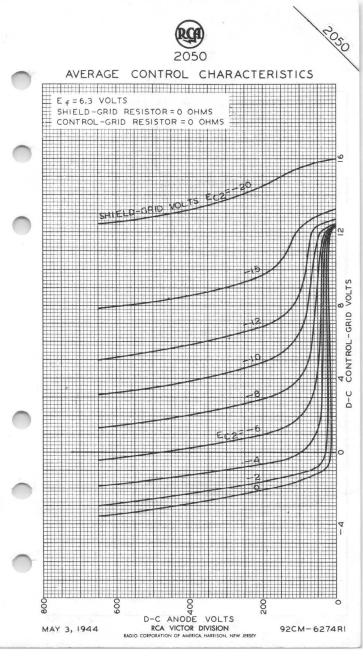
TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 2050

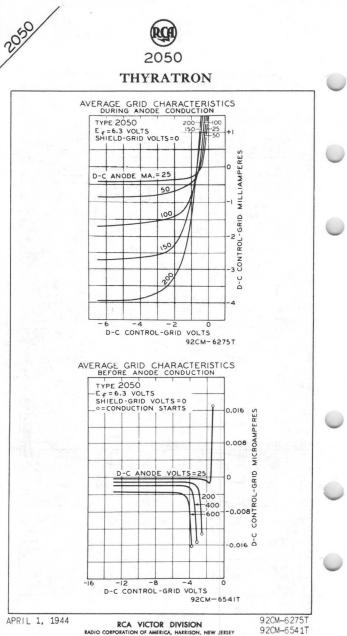


RELAY and GRID-CONTROLLED RECTIFIER SERVICE

- 1	RELAT and GRID-CONTROLLED RECTITIER SERVICE	
	Maximum Ratings, Absolute Values:	
	PEAK ANODE VOLTAGE:	
	Forward 180 max. 650 max. volts	
	Inverse	1
	GRID-No.2 (SHIELD-GRID) VOLTAGE:	
	Peak, before anode	
	conduction100 max100 max. volts	
	Average, during_anode	
	conduction10 max10 max. volts	
	GRID-No.1 (CONTROL-GRID) VOLTAGE:	
	Peak, before anode	1
	conduction250 max250 max. volts	1
	Average, during_anode	
	conduction [®] 10 max10 max. volts	
	CATHODE CURRENT:	
	Peak 1.0 max. 1.0 max. amp Average 0.2 max. 0.1 max. amp	
	Average 0.2 max. 0.1 max. amp	
	Surge, for duration of 0.1 sec. max 10 max. 10 max. amp	
	of 0.1 sec. max 10 max. 10 max. amp GRID-No.2 CURRENT:	
->	Average"	
	GRID-No.1 CURRENT:	
-	Average	
	PEAK HEATER-CATHODE VOLTAGE:	
	Heater negative with	
	respect to cathode 100 max. 100 max. volts	
	Heater positive with	
	respect to cathode 25 max. 25 max. volts	
	AMBIENT TEMPERATURE RANGE75 to +90 -75 to +90 °C	
*	Typical Operating Conditions for Relay Service:	
	RMS Anode Voltage 117 400 volts	
	Grid-No.2 Voltage 0 0 volts	
	RMS Grid-No.1 Bias Voltage 5 ⁿ volts	
	DC Grid-No.1 Bias Voltage6 volts	
	Peak Grid-No.1 Signal Voltage. 5 6 volts	
	Grid-No.1-Circuit Resistance . 1.0 . 1.0 . megohm Anode-Circuit Resistance 1200 2000 ohms	
	Anode-Circuit Resistance# 1200 2000 ohms	1
	Maximum Circuit Values:	
	Grid-No.1-Circuit Resistance:	
	For average anode current below 0.1 amp. 10 max. megohms	
	For average anode current above 0.1 amp. 2 max. megohms	
	Averaged over any interval of 30 sec. max.	
	Approximately 180° out of phase with the anode voltage.	
	Sufficient resistance, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings.	
	→ Indicates a change.	


JUNE 15, 1948


DATA



CE-6540T1

JUNE 15, 1948

2050-A

Gas Thyratron

TETRODE TYPE

For Relay and Grid-Controlled-Rectifier Service

GENERAL DATA

Electrical:

Heater, for Unipotential Cathode: Voltage (AC or DC)	volts amp
Minimum heating time prior to tube conduction	sec
Direct Interelectrode Capacitances (Approx.): ^a Grid No.1 to anode0.15 Grid No.1 to cathode and grid No.22.2	µµ⊥f µµ⊥f
Ionization Time (Approx.): For dc anode volts = 100, grid-No.1 volts (square-wave pulse) = 50, peak	μμι
anode amperes during conduction = 1 0.5 Deionization Time (Approx.):	μsec
With dc anode volts = 125, grid-No.1 volts = -250, grid-No.1 resistor (ohms) = 1000, dc anode amperes = 0.1	μsec
With dc anode volts = 125, grid-No.1 volts = -10, grid-No.1 resistor (ohms) = 1000, dc anode amperes = 0.1 100	μsec
Maximum Critical Grid-No.1 Current for dc anode supply volts (rms) = 460, average anode amperes = 0.1 0.5 Anode Voltage Drop (Approx.) 8	<i>µ</i> а volts
Grid-No.1 Control Ratio (Approx.) for grid- No.1 resistor (ohms) = 0, grid No.2 connected to cathode at socket 250	
<pre>Grid-No.2 Control Ratio (Approx.) for grid-No.1 resistor (ohms) = 0, grid-No.2 resistor (ohms) = 0, grid No.1 connected to cathode at socket</pre>	

Mechanical:

	Operating Position
	Maximum Overall Length
	Maximum Seated Length
ř.	Maximum Diameter
	Dimensional Outline See General Section
	Bulb
	BaseIntermediate-Shell Octal 6-Pin, Arrangement 3, with External Barriers (JEDEC Group 1, B6-229)

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA I 3-61

2050-A

Basing Designation for BOTTOM VIEW. 6BS

Pin 2-Heater Pin 3-Anode Pin 5-Grid No.1

Pin 6-Grid No.2 Pin 7-Heater Pin 8-Cathode

RELAY AND GRID-CONTROLLED-RECTIFIER SERVICE Maximum and Minimum Ratings, Absolute-Maximum Values: For anode supply frequency of 60 cps PEAK ANODE VOLTAGE: Forward. 180 max. 650 max. volts Inverse. 360 max. 1300 max. volts GRID-No.2 (SHIELD-GRID) VOLTAGE: Peak, before tube conduction -100 max. -100 max. volts Average^b, during tube conduction -10 max. -10 max. volts GRID-No.1 (CONTROL-GRID) VOLTAGE: Peak, before tube conduction -250 max. -250 max. volts Average^b, during tube -10 max. volts conduction -10 max. CATHODE CURRENT: 1 1 max. amp Peak max. Average^b 0.2 max. 0.1 max. amp Fault, for duration of 0.1 second maximum 10 max. 10 max. amp GRID-No.2 CURRENT: Average^b +0.01 max. +0.01 max. amp GRID-No.1 CURRENT: Average^b +0.01 max. +0.01 max. amp PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode . . . 100 max. 100 max. volts Heater positive with respect to cathode . . . 25 max. 25 max. volts oc AMBIENT-TEMPERATURE RANGE. . -75 to +90 -75 to +90 Typical Operation for Relay Service: RMS Anode Voltage. 117 400 volts Grid No.2. Connected to cathode at socket RMS.Grid-No.1 Bias Voltage^c. 5 volts DC Grid-No.1 Bias Voltage. . volts -6 Peak Grid-No.1 Signal Voltage.... 5 volts Grid-No.1-Circuit Resistance . . . 1 megohm Anode-Circuit Resistance^d. 1200 2000 ohms

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

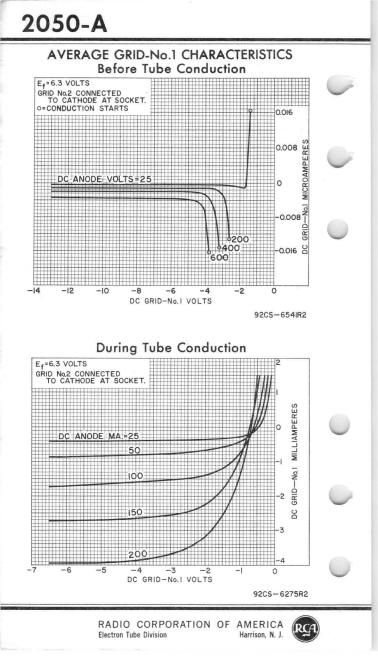
Maximum Circuit Values:

Grid-No.1-Circuit Resistance:

- For average anode current below
 - 0.1 ampere. 10 max. megohms For average anode current above 0.1 ampere. 2 max. megohms
- a Without external shield.
- ^b Averaged over any interval of 30 seconds maximum.
- C Approximately 180° out of phase with the anode voltage.
- d Sufficient resistance, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings.

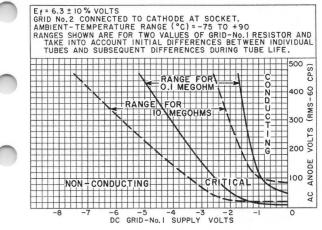
OPERATING CONSIDERATIONS

The heater is designed to operate on either ac or dc at 6.3 volts. Regardless of the heater-voltage supply used, the heater voltage must never be allowed to deviate from its rated range. Heater operation outside of this voltage range will impair tube performance and may cause tube failure. Low heater voltage causes low cathode temperature with resultant cathode sputtering and consequent destruction of the cathode; high heater voltage causes high cathode temperature with resultant heating of the grid and consequent grid emission which produces unpredictable shifts in the critical grid-No.1 voltage for conduction.

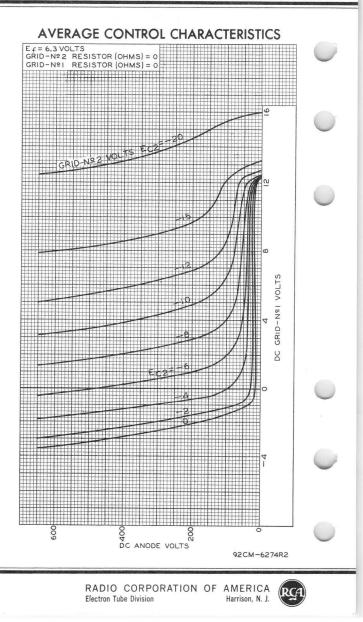

The cathode should be allowed to reach normal operating temperature before anode current is drawn. The delay period should not be less than 10 seconds after application of heater voltage. Unless this recommendation is followed, the cathode will be damaged.

The shield grid (grid No.2) is normally connected to the cathode at socket. It may, however, be used as a control electrode because the control characteristic of grid No.1 may be shifted by varying the potential of grid No.2. As grid No.2 is made negative, the grid-No.1 characteristic is shifted in the positive direction. The use of grid No.2 as the control electrode (with grid No.1 connected to cathode at socket) has the advantage of increased sensitivity but consideration must be given to the higher preconduction current, higher capacitance to anode, and less stability of operation.

A grid-No.1 resistor having a value as high as 10 megohms to give circuit sensitivity can be used with the 2050-A because its control-grid current is very low. However, when a high value of grid resistor is used, care should be taken to keep the tube base and socket clean and dry in order to make the effect of leakage currents between the control-grid base pin and anode base pin very small.


Sufficient anode-circuit resistance, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings of the tube.

2050-A


OPERATIONAL RANGE OF CRITICAL GRID-No.1 VOLTAGE

92CS-6540R3

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 3 3-61

6|30/3C45 HYDROGEN THYRATRON

POSITIVE-CONTROL TRIODE TYPE

GENERAL DATA

E	lect	tri	cal	:

ł	Haster for Uningtoptial Cathoda:
ļ	Heater, for Unipotential Cathode:
ì	Voltage 6.3 $\begin{cases} +5\% \\ -10\% \end{cases}$ ac or dc volts
ł	Current at 6.3 volts:
	Minimum 2 amp
	Average
	Maximum
	Minimum heating time
	Direct Interelectrode Capacitances
	(Approx.):
h	Grid to anode 3.9 $\mu\mu$ f
2	
	Grid to cathode 8.6 μμf Ionization Time (Approx.) [□] 0.6 μsec
	Deionization Time (Approx.)
	Deronization Time (Approx.)
	Anode-Cathode Voltage Drop (Approx.) at middle of pulse duration
	Maximum Variation in Firing Time (Jitter). 0.06 μ sec
	Mechanical:
	Operating Position
	Maximum Overall Length
	Seated Length
	Maximum Diameter
	Weight (Approx.)
	Cooling
	Bulb
	Bulb
	Base Medium-Shell Small 4-Pin, Micanol (JEDEC No.A4-9)
	Basing Designation for BOTTOM VIEW
í	

Pin 1-Heater Pin 2-Cathode, Circuit Returns

Pin 3-Grid Pin 4-Heater, Cathode Cap-Anode

PULSE-MODULATOR SERVICE

Maximum and Minimum CCS® Ratings, Absolute Values: For pressures down to 70 mm of H _p [#]	
DC ANODE-SUPPLY VOLTAGE 800 min.	volts
Forward (E _{bmf})*	volts volts
During first 25 µsec	volts volts
□, •, #, *, ▲: See next page.	

4-59

ELECTRON TUBE DIVISION

6130/3C45

HYDROGEN THYRATRON

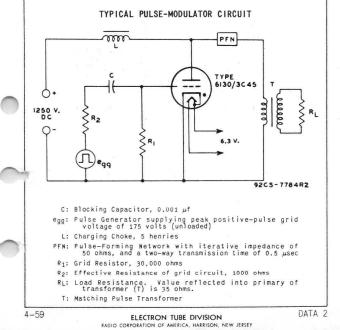
F	for pressures a	
	to 70 mm of E	lg "
GRID VOLTAGE:		
Negative (DC or Peak),		
before conduction	200 max.	
Peak positive-pulse	175 min.	volts
NODE CURRENT:		
Peak	35 max.	
Average ⁰	0.045 max.	and the second s
Rate of rise	750 max.	
PERATION FACTORT.	3 x 108 max.	
PULSE DURATION.	6 max.	
AMBIENT-TEMPERATURE RANGE	-50 to +90	°C
ypical Operation:		
At 2000 pps in accompo		
with pulse duration		
DC Anode-Supply Voltage	. 125	0 volts
Forward	. 300	0 volts
Inverse:		
Immediately after anode-		
current pulse	. 53	0 volts
Negative, before conduction		0 volts
Peak positive-pulse (Unloaded) .	. 17	
ffective Grid-Circuit Resistance.		
Peak	. 3	5 amp
Average ⁰	. 0.03	
peration Factor [†]	. 2.1×1	
Peak Power Output to Pulse		
Transformer (T)	. 4300	0 watts
Maximum Circuit Values:		
ffective Grid-Circuit Resistance.	. 150	0 max. ohms
Defined as the time interval between t of the grid pulse which is 26 per ce amplitude and the point on the anode-cur of its peak amplitude. The anode-curren of 0.05 µsec. The grid pulse has amini a maximum rise time of 0.5 µsec, and is maximum internal impedance of 1500 ohms Continuous Commercial Service.	mum peak amplit s supplied by a	e rising portion unloaded-pulse h is 26 per cent aximum time rise ude of 130 volts, driver having a
Corresponds to altitude of about 50,000		
In applications where the anode voltage power-supply filter should be designed voltage is applied at a rate not to exc	so that the per	antaneously, the ak forward anode
Exclusive of spike not having more than		
Averaged over any cycle.	µ300 0010	
Defined as Peak Forward Anode Volts x Pu Anode Amperes (excluding spike).	ulse-Repetition	Rate (pps) x Pea)
₱,•: See next page.	-	1
-59 ELECTRON TURE DI		DATA

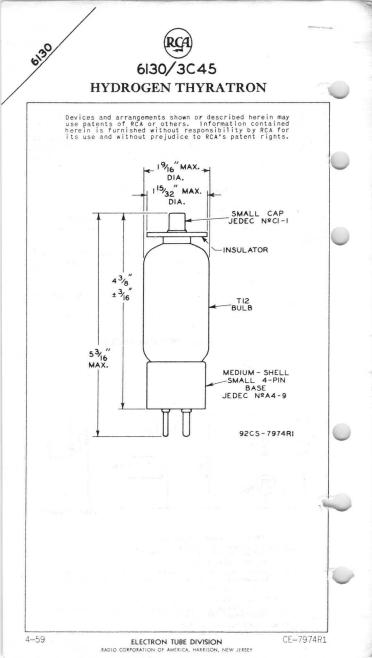
6130/3C45

6/30

HYDROGEN THYRATRON

⁹ Pulse duration is defined as the time interval between points on the pulse envelope at which instantaneous amplitudes are equal to 70.7 per cent of the maximum amplitude excluding spike.


Operation with a bulb temperature within the approximate range of 60⁰ to 50⁰ C measured on the bulb directly opposite the anode is recommended for longest life. To attain this temperature under operating conditions involving low ambient temperature, the use of a heat-conserving enclosure for the tube may be necessary.


OPERATING CONSIDERATIONS

The anode is brought out of the tube to a Small cap. The connector for this cap should be of the heat-radiating type and the connector lead should have ample current-carrying capability for the operating requirements.

Shielding of the 6130/3C45 should be provided if it is operated in the presence of strong electric fields which will ionize the gas within the tube. Any such ionization will cause erratic performance.

Cooling of the 6130/3C45 is accomplished by natural circulation of air around it. Under no circumstances should a stream of cooling air be applied to the glass envelope.

Ignitron

SEALED, CLAMP-COOLED, MERCURY-POOL-CATHODE TYPE For Resistance-Welding Control

GENERAL DATA

Electrical:

1	Cathode Excitation
7	Peak ignitor voltage required to fire 200 volts Peak ignitor current required to fire 30 amp Starting time at required voltage or current 100 μsec Tube Voltage Drop:
	At peak anode current of 1697 amperes
7	Mechanical:
	Operating Position
	Maximum Överall Length (Including flexible lead)
	Maximum Diameter
	Weight (Approx.)
	Terminal Diagram (See Dimensional Outline):
	P-Anode I-Ignitor Terminal QP Terminal
	(Flexible (Adjacent
	lead) to exhaust K-Cathode L
	Terminal
	(Lower por- tion of
	shell)
	Cooling:
k.	TypeAir or water-cooled clamp Clamp height (Approx.)Air or water-cooled clamp
1	Clamp location See Dimensional Outline
	RESISTANCE-WELDING-CONTROL SERVICE ^a
	Two Tubes in Inverse-Parallel Circuit
ĥ	Maximum Ratings, Absolute-Maximum Values:

For frequencies from 25 to 60 cps

Ratings I-A and I-B Apply to Operation with a Clamp-Temperature Range of 10° to 75° C

RATING I-A

- Indicates a change.

RADIO CORPORATION OF AMERICA Electron Tube Division

Harrison, N. J.

DATA I 3-61

volts

kva

	Colur 1 b			
DUTY ^{c,d}	10 m	nax. 1.8	max. %	0
Peak	282 m	nax. 846	max. amp)
conduction) ^e Average (Averaged over any interval of 27.8 seconds	200 m	nax. 600	max. amp)
maximum) ^e	9 m	nax. 4.86	max. amp	0
second maximum	1680 m	nax. 1680	max. amp	
RATING	I -B			
	Colur 1 b			
SUPPLY VOLTAGE (RMS)		nax. 600		
DEMAND POWER (During conduction) .		nax. 150		
DUTY ^{c,d}	24 m	nax. 4.32	max. %	5
Peak	118 m	nax. 354	max. amp)
conduction) ^e . Average (Averaged over any interval of 11.6 seconds	83 m	nax. 250	max. amp)
maximum) ^e Fault, for duration of 0.15	9 п	nax. 4.86	max. amp)
second maximum	700 m	nax. 700	max. amp)

Ratings II-A and II-B Apply to Operation with a Clamp-Temperature Range of 10 $^{\rm O}$ to 50 $^{\rm O}$ C

RATING II-A

	Column 1 b	Column 2 ^b	
SUPPLY VOLTAGE (RMS) DEMAND POWER (During conduction). DUTYC,d ANODE CURRENT (Per tube):	100 max.	300 max.	volts kva %
Peak	564 max.	1692 max.	amp
conduction) ^e Average (Averaged over any interval of 2.2 seconds	400 max.	1200 max.	amp
maximum) ^e	22.4 max.	12.1 max.	amp 💛
second maximum	3360 max.	3360 max.	amp
RATING I	[I-B		

 Column
 Column

 1b
 2b

 SUPPLY VOLTAGE (RMS).....
 600 max.

 DEMAND POWER (During conduction).
 100 max.

 300 max.
 kva

 5.4 max.
 %

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

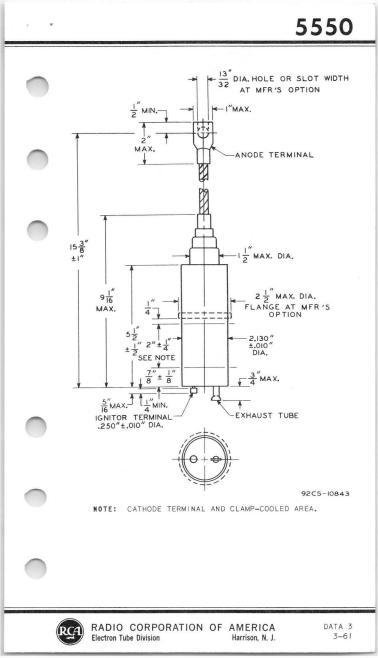
)	ANODE CURRENT (Per tube): Peak	ax. an	
	maximum) •		
)	RESISTANCE-WELDING CAPACITOR-DISCHARGE SERVI Maximum Ratings, Absolute-Maximum Values:	ICE	4
	RATING I		
	CLAMP TEMPERATURE	iax. (эС
	PER SECOND		
	Forward	nax. volt nax. volt	
	Peak	nax. ar nax. se	mp mp ec ec
	PER DISCHARGE 0.02 max. 0.02 m	iax. 31	
	RATING II CLAMP TEMPERATURE 60 max. 40 m NUMBER OF DISCHARGES PER SECOND. 60 max. 60 m	iun.	°C
	PEAK ANODE VOLTAGE: Forward 6000 max. 6000 m Inverse		
)	Peak 500 max. 500 m Averagef 8 m Averaging time-intervalf 4 max. 1.25 m DURATION OF CATHODE-SPOT	nax. a	mp mp ec
	PER DISCHARGE 0.02 max. 0.02 m	nax. s	ec

IGNITOR

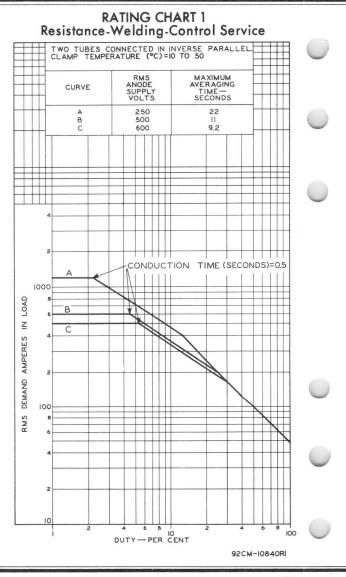
	Maximum Ratings, Absolute-Maximum Values:
).	PEAK IGNITOR VOLTAGE:
	Positive
	Negative
	IGNITOR CURRENT:
	Peak
	Average (Averaged over any
	interval of 5 seconds maximum) 1 max. amp
1	RMS 10 max. amp
(· · ·	

-Indicates a change.

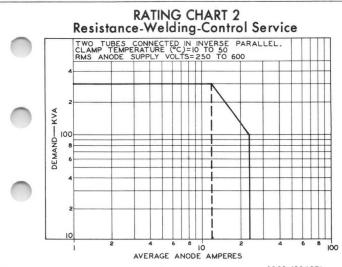
RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.


DATA 2 3-61

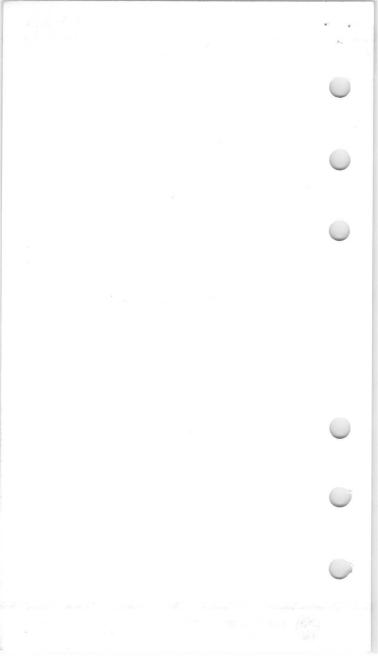
- a RMS voltage, current, and demand kva are on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used.
- ${\bf b}$ Column 1 represents operation at maximum average anode current; Column 2 represents operation at maximum demand power.
- C Defined as (cycles "on")/(cycles "on" + cycles "off") during the specified averaging time.
- d For supply voltages between 250 volts and 600 volts, duty is proportional to supply voltage. For supply voltages lower than 250 volts, the values for 250 volts apply.
- For supply voltages between 250 volts and 600 volts, demand anode current and averaging time are each inversely proportional to supply voltage. For supply voltages lower than 250 volts, the values for 250 volts apply.
- f With the use of log-log paper, straight-line interpolation between tabulated points may be used to obtain average-anode-current and maximumaveraging-time ratings at clamp temperatures between the two tabulated values.



14



RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.


RCA

92CS-10842RI

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA 4 3-61

5551.A

WATER-COOLED, STEEL-JACKETED, MERCURY-POOL-CATHODE TYPE HAVING MOUNTING PLATE FOR THERMOSTATIC CONTROL

For resistance-welding control

GENERAL DATA

1	Electrical:
h	Cathode Excitation
	Peak ignitor voltage required to fire 200 volts Peak ignitor current required to fire 30 amp Starting time at required voltage
	or currentμsec Tube Voltage Drop:
	At peak anode current of 3400 amperes 26 volts At peak anode current of 176 amperes 13 volts
	Mechanical:
	Operating Position
	P-Anode Terminal (Flexible lead) K-Cathode Terminal (Within jacket skirt at cathode terminal)
	Cooling: Type
	INTERMITTENT RECTIFIER SERVICE and FREQUENCY-CHANGER WELDER SERVICE
	Maximum Ratings, Absolute-Maximum Values:
	For zero phase-control angle and
1	frequencies from 50 to 60 cps
	RATING I
1	PEAK ANODE VOLTAGE:
1111 1000	Forward

5551-A

RG

5551-4

IGNITRON

			1000			
ANODE CURRENT:				700	max.	200
Peak	any inte	erval		100	max.	amp
of 6 seconds maximum)		livai		40	max.	amp
Fault, for duration of			ň.,			
ond maximum			•	8750	max.	amp
	RATING	TT				
PEAK ANODE VOLTAGE:	narmo	**				
Forward.		1200	max.	1200	max.	volts
Inverse.			max.		max.	
ANODE CURRENT:						
Peak		135	max.	600	max.	amp
Average (Averaged over	any					
interval of 10 sec-						81.00
onds maximum)		22.5	max.	5	max.	amp
Average (Averaged over	any					
interval of 0.2 sec-		22 E	max.	100	max.	
ond maximum) Fault. for duration of		22.0	max.	100	max.	amp
second maximum	0.15	7500	max.	7500	max.	amp
						10.84
	RATING	111				- 20- 20- 1
PEAK ANODE VOLTAGE:		1500		1500		1.4.4
Forward			max. max.		max.	volts
Inverse ANODE CURRENT:	•••					
Peak		108	max.	480	max.	amp
Average (Averaged over	any					
interval of 10 sec- onds maximum)		10	max.	1	max.	amp
Average (Averaged over		10	max.	4	max.	amp
interval of 0.2 sec-	any					
ond maximum)		18	max.	80	max.	amp
Fault, for duration of						- 11
second maximum		6000	max.	6000	max.	amp
RESISTANCE-W	ELDING-C	ONTRO	L SERV	ICE [⊕]		-
Two Tubes in	Inverse-	Paral	lel Ci	rcuit		
Maximum Ratings, Absolute	-Maximum	n Valu	es:			
For frequen	cies fro	m 25	to 60	cps		
Ratings I-A and I-B App) Wit	th-
out Water-Saving Th	nermosta	at, or	r (2)	With	Wate	r-
Saving Thermostat S						
	RATING	I-A				
SUPPLY VOLTAGE (RMS)		250	max.	250	max.	volts
DEMAND POWER (During con-						
duction)		200	max.	600	max.	kva
•: See next page.						

Allega

DUTY▲† ANODE CURRENT (Per tube):	15	max.	2.8	max.	%
Peak	1130	max.	3400	max.	amp
duction)*. Average (Averaged over any interval of 18 sec-	800	max.	2400	max.	amp
onds maximum)# Fault, for duration of 0.15	56	max.	30.2	max.	amp
second maximum	6720	max.	6720	max.	amp
RATING	I-B				
SUPPLY VOLTAGE (RMS) XEMAND POWER (During con-	600	max.	600	max.	volts
duction)	200	max.	600	max.	kva
DUTY▲†		max.		max.	%
Peak		max.		max.	amp
duction) ∦ Average (Averaged over any interval of 7.5 sec-	333	max.	1000	max.	amp
onds maximum)∦ Fault, for duration of 0.15	56	max.	30.2	max.	amp
second maximum	2800	max.	2800	max.	amp
Saving Thermostat Not Shunte RATING	II-A				
SUPPLY VOLTAGE (RMS) DEMAND POWER (During con-	250	max.	250	max.	volts
duction)		max.		max.	kva
DUTY▲†		max.		max.	9
Peak			3400		amp
duction) ∦ Average (Averaged over any interval of 25.6 sec-	800	max.	2400	max.	amp
onds maximum)∦ Fault, for duration of 0.15	36	max.	21	max.	amp
second maximum	6720	max.	6720	max.	amp
RATING	II-B				
DEMAND POWER (During con-					volts
duction)	200				kva
DUTY▲†	23	max.	4.7	max.	9
⊕,▲,†,∦: See next page.					
1-59 ELECTRON TUB		DN	TENT	ATIVE	DATA 2

ELECTRON TUBE DIVISION

IGNITRON

ANODE CURRENT (Per tube): Peak Demand (RMS, during con-	466 max.	1410 r	max. amp
duction)# Average (Averaged over any	333 max.	1000 1	max. amp
interval of 10.7 sec- onds maximum)∦ Fault. for duration of 0.15	36 max.	21 r	max. amp
second maximum	925 max.	2800 r	max. amp

IGNITOR

Maximum Ratings, Absolute-Maximum Values:

PEAK IGNITOR VOLTAGE:

5551-4

Positive																		
Negative															•	5	max.	volts
IGNITOR CUR	REN	Τ:																
Peak							•		•		•		•	•		100	max.	amp
Average (Ave	rac	lec	1 (DVI	er	ar	ny	1.1	٦t	erv	va						
of 5 se	con	ds	ma	x	im	um).									1	max.	amp
RMS													•			10	max.	amp

RMS voltage, current, and demand kva are on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used.

Defined as (cycles "on")/(cycles "on" + cycles "off") during the specified averaging time.

For supply voltages between 250 volts and 600 volts, duty is propor-tional to supply voltage. For supply voltages lower than 250 volts, the values for 250 volts apply.

For supply voltages between 250 volts and 600 volts, demand anode current and averaging time are each inversely proportional to supply voltage. For supply voltages lower than 250 volts, the values for 250 volts apply.

OPERATING CONSIDERATIONS

The 5551-A is equipped for mounting a thermostatic control with a mounting plate calibrated either for controlling the flow of cooling water through the water jacket, or for protection of the ignitron against overheating.

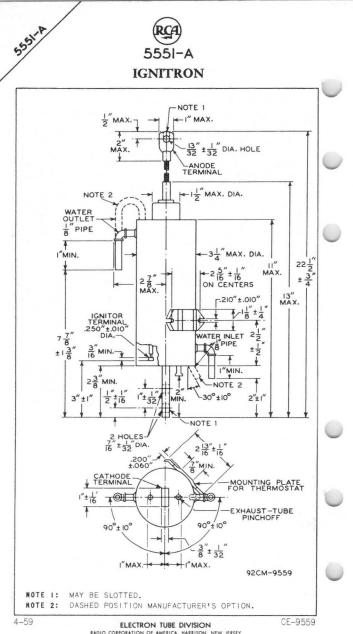
When the cooling water is circulated successively through the water jackets of two or more ignitrons, the water-saving thermostat, if used should be mounted on the ignitron connected directly to the water supply.

The water-saving thermostat, which has normally open contacts, is calibrated to close a circuit energizing a solenoid valve in the water-supply line and thus permit water flow to start when the temperature of the thermostat mounting plate exceeds approximately 35° C. Because of the lag between the heating of the ignitron envelope and the functioning of the water-saving thermostat to start water flow through the water jackets, the ignitron may overheat before the flow of cooling water starts.

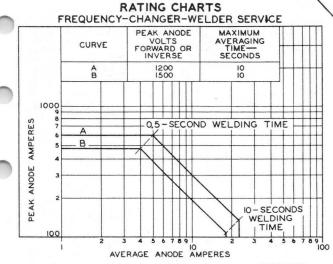
TENTATIVE DATA 2

ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

4 - 59

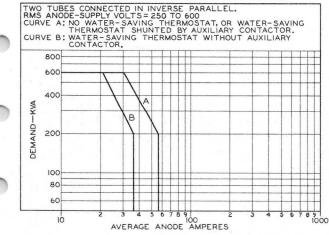

Such overheating can be prevented by the use of an auxiliary contactor shunted across the contacts of the water-saving thermostat and actuated by the welding-control switch. The contactor causes the solenoid valve in the water-supply line to open as soon as welding current flows.

If the water-saving thermostat is not shunted by an auxiliary contactor, it will be necessary to use a lower value of maximum average current than that which is specified when the auxiliary contactor is employed. The lower average current value is achieved by increasing the maximum averaging time and decreasing the maximum duty. Although the same maximum conduction time is permitted for both of these operating conditions, the use of the water-saving thermostat alone, without the auxiliary contactor requires a longer interval between successive welds than when the thermostat is shunted by the contactor.


When a protective thermostat is used, it should be mounted on an ignitron from which the cooling water discharges into the drain. The protective thermostat is calibrated to open aset of normally closed contacts at a jacket temperature of approximately 52° C. The opening of these contacts causes a protective device to function. This device may be a relay opening the ignitor firing controls, or preferably, a circuit breaker which removes power from the ignitrons.

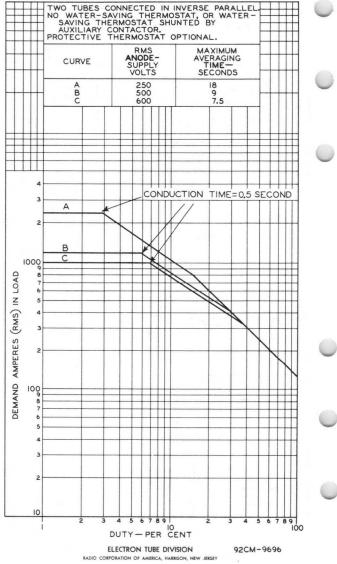
Care must be taken to insure that the water jacket of each ignitron is completely filled before power is applied. Tube operation with a partially filled water jacket may cause abnormal heating of the tube envelope, with resultant arc-back which impairs tube life. It is also necessary to arrange the cooling system so as to prevent any draining of the water jackets when the flow of water ceases.

ELECTRON TUBE DIVISION

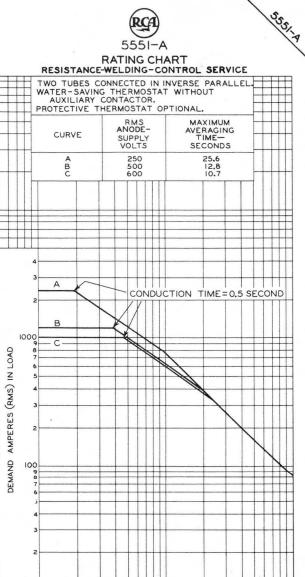


92CS-9695

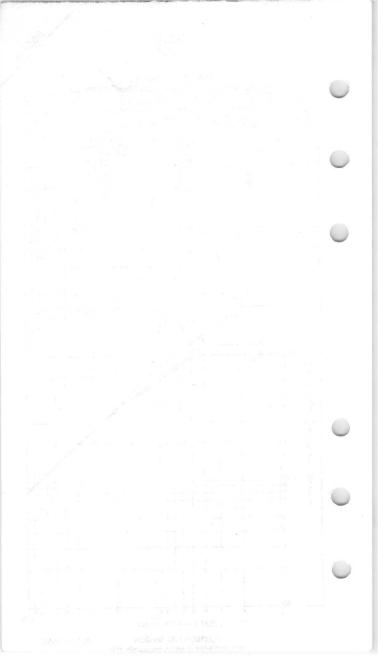
\$5551 P



ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CS-9698



5551-4


RATING CHART RESISTANCE-WELDING-CONTROL SERVICE

DUTY - PER CENT ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

4,7666

WATER-COOLED, STEEL-JACKETED, MERCURY-POOL-CATHODE TYPE HAVING MOUNTING PLATE FOR THERMOSTATIC CONTROL For resistance-welding control

GENERAL DATA

	GENERAL DATA	
El	ectrical:	
Ca		Cyclic Ignitor
	Peak ignitor voltage required to fire 200 Peak ignitor current required to fire 30 Starting time at required voltage	volts amp
	or current	µsec
	At peak anode current of 6800 amperes 28 At peak anode current of 440 amperes 14	volts volts
Me	chanical:	
Ma	erating Position Vertical, flexible ximum Overall Length (Including	
Ma We	ximum Radius (Including water connections)	27-1/4" 3-5/8" 8 lbs
	rminal Connections (See Dimensional Outline):	
	(Flexible (Wi lead) jac K-Cathode ski	minal thin ket rt at hode
	boling: Type	.Water oC oC gpm oC psi
	INTERMITTENT RECTIFIER SERVICE	
Ma	aximum Ratings, Absolute-Maximum Values:	
	For zero phase-control angle and frequencies from 25 to 60 cps	
	AK ANODE VOLTAGE: Forward	
		11

4-59

ELECTRON TUBE DIVISION

TENTATIVE DATA 1

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

5552-A

IGNITRON

ANODE CURRENT:		
Peak	1600 ma	x. amp
Average (Averaged over any interval of		
6 seconds maximum)	100 ma	x. amp
Fault. for duration of 0.15 sec-		
ond maximum	6000 ma	x. amp

RESISTANCE-WELDING-CONTROL SERVICE[⊕]

Two Tubes in Inverse-Parallel Circuit

Maximum Ratings, Absolute-Maximum Values:

5552-4

For frequencies from 25 to 60 cps

Ratings I-A and I-B Apply to Operation Either (1) Without Water-Saving Thermostat, or (2) With Water-Saving Thermostat Shunted by Auxiliary Contactor

RATING	I - A			
	Column			
	1*	2*		
SUPPLY VOLTAGE (RMS) DEMAND POWER (During con-	250 max.	250 max.	volts	
duction)	400 max.	1200 max.	kva	
DUTYAT	19 max.	3.5 max.	%	
Peak Demand (RMS, during con-	2260 max.	6800 max.	amp	
duction)# Average (Averaged over any	1600 max.	4800 max.	amp	
interval of 14 sec-				
onds maximum) # Fault, for duration of	140 max.	75.6 max.	amp	
0.15 second maximum	13450 max.	13450 max.	amp	
BATING	I-B			
	Column	Column		
	1*	2*		
SUPPLY VOLTAGE (RMS)	600 max.	600 max.	volts	
duction)	400 max.	1200 max.		
DUTY▲† ANODE CURRENT (Per tube):	47 max.		%	100
Peak Demand (RMS,during con-	945 max.	2830 max.	amp	
duction) *. Average (Averaged over any	666 max.	2000 max.	amp	
interval of 5.8 sec- onds maximum)#	140 max.	75.6 max.	amp	C
Fault, for duration of 0.15 second maximum	5600 max.	5600 max.	amp	
⊕,▲,†,∦,*: See next page.				
4-59 ELECTRON TU	E DIVISION	TENTATIVE	DATA 1	

A.76566

Saving Thermostat Not Shun	ted by	Auxil	iary Co	ontacto	r
RATING	II-A				
		umn	Col		
	1	*	2	*	
SUPPLY VOLTAGE (RMS)	250	max.	250	max.	volts
duction)	400	max.	1200	max.	kva
DUTY▲† ANODE CURRENT (Per tube):	11	max.	2	max.	%
Peak	2260	max.	6800	max.	amp
conduction) ∦ Average (Averaged over any	1600		4800	max.	amp
interval of 23.5 sec-					
onds maximum) ∦ Fault, for duration of	80	max.	43	max.	amp
0.15 second maximum	13450	max.	13450	max.	amp
RATING	II-B				
	Col		Coli		
SUPPLY VOLTAGE (RMS)	600	max.	600	max.	volts
duction)	400	max.	1200	max.	kva
DUTY ^† ANODE CURRENT (Per tube):	26	max.	4.8	max.	9
Peak	945	max.	2830	max.	amp
conduction)∦ Average (Averaged over any interval of 10 sec-	666	max.	2000	max.	amp
onds maximum)#	80	max.	43	max.	amp
0.15 second maximum	5600	max.	5600	max.	amp
I GN I	TOR				
Aaximum Ratings, Absolute-Maxim	um Val	ues:			
PEAK IGNITOR VOLTAGE:		~	1 /		.1.
Positive		• • Ec	ual to		
Negative				max.	
Peak	terval			max.	am
			1	max.	am

●,▲,†,#,*: See next page.

4-59

TENTATIVE DATA 2

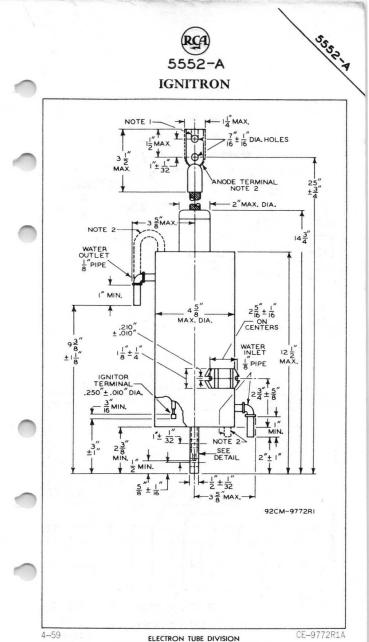
ELECTRON TUBE DIVISION

IGNITRON

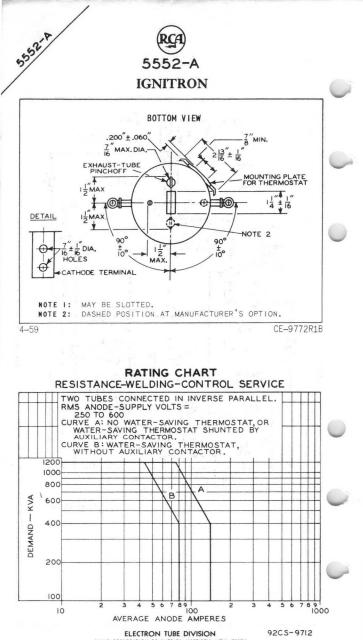
5552-A

⁸ RMS voltage, current, and demand kva are on the basis of full-cycle conduction (no phase delay) regardless of whether or not phase control is used.

Defined as (cycles "on")/(cycles "on" + cycles "off") during the specified averaging time.

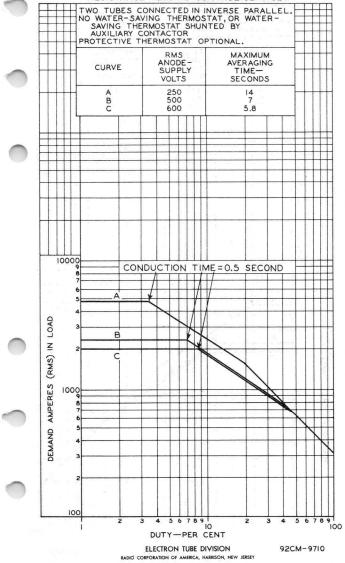

For supply voltages between 250 volts and 600 volts, duty is proportional to supply voltage. For supply voltages lower than 250 volts, the values for 250 volts apply.

For supply voltages between 250 volts and 600 volts, demand anode current and averaging time are each inversely proportional to supply voltage. For supply voltages lower than 250 volts, the values for 250 volts apply.

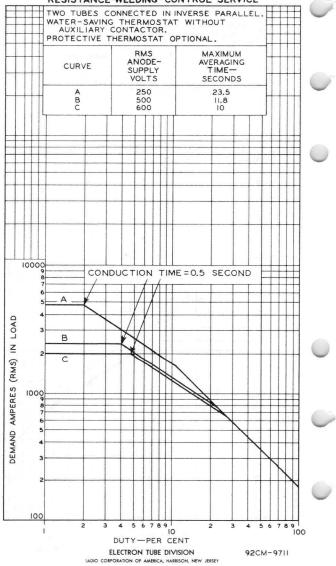

Column 1 represents operation at maximum average anode current; Column 2 represents operation at maximum demand current.

> OPERATING CONSIDERATIONS for the 5552-A are the same as those shown for Type 5551-A

5552-4


RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

4.7ccs


RATING CHART RESISTANCE-WELDING-CONTROL SERVICE

5552-1

RATING CHART RESISTANCE-WELDING-CONTROL SERVICE

NEGATIVE-CONTROL TRIODE TYPE

GENERAL DATA

Electrical:

Filament, Coated:	
	- 5.0 5.5amp r to 5 sec itances (Approx.): ⁰ 2.5 μμf 7 μμf
Deionization Time (Approx.) Anode Voltage Drop (Approx.)	
Mechanical:	
Maximum Överall Length . Seated Length . Maximum Diameter Weight (Approx.) Bulb . Cap	
Basing Designation for BO Pin 1 - Filament Pin 2 - No Connec- tion	TTOM VIEW

Temperature Control:

No load.

Heating--When the ambient temperature is so low that the normal rise of condensed-mercury temperature above the ambient temperature will not bring the condensed-mercury temperature up to the minimum value of the operating ranges specified under Maximum Ratings, some form of heat-conserving enclosure or auxiliary heater will be required.

Cooling -- When the operating conditions are such that the maximum value of the operating condensed-mercury temperature is exceeded, provision should be made for forced-air cooling sufficient to prevent exceeding the maximum value.

Temperature Rise of Condensed Mercury to Equilibrium Above Ambient Temperature (Approx.):* 17.5

oc

5552

^O without external shield. with filament volts = 2.38 and no heat-conserving enclosure.

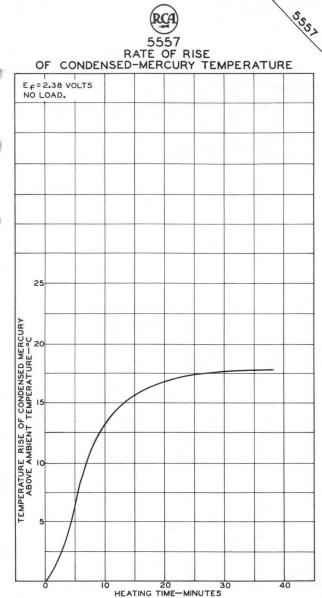
4-58

ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY DATA

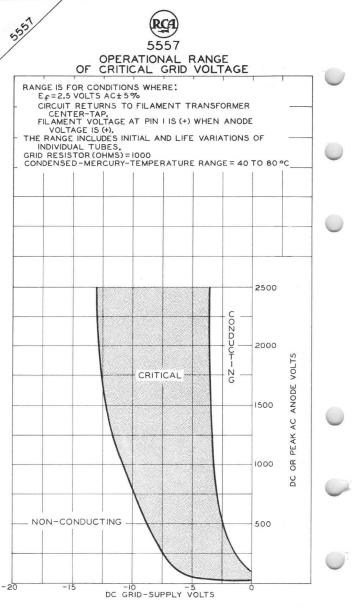
CONTROL SERVICE Maximum Ratings, Absolute Values: For anode-supply frequency of 60 cps Operating Condensed-Mercury-Temperature Range 40° to 90° C 40° to 80° C 40° to 60° C PEAK ANODE VOLTAGE: Forward. 1250 max. 2500 max. 5000 max. volts Inverse. 1250 max. 5000 max. 10000 max. volts GRID VOLTAGE: Peak or DC, before -500 max. -500 max. -500 max. volts tube conduction. Average^A, during -10 max. -10 max. volts tube conduction. -10 max. ANODE CURRENT: 3 max. 2 max. 1 max. amp 0.5 max. 0.25 max. 1 max. amp Fault, for duration of 0.1 second maximum.... 40 max. 40 max. 40 max. amp GRID CURRENT: Average, positive with anode positive . . . 0.05 max. 0.05 max. 0.05 max. amp Averaged over one conducting period.

Averaged over any interval of 15 seconds maximum.

• Averaged over period of grid conduction.

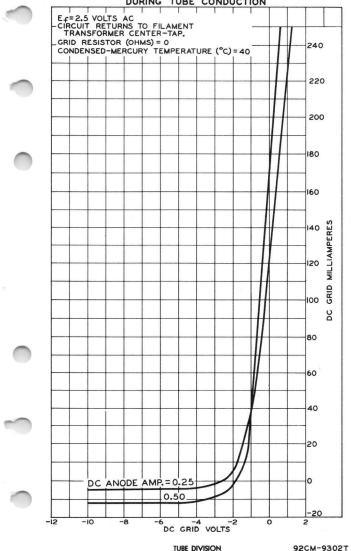

DIMENSIONAL OUTLINE for Type 5557 is the same as that shown for Type 3C23

-Indicates a change.


DATA

5551

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-930IT



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

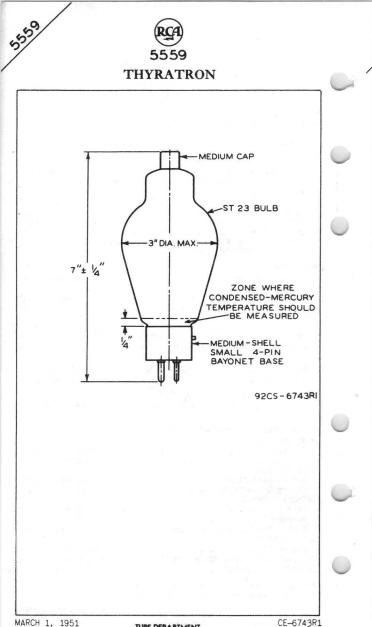
92CM-9300T



AVERAGE GRID CHARACTERISTICS DURING TUBE CONDUCTION

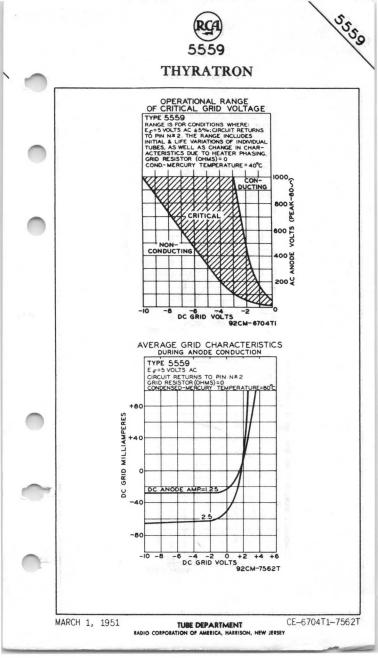
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

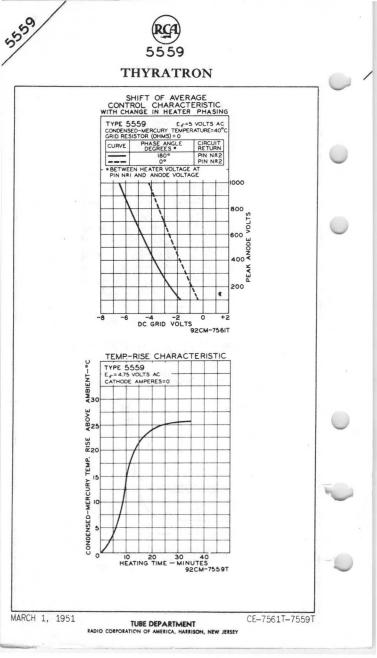
12551



THYRATRON

MERCURY-VAPOR TRIODE


DATA

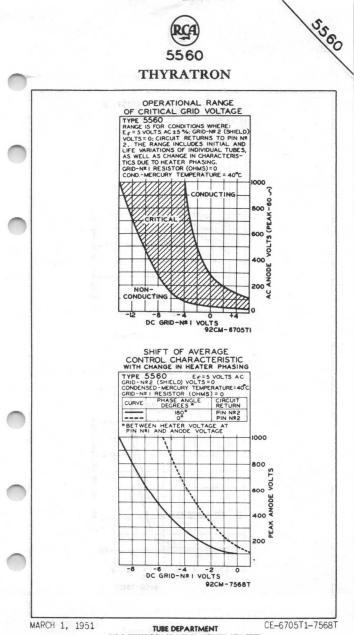

Electrical:		
Heater, for Unipotential Cathode: Voltage	volts	- 1
Cathode: Minimum Heating Time, prior		
to tube conduction	minutes	
Grid to Anode 2.5 Grid to Cathode 10	μμι μμι	
Ionization Time (Approx.). 10 Deionization Time (Approx.) 1000 Anode Voltage Drop (Approx.) 16	μsec μsec volts	с
Grid-No.1 Control Ratio (Approx.) with grid-No. resistor (megohms) = 0	22	0
Mechanical:		
Mounting Position		н н н
Cap Medium-Shell Smal Base Medium-Shell Smal Basing Designation for BOTTOM VIEW	1 4-Pin, Bayone	t
Pin 1-Heater	Pin 3-Grid	
Pin 2 - Cathode;	Pin 4-Heater,	
Returns	Cathode Cap - Anode	
Maximum Ratings, Absolute Values:		
PEAK ANODE VOLTAGE:	1000 max. volt	
Forward Inverse GRID VOLTAGE:	1000 max. volt 1000 max. volt	
Before Conduction	-500 max. volt -10 max. volt	
During Conduction	-10 max. voit	. 5
Peak	15 max. am	1.0
Average** Fault, for 0.1 sec. maximum GRID CURRENT:	2.5 max. am 200 max. am	
Average**	+0.25 max. am 40 to +80 0	
OPERATING FREQUENCY	150 max. cp	S
** Averaged over any interval of 15 sec. max. Recommended operating temperature is 40°C.		
÷	-Indicates a change	e.
		-

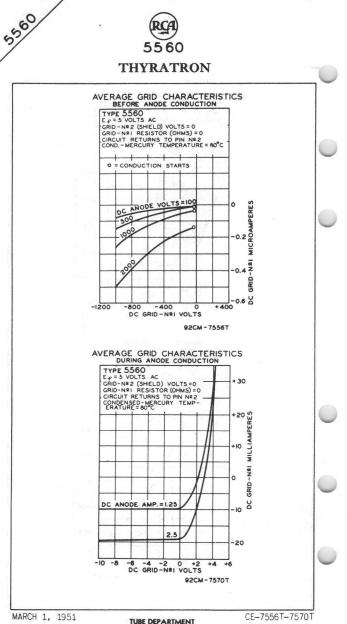
MARCH 1, 1951

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

THYRATRON

MERCURY-VAPOR TETRODE


DATA


	DATA	200
Electrical:		
Heater, for Unipotentia	al Cathode:	
Voltage	5.5 [°] 5.0	volts
Current.	5.0 ^o 4.5	amp
Minimum Heating Time.	prior	
to tube conduction	, prior 5	. minutes
Direct Interelectrode (Capacitances(Approx.):	
Grid No.1 to Anode .	0.2	., <i>µµ</i> f
Grid No.1 to Cathode	4.4	µµf
Ionization Time (Approx	x.) 10	μsec
Deionization Time (App)	rox.) 1000	<i>µ</i> sec
Anode Voltage Drop (Apr	prox.) 16	volts
Grid-No.1 Control Ratio	o (Approx.) with grid-No.1 id-No.1 and grid-No.2 volts = 0 .	
resistor (ohms) = 0; gri	id-No.1 and grid-No.2 volts = 0 .	170
Grid-No.2 Control Rati	o (Approx.) with grid No.1 id-No.1 and grid-No.2 volts = 0 .	300
resistor (onits) = 0, gr	10 = 10.1 and gr $10 = 10.2$ vorts = 0.	•• >00
1	Y	
Mechanical:		
Mounting Position	Vertical,	Base Down
		16" ± 1/4"
Seated Length		'16" ± 1/4"
Bulb		ST-23 Medium
Caps (Two)	. Medium-Shell Small 4-Pi	n Bayonet
Basing Designation f	or BOTTOM VIEW	40
Pin 1-Heater	(2) (3) Pin 4 - Heat	
Pin 2-Cathode;	X _ Cath	lode
Circuit	Top Cap - Ar	node
Returns	Side Cap - (Grid No.1
Pin 3-Grid No.2		
Maximum Ratings, Absol	uta Valuas:	
PEAK ANODE VOLTAGE:	are futues.	
Forward.	1000 -	nax. volts
GRID-No.2 (SHIELD-GRID	VOLTAGE:	
Before Conduction		max. volts
During Conduction	5 r	max. volts
GRID-No.1 (CONTROL-GRI	D) VOLTAGE:	
Before Conduction		
During Conduction		max. volts
CATHODE CURRENT:	-	
Peak	30 max. 15 r	
Peak	0.5 max. ^D 2.5 r	
Fault, for 0.1 sec.	maximum 200 r	max. amp
**: See next page.	← Indicat	tes a change,
		DATA

THYRATRON

GRID-No.2 CURRENT:	-
Average** 0.25 max. amp	
ARID No.1 CURRENT: Average**	
CONDMERCURY TEMPERATURE RANGE +40 to +80 °C	
OPERATING FREQUENCY 150 max. cps	6
Applies when this tube is used for ignitor firing.	
** Averaged over any interval of 15 sec. max.	
Recommended operating temperature is 40°C.	
MEDIUM -3" DIA. MAX	6
CAP	-
SEE \	
NOTE	
() () () () () () () () () ()	
$7\frac{11}{16}\pm\frac{1}{4}$	
2.1	
5 <u>3"+1"</u>	
4 ⁻ / R	1
ZONE WHERE MEDIUM-SHELL	
BE MEASURED	
92CS-6742RI	1
NOTE: THE PLANE THROUGH TUBE AXIS AND CENTER OF GRID-	
NEL CAP IS 45°+5° FROM THE PLANE THROUGH THE TUBE	
NºI CAP IS 45°±5° FROM THE PLANE THROUGH THE TUBE AXIS AND CENTER OF BAYONET PIN. GRID-NºI CAP IS ON	
AXIS AND CENTER OF BAYONET PIN. GRID-NºI CAP IS ON	
AXIS AND CENTER OF BAYONET PIN. GRID-NºI CAP IS ON SAME SIDE AS PIN Nº3. TEMPERATURE-RISE CHARACTERISTIC of the 5560	
AXIS AND CENTER OF BAYONET PIN. GRID-NºI CAP IS ON SAME SIDE AS PIN №3.	(
AXIS AND CENTER OF BAYONET PIN. GRID-NºI CAP IS ON SAME SIDE AS PIN Nº3. TEMPERATURE-RISE CHARACTERISTIC of the 5560	(

MERCURY-VAPOR THYRATRON

NEGATIVE-CONTROL TRIODE TYPE Supersedes Type 5563

GENERAL DATA

Electrical:

Electrical:			
Filament, Coated:			
	in. Av.	Max.	
	.75 5	5.25	volts
Current at 5 volts	- 10	11	amp
Ainimum Heating Time:			
On initial installation, with	no voltage		
on grid or anode, for redistr			
mercury to lower part of tub		15	minutes
During subsequent operation,			- 12 ¹
filament to reach operating te			
prior to tube conduction		1	minute
Direct Interelectrode Capacitanc			e e
Grid to anode		· · 4 · 16	1-1
Ionization Time (Approx.)	• • • • •	10	
Deionization Time (Approx.)		. 1000	
Maximum Critical Grid Current fo		1000	μουυ
instantaneous anode volts = 20		50	μa
Anode Voltage Drop (Approx.):			
At anode amperes = 11.5		15	volts
At anode amperes = 70		25	volts
Grid Control Ratio (Approx.):			
Under conditions: 10000-ohm g	rid resisto	or,	- 1 9 J - J - 1
circuit returns to pin 2, fil	ament volta	age	
at pin 4 out of phase with	anode volta	age	
by 180°, and condensed-mercu	ry temperati	ure	-
			5
Mechanical:			
Operating Position		/ertical.	base down
		. 10-3/32	
Maximum Diameter			. 2-5/8"
Bulb			T20
Weight (Approx.)			. 13 oz
Cap Medium with Tub	bular Suppor	rt (JETEC	No.C1-39)
	son No.123-		
Base Skirted M	with Bayone		No M_691
Basing Designation for BOTTOM			
5 5			
Pin 1 - Grid	R3 P	in 3 - No	ion
Pin 2 - Filament, Internal	· [.	in 4 – Fil	
Shield.	· .)	Cap - And	
Circuit VV	•/	cap - And	de.
Returns	\nearrow		
^O Without external shield.		- Indicates	s a change.
			0

5563-A

MERCURY-VAPOR THYRATRON

Temperature Control:

556314

- Heating--when the ambient temperature is so low that the normal rise of condensed-mercury temperature above the ambient temperature will not bring the condensed-mercury temperature up to the minimum value of the operating range specified under Maximum Ratings, some form of heat-conserving enclosure or auxiliary heater will be required.
- Cooling -- When the operating conditions are such that the maximum value of the operating condensed-mercury temperature for the applicable service rating is exceeded, provision should be made for forced-air cooling sufficient to prevent exceeding the maximum value.

Temperature Rise of Condensed Mercury to Equilibrium Above Ambient Temperature (Approx.):* No load . . 13 Full load . 17

CONTROL SERVICE--In-Phase Operation®

Maximum Ratings, Absolute Values:

For supply frequency of 25 to 60 cps

Operating Condensed-Mercury-Temperature Range 25 to 55 °C 25 to 50 °C

PEAK ANODE VOI TAGE:

1-	57						VICION				DATA 1
	.**: See next page.								🗕 Indi	cates	a change.
•	With filament volts = A Filament voltage has a p the anode voltage.										espect to
G	rid-Circuit Resistar	ice	è.		•		0.1	max.	0.1	max.	megohm
Ma	aximum Circuit Value	s:									
	Peak positive with anode negative .	•					5	max.	5	max.	ma
-	Average positive.		•				100	max.	100	max.	ma
G	0.1 second maximu RID CURRENT:				•		70	max.	70	max.	amp
	Average•• Fault, for duration				•	•	1.8	max.	1.6	max.	amp
	Peak			•		÷			6.4		amp
A	tube conduction.						-10	max.	-10	max.	volts
	Peak or DC, before tube conduction. Average [▲] . during	ŝ		•			-500	max.	-500	max.	volts
G	Inverse	•	•	•	•	•	15000	max.	20000	max.	volts
	Forward										volts

TUBE DIVISION

OC

	Quadrat	ure Op	peration	00	
Maximum Ratings, Absolute	Values:				
For supply fre	equency o	f 25 1	to 60 cp	S	
	Operatin				y –
			ure Rang		
	25 to	55 °C	25 to	50 °C	
PEAK ANODE VOLTAGE: Forward	15000	max	20000		volts
Inverse	15000				
GRID VOLTAGE:	10000	ind A.	20000	max.	10100
Peak or DC, before					
tube conduction	-500	max.	-500	max.	volts
Average ^A , during tube conduction	-10	max.	-10	max.	volts
ANODE CURRENT:	10		10		
Peak		max.		max.	amp
Average••	2.5	max.	2.5	max.	. amp
Fault, for duration of 0.1 second maximum	70	max	70	max.	amp
GRID CURRENT:	70	max.	70	max.	amp
Average positive	100	max.	100	max.	ma
Peak positive with	-		5		
anode negative	5	max.	5	max.	ma
Maximum Circuit Values:					
Grid-Circuit Resistance	. 0.1	max.	0.1	max.	megohm
					megohm
Grid-Circuit Resistance HIGH-SPEED LOAD-C					megohm
na a so taxa sana tan "solatakanananananana" a	IRCUIT PR				megohm
HIGH-SPEED LOAD-C	IRCUIT PR Values: Operatin	OTECT	ION SERV densed-M	ICE ⁴	
HIGH-SPEED LOAD-C	IRCUIT PR Values: Operatin Ter	OTECT g Conc nperat	ION SERV densed-M ure Rang	ICE ⁶ ercury	
HIGH-SPEED LOAD-C Maximum Ratings, Absolute	IRCUIT PR Values: Operatin Ter	OTECT g Conc nperat	ION SERV densed-M	ICE ⁶ ercury	
HIGH-SPEED LOAD-C Maximum Ratings, Absolute T PEAK ANODE VOLTAGE:	IRCUIT PR Values: Operatin Ter 40 to	g Conc nperat 55 ^o C	ION SERV densed-M ure Ran 40 to	ICE ercury ge 50 °C	y-
HIGH-SPEED LOAD-C Maximum Ratings, Absolute	IRCUIT PR Values: Operatin Ter 40 to	g Cond nperat 55 °C max.	ION SERV densed-M ure Ran 40 to 20000	ICE ercury ge 50 °C max.	y- volts
HIGH-SPEED LOAD-C Maximum Ratings, Absolute 1 PEAK ANODE VOLTAGE: Forward Inverse GRID VOLTAGE:	IRCUIT PR Values: Operatin Ten 40 to 15000	g Cond nperat 55 °C max.	ION SERV densed-M ure Ran 40 to 20000	ICE ercury ge 50 °C max.	y- volts
HIGH-SPEED LOAD-C Maximum Ratings, Absolute T PEAK ANODE VOLTAGE: Forward Inverse GRID VOLTAGE: Peak or DC, before	IRCUIT PR Values: Operatin 40 to 15000 15000	g Cond mperat 55 °C max. max.	densed-M ure Rang 40 to 20000 20000	ICE ⁶ ercury ge 50 °C max. max.	volts volts
HIGH-SPEED LOAD-C Maximum Ratings, Absolute 1 PEAK ANODE VOLTAGE: Forward Inverse GRID VOLTAGE:	IRCUIT PR Values: Operatin Ten 40 to 15000	g Cond mperat 55 °C max. max.	densed-M ure Rang 40 to 20000 20000	ICE ⁶ ercury ge 50 °C max. max.	y-
HIGH-SPEED LOAD-C Maximum Ratings, Absolute M PEAK ANODE VOLTAGE: Forward Inverse GRID VOLTAGE: Peak or DC, before tube conduction Average ^A , during tube conduction	IRCUIT PR Values: Operatin 40 to 15000 15000	g Cond mperat 55 °C max. max.	densed-M ure Rang 40 to 20000 20000 -500	ICE ⁶ ercury ge 50 °C max. max.	volts volts
HIGH-SPEED LOAD-C Maximum Ratings, Absolute 1 PEAK ANODE VOLTAGE: Forward Inverse GRID VOLTAGE: Peak or DC, before tube conduction Average ^A , during tube conduction ANODE CURRENT:	IRCUIT PR Values: Operatin 40 to 15000 15000 -500 -10	g Conc nperat 55 °C max. max. max.	densed-M ure Ran 40 to 20000 20000 -500 -10	ICE dercury ge 50 °C max. max. max.	volts volts volts volts
HIGH-SPEED LOAD-C Maximum Ratings, Absolute M PEAK ANODE VOLTAGE: Forward. Inverse. GRID VOLTAGE: Peak or DC, before tube conduction. Average ^A , during tube conduction. ANODE CURRENT: Peak. Average ^D .	IRCUIT PR Operatin 40 to 15000 -500 -10 100	g Cond mperat 55 °C max. max.	Un SERV densed-M ure Ran 40 to 20000 20000 -500 -10 100	ICE ge 50 °C max. max.	volts volts
HIGH-SPEED LOAD-C Maximum Ratings, Absolute 1 PEAK ANODE VOLTAGE: Forward. Inverse. GRID VOLTAGE: Peak or DC, before tube conduction. Average ^A , during tube conduction. ANODE CURRENT: Peak.	IRCUIT PR Values: Operatin 40 to 15000 -500 -10 100 70	g Cond mperat 55 °C max. max. max. max.	10N SERV densed-M ure Ran 40 to 20000 -500 -10 100 70	ICE ge 50 °C max. max. max. max. max.	volts volts volts amp
HIGH-SPEED LOAD-C Maximum Ratings, Absolute 1 PEAK ANODE VOLTAGE: Forward Inverse GRID VOLTAGE: Peak or DC, before tube conduction Average ^A , during tube conduction ANODE CURRENT: Peak Average ^B	IRCUIT PR Values: Operatin 40 to 15000 -500 -10 100 70	g Cond mperat 55 °C max. max. max. max. max.	10N SERV densed-M ure Ran 40 to 20000 -500 -10 100 70	ICE ge 50 °C max. max. max. max. max.	volts volts volts volts amp amp
HIGH-SPEED LOAD-C Maximum Ratings, Absolute 1 PEAK ANODE VOLTAGE: Forward Inverse GRID VOLTAGE: Peak or DC, before tube conduction Average ^A , during tube conduction Avorage ^A , during tube conduction Average ^B Average ^B Average ^B Average ^B	IRCUIT PR <i>Values:</i> 0peratin Ter 40 to 15000 -500 -10 100 70 1.05	orecri g Cond mperat 55 °C max. max. max. max. max. max. max. max.	ION SERV densed-M ure Rang 40 to 20000 -500 -10 100 70 1.05	ICE ge 50 °C max. max. max. max. max. max. max. max. max.	volts volts volts amp amp
HIGH-SPEED LOAD-C Maximum Ratings, Absolute 1 PEAK ANODE VOLTAGE: Forward Inverse GRID VOLTAGE: Peak or DC, before tube conduction Average ^A , during tube conduction ANODE CURRENT: Peak Average ^B	IRCUIT PR <i>Values:</i> 0peratin Ter 40 to 15000 -500 -10 100 70 1.05	orecri g Cond mperat 55 °C max. max. max. max. max. max. max. max.	ION SERV densed-M ure Rann 40 to 20000 -500 -10 100 70 1.05 0.1	ICE gercury ge 50 °C max. max. max. max. max. max. max. max. max. max. max.	volts volts volts volts amp amp

TUBE DIVISION

5563'A

. Averaged over one grid-conducting period. 88

Averaged over any period of 20 seconds maximum.

Filament voltage is 60° to 120° out of phase (leading or lagging) with the anode voltage.

In this service, the faults may occur in quick succession or may be separated by several months.

Averaged over any period of 0.1 second maximum.

Averaged over any period of 20 seconds maximum. This average-anode-current value is specified to indicate the number of faults that are permissible within the 20-second interval. The number of faults that may occur in any 20-second interval depends on the value of anode current over the averaging period less than 0.1 second and may be determined by

1.05 × 20 Number of Faults = Average Anode Current Duration during fault

Example:

5563-1

4

Assume, that the maximum average anode current is 70 amperes for the maximum duration of 0.1 second. On substitution of these values in the equation, the permissible number of faults is determined to be 3. If the average anode current is less than 70 amperes over an averaging period of less than 0.1 second, it will be obvious that a greater number of faults may occur.

OPERATING CONSIDERATIONS

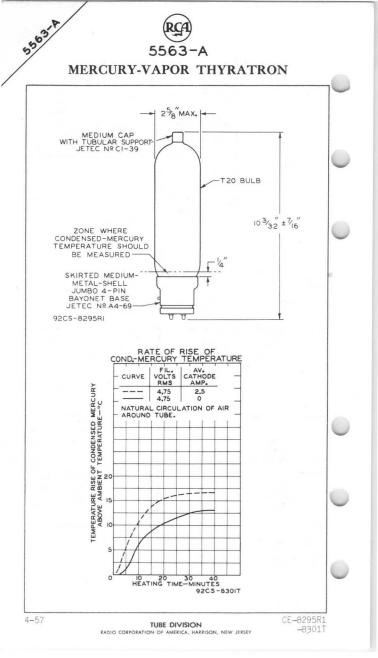
X rays are produced when the 5563-A is operated with a peak inverse anode voltage above 16000 volts (absolute value). These rays can constitute a health hazard unless the tube is adequately shielded for X-ray radiation. Although relatively simple shielding should prove adequate, make sure it provides the required protection to the operator.

Shields and rf filter circuits should be provided for the 5563-A if it is subjected to extraneous high-frequency fields during operation. These fields tend to produce breakdown effects in mercury vapor and are detrimental to tube life and performance. When shields are used, special attention must be given to providing adequate ventilation and to maintaining normal condensed-mercury temperature. Radio-frequency filters are employed to prevent damage caused by rf currents which might otherwise be fed back into the 5563-A.

DATA 2

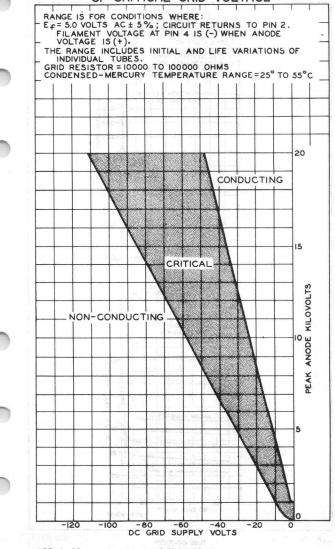
TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

4-57

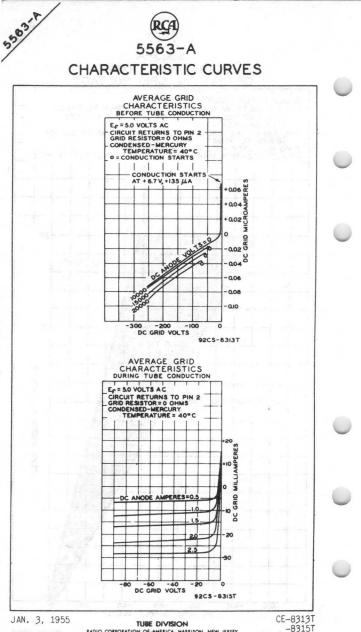

RCA	
5563-A	

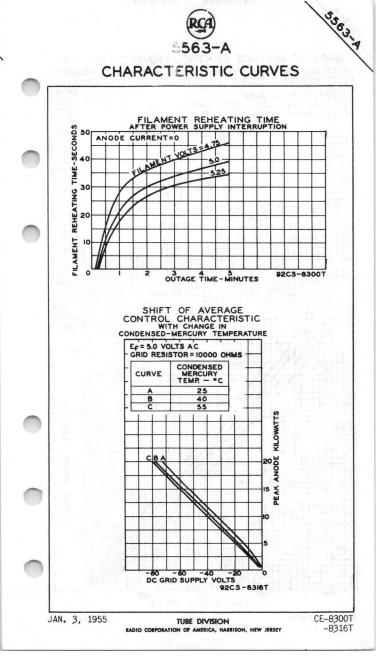
For Circuit Figures, see Front of this Section

CIRCUIT	MAX. TRANS. SEC. VOLTS (RMS) E	APPROX. DC OUTPUT VOLTS TO FILTER Eav	OUT Ampi	С	MAX. DC OUTPUT KW TO FILTER Pdc			
Fig.1 Half-Wave Single-Phase In-Phase Operation	14000 [□] 10600▲	6300 4700	1. 1.		10 8.5 20 17			
Fig.2 Full-Wave Single-Phase In-Phase Operation	7000 [¤] 5300▲	6300 4700		.2 .6				
Fig.3 Series Single-Phase In-Phase Operation	4000 [□] 0600▲	12700 9500		.2 .6		40 34		
Fig.4 Half-Wave Three-Phase In-Phase Operation	8100 [□] 6100▲	9500 7100		.8 .4	45 38			
Fig.5 Parallel Three-Phase Quadrature Operation	8100 ⁰ 6100	9500 7100		.0 .0	143 106			
Fig.6 Series Three-Phase Quadrature Operation	8100 [⊡] 6100▲	19000 14200		.5 .5		43 06		
Fig.7 Half-Wave Four-Phase Quadrature Operation 5300				Resis- tive Load 10.0 10.0	Induc- tive Load 10.0 10.0	Resis- tive Load 90 67	Induc- tive Load 90 67	
Fig.8 Half-Wave Six-Phase Quadrature Operation	7000 [□] 5300▲	9500 7100	Resis- tive Load 11.0 11.0	Induc- tive Load 11.5 11.5	Resis- tive Load 105 78	Induc- tive Load 110 81		

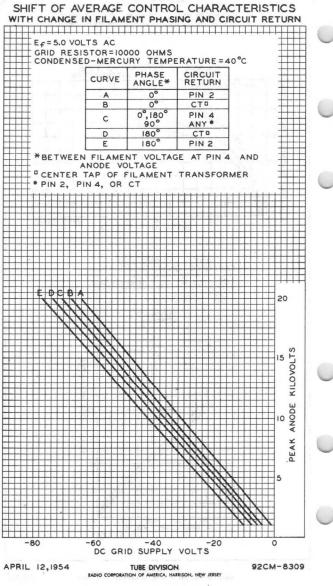

mercury-temperature range of 25 to 50 °C. 4 For maximum peak inverse anode voltage of 15000 volts, and condensed-mercury-temperature range of 25 to 55 $^{\circ}\mathrm{C}$.

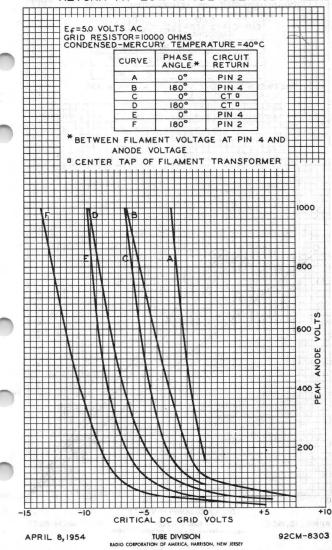
5563 N



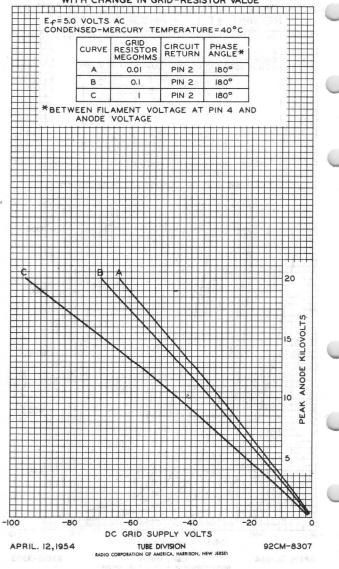


APR. 8, 1954


TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 416966



5503-1



5583. A 5563-A SHIFT OF AVERAGE CONTROL CHARACTERISTICS WITH CHANGE IN FILAMENT PHASING AND CIRCUIT LOW ANODE VOLTAGES RETURN AT

SHIFT OF AVERAGE CONTROL CHARACTERISTICS WITH CHANGE IN GRID-RESISTOR VALUE

Voltage-Reference Tube

5651A

7-PIN MINIATURE, GLOW-DISCHARGE TYPE Especially Useful as a Voltage-Reference Tube in DC Power Supplies

DATA

General:

Cathode
Operating Position
Maximum Överall Length
Maximum Seated Length
Length, Base Seat to Bulb Top (Excluding tip) 1-1/2" ± 3/32"
Diameter 0.650" to 0.750"
Dimensional Outline (See General Section) JEDEC No.5-2
Bulb
Base
Basing Designation for BOTTOM VIEW 5BO

Pin 1 - Anode Pin 2 - Cathode Pin 3 - Do not use Pin 4 - Cathode

Pin 5 – Anode Pin 6 – Do not use Pin 7 – Cathode

Maximum and Minimum Ratings, Absolute-Maximum Values:

DC OPERATING CURRENT (Continuous)		÷.		3.5 max. ma ,
DC OPERATING CURRENT (Continuous)				1.5 max. mamun
AMBIENT TEMPERATURE RANGE				-55 to 90 °C //

Characteristics and Operation Range Values:

		Min.	Av.	Max.		
	DC Starting Voltage DC Operating Voltage (Varia- tion from tube to tube):	-	107	115 ^a	volts	
	At 1.5 ma	83	85	87	volts	
	At 2.5 ma	83.5	85.5		volts	
	At 3.5 ma	84.5	86.5	88.5	volts	
κ.	Regulation (1.5 ma to 3.5 ma) .	-		3	volts	
2	Temperature Coefficient of Operating Voltage (over ambient temperature range					
	of -55 to 90° C)	-	-4	-	mv/°C	
	Percentage Variation of Operating Voltage: ^b					
	During first 300 hours					
	of life ^c During subsequent 1000	-		0.1	%	
	hours of life	-	_	0.1	%	

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA I 8-63

5651A

Min. Av. Max. Short-term (100 hours) Variation of Operating Voltage after first 300 hours of life^b. . . Instantaneous Voltage Fluctuation (Voltage jump)d 0.1 volt Circuit Values: Shunt Capacitor . . . μt Series Resistor . . .

e

- a A dc supply voltage of 115 volts minimum should be provided to insure "starting" throughout tube life. b
- DC operating current = 2.5 ma.
- С After initial 3-minute warm-up period.
- Defined as the maximum instantaneous voltage fluctuation at any current level within the operating current range.
- A series resistor must always be used with the 56514. The resistance value must bechosen so that (1) the maximum current rating of 3.5 ma is not exceeded at the highest anode-supply voltage employed, and (2) the minimum current rating of 1.5 ma is always exceeded when the anode-supply voltage is at its lowest value.

SPECIAL TESTS AND PERFORMANCE DATA

Stability Life Performance:

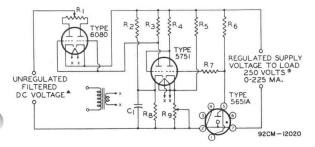
This test is performed on a sample lot of tubes to assure that the tubes have been properly stabilized. Life testing is performed under the following conditions: DC anode-supply volts = 135, dc operating milliamperes = 2.5, anode-circuit resistance (ohms) = 20000. At the end of 300 hours of operation, tubes will not show a change in dc operating voltage greater than 0.1 per cent from the initial dc operating voltage. At the end of 1300 hours of operation, tubes will not show a change in dc operating voltage greater than 0.1 percent from the operating voltage at 300 hours. During any 100-hour interval between 300 and 1300 hours of operation, tubes will not show a change in dc operating voltage greater than 0.05 per cent from the dc operating voltage at the start of the interval.

INSTALLATION AND APPLICATION

Make no connections to pins 3 and 6. Any potentials applied to these pins may cause erratic tube performance. The three pin terminals for the cathode (pins 2,4, and 7) and the two for the anode (pins 1 and 5) offer the equipment designer several different possibilities for connection of the 5651A. Any pair of interconnected pins can be used as a jumper connection to acircuit common to either the cathode or to the anode. The use of such a jumper connection provides a means for opening the circuit to protect circuit components when the 5651A is removed from its socket. Under no circumstances should the current through any pair of interconnected pins exceed one ampere.

5651A

If the load for the regulated power supply is disconnected either directly or by removing the 5651A from its socket, the rectifier capacitors will charge to the rectifier peak voltage. It is important, therefore, that these capacitors be rated to withstand such voltage.


A warm-up period of 3 minutes should be allowed each time the equipment is turned on to insure minimum voltage drift of the 5651A.

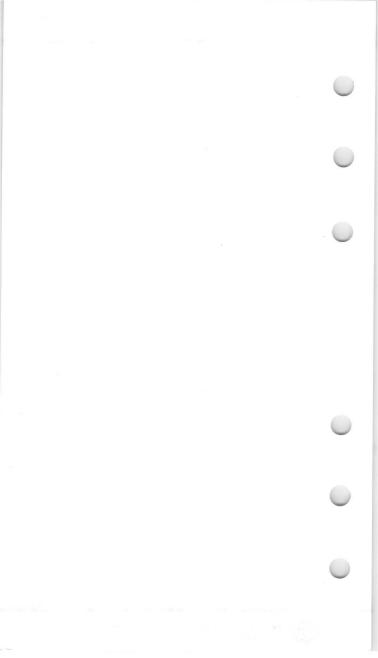
When a shunt capacitor is used with the 5651A, its value should be limited to 0.02 μf . A large value of capacitance may cause the tube to oscillate and thus give unstable performance.

Shielding should be utilized for the 565IA to insure maximum stability when the tube is operated in the presence of strong rf or magnetic fields.

SERIES-TYPE STABILIZED-VOLTAGE SUPPLY-CIRCUIT Using RCA-5651A as Voltage-Reference Tube

The voltage regulation of this supply operated at a fixed line voltage of 117 volts and an output voltage of 250 volts is less than 0.2 volt over the current range of 0 to 225 milliamperes. At full current, the regulation for avariation of ± 10 per cent in line voltage is less than 0.1 volt.

 $\begin{array}{l} C_1 = 0.1 \ \mu\text{f}, \ 400 \ \text{volts} \\ R_1 = \text{Plate current balanc-} \\ \text{ing potentiometer,} \\ 160 \ \text{ohms, 10 watts} \\ R_2 = 12000 \ \text{ohms, 2 watts} \\ R_3 = 470000 \ \text{ohms, 1/2 watt} \\ R_4 = \sqrt{70000} \ \text{ohms, 1/2 watt} \end{array}$


 $\begin{array}{l} {\sf R}_5 &= 12000 \text{ ohms, } 2 \text{ watts} \\ {\sf R}_6 &= 68000 \text{ ohms, } 1 \text{ watt} \\ {\sf R}_7 &= 1 \text{ mgohm, } 1/2 \text{ watt} \\ {\sf R}_8 &= 15000 \text{ ohms, } 2 \text{ watts} \\ {\sf R}_9 &= 0 \text{ utput voltage-control potentiometer, } \\ &= 10000 \text{ ohms} \end{array}$

- A 375 volts approx. at zero load current; 325 volts approx. at 225 milliamperes load current.
- ⊕ Socket connections are made so that removal of the 5651A from its socket opens the load.

Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.

RADIO CORPORATION OF AMERICA Electronic Components and Devices Harrison, N. J. DATA 2 8-63

THYRATRON

GAS-TETRODE, MINIATURE TYPE

GEN	ERAL	DATA

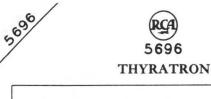
	GENERAL DATA
Electrical:	
Heater, for Unipotenti	al Cathode:
Voltage	6.3 ac or dc volts
Voltage	0.150 amp
Cathode:	and the second second second second second second second second second second second second second second second
Minimum Heating Time	, prior
to tube conduction	10
Direct Interelectrode	Capacitances (Approx.):0
Grid No. 1 to Anode	. 0.03
Input.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Output	0.54
Ionization Time (Appro	x.):
	node volts = 100; grid-No.1
square-pulse vol	ts = +50: neak cathode
amperes during o	onduction = 0.150 0.5 µsec
Deionization Time (App	rox.):
	node volts = 500; grid-No.1
	id-No.1 resistor (ohms) =
	amperes = 0.025 25 µsec
	node volts = 500; grid-No.1
	d-No.1 resistor (ohms) =
	amperes = 0.025 40 µsec
	No.1 Current, with ac
	ts $(rms) = 350$, and
	amperes = 0.025 0.5 μ amp
	prox.) 10 volts
Grid No 1 Control Rati	o (Approx.) with grid-No.1
resistor Imegoh	ns) = 0; grid-No.2 volts = 0 250
	o (Approx.) with grid-No.1
	No.2 resistor (ohms) = 0 15
vorts = 0, gr tu	
^O Without external shield.	
1.32	
Mechanical:	
Mounting Position.	Any
Maximum Overall Length	1 1-3/4"
Maximum Seated Length	1-1/2"
Length. Base Seat to E	Bulb Top (excluding tip). 1-1/8"±3/32"
Maximum Diameter	
Bulb	T-5-1/2
Base	Small-Button Miniature 7-Pir
Basing Designation	for BOTTOM VIEW 7BM
Pin 1-Grid No.1	@ @ Pin 5-Grid No.2
	Pin 6 - Anode
Pin 2-Cathode	
Pin 3-Heater	(Pin 7 - Grid No.2
Pin 4 - Heater	CTTA JO
	\sim

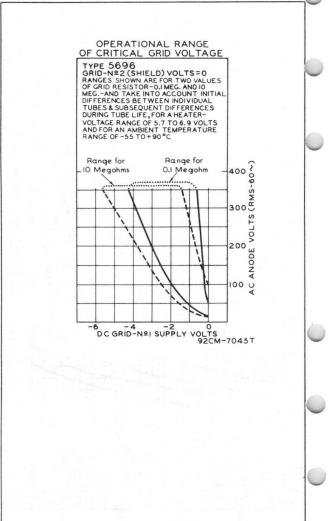
FEB. 1, 1949

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

TENTATIVE DATA

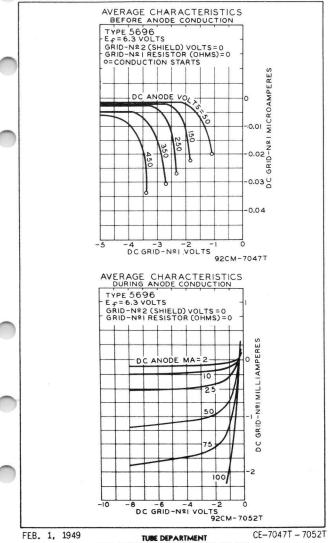


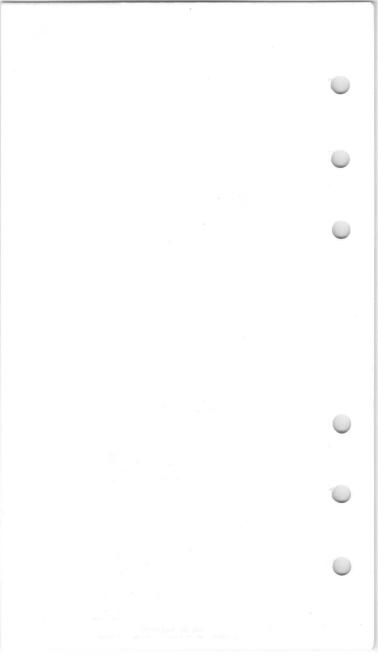

THYRATRON


RELAY and GRID-(CONTROLL	ED RE	CTIF	IER SERV	ICE	
aximum Ratings, Absolute	Values	:				
EAK ANODE VOLTAGE:						
Forward				. 500	max.	volts
Inverse				. 500	max.	volts
RID-No.2 (SHIELD-GRID) \	OLTAGE:					
Peak, before anode cond			• • •		max.	volts
Average, during anode of				-10	max.	volts
RID-No.1 (CONTROL-GRID)						
Peak, before anode conc					max.	volts
Average, during anode of ATHODE CURRENT:	conducti	on	• •	-10	max.	VOILS
Peak				0 1	max.	amp
Average		• • •		0.025		amp
Surge, for duration of	0.1 sec	max	10.8		max.	amp
RID-No.2 CURRENT:	0.1 000					and and
Average				+0.005	max.	amp
RID-No.1_CURRENT:						
Average				+0.005	max.	amp
EAK HEATER-CATHODE VOLTA	AGE: '					
Heater negative with re		cath	ode	. 100	max.	volts
Heater positive with res	spect to	cath	ode	. 25	max.	volts
MBIENT TEMPERATURE RANGE				-55 to	+90	°C
ypical Operating Conditi	ana for	Polo		wine!		
		nera	, 36			
MS Anode Voltage		• •		. 117 to catho		volts
rid No.2.		onnec	tea	. 5	de al	volts
MS Grid-No.1 Bias Voltag eak Grid-No.1 Signal Vol	t		• •	. 5		volts
rid-No.1-Circuit Resista			• •	. 0.1		megohm
node-Circuit Resistance				. 5000		ohms
node-circuit Resistances		• •				
aximum Circuit Values:						
rid-No.1-Circuit Resista	ance			. 10	max.	megohms
Averaged over any interval	of 30 se	c. max.				
Approximately 180° out of p	hase wit	h the a	node	voltage.	1 m 2	Coper a sur
Sufficient resistance, incl conditions of operation to	prevent	e tube exceedi	ng th	must be ne current	ratin	inder any

5696

FEB. 1, 1949 TUBE DEPARTMENT TENTATIVE DATA




CE-7045T

THYRATRON

GAS THYRATRON 7-PIN MINIATURE TETRODE TYPE

GENERAL DATA

	Electrical:	
	Heater, for Unipotential Cathode: Voltage	ts
	Cathode: Minimum heating time prior to	
	S and s and s and s and s and s and s and s and s and s and s and s and s and s and s and s and s and s and s a	ec
		μf
		μf
	and heater 1.6 µ Ionization Time (Approx.): For dc anode volts = 100, grid-	μf
	Deionization Time (Approx.):	ec
	For dc anode volts = 125, dc anode amperes = 0.1, grid-No.1 resistor (ohms) = 1000, and grid-No.1 volts	
	= -100	sec
		ec
)	and average anode amperes = 0.1 0.5 Anode Voltage Drop (Approx.) 8 vol Grid-No.1 Control Ratio (Approx.) with grid-No.1 resistor (megohms)	µa ts
	= 0, grid-No.2 volts = 0	
1	= 0, grid-No.1 volts = 0 1000	
	Mechanical:	
0	Maximum Överall Length	8" 32" 4"
	*, ^O : See next page.	
	8-57 ELECTRON TUBE DIVISION TENTATIVE DATA	1

15/2)

GAS THYRATRON

PULSE-MODULATOR SERVICE

For rectangular-wave shapes, duty cycle of 0.001 max., pulse duration of 5 µsec. max., and pulse-repetition rate of 500 pps max.

Maximum and Minimum Ratings, Absolute Values:

PEAK ANODE VOLTAGE:

-	FLAN ANODE VOLTAGE.		1
	Forward	max.	volts
		max.	volts
	GRID-No.2 (SHIELD-GRID) VOLTAGE:		
	Peak. before tube conduction50	max.	volts
	Average, during tube conduction10	max.	volts
N	GRID-No.1 (CONTROL-GRID) VOLTAGE:		
		max.	volts
1	Average, during tube conduction10	max.	volts
	CATHODE CURRENT:		
	Peak	max.	amp
1	Average 0.01	max.	amp
		max. a	amp/µsec
		max.	amp
	PEAK GRID-No.1 CURRENT 0.02	max.	amp
	PEAK HEATER-CATHODE VOLTAGE:		
	Heater negative with respect to cathode 0	max.	volts
	Heater positive with respect to cathode 0	max.	volts
	BULB TEMPERATURE (At hottest point		
		max.	°C
		min.	°C
	Maximum and Minimum Circuit Values:		
	Grid-No.1-Circuit Resistance 0.5	max.	megohm
	Grid-No.2-Circuit Resistance {25000	max.	ohms
		min.	ohms

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

Values are initial, unless otherwise specified

		Note	Min.	Max.	
	Heater Current	1	540	660	ma
9	Grid-No.1 Supply Voltage for Tube Conduction (1)	1,2	-2.9	-4.5	volts
	Grid-No.1 Supply Voltage for Tube Conduction (2)	1,3	-	-5.2	volts
	Grid-No.1 Supply Voltage for Tube Conduction (3) Anode-Supply Voltage for	4,3	-	-6.4	volts
N	Tube Conduction (1) Anode-Supply Voltage for Tube	1,5	-	38	volts
	Conduction (1) at 500 hours .	1,5	-	50	volts
	Anode-Supply Voltage for Tube Conduction (2)	6,5	-	50	volts
	*,0,■,□, [#] : See next page.				
	8-57 ELECTRON TU		ON	TENTATIVE	DATA 2

	Note	Min.	Max.	
Anode-Supply Voltage for				
Tube Conduction (3)	7,8	650	-	volts
RMS Grid-No.2 Supply Voltage				
for Tube Conduction (This voltage is 180° out of phase				
with anode-supply voltage)	1,9	1.9	3.3	volts
Heater-Cathode Leakage Current:	1,5	1.0	1.)	VOILS
Heater 25 volts positive				
with respect to cathode	1	-	15	μa
Heater 100 volts negative				
with respect to cathode	1	-	15	μa
Heater-Cathode Leakage				
Current at 500 hours: Heater 25 volts positive				
with respect to cathode	1	-	20	μa
Heater 100 volts negative				
with respect to cathode	1	-	20	μa
Leakage Resistance:	4.40	700		
Grid-No.2 to anode	1,10	760	-	megohms
Leakage Resistance:				
Grid-No.2 to anode at 500 hours	1.10	380	_	megohms
JUU HUUIS	1,10	200	_	negorins
Note 1: With 6.3 volts ac or dc on h				
Note 2: With anode-supply volts (rms resistor (ohms) = 3000, and) = 460, arid-No.1	grid-No. resisto	2 volts r (megoh	= 0, load ms) = 0.1.
Note 3: With anode-supply volts (rms resistor (ohms) = 3000, and) = 460,	grid-No.	2 volts	= 0, load
		1 resisto	or (mego	nms) = 10.
Note 4: With 7.0 volts ac or dc on h Note 5: With grid-No.2 volts = 0, g		volts =	0. 1040	resistor
(ohms) = 1000, and grid-No.1		(megohm	s) = 0.1	
Note 6: With 5.7 volts ac or dc on h	eater.			
Note 7: With 0 volts on heater.	o arid	No 2 vol	te = 0	and load
Note 8: With grid-No.1 volts = -10 resistor (ohms) = 10000.	o, grid-	NU.2 V01	.3 = 0,	and Ivau
Note 9: With anode-supply volts (rm (rms and in phase with anode-	ns) = 150	, grid-	0.1 sup	ply volts
Note 10: With grid-No.2 volts = ±380				
electrodes floating.				
* For pulse-modulator service, tolera	nce is +1	10%, -5%.		
^O Without external shield.				
Averaged over any interval of 30 set Approximately 180 ⁰ out of phase with			ne.	
				under any
# Sufficient resistance, including the conditions of operation to prevent	exceeding	the cur	rent rat	ings.
SPECIAL RATINGS AND	PERFORM	MANCE DA	ATA	
Shock Rating:				
		7	50 max.	a
Impact Acceleration This test is performed on a	sample			
production run. Tubes are				
2.57				

8-57

5727

ELECTRON TUBE DIVISION

TENTATIVE DATA 2

four different positions. At the end of this test, tubes will not show permanent or temporary shorts or open circuits, and are required to meet established limits for heater-cathode leakage current, grid-No.I supply voltage for tube conduction (I) and anode-supply voltage for tube conduction (I).

Fatigue Rating:

Vibrational Acceleration. 2.5 max. g This test is performed on a sample lot of tubes from each production run. Tubes are rigidly mounted and subjected in each of three positions to 2.5 g vibrational acceleration at 60 cycles per second for 32 hours. At the end of this test, tubes will not show permanent or temporary shorts or open circuits, and are required to meet established limits for heater-cathode leakage current, grid-No.1 supply voltage for tube conduction (1) and anode-supply voltage for tube conduction (1).

Heater-Cycling Life Performance:

Cycles of Intermittent Operation. . . . 2000 min. cycles Under the following conditions: Heater volts = 7.5 cycled one minute on and one minute off, heater 100 volts negative with respect to cathode, and all other elements connected to ground.

Shorts and Continuity Test:

This test is performed on a sample lot of tubes from each production run. In this test a tube is considered inoperative if it shows a permanent or temporary short or open circuit.

I-Hour Stability Life Performance:

This test is performed on a sample lot of tubes from each production run to insure that tubes have been properly stabilized. Conditions of life testing are specified under 500-hour intermittent life performance, except test run at room temperature. Tubes are initially read for grid-No.I supply voltage for tube conduction (1). At the end of I hour, grid-No.I supply voltage is read. The variation in the O-hour and I-hour readings will not exceed 15 per cent. Tubes must also meet established limits of grid-No.I supply voltage.

100-Hour Survival Life Performance:

This test is performed on a sample lot of tubes from each production run to insure a low percentage of early inoperatives. Conditions of life testing are specified under 500-hour intermittent life performance, except test run at room temperature. At the end of 100 hours, a tube is considered inoperative if it shows a permanent or

8-57

TENTATIVE DATA 3

temporary short or open circuit or fails to meet established limits of grid-No.I supply voltage for tube conduction (1).

500-Hour Intermittent Life Performance:

This test is performed on a sample lot of tubes from each production run to insure high quality of the individual tube and to guard against epidemic failures of any of the characteristics indicated below. Life testing is conducted under the following conditions: Heater volts = 6.3, anodesupply volts (rms) = 460, grid-No.2 supply volts = 0, average anode milliamperes = 80, peak anode milliamperes = 500, grid-No.1 resistor (ohms) = 50000, and minimum bulb temperature ($^{\circ}C$) = 150. At the end of 500 hours, tube will not show permanent shorts or open circuits and will be criticized for the total number of defects in the sample lot and for the number of tubes failing to pass established initial limits of heater current, grid-No.1 supply voltage (1), and 500-hour limits for anode-supply voltage (1), heater-cathode leakage current, and leakage resistance shown under CHARACTERISTICS RANGE VALUES.

OPERATING CONSIDERATIONS

Sufficient *anode-circuit resistance*, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings of the tube.

Curves shown under Type 2D21 also apply to the 5727

GLOW-DISCHARGE TRIODE

COLD-CATHODE, MINIATURE TYPE

GENERAL DATA

Electrical	:			
Cathode .	Time (Approx.):			Cold
	itions: Instantaneous ano	de volts = 185;		
	positive starter-electro			
	ts = 70; peak positiv			
	trode triggering volts uit series resistor (d			7
	ter-electrode serie			
(ohr	s) = 100000		20	µsec
	on Time (Approx.):		- 11	
For cond	itions: (Same as for <i>Ion</i> age Drop	ization [ime)	500 62	µsec volts
Starter-F	éctrode Voltage Drop		61	volts
	1 1 1		290	volts
Starter-E	ectrode Breakdown Voltag	e	80	volts
Required	ransfer Current (DC or			
	Instantaneous AC) for t		50	
	discharge to anode at 14	to voits peak	50	μ amp
Mechanica	:			
	osition			Any
Maximum Ov	erall Length			2-1/8"
Maximum Se	ated Length	luding tip)		1-7/8"
	ameter		1-1/2 1	3/4"
Bulb			T	-5-1/2
Base		mall-Button Mi	niature	
0	esignation for BOTTOM VI			4CK
Pin 1-/		Pin 5-In		
Pin 2-		C	onnecti	-
	Connection- Do Not Use	Pin 6 - In	Do Not	Ųse
Pin 3-0	athode .		onnecti	on-
Pin 4-3		\mathcal{O}	Do Not	
	Electrode	Pin 7-Ca	thode	
	0			
Maximum Ra	tings▲, Absolute Values:			
	For First-Quadrant 0	peration Only		
PEAK ANODI	AND STARTER-ELECTRODE V	OLTAGE:		
			0 max.	volts
Forward		· · · · . 20	0 max.	volts
These is	atings apply to the 5823 wh	nen it is operato	ed from	a powe
supply	having a frequency of 60 cycl	es per second. It frequencies nles	f a conte	mplate
ing the	proposed operating frequency	, to the attentio	on of Cor	mercia
changes	atings apply to the 5023 wh naving a frequency of 60 cycl tion involves higher supply proposed operating frequency ring, RCA, Harrison, New Jers in maximum ratings and chara	cteristics.	as to	equire

GLOW-DISCHARGE TRIODE

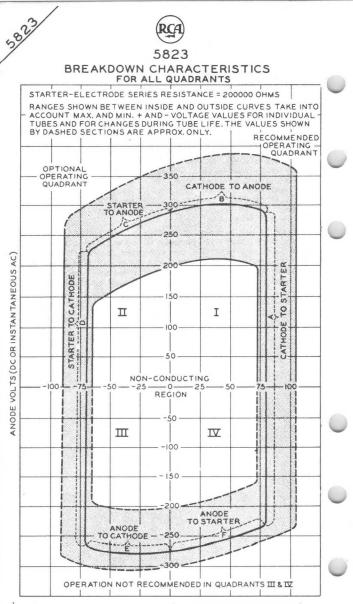
CATHODE CURRENT: Peak 100 max. ma Average* 25 max. ma PEAK STARTER-ELECTRODE CURRENT: With starter-electrode voltage positive . 100 max. ma AMBIENT TEMPERATURE
Average* 25 max. ma PEAK STARTER-ELECTRODE CURRENT: 100 max. ma With starter-electrode voltage positive. 100 max. ma AMBIENT TEMPERATURE -60 to +75 °C °C Typical Operating Conditions: For Relay Service with 6o-Cycle AC Supply AC Anode Supply Voltage (RMS) 117 volts AC Starter-Electrode Voltage: 117 volts
With starter-electrode voltage positive . 100 max. ma AMBIENT TEMPERATURE
AMBIENT TEMPERATURE
For Relay Service with 6o-Cycle AC Supply AC Anode Supply Voltage (RMS) 117 volts AC Starter-Electrode Voltage:
AC Anode Supply Voltage (RMS) 117 volts AC Starter-Electrode Voltage:
AC Starter-Electrode Voltage:
Min. Peak Positive Triggering Voltage 35 volts
Min. Firing Voltage (Sum of In-Phase In- stantaneous Pre-Firing Voltage and In-
stantaneous Triggering Voltage) 105 volts
CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN
For First-Quadrant Operation Only
Note Min. Max.
Anode Breakdown Voltage 1 200 - volts Starter-Electrode Break-
down Voltage 2 73 105 ⁿ volts
Required Transfer Cur-
rent (DC or Instantan- eous AC) for transition
of discharge to anode
at 140 volts peak 3 - 400 ^o µamp Anode Voltage Drop, 4 - 85 ^o volts
Anode Voltage Drop 4 – 85 ^m volts Starter-Electrode Volt-
age Drop 5 - 75 ^o volts
Note 1: With a variable dc anode voltage, dc starter-electrode voltage of 0 volts, anode-circuit series resistance of 3000 ohms, and starter-electrode series resistance of 50000 ohms.
Note 2: With dc anode voltage of 0 volts, variable dc starter—electrode voltage, anode-circuit series resistance of 3000 ohms, and starter—electrode series resistance of 50000 ohms.
Note 3: With a variable dc starter-electrode voltage, anode-circuit series resistance of 3000 ohms, and starter-electrode series resistance of 2 megohms.
Note 4: With dc anode voltage of 230 volts, dc starter-electrode vol- tage of 91 volts, dc cathode current of 50 milliamperes, anode- circuit series resistance of 3000 ohms, and starter-electrode series resistance of 50000 ohms.
Note 5: With dc anode voltage of 0 volts, variable dc starter-electrode voltage, dc starter-electrode current of 10 milliamperes, and starter-electrode series resistance of 3000 ohms.
* Averaged over any interval of 15 seconds maximum.
Maximum individual tube values during life.

SEPT. 15, 1949

5823

TUBE DEPARTMENT

TENTATIVE DATA 1

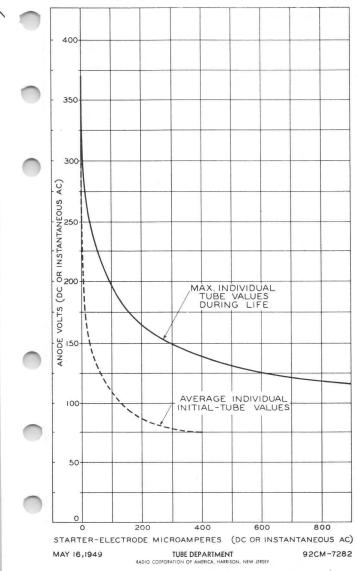


GLOW-DISCHARGE TRIODE

OPERATING NOTES

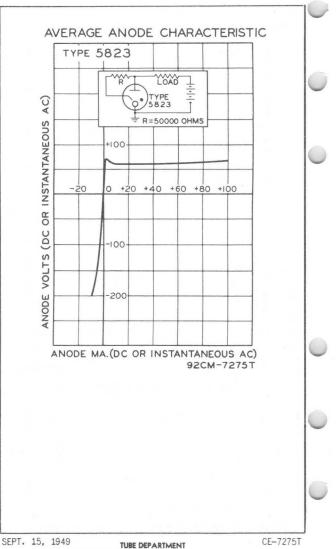
RCA-5823 is recommended for operation only in that part of the breakdown characteristic designated by Quadrant I. Operation in Quadrant II is satisfactory but changes in tube ratings are necessary. Operation in Quadrants III and IV is not recommended, because the anode and starter electrode are not designed for efficient cathode operation; their use in this manner will result in unstable operation and shorter tube life. The information given for Quadrants III and IV is of value to the equipment designer in that it indicates the need for precautions to be taken in order that the peak inverse voltage rating is not exceeded.

Because of the asymmetrical shape of its anode characteristic the 5823 can be used as a rectifier. When so used (with starter electrode connected through 50000-ohm resistor to anode), the 5823 has a maximum peak inverse anode voltage rating of 200 volts, a maximum peak cathode current of 100 milliamperes, and a maximum dc cathode current of 25 milliamperes. Operation at values of dc cathode current less than 8 milliamperes is not recommended because of resulting instability.


STARTER-ELECTRODE VOLTS (DC OR INSTANTANEOUS AC)

MAY 16,1949

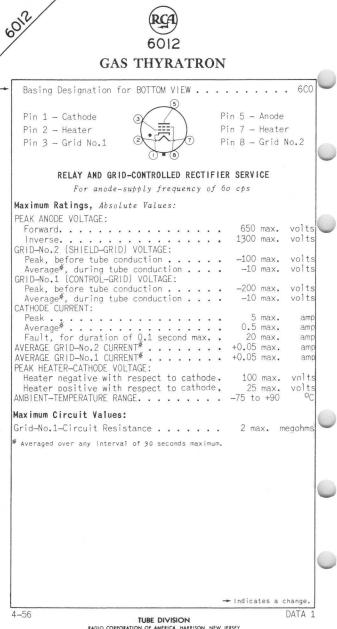
TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-7283



TRANSITION CHARACTERISTIC

GLOW-DISCHARGE TRIODE

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

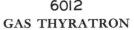

GAS THYRATRON

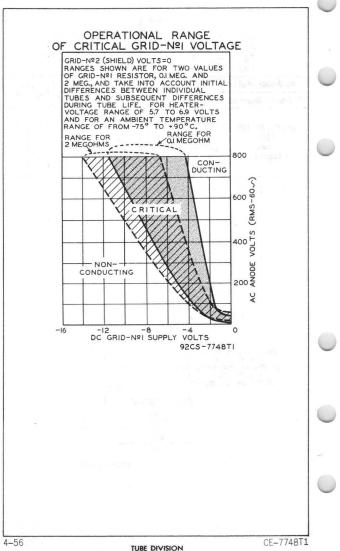
NEGATIVE-CONTROL TETRODE TYPE

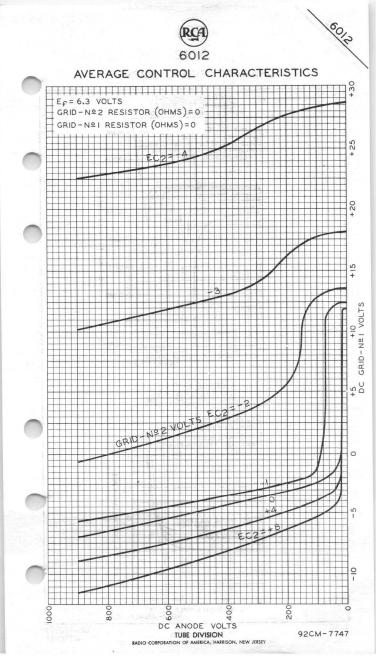
GENERAL DATA

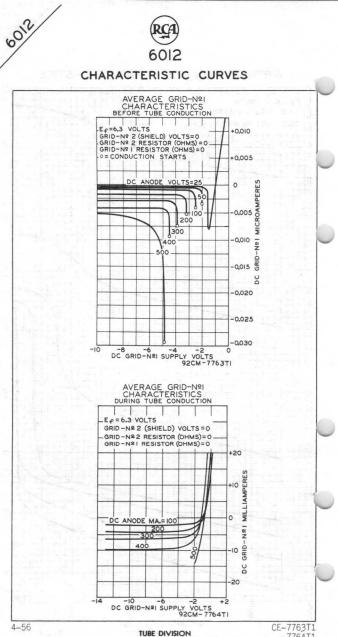
GENERAL DATA			1
Electrical:			
Heater, for Unipotential Cathode: <i>Min. Av. M</i> Voltage	lax.	or de volts	
Current at 6.3 volts – 2.6 2 Cathode:		amp	
Minimum heating time prior to tube conduction.	30	sec	
Maximum outage time without reheating Direct Interelectrode Capacitances (Approx.): ^o		sec	
Grid No.1 to anode	0.23	μµf	
and heater	. 5.8	1.1	
and heater	. 3.9	µµt	
<pre>lonization Time (Approx.): For conditions: dc anode volts = 100, grid-No.2 volts = 0, grid-No.1 square-pulse volts = +50, and peak</pre>			*
anode amperes during conduction = 5	. 0.5	μsec	
Deionization Time (Approx.) Maximum Critical Grid-No.1 Current:		See Table 1	
For conditions: ac anode-supply volts			
= 460 (rms), and average anode am- peres = 0.5	. 3	µamp	
Anode Voltage Drop (Approx.)			
For conditions: grid-No.l resistor (megohms) = 0, grid-No.2 resistor		•	
(megohms) = 0, and grid-No.2 volts	. 150		
= 0. Grid-No.2 Control Ratio (Approx.): For conditions: grid-No.1 resistor	. 100		
(megohms) = 0, grid-No.2 resistor (megohms) = 0, and grid-No.1 volts			
= 0	. 650	6	
Mechanical:			
Mounting Position		Any	
Maximum Overall Length		3-7/8"	4 4
Bulb	 ge-Wafer	T-12 Octal 6-Pir	
with External Barriers and Sleev	ve (JETE	C No.B6-100)	
^O Without external shield.	🗕 Indic	ates a change.	
4-56		DATA 1	

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY






TABLE I


	12	25	2!	50				-
DC Anode Amperes	0.5	1.0	0.5	1.0	Rgl	Eccl	Rg2*	Ecc
DEIONIZATION TIME	175 350 650	225 375 700	250 450 1100	275 475 1200	0.001 0.1 2	} -13	1000	0
μsec (Approx.)	100 125 250	125 150 275	100 150 275	125 175 300	0.001 0.1 2	}-100	1000	0
T 12 B LARGE-WAFER 6-PIN WIT EXTERNAL BAF AND SLEE: JETEC N2 B6	OCTA FH RRIER VE				з ⁵ ⁄і́б мах. 37 ма	/8 ×.		

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

VOLTAGE REGULATOR

MINIATURE GLOW-DISCHARGE TYPE

Intended for applications where very stable characteristics and dependable performance under shock and vibration are paramount: The 6073 is a "premium" version of the 042.

											D	AT	A												
al	:																								
de			•		÷			•			•	•	•	•	•					•		÷	•	Сс	010
n i	ica	al:																							
iun hur hur	n (n (n [)ve Sea Bas Dia	ra ite ime	11 d Se te	Ler at r. Sr	ngt tc	th h B 1-	lul Bu	b tt	Tc		(E	xc ia	1.	idi	ng • • 7·	-Р	ip In)	JET	EC.	No	2 '± T-	-5, -3, 3/3 -5-: E7-	/8' 32' /4' 1/2
	2	Ca Ir Co Do	nte onn N	od rn ec ot	al tic Us		-			(19			6		Ρ	in	6	- C D	nt on	eri neo No	cti t l	on-	
ามเ	n I	Rat	in	gs	, ,	465	sol	ut	е	Va	lu	e s	;												
G		STA	RT	IN	G	CUF	RE	NT	(Se	e	no	te	t	bel	OW)			75	m	ax			ma
TI	HO	DE	CU	IRR	EN	Г																			ma
								NG	E.		•	•	:	:	:	:				-55	to)+(90	(
ct	ter	ris	ti	cs	Ra	ang	je	Va	lu	es	f	or	Ε	qu	ip	me	nt	D	es	ign	:				
																		A	υ.		M	ax.			
	Bre	eak 1ta	do	wn D	Vo	p.	tag	je •	:	•		:		ł	-			1	56 51			85	÷	vo vo vo	lts lts
i	٤١	Val	ue	s:																					
							:	:	:		•	:			-				-	Se				be	μ1 1 ο ν
	The	n 1io	ote cab	is le	and to	d c th	iro e e	ui 507	t 3.	inf	or	ma	io	n	shc	wn	ur	de	rΤ	у ре	0/	A 2	are	e a	150
	ur ur ur ur ur ur ur ur ur ur ur ur ur u	nica ing um C um S ling 1- 2- 3- 4- 4- GES THOI NTT ENC Voi ati S R tho ENC Voi cter ati 2 S R tho ENC	de nical: ing Po um Sea um Ove um Sea um Ove 1 - Ar 2 - Ca 3 - Irn Cc Dc 4 - Ca um Rat GE STA THODE NT TEM ENCY. ode-Su Break Volta atom it Val Capaco s Resi The n applic	de nical: ing Posi- um Overau W Seate- h, Base um Diame ing Desi 1 - Anod 2 - Cath 3 - Inte Conn Do N 4 - Cath um Ratin GE START THODE CU NT TEMPE ENCY cteristi ode-Supp Breakdo Voltage ation (5 it Value Capacit s Resist The note applicab	de nical: ing Positin um Overall um Seated h, Base Sea um Diamete ing Design 1 - Anode 2 - Cathod 3 - Intern Connec Do Not 4 - Cathod um Ratings GE STARTIN THODE CURR NT TEMPERA ENCY cteristics ode-Supply Breakdown Voltage D ation (5 t it Values: Capacitor s Resistor The notes applicable	de	de	de	de nical: ing Position m Overall Length. um Seated Length . h, Base Seat to Bul um Diameter Small-Bu ing Designation for 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode um Ratings, Absolut GE STARTING CURRENT THODE CURRENT NT TEMPERATURE RANG ENCY cteristics Range Va ode-Supply Voltage Breakdown Voltage Voltage Drop ation (5 to 30 ma) it Values: Capacitor s Resistor The notes and circui applicable to the 607	de	de	al: de mical: ing Position um Overall Length thy Base Seat to Bulb Top um Diameter Small-Button M ing Designation for BOITCO 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode um Ratings, Absolute Value GE STARTING CURRENT (See THODE CURRENT NT TEMPERATURE RANGE ENCY cteristics Range Values f ode-Supply Voltage Breakdown Voltage Breakdown Voltage s Resistor s Resistor The notes and circuit infor applicable to the 6073.	al: de mical: ing Position m Overall Length m Seated Length h, Base Seat to Bulb Top (E um Diameter Small-Button Min ing Designation for BOTTOM 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode um Ratings, Absolute Values GE STARTING CURRENT (See no THODE CURRENT NT TEMPERATURE RANGE ENCY cteristics Range Values for ode-Supply Voltage Breakdown Voltage breakdown Voltage ation (5 to 30 ma) it Values: Capacitor s Resistor The notes and circuit informati applicable to the 6073.	de nical: ing Position m Overall Length um Seated Length h, Base Seat to Bulb Top (Exc um Diameter Small-Button Minia ing Designation for BOITOM VI 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode um Ratings, Absolute Values: GE STARTING CURRENT (See note THODE CURRENT RT TEMPERATURE RANGE ENCY cteristics Range Values for E ode-Supply Voltage Breakdown Voltage ation (5 to 30 ma) it Values: Capacitor s Resistor The notes and circuit informatio applicable to the 6073.	al: de mical: ing Position m Overall Length um Seated Length m Seated Length m Diameter Small-Button Miniatu ing Designation for BOTTOM VIEV 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode um Ratings, Absolute Values: GE STARTING CURRENT (See note the THODE CURRENT ST TEMPERATURE RANGE ENCY cteristics Range Values for Equ Minimum conde-Supply Voltage NT TEMPERATURE RANGE Voltage Drop Voltage Drop voltage Drop tit Values: Capacitor s Resistor The notes and circuit information applicable to the 6073.	al: de mical: ing Position m Overall Length m Seated m Seated Length m Seated m Seated Length m Seated m Seated Length	al: de nical: ing Position m Overall Length um Seated Length h, Base Seat to Bulb Top (Excluding um Diameter Small-Button Miniature 7- ing Designation for BOTTOM VIEW . 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode um Ratings, Absolute Values: GE STARTING CURRENT (See note below THODE CURRENT NT TEMPERATURE RANGE ENCY cteristics Range Values for Equipme Min. ode-Supply Voltage Voltage Drop Voltage Drop Voltage Drop Voltage Current Voltage Drop Voltage Drop Voltage Drop Voltage Drop Voltage Drop Voltage Drop The notes and circuit information shown applicable to the 6073.	al: de mical: ing Position m Overall Length um Seated Length m Seated Length m Diameter Small-Button Miniature 7-P ing Designation for BOTTOM VIEW 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode um Ratings, Absolute Values: GE STARTING CURRENT (See note below) THODE CURRENT NT TEMPERATURE RANGE ENCY cteristics Range Values for Equipment Min. ode-Supply Voltage Not ation (5 to 30 ma) s Resistor The notes and circuit information shown ur applicable to the 6073.	al: de mical: ing Position m Overall Length um Seated Length m Seated m Seated Length m Seated m Seated Length m Seated m Seated Length m Seated m S	al: de ing Position um Overall Length um Seated Length um Base Seat to Bulb Top (Excluding tip) . um Diameter Small-Button Miniature 7-Pin (. ing Designation for BOITOM VIEW 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode um Ratings, Absolute Values: GE STARTING CURRENT (See note below) . THODE CURRENT NT TEMPERATURE RANGE NT TEMPERATURE RANGE NT TEMPERATURE RANGE Code-Supply Voltage Breakdown Voltage Voltage Drop 140a 151 ation (5 to 30 ma) 2 it Values: Capacitor The notes and circuit information shown under T applicable to the 6073.	al: de mical: ing Position m Overall Length um Seated Length m Diameter Small-Button Miniature 7-Pin (JET ing Designation for BOITOM VIEW 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode um Ratings, Absolute Values: GE START ING CURRENT (See note below) . 75 THODE CURRENT ST TEMPERATURE RANGE NT TEMPERATURE RANGE State of the second secon	al: de incal: ing Position m Overall Length. um Seated Length h, Base Seat to Bulb Top (Excluding tip) and Diameter. Small-Button Miniature 7-Pin (JETEC ing Designation for BOTTOM VIEW 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode um Ratings, Absolute Values: GE STARTING CURRENT (See note below) . 75 m THODE CURRENT State of the second	al: de ing Position um Overall Length um Seated Length h, Base Seat to Bulb Top (Excluding tip) 2' um Diameter Small-Button Miniature 7-Pin (JETEC No ing Designation for BOTTOM VIEW 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode um Ratings, Absolute Values: GE STARTING CURRENT (See note below) . 75 max 5 min NT TEMPERATURE RANGE Start istics Range Values for Equipment Design: Min. Av. Max. ode-Supply Voltage 185° - Breakdown Voltage Min. Av. Max. ode-Supply Voltage 185° - Breakdown Voltage Voltage Drop Voltage Drop 140* 151 166v ation (5 to 30 ma) 2 Ge The notes and circuit information shown under Type 0A2 applicable to the 6073.	al: de ing Position m Overall Length m Overall Length m Seated Length m Diameter Small-Button Miniature 7-Pin (JETEC No. ing Designation for BOTTOM VIEW 1 - Anode 2 - Cathode 3 - Internal Connection- Do Not Use 4 - Cathode m Ratings, Absolute Values: GE STARTING CURRENT (See note below) . 75 max. THODE CURRENT ST TEMPERATURE RANGE NT TEMPERATURE RANGE State istics Range Values for Equipment Design: Min. Av. Max. ode-Supply Voltage State istics Range Values for Equipment Design: Min. Av. Max. ode-Supply Voltage State istics Range Values for Equipment Design: Min. Av. Max. Solar JES Voltage Drop State istics Range Values for Equipment Design: Min. Av. Max. Solar JES Solar JES State istics Range Values for Equipment Design: Min. Av. Max. Solar JES Solar JES State istics Range Values for Equipment Design: Min. Av. Max. Solar JES Solar JES	al: de

VOLTAGE REGULATOR

Shock and Vibration Tests:

6013

These tests are made as indicated in the JAN Specifications JAN 1-A for Electron Tubes, May, 1946 under the sections as follows:

Section F-6b (9e) Shock Test: Instantaneous Impact Acceleration . . . 900 max. Section F-6b (9f) Vibration Test: Vibrational Acceleration. 2.5 max.

Not less than indicated supply voltage should be provided to insure "starting" throughout tube life.

Maximum individual tube value during life.

Minimum individual tube value during life.

TENTATIVE DATA

q

q

PREMIUM

VOLTAGE REGULATOR

MINIATURE GLOW-DISCHARGE TYPE

Intended for applications where very stable characteristics and dependable performance under shock and vibration are paramount. The 6074 is a "premium" version of the OB2.

D	ATA			
General:				
Cathode				Col
Mechanical:				
Mounting Position Maximum Overall Length Length, Base Seat to Bulb Top Maximum Diameter Bulb Base Small-Button Basing Designation for BOTTO	(Excluding Miniature	7-Pin (J	2" ±	Ar 2-5/8 2-3/8 3/32 3/4 -5-1/ .E7-1 5E
Pin 1 - Anode Pin 2 - Cathode Pin 3 - Internal Connection- Do Not Use Pin 4 - Cathode		Pin 5 - A Pin 6 - I (Pin 7 - C	nternal Connect Do Not	
Maximum Ratings, Absolute Val	ues:			
AVERAGE STARTING CURRENT (See DC CATHODE CURRENT	Porter month of the porter of the porter	530	5 max.) max. 5 min.	n n
AMBIENT TEMPERATURE RANGE		-55`to	o +90) max.	ct
Characteristics Range Values	for Equipme	nt Design	1:	
	Min.	Av.	Max.	
DC Anode-Supply Voltage	133	-	-	volt
Anode Breakdown Voltage		115	133	volt
Anode Voltage Drop	101*	108 1	114 [®] 4 [®]	volt
Circuit Values:		т	4	YUT
Shunt Capacitor			0.1	
Series Resistor.		- S	ee note	helc
NOTE: The notes and circuit intorn applicable to the 6074.	mation shown			
▲, ●, ★: See next page.				

VOLTAGE REGULATOR

Shock and Vibration Tests:

6074

These tests are made as indicated in the JAN Specifications JAN 1-A for Electron Tubes, May, 1946 under the sections as follows:

g

g

Section F-6b (9e) Shock Test: Instantaneous Impact Acceleration . . . 900 max. Section F-6b (9f) Vibration Test:

Vibrational Acceleration. 2.5 max.

Not less than indicated supply voltage should be provided to insure "starting" throughout tube life. Maximum individual tube value during life.

* Minimum individual tube value during life.

TENTATIVE DATA

CIA

CIK/6014

XENON THYRATRON

NEGATIVE-CONTROL TRIODE TYPE

GENERAL DATA

Electrical:					
Filament, Coated: Voltage Current at 2.5 vol	ts 5.5	Av. 2.5 6.3	Max. 2.6 7.1	ac or d	c volts amp
Minimum heating tin tube conduction			• .•	25	sec
Direct Intereletrode (Grid to anode . Grid to cathode . Maximum Deionization Maximum Critical Grid Anode Voltage Drop:	 Time	(Approx	(.): •• •• ••	1 10 500 5	μμf μμf μsec μamp
Average, at beginn Maximum, at end of Maximum Commutation averaged over firs	life Factor ⁶ ,	• • •	::	8 14	volts volts
inverse anode volt Grid Control Ratio (For conditions: 100 resistor, circuit filament transform tap, dc anode volt grid voltage	age rise Approx.): 00-ohm grid returns to mer center-		•••	0.15 230	va/μs ²
Mechanical:					
Mounting Position . Maximum Overall Leng Maximum Diameter Weight (Approx.) . Bulb Base Base. Base. Basing Designation		ith Bay		nell Smal JETEC No	
Pin 1-Filament	2	R	Pi	in 3-Gri	d
Pin 2 – Anode	•/	()	Pi	in 4 – Fil	ament
		4			
GR I D-C	ONTROLLED REC	TIFIER	SERVIC	E	
Maximum Ratings, Abs	olute Values:				
PEAK ANODE VOLTAGE: Forward Inverse		:::		1000 max. 1250 max.	
GRID VOLTAGE: Peak, before tube	conduction			-100 max.	volts
Defined as the product microsecond just bef voltage rise in volts		of curre ceases	ent dec and th	ay in amp e rate of	eres per inverse
voltage rise in volts	per microseco	nd follo	wing cu	irrent con	duction.

CIK/6014

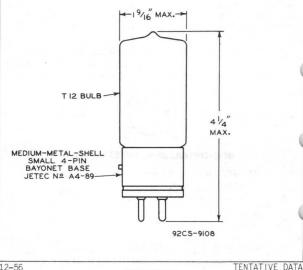
XENON THYRATRON

ANODE	CURRENT:
ANUUL	CONNENT.

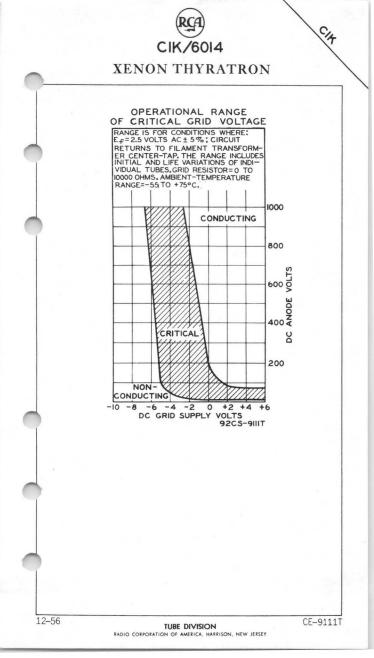
CIT

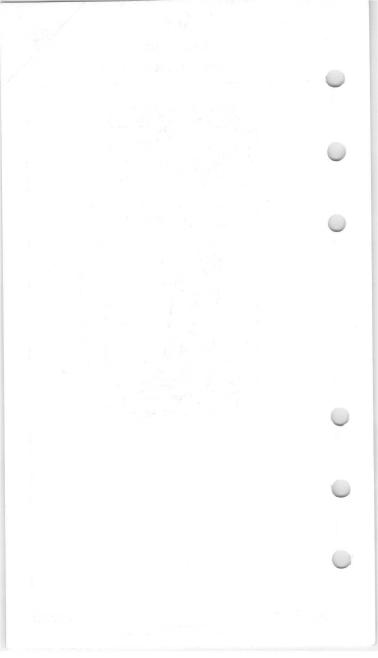
Peak	8 max.	amp
Average•	1 max.	amp
(0.56 sec	8 max.	amp
1 sec	4.5 max.	amp
Overload*, for duration of \langle 2 sec	2.25 max.	amp
3 sec	1.5 max.	am
	1.13 max.	am
Fault, for duration of 0.1 second		
maximum	77 max.	amp
AMBIENT-TEMPFRATURE RANGE	-55 to +75	oC

Averaged over any period of 4.5 seconds.


Averaged for duration of overload occurring no more than once in any period of 4.5 seconds.

OPERATING CONSIDERATIONS


Circuit returns may be made to either side of filament or to transformer center-tap.


The anode of the CIK/6014 may show a red color when the tube is operated at full load.

Sufficient anode-circuit resistance, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings of the tube.

12-56

C.

C3J/5632

XENON THYRATRON

NEGATIVE-CONTROL TRIODE TYPE

GENERAL DATA

÷ .		GEN	ERAL D	AIA			
El	ectrical:						
Fi	lament, Coate	d and	Min.	Av.	Max.		
	Mid-tapped:						
	Voltage betwee	en pins 1					
1	and 4		2.4	2.5	2.6	ac or	dc volts
1	Current at 2.			9	11		am
	Minimum heati	ng time prior	to				
	tube conduc					30	see
Di	rect Interele			(App	rox.):		
	Grid to anode			· ·) ·		2	μμ
	Grid to catho					14	μμ
	ximum Deioniz					1000	μsee
	ximum Critica		nt			10	μam
Ar	ode Voltage D		estina 1				
	Average, at b					10	volt
	Maximum, at e					14	volt
Ma	aximum Commuta	tion Factor					
	averaged over						
	inverse anode					0.66	va/µs
Gr	id Control Ra						
	For condition						
	resistor, ci	rcuit retur	ns to				
	filament mi	d-tap, dc :	anode			200	
	voltage, and	ac gria vo	Itage			200	
Me	chanical:						
Mo	ounting Positi	on					An
Ma	aximum Overall	Length					6
	aximum Diamete						1-9/16
We	eight (Approx.)					. 30
	ap					(JETEC	No.C1-5
	ulb						T-1
Ba	ase						all 4-Pi
			wi	th Ba	yonet (JETEC N	lo. A4-89
	Basing Design	ation for BO	ITOM VI	EW			· · 4C
	Pin 1-Filame	nt (2	A	3	Pi	n 3–Gr	rid
1	Pin 2-Filame			X			lament
1	Mid-T	ap &	\/			Cap - Ar	
1	Circu	it (
	Retur	ns (1	R	(4)			
		\cup		\cup			
					OFDUIO	-	
	G	RID-CONTROLL	ED RECI	IFIER	SERVIC	E	
M	aximum Ratings	, Absolute V	alues:				
P	EAK ANODE VOLT	AGE :					
1	Forward					900 ma:	x. volt
1	Inverse						k. volt
1		product of th	o rate	of cur	rent dec	av in an	nneres ne
•	Defined as the microsecond ju voltage rise in	st before cond volts per micr	uction	ceases follow	and the	e rate c ent cond	of invers uction.

C3J/5632

XENON THYRATRON

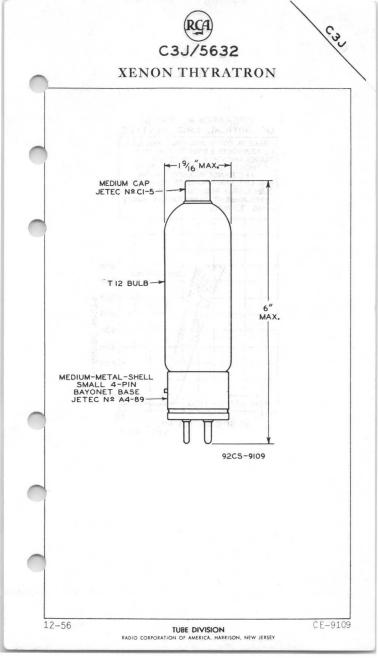
GRID VOLTAGE:						
Peak, before tube co ANODE CURRENT:	onduction.			-100	max.	volts
Peak				30	max.	amp
Average [•]		• •	•	2.5	max.	amp
	(0.37 se	ec		30	max.	amp
Rating I*, for	0.50 se			22.5	max.	amp
duration of) 1 se	ec		11.25	max.	amp
] 2 se			5.63	max.	amp
	3 se			3.75	max.	amp
D	L 4 se	c		2.82	max.	amp
Rating II**, for'	ſ 3 se	ec		3.75	max.	amp
duration of	4 se	ec		3.40	max.	amp
	4.5 se	c		3.30	max.	amp
Fault, for duration	of 0.1 se	cond				10.75
maximum				300	max.	amp
AMBIENT-TEMPERATURE RA	ANGE			-55 to	+75	oC

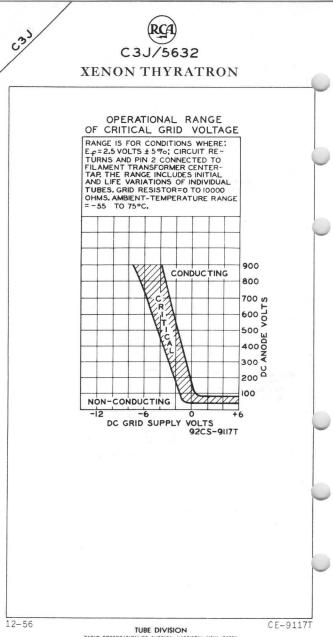
Averaged over any period of 4.5 seconds. *

Averaged over duration of overload occurring no more than once in any period of 4.5 seconds. **

Averaged over duration of overload occurring no more than once in any period of 30 seconds.

OPERATING CONSIDERATIONS


Circuit returns should be connected to filament mid-tap (pin 2).


The anode of the C3J/5632 may show a red color when the tube is operated at full load.

Sufficient anode-circuit resistance, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings of the tube.

TENTATIVE DATA

دھی

Cajia

C3J-A/5684

XENON THYRATRON

NEGATIVE-CONTROL TRIODE TYPE

GENERAL DATA

Electrical:						
Filament, Coated and Min. Av. Mid-tapped:	Max.					
Voltage between pins 1 and 4 2.4 2.5	2.6 ac or dc volts					
Current at 2.5 volts. 7 9 Minimum heating time prior to						
tube conduction	30 sec					
Grid to anode	2 μμf					
Maximum Deionization Time	14 μμf 1000 μsec 10 μamp					
Anode Voltage Drop:						
Average, at beginning of life Maximum, at end of life	10 volts 14 volts					
Maximum Commutation Factor ⁶ , averaged over first 350 volts of						
inverse anode voltage rise	••••• 0.66 va/μs ²					
For conditions: 10000-ohm grid resistor, circuit returns to						
filament mid-tap, dc anode voltage, and dc grid voltage	200					
Mechanical:						
	Any 6" 1-9/16" 3 oz Medium (JETEC No.C1-5) T-12 Metal-Shell Small 4-Pin					
Basing Designation for BOTTOM VIEW.	ayonet (JETEC No.A4-89) 4CF					
Pin 1 - Filament Pin 2 - Filament Mid-Tap & Circuit Returns	Pin 3-Grid Pin 4-Filament Cap-Anode					
GRID-CONTROLLED RECTIFIER SERVICE						
Maximum Ratings, Absolute Values:						
PEAK ANODE VOLTAGE: Forward						
					12–56 TUBE DIVISION TENTATIVE DATA RADIO COPPORATION OF AMERICA, HARRISON, NEW JERSEY	

RCA

C3J-A/5684

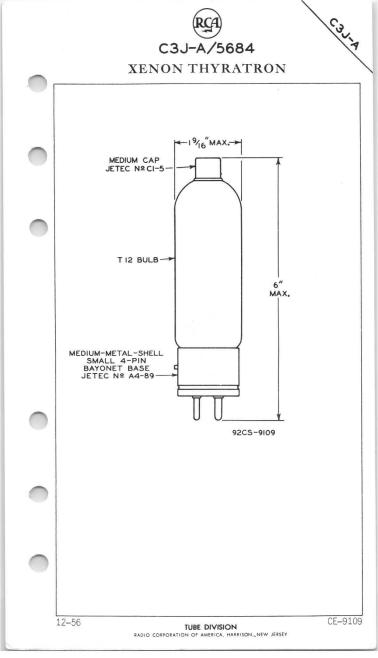
XENON THYRATRON

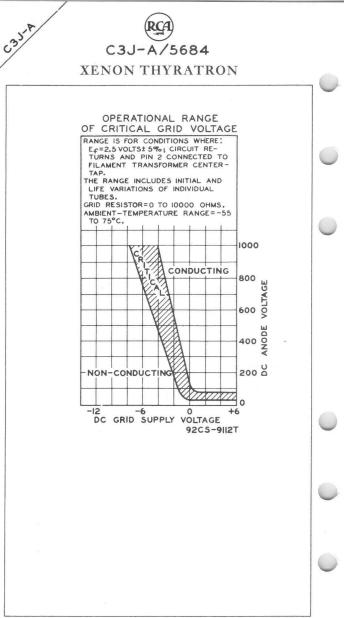
GRID VOLTAGE: Peak. before tube conduction . -100 max. volts ANODE CURRENT: Peak . 30 max. amp Average 2.5 max. amp Overload: 0.37 sec. 30 max. amp 0.50 sec. 22.5 max. Rating I*, for amp . . 1 sec. 11.25 max. duration of. amp . 2 sec. . 5.63 max. amp 3.75 max. 3 sec. amp . 4 sec. 2.82 max. amp . Rating II**, for 3 sec. . 3.75 max. amp duration of. . 4 sec. 3.40 max. amp 3.30 max. 4.5 sec. . amp Fault. for duration of 0.1 second 300 max. maximum amp oC AMBIENT-TEMPERATURE RANGE. 55 to +75

Averaged over any period of 4.5 seconds.

* Averaged over duration of overload occurring no more than once in any period of 4.5 seconds.

** Averaged over duration of overload occurring no more than once in any period of 30 seconds.


OPERATING CONSIDERATIONS


Circuit returns should be connected to filament mid-tap (pin 2).

The anode of the C3J-A/5684 may show a red color when the tube is operated at full load.

Sufficient anode-circuit resistance, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings of the tube.

c31A

CE-9112

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

C3JL

Xenon Thyratron

NEGATIVE-CONTROL TRIODE TYPE

GENERAL DATA

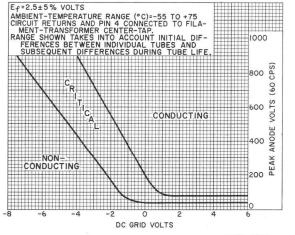
Electrical:									
Filament, Coated and Mid-Tapped:	Yin.	Av.	Max.						
	2.4 7		2.6 11	volts amp					
Minimum heating time prior to tube conduction	· · · ·		30	sec					
Direct Interelectrode Capacitances (Appr Grid to anode Ionization Time (Approx.) Deionization Time (Approx.) Maximum Critical Grid Current Anode Voltage Drop at peak anode amperes = 10 Maximum Commutation Factor ^a averaged over first 350 volts of inverse anode-voltage rise		10	2 10 00 10 10	μμf μsec μsec μa volts					
Mechanical:									
Operating Position Maximum Overall Length Maximum Seated Length Maximum Diameter Weight (Approx.) Cap Base Terminal Diagram: BOTTOM VIEW	 Mediur	 m (JE	2 	6-3/4" • 6" -3/16" 3 oz •C1-5)					
Pin 1-Grid Pin 2-Filament Pin 3-Filament				& cuit urns					
GRID-CONTROLLED-RECTIFIER SERVICE Maximum and Minimum Ratings, Absolute-Maximum Values:									
For anode supply frequency			403.						
PEAK ANODE VOLTAGE: Forward		900		volts					

RCA

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J. DATA I 1-62 C3JL

ANODE CURRENT:

Peak																30	max.	amp
Average ^b .	ų.		2				i.									2.5	max.	amp
Fault																300	max.	amp
AMBIENT-TEM	PER	RAT	TUP	RE	RA	ANC	ΞE	du	ri	ng	op	bei	rat	tia	on	-55 to	+75	oC

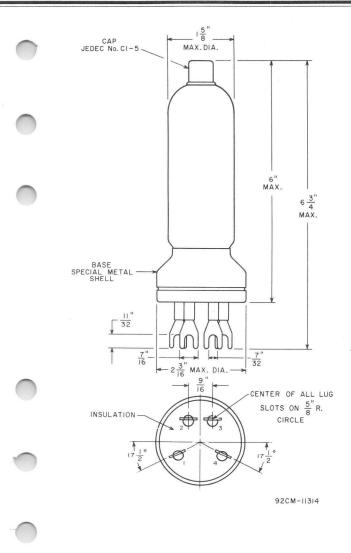

 Defined as the product of the rate of current decay in amperes per microsecond just before conduction ceases and the rate of inversevoltage rise in volts per microsecond following current conduction.
 Averaged over any period of 4.5 seconds.

OPERATING CONSIDERATIONS

Circuit returns should be connected to filament midtap (Pin 4).

Sufficient anode-circuit resistance, including the tube load, must be used under any conditions of operation to prevent exceeding the maximum current ratings of the tube.

OPERATIONAL RANGE OF CRITICAL GRID VOLTAGE



92CS-11323

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

C3JL

RADIO CORPORATION OF AMERICA Electron Tube Division Harrison, N. J.

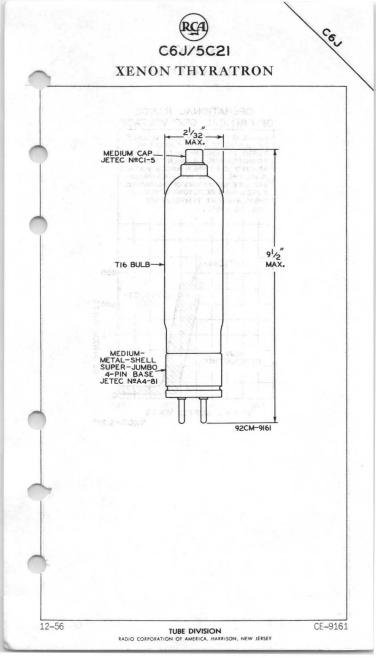
DATA 2 1-62

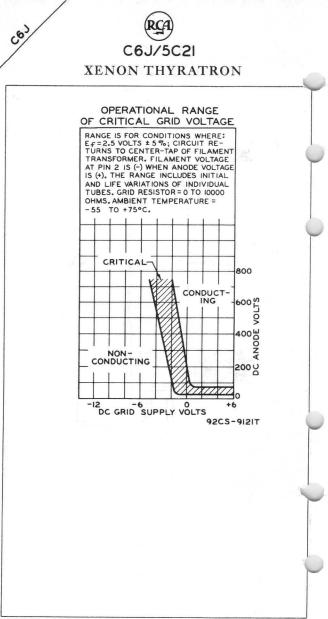
Se,

XENON THYRATRON NEGATIVE-CONTROL TRIDDE TYPE

GENERAL DATA

Electrical:					
Filament, Coated: M	in.	Av.	Max.		
	2.4	2.5		ac or	dc volts
	19	21	23		amp
Minimum heating time prior to tube conduction				60	sec
Direct Interelectrode Capacitar		(Anore	ov).	00	Sec
Grid to anode		(App)		4	μµf
Grid to cathode				21	μμf
Maximum Deionization Time				1000	µsec
Maximum Critical Grid Current .				10	<i>µ</i> amp
Anode Voltage Drop:					
Average, at beginning of life				9	volts
Maximum, at end of life	• •	• •		12	volts
Maximum Commutation Factors, averaged over first 350 volts	of				
inverse anode voltage rise.				0.66	va/µs ²
Grid Control Ratio (Approx.):	• •	•••		0.00	varpeo
For conditions: 10000-ohm gr	rid r	e-			
sistor, circuit returns to fi	lame	nt			
transformer center-tap, fi					
pin 2 negative with resp					
filament pin 3 when anode is					
tive, dc anode voltage,		ac		210	
grid voltage	•••	• •		210	
Mechanical:					
Mounting Position					
Maximum Overall Length					· 9-1/2" · 2-1/32"
Maximum Diameter					7 oz
		M	ledium	(JETEC	No.C1-5)
Bulb					T-16
BaseMediu	m-Met	al-Sh			
		-		JETEC	No. A4-81)
Basing Designation for BOTTO	M VIE	_W			•••• 4BZ
Pin 1 - Grid		3)	Pin 4	1 - No	Connec-
		Ň	1.10		on
Pin 2 - Filament (/)			
	\sim .	1	Ca	p – Ano	de
Pin 3 - Filament	-	4)			
GRID-CONTROLLED	RECT	IFIER	SERVI	CE	
Maximum Ratings, Absolute Valu	es:				
PEAK ANODE VOLTAGE:					
Forward	• •			750 ma	
Inverse	• • •	• • •	•••	1250 ma	x. volts
•: See next page.					
12-56 TUBE D	VISIC	N		TENTA	ATIVE DATA




XENON THYRATRON

GRID VOLTAGE: Peak, before tube conduction. -100 max. volts ANODE CURRENT: Peak. . 77 max. amp Average 6.4 max. amp Overload: sec. 77 max. amp 38.5 max. sec. amp Rating I*, for 19.2 max. sec. amp duration of 3 12.8 max. amp sec. 4 9.6 max. sec. amp 7.7 max. sec. amp 3 12.8 max. amp sec. Rating II**, for 11.2 max. sec. amp duration of 5 sec. 10.3 max. amp 6 sec. 9.6 max. amp Fault, for duration of 0.1 second maximum . 770 max. amr AMBIENT-TEMPERATURE RANGE -55 to +75 . Defined as the product of the rate of current decay in amperes per microsecond just before conduction ceases and the rate of inverse voltage rise in volts per microsecond following current conduction. Averaged over any period of 6 seconds. * Averaged over duration of overload occurring no more than once in any period of 6 seconds. Averaged over duration of overload occurring no more than once in any period of 30 seconds. OPERATING CONSIDERATIONS The anode of the C6J/5C2I will show a red color when the tube is operated at full load. Sufficient anode-circuit resistance, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings of the tube.

دهی

TENTATIVE DATA

CE-9121T

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

12-56

6

C6J-A/5685

XENON THYRATRON NEGATIVE-CONTROL TRIODE TYPE

GENERAL DATA

Electrical:		- aline			
Filament, Coated:	Min.	Av.	Max.		
voltage	2.4	2.5		ac or	dc volts
Current at 2.5 volts		21	23		amp
Minimum heating time prior				00	
tube conduction Direct Interelectrode Capacita			1:	60	sec
Grid to anode	inces (Approx	•/•	4	$\mu\mu$ t
Grid to cathode				21	μμt
Maximum Deionization Time				1000	μsec
Maximum Critical Grid Current				10	µamp
Anode Voltage Drop:	£ .			9	
Average, at beginning of li Maximum, at end of life		• • •	• •	12	volts
Maximum Commutation Factor.		••••	• •	TZ	VOILS
averaged over first 350 vol					
inverse anode voltage rise				0.66	va/µs2
Grid Control Ratio (Approx.):					
For conditions: 10000-ohm sistor, circuit returns to	grid r	e-			
sistor, circuit returns to	filame	ent .			
transformer center-tap, pin 2 negative with res	i i i ame	nt to			
filament pin 3 when anode	is nos	.i-			
tive, dc anode voltage,					
grid voltage				210	
Mechanical:					
Mounting Position	100 B	特美丽市	.Vert	ical. b	base dowr
Maximum Overall Length					. 9-1/2
Maximum Diameter					2-1/32
Weight (Approx.)	1.1.1	Me			. 7 o: No.C1-5
Cap	• • •	• • ME	arum	(JEIEC	T-16
	ium-Met	al-She	11 SI	iner-lun	nbo 4-Pir
					lo. A4-81
Basing Designation for BOT	TOM VIE	W			4B2
Pin 1-Grid	-	3)	Din	4 - No (annaa
FIII 1-Grid			FIII	4 - NO C	
Pin 2 – Filament	/)		cit	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	\sim	/	Ca	ap – Anoc	le
Pin 3-Filament		4)			
	DEAT		EDVI		
GRID-CONTROLLE		FIER S	ERVIO	E	
Maximum Ratings, Absolute Vai	ues:				
PEAK ANODE VOLTAGE:					
Forward				1000 max	
Laura and a					
Inverse			•	L250 max	. volts

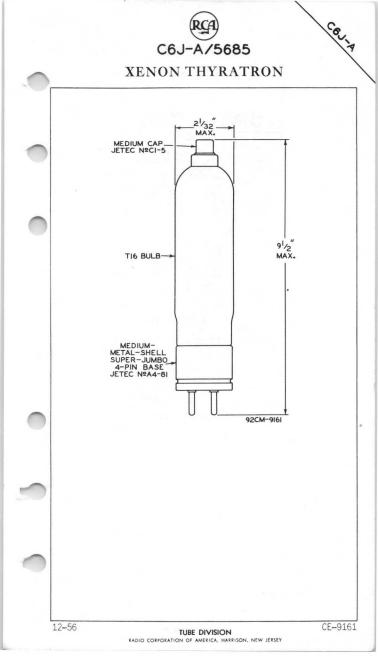
C6J-A/5685

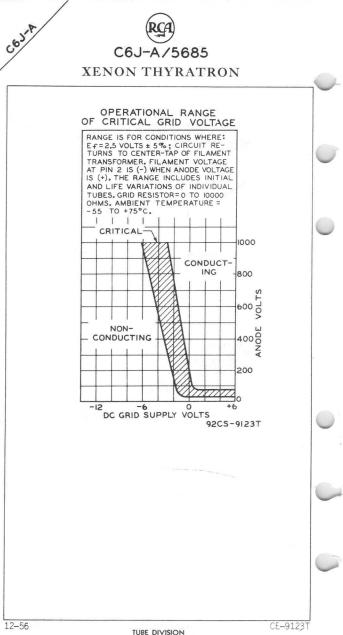
XENON THYRATRON

GRID VOLTAGE:	1.01.0							-
Peak, before tube co ANODE CURRENT:	onduction		•	•	•	-100 ma>	<. volts	5
Peak						77 ma>	<. amp	
Average [•]					÷.	6.4 max	<. amp	
Overload:								-
	(0.5	sec .				77 max	<. amp	
Rating I*, for	1	sec .				38.5 max	<. amp	
duration of	2	sec .				19.2 max	<. amp	
duration of	. 1 3	sec .				12.8 ma>	<. amp	
	4	sec .				9.6 max	<. amp	
	L 5	sec .				7.7 max	<. amp	
Rating II**, for	ſ 3	sec .		•		12.8 max	k. amp	
duration of		sec .						
	··) 5	sec .			•	10.3 may	k. amp	- Ja
	L 6	sec .				9.6 max	k. amp	
Fault, for duration	of 0.1 se	econd						1
maximum						770 max	x. amp	D
AMBIENT-TEMPERATURE RA	ANGE			•	•	-55 to +7	75 ^o (
								1

 Defined as the product of the rate of current decay in amperes per microsecond just before conduction ceases and the rate of inverse voltage rise in volts per microsecond following current conduction.
 Averaged over any period of 6 seconds.

 Averaged over any period of overload occurring no more than once in any period of 6 seconds.


** Averaged over duration of overload occurring no more than once in any period of 30 seconds.


OPERATING CONSIDERATIONS

The anode of the C6J-A/5685 will show a red color when the tube is operated at full load.

Sufficient anode-circuit resistance, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings of the tube.

63-1

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

CIE

CI6J/5665

XENON THYRATRON

NEGATIVE-CONTROL TRIODE TYPE

GENERAL DATA

Electrical:		
		dc volts amp
Minimum heating time prior to tube conduction.	. 60	sec
Direct Interelectrode Capacitances (Approx.)		500
Grid to anode	. 8	μµf
Grid to cathode	. 29	μµf
Maximum Deionization Time	. 1000	μsec
Maximum Critical Grid Current	. 10	µamp
Anode Voltage Drop:	1.4	
Average, at beginning of life	. 11	volts
Maximum, at end of life	• 14	VOITS
Maximum Commutation Factor,		
averaged over first 330 volts of	. 0.66	va/µs2
inverse anode voltage rise	. 0.00	var µs-
Grid Control Ratio (Approx.):		
For conditions: 10000-ohm grid re- sistor, circuit returns to filament		• *
transformer center-tap, filament		
lead F- negative with respect to		
filament lead F+ during conduction		
period, dc anode voltage and dc		
grid voltage	. 270	
Mechanical:		
Mounting Position		. 14 02
Mounting Position		14 02 . 14 02 . T-20
Mounting Position)imensiona	el Outline 14 oz T-20 1 Outline
Mounting Position	Dimensiona Dimensiona G-Grid Le	el Outline 14 o: T-20 1 Outline ead
Mounting Position	Dimensiona Dimensiona G-Grid Le P-Anode L (On enc	el Outline 14 oz T-20 1 Outline ead
Mounting Position	Dimensiona Dimensiona G-Grid Le P-Anode L (On enc	el Outline 14 oz T-20 1 Outline ead Lead
Mounting Position	Dimensiona Dimensiona G - Grid Le P - Anode L (On enc site b	el Outline 14 o:
Mounting Position	Dimensiona Dimensiona G - Grid Le P - Anode L (On enc site b	el Outline 14 o:
Mounting Position	Dimensiona Dimensiona G - Grid Le P - Anode L (On enc site b	el Outline 14 oz T-20 1 Outline ead Lead
Mounting Position	Dimensiona Dimensiona G - Grid Le P - Anode L (On end site b	el Outline 14 o: . T-20 1 Outline ead .ead d oppo- bracket)
Mounting Position	Dimensiona Dimensiona Dimensiona De Grid Le De Anode L (On enc site b RVICE 1000 ma	el Outline . 14 oz . T-20 . Outline ead
Mounting Position	Dimensiona Dimensiona Dimensiona D – Grid Le D – Anode L (On enc site t RVICE 1000 ma 1250 ma	el Outline . 14 oc:

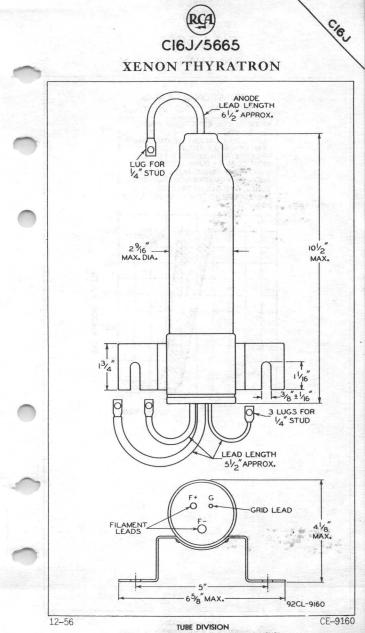
CI6J/5665

XENON THYRATRON

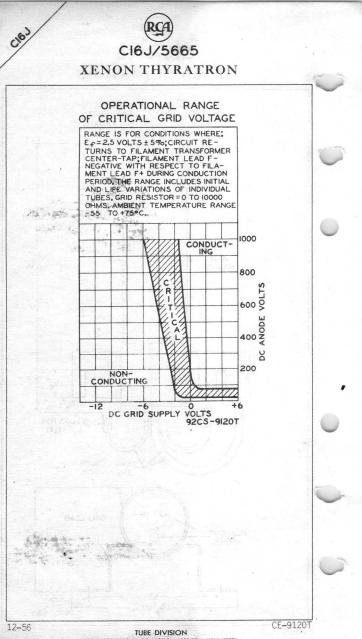
GRID VOLTAGE:						-
Peak, before tube						
conduction	-100	max.	-100	max.	volts	
ANODE CURRENT:						
Peak	160	max.	100	max.	amp	
Average [•]	16	max.	- 18	max.	amp	
Overload:						
1 sec.	72	max.	81	max.	amp	-
Rating I*, for 2 sec.	36	max.	40.5	max.	amp	
duration of { 3 sec.	24	max.	27	max.	amp	
3.5 sec.	21	max.	22.8	max.	amp	
4 sec.	18	max.	20.3	max.	amp	
Rating II**, for [3 sec.	24	max.	-		amp	
duration of. 3.5 sec.	23	max.	22.8	max.	amp	
4 sec.	22	max.	22.5	max.	amp	-
4.5 sec.	21.3	max.	22	max.	amp	
Fault, for duration of						
0.1 second maximum	1000	max.	1000	max.	amp	
AMBIENT-TEMPERATURE RANGE	-55 to	+75	-55 to	+75	°C	

Averaged over any period of 4.5 seconds.

 Averaged over duration of overload occurring no more than once in any period of 4.5 seconds.
 ** Averaged over duration of overload occurring no more than once in any period of 30 seconds.


OPERATING CONSIDERATIONS

The *anode* of the CI6J/5665 will show a red color when the tube is operated at full load.


Sufficient *anode-circuit resistance*, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings of the tube.

12-56

c163

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

