1

Power grid tubes for scientific applications

CHOMSON TUBES ELECTRONIQUES

© THOMSON TUBES ELECTRONIQUES (1993)

Information supplied is believed to be accurate and reliable. However, no responsibility is assumed by Thomson Tubes Electroniques for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Thomson Tubes Electroniques. Any copy, reproduction or translation of this information, either wholly or in part, without the express written agreement of Thomson Tubes Electroniques is expressely forbidden under the French Law of 11 March 1957.

Power grid tubes for scientific applications

Power-grid tubes - the high-power solution	3
Triodes for RF oscillators	4
RF triodes for short and medium pulse amplifiers (\leq 1 sec)	6
RF tetrodes for short and medium pulse amplifiers (\leq 1 sec)	8
RF tetrodes for long pulse amplifiers (\geq 1 sec)	10
RF tetrodes for CW amplifiers	12
Modulator and regulator triodes / tetrodes	14
RF circuits	16
Amplifiers	17
Triggered spark gaps	18
Thyratrons	19
Selection of a tube / circuit assembly and optimal operating point	20
Notes back c	over
	IQUES

1

Power-grid tubes

Power-grid tubes the high power solution

igh power is required in an increasing number of scientific projects. For these high-power requirements at relatively low frequencies, power-grid tubes offer a well adapted and adaptable solution. Triodes and tetrodes may be used as high-power RF sources in applications such as particle accelerators or plasma heating at the ion-cyclotron resonance frequency. They may also be used as regulators or HV switches in HV modulators.

Thomson Tubes Electroniques produces a wide range of RF power-grid tubes covering most requirements in scientific applications. The company has also developped a number of accessories and RF circuits, as well as complete amplifier systems, to simplify tube use and optimize operation. For energy switching, Thomson also designs and manufactures triggered spark gaps and hydrogen thyratrons.

The company pioneered the technologies that made very high power tubes possible : pyrolytic-graphite grids for excellent operating stability and Hypervapotron[™] anode cooling for high-capacity heat dissipation. The company continues in its search for optimal solutions to the changing requirements of scientific research.

The variety of scientific needs means that your application may not be included in the categories presented here. If you are unable to find the right solution to your particular specification in this products guide, please do not hesitate to contact us. Many requirements not covered by the tubes listed in this document may be satisfied by tubes designed for other applications under different conditions. Very specific requirements not covered by existing products can also be studied by Thomson Tubes Electroniques upon request.

Many factors are at play in tube operation, and these can considerably influence tube performances and lifetimes. Thomson Tubes Electroniques will assist you in selecting the correct tube and circuit or defining the most suitable operating point. You should fill in as much information on your need as possible using the guide on page 20.

TH 556

TH 3T 1100

Reference		Maxir	num rati	ngs (1)
	F	Ро	Va	Wa
	MHz	kW	kV	kW
TH 3T 1100	60	2.5	5	0.8
TH 3T 2100B	50	3.5	5	1
TH 3T 5100	50	11	6	2
TH 350A	120	30	13	15
TH 750A	120	30	13	20
тн 351	50	50	13	17
TH 751	50	50	13	20
TH 352	50	80	13	25
TH 752	50	80	13	30
TH 553	30	160	15	100
тн 533	30	220	16	200
TH 554A	30	290	18	200
TH 531	30	350	18	200
тн 534	30	510	19	250
TH 556	30	850	18	600

Triodes for RF oscillators

2)	Anode cooling	Heater suppl		Typical operating examples (2)						
Wg		Vf	lf	F	Po	Va	la	Vg	lg	
kW		V	А	MHz	kW	kV	А	V	А	
0.05	air	7.5	18	30	2.4	5	0.6	-500	0.1	
0.1	air	7.5	30	30	2.7	5	0.7	-350	0.16	
0.2	air	7.5	55	30	6.2	6	1.35	-660	0.15	
0.5	air	7.5	150	40	30	10	4	-720	0.6	
0.5	water	7.5	150	40	30	10	4	-720	0.6	
0.65	air	7.5	180	40	50	11	6	-800	1.2	
0.65	water	7.5	180	40	50	11	6	-800	1.2	
1	air	12.6	180	40	80	11	9	-800	1.5	
1	water	12.6	180	40	80	11	9	-800	1.5	
3	Hypervapotron	15	180	10	156	14	13	-800	3.5	
3	Hypervapotron	18	200	10	220	14	20	-800	4.5	
3	Hypervapotron	18	280	10	290	13.5	29	-800	6.6	
3.5	Hypervapotron	16	440	10	350	14	32	-800	8	
7	Hypervapotron	22	400	10	510	15	46	-750	9	
8	Hypervapotron	23	550	10	850	17.5	62	-850	12.5	

see back cover for notes	see	back	cover	for	notes
--------------------------	-----	------	-------	-----	-------

Reference		Max	ratings (1)	
	F	Po (peak)	Va	Wa
	MHz	kW	kV	kW
TH 318	1500	40	6.2*	0.7
тн 596	500	150	18*	40
TH 591	500	190	18*	60
TH 170R	200	2500	40	10
тн 116	225	5000	42	80

* Pulsed anode voltage

RF triodes for short and medium pulse amplifiers (\leq 1 sec)

2)	Anode cooling	Heater supp		Typical operating examples (2)						
Wg		Vf	lf	F	Po	Va	la	Vg	tp	Duty
kW		V	А	MHz	kW	kV	А	V	msec	%
0.003	air	6.3	5.5	975	30	6	8.5	-150	0.2	1
0.35	Hypervapotron	7.5	110	425	100	13	12	-120	4	15
0.35	Hypervapotron	10	190	425	190	18	20	-260	4	15
1.5	Hypervapotron	15	380	200	2300	37	130	-650	1	0.02
1.5	Hupphychotrop	20	500	200	4800	40	210	-400	0.3	0.1
1.5	Hypervapotron	20	500	200	2200	30	151	-400	0.7	3

TH 525

TH 382

see back cover for notes

Reference		Ма	ximur	n ratings (1
	F F MHz	Po(peak) kW	Va kV	Wa kW
тн 347	1000	8	5	4.5
TH 298	500	9	5	5
тн 593	1000	15	6	10
тн 382	1000	30	7	12.5
тн 343	200	35	9	18
TH 561	500	35	8	20
TH 582	1000	35	7.5	25
тн 563	1000	60	9	40
TH 571A	500	70	8	50
TH 563A	800	100	11	35
TH 571B	500	150	15	50
тн 391	450	200	18	12
тн 535	200	300	20	100
тн 530	200	400	30*	100
тн 681	250	450	22	250
TH 555A	110	1000	30*	250
тн 573	110	1600	30*	300
тн 519	140	1600	30*	700
тн 518	110	2500	30*	1000
TH 526	170	3000	30	1200
тн 525	100	3500	30	1500
TH 539	30	4000	30	1000

* Pulsed anode voltage

RF tetrodes for short and medium pulse amplifiers (\leq 1 sec)

(2)		Anode cooling	Heater supp		Typical operating examples (2)							
Wg2	Wg1		Vf	lf	F	Po	Va	la	Vg2	Vg1	tp	Duty
kW	kW		V	А	MHz	kW	kV	А	v	v	msec	%
0.025	0.005	air	6	34	500	4.5	5	0.5	475	-60	0.02	0.1
0.060	0.040	air	6	50	200	6	4.5	2	500	-100	1	30
0.075	0.025	Hypervapotron	6	65	400	10	5	3.2	600	-60	0.1	1.5
0.12	0.05	air	4.2	125	500	20	5	5.1	600	-120	0.01	30
0.30	0.10	air	7.6	125	108	30	9	4.8	500	-90	100	20
0.25	0.1	Hypervapotron	7	140	450	30	7	7	700	-150	0.05	1
0.12	0.05	Hypervapotron	4.2	150	500	25	6	6.4	700	-80	1	60
0.2	0.08	Hypervapotron	5.2	210	770	55	9	10.5	800	-120	4	20
0.4	0.15	Hypervapotron	8	180	200	60	7.5	13	800	-130	0.12	12
0.2	0.08	Hypervapotron	5.2	210	500	80	11	11	800	-110	0.25	25
0.4	0.15	Hypervapotron	8	180	400	100	13.5	10	750	-250	1	30
		,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,			179	120	14	7.2	800	-150	1	25
0.3	0.1	air	8	180	425	200	17	20	800	-200	0.25	2.5
1.2	0.5	Hypervapotron	10	200	200	300	18	23.4	1200	-200	1	0.5
0.6	0.3	Hypervapotron	10	200	200	300	25	17	1200	-450	1	15
3	1.5	Hypervapotron	10	325	225	270	13.5	29	1300	-330	1	4
4	1.5	Hypervapotron	15	320	12	500	17	38	1300	-600	100	0.1
5	2	Hypervapotron	15	490	12	1000	20	70	1500	-500	100	0.1
6	2	Hypervapotron	15	500	130	700	14.5	72	1500	-400	100	30
8	3	Hypervapotron	23	500	90	1500	22	100	1500	-400	100	0.1
12	4	Hypervapotron	17	950	155	2500	28	138	1600	-400	0.3	3
12	-	rypervaporon	17	330	70	1200	16	111	1650	-320	10	30
12	4.5	Hypervapotron	20	950	60	3000	28	150	1500	-400	0.3	3
16	6	Hypervapotron	30	900	13	4000	25	223	1800	-420	2	10

TH 535

TH 526

see back cover for notes

Reference		Maxi	Maximum ratings (
	F	Po(peak)	Va	Wa						
	MHz	kW	kV	kW						
TH 347	1000	6	5	4.5						
TH 593	1000	10	6	10						
TH 382	1000	15	6.5	12.5						
TH 561	300	20	8	20						
TH 582	1000	25	7.5	25						
TH 563	1000	45	9	40						
TH 571B	400	90	15	50						
TH 120	30	120	20	45						
TH 535	200	120	20	100						
TH 781	200	300	22	250						
TH 519	140	850	25	700						
TH 518	110	1400	25	1000						
TH 526	130	2200	30	1200						
TH 525	80	2500	30	1500						

RF tetrodes for long pulse amplifiers (>1 sec)

(2)		Anode cooling	Heater power Typical operating examples (2) supply (3)									
Wg2	Wg1		Vf	lf	F	Po	Va	la	Vg2	Vg1	tp	Duty
kW	kW		V	Α	MHz	kW	kV	А	v	v	sec	%
0.025	0.005	air	6	34	500	4	4	1.7	400	-50	2	10
0.075	0.025	Hypervapotron	6	65	500	8	5	2.5	700	-70	5	20
0.12	0.05	air	4.2	125	500	10	6	2.5	600	-110	2	1
0.25	0.10	Hypervapotron	7	140	200	15	6.5	3.5	600	-140	2	10
0.12	0.05	Hypervapotron	4.2	150	500	15	6	4	800	-120	2	20
0.2	0.08	Hypervapotron	5.2	210	500	45	8.5	7.8	800	-130	5	40
0.4	0.15	Hypervapotron	8	180	200	70	12	7.7	800	-120	2	10
0.6	0.3	water	10	200	27	80	16	6.4	700	-450	2	10
1.2	0.5	Hypervapotron	10	200	120	80	9	14.7	800	-110	30	12.5
4	1.5	Hypervapotron	10	325	150	150	14	16	1000	-280	30	20
6	2	Hypervapotron	15	500	55	700	16	65	1500	-450	20	1.5
8	3	Hypervapotron	23	500	60	1320	22.5	95	1500	-500	10	10
12	4	Hyponyapatran	17	050	120	1000	18	85	1600	-270	30	12.5
12	4	Hypervapotron	17	950	80	2000	23	121	1650	-400	30	12.5
12	4.5	Hypervapotron	20	950	55	2000	23.7	121	1700	-450	20	3

тн 120

TH 571B

see back cover for notes

Reference	1	Maximum
	F	Po
	MHz	kW
TH 347	900	3
TH 298	300	5
тн 593	900	7
TH 382	900	10
TH 541	200	12
TH 561	300	15
TH 582	900	20
тн 343	200	25
TH 563	900	35
TH 571A	300	40
TH 571B	400	80
TH 120	30	100
тн 535	200	100
TH 581	110	300
TH 681	200	300
тн 781	200	300
TH 555A	110	400
TH 573	110	700
TH 519	140	850
тн 518	110	1100
TH 526	130	1700
TH 525	70	1800
тн 539	30	2500

RF tetrodes for CW amplifiers

ratings	(1) (2)			Anode cooling		r power oly(3)				2)		
Va	Wa	Wg2	Wg1		Vf	lf	F	Po	Va	la	Vg2	Vg1
kV	kW	kW	kW		۷	А	MHz	kW	kV	Α	v	V
5	4.5	0.025	0.005	air	6	34	500	2	4	0.8	500	-60
5	5	0.06	0.04	air	6	50	179	3	5	0.8	400	-80
6	10	0.075	0.025	Hypervapotron	6	65	360	2.3	з	1.8	500	-70
6.5	12.5	0.12	0.05	air	4.2	125	500	6	5	2	600	-120
8	15	0.15	0.05	Hypervapotron	6.5	85	108	10	7	2	400	-120
8	20	0.25	0.10	Hypervapotron	7	140	110	12	7.5	2.3	500	-110
7.5	25	0.12	0.05	Hypervapotron	4.2	150	500	10	6	3.3	600	-110
9	18	0.3	0.1	air	7.6	125	108	25	8.5	4.2	600	-125
9	40	0.2	0.08	Hypervapotron	5.2	210	500	30	8	5.9	800	-130
8	50	0.4	0.15	Hypervapotron	8	180	178	40	6.5	10.2	800	-125
15	50	0.4	0.15	Hypervapotron	8	180	345	60	10.5	7.7	650	-270
20	45	0.6	0.3	water	10	200	2	73	12	8	700	-350
20	100	1.2	0.5	Hypervapotron	10	200	63	100	10	14.2	800	-110
22	150	2	0.8	Hypervapotron	10	280	63	250	16	23	1250	-350
20	250	3	1.5	Hypervapotron	10	325	110	200	16.3	16	1000	-320
20	250	4	1.5	Llypon (on otron	10	005	30	280	15	23	1500	-700
20	250	4	1.5	Hypervapotron	10	325	200	200	11	28	1250	-350
22	250	4	1.5	Hypervapotron	15	320	30	400	16	37	1000	-250
25	300	5	2	Hypervapotron	15	490	30	700	18	56	1250	-350
25	700	6	2	Hypervapotron	15	500	100	450	13	46.5	1000	-300
25	1000	8	3	Hypervapotron	23	500	30	1100	18	88	1250	-350
30	1200	12	4	Hypervapotron	17	950	100	1300	14	143	1400	-250
30	1500	12	4.5	Hypervapotron	20	950	50	1500	18	120	1500	-250
30	1000	16	6	Hypervapotron	30	900	1.5	2500	23	131	1250	-600

Wg2 V1a l2k Wa kV Α kW

see back cover for notes

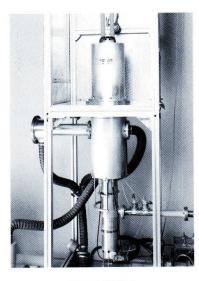
Reference

TH 558

						0.5272
Triode						
тн 146в	45	400	45		1.8	
Tetrodes						
тн 573	35	300	300	5	2	
TH 558	35	450	500	8	3	
тн 530	50	100	100	0.6	0.3	
тн 5187в	75	120	1	0.35	0.1	
TH 5184	85	5	1	0.075	0.025	
тн 5186	100	5	1.5	0.075	0.025	
TH 5188W	120	10	10	0.2	0.075	
TH 5188	120	10	10	0.2	0.075	
TH 5189	120	15	15	0.4	0.075	

Maximum ratings (1) (4)

Wg1

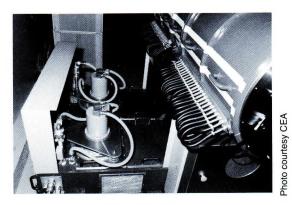

kW

kW

Modulator and regulator triodes / tetrodes

Anode cooling	riouter perior		Typical operating examples (4)							
	Vf	lf	V1a	Po	V2a	l2k	Vg2	Vg1	tp	Duty
	۷	А	kV	MW	kV	А	V	V	msec	%
forced oil	13	500	40	9.6	8	300		-1500	0.012	1.2
Hypervapotron	15	490	30	8.25	2.5	300	2000	-1200	0.3	5
Hypervapotron	23	500	30	13.75	2.5	500	2000	-1200	0.3	5
Hypervapotron	10	200	45	2.0	5	50	700	-550	1	25
air	12.6	100	70	4.4	7	70	1500	-1450	0.001	0.1
oil	7.5	17	80	0.15	4	2	500	-550	200	10
oil	7.5	17	90	0.215	4	2.5	500	-700	200	10
water	7.5	35	100	0.48	4	5	1000	-1000	200	50
oil	7.5	35	100	0.48	4	5	1000	-1000	200	50
forced oil	7.5	35	100	0.72	4	7.5	1500	-1000	200	50

RF circuits



TH 18781

Thomson Tubes Electroniques
designs and manufactures
RF circuits tailored to customer
specifications.
Please consult us for further
information. The examples
given here are only a sample
of the wide range of circuits
available. Information on our
other standard circuits may be
obtained from the company.

Circuit reference	Frequency range		
	MHz		
TH 18554A	13.56		
TH 18525	35 - 80 (+ 120)		
TH 18546	88 - 108		
TH 18626	144 - 160		
TH 18781	195 - 225		
TH 18527C	170 - 230		
TH 18528D	350 - 370		
TH 18665F	314 - 450		
TH 18550S	460 - 800		

Amplifiers

TH 10120

Thomson Tubes Electroniques designs and manufactures complete amplifiers to requested specifications. The examples given here are a few of our previously developed amplifiers.

Reference	Tubes
	0
TH 10565	2 x TH 565
	2 x TH 541
тн 10120	2 x TH 120
тн 10573	1 x TH 573
	1 x TH 741
TH 10526	1 x TH 526
	1 x TH 535
	1 x TH 561
TH 10626	1 x TH 526
TH 10571	1 x TH 571B
	1 x TH 593
TH 10347	1 x TH 347

Tube reference	Peak RF output power	
kW		
TH 554B	250 (CW)	
TH 526	2000	
TH 535	300	
TH 526	2500	
TH 781	450	
TH 571B	120	
TH 571B	120	
тн 393	6 (CW)	
TH 563A	100	

Circuits	Frequency range	Power peak / average	Pulse length	Duty rate
	MHz	kW		
-	0.17	1800 / 1800	-	CW
10000	0.5 - 4.6	2 x 50 / 2 x 50		CW
-	13.56	500 / 500		CW
TH 18525	35 - 80	2000 / 250	30 s	0.125
TH 18535	or	or		
TH 18561	120	1400 / 175		
TH 18626	144 - 160	2500 / 75	0.3 ms	3 %
TH 18528D	350 - 360	60 / 60		CW
TH 18565C				
TH 18363	500	5 / 0.0005	10 µs	0.01 %

Triggered spark gaps

see back cover for notes

Reference	Maximum ratings (5) (6)				
	V kV	A kA	E J		
тн 9062	5	5	25		
TH 9051	5	50	400		
TH 9052	10	50	400		
тн 9057	19	50	400		
TH 9084	32	50	1000		
тн 9058	40	50	400		
тн 9085	37	50	1000		

TH 9084

Thomson Tubes Electroniques may also develop spark gaps to match particular specifications. Triggering circuits also are available. Please consult us for further information.

Thyratrons

see back cover for notes

Reference	Number of electrodes	Envelope material	
тн 5023			
TH 5071	3	ceramic	
F 5008A	5	Ceramic	
F 5024			
TH 5041		glass	
TH 5059	4	giuss	
TH 5027		ceramic	

TH 5027

Туріса	al operatin	g example	s (6) (7)
V kV	A kA	E J	Life shots
2	3	3	10 ³
4	25	100	104
8	25	100	104
15	25	100	104
16	7	300	106
32	25	100	104
20	10	800	106

Filling gas	Forward voltage kV	Peak current A	Average current A	Power factor (x10 ⁹)
	8	90	0.1	2.7
	12	350	0.2	4
hydrogen	16	150	0.45	7
	25	500	0.5	9.5
	25	1000	1.25	9
deuterium	35	1000	1.25	14
	40	5000	5	70

Selection of a tube/ circuit assembly and optimal operating point

When selecting a power-grid tube and its RF circuit, certain parameters must be taken into consideration.Thomson Tubes Electroniques uses its intimate knowledge of power-grid tube operation to assist you in this choice.

As much information as possible concerning the relevant items in the following list should be submitted to us. We will then recommend the correct tube/circuit assembly and the most suitable operating point.

- Your application
- Definition of your request :
 - Feasibility
 - Budgetary quote
 - Detailed offer
 - for
 - Tube alone
 - Tube + circuit
 - Complete amplifier system (specify full requirements)
- Number of units required
- Time schedule (may or may not allow for some development)
- Frequency(ies), or frequency range to be covered continuously
- Instantaneous bandwidth
- Output power per unit : peak and average, or CW ; is a multi-tube solution possible ?
- Pulse length and duty factor
- Load mismatch : VSWR (module and phase)
- Any electrical or mechanical constraints, or preferences, such as :
 - electrical/mechanical compatibility with existing tube/circuit/psu (replacement or upgrading),
 - dimensional or handling restraints,
 - preferred type of cooling,
 - pulsed anode voltage : acceptable or not (mainly for short pulse/low duty applications),
 - motor driven cavity tuning,
 - major importance of efficiency, gain, bandwidth, linearity, etc.,
 - other relevant factors.

NOTES

 Maximum ratings : these are influenced by all other operating parameters, and are often not compatible. Please consult Thomson Tubes Electroniques for your particular application. No two maximum ratings should ever be reached simultaneously.

F	:	Frequency
Po	:	RF output power
Va	:	Anode voltage
la	:	Anode current
Wa	:	Average anode dissipation
Vg2	:	Screen-grid voltage
Wg2	:	Average screen-grid dissipation
Vg, Vg1	:	Control-grid voltage
lg	:	Control-grid current
Wg, Wg1	:	Average control-grid dissipation
Vf	:	Filament heater voltage
lf	:	Filament heating current
Tp		Pulse length
Duty	:	Duty rate
	Va la Vg2 Vg, Vg1 lg Vg, Wg1 Vf If T _p	Po : Va : la : Wa : Vg2 : Vg2 : Vg, Vg1 : Ig : Wg, Wg1 : Vf : If : Tp :

Heating : The operating heater voltage depends on the specific operating conditions. Users should forward these conditions to Thomson Tubes Electroniques who will in turn recommend the optimal heating parameters. The operating heater voltage has to be regulated to within ± 2 %.

4 -	V1a	1	Anode voltage, tube non conducting
	V2a	:	Voltage drop during conduction
	l2k	:	Cathode current
	Wa	:	Average anode dissipation
	Wg2	:	Average screen-grid dissipation
	Wg1	:	Average control-grid dissipation
	Vg2	:	Screen-grid voltage
	Vg1	:	Control-grid voltage
	Vf	:	Filament heater voltage
	lf	:	Filament heating current
	Po	:	Useful output power
	Tp	:	Conducting time
	Duty	:	Conducting duty rate

- 5 No more than one maximum rating may be applied at any time.
- 6 V : Anode voltage
 A : Switched peak current
 E : Switched energy
 Life : Expected life (number of shots) when operated under the conditions given in the example
- 7 When the tube is operated at higher levels, its life will be shortened.

FRANCE	THOMSON TUBES ELECTRONIQUES
	13, avenue Morane Saulnier
	Bâtiment Chavez - Vélizy Espace
	BP 121 / F-78148 VELIZY CEDEX
	Tél. : (33.1) 30.70.35.00 / Télex : THOMTUB 699 407 F / Fax : (33.1) 30.70.35.35
ASIA-SINGA	THOMSON CSF SINGAPORE PTE. Ltd
	105 Cecil Street-Octagon Building 11-01
	SINGAPORE 0106
	Tel. : (65) 227 83 20 / Télex : THOMSEA RS 23014 / Fax : (65) 227 80 96
00404	
BRASIL	THOMSON COMPONENTES DO BRASIL Ltda
	Avenida Roque Petroni JR NR 1464 - BROOKLIN
	04707 SAO PAULO SP
	Tel. : (55-11) 536.47.22 / Télex : (11) 57386 TCSF BR / Fax : (55-11) 240.33.03
DEUTOOUUA	
DEUTSCHLA	
	THOMSON BAUELEMENTE GmbH
	Perchtinger Straße 3 - Postfach 701909 D-8000 MÜNCHEN 70
	Tél. : (49.89) 78.79.0 / Télex : 522916 CSF D / Fax : (49.89) 78.79.145
ESPAÑA	
	THOMSON TUBOS Y COMPONENTES S.A.
	Calle Principe de Veraga 204 1°B E-28002 MADRID
	Tél.: (34.1) 564.02.72 / Fax : (34.1) 564.19.40
	Tel (04.1) 004.02.7271 ax . (04.1) 004.10.40
INDIA	
	THOMSON TUBES ELECTRONIQUES
	M 26 Commercial Complex
	Greater Kailash Part II NEW DEHLI 110 048
ALL STREET	Tél.: (91-11) 644 78 83 / Télex : 31 71443 BCS IN / Fax (91-11) 645 33 57
ITALIA	
	THOMSON COMPONENTI Spa
	Via Sergio 1°, 32 I-00165 ROMA
	Tél.: (39.6) 639.02.48 / Télex : 620683 THOMTE I / Fax (39.6) 639.02.07
	Tel (39.0) 039.02.407 Telex : 020003 THOMITE 171 &x (39.0) 039.02.07
JAPAN	
	THOMSON JAPAN K.K.
	TBR Building 701 Kojimachi 5-7 - Chiyoda-Ku TOKYO 102
	Tél. : (81.3) 3264.63.46 / Télex : 2324241 THCSF J / Fax : (81.3) 3264.66.96
	101. 1 (01.0) 0204.00.407 1010X 2024241 111001 071 ax . (01.0) 0204.00.30
SVERIGE	
	THOMSON COMPONENTS AB
	Radiovägen 1 A - Box 631
	S-135 26 TYRESÖ
	Tél. : (46.8) 742.02.10 / Fax : (46.8) 742.80.20
UNITED KING	
	THOMSON ELECTRONIC COMPONENTS Ltd.
	Unit 4 - Cartel Business Centre.Stroudley Road
	GB-BASINGSTOKE, HANTS RG 24 OUG
	Tél. : (44-256) 84.33.23 / Télex : 858121 TECLUK G / Fax : (44.256) 84.29.71
USA	
	THOMSON COMPONENTS AND TUBES CORPORATION
	40 G Commerce Way P.O. Box 540
	TOTOWA, New Jersey 07511 Tél. : (1.201) 812.9000 / Fax : (1.201) 812.9050
	101 (1.201) 012.3000 / 1 ax . (1.201) 012.3030
	For all other countries, please contact France

CHARGE STREET THOMSON TUBES ELECTRONIQUES