MICROWAVE TUBES Summary Data

Components

6320/2138 E Ed. 7

Introduction

The Electron Tube Unit of STC Components offers a comprehensive range of devices for the UHF and microwave frequency bands. Since we achieved the world's first public operating travelling wave tube demonstration in 1948 and the first travelling wave tube to be installed in a microwave radio link in 1952 we have been one of the world's major microwave tube manufacturers. Our current range includes production electron tubes covering the range 470MHz to 18GHz and lists devices for both commercial and military uses.

The production and development facility at Paignton also offers a wide range of associated solid state power supply units. These are available for most STC Components' travelling wave tubes including all the latest metal/ceramic packaged types for line of sight radio links and ground satellite communications transmitters. Military limiter and medium power devices are offered in the packaged amplifier form.

The complete device range listed in this catalogue comprises:

- a) Travelling Wave Tubes
- b) Associated power supplies
- c) Travelling Wave Tube Amplifiers
- d) A pulsed amplifier klystron
- e) A coaxial triode

f) Waveguide Thermocouples

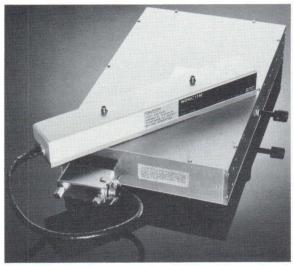
The travelling wave tube/twt amplifier list includes devices for the following applications:

- 1. Medium power tubes, primarily for use in line of sight radio links but also adaptable for laboratory applications.
- 2. Limiter amplifiers for use in radar or ECM receivers.
- 3. Medium power amplifiers for use in radar or ECM applications.
- 4. High power CW tubes for UHF TV transposers.
- 5. Medium power tubes and amplifiers for use in ground satellite transmitters.
- 6. Low noise tubes, primarily for use in radar or ECM receivers.
- 7. High power pulsed tubes for UHF radar transmitters.

Electron Tube Unit has development devices in the following categories and enquiries are invited:

- 1. Helix type travelling wave tubes in the 26 to 40GHz frequency range with associated power supplies. These will be suitable for military and commercial applications requiring a few tens of watts output power.
- 2. Wide band helix type travelling wave tubes having power outputs up to 150 watts CW suitable for military applications at frequencies up to 18GHz, together with associated power supplies.
- 3. Helix type travelling wave tubes having power outputs up to 300 watts CW suitable for commercial applications at frequencies up to 14GHz, together with associated power supplies.

STC Components has a policy of continuous improvement and reserves the right to make changes to this product range without notice.


Development Samples

Development devices are supplied from our development or preproduction programme and as such are not qualification approved products nor totally evaluated for product safety. No condition warranty or representation regarding quality suitability performance life or continuation of supply is given or implied and the Guarantee in clauses 6a and 6h of our standard conditions is not applicable. The right is reserved to change the design or specification or cease supply without notice.

1

Travelling-wave Amplifier Tubes

Communication Types

Ground Satellite Communications TWT and Power Supply

	Frequenc	y range	Gai	n	Noise			Typical op	eration				
Alternative	min.	max.	Nom. (dB)	at Pout		Efficiency		V _{col} (kV)	V _{hel} (kV)	l _{col} (mA)	1 _k (mA)	Focus Mount Codes or r.f. Connector Type	Status
Type codes	(GHz)	(GHz)		(W)	(dB)	(η)	(°/dB)	(KV)	(KV)	(IIIA)	IIIA	connector type	Status
LINE OF SIGHT	RAD	O TV	VTs										
a) Packaged Types													
W3MC/3A	10,7	11,7	43	10	25		2	2,4	4,3	36		WG17	Q
W3MC/3F P01104		11,7	43	10	25		2	2,4	4.3	36	-	WG17	Q
*W3MC/11A P01104	9 10,7	11,7	42,5	10	25	27	2,2	1,2/ 0,625†	3,30		38	Type SMA	Q
*W3MC/12D	10,7	11,7	40,4‡	22	26	39	3,0	1,3/ 0,65†	3,38‡		49	Type SMA	D
*W3MC14D	10,7	11,7	37,4‡	11	25	28	3,0	1,3/ 0,65†	3,38‡		38	Type SMA	D
*W3MC/15C	{10,7 12,2	11,7 12,7	38,2‡ 37,3‡		25 25	29 23	3,0	1,2/ 0,6†	2,94‡		36	Type SMA	Q
*W3MC16R	{10,7 12,2	11,7 13,25	40,4‡ 40 ‡		25 25	39 35	3,0}	1,3/ 0,65†	{3,38‡ 3,30		49) 51)	Type SMA	D
*W3MC20D	10,7	11,7	46	2§	24,5	_	0,8	1,7/ 0,85	4,2		90	Type SMA	D
*W3MC21E	12,75	13,25	40	10	25	25	3,0	1,2/ 0,6†	3,23‡		39	Type SMA	D
*W4MC11S	7,7	8,5	38,6‡	11	25	30	2,5	1,1/ 0,55†	2,5 ‡		41	Type N	D
*W4MC12C	7,1	8,5	38,2‡	10	25	30	2,5	1,2/ 0,6†	2,94‡		33	Type SMA	D
*W4MC13F	7,2	7,9	38,2‡	10	25	30	3,0	1,2/ 0,6†	2,90‡		33	Type SMA	D
W5MC/1A P01104	7 5,925	6,425	38	10	25	22	2,2	1,3	3,35	31		Type SMA	Q
W5MC/2A P01104	7 6,425	7,110	37,5	10	25	22	2,2	1,3	3,30	32		Type SMA	Q
*W5MC/11C	5,925	7,125	38,2‡	10	24	27	2,5	1,2/ 0,6†	2,94‡		38	Type SMA	Q
*W5MC13B	6,425	7,110	39	22	26	37	3,0	1,3/ 0,65†	3,05		56	Type SMA	D
*W5MC15D	5,8	6,425	39,6‡	11	25	24	3,0	1,05	2,5 ‡		39	Type N	Q
*W5MC16B	5,925	6,425	38,6‡	11	24	31	3,0	1,2/ 0,6†	2,5 ‡		37	Type SMA	D
*W5MC17D	5,925	7,125	38,2‡	10	24	26	3,0	1,2/0,6†	2,5 ‡		39	Type SMA	D
*W5MC18M	5,925	6,425	38,8‡	15	24	33	2,5	1,23/ 0,615†	3,0 ‡		47	Type SMA	D

For index to symbols * \dagger \ddagger § please see opposite page.

Travelling-wave Amplifier Tubes

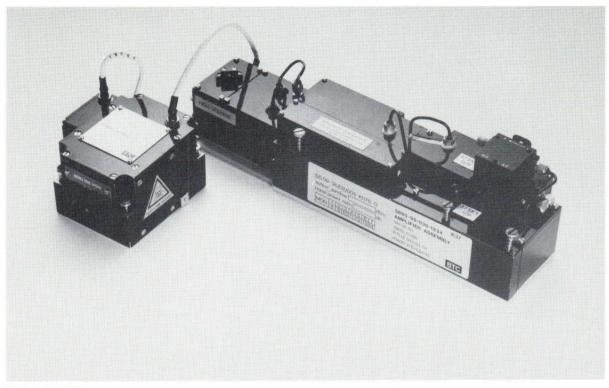
Communication Types—continued

	CV6247	Frequency	range	Gai	'n				Typical operat	ion				
T	Alternative codes	min. (GHz)	max. (GHz)	Nom. (dB)	at Pout		Efficiency	AM-PM conv.	V _{col} (kV)	Vhel	l _{col} (mA)	I _k (mA)	Focus Mount Codes or r.f. Connector Type St	tatus
Туре	codes	(6/12)	(GH2)	(UD)	(W)	(dB)	(η)	(°/dB)	(KV)	(kV)	(IIIA)	(MA)	Connector Type St	atus
LINE OF	SIGHT	RADI	Ο ΤΝ	/Ts-	-cont	inued	1							
a) Package	d Types													
*W5MC190	C	5,925	6,425	45	5§	24,5	-	0,8	1800/ 1000†	3,47‡		100	Type SMA	D
W7MC/2R	t	3,6	4,2	40	10	22		1,8	1350	2,4		38	Type SMA	Q
*W7MC13E	3	3,7	4,2	38,6:	± 11	24	29	3,0	1200/ 600†	2,5 ‡		40	Type SMA	D
b) Field Re	placeable T	ypes												
W3/2GR		10,7	13,2	44	5	30	_	2	2,2	3,4	30		WM109CR	Q
W3/2GC		10,7	11,7	40	10	30	_	2,5	2,2	3,5	30		WM109C	Q
W3/5G		10,7	11,7	43	10	25	-	1,8	2,4	4,35	36		WM114	Q
W4/2G	W4/2GC	7,0	8,5	41	7	28	-	1,5	2,0	3,3	40		WM108C, WM108CA	Q
W5/1G		5.85	7,1	40	5	26	-	-	2,0	3,1	40		495-LVA-105	Q
W5/2G	CV6163	5,85	7,2	41	10	28	-	2,4	2,1	3,4	50		WM107AB, WM107AD	0
W5/2GD		5,85	6,4	42	7	28	_	1,8	2,1	3,4	50		WM107DA	Q
W5/2GF		6,6	7,9	36	7	28	-	1,8	2,1	3,3	50		WM107DF	Q
W5/4GC		5,85	7,2	39	10	24,5	i —	1,8	2,1	3,4	50		WM112C	Q
W5/4GF	P011043	5,85	7,9	40	10	24,5	<u> </u>	2,0	2,1	3,3	50		WM112F	Q
W7/3G	CV5293	3,6	4,2	40	5	_	_	_	3,05	3,0	40		28-LTU-407C	Q
W7/3GY	010200) 0,0	1,2	10	U				0,00	0,0	40		28-LTU-503A	Q
W7/4G	CV6162	3,6	4,2	39	7	27	-	-	2,0	3,0	40		495-LVA-101 A or B	Q
W7/5GA		3,6	4,2	43	20		-		1,8	2,6	80		WM110AZ	Q
W7/5GC		3,7	5,0	40	10	-	—	-	1,7	2,55	65		WM110C	Q
W7/6GC		{3,7 {4,4	4,2 5,0	41 41	10 10	27 27	_	2,0 2,0	1,9 1,9	2,7 2,65	65 65		WM111CB WM111CA	0
W7/6GA	P011041	3,7	4,2	42,5	20	27	_	1,3	1,9	2,68	80		WM111A	Q
W7/6GZ		3,6	4,2	43	20	27		1,3	1,9	2,68	80		WM111Z	Q

For index to symbols * † ‡ § please see below.

Communication Types

		Frequenc	y range	G	Gain	Noise			Typical ope	eration				
Туре	Alternative codes	min. (GHz)	max. (GHz)	Nom. (dB)	at P _{out} (W)	factor at wkg.	Efficiency (ŋ)	AM-PM conv. (°/dB)	V _{col} (kV)	V _{hel} (kV)	l _{col} (mA)	I _k (mA)	Focus Mount Codes or r.f. Connector Type	Status
GROUND	SATE	LLITE	CON	IMU	NICA	TION	IS (Pa	ckage	d TWT	s)				
*W2MC11M		14,0	14,5	43 40	2 20	27	-	1,0	1400/ 700†	3,9‡		60	Type SMA	Q
*W4MC14A		7,9	8,4	37	10	24,5	26	3,0	1200/ 600†	2,6‡		35	Type SMA	D
*W5MC14M		5,925	6,425	45	2	24	-	0,5	1200/ 600†	2,4	ŧ	54	Type SMA	D
*W5MC20M		5,925	6,425	42	40	25	40	4,0	1700/ 850†	3,85	1	85	Type SMA	D
WIDE BA	ND TR	AVEL	LING	WA		UBES	G (Pac	kaged	TWTs)				
*W3MW1B		7,9	10,7	40	10	27	-	-	1200/ 600†	2,9 :	ŧ	40	Type SMA	D
*W5MW1M		4,0	8,0	41	10	25	25	-	1200/ 600†	2,4	ŧ	40	Type SMA	D
* Recommen	ded for ne	ew equip	oment	† Ty	wo stage	e colle	ctors	‡ Fixe	ed values				vo tone operation) tercept point 50 dBm	
Fffining and in	1.5		Prf			000/				:			velopment	


Efficiency is defined as

- x 100% Pcol + Phel + Phtr

Status D – Development Ω – Qualified commercial product

Travelling-wave Amplifier Tubes

Low-power Military Tubes

Limiter Amplifier

		Frequ	ency rang	e Pout	Noise factor, small	low-level	V _{col}	Vhel	lcol				
Түре	Alternative Codes	min. (GHz)	max. (GHz)	(dBm)	signal (dB)		(V)	(V)	(µA)	Focus (Note 1)	Focus mount	Description (Note 2)	
*W6MT/2A	5960-99-038-0197	4	7,5	+8 to +16	9,5	31 to 35	(H.T. +	450/0/ -	625V d.c.)	SFPM	Packaged	Т	Q
*W3MQ/5A	5960-99-038-1722	9,1	9,85	+ 15	6,7	24	1200	950	700	SFPM	Packaged	N	Q
*W3MT/4A	5960-99-038-0135	7,5	12	+ 9 to + 17,5	9,5	30 to 36	(H.T. +	1200/0/	-25V d.c.)	SFPM	Packaged	Т	Q
*W2MT/1A	5960-99-038-0691	12	18	+ 10 to + 18,5	11	30 to 36	(H.T. +	1400/0/ -	-25V d.c.)	SFPM	Packaged	Т	Q
*W2MT/3A	5960-99-038-0722	12	18	+ 7 to + 15	11	29,5 to 34,5	5 (H.T. +	1400/0/	-25V d.c.)	SFPM	Packaged	Т	Q
W9/2E	CV6090	2,5	4,1	+ 4,8 to + 10,8	7,5	38 to 50	600	400	400	Sol	495-LVA-005B	S	Q
W9/3E	CV6127	2,5	4,1	-12 to -4	<18	11 to 20	300	200	125	Sol	495-LVA-007E	LS	Q
W10/3E	CV6120	2,7	3,3	+ 4,8	6,8	20 to 25	700	450	400	Sol	495-LVA-003A	S	Q

* Recommended for new equipment

Note 1. Focusing method: Note 2. Description

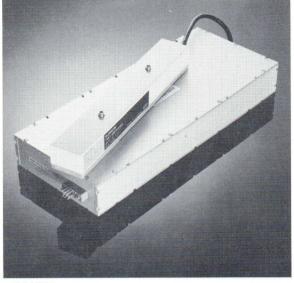
SFPM = Straight field permanent magnet

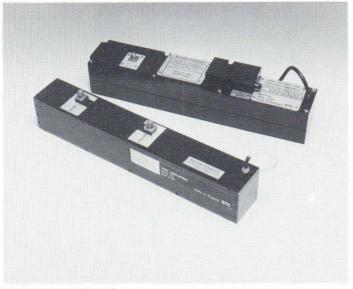
 $\label{eq:tau} T = Packaged \ \text{low-noise gain-track tube; integral} \quad N = Packaged \ \text{low-noise amplifier with} \\ \text{power distribution network} \qquad \text{wide dynamic range}$

S = Low noise amplifier tube. Separate focus mount.

Sol = Solenoid Electro-magnet

wide dynamic range


LS = Limiter tube. Separate focus mount.


MISCELLANEOUS TYPES (Packaged TWTs)

		Frequer	icy range	G	ain				Typical opera	ation				
	Alternative	min.	max.	Nom.	at Pout	Noise factor at wkg. output	Efficiency	AM-PM	V _{col}	V _{hel}	I _{col}	1 _k	Focus Mount Codes or r.f.	
Туре	codes	(GHz)	(GHz)	(dB)	(W)	(dB)	(η)	(°/dB)	(k V)	(kV)	(mA)	(mA)	Connector Type	Status
W6MM11P		5,03	5.09	38	25	25	34	4,0	1700/850	2,7		65	Type SMA	D

Travelling-wave Tube Amplifiers

Military TWT Amplifiers

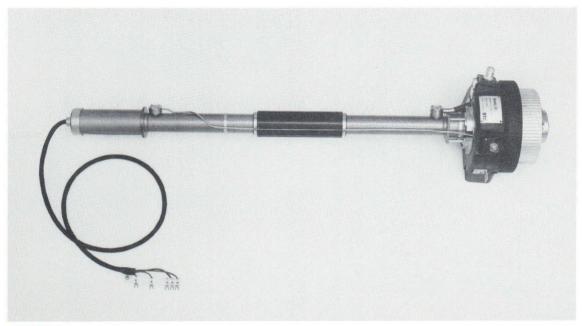
W3PA1W

W5PA1M & W2PA1M

		Freque	ncy range	Wkg. Pout	S.S. Gain	N. F.	V _{in}	Primary Power P _{in}	fin			
Түре	Alternative Codes	min. (GHz)	max. (GHz)	(W)	(dB)	(dB)	(V)	(W)	(Hz)	R.F. Connectors	Description	Status
*W2PA2W		14	nom	20	45	27	28	110	DC	Type SMA	М	Q
*W2PA1M	5895-99-038-7168	8	18	1,6	G + NF	= 51dB	$115,1\phi$	45	400	Type SMA	M	Q
*W3PA1W		9,6	10,25	25	45	26	28	110	DC	Type SMA	M	Q
*W3PL3D	5895-99-038-2141	7	17†	0.02	55	13,5	$115,3\phi$	40	400	Type SMA	L	Q
*W4PL2D	5895-99-038-1234	5	12†	0,02	55	12,5	$115,3\phi$	40	400	Type SMA	L	Q
*W5PA1M	5895-99-038-7167	4	8	0,8	G + NF	= 43dB	115,1 ϕ	25	400	Type SMA	Μ	Q

* Recommended for new equipment

† Ratio max. to min. limits 1,8 : 1 in frequency range specified


M = Medium Power Amplifiers L = Limiter Amplifiers

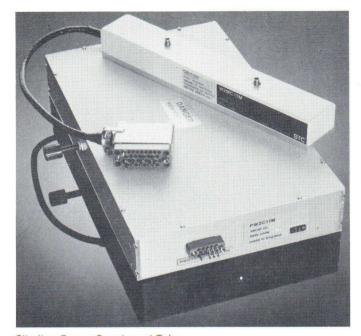
Commercial TWT Amplifier

	Frequen	cy range	Sat. P _{out}	Gain	N.F. (nom.)	Vin	Pin	f _{in}		Height	Depth	
Түре	min. (GHz)	max. (GHz)	(W)	(dB)	(dB)	(V)	(W)	(Hz)	R.F. connectors	(mm)	(<i>mm</i>)	Status
GROUND S	SATELLI	TE CO	MMUN	IICATI	ONS							
W4PC16E	7,9	8,4	30	39	25	24	136	dc.	Type SMA	310	190	D

U.H.F. Travelling-wave Amplifier Tubes

TV Transposer Tubes

W48D/1T


								Тур	ical operat	ting cond	itions						
		Frequen	cy range	Transpose (T						service V)						Mount assembly	
Туре	Alternative code		max. (MHz)	P _o pk. sync. (W)	G (dB)	V _{col} (kV)	V _{hel} (kV)	1 _k (A)	Р _о (W)	G (dB)	V _{g2} (V)	V _h (V)	1 _h (A)	I _{mag.} (A)	V _{mag.} (V)	STANTEL type	Status
W45B/5E	YH1020) 470	860	53	35	2,9 2,9	3,1 3,1	0,75 0,7	_ 210	_ 33	700 600	6,3 6,3	2,8 2,8	-	-	WM455A (MYH1020)	Q
W48D/1T		470	860	225 120		3,9 3,75	3,9 3,75	1,35 1,25	-	-	2000 1900	11,5	4,5	8,0	85 max	WM481S	۵

High Power Pulsed Tube

-	Frequen	cy range	Pout (nom.)	Gain (nom.)	Vhel	V _{col}	I _k		
Type	min. (GHz)	max. (GHz)	(W)	(dB)	(k V)	(k V)	(mA)	Focus Mount	Status
W46D/2T	0,4	0,8	1,000 pk	30	3,8 (pulsed)	3,8 (pulsed)	1,600 pk	Solenoid WM461M	Q

Note: All electrode voltages are quoted relative to cathode

TWT Power Supply Units

19 inch Rack TWT Power Supply

Slimline	Power	Supply	/ and	lube
----------	-------	--------	-------	------

Slimline Powe	er Supply and	dlube	V _{in}	‡Pin	fin	Height	Depth	Width	
Туре	Alternative code	Associated TWT	(V)	(nom.) (W)	(Hz)	(mm)	(<i>mm</i>)	(mm)	Status
*PW2C11M		W2MC11M	21,8–28,2 or 42–56	96	d.c.	310	190	50	Q
* PW3C16R		W3MC/16R	43-56	80	d.c.	310	190	50	D
*PW3C20D		W3MC20D	21-28 or 42-56	120	d.c.	355	181	76	D
*PW3C21E		W3MC21E	43 to 56	60	d.c.	310	190	50	D
*PW3W1B		W3MW1B	21-28 or 42-56	-	d.c.	110	216	482	D
* PW4C13F		W4MC13F	21-28 or 42-56	58	d.c.	110	216	482	D
*PW4C14A		W4MC14A	21-33	55	d.c.	310	190	50	D
*PW5C11C		{W4MC/12C W5MC/11C W3MC/15C	21-28 & 42-56	58	d.c.	110	216	482	Q
* PW5C13B		W5MC13B	20	90	d.c.	310	190	50	D
*PW5C14M		W5MC14M	21,8-28,2	58	d.c.	310	190	50	D
* PW5C16B		W5MC16B	20	58	d.c.	310	190	50	D
* PW5C17D		W5MC17D	21-28 or 42-56	65	d.c.	110	216	482	D
*PW5C18M		W5MC18M	21,8-28,2	80	d.c.	110	216	482	D
*PW5C19C		W5MC19C	21-28 or 42-56	150	d.c.	355	181	76	D
* PW5C20M		W5MC20M	21-28	150	d.c.	355	181	76	D
*PW6M11P		W6MM11P	42 to 56	120	d.c.	310	190	50	D
* PW7C13B		W7MC13B	20	50	d.c.	310	190	50	D
PW35A		W3/5G, W3MC series	240	360	50	267	308	482	D
PW51AH		W5MC series	21,8-28,2	170	d.c.	132	368	216	D
PW52F		W5/2GF	21,8-28,2	260	d.c.	167	400	196	Q
PW54D		W5/4G series	240	420	50	89	368	482	D
*P2W3Q5A	5840-99- 527-3373	Two tubes type W3MQ/5A	115,1φ	100	400	205	313	374	Q

* Recommended for new equipment

‡ When operating associated twt under typical conditions

Pulsed Amplifier Klystron

		Frequer	ncy range	P _{out} peak	Gain	V _{beam}	l _{beam} (peak pulse)	Duty cycle	V _h	
Түре	Alternative code	min. (MHz)	max. (MHz)	(k W)	(dB)	(K V)	(A)	(%)	(V)	Status
Z211/1G	CV5314	950	1213	7	34	15	2	3	12,6	Q

Ancillary Microwave Devices

S.H.F. Triode

Type	Alternative code	Maximum ratings			Typical operating conditions											
		P _a (W)	Pg (W)	V _a (kV)	1 _k (mA)	f (MHz)	V _a (kV)	Vg (V)	l _a (mA)	l _g (mA)	V _h * (V)	P _{drive} (W)	P _{out} (W)	μ	g _m (mA/V)	Status
2C39A	CV2516	100	2	1	125	2500 500	0,9 0,9	-22 -40	90 90	27 30	4,5 6,0	- 6	20 45	100	24	Q

Note: Cooling is forced-air. Service is Class C unmodulated r.f. amplifier or oscillator

* The low frequency value is 6,3V which must be reduced at high frequencies as detailed in the data sheet.

Thermocouples (for use in waveguides)

	Frequen	cy range	Output at cap	Resistance of couple nom.	Safe I _h max.	I _h to produce in couple an open circuit e.m.f. of 15mV		
Түре	min. max. (MHz) (MHz)			(Ω)	(mA)	(mA)	Status	
T2H/60JA	300	6000	+ve to disc	6	60	38	Q	
T2H/60JB	300	6000	-ve to disc					

Product Safety

Safe operating conditions are the responsibility of the equipment designer and user.

Operation outside stated ratings may result in a safety hazard.

Microwave Tubes

1. Material Content

The vacuum envelope according to type and production date incorporates glass or high-alumina ceramic with associated copper and nickel alloy seals. Packaging and basing may involve plastic or RTV silicone rubber (LO1 26-7) insulating materials. Some tubes are fitted with PTFE covered connecting wires. Cathode coatings commonly contain Barium Oxide and Barium Getters are often used within a glass envelope. Accidental damage to tubes with glass envelopes will result in the normal hazards of broken glass aggravated by implosion effects.

2. Physical Form

The electrode structure, principally nickel alloy components, is mounted in a cylindrical glass or metal envelope. In the case of travelling-wave tubes the tube may be supplied together with its magnetic circuit and heat sink as a "packaged unit".

3. Intrinsic Properties

Non-operating

Inert, but precautions may be applicable appropriate to the presence of permanent magnets in packaged assemblies.

Operating

High voltages are required for correct operation and the supplies are potentially lethal. Equipment properly designed will ensure that personnel cannot come into contact with high voltage circuits. All high voltage circuits and terminals should be enclosed and fail-safe interlock switches should be fitted to disconnect the primary power supply and discharge all high voltage capacitors and stored charges in the electronic devices before allowing access. Interlock switches should not be bypassed to allow operation with access doors open. Equipment must be designed with enclosure interlocked and switched in accordance with the UK Factories Act 1961 (Dept of Employment)/1973 Memorandum on Electricity Regulations (SHW928) and the Health and Safety at Work Act 1974.

Exposure to the radio frequency power output should be avoided by ensuring that waveguide or co-axial circuits are correctly terminated. STANTEL tubes are designed to achieve when properly terminated an r.f. leakage below 10mW per square centimetre at 5cm from any surface of tube^{*}. It is understood that this standard is likely to be incorporated in UK Defence Standard 59-60 Part 1 Annexe H (in preparation).

Additionally, with regard to discontinuous or intermittent exposure, the British Medical Research Council (1971) recommend that over the frequency range 30MHz to 30GHz a maximum energy density limit of 1mWh/cm² should apply in any six minute period.

4. Fire Characteristics

Primary

The key functional materials are not combustible.

Secondary

PTFE wire covering and materials used in basing or packaging may burn and give rise to toxic fumes. Solenoid units should be protected by adequate current and thermal overload sensors.

5. Handling

The glass envelope types of tubes are particularly vulnerable to damage and care should be exercised when replacing in the associated circuit. Operating temperatures are high and circuit thermal inertia may also be high, requiring that adequate cooling time should be allowed after switch-off before tube handling is attempted. Some of these devices contain permanent magnets, care should be taken during handling.

6. Storage

Inert.

7. Disposal

Care needs to be taken with broken glass and Barium Oxide which is a toxic substance. Particular attention should be given to personal hygiene after handling broken tubes. Tubes with PTFE covered wires must NOT be disposed of where subsequent incineration may occur.

8. Unsafe Use

NORMAL RATINGS SHOULD NEVER BE EXCEEDED. It is important that in the case of the twt, tubes are never operated without specific collector cooling. Trips should be fitted to safeguard against excessive helix current.

An interlock facility is fitted to the lid of the focus mounts for field replaceable twts, and should be correctly connected in the power supply circuit. TUBE/FOCUS MAGNET ASSEMBLIES MUST NEVER BE OPERATED WITHOUT THE r.f. TERMINALS PROPERLY CONNECTED AND A MICROWAVE ENERGY ABSORBING LOAD ATTACHED TO THE OUTPUT TERMINAL. Failure to observe this precaution may result in hazard to the tube and the operating personnel. IN PARTICULAR, PERSONNEL MUST NOT LOOK INTO AN OPEN WAVEGUIDE OR COAXIAL TERMINATION OF AN ENERGISED DEVICE.

^{*} The RF radiation limit quoted is that currently accepted for UK industry. There has been considerable debate on the matter and some countries prescribe lower limits – sometimes frequency-related.

Product Safety

Power Supplies

1. Material Content

These units contain printed circuit boards with semiconductor and other component assemblies. Transistors may have Beryllium Oxide heat sink assemblies. Units incorporating this material carry a Beryllia hazard label.

Under no circumstances must assemblies containing Beryllia ceramic be tampered with mechanically. In case accidental damage occurs, precautions appropriate to Beryllia hazard must be clearly understood by the personnel involved, and protective measures taken to avoid contact with skin or inhalation of dust. Some guidance can be obtained from UK DEF Standard 59-60 Part 1 Annexe E.

The wiring includes PTFE covered equipment wires. Capacitors may be of the Wet Electrolytic type.

In some power supply units a conformal coating of silicone rubber RTV3140 (LO1 29.1) is used.

2. Physical Form

The power supplies are normally provided with an aluminium or steel enclosing container. Occasionally transistors with Beryllium Oxide heat sinks are fixed external to the container. The containers are normally protected on the exterior by paint. Finned heat sinks may be attached to the exterior of the container. Some power supplies require the attachment of separate heat sinks before operation. An interlock facility may be provided in the power supply to prevent energising unless an output connector completing the interlock circuit is fitted, this should be correctly connected.

3. Instrinsic Properties

Non-operating

Normally safe when disconnected from primary power source. Seepage can occur from wet electrolytic capacitors in cases where handling damage has been inflicted or electrical overload or out-of-specification environmental conditions experienced at some time. Corrosion or short circuits may result.

Operating

These power supplies generate high voltages which are present internally and available at the output connector, these are potentially lethal.

Operation of power supplies with the covers removed exposes internal high voltage points and is dangerous. Covers should not be removed within one minute of disconnecting the primary power source to allow time for residual charges to bleed away.

Permanent damage may be caused by the connection of the incorrect primary power source. Component failure may cause local overheating.

Energising the power supply in conditions outside the relative humidity ratings, or when the power supply has been exposed to such conditions without a subsequent drying process being carried out may cause component damage or an unsafe condition. External heat sinks may rise to high temperatures during operation.

4. Fire Characteristics

Primary

The key functional materials are not combustible.

Power supply units are fitted with protection circuits to minimise hazards resulting from overload or component failure but it is conceivable that unusual circumstances of failure, overload or damage could result in overheating sufficient to cause fire. *Secondary*

Exterior paint will burn in an excessive heat environment. PTFE and Beryllium Oxide will give off toxic fumes when exposed to strong fire conditions.

Plastic materials may burn and give rise to toxic fumes.

In the event of the unit overheating or being operated outside the specified ratings, there is a risk that the electrolytic capacitors will vent and give off noxious fumes and/or fluids.

5. Handling

The units are sensibly robust but dropping or excessive vibration may lead to immediate damage or later component breakdown with consequent hazard. The pack supplied by the manufacturer should always be used for transportation.

6. Storage

Normal care required for electronic equipment should be observed.

Storage outside the rated ambient conditions may lead to component failure and subsequent hazard. The transport pack supplied by the manufacturer should be used for storage.

7. Disposal

Where power supplies contain Beryllium Oxide devices disposal should follow that recommended for the above substance.

Warning labels are attached to these units and individual semiconductors containing this substance are identified.

Since these units contain PTFE covered wires no disposal may be allowed which may involve incineration.

8. Unsafe Use

The units should be used within their maximum ratings with the correct connections used at the input and output sockets. Operation contrary to the above can result in damage and safety hazard.

Operation of power supplies with the covers removed exposes internal high voltage operating points and is dangerous.

Permanent damage may be caused by the connection of the incorrect primary power source. Component failure may cause local overheating.

Warning notices should be fitted to the equipment indicating as follows:

- (a) Warning-High Voltage
- and, where applicable,
- (b) The following warning notice

BERYLLIUM OXIDE—HAZARD This equipment includes a device containing beryllia, the dust of which is toxic. DO NOT DISMANTLE OR TAMPER WITH COMPONENT PARTS.

Product Safety

UHF/SHF Thermocouples

1. Material Content

These devices are constructed of glass and metal and contain no toxic substances.

2. Physical Form

The bi-metal thermocouple element is housed in the glass end of the tube and a loop presenting a low impedance at high frequencies completed by a vacuum capacitor structure in the body of the glass tube.

A copper flange is provided for mounting the thermocouple in a hole in the wall of a waveguide so that the loop element couples to the r.f. power in the guide. Direct connection to the thermocouple are via flange (normally grounded) and the cap.

3. Intrinsic Properties

Non-operating No hazard.

Operating

No hazard provided that the mounting in the waveguide is properly effected and the microwave radiation leakage does not exceed 10mW/square cm at 5 cm from the surface*. (It is understood that this standard is likely to be incorporated in UK Defence Standard 59-60 Part 1 Annexe H in preparation.) Only very low voltages (below 1 volt) are developed between the thermocouple connector cap and flange.

4. Fire Hazard

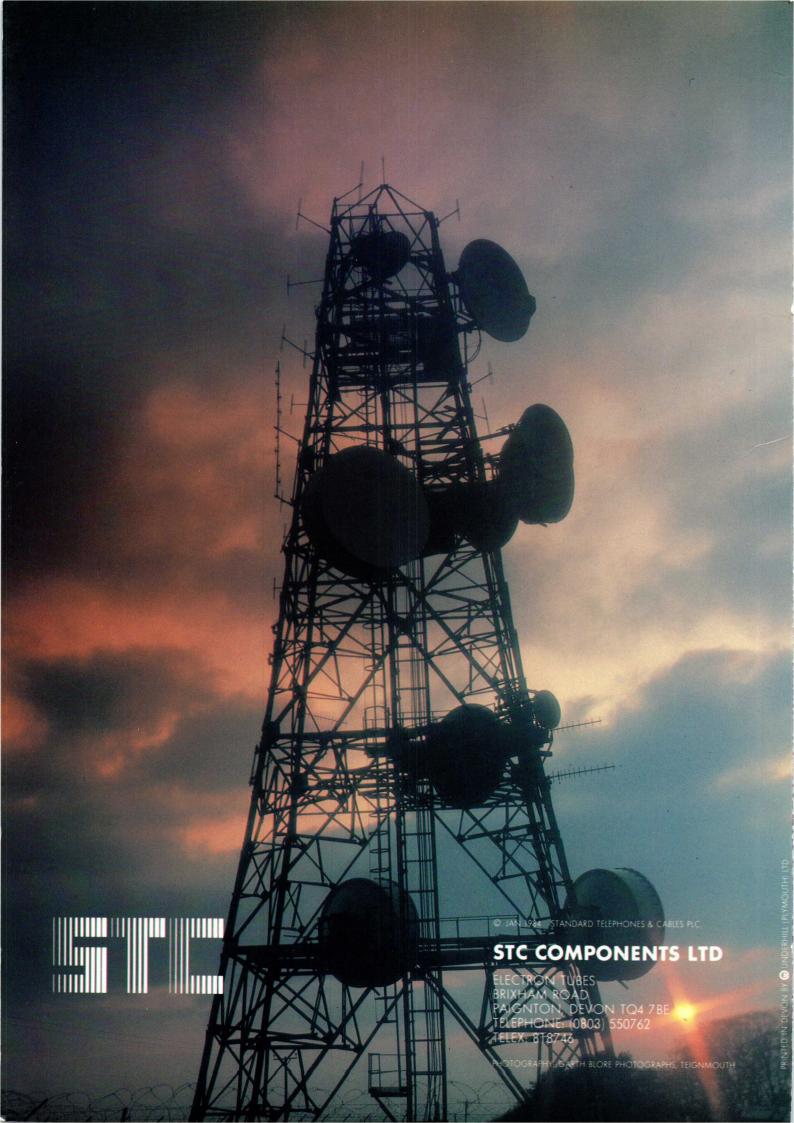
None.

5. Handling

Normal precautions associated with glass components.

6. Storage

Inert.


7. Disposal

No special precautions other than those associated with broken glass.

8. Unsafe Handling

The millivolt reading between flange and cap when the device is mounted in an energised waveguide is representative of the power only in the system in which the unit has been calibrated. In a different system, e.g. with change of propagation mode, the sample of radio energy intercepted by the thermocouple loop may be different and the calibration must be re-checked against a standard to avoid misleading readings.

* The RF radiation limit quoted is that currently accepted for UK industry. There has been considerable debate on the matter and some countries prescribe lower limits – sometimes frequencyrelated.

