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PREFACE

The use of the electron tube in electric circuils has spread within the last
few decades over a vast new field, the field of pulse technique.

Some of these applications of the tube have already become a normal part
of modern life, for instance in television and automatic telephony. Further,
there are important applications in special spheres, like radar, telemetering
and electronic counting apparatus, not to mention the rapidly expandings
sphere of electronic computers. The introduction of the electron tube into
electric circuitry was chiefly the work of practical men. Gradually, the
special properties and possibilities of the tube were studied and the number
of uses to which it could be put increased considerably, as it became known
how the tube could be treated within the metwork.

In pulse technique, however, the tube is generally used for quile another
type of operation, there being two distinct operating stales, in one of which
no current or very little current is drawn and the tube 1s cut off. The other
state is that in which a heavy anode current flows and the tube is fully
conducting. The change-overs between these two states occur suddenly and
are accompanied by certain related transient phenomena in the network. The
tube operates as a ‘‘switch”. ‘

Although there are many known applications of the tube for this type of
use, the mathematical treatment of the switching phenomena is still a closed
book to many users. It is the main aim of this book to indicate the methods
of determining the behaviour of @ network in which electronic tubes are used
as switches. The better mastery of this material may then lead to still more
efficient use, and even to new applications of the tube in this type of circuit.
After a few introductory chapters, dealing with such subjects as the opening
and closing of swiiches in networks and some principles of operational
calculus, there follows a chapter in which a thorough treatment of the vacuum-
tube as a switch is given. This chapter is sub-divided into a treatment of
the grid circuit and of the anode circuit, both for the triode and the pentode.
The last chapters deal with three very important and widely used circuits
known collectively as multivibrators — these are the bistable, monostable
and astable multivibrators.

The subject matter of this book does not spring from a mere desire to theorize —
in the contrary, it was actually prompted by a problem that arose in practice
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Preface

and that necessitated a deeper investigation by the author inio the dynamic
phenomena of one of these pulse circuits. By deviving a theoretical treatment
of these phenomena and confirming it in practice, the operation became
easier to understand and practical conclusions could be drawn, giving rise,
for instance, to the development of special tubes having partscularly favourable
properties for use in pulse techniques.

The book will thus be useful for those who may already be engaged in pulse
techniques but who are not yet conversant with the mathematical treatment
of the electrical phemomena which occur in these special circusts. It will
further be of help to those who are specializing in this branch of electromics
and may also find application in training institutes.

Thanks are due to Mr Harley-Carter, AM.I.EE. London, and
My H. P. White, London, for reading the English text.

August 1955 The Author

PREFACE TO THE SECOND EDITION

The fact that within a few years a second edition of this book, treating a
rather specialized material, has been necessary, is of course a great satss-
faction to the author. It makes him believe that the new edition will also find
its way to those interested in the subjects of pulse technique 1n electronics,
the more so as it has been possible to extend the contents of the book with
an extra chapter and an extemsive literature reference. The new chapter
treats a special class of pulse circuitry formed by several kinds of blocking
oscillators, thereby illustrating the applicability of the switching theory to
this field of magnetically coupled electronic devices.

The multivibrator circuits together with the blocking oscillators cover the
most important part of fundamental pulse circuits contarning vacuum tubes
as the active elements. Therefore it is believed that the incorporation of the

new chapter makes the book a more complete whole.

June 1959 The Author
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1. INTRODUCTION

The theoretical analysis of linear electrical networks which has been
developed thoroughly during the past century by many workers in this
field has reached a certain degree of perfection.

The first stage in this development was the study of the behaviour
of passive networks when subjected tc the influence of electromotive
forces or electrical currents of periodic nature and having such small
amplitudes that the components included in the networks never lose
their typical linear properties. In other words, the values which deter-
mine the behaviour of the components are independent of the am-
plitudes.

Typical components of passive linear networks are resistances, ca-
pacitances, self- and mutual inductances. These are best known in their
classical form as linear components. Modern development of electrical
circuitry, however, takes increasing advantage of the 'possibilities
offered among others by new magnetic and dielectric materials having
hysteresis and saturation properties to construct typical non-linear
components. Examples of these are self-inductances of coils with more
or less saturated magnetic cores (iron alloys, iron-dust cores, ferrites
such as ferroxcube), capacitors with barium titanate dielectric, voltage-
dependent resistances (VDR), resistances with negative or positive
temperature-coefficient (NTC and PTC resistances resp.).

Returning to our starting point, it can be stated that the mathematical
treatment of passive, linear network behaviour has been mastered very
well, some examples of noteworthy tools being Fourier analysis of
periodical waveforms, that enables the response of networks to these
waveforms to be calculated  as the response to the superposition of
single sine wave functions, and also the introduction of complex functions
instead of sine functions.

A further and very important step in the development of network-
analysis was the study of the response of passive linear networks to non-
periodic, discontinuous wave forms. This was commenced with a mar-
vellous mathematical intuition by Heaviside, then greatly widened
and mathematically established by other outstanding mathematicians
and physicists, resulting in the new technique of calculating the response
of networks to input-currents or -voltages known as operational
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Introduction 1

calculus. Even non-linear, passive networks of not too complex non-
linear nature have been mathematically analysed.

Since the invention of the electronic vacuum tube, a new “component”’
has entered network-design so rapidly and completely that it hardly
has a parallel in any other technical development of modern time.
Thus an essentially non-linear, non-passive component, the electron
tube, is introduced into electrical networks.

The electron tube is a non-passive component because direct-current
power is constantly fed to it, thus making it possible to give the tube
amplifying properties for signals with varying amplitude, the most
widespread application being the modulation of a direct anode current
by means of a varying grid voltage, resulting in a more or less proportional
variation of the potential drop across an anode load-resistor.

This “more or less” must be added, because it is difficult to get a
linear relationship between grid voltage variation and resulting anode
current variation (linear anode current — grid voltage characteristic).
Linearity is more closely approached as the excursions of the grid
voltage variation to either side of a fixed operating point on the charac-
teristic become smaller. Then the well-known equivalent circuits of the
electron tube amplifier can be used to simplify the analysis of the net-
work containing the tube. These equivalent circuits are either a voltage
source ue, in series with the internal anode resistance R;, or a current
source Se, in parallel with R,, u and S being the amplification factor
and sthe transconductance respectively, e, the applied grid voltage
variation.

Under these circumstances, the electron tube can be incorporated
in the network of more conventional components as another linear
(amplifying) element and mathematically treated as such.

In the use of electron tubes in pulse techniques, however, these
conditions are generally far from being satisfied. The tube must, on
the other hand, be considered as an essentially non-linear element.
It is generally switched from one discrete state into another, viz. from
the fully conducting state into cut-off condition or vice versa. In the con-
ducting state it represents a given (internal) resistance between anode
and cathode. When, in addition, grid current occurs, another (internal)
resistance is present between the grid and the cathode. In the non-con-
ducting state, these resistances have assumed very high values, practically
infinite. Tt may thus be stated that, at sudden transitions from one
stats to the other, resistances are switched on or off in the circuit in
which the fuhe is mcladed.

It will be clear that :his kind of operation of tubes in pulse techniques



1 Introduction

is quite different from the familiar operation in conventional amplifiers,
and must be considered as a switching action. Some external cause,
usually a rather steep voltage step in either the positive or the negative
direction applied to the control grid, should bring the tube as rapidly as
possible from one discrete position to the other.

Because of the already widespread and still ever increasing use of
electron tubes in pulse techniques, such as electronic counter-apparatus
and computing devices, scalers and radiation counters for atomic research
and X-ray application, pulse modulation systems, radar, television and
the like, it seems worth while to examine the behaviour of these tubes
in pulse applications. This will be the principal aim of this book. After
a general treatment of the behaviour of an electronic vacuum tube when
subjected to sudden voltage changes at its control grid, some special
circuits, well known in practice and often used as fundamental units
in pulse devices, will be dealt with. Theoretical analysis will prove to
be useful in investigating the influence of several tube characteristics
on the behaviour of the circuits as a whole. The circuits to be considered
are the three members of the multivibrator family, viz. the bistable,
the monostable and the astable multivibrator. ‘

As already mentioned, operational calculus has offered elegant so-
lutions of transient phenomena in electrical networks. It will prove
to be useful too in solving the problems related with transients in switched
electron tubes.

Relatively few basic principles of this operational calculus will be
sufficient to deal with the transient problems related with electron
tubes as circuit components, and to solve these problems. These basic
elements will be considered in the next section.

(o8}



2. BASIC THEORY OF SWITCHING

As previously mentioned, in pulse techniques the electronic tube
must be regarded as a non-linear element. In the conducting state,
internal anode resistance and, generally, also internal grid resistance
must be taken into account, whereas in the non-conducting or cut-off
state, these resistances have disappeared. If the tube is suddenly switched
from one state to the other by a negative or positive-going voltage step
at the control grid, these internal resistances are switched off or on
respectively in the circuit containing the tube.

Operational network analysis indicates how to incorporate these
discontinuities and their consequences in calculations of the circuit
behaviour.

Before procéeding to a more detailed discussion of circuits with
switching tubes, a short general survey of switch actions will be given.

2.1. SUDDEN SHORT-CIRCUITING OF TWO POINTS OF A NETWORK

In fig. 1.2, AB represents -a passive linear network in which currents
flow and voltages occur as a result of an externally applied voltage E (¢),
which is a function of -time. The voltage between points P and Q of
the network will be denoted by V (f). At the instant ¢ = ¢, points P
and Q are short-circuited, so that the voltage between these points

p is zero for ¢ >t, The effect

£ (fc A of this sudden short-circuiting
) 3 Vi) 5 on the current and voltage
- Q 7620 Situation of the network can

Fig. 1-2. now be determined by ima-

Passive network in which the externally i :
applied voltage E (t) produces a voltage gl nmg_ a voltage' source w_lth
V (t) between points P and Q. zero internal resistance being

present between P and ¢
from the instant ¢ = #, onwards, the time function of this voltage being
such that the voltage V (¢) originally present between P and Q is just
compensated from the instant #, onwards. This voltage source,
occurring when the switch is closed, can be represented by the ex-
pression:

V) =—V{®.Ult—t), ...... (12



2.2 _ Sudden breaking of a connection in a network

in which U (¢ —{,) represents a unit step function occurring at the
instant ¢ = ¢,. In other words, from this instant onwards the voltage V (¢)
must be multiplied by —1 to obtain the time function V, (¢).

The voltages and currents in the network now consist of two super-
imposed components, namely one component originating from E (f)
as it would be without the sudden disturbance caused by points P
and Q being short-circuited, and

the other component caused by 'T/ /W

V, (), i.e. by the short-circuiting

effect. Since it has been as- t=to

sumed that the input voltage -t

source E (¢) has zero internal o 730
. e A

resistance or that its internal -

. .. ted in th Fig. 2-2.
resistance is incorporated 1 the  gyample of the time function V, (¢).
network, this voltage source

may be considered as a short-circuit for calculating the effect of V, (¢).
Fig. 2.2 illustrates an example of the time function V_ (¢).

2.2. SUDDEN BREAKING OF A CONNECTION IN A NETWORK

In the passive network AB shown in fig. 3.2, a current [ (f), which
is caused by the input voltage E (¢), flows between points P and @
through the resistance R. This resistance will be assumed to be suddenly
disconnected from point @ at the instant { = ¢, From the instant ¢,
onwards current can obviously no longer pass from P to Q. This is

equivalent to the resistance R

o—— suddenly becoming infinitely
Elt) A éwﬂ B large. The effect of this dis-
o—1

continuity on the network can
Fie. 3-2. be described as follows.

8- .
Passive network in which the externally From the instant ¢ = {; on-
applied voltage E (t) produces a current wards, voltages and currents

I'(¢) through the branch PQ.

in the network consist of two
components, namely one component due to E (#) and calculated as
if no discontinuity had occurred, and a second component, super-
imposed on the other, which is caused by the sudden disconneption of
R and calculated by assuming an imaginary current source with in-
finitely large internal resistance to be present between points P and @,
the voltage source E (¢) being short-circuited and the value of the current
source being such that the current I (), which would be present without
the disturbance, is just compensated.

767314



Basic theory of switching 2

This imaginary current source, occurring when the switch is opened,
will be denoted by I, (f), and, in analogy with eq. (1.2), it can be
described by: ‘

Ig() =—I (). U (t—ty). . . . . ... (22

This expression can be represented by the curve shown in fig. 2.2,
provided V (¢) and V, (¢) are replaced by I (¢) and I, (f) respectively.



3. APPLICATION OF THE THEORY TO SIMPLE SWITCHING
CIRCUITS

Before proceeding to the discussion of practical switching devices
containing electron tubes, some simple switching circuits will be in-
vestigated, containing a switch whose nature will be left out of con-
sideration.

3.1. IDEAL SWITCH WITHOUT INTERNAL RESISTANCE AND
PARALLEL CAPACITANCE

The circuit will be assumed to consist of a resistance R in series
with a switch S connected to a constant +
voltage V, (see fig. 1.3). R

If the voltage source has an internal

resistance, this may be imagined to be % 5
incorporated in the value of R. It is now { S v
of interest to know the form of the voltage -

V across the switch. It will be clear that Fig. 1-3, 76752

so long as switch S is open, V will have the Ideal switch without in-

: ternal resistance and parallel
same value as V,, whereas V will be zero capacitance connected to a

when the switch is closed. constant voltage V, via the
Opening the switch at the instants?,, %, . . . resistance R.
and closing it at the instants £, £, ... will therefore result in a voltage

as depicted in fig. 2.3.
By way of illustration, the theory outlined in sections 2.1 and 2.2
will now be applied. First the case of the switch being closed will be
considered. From this instant on-

VEtbo wards, a voltage source V, is to be
4 incorporated in this circuit instead of

X the switch, so that V, has the same
value as, but is opposite in sign to,

V=0—7 T ¢ the voltage V that would be present
1 2 B 4
——t if the switch had not been closed.
Fig. 2-3. Hence, V,= —V,, the situation

Voltage V produced across the Deing as represented by fig. 3.3. The

switch S shown in fig. 1-3 when S actual voltage V across the switch
is opened at the instants ¢, 4, ... . . 1 h it §
and closed at the instants #,, ¢, ... 15 NOW equa to the superposition 0

7




Application of the theory to simple switching circuits 7 3

the original voltage 4V, and the effect of V. viz. —V,, resulting in
zero voltage. The voltage across R was originally zero, whereas, after
the switch has been closed, a current I = V /R flows through R, pro-
ducing a voltage drop —V, across R. The combined effect of these two
compopents is 0 — V, or +V,. k

There is obviously no point in applying this method to such simple
switching circuits, but it does give an insight in the mechanism and
proves the validity of the theory.

ISR
W
e=-V 4
: ! ‘
- —3
7673c 8 76735
Fig. 3-3. Fig. 4-3.
Circuit equivalent to that Circuit equivalent to that
shown in fig. 1-3 when shown in fig. 1-3 when
switch S is closed. switch S is opened.

Considering the opening of the switch, it will be clear that, from the
instant of opening onwards, a current source Iy = —V,/R must be
imagined to be present at the terminals of the switch (see fig. 4.3).
This current gives rise to a voltage drop across R, as a result of which
the potential of point 4 with respect to B is —I4R or +V,.

The voltage between 4 and B was originally zero, resulting in a
voltage V = V,. Before the switch was opened, a current I = —J,
was flowing in the downward direction through R, whereas, after the
switch has been opened, this current is compensated by the current
Iy, resulting in zero voltage drop across R.

3.2. SWITCH WITH INTERNAL RESISTANCE

Since ideal switches are non-existent, a better approximation of an
actual switch is obtained by assuming it to have a certain internal
resistance 7, » being taken to be much smaller than R.

Fig. 5.3 shows the circuit with the switch open. The voltage across
the switch will obviously be V = V, and will drop to a value

V="V,.7/(R +7)

when the switch is closed. Opening the switch at the instants 4oty ..
and closing it at the instants ¢,, ¢, . . . will result in a voltage V' as shown

8



3.2 _ Switch with internal resistance

in fig. 6.3. Compared with the previous case, the amplitude of the pulse-
shaped voltage V has decreased by an amount V,-7/(R 4 7). The
flanks of the pulses will, however, still have an infinitely steep slope.

V=lp---

+ v

l i T

' b
% 4 v==I—

R4r t ty ty ¢
- v=0
76736 76737 —=t
Fig. 5-3. Fig. 6-3.

Switch with internal resist- : Voltage V produced across the switch
ance 7 connected to a con- shown in fig. 5~-3 when this is opened
stant voltage V, via the at the instants ¢, ¢, ... and closed
resistance R. at the instants ¢, ¢, ...

The validity of the theory given in Sections 2.1 and 2.2 will once
again be shown. Closing the switch at the instant ¢ = ¢, gives for ¢ = {,
a superposition of the original state and the effect of a voltage source

V., = —V, as represented in fig. 7.3. This voltage gives rise to a current
- +
R
) 4.
7 L
W b r
4
=~V {S Ip
-— + B -— —
76738 76739
Fig. 7-3. . Fig. 8-3.
Circuit equivalent to that Circuit equivalent to that
shown in fig. 5-3 when shown in fig. 5-3 when
switch S is closed. switch S is opened.

= V /(R + 7) = —V,/(R + ). This current produces a voltage drop
of —rI = V,.7[/(R + 7) across r. The total effect of V', on the potential
between 4 and B is therefore given by:

R
R+ LV = V+R+ Vo= =g Ve

This voltage must be superimposed on the original voltage + V,, which
gives for the total voltage between A and B:
R 7

V=V —e——  Vy=—0o, V,.
> R+7" " R4¢' "

Vet o—/—
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The opposite case, when the switch is opened at the instant ¢ = ¢,
can be investigated by assuming a current source Iy = —V /(R + #)
to be present between A and B for ¢ =4, (see fig. 8.3). This current
produces a voltage drop across R, which results in a potential of

V,.R/(R + 7)

being produced between A and B. This must be added to the voltage
already present between these points for ¢ < ¢, namely V,.7/(R + 7),
which gives V =V, for ¢ >{,.

3.3. SWITCH WITH INTERNAL RESISTANCE AND PARALLEL
CAPACITANCE

In practice, all switches will have not only an internal resistance,
but also a stray capacitance connected in parallel. Fig. 9.3 shows the
circuit with the switch open. The voltage V is equal to V, when the
+ switch has been open for a sufficient length

ép of time, so that no transient effects due to
a preceding switching action remain.

When the switch is now closed at an
instant which, for the sake of convience
will be denoted by ¢ =0, the situation

6700 deplc'ted in ﬁg.. 10.3 will arise.

_ Fig. 9-3. With the aid of Thévenin’s theorem
Switch with internal re-  this circuit can be replaced by the equi-
sistance 7 and parallel ca- R . N N 2
pacitance C connected to valent circuit shown in fig. 11.3, in which
a constant voltage V, via the voltage source V, with its series
the resistance R. | .

resistance R is replaced by a current source
I = V,/R with parallel resistance R.

R =%
dinig ¢ —o A —s o0~ 1 A
: L |
73 r TC lV R %r 'J_'C v
é :*)B I o= 39
- 7874 76742
Fug. 10-3. Fig. 11-3.
Circuit equivalent to that shown Equivalent circuit of fig. 10-3
in fig. 9-3 when switch S is according to Thévenin's theorem.

closed at ¢ = 0.

The circuit of fig. 11.3 may be replaced by the simplified circuit
shown in fig. 12.3, in which R,, = R.7[(R + 7). According to Kirch-
hoff’s laws:

10



3.3 Switch with internal resistance and parallel capacitance

&, 1 1
o S € <)

RGG'-d_t C'I_C

a possible solution of which is:

Go=I+de . . . .. ... ... (23
Substitution of eq. (2.3) in eq. (1.3) and introducing the initial con-
dition V = V, for ¢ = 0, gives: o A
14 1 :
A=——Tand a=— . RqSlyn C=liz IV
eq REGC
. I
Since —— o— B
76743
V=R, I+ AetiRaC), . . . . (3.3) Fig. 12-3.
. Circuit according to that
it may therefore be written: shown in fig. 11-3 in
which the resistances R
V, and 7 connected in parallel
V= .(r + RetRC) . . . (4.3) are replaced by the equi-
R+ valent resistance R,,.

After a sufficiently lohg time, V approximates to:

4
Voo = V.o o ... ... (53
whilst for ¢ = 0 the initial value is:
VeVo=Vy . o o oo oo . (63
’ —?A A
e L
R - =C [V [:\—‘ﬁl Ro2ly c=ti;
: T
+ 35 o B
76744 76745
Fig. 13-3. Fig. 14-3.
Circuit for calculating Equivalent circuit of fig.
transient effects. ’ 13-3 according to Théve-

nin’s theorem.

For calculating the transients with the aid of the above theory, it
is necessary to introduce a voltage V,= —V, (see fig. 13.3) in series
with the resistance 7, and to add to the voltage V, present before the
switch was closed the voltage V across 4 and B due to V.. With the
aid of Thévenin’s theorem, the circuit of fig. 13.3 can be replaced by
the equivalent circuit shown in fig. 14.3, in which:

rR

Ro=—% S )

11



Application of the theory to simple switching circuits 3

The current 4, is given by eq. (1.3), whilst for the general solution
eq. (2.3) is applicable. Now, for £ = 0, i.e. the instant at which the
switch is closed, the voltage across the capacitance C cannot suddenly
rise to a certain value; hence, V = 0 or 7, = 0, for ¢ = 0. Substitution
in eq. (2.3) gives:

=— s e e e e e e 9.3
a R.C (9.3)
whence:
3y = I (1 — e7#RuC),
or:
V=-—4R, = —IR,, (1 — e /ReC), (10.3)
From eq. (7.3) and considering that I = V,/r:
A S (1 —etRaC) . . . . . . (11.3)
R+4+r 0

The total voltage across 4 and B after the switch has been closed
is therefore:

4 R

Ve=V,+ V= LV, 4+ — . Ve tRuC. 2.3
» + R+r b+R+r.be (l )

This expression corresponds to eq. (4.3) derived in the conventional way.
Closing the switch thus results in the potential between points A
and B changing from the initial value V,= ¥V, to a final value

Vo= V,.7/(R+7),

according to an exponential law with a time constant T, = R,C.
Assuming, now, that the switch has been closed for a sufficiently long
time, so that the final state in which V=V = V,.7/(R+7) is
practically reached, the situation represented in fig. 15.3 will arise
when the switch is opened. It is convenient to set the instant ¢ at which
the switch is opened equal to 0 in a new time scale. For ¢ < 0, the voltage
between points 4 and B was V = V,.7/(R +r) (see eq. (5.3)), a
constant current I, = V,/(R + 7) flowing through the internal re-
sistance 7 of the switch. At ¢= 0, this current suddenly drops to zero
and remains zero for all times ¢ > 0. This can be accounted for by
feeding a current I, in-the opposite direction, as represented in fig. 15.3,

12



3.3 Switch with internal resistance and parallel capacitance

this current being equal to the value of I, quoted above, which gives:

.......... (13.3)

The voltage V is now the superposition of the original voltage, which
is already present between points 4 and B for ¢ <0, and a voltage
which results from the effect of the current source I, This latter com-
ponent can be calculated by means of the circuit given in fig. 16.3,
which is identical to that shown in fig. 15.3, except for the omission of
the direct voltage source + V,, which plays no part in the transient
effects to be determined.

+

A
. - — 4
% /& 1
Ivs TC Vv RSl c=lp |V
- 15 L, 8
76746 76747
Fig. 15-3. Fig. 16-3.
Circuit according to that Circuit identical to that
shown in fig. 9-3 when shown in fig. 15-3, but for
switch S is opened "after the omission of the direct
having been closed for a ’ voltage source <+ V,,
certain time. which plays no part in the
transient effects under in-
vestigation.

A comparison of figs 16.3 and 12.3 reveals that these circuits are
identical, so that the solutions of V in the case of the circuit shown
in fig. 16.3 will be the same as those given by eq. (3.3), provided R,,
and I are replaced by R and.I, respectively. Hence: :

V=R(I,+ 4elRS), . . . .. .. (143)

V denoting that this is only part of the total voltage V between 4 and B.
The integration constant A4 is now defined by the initial condition
V=V,.r/(R+7) for t=0, ie. V =0 for { = 0. Hence:

0=R(I,+ 4) or 4 =—I,
so that, from eqs (13.3) and (14.3):

V= (1 — e~IRC),

R+7r’
13



Application of the theory to simple switching circuits 3

The total voltage between 4 and B for £ = 0 is the sum of ¥ and
Vs, which gives:
R

VeV, ——

R+7.Vbe—’/RC ... .. (153

Summarizing, it can thus be stated that after opening the switch
the voltage V increases from its initial value V,.7/(R +7) at £ =0
to the final value V, according to an exponential law with a time constant
T, = RC.

This time constant is thus always larger than the time constant T,
in other words: the time constant of the transient phenomena at opening
a switch exceeds that at closing a switch. The smaller the internal
resistance r of the switch with respect to the external resistance R of
the circuit, the more pronounced will be the difference in time constants,
namely:

T, R

«C r

T, RC R+r

(16.3)

Fig. 17.3 gives a graphical representation of the voltage V' when
the switch is opened at the instants #,, £, . . . and closed at the instants
ty by ...

_..t
76748

Fig. 17-3.
Voltage V as a function of time, produced in the
circuit shown in fig. 15-3 when switch S is opened
at the instants ¢4, ¢;, . . . and closed at the instants
b g . .-

It will be clear that periodical opening and closing of the switch
with time intervals T that are small compared with the largest time
constant T, = RC, will result in the voltage V assuming a wave-
form as depicted in fig. 18.3, saw-tooth voltages thus being produced,
whereas, if T is much larger than the largest time constant of the cir-
cuit, voltages with a pulsatory waveform will be generated. Both wave-
forms are well known and frequently applied in modern electronics,
such as television, radar and computer devices.

14



3.3 Switch with internal resistance and parallel capacitance

The preceding simple treatise on switching circuits makes it possible
to draw some general conclusions.

sy~ —mmmm— e m e

- -
- -

—

T —t
76740

Fig. 18-3.
Saw-tooth voltage produced when switch S is opened
and closed with time intervals T which are small
compared with the largest time constant 7T, = RC.

For generating pulses it is advantageous to aim at a switch the internal
resistance of which is as low as possible, in order to increase the pulse
amplitude. At the same time the switch should have a very small parallel
capacitance in order to obtain pulses with steep flanks. Negative-going
flanks will always be steeper than positive-going flanks. For generating
saw-tooth shaped signals it will as a rule be necessary to add extra
parallel capacitance.

15



4. SIMPLE TREATMENT OF ELECTRON TUBES AS SWITCHES

By applying positive- or negative-going voltage steps to the control
grid, an electronic vacuum tube can be converted from the non-conducting
(cut-off) state to the conducting state and vice versa. The anode-to-
cathode resistance of a cut-off tube is infinitely large and corresponds

to an open switch, whereas a con-

L1y ducting tube represents a certain (in-
T ternal) resistance between the anode
and cathode and may be considered

I as a closed switch having internal
resistance and necessarily ‘a certain
; parallel capacitance. A negative-going

/ Iy; . . .

’ pulse is required for opening the
/ 1 ~ “switch” and a positive-going pulse
oL —s»lp for closing it.

It will be assumed that ideal,
perfectly square-wave shaped voltage

ts steps are applied to the control grid
. of the electron tube, the anode current
’I ‘ being completely cut off at the lowest
tl rerse potential level of these steps and
1-4, their amplitude being such that the

{)(fle:ht:el;ieItofvﬁ(cK LC:’;;:::";::S;’ point at which grid current starts to
voltage is applied. flow is not reached (see fig. 1.4).
When a suitable resistance is in-
corporated between the anode and the H.T. line, the resulting anode
voltage variations will be as shown in figs 2.42 and b. Provided the
largest time constant (product of anode load resistance and anode-
to-cathode capacitance) is small compared with the switching time
intervals ¢,, #,—1,, t;—1,, etc., the anode voltage variations will be
pulse-shaped as depicted in fig. 2.44, whereas saw-tooth shaped voltage
variations as depicted in fig. 2.4 will be produced when this time constant
is large compared with the switching time intervals.
. This section is confined to the generation of pulse-shaped signals,
and reference to saw-tooth generation circuits will be omitted. Readers

16



Simple treatment of electron tubes as switches 4

who are interested in the latter subject are referred to the literature
quoted in footnote 1),

Fig. 2¢.4 shows the oscillogram of the driving pulses applied to the
control grid of the electron tube. Comparison of fig. 2a.4 and fig. 2c.4
reveals that the circuit provides a kind of pulse amplification with,
however, a certain amount of distortion. It will be clear that this distor-
tion, manifest in a decrease of the slope of the pulse flanks and in the

Vb__A._.-—
Va
! a
£
A4
oo
Vg fr—
f
s €
D
R
0 ty t; t3 —t
76751
Fig. 2-4.

When the square-wave voltage represented in (¢) is
applied to the control grid of a tube with a load
resistor incorporated in the anode lead, the anode
voltage variations will assume the forms shown
in {(a) or (b).
originally sharp-edged transitions being rounded off, can be minimized
by keeping the time constants of the switch as small as possible. This
can be achieved by making the anode load resistance fairly small, thus
improving the slope of both pulse flanks, but at the same time decreasing
their amplitude. By decreasing the internal resistance of the tube, the
slope of the negative-going flanks will be improved, whilst the amplitude
will be increased. Finally, a reduction of the stray capacitance of the
anode circuit will steepen both pulse flanks. The specific requirements
1) P. A. Neeteson, Flywheel Synchronization of Time-Base Generators, Electr.
Appl. Bull. 12, pp 154 and 179, 1951, and P. A. Neeteson, Flywheel Synchro-

nization of Saw-Tooth Generators, Monograph 2 of the series of books on
Television Receiver Design, Philips’ Techn. Library 1953.

17



Simple treatment of electron tubes as switches 4

for switching tubes are, therefore, low internal resistance and low
output capacitance.

For generating pulse-shaped voltages in the anode circuit, the driving
voltages applied to the control grid should be of the same nature. The
obvious method of generating such voltages is to apply a regenerative
process by feeding a fraction of the anode signal back to the control
grid in antiphase. This is indeed the principle on which many types
of relaxation oscillators, such as the multivibrator, are based (see the
literature quoted in footnote 1) page 17).

The multivibrator, which spontaneously generates pulse-shaped
signals, is a free-running or astable multivibrator. This type of multi-
vibrator has no stable state, but continuously changes from one quasi-
stable position to the other. In one position, one of the two tubes which
constitute the multivibrator is conducting (closed switch) and the other
tube is cut off (open switch), whereas in the other position these con-
ditions are reversed. Reversal takes place periodically with time intervals
that depend on a time constant determined by the circuit elements
of the coupling network between the tubes.

The bi-stable multivibrator or flip-flop circust has two discrete, stable
positions which can be changed only by applying a driving signal (trigger
pulse) to the circuit.

An intermediate form is the monostable or one-shot multivibrator.
This circuit has only one stable condition in which it always remains
when no external signal is applied. By suitably applying a triggering
signal, this type of multivibrator suddenly changes from its stable state
to a quasi-stable state in which the functions of the conducting and
non-conducting tubes are reversed. The circuit remains in this condition
during a period of time which depends on a time constant of the coupling
network between the tubes. :

In several subsequent sections detailed investigation of the action
of pulsed electron tubes will be given, and the three types of multivibra-
tors just mentioned, being important and fundamental circuits in a
lot of pulse devices, will also be discussed. Before proceeding, however,
to the main purpose of the book, some elements will be given of the
operational calculus, which is required for attainment of the results
aimed for. A

No strict mathematical derivations must be expected, the only purpose
of the following sections being to give the reader an idea of the lines
along which the final results have been attained. For those readers,
acquainted with operational calculus methods, these sections will contain
little new information and could be safely omitted.

18



5. SOME ELEMENTS OF THE OPERATIONAL CALCULUS

Basically, the operational calculus offers an elegant method of solving
differential equations. When the response of a network to a unit-step
function is known, it is possible to calculate its response to an input
function of arbitrary form by considering this function as the sum of
a sequence of small step functions. It was Héaviside who introduced
the unit-step function as the basic discontinuity.

According to the procedure of the operational calculus, the operation
d|dt, i.e. differentiation with respect to time, may be considered as an
algebraic quantity, which is denoted, for example, by the operator .
A rigorous proof of the permissibility of this method can be given by
means of the Laplace transform, which is beyond the scope of this
section. However, in order to make the reader familiar with the opera-
tional calculus, the response of a few fundamental circuits to a unit-step
function will first be derived in the classical way of solving differential
equations, after which it will be shown with which operational ex-
pressions the results thus obtained correspond.

_ﬁ.-_.l
¢ p T
v D%ﬂ " !
0 — ¢
t=0
77313 7320
Fig. 1-5. Fig. 2-5.
Simple RC network to Step function applied to
which a step function V, the circuit shown in fig.
is applied. 1-5.

First the circuit shown in fig. 1.5 will be considered. The input voltage
V, will be taken to be a step function as depicted in fig. 2.5, i.e., the
value of V, suddenly jumps from zero to V, at the instant ¢ = 0, and
remains at V, for t = 0.

By means of Kirchhoff’s laws, the following relation between the
current I flowing in the circuit and the input voltage V', can easily be
derived, giving:

1 I av,
E.I+RE=7' e 4 s+ 4 e s+ e W (]5)



Some elements of the operational calculus 5

The solution of this differential equation is:
I=_2 MR . ... . ... (25

Expression (2.5) reveals that the current I flowing through the net-
work, as a result of applying a unit-step voltage V, (i.e. ¥V, =1 at the
instant ¢ = 0) is equal to:

I=g. U@, . ... ... (35

in which U (¢) represents the unit-step function which is zero for < 0

and unity for ¢=0.
According to the operational calculus, expression (1.5) may be re-

written as:
1
(E+Rp)l=pV,.. L. (1a3)

In other words: the relation between the two quantities 7 and V,
is defined by the operational expression:

L__® .. (b3
i 1. o
C+P

It is also possible to express I in a symbolic, operational form, which
gives:

1
"R

p

r
o=+ P

I Uug. ...... (45

It can be seen from expressions (3.5) and (4.5) that the operator
between square brackets, which operates on a unit-step function, can
be translated into a time function, namely:

=efRC ... (5.5)

p
1
7c TP

The voltage V. across the capacitance C is obviously given by:

¢
Idt
Vc:—oc ,
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5 Some elements of the operational calculus

or, from expressions (2.5) and (3.5):
Ve=(1—e™®)Vv,u@)y. .. .. ... (65

On the other hand, I = C.dV jdt and I = (V,— V,)/R, which
gives:

1 v, 1
—.V —f=_ .V,
R’ ctC-Z R "
whenee:
' 1 ; ]
—_ Ve=—.V, .. .. ... . (15
(RC+¢>) o=2z- Vi (7.5)
or:
RC '
Vg = S VoU@. . .. . .. (7a5)
EC—-FP

It follows from expressions (6.5) and (7a.5) that the operator between
square brackets can now be translated into the following time function:

RC

— 1M . (85)
ﬁ‘l‘f’

In a generalized form, the relations (5.5) and (8.5) indicate that, when
in any network the relation between a quantity to be investigated and
an input function is given by the operational expressions p/(a + p) or
a/(a 4+ p), this quantity will be e~* or 1 — =%, respectively, if the input
is a unit-step function occurring at the instant ¢ = 0. (If this instant
were ¢ = #,, the response of the network would be the same time function
shifted in time over a period ¢, This may be taken into account by
substituting ¢ — ¢, for ¢ in all time functions.)

In order to find the operational expression that links two electrical
quantities in a network and which may have the dimension of an im-
pedance or an admittance or may be a dimensionless transfer factor,
it will be useful first to determine the a.c. impedance, admittance or
transfer factor expressed in the conventional complex form with jo,
which, in fact, originates from a time differentiation. Subsequently, jo
must be replaced by the operator .
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Some elements of the operational calculus

This is illustrated in the example given above. Referring again to

fig. 1.5, the a.c. impedance of the network is:

X 1
Z (jw) = R + 7.07‘,
so that:
A
R+—
T0C
or:
1 1
V. L
" fuC
Substitution of je by p gives:
I 1
V.~ L
T3
or:
I V4
T/—.- = o
c + Rp

Expression (11.5) is identical to expression (15.5).

O € § )]

If V; is a sine function, the relation between V. and ¥, can be ex-

pressed as follows:

Ve = _77“1217 Vv,
jorC
Substitution of jw by p gives:
€
Ve= pC T V.,
R + ;E

22
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5 Some elements of the operational calculus

L
chlil.V,, ... ... (135)
?+we
which is identical to expression (7.5).
The two transformations:

[ ? ]Ee*“‘. R X X+)]
a—+p
and
2 —at
[a_*_p]zl——e e e (15.5)

are of particular importance, for it will often be possible to write a
more complex operational expression as the sum of several expressions
similar to expression (14.5) and (15.5), namely by splitting it up in
partial fractions (Heaviside’s Expansion “Theorem) 2).

This will be clarified by means of an example that will be met later,
when the bi-stable multivibrator is dealt with. The value of the opera-
tional impedance between points @ and b of the network shown in fig.
3.5 will now be investigated. For the sake of simplicity, the following
notations will be introduced for the time constants:

RC,=T,
RC,=T,%, ... ... ... (165
RC=T
and for the resistance ratios:
R,
B
R, + R+ R,
. S (17.5)
R, + R+ R,
Fig. 3-5.
R Network of a more complex
L d =g nature to which a step
R,+ R+ R, e function is applied.

?) Readers who are interested in this subject are referred to V. Bush, Operational
Circuit Analysis, John Wiley and Sons Inc. New York, 1929, and T. H. Turney,
Heaviside’s Operational Calculus Made Easy, Chapman and Hall Ltd., London,
19486.
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Some elements of the operational calculus : 5

The final result of deriving the operational impedance 3) is:
14+ Ap

eq * 1 + BP + Epz’

where R,,, i.e. the d.c. impedance between points a and b, is given by:

_ R, (R+R)
“ R,+R+R,

Z@P)=Ry.——a P .. (185)

whilst
RT,+ R, T
A= ——oeo—, . .. ... .
R+ R, (184.5)
B=¢,(T+T)+e(T,+Ty)+eT,+T), .. .. (18.5)
and
E=¢eITT,+ T, T,+T,T. . . . . ... . (185

Expression (18.5) can now be split into two partial fractions by first
writing the denominator as:

B 1
E(f+ 2 p+5)=EG—p) p—p) - .. . (199)

where p, and p, are the roots of the second order equation

p D pd s =0
P E g =Y

Hence:
B B2 1
- = s, 5
h=—95t Vi %" (19a.5)
and
B ‘Bz 1
=l —_——— .. . .. .. 195.5
Pa 2 T4 E (1%.9)

Expression (18.5) thus becomes:
R,, 1+ Ap

3) It is stressed here that the operational impedance should not be confused
with the conventional concept of impedance. (In fact, this also applies to a
complex impedance in a.c. network theory.) An operational impedance is only
an auxiliary quantity which proves to be most useful for investigating and
solving transient phenomena. It links a voltage and a current in such a way
that its dimension is that of an impedance.

24
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5 Some elements of the operational calculus

This expression can be split into two partial fractions, namely:

R, (1+4p 1 14+ A4p, 1
Z =—. . — . =
(15) E (Pl_Pz 75“"1’1 1’1_‘1"2 P""Pz)
_ R 3__ I+4p = 1+ 4p —~ps §=
“ Eﬁ(ﬁl_pz) _’/’1+? Eﬁl(ﬂ—?ﬁz)'—‘“Pz"‘?
: —bh ‘—152
=R, |F,. ———— Fyp, ————) .. ... .. ... .
| ,,(1_p1+p+2_¢2+) (20.5)

Applying the transformation according to expression (15.5) now
gives for the response of the network shown in fig. 3.5 to a unit-step
input current at the terminals 2 and &, a voltage across these terminals
which is equal to:

Vo [1] = R {Fy (1 —&) + Fy(1—e¥)}. . . . (215)

The constants F, and F, can be combined and rearranged so that
expression (21.5) becomes:

Vall] = R, {1 + Ket* — (1 + K) e}, . . . . . (2lab)
where: v
g4 . (@25)
h— b, ’

It will be clear that in the case of a current step of amplitude I, applied
to terminals @ and b, the resulting voltage across these terminals will be:

Voo [I] = IR, {1 + Ket* — (1 + K) e} . . . . . (21b5)

At the instant when the step occurs (for ¢ = 0) this voltage is zero.
This is obvious because a steep front can be considered as the com-
mencement of a signal of very high frequency and between points
a and b a chain of capacitances which smoothes this H.F. signal is
present. After a very long time (theoretically an infinite time), the
voltage ¥V, becomes equal to IR,,, i.e. the static condition is reached.

In the preceding comments the response of a network to a step function
was considered. The determination of the response to an arbitrary
time function is possible by applying the superposition theorem. This
theorem can easily be made plausible with the aid of fig. 4.5.

In the most general case the input function e (f) starts at the instant
t = 0 with a step having an amplitude e (0). It is assumed that for
t > 0 the dependence of the input function on time can be represented
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Some elements of the operational calculus 5

by the smooth curve e (). This curve is approximated by a sequence
of small stép functions separated in time by equal intervals 41 and

e{t}

«(0)

1l
(=]
-
I
b
~

t +a) —»t

77322

Fig. 4-5.
Approximation of an arbitrary time function by a
sequence of small steps. )

having an amplitude Ae (2). The response of the network to one of these
elemental step functions is given by:

Ai(t)y=Ae(AA(E—2),. . . . ... (23.5)

where A (f) represents the response of the network to a unit step oc-
curring at the instant ¢ = 0.
The slope of the curve e (#), i.e. ¢’ (!} = de (t)/d¢ at the point ¢ = 1, is:
de (2)
A2

€A~ —m . . ... (24.5)

The smaller the time interval 44, the better will be the approximation.
From expression (24.5):

de(N)=eNAA . . . ... .. (24a.5)
Substituting expression (244.5) in expression (23.5) gives:
Ai{t)y=A@t—2Ae (A)4a2 . . . . (259)

At the instant ¢ = 4, the total response of the network to all preceding
step functions will obviously be the superposition of the responses to the
elemental step functions as represented by expression (25.5) and the
initial step e (0). Hence:

A=t “
i) =eA@W)+2A¢—AeEMDAL . ... . (26.5)
A=0
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5 Some elements of the operational calculus

The nearer A4 approximates to zero, the more exact will be the ap-
proximation of the time function e (f) by the sequence of small step
functions. The exact response of the network to the function e (¢) at
the instant ¢ is therefore given by:

A=t

it)=c(O) A@) +lm ZA(E—Ne @A . .. (215
AX—0 A=0

which, by definition, is the integral function:
i1
i(f)=¢e(0) 4 (¢ + f A@t—2Ae(A)da, . . . .. (28.5)
0

where ¢ (0) corresponds to e (f) for £ =0, A ({— ) corresponds to
A (#), the variable ¢ being replaced by ¢ — 4, and ¢’ (1) represents de (¢)/d¢
for t = A.

‘When it is possible to express the input time function e (f) in its
related operational function e (p), this rather cumbersome integrating
process can be avoided. According to expression (8.5), a voltage

e (t) = e (1 — e
can, for example, be “transformed” into a p-function:
1
1 4+ Tp

In an operational impedance Z (p), this voltage will produce a current
I(p) = e (p)/Z (p). This expression must finally be transformed back
into a time function I (t) =1 (p).

e(p)y=e.

In this section an attempt has been made to give a rough idea of
the methods which are offered by the operational calculus to determine
transient phenomena in a network. The principles outlined above have
proved sufficient for calculating the problems related to pulsed elec-
tronic tubes. For a rigorous mathematical treatment and the derivation
of the formulae used, reference is made to the literature quoted in the
footnotes.
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6. FUNDAMENTAL TREATMENT OF ELECTRON TUBES AS
SWITCHING ELEMENTS

In section 4, for the sake of simplicity, no grid current was taken
into consideration. In relatively few applications of the electron tube
in pulse techniques this simplification will permit to obtain a good
approximation of its real behaviour. In the majority of cases, where
tubes are switched into the conducting state and remain for a longer or
shorter period in this condition, grid current is certain to occur and play
an important part in the transient phenomena caused by the switching
action. This part may be a disturbing one, and therefore unwanted,
or it may be useful, for instance by stabilizing the operating point of
the tube (automatic grid current bias). Therefore, the effect of grid current
cannot be neglected and it seems justified to start a general investigation
of the behaviour of an electron tube in pulsed circuits by considering
its input or control grid circuit.

6.1. THE GRID CIRCUIT

The ideal step-function, showing a discontinuity with infinitesimal
slope, cannot be realized in practice, because of stray capacitances
always present in switching and pulse generating circuits. In the fore-
going sections, the influence of parallel stray capacitances of switches
on the slope of pulse fronts has been discussed.

Generally, these pulse flanks will have a shape that can be described
as an exponential function of time, or a sum of exponential time functions
with different time constants. These pulse flanks traverse the grid-base
of the electronic tube either starting at a high negative grid potential
below the cut-off value and rising quickly up to values near to or even
greater than zero, or starting at positive or zero grid potential and
falling steeply to a value below cut-off potential. ' '

In the first case the electronic tube suddenly starts conducting anode
current as well as grid current (the switch is closed), in the latter case
both anode- and grid current are abruptly cut off (the switch is opened).
Both cases will be treated in the following sub-sections.

6.1.1..A POSITIVE-GOING STEEP CHANGE OF GRID POTENTIAL

The grid-to-cathode potential is assumed to have been at a constant
value V,, below cut-off for a sufficiently long period preceding the instant
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6.1 The grid circuit

! = 0 to ensure that any transients originating from possible former
switching actions have completely died out. From the instant ¢ =0
onwards (so for £ = 0), the grid potential V, changes with time ac-
cording to an exponential function with a time constant 1/a, starting
at the initial value ¥V, and tending to a final value ¥, that is assumed
to be zero or positive (V, = 0). The grid voltage change V, (f) can be
represented analytically by the expression

V,t) =Vi— (Vi—Vge= . . .. ... (16

and graphically as depicted in fig. 1.6. Here, the dash-dot line represents
the cut-off voltage level, indicated by E.. As soon as the grid voltage
V, (¢t} passes this level (at the instant ¢ = #;), anode current starts to
flow in the tube and the switching action starts. The anode current
increases at a rate determined by the rate of change of V, (f). With a
triode, the anode voltage change also influences the anode current change,
whereas it is well known that this influence is negligible with pentodes.

The reactions of the anode circuit of the tube, however, will be consid-
ered separately in later sections.

The rise in V¥, (), however, will not continue until the value V,,
because of the influence of grid current, starting at a value of the grid
potential near zero. Because of this grid current, the grid potential,
ultimately attained, will be limited to a value not much different from
zero. In this way, the anode current is restricted so that the tube can
operate without being seriously damaged, as would otherwise occur.
So the grid current action is a useful one here, as it stabilizes the anode
current within certain limits. This will now be further investigated.

As a rule, grid current starts to flow as soon as the grid potential
reaches a value of a few tenths of a volt negative with respect to cathode,
and sharply rises when the grid potential passes zero and becomes
positive. The general shape of the grid current — grid voltage character-
istic is represented in fig. 2.6. The slope of this characteristic is a measure

bo o e e . e s e o it ———— —

7 ITg
17
Tg Vg (t) Ig=f(vg)

[
j<>-
e
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Fundamental treatment of electron tubes as switching elements 6

for the internal grid resistance. By approximating to the characteristic
with simpler shaped curves, the influence of grid current on grid voltage
and therefore on anode current and -voltage changes can be deter-
mined,

A first, rather rough, approximation is the assumption of an internal
grid resistance zero as soon as the grid-to-cathode potential becomes
zero or positive (see fig. 3.6), in other words: grid and cathode are short-
circuited for values of ¥, = 0. This means that, from the instant ¢ = ¢,
onwards (see fig. 1.6), the function V, (f) remains at zero, as represented
in fig. 4.6.

¥l

! Iglr f(Vg)
0 —Vy
Fig. 3-6. UWp————————— e —————
v, /‘—”’——
Ig fv ’//
T -~
s
Ve
Ig=1(vg) 0 //
e =t
a
0 —=Y% Y
Fig. 5-6. Fig. 4-6.

A better approximation is the assumption of a finite value of the
internal grid resistance 7, for values of ¥, =0, the grid current-grid
voltage characteristic then being as represented in fig. 5.6, where

cota=7, thus V,=7rJI, .. ... .. (26)

From the instant ¢ = ¢, onwards (see fig. 1.6), the external grid circuit
is shunted by a resistance 7,. The effect of this sudden switching of a
resistance 7, in parallel with the external circuit Z, originally present,
can be calculated by assuming a voltage source V, (f) operating from
the instant ¢ = 4, onwards, and superimposing its action on the grid
to the initial grid voltage represented by expression (1.6). The value
of V, (¢} is to be taken equal to V, (¢) from (1.6), but with opposite sign.
This can be expressed by :

V) =—V, ) Ult—t), . .. ... (3.6
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6.1 The grid circuit

where U (¢ —t,) represents a unit step function that is zero for £ < 4,
and unity for ¢ =1{,.

Now V, (t) is defined by expression (1.6). For values of ¢ < {,, the
grid voltage V, (¢) is below the cut-off value (see fig. 1.6) and conse-
quently no anode current flows. At the instant ¢ = ¢, the tube starts
conducting and the switching action commences. The grid voltage
change from this instant onwards will be of particular interest, and
therefore it is practical to introduce a new time scale 7, such thatr = ¢—¢,,
of, in other words, the instant ¢, is the zero point of the new time scale.
" Then expression (1.6) is identical to the following:

V@) =V,— (Vi;—Ep)e™, .. ... (46
where E_ is given by (see fig. 1.6):
E,=Vi—V,—Vge . . . .. .. (5.6)

At the instant ¢ = £,, the grid voltage V, (t) is zero, that is in the 7 scale
at the instant 7z = #, — ¢, = 7, which is defined by the condition:

Vo)) =0=V,— (Vi—E).e®. . .. .... (66
Substituting this relation into (4.6) gives

V,(@) = Vy—Vyerlrml .. ... B ()
which is valid only for 7 = 7,.

Because the internal grid resistance 7, is present from the instant
T = 7, onwards, a second component must
be added to V, (z), as given by (7.6). This

second component can be calculated from
the circuit diagram of fig. (6.6), where Z,
represents the total externally connected , s
9
ve(7-T5)

grid circuit impedance, whilst 7, is the

internal  grid-to-cathode  resistance as

determined by the characteristic of fig. (5.6). Fig. 6-6.
From (3.6) and (7.6) it follows that:

Vilt—1) =—Vy (1 —e=t) | ., ... (86

In order to be able to calculate the extra grid voltage component caused
by V, (v — 1), the impedance Z, must be further specified. The external
grid circuit will be assumed to be as depicted in fig. 7.6, where V, re-
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Fundamental treatment of electron tubes as switching elements 6

presents a voltage source V,U (f), and V; a constant voltage source,
both sources having zero internal impedance. V', brings the grid at the

Ce
Ry Ce g
v A A% Ry % (1-75)
1] Ve (T-70)
Fig. 7-6. Fig. 8-6.

instant ¢{ = 0 to the initial value V, after which the change of the gnd
voltage is as given by expr. (1.6).

The grid-voltage component V, (vt — 1,) due to V, (z — 1,) can now
be calculated from the circuit diagram of fig. 8.6

As an example, the operational method, to be applied here, will be
given completely.

The operational impedance Z, of C, and R, in parallel is:

R

Z, =
14+ RCp
The ratio of ¥, to V, is
Tiu (T’;“To) Zo
Vc (T _TO) Za + ¥y
R 1 7, R
= g =22 ... (9.6
R,+7 T¥RCy "R R 1, 55
V)=t Ly )] (10.6)
T — = -— PN .
T TR A kT T
where
T,=R.C,, . .. . ... .... (11.6)

or, written symbolically:
70 (1_‘70) = A4 (1’) (Ve (T—To)]-

Now two ways of solving this problem can be followed. The first
is to ‘““translate” the p-function 4 (p) into a time-function A4 (¢), and
then to apply the superposition theorem, as expressed by (28.5).

The second way of solving the problem is to ‘“‘translate” the time
function V, (z — 7,) into a corresponding p-function.

Following the second method, we obtain for the corresponding -
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6.1 The grid circuit

function of V,(v—1y) = V; (1 —e?(r7)),; on introducing a new
time variable A = v — 1, according to (15.5):

Vi) ==V (1 —e®) =—7,

T 129

Then expr. (10.6) becomes:

- R, 1
V, () =—7V,. 4

Ry 47, 1 +Tpp a+p

Splitting into partial fractions gives:

- R a 1 1 1
V,(A) =—V - — |—T - .
o () 'R, + 7, l——aT,,[ ”1—+—T,,p+a 1}
45
a
Converting back into a time function according to expr. (15.5) gives:
— "R, a _A 1
=V, —2— " | =T, 1 —e T, 4 - (1 —
o=, g | R
or:
- R al T 1
— ) =—V — 1+ =2 Ty — o~ el | .
Vy (t—=0) 1 R,+7, [ + 1~—aT, ¢ 1—aT, ¢ } (13.6)

Now, it will be clear from fig. 7.6 that the time constant l/a with
which the grid voltage changes exponentially from the value ¥V, to
the value V,;, must be equal to R,C..

So:
: 14.6
a = . : .
RE (14.6)
Combined with (11.6), we see that:
To=r T (e 96 5.6
TR TR 4, Y (159
Substituting (15.6) into (13.6) gives:
. R T
V,t—tg) = —Vy | =+ 27T, et (16.6)

1RU+70 R9+r!l

This, finally, is the component that must be added to the grid voltage
V, (t — 7,) that would have been present if no sudden change in the
grid circuit occurred at the instant v = t,. So the resulting grid voltage
change V, (t — 7,) from 7 = 7,, or ¢ = {, onwards is the sum of ex-
pressions (7.6) and (16.6):
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Fundamental treatment of electron tubes as switching elements 6

V,(t—1) =

7, _TIs
n(i—eT) oo
R, +7, 1 € (17.6)
Introducing (14.6) into (7.6) gives a value for the grid voltage change
as follows:

V,(t—r.)=V1(l—e_;?_:%) ... (188)

This is the time function the grid voltage would assume when no change
in the grid circuit would have appeared at the instant 7 = 7,. The
effect of the sudden starting of grid current at the instant v = 7, on
the grid voltage is that from 7 = 7, onwards expression (17.6) re-
presents this voltage instead of (18.6). The grid voltage change is now
an exponential function with a much smaller time constant R,C, than
it was for v < 7, For this period, the time constant was R,C,. The ratio
of the time constants is:

v rﬂ

— or
R R,+7,

g .

(see expr. 15.6).

The final value that the grid voltage will attain is no longer V;, but a
much smaller amount, viz.

L

R9+rﬂ

There is no discontinuity in the grid voltage value at T = 7, as both
the expressions (18.6) and (17.6) are zero at the instant 7 = 7,.

But there is also no discontinuity in the slope of the time function
at this instant, which can be seen by differentiating both (18.6) and
(17.6) with respect to time. These first derivatives are respectively:

1-

[d Vo (x— 70)] — £ [e— ;:2’0] — Vi
dr r=r  ReCo r=rn  RoCo
v, (x — -ro)] 7, 1 [ _.’__“"]
[ e . = R' + fg . Vl . i e T, _ —
r, R,+7, Vy '

~R,+r, n,RC, * RC,

The influence of grid current, approximated by the foregoing method
of calculation is graphically represented in fig. 9.6.
If the approximation as used above is considered unsatisfactory, a
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6.1 The grid circuit

,
Rg*"gv’

2(%/

Fig. 9-6.

better one is the assumption of a grid current-grid voltage characteristic
of the form given in fig. 10.6. This characteristic consists of two straight
lines AB and BC with different slopes; it is a far better approximation
of the I, - V, characteristic in practice, as represented in fig. 2.6.

At the instant when V, (f) reaches a value V,, a discontinuity occurs
similar to that previously discussed, which occurred at V,(#) =0
(see fig. 5.6).

The difference between the two cases will be fully discussed. For
the moment it will be stated only that a resistance 7,,, a form of internal
grid resistance, is shunted across the grid circuit as soon as V, (f) attains
a value = V. This resistance is to be determined from the slope of the
characteristic, viz. 7,; = cot a, (fig. 10.6). The effect of this discontinuity
is that V, (f) tends exponentially with a smaller time constant R,C,
instead of R,C, to a smaller final value
V4, instead of V,. The resistance R, is

‘the resultant value of the parallel con-
nection of R, and r,.

Again, at theinstant when V' (f) reaches
the value ¥V, another discontinuity
appears, to be interpreted as shunting .
the grid circuit by another “internal A Bl
grid resistance” 7, = cot a,, where a, V/‘f'o —

. (7 9 —vg
is a measure of the slope of the char- )

acteristic line EF in fig. 10.6. The Fg. 10-6.

part BC of the I, -V, characteristic is the superposition of the
“resistance lines” AD and EF.

From the value ¥V, onwards, the grid voltage tends exponentially
with a still smaller time constant R,C, (< R,C,) to a final voltage
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-




Fundamental treatment of electron tubes as switching elements (3]

value V,, that is again smaller than V;, (R, is the resistance resulting
from the shunting of R, by 7).

V- e e The change in grid voltage will then

¥ be roughly as indicated in fig. 11.6 by
T the strongly drawn curve.

The influence of the approximated

Yo, Viy I, -V, characteristic of fig. 5.6 could

OF==5 Yiz — be defined by the introduction of an

Vo f auxiliary voltage source V, (! —1¢,) as

represented in the circuit of fig. 6.6.

v This will be-discussed once more in a

(]

simple way with the sole purpose of
being able to apply the same argument
at a better date to derive methods of solving the problem of the discon-
tinuities in a grid circuit as represented by the I,— V, characteristic
of fig. 10.6.

So, with the I, - V, characteristic of fig. 5.6, grid current starts at
the instant when ¥V, equals zero and tends to positive values. For
V, < 0, the circuit of fig. 7.6 is valid, and can be replaced by that of

. . Iy
I/—Q K I/ z T /
i T i 9 vy I; Ty
| N N
9

Fig. 12-6. Fig. 13-6. Fig. 14-6.

Fig. 11-6.

g

f X+

fig. 12.6, where I, = CpV, (p = d/dt = differentiation with respect to
time). More general is the circuit of fig. 13.6, where Z, may represent
any impedance in the grid circuit. The grid voltage V, is given by the
relation:

V,=ZJ,. . . . .. ... ....(96

As soon as V, = 0, a grid current [, starts flowing in parallel with Z,,
and having a relation to the grid voltage, now indicated by V,, as
follows:

I ==

g

. (20.6)

Y
70

_This situation (for ¥, = 0) can be represented by the circuit of fig.
14.6. Consequently, a current of I, — I, now flows in Z,, instead of
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6.1 The grid circuit

the whole of I,, as was the case for V, < 0. The voltage across Z, will
then be: ’ :
Va=Z,I,—1I). . . . . . .. ... (21.6)

Introducing the value of I, from (20.6) and considering that:

VA

V=7V, gives V,=Z,, —_r”_/"
g
or:
V,=—_ 2] (22.6)
[ 7, + Z, ot ‘ .
Substituting (19.6) gives:
- r
V, = LV, . (23.6
14 rﬂ + Zv g ( )
This expression can also be written:
- zZ, .
V,=V oV, ..o (24.6)

¢ y___ 9" . . .
7, + Z, [

For better understanding, the meaning of ¥, and V, is once again
given here: V, is the grid voltage as it would be without grid current
starting at a value V, =0, whilst 7, is the actual value of the grid
voltage from the instant when grid current started.

Expression (24.6) is the superposition of V, and a component that
originates from a voltage source V,= —V, —_
introduced into the circuit in the way de- -T

picted in fig. 15.6. Comparing with fig. 6.6 o

shows that these figures are identical. 2, Vg
The same reasoning will now be applied to

the case where the I, -V, characteristic ==t

has a shape as depicted in fig. 10.6. As soon -

as V, reaches a value V,, (and not zero!),

grid current starts according to the characteristic AD from fig. 10.6.
A current I, depending on ¥V, in the following way

Fig. 15-6.

flows parallel to Z,.
The current through Z, is no longer I,, but less, viz. I, — I, giving
a voltage across Z,:

V=V,=Z,I,—1). .. .....(266
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Fundamental treatment of electron tubes as switching elements 6

Substituting I, from expr. (25.6) gives:

— Z, —
V,=ZJ,——2V,—Vy, ... ... (216
gl
or:
— 7 Z
V:—“[ZI‘ —"VJ ... .. . (286
g ral + Z” g-1i + rql gl ( )

Remembering now that for ¥V, < V,, the whole input current I, passed
through Z,, giving a grid voltage: V, = Z,I,, and that this would be
maintained if no grid current-I, started, expression (28.6) can be written:

- 7 ' VA
V,=—2 -V, + —"— V. . . . . . (296
’ 701+Za ’ 701+ Zv - ( )

- Z,

: =V,———(V,—V, .. .. ... (306
or Vn Vv n + Za( [4 al) ( )
- On comparing this result with expression
r (24.6), it will be seen that an important dif-
ference exists. The auxiliary voltage source

% @ "% to be introduced to account for the sudden
starting of grid current is not equal to —V,
Vay but to — (V,— V,,). This is represented in
Fig 16-—6——_ fig. 16.6, where V,= —V,. If the constant
) ) voltage source V,, were omitted, then
fig. 16.6 could be considered as the auxiliary circuit necessary for cal-
culating the response of the grid circuit to the sudden switching of a
real resistance 7, in parallel to Z, at the instant when V, reaches the
value V ;. The time function ¥V (#), in connection with a given function
of V, (#), is represented in fig. 17.6. V, () shows an initial voltage step
—V,. The combination — (V, — V), however, has an initial value
zero. In fig. (18.6) this combination is represented by the function V.

V, ______________
7 Vg
v 1
T ‘
v
0
Vg A
Vo

78982
Fig. 17-6. Fig. 18-6.
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6.1 The grid circuit

It is now possible to determine the response of the grid circuit to a
grid-current characteristic according to fig. 10.6. It will be assumed
that V, reaches the value V,, at
the instant t = t, and the value Y
V, at the instant ¢=1{, For T
0 <t <t, equation (1.6) deter- S
mines the grid voltage change. b
Introducing the instant ¢={oy, ___q__‘fr') _C v,

when V,(t) = E, the cut-off ,; A .
voltage, as the zero-point of a = Ef—#———
new time scale v=1¢—*,, changes t.,rr-w

equation 1.6 into:

V,(1)=V,—(V;—E,) .. (31.6)

0

For a survey of the time scale ¢
and 7, fig. 19.6 has been given. _I. %

Fort =t or t = 1, =t —1 _
) Ce Rg Vo (T-T)
V(@) =Va=Vi—(Vi—E) e '|' Ve (-1

(32.6)

From ¢ =1¢, onwards, the grid Fig. 20-6.

voltage can be supposed to con- '

tain two components, viz. V, (7), as given by (31.6), and the grid voltage
V,(t—m,) due to a voltage source V, (t—1) = V,—V,(v) as
represented in fig. (20.6).

Vad—n)=V— (V1 —E)e*n—V,+ (Vi—E)e" =
— (V,—E,) e {1 —ealrmi},
Substituting:
Va—Vi=—(Vy,—E)e . . . . . . . (326
from (32.6) gives
Val—1)=—(Vy— V) {1 —e*t} (33.6)

Indicating the total grid voltage between the instants ¢, and 4, by
V. * (v —,), this voltage is given by:

VF *(r—n)=V,(r) + —Vv (t—m)

V,(t—m) can be calculated by the same operational methods as
given in the previous case. Only the final result will be given here:
R =T,

7 — v
V*(e—m)=Vi— (V1 —V,) R _; " + R _: e RuCe|, (34.6)
g g1 ¢ g1
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Fundamental treatment of electron tubes as switching elements 6

where:
ralR g

== - . .. . (356
"SR+, (35.6)

If V,, = 0, expression (34.6) is identical to expression (17.6), as should
be expected.
For large values of 7, expr. (34.6) tends to the final value:

rvl R g

Vy=—eo V), + ——
" Ry + 7, ! R, + 7,

Va.o - - . . . (36.6)
{compare fig. 11.6).

At the instant t = ¢, or T = 1, = 7, — {;, the grid voltage V * (+ — 1y)
reaches the value V, and another discontinuity appears, because of
the suddenly increasing slope of the I, - V, characteristic (see fig. 10.6).

J_ "9 _
. SR 2% Votr-3)
e, (T-%)
Fig. 21-6.
An extra voltage source Vo (t— 1) = —V *(t—1) + V,a (see

fig. 21.6) causes a component V, (t — 7,) across the grid circuit, that
must be added to the voltage originally present, ¥V * (+ — 7;), continued
for 7> 1,, as if no change had taken place. The final result of operational
calculations is that the total grid voltage V ** for t > ¢, or t > 1, is

7 R 7
V ** (z — 1 =(————"1—V+ 2 V) o2 +
? ( 2) Rv + ral ! Ra + 701 a va + ra2
R 7 R

_+_ V.- 1 _( g1 1% + g _

o Ry, + 78 R, +ry ! R, +7p -

y 774

i V __y_ - _thcc y L e e e e e e e e e e . 376

02) va raZ i ( )

where:
R, = Xeafe (38.6)
Rul + ”az



6.1 The grid circuit

rn and 7,, are given by
7,1 = Cot ay; 7,5 = cot a, (see fig. 10.6)
R,, is given by expr. (35.6).
For 7 — 00, expr. 37.6 tends to a final value
7 R 7 R
V. =(——L-V+————"—-V>—~—'2—~—+V —a 39.6
2=\ TR T VRatra T P Ratra Y

(compére fig. 11.6).

If a, = 0, or 7,, = %, in other words: if no second discontinuity would
appear at V, = V,, (see fig. 10.6), then expression (37.6) changes into
expr. (34.6) as should be expected. This will be shown.

Expression (34.6) can be written:

V*(r —1) = - +
Sl =
+ R, Va— (Vi —V )———7—9-— e_R:TCoc ..... (40.6)
Rv + ral o ! ot Rv + rﬂl
For v = 1,, this will be:
7 R, 7 L s
14 v, + v Vy—V,) =2 RuC.. . (41.6
92 = R + 'g], 1 R + N el ( 17 vl) R + rgl ( )

Now, for 7, =, R, = R,, and (37.6) becomes:

7 R i B I
V *% — ( o1 V. + e V ) (l — € R,,‘Cc)—{- Ve RuCe. . 426
g g Ra + 7:11 1 Rv + o1 g1 92 ( )

Substituting (41.6) gives:

7 7 T-7
V= 2 + Vp— (Vi —V 2l eR.uC.. . (43.6
»a Rn+ra1 1 R +1’,1 g1 ( 1 vl) R,-{—r“ ( )
This is identical to (34.6).
For a clear survey, a review of the formulae will be given.
During the time interval 0 < ¢ < ¢, the grid voltage is:
¢

Vo) =Vy— (Vi— Vge RCe . . . . .. (1.6)

This function is represented by curve a —a in fig. 19.6.
During the time interval ¢, < ¢ < ¢,, the grid voltage is:
R L5 -

Ve 0 = Vi (Vi Vi) (ot + 5 € G (346)
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This function is represented by curve b —b in fig. 19.6.

Its validity may be checked by calculating the value at the instant
¢t = ¢;. Substituting ¢ = ¢, in (34.6) gives V * (;) = V,,, as should be
expected.

For times ¢ = #,, the grid voltage is:

r R, 7 R
v owx (g ( g1 + v > 2 Ly o
! ( ) R + ral 1 R + gl o vl + ’az - va + "az
i R, 752 .t
— v, + V—V)———e RCs. . . (376
(Rv + rvl ! Rn + ral o o2 va + ra2 ( )

This function is represented by curve ¢ — ¢ in fig. 19.6.

A phenomenon often observed in positive-going steep voltage wave-
forms applied to the grid of an electron tube is the overshoot, which
appears as a short “pip” at the top of the positive-going wavefront
(see fig. 22.6). The occurrence of overshoot depends upon the shape
of the grid current — grid voltage characteristic and on the 1n1t1ally applied
voltage waveform at the grid.

The first relationship will be clear if the case of a charactenstlc ac-
cording to fig. (3.6) is considered. Then the grid-to-cathode internal
resistance becomes zero as soon as the grid voltage reaches zero, and

f

—t

Fig. 22-6. Fig. 23-6.

no further increase in grid-to-cathode voltage is possible (compare.
fig. 4.6). Thus no overshoot will be possible. If the I, - V, characteristic
has the shape of fig. 5.6, however, then overshoot may occur, particularly
as the angle a becomes smaller, i.e. the internal grid resistance 7, higher.
Furthermore, the occurrence of overshoot will depend on the wave-
form of the grid voltage as it would be when no discontinuity in the
form of grid current appears. In the earlier case of input grid voltage,
as represented by fig. (19.6) curve @ — a and by expression (1.6), no
overshoot is originally present, and neither waveforms influenced
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6.1 The grid circuit

by grid current show overshoot. (Compare fully drawn curve of fig. 9.6
and expr. (17.6), curves b —b and ¢ —c of fig. 19.6 and expressions
(34.6) and (37.6)).

It will be of interest to deal with a case of input voltage waveform
that shows overshoot, and to investigate again the influence of grid
current. Consider the circuit of fig. (23.6), where R, represents a grid leak
resistance, C, a grid stray capacitance, and an input voltage V, is applied
to the grid via a resistance R and a capacitance C in parallel.

If ¥V, has the shape of a voltage step of amplitude +V, occurring
at the instant ¢ = 0, what will be the grid voltage change from the
instant £ = 0 onwards?

Mathematically, V, is defined as follows:

V,=0 fort <0
Vi=Vifort <0

where U () represents the unit voltage step. To start with, no dis-
continuities are assumed to occur. It can be seen immediately that
the voltage step is attenuated by the capacitive voltage divider, formed

- C
by C and C,, so that a fraction C of the total step V appears

g

across the output leads. In other words: at the instant { = 0 the
voltage V, () is

But immediately after the application of the voltage step, a distribution
of the electric charge on the capacitances starts in such a way that

g

finally a steady voltage of value V will be present at the

g
output leads. In other words: for infinite time, V, () will be:

a(w)=R+Rq

Now, if:

c R
T . (416
C+C, R+R, (#7.9)

or, virtually, the same condition, if:

CR<C,R, . . ....... (48.6)

g- g
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then the voltage V, (f) will show overshoot, as depicted in fig. (24.6).
If:

c ___& L. (49.6)
C+C, R+R,

or:
CR=CR,, . ... . .... (506

C+Co " RytR
— 0 —
t=0 ¢ t=0 ¢
Fig. 24-6. Fig. 25-6.

then the grid voltage V, (#) is an attenuated copy of the input voltage
waveform, that is to say:

c

() = e vu@. . ... .. (51.6)

or:
V()=~R" vu@ . ... ... (52.6)

‘ R+ R,
(see fig. 25.6).
If:

C R

? ... .(536)

)
2]
(o]
&
<
1
|
1
|
|
i
!
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|
~
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&
=
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6.1 The grid circuit

then the initial value of V, (f) is smaller than the final value, and the
term “‘undershoot” could be applied. This case is depicted in fig. (26.6).
These results will be derived by operational calculus. The circuit of
fig. (23.6) is represented by that of fig. (27.6), where:

1
—_—=—+pC . . . ... ... .. . (55.6
7= + pC (55.6)
: = : C, (56.6)
Z = —ﬂ- +C, . . . ..
It can be seen that:
Z
174 _ g
=57V
or:
1/Z
V)= —r—ve V. . . 56.6
or:
v, () = HR+pC (58.6)
YR+ 1R, + p(C+C,)
or: ' »
R 1 R
Vo) = 5—% T Rep ; (59.6)
Rt R 1+R(C+C)p
where:
RR
= L . (60.6
Ro= g% (60.6)
Substituting
T = RC . . e e . (61.6)
and
T, =R, Cc+C) . ... ... .. (62.6)
gives
R 1 + Tp :
= ul v. .. . ... . (636
Vo = e w T T (63.6)
or: '
R (T —T,) p}
V == A 1 YNV, ... . . (64.6
Q(t) R~+Rg[ I—Jf—T,vp i ( )
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Fundamental treatment of electron tubes as switching elements 6

With expression (44.6) this gives:

Rﬂ
R+&, V0T

T—T, _%

vV, ) = T, . .. . (656

(see expr. (14.5))
From (61.6) and (62.6) it can be derived that:
T'—T, RC—RC,

Tv = R(m ....... (666)
SO:
R RC—R,C, L
t) = ? S — | - . (67.6
V0= m V|V 0+ pere s ™| 67

From this expression it follows immediately that the final value
of V, (¢) will be:

R
V, () = 7 +" 7 V (compare with (46.6)).
g

Furthermore, for RC = R,C, there will be no overshoot, as V, (f)
in that case is:

Rﬂ
Vel)= 53w V- UG

This is the attenuated input voltage step, as already mentioned
before. If RC > R,C,, the initial value of V, () will be larger than the
final value, and then overshoot occurs,

If RC <R,C, V,(0) will be smaller than ¥V, (c0):

R, RC — R,C,

v = T e
O=rrr"'"TRCTC)
or.
C
14 = .
0=V

Compare these results with figs (24, 25 and 26.6).
From expression (64.6) it follows that for T = T, or, what is the
same condition, RC = R,C,, the output voltage V, (f) of the network
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6.1 The grid circuit

of fig. (23.6) is a true, though attenuated copy of the input voltage,
no natter what is the shape of the latter:

if:
CR =C,R,
The time constant determining the exponential function with which

the voltage V, (f) changes from the initial step to its final value (see figs.
24.6 and 26.6), is given by:

T,=R,(C+C), . . . . . . .. (62.6)
and with (60.6): '
RR,
T,= R+ R, C+C) ... .. ... (69.6)

This is the product of the resultant resistance of R and R, in parallel
and the resultant capacitance of C and C, in parallel.

Now, the influence of grid current will be investigated, working with a
characteristic as represented by fig. 5.6. So, as soon as the grid voltage
V,is =0, a resistance 7, must be incorporated in parallel to the grid
circuit. In the circuit of fig. 23.6 a negative constant bias voltage V, in
series with R, is assumed to be present, of a value sufficiently large to
keep the grid voltage below the cut-off value E, for all times < 0 (see fig.
28.6). At the instant £ = 0, the input voltage V,suddenly jumps from the
value ¥V, to the value V,,
which can be interpreted by

assuming a voltage step !
:I- g Rg I
V.U@=(V,—Vy) U ; - o
(70.6) ' :@ ¥%ft
to occur. +
This voltage step is as- Fig. 28-6.

sumed to have such a value
as to apply a reduced voltage step

c
14
C+c,

to the grid of the tube, of sufficient amplitude to make the grid voltage
immediately > 0.

Thus, at the same ‘instant ¢ = 0 when the voltage step occurs, the
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Fundamental treatment of electron tubes as switching elements 6

internal grid resistance 7, is switched in parallel with R, and the re-
sultant grid voltage ¥V, * (¢) can be calculated as the sum of two com-
ponents, viz. the grid voltage V, (¢) as it would be when no grid current
appeared, and the response V, (¢) of the grid circuit to a voltage source
—V, (t) in series with 7, (see fig. 28.6).

The initial condition of the grid circuit is then:

V,=V, for t <0. B (A X))
and thus:

R R
V,=Vyp=oe Vi ———=V,. .. . .. (72
g 90 R + Rg 1 R + Rﬂ 0 ( 6)
V,o is negative to a value below cut-off.
At t =0, a step

Vi=V.Ut)y=(V,—Vy).U(®)

1

occurs and for

V, (t) is the sum of the steady state component, given by (72.6) and
the transient component, given by (67.6)

[1 RC —R,C, _TLJ

Rcrci’ " (73.6)

R, -
Vo) = Voo + m

The effect of the voltage source —V (¢) in the circuit of fig. {28.6)
at the grid is:

R, 1
vV, () = A T Tﬂﬁg[_V” (t)} ... (146)

The result of calculating this by operational methods and adding
it to V, (f) is:

V@)=V, 0+ V, () =

4

=l |y o
R.,.+V”[ ”°+R+RJ ( TRCEC)’

k23

RC —R,C, _L) .

(76.6)
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6.1 The grid circuit

Comparing V_ * (¢) with ¥V, (¢), the same remarks can be made as
when expressions (17.6) and (18.6) were compared to one another,
viz. the effect of the sudden starting of grid current is that the grid
voltage tends to a smaller final value with a smaller time constant
when grid current appears, than would be the case without this dis-
continuity occurring.

As can be seen from expr. (75.6), the conditions whether or not over-
shoot will occur are the same as for expr. (73.6).

6.1.2. A NEGATIVE-GOING STEEP CHANGE OF GRID
POTENTIAL

In the foregoing section the initial state of the grid was with a grid-
potential below cut-off value. Then a steep positive-going voltage
transferred the grid into the conducting state. Now, the other case
will be considered, the grid being conducting and then a negative-going
voltage being applied. The change of grid voltage will be investigated.

+v!
R
Ce | 0
¥ T =ty
R :C T
g
v . =1 !
|
_Vll '
d
Fig. 29-6.

Referring to fig. 29.6, it can be seen that the D.C. grid potential can
be controlled by suitable choice of the positive and negative D.C. voltage
sources V' and V" resp. and by the ratio of the resistances R and R,.
The resistance 7, represents the internal grid resistance, defined by a
grid current — grid voltage characteristic according to fig. 5.6.

The D.C. potential at the grid will be:

= TRV RV ... (T18)
r,R, +r,R + RR,
This D.C. voltage V, must be zero or positive.

It is assumed that at the instant ¢ = 0 an input voltage V, of the
shape indicated in fig. 30.6 is applied. At this instant transient phe-
nomena will commence and be superimposed upon the steady state
that was present for ¢ < 0.
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Fundamental treatment of electron tubes as switching elements 6

For the calculation of these transients, the circuit of fig. 31.6 must
be considered. This can be transformed into that of fig. 32.6, where

RR
R,= ’ 78.6
v R + R, ( )
The current source I, is given by the expression:
av,
I=C,—. . . . . ... ... 79.6
1 ¢ dt ( )
— B o= t
Ce : / :
¥ 36 SRy R ry I; =C #¢y SR 2 %
! i
H [ [ . \\Ff !

Fig. 31-6. Fig. 32-6.

V, changes linearly from the instant ¢ = 0 until £ = ¢,, with a slope

Vi Voo

dt ty’
Vv,

¢=_Qf .......... (80.6)
(1]

This value is valid for 0 < ¢ <, For ¢> t,, however, V,=V,.
This is a constant value, so:

I, =0 for t > #,

In other words: I, is the superposition of two step-functions:

vV
L=Q7B—Um+va_m, ..... (81.6)
0
- or I; is a negative pulse function with
o—1==0 to —*!' an amplitude :
I c Va
[ to
-Cc%:fl - and a pulse width £, seconds.
Fig. 33-6. This is represented in fig. 33.6. When

the operational impedance of the net-
work of fig. 32.6 is known, the response of this circuit to this input
function I; is easy to calculate.
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6.1 The grid circuit

The operational impedance is:

R,
Z(p) = ¥ T (82.6)
where:
erﬂ
SR P (83.6)
Ty=R,C,. . ... ... ... (84.6)
C,=C,+C,. . .. .. . . .. (85.6)

C, is the input capacitance of the grid circuit, including grid-to-
cathode and wiring capacitances.
The response of this impedance to a current step function I,U (f) is

Vo) = LR, (1 —e™) . . .0 ... (86.6)

The total grid voltage, including the steady state, will be for 0 < ¢ < ¢,
V. A

V,(t) =V,—C, t—" Ry (1 —etitwy (87.6)

0

For further calculation of the transient phenomena it is necessary
to discriminate between two possibilities.

First, it is possible that the grid voltage, represented by expression
(87.6), will not pass below zero within the time {,, the rise time of the
input-voltage change (see fig. 30.6).

Then there will be no new discontinuity due to the grid current
suddenly ceasing. The circuit remains unchanged and the expression
(87.6) is valid until the instant £, when the positive step in I, causes
another transient response, given by

14
V,{t—1t) = +C, ;i’R.,l (1 —eWaliTny - (88.6)

0

For ¢t = ¢, the total grid voltage is the sum of expressions (87.6)
and (88.6):
VO
V,({t) = V,,— C, — Rn golT — 1] o . (89.6)
0

The shape of this function is as represented in fig. 34.6.
This first case will, however, not occur frequently in practice, as
the D.C. grid voltage V,, will generally be only slightly positive, and
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Fundamental treatment of electron tubes as switching elements 6

the value of V, will be large enough to drive the grid voltage negative
within a time that is shorter
than {, seconds.

This is the second possibility
we will have to investigate.
However, before doing so, the
dividing limit between these

Fig. 34-6. two cases will be considered.
This limit is reached when
at the instant ¢ = ¢, the grid voltage (expression 87.6, fig. 34.6) becomes
zero. This is expressed by the following relation:
Vo .
0=V,—C, = Ry (1 —etl™») . " '(90.6)

0
According to (84.6) and' (85.6):
Ty,=R,(C, + C,)-

t=0 —»t

f

~

“~otuntunbentenien 11}
-~
(=]

%

In practice C, will generally be much larger than C,. Therefore:
Tvl ~ Rvicc’

and expression (90.6) can be written:

T
V= Vo =2 (1 — ¢~%/Tr)

, L (91.6)
or:
%’ = :‘ (1 —e®Toy . . ... (92.6)
Substituting:
Vo=BVe . . . . . . o .. ... (93.6)
and
bh=aT, . ... .. ....... (94.6)
changes expr. (92.6) into:
ﬂ=l_feja e (95.6)
Limg=1.
«—0
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6.1 The grid circuit

In the graph of fig: 35.6, the relation (95.6) is shown, and it is clear that,
with fixed values of V , and T, the less steep its negative-going flank,
the higher will be the input voltage amplitude V, to drive the grid
completely out of its conducting state.

24 ’ ,
l

v 22 /

14 /
L/
1.0
08

0 04 08 12 15 20
—wa=lo
TVV

Fig. 35-6.

The second case, where the grid voltage reaches zero at an instant
t, <ty will now be considered. At this instant, ¢, the grid current dis-
appears and 7, in fig. (31.6) suddenly becomes infinite. This causes new
transients in the circuit that can be calculated by methods indicated
in section 2. The process to be applied is as follows: The current ¢, flowing
in 7, before the instant ¢, must be determined, the expression for i,
applying also for ¢ > ¢, if no discontinuity appears.

The effect of suddenly increasing 7, to an infinite value, or to inter-
rupt ¢,, can be accounted for by assuming from the instant ¢ = ¢, on-
wards that a current source I, is present at the terminals of the former
7., I, being of opposite polarity but equal in value to ¢,. Then the grid
voltage for £ = ¢, will be the sum of the grid voltage V, () that was
calculated for the original situation with 7, present, and of a component
V, () that is caused by ‘the response of the circuit to the current I,
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Fundamental treatment of electron tubes as switching elements 6

The first component is represented by expression (87.6), and is valid
in the circuit of fig. 36.6.

Ce

ig
v Tcg R, 5 vy () Ci=Cc+Cg-|- Ry Io L

Fig. 36-6. Fig. 37-6.

The second component can be calculated from the circuit of fig. 37.6,
where ! I, | =14%,|, and 4, is given by:

: 14
Vao - Cc To va (l - e_‘/Tvl)
(1]

i, (t) = - S . ... (96.6)

g

(see expr. 87.6 and fig. 36.6).

At the instant ¢ = ¢,, the grid voltage is zero; consequently i, (¢) is
also zero. For calculating the new transients starting at the instant ¢,
it is convenient to introduce a new time scale v, with its zero point at

t=1, so T=t—1t . ... (97.6)
In this new time scale the expression 87.6 reads as follows:

14
Vv, (r) = —C, -t—°R,,1 ehlTn (1 —e—tiTey . . . (98.6)

0

The value ¢, is defined by the condition that v, (f) (see expr. 87.6) is
zero for ¢ ={; so:

|4
Vo =C, —t—" Ry(l—eTwy . . . . ... (99.6)

' (]

Substituting this expr. in (98.6) yields for 7 = 0:
Vo (@) = — (R | I; | — Voo) (1 —e™), .. . (100.6)
where:
4

II,]=Cc—t—‘3 .......... (101.6)

Expression (100.6) gives the first component of the total grid voltage
for ¢ = #,. The second component ¥, (f) or ¥, (z) can be calculated from
fig. (37.6). The result is:
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6.1 The grid circuit

R R,
Vo (v) = — (Voo— Ry | L }) [1 + 3 e~TiTo ——+25_T/T" , (102.6)
r’ R'Il v
where:
R, = RR, (78.6)
R + R,
and:
T,v = RDCi'

The resulting grid voltage V, (z) for ¢ = ¢, is the sum of V, (r) and
V, (z) (expressions 100.6 and 102.6):

an (1) = Vg (T) + Va (T)
| R, 4+,

g

(1 —eTy) . . . (103.6)

Vv" (T) = (va ] I'i ' _—Vvo)

Now, at the instant ¢ = #,, another discontinuity occurs, viz. the

V.
input current 7, jumps back from a value — C, -t—9 to zero.
0
This causes a transient response:

v,

(7)) = R, | I,| (1 —e—t—%tiTy)  (104.6)

This new component must be superimposed on the grid voltage,
originating from former transients, viz. V, (r) (expr. 103.6).
The resulting grid voltage is:

R, +7,
g

+ R I, | (1 —etr=tott)Tey L (105.6)

Ry | I; | — V) (1 — ™) +

V”m (T) =

At a certain instant ¢ = ¢, (or v = 7,) this voltage reaches a value
zero, and at that instant grid current starts again, in other words:
resistance 7, is once again shunted across
the grid circuit. Thus, from this instant °
{ ==t, onwards, a new component must J-
be taken into account. This can be cal- Cc-I-

culated by imagining a voltage source

V, (r) being present in series with 7, as -
represented in fig. 38.6. Fig. 38-6.
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This voltage V, () is equal to the grid voltage V_(r) from expression
(105.6), but with opposite sign.
The response of the network to V, (z) results in a grid voltage com-

ponent:
R R
v, |2 7y +

e—(T—7o)[Tv + e—(-r—-r,,)/Tv,} .
7a £}

This must be added to the voltage V, (7) (expr. 105.6), giving for
the grid voltage at ¢ = ¢, the following expression:
Vi (1) = Vo (1 —etr—maliToy .. (106.6)
As is ex pected, the final value of the grid voltage is V,, again.

In fig. 39.6 a survey is given of the various phases through which
the grid voltage passes.

= = t
"0 L The first phase I commences at
| ' the instant £ = 0, where the input

Y by . . .

‘ | voltage starts falling with a linear
: ' ' slope to the final, constant value
' ! ~—V,. The second phase II com-
— : mences at the instant ¢ = ¢, when
Ce .tVL grid current disappears. The third
I; ¢ hase III commences at ¢ = £,
p 0

when the input voltage ¥V, no
longer changes.

The last phase IV is for times
t>t,. At ¢t =1, the grid current
starts again.

The changes from phase I into
II and from phase III into IV
occur continuously. This can be
shown by calculating the first
derivative with respect to time
of the grid voltage changes at
the instants ¢ = ¢, and ¢ =1/, It will be found that:

g[ V. (’)L,, -2 [ v, ")L,,

and
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6.1 The grid circuit

To give a quick survey, the expressions of the grid voltage changes
in the various phases will be summarized again:
During phase I: 0 ¢ < ¢4

Vo) =Veo—|L| Ry (1—e™) . . . . (87.6)
Final value: V, () = V,o—|I;| R,.
During phase II:' ¢, <1 <S4, or- 0 s 74, — ¢

R, +7,

g

R,+7r, R,+7

g g

V,“ ()= — (R | I; | — Vy)

(1 —e"/™) . (103.6)

Va,, (00)=—(Rv1 lIil—Vgo) ’VO—R,)|II.(.

During phase III: {y St or g —LH ST S 700

R, 47
V”m (T) = (R'vl l Ii I - VyO) y : (1 - e_T/Tv) +
+ R, 11,1 (1 — e*(‘r—to+t1)/Tv) ............ (105.6)
R, V' — RV"
V,m (o0) = —W

During phase IV: £ = ¢, or v = 7
Vo, (1) = Voo (1 —er—m/Tey . (106.6)
Vo (©) = Voo-

v

It is interesting to consider the value of ¢, with respect to £, for it
will be clear from the foregoing and especially from fig. 39.6 that the
ultimate negative amplitude of the grid voltage will be larger as the
grid current is cut off earlier, in other words: as ¢, becomes smaller
with respect to #,. In order to suppress the anode current of the tube
with a given input voltage of amplitude V, and time of rise #;, the peak
negative grid voltage will have to be sufficiently high to pass the value
of grid voltage for anode current cut-off.

The influence of the values of V and {, on ¢, for given values of
the circuit and tube constants and voltage sources R, R, C,, C,,

r,, V' and V" can be investigated by closer examination of expres-
sion (99.6):
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Fundamental treatment of electron tubes as switching elements 6

or:

(see expressions (93.6) and (94.6).

The value

18

08

0.6

0.4
02

4

21

Vao = Vo

T,

0

1

&
] — e—lx/TUx —_

(l —_ e—’l/rvx) R

(107.6)

N S
T e 4]
T|,,=CiRv,—
d:t — M
| 1
\
\
\
1
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\
\
\ \\0:5
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4 8 12 16 20 24 28 32 36 40
Ve
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Fig. 40-6.

as a function of g (or V) with « (or #,) as a parameter

is represented graphically in fig. 40.6, whilst in fig. 41.6 the value

L o7
0

06
T 05
0.4
0.3
02

01
0

58

"y f=4
Ay
/3=6
g
- T
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—’aar—:
Fig. 41-6.

oy .
*1 is represented as a func-

0
tion of a (or £) with

B (or V,) as parameter. If
B = «, then ¢, would be in-
finitely large, but in practice
t, cannot be larger than ¢,
so the ordinate in the graph
of fig. 41.6 cannot become
greater than 1.



6.1 The grid circuit

6.1.3. DIODE CIRCUITS

The results of the study of the behaviour of grid circuits when sub-
jected to the influence of sudden steep positive- or negative-going voltage
changes, as derived in the preceding sections, will also be useful for
the investigation of the response of diode

. . . 1
circuits. For vacuum-tube diodes the same
current-voltage  characteristic ~approxi- T
mations as given in figs 5.6 and -10.6
can be applied. The resistance of a vacuum
diode in the reversed current direction, /3
often called the “‘back resistance”’, can be —I—"
taken to be infinite. However, another
large category of diodes, viz. crystal diodes,
selenium rectifiers and the like, have a Fig. 42-6.
back resistance of finite value. In that
case, the diode current-voltage characteristic can, to a close approxi-
mation, be represented by the graph of fig. 42.6. Indeed, in practice the
current is zero for zero voltage, which is different from the case of vacuum
tubes. The back resistance R, of diodes, having a characteristic like
that of fig. 42.6, will be:

—>V

. Ry=cotf, . .. ... .. .. (l108.56)
whilst the forward resistance will be:
R,=cote. . . . . . . . ... (109.6)

The behaviour of such diodes in a network when subjected to a change
in input voltage which passes the value zero can be described in the
following way. For negative values of diode voltage the diode is re-
presented by its back resistance as depicted in fig. 43.6, where the block 4

T [ w

Fig. 43-6. Fig. 44-6.

represents an arbitrary network in which the diode is incorporated.

For positive diode voltages the diode is represented by its forward
resistance R,. When the voltage across the diode changes from negative
to positive, then it can be assumed that, at the instant its value is zero,
a resistance R, is suddenly shunted across R, of such a value that:
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Fundamental treatment of electron tubes as switching elements 6

R, . R,

R, =——" . .
"= R, TR, (110.6)
or:
R R
R =-%""7 11.
- (111.6)
(see fig. 44.6).

The sudden shunting of R, by R, causes transients which can be
calculated in the way outlined in previous sections.

In the same way, the change of the diode voltage from positive to
negative values will be accompanied by transient phenomena which
can be described by the sudden omission of R, from the circuit at the
instant the diode voltage passes zero, and calculated by the same methods.
It should be borne in mind, however, that disturbing effects may occur,
when switching certain kinds of semi-conductor diodes, caused by in-
herent inertia phenomena such as hole-storage in Germanium diodes.

6.2. THE ANODE CIRCUIT

. If the grid voltage change of a tube has been determined by any
method given in the foregoing sections, then the next problem will
be to investigate the anode circuit of the tube and, if possible, to derive
expressions which represent the anode current and voltage as functions
of time.

When using idealized characteristics, this can be performed for triodes
as well as for pentodes.

6.2.1. TRIODES

The idealized characteristics of a triode, giving the relation between
the anode current 7, and the ancde voltage V, with the grid voltage V,as
parameter, are represented in

e fig. 45.6. The main difference

T between practical character-

40 -1 -2 -3 -4 istics and these idealized ones

is given by the lower dotted

L s curved parts of the other-
f=cotg @ Wise straight lines.

I, e =% When an anode supply

Z A voltage V' is available and

Ja A LT~ fed to the anode via a load

% % ] —»y, Tresistance R,, then the

Fig. 45-6. operating point of the tube
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6.2 The anode circuit

defined by the value of V, will be situated on the loadline L
that intersects the horizontal axis at V,= V, and has a slope
cot 8= R,.

The situation of a point P is characterized by the following relations:

I = Va_ Val
a ra ’
where:
Vay=—uV, . . . . ... ... (112.6)
and 7, = cot « = internal anode resistance, thus:
V vV v
Iaz—“;:-"___"=_ﬂ+svy, ..... .. (113.6)

where S = transconductance of the tube.
‘It can be seen from the characteristics that the cut-off gnd voltage
E, is dependent on the value of Vj, viz.

Ve=—uE,. . . . . . .. ... (1146)
(compare expr. 112.6).

If the anode load is a pure resistance, then dynamic operating con-
ditions will all be situated on the load line L. In practice, however,
some stray capacitance will always be present, and at steep changes
of grid voltage the operating point can change to such values that,
temporarily, it will nolonger
be situated on the load line. r Ym0 -1 -2 -3 -4
It can be assumed that a T
static condition exists with
P as the operating point of Q
the tube (see fig. 46.6), and
also that the grid voltage ,
falls below the cut-off value L
in a time that is small com- T v —y
pared with the time constant
in the anode circuit (anode
load resistance times anode stray capacitance). The anode current will
suddenly become zero, but the anode voltage cannot change to its final
value Vj at the same rate, and the operating point will trace the dotted
line I in the direction of the arrows. In the reverse case, when V, sud-
denly changes to zero, the operating point P will trace the dotted line II
in the direction of the arrows.

Fig. 46-6.
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Fundamental treatment of electron tubes as switching elements 8

If, in general, an anode load impedance Z, is present, then the values
of I, and V, in the dynamic conditions arising from changes in grid
voltage V, will be determined by expression (113.6) and the following
relation:

Veg—Ve=2JI, . . . . . ... (115.6)
Eliminating V, gives an expression for I o

7
I, =
T+ Z,

(V,—E), . ..... (116.6)

in which relation (114.6) has also been substituted.

Once I, is known, V, can be determined from expr. (115.6).

If a pure resistance represents the anode load, then Z, = R,, and
the anode current will be:

and the anode voltage:

- _F
Va“ 'a+Ra(¢c av)

If a parallel capacitance is to be considered across R,, then:

where T, = R,C,, when C, is the total output capacitance of the tube
(including wiring capacitance). Now Z, is an operational impedance,
where p denotes the usual symbol for derivation with respect to time.
Substituting Z, from expr. (119.6) into expr. (116.6) gives:

__#(+TP)
* L + Ra + raTap

(Vc_' Ec) s

or:
b 1+Tp
I = —E . (120.6
a 'a + Ra 1 + AaTaP (Vﬂ c) ’ ( )
where:
r
= . 121.6
b= 3R, (1219
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6.2 _ The anode circuit

When V, is a known function of time, equation (120.6) can be solved
with operational calculus methods, as previously discussed. It must be
remembered, however, that for y
values of V, smaller than E,,
the tube is in the cut-off state f
and no anode current at all flows. ¢
So changes of ¥V, at wvalues
V, < E, have no influence in g
the anode circuit. Consequently,
only values of ¥V, > E, or values
of V,—E,> 0 will cause va- -%
riations in anode current ac-
cording to expr. 120.6.

For example, if V, is given by Fig. 47-6.
the time function:

(see fig. 47.6).
Then a period of time from ¢ = 0 until ¢ = ¢, elapses before V, reaches
a value E,, and this instant ¢, is given by:

E,=—V,etT
So:
V,—E, = —V, (T — e/,
or: |
V,— E, = —Vye T (e"t—1IT —1),
or:
V,—E,=E (e"T—1), .. .. ... (1224.6)

where T = f—1,, a new time-scale having its zero point at the instant
when V,— E, becomes positive.

The change of the anode current with time will be determined by
the expressions (120.6) and (1224.6):

—:“Ec 1+ Tap

= 1——_7/ 123
=R TraTe ) (123.9)

This can be solved by the methods treated in section 5, viz. either
by applying the superposition theorem (expr. 28.5) or by “translating”
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Fundamental treatment of electron tubes as switching elements 6

the time function 1 —¢=*7 into the corresponding p-function

according to expr. (15.5). I+ Tp
The latter method is the quickest and will be followed here.
Then expr. (123.6) can be written:

I = VB 1+Tap
Tt + R, (14 4,Tp) (14 Tp)’

(124.6)

where —uE, is substituted by Vj, according to (114.6).
The p-function can be split up in two partial fractions, giving:
7 — Vs 1
* 7,.4+R, T—2,T,

1 1
l(l— ) T,,m + (T—T,) m] . (125.6)

Transforming these p-functions back again into time functions yields:

Vs (1—2)T T—T }
J = 1 — "% CptTy "8 ,aT] 126.6
s ra—}-Ra[ T—aT, T—iT.° (126.6)

The final value of I, (for t= infinite), will be:

Vg

=R

corresponding to the operating point Q in fig. 46.6. If the time constant
T of the grid voltage change is the same as the anode circuit time con-
stant T,, then expr. (126.6) simplifies to:

I

Vg
= —_— MuTa .
. ra+Ra[] e J ...... (127.6)

The corresponding anode voltage change would be, according to
(115.6) and (119.6):

I, expressed as a p-function, can be found from (125.6), remem-
bering that T was equated to T,:

I,=_"z 1
v+ R, 1+ AT
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6.2 The anode circuit

From (128.6) and (129.6):

1 1
V,= Vs 1“(1_"1“)1+T,,1>'1+1,,T,,p]' ... (130.6)

This can again be solved by splitting the p-function into partial
fractions:

[ 1 1
V,=Vz|l — e :
¢ B L + 10 ] + ZGTGP l + Tup:l (]31 6)

Translating back into a time function:

V,= Vs Ua——aae~7/"afa+e—f/n]. L. (1326)

The foregoing treatment showed the derivation of the anode current
and voltage changes caused by a positive-going grid voltage change,
starting below cut-off (see fig. 47.6) y
and expression 122.6). The electron
tube can be represented as a switch f
that is closed. The reverse case will
now be considered, wviz. the in-
fluence of a negative-going grid
voltage (the switch is opened). It
will be assumed that the grid
voltage is zero for t < 0, and that -ybl-—--o T _
no transients of a former change
remain. The change of the grid
voltage V, can be represented by fig. 48.6 and by the following ex-
pression:

Ec"_ —————————

Fig. 48-6.

V,=—Vo(1—e¥T) . . . . . ... (133.6)

This case of switching-off a tube is more complicated than the reverse.
Depending on the values of ¥, and the time constant T from expression
(133.6), several particular cases must be distinguished. In order to make
this clear, it is best to start with two extreme cases.

Let it first be assumed that the time constant T, in the anode circuit
is very much larger than that of the grid voltage change T.

If then V, has a value that exceeds | E, !, the tube is already cut
off (I, = 0) before the anode voltage has had any opportunity to change
its value appreciably. To a good approximation, the response of the
anode circuit will be the same as to a step-shaped input current which
is of equal magnitude but opposite in sign to the constant current [,
that was flowing in the anode circuit before the change in grid voltage
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Fundamental treatment of electron tubes as switching elements 6

commenced (for times ¢ < 0). So, for times ¢ <0, the voltage drop
across the anode circuit is R, . I 4, .o being the constant anode current
at V,=0and t<0.

When the tube is suddenly cut off, this voltage drop tends to ap-
proach zero according to an exponential function with a time constant
T,= R,C, (R,= anode load resistor, C, = total anode capacitance
across R,). In other words: the anode voltage will be for £ = 0:

V() = Vs— RIyetTa . . . . . . (1346)

The path of the operating point in the I, -V, characteristics will
be as indicated by the dotted line in fig. 49.6, where L represents the
static load line corresponding to the
anode load resistor R,.

Another extreme case is that
where T > T, If there were no
parallel  capacitance at all across
R,, the working point would be
shifted from the intersection of L
and the I,-V, characteristic at
V,=0 in fig. 49.6 along the
loadline down to V. Between
these cases are many other inter-
mediate possibilities. The static con-
dition for times ¢ < 0 is characterized by:

VaO

= ... (135.6)

Ia

!

Fig. 49-6.

If AV, denotes in general the change in V, taking place for { =0,
then an anode current change 41, will be caused, given by the relation

14
ar, =AY FwrdVs o (136.6)

7a

The change in voltage across the anode circuit impedance Z, is given
by Z,A4I,, and this must be equal to the change in anode voltage but
opposite in sign:

AvV,=—ZAI,. . . . . . . . . . . (137.6)
Substituting (136.6) gives:

S _uAV, . . .. ... (1386)
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6.2 The anode circuit

Z, is the parallel combination of the resistance R, and the capacitance
C,, so:

Substituting in (138.6) gives:
R 1

A [ - II A [ e e 140.6
¢ Ra + ’a 1 + T‘U P v’ ( )

T‘D et Raca . 141.6

= f e e e e ( )

If AV, is supposed to be as represented by expression (133.6), then
the operational form in which 4V, can be expressed is as follows:

_ wVeR, 11
R, 1+ T p1+Tp
Transformed into a time funetion, this expression will be:
'R,
R, + 7,

av,

AV, = uV, 1 — e — A (T —e~M)| . . (143.6)

where:

T,
A= Top (144.6)

Now, the total anode voltage will be the sum of the initial steady
state value V, and the transient value AV

Viol) =V +A4V,. . . . . . . .. (145.6)

The anode current decreases from the initial steady state value I, to
zero. The instant ¢ = ¢, at which it reaches zero is fixed by the condition:

Volt) +uV,t)=0. .. ... ... (146.6)

Substituting expressions (145.6), (143.6) and (133.6) gives an equation
for determining ¢;:

R -
VaO + ”VO R —'j ’ 1 —"8_“/T — A (e—‘l/ru J—— e"n/T) —

—uVo(l—etTy=0. . . . . . . ... .. ... o (i47.6)
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or:

Ta (] —gtimy R,
Ra + 7,

Ra + rfl.

A general solution for ¢ will be difficult to derive, each practical
case being considered individually and then solved for example by
graphical methods.

A few special cases can be found directly, for example that already
mentioned, where T <€ T,. Then it can be derived that:

Ve — Ve A (T — Ty = 0,

— A (e_t/r,._e_t/r) A eHT — 1,

and consequently 4V, =0 at t=¢, The grid voltage changes so
rapidly that the anode voltage cannot follow because of its much
larger time constant. Then condition (147.6) simplifies to:

Vi —uVo (1 — ) =0,

or:

. I/
tlz-—Tln(l—MI"/") .. (486)
: 0

There is only a real solution for ¢ if:

VaO

<L
#Vo

%4
Now the value —° represents the cut-off grid voltage of the tube

at an anode voltage V. The characteristic corresponding with this
cut-off grid voltage is represented by the dash-dot line in fig. 49.6.
It is clear that V, must be larger than this cut-off value. However,
when ¥, does not exceed the absolute value of E,, the cut-off voltage
at an anode voltage equal to the supply voltage Vj, then the tube will,
after an initial cut-off, sooner or later again become conducting as the
anode voltage rises and tends to a final value ¥V, when no anode
current flows. As soon as V, reaches a value —uV, (f), then anode
current starts to flow again. This lowers the rate of increase of ¥V, and
it may be_expected that gradually the anode voltage will tend to its
final value uV,, with the operating point of the tube at the intersection
of the static loadline and the grid voltage characteristic of value —V.

This method of switching a tube will, however, not be frequently
used in practice. Generally, the tube will have to be cut off rapidly
and definitely, so that V, will have to be larger than E, -
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6.2 The anode circuit

Another extreme case occurs when T, <€ T, so that the quantity 4
(see expr. (144.6) is very small and expr. (147.6) simplifies to:

ra
Vo —#Vo g (1= =0,
or.
_ R 4
z,=——T1n(1—“—+’—“ —°) (149.6)
ru ‘uVO

To have a real value of ¢, in other words to reach a real cut-off con-
dition, the relation

ML
ra /‘VO -
must be fulfilled, or:
R |4
Vo g a + ra a0 ,
o u
or:
14
Vo= —(=|E,l)
K .

6.2.2. PENTODES
The idealized anode current — anode voltage characteristics at a
given screen grid voltage

Io

for a pentode are repre- T L
sented in fig. 50.6. The \

. . . K i)
main deviations from this -+ ——— Vgy=—1
idealized form are rounded Ly \ ! -2
edges at the left. \é» \ = ! -3

At low values of the \;/' V“"
anode voltage V,, all char- ﬁ \\ ¥
acteristics converge approx- <
imately into one steep line a \ Vo, =Ec
through the origin of the 0 B,y
system of coordinates. The Fig. 50-6.

reverse of the slope of
this “bottoming”’ line is denoted by 7,:

7, = cot « (see fig. 50.6) . . . . . . . (150.6)
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The discontinuity of the characteristics at the ‘“knee” complicates
the response of the pentode to sudden changes in voltage at the control
grid. If, for instance, the tube has been cut-off for a long period, then
its anode voltage will be equal to the supply voltage V. If then the
control-grid voltage V,, is suddenly raised to a value above the cut-off
voltage E,, say —I1 volt, the anode current suddenly assumes a value
corresponding to the characteristic
—t
gy p— for V, = —1 volt.
Y, (t) If the time constant of the anode
Ee—1—— - circuit is large, the change in anode
voltage will be very slow, compared
with this sudden increase in current.
LY P — The operating point of the tube will
travel along the curve indicated
by arrows in fig. 50.6, and finally
reach a steady state at point P, if

0 the anode load resistance R, is

small enough to correspond with

v the static loadline L,.
w If the change of V, was step-
VGT shaped, then the change of I, will be
of similar shape. The anode voltage

0 - V, will be an exponential curve

Fig. 51-6. starting at a value ¥, and tending

‘ to a final value corresponding with

the operating point P, with a time constant R,C,. These waveforms
are represented in fig. 51.6.

However, when the anode load resistance R, happens to be large
enough to correspond with loadline L, of fig. 50.6, then the final operating
point will be P, Before this point is reached, the ‘“kneepoint” K is
passed, and at that instant a discontinuity occurs.

Until this instant, the anode current is constant and independent
of the anode voltage. From this instant onwards, however, the anode

-current decreases proportionately to the anode voltage, the relation
being I, = V, tna, or, according to (150.6):

$<

I

I,=—% .. ......... (15.6)

This can be taken into account by the sudden switching of a resistance
7, between the anode and cathode of the pentode.

70



6.2 The anode circuit

Referring to fig. 52.6, the first of two possible cases is loadline L,,
giving a final operating point P, when the pentode receives a positive
voltage step at its control grid that jumps from a value below cut-off
to the value V,, corresponding to an anode current [,

I
) L3 L2 L1
Ps K NG
Iao [~ A ' V=Yg,
_____ Pl |
Tep i | [
| P! '
' | : |
]
| ol ;
\ 0 |
] (I |
| (. |
1 | 1
0 Yp, Yp Vax Vap, W,y
Fig.. 52-6.

Figure 51.6 gives the shape of the anode voltage, which is in mathe-
matical form as follows:"

V. () = Vg— IR (1 —eT), . . . . . (152.6)

if the voltage step at the grid occurs at the instant ¢ = 0.

T, = R,C, = time constant of anode impedance.

The second possibility is loadline L, whilst loadline L, represents
the border case. For this case, expr. (157.6) would still be valid. With
the case of L, a discontinuity occurs at the instant ¢ =1, when V,
reaches the value

Vott)=Vae=Tloo?a - - - - - ... (153.)

The final value of equation (152.6) which is valid only for £ =4,
would be V, (0) = V,,, corresponding to a virtual operating point Ps.
However, the limiting operating point will be P, corresponding to

V, () = V,, The current will then be:
Liy=Vaplta - -+« « -« o - o« - (154.6)
Moreover:
Vg—V

R . (155.6)
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Combining (154.6) and (155.6) gives:

[

Vo=V b
O (156.6)
From expressions (152.6) and (153.6) it follows:
Togro = Vg —1I4 R, (1 —e"iTa),
or:
I, R
t,=T,In R (157.6)

Iao (Ra + ra) - VB

From fig. 52.6 it can be seen that V= I, (R,, + 7,), where R,
corresponds to loadline L,. Then, ¢, = oo.

For Joadline L, it can be seen that I 4R,y = V3 — V, , and I ao’a = Vars
thus:

VB e Vapl
V,—V

apl

t,=T,In

As Vg < V,p, there is no real value of ¢ in that case.
For loadline L,, however, it can be written:

~T.In L;‘f«_vs
b V— Va
and now:
Vuk > Vano
so ¢, has a real finite value.
Zq Zf(
+ +
/ C":P_VB G
Ia, va ‘/L r
- P
Fig. 53-6. Fig. 54-6.

For times ¢ <4, the value of the anode voltage is given by expression
(152.6), and the anode circuit can be represented by the diagram of
fig. 53.6. The current source I, is a step-function,
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6.2 The anode circuit

I,=Ig=s(Veo—E) . . .. ... (158.6)

From the instant ¢ ==f, onwards, a resistance 7, is to be shunted
across the current source I, and the circuit can be represented by
the diagram of fig. 54.6. The instant ¢ = ¢, will be considered as the
origin of a new time scale 1 =0 (v =¢—1,).

The anode voltage V, (r) in this new time-scale has an intial value

Vo(0) = Vo= Ig7, (sec 153.6) . . . . . . . . (159.6)

The final value will be:

LI ... (160.6)

The anode voltage changes from its initial value to its final value
with a time constant: '

7.R
T=-22_C,, . ... .. ... 161.6
R,+r, ° : ( )
and will be represented by the time-function:
Va (t) = Va (w) + (Vak_ Va (w)) e_T/T oo (1626)
Vot
! Lt
‘% !
I
ao_f\
You = Log—
|
|
Vop— |
el T~ i
‘GPJ | |
I l
] . 1 -
0 1 —t 0 —st
Fig. 5§5-6. Fig. 56-6.
The values of V, (o) and V,,, substituted in (162.6) gives:
ra
Voldhm iy |Vo— (Vo — Lo (Ra+ 70} e™|  (1636)

This is valid for ¢ = ¢ (v = 0), whilst for 0 < ¢ < ¢, expr. (152.6) holds:
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V() = VeI R,(1—e) . . . . . (152.6)

The anode voltage is continuous at ¢ = #;, not only in its value, but
also, as can easily be checked, in its first derivative with respect to time.

The shape of V, () is sketched in fig. 55.6, whilst the anode current
I, as a function of time is represented in fig. 56.6. '

So far, the influence of a positive-going voltage step at the control
grid of a pentode on the anode circuit has been treated.

The response to a negative-going control grid voltage step will next
be considered. It is again assumed that the anode load impedance is the
parallel combination of a resistance R, and a capacitance C,, giving
a time constant T, = C,R,. Furthermore no effects of any foregoing
transients are supposed to be present at the moment ¢{ = 0 when the
voltage step at the control grid occurs. This grid voltage is V , for times
t<0.

At t = 0 it jumps to a value below cut-off causing the anode current
to become suddenly zero.

The capacitance C, now starts discharging from the initial voltage
value I,R, to its final value of zero according to an exponential time
function with a time constant T, = R,C,.

Thus the change in anode voltage will be:

nm;m—g&wm”...g.(mm

This equation is valid no matter, whether the initial current I, cor-
responds to the operation point P (loadline L) or P, (loadline L;) in
fig. 52.6.
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7. THE MULTIVIBRATOR FAMILY

7.1. INTRODUCTION

The multivibrator principle is commonly used for generating or
shaping pulses, pulse frequency-dividing and similar functions. As
mentioned at the end of section 4, three types of multivibrators can
be distinguished. First the bistable multivibrator, frequently called the
Eccles Jordan flip-flop circuit. This offers a suitable and much used
means of dividing the number of pulses per unit time by the factor two.
By combining several binary dividers in cascade, division of the input
pulse repetition frequency by any power of two may be acccmplished.
Feedback may be suitably applied between cascaded flip-flops for
division. Thus the counting of pulses may be accomplished in numerical
systems other than the binary one. This will often be the decimal system,
which is familiar to every one who has studied arithmatic.

It will not be surprising, therefore, that the bi-stable multivibrator
is a very important basic element in modern computing devices. The
number of tubes used in such applications is innumerable, and special
types mostly in the form of a double triode have been developed by
several manufacturers.

In fact, it has been the development of a double triode for computer
purposes that caused the need for more exact knowledge of the be-
haviour of tubes in flip-flop circuits, and this initiated the author’s
investigations of the transient phenomena in a bi-stable multivibrator.
The theoretical results enabled us to trace the influence of tube character-
istics on the behaviour of the flip-flop circuit, thus giving the tube
manufacturer valuable information as to how to design tubes which
will accomplish their specific tasks.

The bi-stable multivibrator will be treated extensively. Once this
circuit had been analysed, it was a simpler matter to analyse the mo-
nostable multivibrator, a second member of the multivibrator family,
in the same way. Among other applications, this type of switching
device is used for pulse shaping and delaying.

The third type, the astable or free-running multivibrator, is a self-
oscillating pulse (or sawtooth) generator needing no external triggering
signal for operation, in contrast to the two types already mentioned.
It is often fed, however, with external pulses, in order to synchronize
its frequency with a given frequency. The application of the astable
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The multivibrator family 7

multivibrator in television receivers is described by the author in his
book “Flywheel Synchronisation of Sawtooth Generators’’, monograph
2 of the series Television Receiver Design, Book VIIIB of Philips’
Technical Library.

In this book, only the frequency of the multivibrator signal and its
synchronization is dealt with. In the present book the waveform of
the astable multivibrator signals will also be considered, and the in-
fluence of the internal anode resistance of the tube on both frequenccy
and waveform will be included.

7.2. THE BI-STABLE MULTIVIBRATOR

The bi-stable multivibrator — or Eccles-Jordan flip-flop circusit —
incorporates two vacuum tubes which basically perform a switching operation.
This involves several sudden changes in the voltages and currents in the
network. An analysis of these transients is essential to obtain an insight
1nto the operation of bi-stable multivibrators in general and of the influence
of the tube characteristics in particular.

In the operation of the bi-stable multivibrator, two conditions can be
distinguished, namely the static condition at which one tube is conducting,
the other tube being cut off and all effects of previous trigger pulses
having died out, and the dynamic condition which commences as soon
as a trigger pulse is applied and ultimately leads to another static
condition at which the tube that was originally conducting is cut off,
whilst the tube that was originally cut off becomes conducting.

It will be clear that an investigation of the dynamic condition is of
particular interest, the switching speed and the triggering sensitivity of
the multivibrator being determined thereby. By applying a step-by-step
method and subdividing the dynamic condition into the following three
phases, its analysis is simplified.

(a) The first phase commences at the instant £ = 0 at which the trigger
pulse is applied. Tube [ is assumed to be conducting prior to this
instant, tube II then being cut off. Conditions are assumed to be
such that tube I is immediately cut off, tube I/ remaining in the
cut-off condition during this phase. The first phase is therefore
characterized by the fact that the circuit may be considered as a
passive network.

{6) The second phase commences at the instant ¢ = ¢, at which tube I],
which was originally cut off, becomes conducting. This phase con-
tinues until the instant ¢,, at which grid current starts to flow in
the conducting tube II.
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7.2 The bi-stable multivibrator

(c) The third phase, commencing at the instant ¢, continues until
the transients have died out.

7.2.1. FUNDAMENTAL CIRCUIT
Fig. 1.7 shows the fundamental circuit of the bi-stable multivibrator.
It is assumed that both the positive H.T. supply 4V’ and the negative

77324

-y Fig. 2-7.
Input voltage V, consisting of a
Fig. 1-7. negative-going trapezoidal pulse
Fundamental circuit of the bi-stable applied to the multivibrator cir-
multivibrator. cuit shown in fig. 1-7.

H.T. supply —V"” have a negligibly low internal resistance. This also
applies to the input voltage source V. This input voltage is assumed
to be a negative-going trapezoidal pulse as represented in fig. 2.7.

The multivibrator should be triggered, i.e. it should be switched
over from condition 1 in which tube I is conducting and tube I is cut
off, to condition 2 in which [ is cut off and II is conducting, by the
negative-going flank of this pulse occurring between f = 0 and ¢ = {,.
With the exception of the anode-to-grid capacitance C,, of the tubes,
the stray capacitances, including interelectrode capacitances, can easily
be taken into account.

"Fig. 3.7 represents the circuit for condition 1, including the stray
capacitances, which are indicated by broken lines. Since the left-hand
tube I is taken to be conducting in condition 1, the internal anode
resistance 7, between the anode a, and cathode (earth potential) and
the internal grid resistance 7, between the grid g, and cathode have
been incorporated, this grid being assumed to draw current.

If the anode-to-grid capacitances C,,, and C,,, were absent, it would
be possible to split up the circuit into two parts which could be con-
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The multivibrator family 7

sidered separately with regard to their response to an input pulse V,.
The interaction between both halves of the circuit due to these anode-
to-grid capacitances, however, renders the problem more complicated,

’:1;5: - GIL_}
Ra
91§ !
. Y Ro .1, ro AT =#C°I
3 o Y RtV
+V 191 N ]
. -=d

77325

Fig. 3-7.
Equivalent circuit of the bi-stable multivibrator shown
in fig. 1-7 in condition 1 (tube I conducting, tube IT
cut off). It should be recognized that the left-hand
and right-hand halves of this equivalent circuit do
not correspond to those of the circuit shown in fig. 1-7.

the more so as the influence of these capacitances is not always the
same at all phases of the trigger process. When one or both tubes are
conducting, a kind of Miller effect will be experienced. This may be
considered as introducing additional input capacitance at the grid of
the tubes by an amount (1 4 G) C,,, where G is an “amplification factor”
determined by the ratio of the slope of the anode voltage signal to
that of the grid voltage signal 4).

For a non-conducting tube, the effect of C,, will nearly be equivalent
to the presence of a capacitive voltage divider between anode and grid,
and will influence signals with a steep slope. For tube I this can be
taken into account by the factor:

Cc

b, = — T Y
I C + C + C C’Ca“ ’ . ( )
an o ot c¥cC.
and for tube II by the factor:
by = Ca" e
Cou + Co + Cou + CCa
agtt ¢ on m‘;

These factors represent the fraction of the anode voltage variation
that is transmitted to the grid of the same tube due to the anode-to-
grid capacitance of this tube.

For the time being, the influence of the anode-to-grid capacitances

‘) M.IT. Radiation Lab. Series, Vol. 19, Waveforms, p. 174.
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7.2 The bi-stable multivibrator

will be disregarded. In some cases of special interest, which are dealt
with in a subsequent section, a correction’ will be introduced to take
this influence into account.

7.2.2. STATIC CONDITION

To determine the static condition, in which all transients due to
previous triggering of the multivibrator may be considered to have
died out, the capacitances may be omitted from the. circuit. Its two
halves can then be represented by the diagrams shown in fig. 4.7, fig. 4.74

g R ar

Ry ; Ra
- Iyo 1 279 +
V4 T v!
+ -

b 77326

Fig. 4-7.
The two halves of the equivalent circuit shown in fig.
3-7 in the static condition; fig. 4-7a corresponds to the
left-hand part and fig. 4-7b to the right-hand part of
this equivalent circuit.

corresponding to the left-hand part and fig. 4.76 to the right-hand
part of fig. 3.7.
In both circuits a constant current

V4V

I-_—"—R:—:R——-———_{-Ra.'...

will always be present as a result of the two H.T. supply sources +V’
and —V". ’

If no grid current I,, flows in the circuit of fig. 4.7b, the voltage drop
produced across the resistance R, by the current I is:

R

VR,,=R,.I=m.(V’+ VN,
or, from eq. (17.5): '
Vem=¢ V' +V7). . ... ... .. 4.7
Together with the voltage source —V”, this gives a total grid voltage:
Va=¢eV —(1—¢g)V". . . . .. .. (6.7)

If this value is sufficiently negative, the grid current will be zero.
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The multivibrator family 7

In practice, the conducting tube is, however, usually driven beyond
the point at which grid current starts to flow. Expression (5.7) will there-
fore be assumed to be positive. It depends on the type of tube, and more
particularly on its grid current versus grid voltage characteristic, i.e.
on the value of ,, what value the potential between grid and cathode
will assume (compare section 6.1). It will usually be of the order of a
few volts or even less. No great error will therefore be introduced by
assuming the grid-to-cathode voltage to be zero. In so doing, it becomes
possible to determine the grid current I,, which flows through the
resistance R, shunted across the resistances R and R, connected in
series. The voltage drop produced by this current is:

R,(R+ R,
- nO'm_ Iao(l—b‘a)Ro-

The positive voltage V,, given by eq. (5.7) must be compensated by
this voltage drop; hence:

Too (1 —¢) Ry =e, V' — (1 —¢) V",

or:
e,V — (1 —¢g,) V"
I — g [ . .
a0 (1 . ev) Rg (6 7)
In this case, the static grid voltage of tube I is:
Vae=0, . . . . . ... .. .. (17
whilst the anode voltage of tube II is:
R
Vaie=—=——->.V". . . . . . . .. N
and R + Ra ' (8 )

In the circuit shown in fig. 4.7a, the same current I (eq. (3.7)) is always
present, whilst the internal resistance 7, is, moreover, traversed by
the anode current I, In addition to the voltage drop caused by the
current I given by eq. (3.7), a voltage drop —¢,R I, will be produced
by I, across R, so that the total grid voltage will be:

Voo =86V —(1—¢&) V' —¢eRI,, . . . . . (97)
Because of the currents I and I, the total anode voltage of tube I is:
Vao=(1—¢&) V' —¢&, V"' —¢, (R, + R) I, . . (10.7)

¢, being given by eq. (17.5).
I, can be evaluated from the tube characteristics by determining
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7.2 The bi-stable multivibrator

the point of intersection of the I, =/ (V,) characteristic at V, =0
and the load line for the specified values of R, and V. I, can also be
expressed in terms of 7,, since, according to fig. 4.7a, Vo =74 Lo
From eq. (10.7):

(1 —e,) V' —e,V"
ea(R, + R + 70

The anode and grid voltages of both tubes in the static condition have
now been derived and are given by eqs (7.7), (8.7), (9.7) and (10.7).
They are the initial conditions for the transient phenomena which
occur after an input trigger pulse has been applied to both grids. These
transients must be superimposed on the static voltages. There is no
need to consider the H.T. voltages when calculating the transients, the
influence of these voltages being included in the static conditions. The
H.T. voltages are therefore omitted in the circuits which are used for
determining the dynamic conditions of the bi-stable multivibrator.

L= . (11.7)

7.2:3. DYNAMIC CONDITION

From the instant ¢ = 0 onwards, ¥, is no longer zero, but varies
according to the function represented in fig. 2.7, which may be for-
mulated as follows:

V,=0 for t <0
V,=—atfor 0S4
V,=—V, for t > {

,...a2m

oy~

where a = Vft,.

For the time being, the influence of the positive-going rear flank of V,
will not be considered. The amplitude V, of the pulse is assumed to be
large enough to ensure that the voltage V; traverses the entire grid
base of the conducting tube I within a fraction of the time of rise ¢,.
This will usually be the case in practice, because the cut-off voltage of
the conducting tube will be fairly small as a result. of its low anode
voltage. The anode current [, will therefore be assumed to drop to
sero at the instant ¢ = 0; in other words: the internal resistance 7, is
assumed to become suddenly infinitely large at this instant.

According to the principles treated in Section 2, this discontinuity
in the circuit can be accounted for by introducing a current source 1,
between the anode a, and cathode (earth), its polarity being such that
the current I, previously flowing beween a, and cathode through
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The multivibrator family 7

the internal resistance 7, is compensated. Hence, the left-hand part of
the circuit shown in fig. 3.7 will be as depicted in fig. 5.7.

It will be clear that the same reasoning is applicable to the grid current
I,, which flows in the right-hand part of the circuit shown in fig. 3.7,

Ce gr i ar
I J. Liann~ e
R
’ -F" Ro R Caf om0
é —_— Iao
77327
Fig. 5-7. Fig. 6-7.
Left-hand part of the equivalent Right-hand part of the equivalent
circuit shown in fig. 3-7 in the first circuit shown in fig. 3-7 in the
phase of the dynamic condition. The first phase of the dynamic con-
current source [, introduced between dition. The current source I,
the anode a: and earth compensates introduced between the grid g:
the current I,, previously flowing and earth compensates the current
through the internal resistance 7,. I,, previously flowing through the

internal grid resistance 7,.

the approximation being even better because a much smaller decrease
of the grid potential is sufficient to completely suppress the grid current
(see Section 6.1.2). In the right-hand part of this circuit, a current step
function I,, should therefore be introduced as depicted in fig. 6.7.

The circuits of figs 5.7 and 6.7 can be further simplified by trans-
forming the voltage source V; with the capacitance C, connected in
series into a current source I; with the capacitance C, connected in
parallel according to Thévenin’'s theorem, so that:

v,

I,=C,.—
{ Cc dt

(13.7)

In that case: f

I,=0fort <0 )
I, = —aC, for 0 <t <t N V% )
I.,=0for t> ¢
I, is a rectangular, negative-going pulse with a duration of ¢, seconds
and an amplitude «C,, or the superposition of a negatlve—gomg current
step —aC, at the instant ¢ = 0, which will be denoted by —aC,U (¢),

and a positive-going current step +aC, at the instant ¢ = ¢, whlch
will be denoted by +-aC, U (t — ¢,).
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7.2 The bi-stable multivibrator

The coupling capacitance C, is now connected in parallel with the
input capacitances C, and C,,. The sums C, + C, and C,+ C,,
will be denoted by C, and C, re-
spectively. Both circuits of figs 5.7 and
6.7 have now been reduced to the
simplified circuit shown in fig. 7.7,
which is identical to that shown in
fig. 3.5.

. In the right-hand part of the multi-

. . Fig. 7-7.
v1brato¥ shown in ﬁg. 3.7 (repfesented by Simplification: of the circuits
the equivalent circuit shown in fig. 5.7), shown in figs. 5-7 and 6-7
current steps + I,OU (t), —aC,U (t) according to Thévenin’s the-

and —aC,U (t —#,) must be introduced orem:

at terminals P and Q. The response of a network to these current
steps has been calculated in Section 5 and is given by eq. (215.5),
i.e. the voltage across P-Q or the grid voltage V, of tube I.

In order to calculate the anode voltage V,,, of tube II, the operational
transimpedance from P-Q to R-S must be determined by an operational
function similar to that given by eq. (18.5).

In the left-hand part of the multivibrator (see fig. 5.7), current steps
—aC,U (f) and +aC,U (t —¢,) must be introduced at terminals P and Q,
and a current step I, U (¢) at terminals R and S.

In order to calculate the grid voltage V,,, of tube II and the anode
voltage V,, of tube I, the operational impedances between P-Q and
R-S and the operational transimpedance from R-S to P-Q must be
determined. These various kinds of impedances all have a form similar
to that of eq. (18.5), their denominators being the same, the only differ-
ence being the constants R,, and A4 in the numerator.

7.2.3.1. First phase of the dynamic condition

The slope and the amplitude of the trigger pulse V, are assumed
to be so high that immediately after this pulse has been applied to the
grids of the multivibrator tubes, both tubes are non-conducting, which
will as a rule be the case in practice. Both grid voltages then tend to a
final value, which is determined only by the H.T. supply voltages, i.e.
by the current I supplied by these voltage sources; see eq. (3.7) 8.

%) It should be recognized that from this instant onwards the circuit can be con-
sidered as a passive network, both tubes being non-conducting, contrary to
the switch-over condition of a free-running or astable multivibrator (Abraham
and Bloch type), where a regenerative action with both tubes conducting starts
as soon as the non-conducting tuhe reaches its cut-off point.
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The multivibrator family oy

According to eq. (5.7), this final value, which was assumed to be positive,
is g, V' — (1 —¢,) V"

Sooner or later the grid voltage of one of the tubes will rise beyond
the cut-off value, so that anode current will start to flow in this tube.
The successful operation of the M.V. depends on which of the two
tubes starts conducting. If it is the grid voltage of tube I that first
reaches the cut-off value, the switching action of the multivibrator will
be wrong, for in that case the initial static condition with tube I con-
ducting and tube II non-conducting will ultimately be re-established,
which is not the purpose in view. Conditions must therefore be chosen so
that the cut-off value of tube I7 is always reached before that of tube I.

The first phase of the dynamic condition of the multivibrator will
in any case be défined as that which covers the time interval between
the instant ¢ = 0, when the trigger pulse starts, and the instant at
which the grid voltage of one of the tubes reaches the cut-off value.

The derivation of the time functions which represent the anode and
grid voltages during this phase will not be given in full detail, since
it is intended to give only a general idea of the lines along which the
problem can be solved. The final results are dealt with at the end of
this Section. For the time being, the anode and grid voltages will be
represented by the following general formulae:

Val = Vgx (t) /

Val = Val (t)

Vin= Vo (¥ '\ (15.7)
Vax: = Van (t)

It will now be indicated how to ascertain which tube starts to draw
current first. In a conducfing friode, the relation between the anode
current I, and the anode voltage V, and the grid voltage V, is given by:
;= Yat ¥

a
4

. (16.7)
where 7, is the internal resistance and u is the amplification factor of
the tube. The cut-off value E,, of the grid voltage is now defined by
the condition I, =0 for V, = E_,; hence:

0= Vn + ,cho,

or:

1%
Ef=——" . . ... ... (110

co
I
By means of this relation, the instants ¢, and ¢, at which tubes I and I7
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7.2 The bi-stable multivibrator

respectively reach their cut-off point can be deter ained. For this purpose,
egs (17.7) and (15.7) are combined in the following relations:

1
for tube It V, (t) = ——.V, (), .. . . (187)
H
1
and for tube II: V, (t)= —— . Vo (ta) - - - . (19.7)
3

These conditions depend on various quantities, namely network
elements (resistances and capacitances), supply voltages (V' and V",
the time of rise of the trigger pulse (), the amplitude of this pulse (V)
and the tube characteristics I,, (which depends on the internal re-
sistance 7,) and u. It is rather cumbersome to investigate the influence
of these parameters on the values of ¢, and ¢,. The correct situation
is that at which ¢, < ¢, as the cut-off point of tube II will then be
reached first. A change in one of the above-mentioned quantities may
tesult in ¢, and ¢, assuming different values. If the changes are such
that ¢, decreases and ¢, increases, it will be all the better, but in the
reverse case there is a risk of #, becoming larger than ¢. This will result
in the multivibrator no longer operating correctly.

The expressions for the anode and grid voltages of both tubes are
therefore given below. They will be of particular importance in enabling
the practical conclusions to be drawn in a later section regarding the
way in which tube characteristics influence the trigger sensitivity of
the bi-stable multivibrator.

The time functions which represent the voltages at the anodes and
grids of the tubes are defined as follows. For 0 <t =1, the complete
expressions can be calculated, but the time interval #, is so small that
the exponential functions which constitute these expressions can be
represented with great accuracy by linear functions. The expressions
for ¢ > ¢, are also valid for ¢ = £,, so that the voltages for { =1¢, can
be determined from these functions. For 0 < ¢ < {4, the voltages vary
linearly with time between the initial static conditions and the calculated
values for ¢ = #,. The complete expressions will therefore be given only
for ¢t = ¢,

For tube [ (initially conducting):

Va=2¢V —(1—¢g) V"4

V
+ g(l —E,) Racc . 79 (e_Plt""" l) + ’EuV’ - (] _87) V"g Kett —
0

— %(1—8,) R,C,. -It/—" (e—Plo1) 4 &, V' —(1—2&,) V”%(l + K)et,  (20.7)
(1}
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The multivibrator family 7

and

Va=(—g) V' —e, V" +

+ ésaR,,Cc . ?. (et —1) P + (1 —¢,) R,,I,,OL% et —
0
Ve
— 18 RC =2 o — 1) (14 P) + (1—¢,) Rl (1 + L){ 9 (21.7)
(1

For tube II (initially non-conducting):
Van = saV, - (1 —8,) v’ +

v
+ 3(1 —¢&) RC,. t—" (e —1) K + a,RaIa(,Pg et —

0

~%—M&Q¥Mﬂm4m+m+wuﬂuw&w (22.7)
(1]
and

|4
+ea3R,Cc.t—°.(e“’l'a———1)+ % .V’—V”% Peti —

0 &

e Po—1) + & V’——V”% (1 + P)ye? . . (23.7)

70— ]—ey

For the values of ¢, and ¢, reference is made to eq. (17.5); for V', V",
R,, C,and R,, see fig. 1.7, and for V,and ¢, see fig. 2.7. The transients
are determined by two time constants, namely 1/p, and 1/p, (see egs
(188.5), (18¢.5), (194.5) and (195.5)), whilst:

k=P U AP (o ogs. 225) and (180.5), . (247)

bh—p,
p_t+Th) (for T see eq. (165)). . . . . (25.7)
Pl_p2

and
[ _tl+Dp)
2l
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7.2 The bi-stable multivibrator

where:

D= R T, + R, T (for T and T,, see eq. (16.5)) (27.7)
—R—{-R,' tRI R o q. . .

7.2.3.2. Second and third phase of the dynamic condition

Disregarding the case in which the grid voltage of tube I reaches

the cut-off value first, if will be
assumed that conditions are cho-
sen so that the required flip-flop
operation is obtained. At a cer-
tain instant ¢ = {,, determined
by eq. (19.7), tube II reaches a
condition at which anode current
starts to flow. This instant is
the commencement of the second
phase of the dynamic condition.
For the new transients which
now start, this instant ¢={;
will be taken as the zero point
of a new time scale.

V,. now traverses the grid
base of tube II according to an
exponential time function (see
fig. 8.7). It is assumed that the
part of this exponential function
that is situated within the grid
base is such a small fraction of
the total curve that it may
be considered as a linear function
of time, 1.e.

V,.=at+ E, .. (287)

I 110
jd

~>Yor

\‘ﬁz(f}

Fig. 8-7.
Grid-voltage variation V,u and cor-

77330

responding anode current variation

I,, as functions of time during the
second phase of the dynamic conditions
at which tube II becomes conducting.
E,, represents the cut-off voltage
of tube II.

For ¢ =1, the grid voltage becomes zero; hence:

at, = —E,, . (29.7)
or, from eq. (17.7):
4
at, =—2 . . ... .. ....(307
u
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The multivibrator family 7

where E_, denotes the cut-off voltage corresponding to the anode
voltage V,, of tube II which is present at the instant ¢ =0 (i.e. £, in
the time scale of the first dynamic phase).

For values of V,,, situated within the grid base, the anode current
of tube I is defined by:

.Van + ,uVaq g
_r .o

I =

a

(31.7)

a

V.. should now be defined as a function of time. It is therefore
necessary to derive another relation between I, and V,,. Now the
voltage drop across the anode impedance Z,;, i.e. the impedance be-
tween terminals R and S in fig. 7.7, is given bv:

V' V=20, . . .. ... (327

at” ar

when the constant current I (eq. (3.7)) through the voltage divider
R,, R, R, is neglected. This current, however, results in the anode voltage
at I, = 0 differing from the H.T. supply voltage V’, its value being
an amount (V' + V") R,/(R, + R + R,) lower than V'. Eq. (32.7)
should therefore be replaced by:

R
Vi— " (Vi VY—-V  =2Z1I,
Rg—i—R-{—‘Ra ( T ) al1 ait a
or:
(1 —e) V' —e V" —Vou=Zoly . . . . . . (337)

This includes the assumption that the transients occurring in the
anode voltage of tube IT due to the first phase of the dynamic condition,
i.e. the exponential terms of eq. (23.7), have practically disappeared
for ¢ = ¢,,. Eq. (33.7) can be written: :

Vi~ Vau=Zada - - . . . . . .(347)

where:
V=0—¢) V' —¢gV".
From eqs. (34.7) and (31.7):

Vao + “ an
4

1+Z:¢

Vao - Van = (357)
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7.2 The bi-stable multivibrator

Substitution of V,; by the value given by eq. (28.7) gives:
Vot #Ee + pat

| 4+ 2@
*z.

VaO - Van =

or, since, according to egs (29.7) and (30.7), V, + wE,, = 0:
. pat

Vao— Van = - e e (36.7)
7
1 LS
+ Zai
Z,; is an operational impedance of the form:
1+ D
Zai= ai + 1) S R (377)
I + Bp + Ep?
where:
R,(R+ R
R, = - RER) (38.7)

“*" R, +R+ R/

and D, B and E are given by eqs (27.7), (185.5) and (18¢.5) respectively.
Combination of eqs (36.7) and (37.7) gives:

Ra:‘ . 1+DP

Vio— Veu = R+ , | TFp + G [mat], . . . (39.7)
where: '
R, Ve
i e 9
and:
G '« | E 306.7
= Ry B (398.7)

Eq. (39.7) can be calculated by the operational methods indicated
in Section 5, the final result being:

R,
Vou= —_— .
all Vao Rai "|" 7, a0
g 1+ 0 ¢
— X (l—et) + d—et) =t .. (40.7)
pstl ) P4t1 ( tl

Here eq. (30.7) has been introduced; 7, is the internal anode resistance
of the tube determined by the slope of the I, = f (V) characteristics,
whilst: :
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P4 (1 + Dpy)

- , 40a.7
Q 753*1’4 ( ¢ )

F 4G\
b= (1_V1_ﬁ) (400.7)

and: -

F 4G .

,54=_2_G.(1+ 1—5). L o)

The value of # can be determined from eq. (22.7) by the condition
that V,, =0 for t =¢, + ¢ =¢,.

Eq. (40.7) is valid for 0 <t <¢,. At the instant ¢ = ¢ in the time
scale of eq. (40.7), V,, becomes zero, and it is assumed that at this
instant (commencement of the third phase) grid current starts to flow
in tube IT to such an extent that V,, is kept rigorously constant at
the value zero. This implies another transient phenomenon, namely
sudden short-circuiting of the grid and cathode of the tube. It can be
accounted for by adding a new component:

Vin=—pa (t—t) . . . . . . .. (417

to the grid voltage. This gives rise to another term in the anode voltage
of a form similar to eq. (40.7), but shifted in time by ¢, seconds. The
superposition of these two components gives the following final ex-
pression for V,, at ¢ = 4;:

V - ra V Rm:
e —Iveai + ra ' “ Rai + ra '
140

Ve i (1 —e Py et —
p3t1 pd.tl

The transient voltages at the grid and anode of tube II have now
been derived for the complete triggering action. The grid voltage V,,
is given by eq. (22.7), valid for t, =t =¢, whilst V,, =0 for ¢ > ¢,.
The anode voltage V,, is given by eq. (23.7) for {, =t =¢,, by eq.
(32.7) for t,, =t = ¢, and by eq. (42.7) for ¢ > ¢,.

Tube I was assumed to be non-conducting during the first and second
phases of the triggering action and will therefore produce no new tran-
sients as a result of anode or grid current surges.

During the second phase, the grid voltage of tube I can be calculated
directly from the anode voltage of tube II, whilst the anode voltage
of tube I depends entirely on the grid voltage of tube II.
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7.2 The bi-stable multivibrator

’Fig. 7.7 reveals that V, is determined by a voltage divider circuit
between 4, and ,,. The operational impedance of C;, and R, connected
in parallel is:

z, =K & 437
=TT RCTITT (43.7)

Similarly, the operational impedance of C and R connected in parallel is:
R R

Z = = e ... (447
1+ RCp 1+4Tp (44.7)
It will be clear that:
= e Waud . - o o o 45.7
Vo= g Vel (45.7)
Hence, from eqs (43.7) and (44.7):
’ T—T,
Vo= BVt B 0 (Vad o 46)
s+ b
where:
R
= e e e e 46a.7
ﬂ Rg _;_ R’ ( 6a )
R
= T 465.7
ﬂy Ra + R ( )
and:
D =pT, + B,T (see eq. (27.7)). . . . . (46¢.7)

Eq. (46.7) demonstrates the well-known fact that voltage division
by means of two RC parallel circuits connected in series gives an un-
distorted copy of the input voltage, decreased according to the resistance
ratios, provided the time constants of the two RC-combinations are
equal. In that case T — T, = 0 (compare Section 6.1).

When T > T,, the voltage at g, will initially exceed its final value
(overshoot), whereas, when T < T,, this voltage will gradually increase
until the final value is reached without ever being exceeded.

It should be noted that in eq. (46.7) the value of V,, which should
be substituted must not contain the constant term ¥, the latter being
incorporated in the static conditions of V,. From eq. (46.7) it can be
calculated that, for (' ¢ <¢, (second phase of the dynamic condition):
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R.; T, ,,
ﬂg'R +r [ %p,,t, iDﬁa)g“—eM)"
! .E,gj__‘ T % gty
—0H O e g 0
T—T, { ©Q 1+ 0 ot
= '31+D1>3_1+Dp4+‘%“_6 ") t‘] - )

whilst for ¢ = ¢, (third phase of the dynamic condition):

R, B(T—T,) i o
R [Q %M 1(‘;—'1‘575'3)%‘ e
1 ﬂ (T __Z“a) % —_ e Otl dt _—
T—T, Q 140 ) D) poiiD
—8. T §’F+ 57, +Dp4+ 15 (1 — e/P) =i | 1}. (48.7)

To obtain the complete value of V,, in the second and the third phase,
these expressions must be added to eq. (20.7). In doing so, it should
be remembered that the zero point of the time scale of eqs (47.7) and
(48.7) corresponds to ¢ = ¢,; in the time scale of eq. (20.7).

The last voltage occurring in the second and third phases that should
be determined is V. It has already been shown that V', depends only
on V,,, which is entirely determined by eq. (22.7) until the instant
t =t,, when it drops to zero. For ¢ > ¢, V,, remains zero. This dis-
continuity can be accounted for by assuming a voltage of opposite
sign but equal to V,,; being present between g, and cathode from the
instant ¢ = ¢, onwards. Part of this voltage will be passed on to @, via
the voltage divider formed by R-C, R,-C, (see fig. 7.7), which gives:

z
= e o [Vauds o o o o o 49.7
al Za + Z [ yll]v ( )
where:
Z,= R, s e e e e (49a.7)
T+ T
and (see cq. (44.7)):
Z= R e e (49b.7)
14+ T9
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From eqs. (49.7), (494.7) and (495.7):

T-—-T,
Va= '}’aVau + ey - p 7 LVaII]’ e (50-7)
St
where:
Ye= R ¥R,
and: B .. (50a.7)
Y“RYR,

whilst T = RC, T, = R,C,, and, according to eq. (18a.5):
A =yT, + yaT.
By writing eq. (22.7):
Van=V + Viebtt + Vet . . . . ... (51.7)
where V, V, and V, are constants, it follows from eq. (50.7) that:
Va=—7dV —ysVie" %1 +y(T—T,). _h ; et —
1+ 94

(2

LIS S Dt
'1.+p2A§e +

- yavzep't' 3 1 + Y (T - Ta)

1’1 ' Pz ‘
T--T . Vet Vet et (527
+rar ( a)%lJl_?)A b o e (52.7)
The zero point of the time scale of eq. (52.7) corresponds to ¢ = £, in
the time scale of eq. (21.7). The total voltage V,, is the sum of eqs (21.7)
and (52.7).

Since the circuit has been assumed to be symmetrical, it will be clear
that after a sufficiently long time, when the trigger transients have
died out, the final values of the grid and anode voltages of tube I must
be equal to the initial values of the corresponding voltages of tube IT
and vice versa. Denoting the final values by the index oo, it should
follow from the expressions derived above that:

|4 = VleOI Val:\c = ValIOr
V = Vylo and Vallac = ValO'

gin

qi=
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The multivibrator family 7

It will be shown below that this is indeed the case.
According to egs (20.7) and (48.7), for ¢ = oo:

R,,
% Ve . (53.7)

Vv —_—
Rai+ru

ol

=&V —(1—e) V"' —8,.

Now V,, is the constant term from eq. (23.7), viz.
Va=(1—¢g) V' —e, V",
whilst, according to eq. (38.7), R,; = ¢, (R + R,), which gives:

ﬂea (R + Rﬂ)

8
V e . _— " ___ . —
A T E AL

=gV —(1 ——s,) Vr—
. &R,
fW(RTR) Fr.

(l—e) V' —e V"8 . . . . ... (54.7)

From eqs (54.7) and (11.7):
Vaw =6V — (1 —&) V' —gR I, . . . . . . (85.7)

which is identical to the value of V,,, given by eq. (9.7).
From egs (21.7) and (52.7) it can be seen that:

VGIQ = (1 _"sa) V’—EGV”_YGV =

” Ra r . LA G
=(1—e) V' —gV —RTE &V — (1 —¢,) V¢ =
_ R+R , R, —_ R.R, )
" R,+R+R, R,4+R+R,”° (R+R,) (R,+R+R,)’
R, R+ R, ,
YT RYR R ARt R .
(Rv + R) (R + Ru) - RaRv R 7] ‘
= V=V, ... .. 56.7
(R R) (R, + R+ R) R+ R, (36.7)

which is identical to the value of Vo given by eq. (8.7).
Vou, is obviously equal to V,,, both quantities being zero.
According to eq. (40.7):

7 7q

= V= —"
Vd!l:n Rat’ + ra ® Rat‘ + ra

(1— &) V' —e, V" (57.7)
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7.2 The bi-stable multivibrator

According to eqs (10.7) and (11.7):

_ , , & (R, + R) %_
Vo= 31 —&) V' —e,V 2 gln—Ea(R,-i-R)-f-fa =
rﬂ 7 ”
=£a(Rn+R)+ru.3(1—sa)V—saV 2 ...... (58.7)

which is identical to the value of V. given by eq. (57.7).

It should be recognized that the derivation of the expressions which
give the flip-flop operation in a mathematical form is not restricted to
symmetrical circuits. In practice, one of the anode circuits is often loaded
by a subsequent bi-stable multivibrator circuit, so that in any case the
capacitive loads of both anode circuits are no longer equal. An example
of this asymmetrical loading will be dealt with in a subsequent section.

7.2.4. VARIATIONS OF THE FUNDAMENTAL CIRCUIT
7.2.4.1. Bi-stable multivibrator with automatic grid bias
Instead of incorporating the se- +
parate negative grid bias supply
—V” in the multivibrator circuit R"é éRa
as shown in fig. 1.7, automatic 1CF ﬁ
negative grid bias may be applied | _
by inserting a by-passed cathode g _“ F' -
resistor in the circuit (see fig. 9.7). ¢r 7

If the time constant of the cathode
circuit is sufficiently large, the volt-
age drop thus produced may be
considered as a constant voltage R‘% lc,.
source, at least during the triggering L[J
action. This voltage drop depends, -
however, on the value of the anode Bi-stable muﬁ;.{g/.ib?;z&t circuit 1n
current in the static condition. This which automatic grid bias is ob-
condition can be described by the tained by means of the by-passed
following values of the grid and C>irode resistor R

anode voltages with respect to earth:
Voo = &V, — &R 4
Vao = (1 —&) (V, — I5R,)
Voo =&V, —I,,(1 —¢,) R, .. .. (897

ea
Vau0= Vb—l '(Vb_RkIao)

7730

(4
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The multivibrator family 1

The grid current I,, can be determined by assuming ¥V, to be equal
to the static cathode voltage V, = R, (I, + I,), which gives:
_ &V Riloy

R + (1—¢,) R,

The triggering process can be calculated in a way analogous to that
previously described by taking these static initial conditions as a starting
point.

(60.7)

Lo

7.2.4.2. Trigger pulses applied to the anodes

It will be clear that the formulae applicable to the case of the trigger
pulses being applied to the anodes can be derived by behaving the
procedure outlined above. The input current pulse I, is then fed to
terminals R and S of the circuit shown in fig. 7.7, whilst the coupling
capacitance C, should be added to the anode capacitances C,, and
C,, instead of to the grid capacitances C,, and C,,.

7.2.4.3. Trigger pulseé applied to a tap of the grid leak resistors
In the circuit shown in fig. 10.7, the trigger pulses are applied to a
tap of the grid leak resistors.

+Vy’

{

vy 77332

Fig. 10-7.
Bi-stable multivibrator circuit in
which the trigger pulses are
applied to a tap of the grid leak
resistors R,-R,.

The transients occurring in this circuit can be calculated by means
of the equivalent circuit shown in fig. 11.7, which for the sake of con-
venience should be compared with the circuit shown in fig. 7.7.
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7.2 The bi-stable multivibrator

Taking into account the input and output capacitances of the tubes,
C, and C, respectively (indicated by the broken lines in fig. 11.7), the
denominator of the operational impedances which have to be dealt
with will contain a polynomial of the third order in $. A third-order
equation must therefore be solved to determine the time constants
of the e-powers which form the final solution of the voltage time functions.
Since there is no straightforward method for solving third-order equa-
tions, as is the case with second-order equations, each case will have
to be solved after numerical values have been substituted.

" An approximate solution is possible when C, and C, are so small
that they may be neglected. The third-order denominator of the oper-
ational impedance is then reduced to the second order.

In practice, the input trigger pulses are often applied to a common
tap of the grid leak resistors, so that
the resistances I, of the circuit shown
in fig. 10.7 coincide. In that case, the

two halves of the multivibrator circuit 2$:C,
are, however, no longer independent !
of each other and some intéraction 77333

will necessarily occur. When R, is Fig. 11-7.

1 com ith Rt io Equivalent circuit of the bi-
small compared WIt, »» the previous stable multivibrator shown in
methods of calculation may, however, fig. 10-7 (cf. fig. 7-7).

be applied to a first approximation.

7.2.4.4. Trigger pulses applied to a tap of the anode resistors
The case of the trigger pulses being applied to a tap of the anode
resistors is obviously analogous to that discussed in Section 7.2.4.3.
Determination of the voltage time functions can be dealt with in
a similar manner using the same approximations.

7.2.5. INFLUENCE OF THE TUBE CHARACTERISTICS ON THE
SENSITIVITY OF A BI-STABLE MULTIVIBRATOR

In previous sections an analysis was given of the bi-stable multivibrator
or Eccles-Jordan flip-flop circuit. In the present section the method of
investigating the influence of the tube characteristics on the sensitivity of
the multivibrator by means of the formulae derived in the earlier sections
is discussed.

7.2.5.1. Introduction
In Section 7.2.3, the trigger action of a bi-stable multivibrator or
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The multivibrator family 7

Eccles-Jordan flip-flop circuit is investigated and explicit expressions
are given for the anode and grid voltages as functions of time during
the first and the second phase of the trigger action ¢). These explicit time
functions offer the possibility of determining the length of time required
by each tube to reach its cut-off point. The calculated time functions
for the initially conducting tube I are denoted by V, (f) and V, (¢),
and those for the initially cut-off tube I7 bv V_, (¢} and V,, (). The
lengths of time ¢, and ¢, after which tubes I and I7 reach their respective
cut-off points are then defined by the following relations:

1
Valt) =——.Vault), . . .« . ... (6L])
and

hwn=—;w%mx.”....@ﬂ

according to expressions (18.7) and (19.7) given in section 7.2.3.1.
In these relations, the influence of the anode-to-grid capacitances of
the tubes has not been incorporated. This influence can be taken
roughly into account by adding to the grid voltages a component supplied
by a capacitive voltage divider between the anodes and the grids. Oniy
the transient components and not the steady-state parts of the anode
voltages will be passed to the grids. Denoting these transient com-

ponents by V., and V,,, respectively, eqs (61.7) and (62.7) are then
changed into:
1
Ve (t) + 0,V () = — . Valt), « .« . . . (637)
and
1
Viou (t) + buVamr (ty) = — ; Vel « + - o - (64~7)

The voltage divider factors 4, and b, are given by eqs (1.7) and (2.7)
of section 7.2.1, '

) The first phase is understood to commence at the instant ¢ = 0 at which the
trigger pulse is applied. Tube I is assumed to be conducting prior to this instant,
tube 71 then being cut off. Conditions are assumed to be such that tube I is
immediately cut off, tube /I remaining in the cut-off condition during this
phase. The first phase is therefore characterized by the fact that the circuit
may be considered as a passive network.

The second phase commences at the instant ¢ = ¢, at which tube I, which
was originally cut off, becomes conducting. This phase continues until the
instant /4, at which grid current starts to flow in the conducting tube II and
the third phase starts. The latter continues until the transients have died out.
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7.2 The bi-stable multivibrator

Once the circuit is given, it is now possible to investigate the in-
fluence of the amplitude V, of the negative-going flank of the input
trigger pulse, provided the time of rise £, is kept constant. Fig. 12.7
shows the complete circuit and fig. 13.7 the shape of the trigger voltage.

+V!

=0
I
arf=
9r V!
78351 t=ty
~y! —t
Fig. 12-7. Fig. 13-7.
Fundamental circuit of the bi-stable Negative-going trigger volt-
multivibrator. age of amplitude V, applied

at the instant ¢ = o.

When all circuit components, the supply voltages and tube character-
istics, as well as the time of rise #, of the trigger pulse V', are known,
it is possible to substitute a certain value of the amplitude of V', namely
V,, in the relations (61.7) and (62.7) or (63.7) and (64.7). By solving
these relations for ¢, and ¢,, numerical values are obtained for these
time periods.

When ¢, > ¢,;, the circuit will operate in the correct way. Successive
calculations for decreasing values of V, will eventually give a value
at which ¢ is equal to or even smaller than £, In the latter case, the
multivibrator will no longer operate satisfactorily; the value of V, at
which ¢, = ¢, must therefore be considered as the minimum pulse
amplitude at which the multivibrator will be triggered in the correct
manner. This special value of ¥V, will be called the critical trigger pulse
amplitude V_ and may be considered as a measure of the sensitivity
of the multivibrator.

7.2.5.2. Influence of several tube characteristics on the sensitivity of
the multivibrator

The time functions which represent the grid and anode voltages

of the multivibrator from the instant ¢ = 0 onwards, at which the

trigger pulse is applied (see fig. 13.7), until the instant at which one "
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The multivibrator family 7

of the tubes reaches its cut-off point, are given by eqs (20.7), (21.7),
(22.7) and (23.7) of Section 7.2.3.1. Strictly speaking, these equations
are valid only from the instant ¢ = 4, onwards, but since these voltages
depend almost linearly on the time between ¢ = 0 and ¢ = £,, and the
value for ¢ = £, is given by the above-mentioned expressions, the voltages
for 0 =t <1, can be approximately represented by a linear function
which starts at a value equal to the initial static condition and has a
final value equal to that calculated for ¢ = ¢,.
It should be realized that the expressions mentioned are applicable
to a symmetrical bi-stable- multivibrator circuit. Since, however, it
is desired to investigate, among other things, the influence of an asym-
metrical capacitive load applied to one of the anode circuits, these
expressions are given below for the more general case in which the
two halves of the circuit are not identical. -

In that case, the grid voltage of the originally conducting tube I
will be:

Vo) =¢eV —(1—e,) V" +

g1

v,
+ 3(1 — &) RC.. 2 (e —1) + 6,V — (1 —¢,) V"% Kettt —
0
VO
— =) RC..—2 (P —1) + &, V' —(1—e) V" {(1+K)e¥, (65.7)
0

and the anode voltage of tube I:
Val (t) = (1 _8a) v’ _eaV” +

+ gs,,R,,Cc : ;‘3 e tto—1) P, + (1 —e,) R,,I,,.,Lg et —
(1]

—%eaR,Cc.?.(e‘No—l) (14 P) + (1 —e,) Rul,(l +L)$e~ (66.7)

0
The grid voltage of the initially cut-off tube I7 will be:

Vau (t) = eavl —(1 '—60) V' +
Vﬂ
By
Vo

c"t—o—

+ 3(1 —&)R,C,. -2 (e?—1) K, + e,R,,I,,oPlg o —

- 3(1 — &) R,C e —1) (1 + K,) + e,RoL a1+ Pl)ge”“. (67.7)

and the anode voltage of tube II:
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7.2 The bi-stable multivibrator

Vau (t) = (1 —'80) v _eaV” +

v
+ &, 3R,Cc 0 et — 1) Ty V"% Petit —
to 1—¢g,
Vo €y
—e, 3R,C, . ol (e?#e — 1) + 0 VI —V"e (1 + P)erd.  (68.7)
‘lo — &
In these formulae:
_ R
° " R,+R+R,
and s e e e (69.7)
R

whilst p,, p,, p5 and p, are reciprocal time constants.

If both halves of the circuit were identical, $, and p, would be equal
to p; and p, respectively, and, similarly, K; and P, would be equal to
K and P respectively.

The way in which the various reciprocal time constants $ and the
quantities K, P and L depend on the circuit constants is indicated in
Sections 5 and 7 (see egs (194.5), (196.5), (18a.5), (185.5), (18c.5), (22.5),
(24.7), (25.7), (26.7) and (27.7)). ’

I,, which denotes the anode current of the conducting tube in the
static condition, is given by eq. (11.7) of Section 7.2.2, namely:

(1—e) V' —¢g, V"
& (R, + R) + 7,

which also gives the relation between I,, and the internal resistance 7,
of the tube. :

Eqgs (63.7) and (64.7) now make it possible to investigate the influence
of the tube characteristics u, I,, (or 7,, according to eq. (70.7)) and C,,
(contained in the term &) on the trigger sensitivity of a given circuit.
For this purpose two of the three characteristics mentioned are assumed
to have a certain value, after which the variation of the critical trigger
amplitude of the input voltage, V,,, is calculated as a function of the
third characteristic.

Ip = s e e e (10.7)

er

7.2.5.2.1. Numerical example

An example of the calculation of the influence of tube characteristics
and a capacitive load in the anode circuit will be given. The circuit
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The multivibrator family 7

to be investigated is assumed to have the following characteristic data
(compare fig. 12.7):

V=150 V; V" =100 V; R, = 20 kQ; R = 200 k@; R, = 200 kQ;
C = 100 pF; C, = 40 pF; ¢, = 0,2 pu sec.

The input capacitance at the control grid is assumed to be €, = 10 pF.
This gives:

C,=C,+ C,=50 pF (see fig. 7.7).

The anode load capacitances will be denoted C,; and C,, resp. (see
fig. 3.7). The loading of the multivibrator is assumed to be symmetrical,
ie. C, = C,y In that case, the reciprocal time constants p, and p,
are identical to p; and p, respectively, whilst K, =K and P, =P
(see expressions 65, 66, 67 and 68.7).

Equations (63.7) and (64.7) can then be brought into the following
form:

(AVy+ B)x2 + (DVy+ E)x, + F=0. . . . (TL7)
(AVy+G) x>+ (DVy+ H)x, + K=0, . . (72.7)
where:
% o=e€P L (73.7)
Xg=ePly. . . L L. (74.7)
P2

=2 L 75.7)

2} (

A, B, D, E, F, G, H and K are constants containing the tube character-
istics u, 7, and C,,, the anode-to-grid capacitance. The anode load-
capacitances C,, and C,,, influence p, and p, as well as the constants.
Now the aim is to investigate the influence of the parameters u, 7,,
C,, and C, = C,,; = C, on the minimum trigger-voltage amplitude V,,
already denoted by V..

The procedure to be applied is as follows:

Substitute given values of the parameters and calculate the constants
A, B.... K. I now, x; = x,, Ithen Vo = V.. Then equations (71.7)
and (72.7) can be written:

(AV, +B)z*+ DV, + E)x+ F=0. . . . . . (76.7)
(AV, +G)a% + (DV, + H)x+K=0. . . . .. (11.7)
102



7.2 The bi-stable multivibrator

Subtract these equations, and the result will be:
B—Gax*+(E—H)x+F—K=0. ... .. (7187

If x could be determined from this equation, then V., may be cal-
culated from either (76.7) or (77.7) by substituting x.

However, in general, equation (78.7) will not be easily solved by
conventional methods, as « is generally a rather high power and some-

30 30
3 Cao=680F A T T 1T
V. (V) A7 - CC?Q 4 SpFI: ‘él‘(v) // La%CGF 7509,‘_4
/:, ‘// alg= o 'p h— T /7
PEdPs Cag=2.5pF | | L |
» - = 1
9l I ]
IP=diEp=d // Cay=Cag=5PF)
I~
10t =50 10 A
rd = 7k.n; IJ,=50
Ia = 7k.ﬂ.
!
0 0
0 50 100 150 200 0 4 8 2
- Cap Can(PF) > Cag (pF)
Fig. 14-7. Fig. 15-7.

times not a whole number. Therefore, a graphical method is to be fol-
lowed.
Put:
A=y ... (19T
and
(H—E)yx+ K—F
B—G G

(80.7)

Plot both y functions on a graph. The point of intersection is the solution
of x satisfying (78.7). Then, from (76.7) or (77.7) the critical trigger-
voltage amplitude can be determined and turns out to be:
(GE— HB)x + GF — KB

Vcr= i .
gA (H—E) + D(B—G)gx + A(K—F)

. (81.7)

The results of calculations are represented in the following tables and
depicted in figs 14.7, 15.7, 16.7 and 17.7.
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24
Ver (V)
P, 20
? 20 < o Y V) RS
16 T 16 —
2 12
8
81 [Cag=Cay=50 pF Cag=Cag=500F,
.___Ca =45 pF 4 _._C.ag -4.5pF
¢ J =50 |
7 adut
% oz 4 6 8§ 10
0 10 20 30 60_5£y 60 S o tea)
Fig. 16-7, Fig. 17-7
Cu= Can 5 50 150 ' (pF)
Ca
25 9.2 130 | 208 -V, (V)
45 13-4 17°2 | 26:0 -V, (V)
68 180 | 216 | 295 -V, (V)
(pF)

This table combines the influence of the capacitive anode load C,

and the anode-to-grid capacitance C,,.

The amplification factor is assumed to be 50, whilst the internal

anode resistance 7, is 7 kQ.
The influence of the amplification factor u is given in the following

table, where it is assumed that:

Cyr= Coy = C, =50 pF, C,, = 45 pF and r, = 7 kQ.

#o | Ver (V)
25 | 206
3% | 188
50 | 172

The influence of the internal anode resistance 7, is to be seen from
the next table, where C, = 50 pF, C,, = 4.5 pF, ard u = 50.
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7.2 The bi-stable multivibrator

r. (RQ2)| V., (V)

5-4 16-3
70 17-2
90 186

The tables are represented graphically in figs 14.7, 15.7, 16.7 and
17.7, in which the values of all parameters are denoted.
It can be concluded from these figures, that the trigger sensitivity
increases linearly with the capacitive load in the anode circuit with
a mean slope

v 14
T 0082 — . . . ... ... (827
ic. 0 oF (82.7)

The critical trigger voltage increases approximately linearly with
the anode-to-grid capacitance with a mean slope

av.,,

=2V/pF . . . . . . . ... (837
7 /p (83.7)

ag

The trigger sensitivity decreases with increasing anode internal resistance
and increases with increasing amplification factor. It must be borne
in mind that these conclusions are not of a general character, but apply
for the specific case treated.

These results of calculations can be compared with experimental
investigations.

The trigger sensitivity of a double triode type E 92 CC has been
measured under similar conditions as were assumed to exist in the
foregoing calculations. The amplification factor of this tube is p = 50,
whilst its internal anode resistance is 7 k2. The capacitances of the
tube itself are C,, = 2-5 pF and C, = 0-3 pF. The wiring capacitances
in the anode circuit have been assumed to amount to 5 pF, based on
experimental experience. Then the trigger sensitivity is measured to be
16-5 V when no extra capacitive load is applied to the anodes, whereas
it is 187 V with 50 pF applied between the anode and cathode of both
tubes, and 29-6 V with 150 pF anode load applied. These measurements
are represented by the small circles in figs 14.7 and 15.7. A mean curve
drawn through these measuring points is represented by the dotted
curve in fig. 14.7.
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The multivibrator family 7

The conclusion to be drawn from these measurements is that an
effective anode-to-grid capacitance of a value of about 6 pF must be
present. A wiring capacitance between anode and grid of 3-5 pF would
be sufficient to give this value, which is not at all abnormal.

In general, it can be said that the experimental figures are in quite
good agrcement with those derived from theoretical considerations.

One further check on the theory is possible.

Assuming C,, to be 6 pF, the trigger sensitivity with asymmetrical
capacitive anode load has been calculated. If one anode is loaded with
50 pF and the other tube has no externally applied capacitive load,
then C,, = 50 pF and C,, = 5 pF. With these values of capacitance,
the trigger sensitivity of this asymmetrically loaded bi-stable multivi-
brator is calculated to be 23 V, whereas it is measured to be 21 V. This
also gives reasonable agreement.

7.2.5.3. The complete trigger cycle

As previously shown, the first phase of the trigger action determines
the sensitivity of the circuit and also the switching time, since this
depends on the instant ¢ = #,, at which the cut-off point of the second
tube is reached and at which the definite change of state occurs in the
tubes. )

The time functions for the anode and grid voltages, as derived in
section 7.2.3 for the complete trigger cycle, have been calculated for
a numerical example nearly the same as treated in the preceding
sections, and are graphically represented in figs 18.7, 19.7, 20.7 and 21.7.

The curves marked a are applicable to a symmetrical multivibrator,
of which C,; = C,, = 5 pF, whilst the curves marked & and ¢ apply
to an asymmetrical multivibrator with C, = 110 pF and C,, = 5 pF.
The calculated curves are represented by the fully drawn lines. In
order to comform with practice, the curves displayed by an oscilloscope
and redrawn to the same scale, have also been plotted in these figures
(broken lines). It should be realized that the time scale on the screen
of the oscilloscope was only about one tenth of that used for the graphs,
so that some inaccuracy was introduced in redrawing the steep fronts.

The multivibrator was triggered by applying negative-going pulses
having an amplitude of 35 V, a width of 4 usec and a period of 40 usec.
The time of rise of the negative-going front"was 0-2 usec.

7.2.5.3.1. Discussion of the waveforms
From fig. 18.7, which represents the waveform of V,,, it can be
clearly seen that V,, reaches the cut-off value (approximately —4 V)
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7.2 ‘ The bi-stable multivibrator

in a much smaller time ({ = £,) in case & than in case b (capacitive
load, C,, = 110 pF); in other words: the capacitive load considerably
increases the switching time.

At the instant ¢ = ¢,;, the second phase of the trigger cycle commences.
Curves a and b of fig. 20.7 reveal that the anode voltage V,, greatly
decreases at this instant; in other words: the multivibrator is definitely
triggered.

Fig. 18.7 shows that V,, crosses the grid base of tube /I and becomes

Fig. 22-7.
Oscillogram of the grid voltage of one of the triodes
of a symmetrical multivibrator (C, = Cu = Cou =
5 pF); square-wave trigger pulses with a period of
15 psec being applied.

zero shortly after the instant ¢ = f,; due to the occurrence of grid
current, V,, is then kept constant at this value. In practice, there is
some overshoot, which should be attributed to the fact that the grid
resistance is not zero, as was assumed in the calculations, but has a
definite value. The influence of the discontinuity will therefore be smaller
than calculated.

The fully drawn curves plotted in fig. 21.7 show the calculated effects
of this discontinuity (at approximately 0-7 usec for curve a, and at
approximately 2 usec for curve b) on the anode voltage V,,. This effect
could not be clearly discerned on the oscillograms 7).

;)_:l‘he oscillograms shown in figs 22-7 to 27-7, which apply to other trigger
circuits, do show thuse discontinuities.
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The multivibrator family 7

The oscillograms shown in figs. 22.7 and 23.7 refer to a.symmetrical,
unloaded multivibrator having the same characteristics as the circuit
previously mentioned. Triggering was, however, achieved by means
of square-wave pulses with a period of 15 usec. Fig. 22.7 shows the
grid voltage variation of one of the tubes; that of the other tube is
obviously identical. Fig. 23.7 displays the anode voltage variation of
both tubes. The discontinuity which can be clearly seen in the ascending
part of the oscillogram is due to the start of grid current flow.

Fig. 23-7.
Oscillograms of the anode voltage of one of the triodes
of a symmetrical multivibrator (C, = C,;1 = Con =
5 pF); square-wave tngger pulses with a period of
15 usec being applied.

Figs.24.7,25.7, 26.7 and 27.7 show the oscillograms of the grid and anode
voltages of an asymmetrical multivibrator, triggered by negative-going
pulses having a width of 40 usec, a period of 60 usec and an amplitude
of 35 V. The component values are once again identical to those of the
previous circuits; C,, and C,;, were 110 pF and 5 pF respectively.

The variation of V_, is displayed by the oscillogram shown in fig.
24.7; the negative-going front should be compared with curve ¢ of
fig. 18.7, and the positive-going front with curve & of this figure.

Fig. 25.7 shows the variation of V; this should be compared with
curves b and ¢ of fig. 19.7.

Fig. 26.7 gives the oscillogram of V,, and should be compared with
curves b and ¢ of fig. 20.7.
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7.2 The bi-stable multivibrator

Finally, the oscillogram of fig. 27.7 shows the variation of V,, and
should be compared with curves b and ¢ of fig. 21.7.

In the curves representing the calculated time functions, the influence
of the positive rear flanks of the trigger pulses have been disregarded. In
practice, care should be taken that these positive, differentiated pulses
do not disturb the normal triggering of the multivibrator. These pulses
should not, for example, drive the non-conducting tube (i.e. the initially
conducting tube I) back into its grid base. Curves a and b of fig. 19.7

Fig. 24-7. .
Oscillogram showing the grid voltage variation Vu
of tube II of an asymmetrically loaded multivibrator
(Cut = 110 pF, Cun = 6 pF), negative-going trigger
pulses with a width of 40 usec, a period of 60 usec
and an amplitude of 35 V being applied.

reveal the considerable overshoot of V,, in the negative direction, its
final value being —30 V. It would therefore be advantageous to choose
the width of the trigger pulse in such a way that the positive-going
rear flank coincides with this overshoot region. This will not be possible,
however, when a flip-flop unit is triggered by a preceding flip-flop unit,
because the pulses produced thereby are always roughly square in shape
and the positive-going flank will always occur just between two negative-
going flanks.

There is a compensating effect of the negative anode pulse of the
conducting tube on the positive pulse at the grid of the non-conducting
tube. This is clearly shown by the oscillogram of fig. 22.7, where the
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The multivibrator family 7

grid voltage gradually increases. About half way in this region the
effect of the positive differentiated pulse can be seen. Initially, the
voltage tends to rise, but the slightly delayed negative pulse at the
anode of the conducting tube is passed to the grid of the non-conducting
tube via the speed-up capacitor C, and even overcompensates the positive
input pulse, so that a negative pulse results.

The final static conditions for the curves a and & of figs 18.7, 19.7,
207 and 217 are: V,=—30 V, V, =136V, V,, =0 V and

g1

Fig. 25-7. .
Oscillogram similar to that shown in fig. 24-7, dis-
playing the grid voltage variation ¥V, of tube I.

Vo = 40 V. The functions are now reversed, tube I being cut off
and tube II being conducting. The next negative-going flank of V
will trigger the multivibrator once again. In the case of a symmetrical
circuit (C,, = C,, = 5 pF), the waveforms during this new trigger
action can easily be calculated from the theoretical results by changing
the indices I and II in all formulae,the waveform of V, thus being
identical to that of V, during the preceding trigger action. The new
waveforms have therefore not been given in figs 18.7, 19.7, 20.7 and
21.7.

In the case of an asymmetrically loaded multivibrator, the situation
is less simple, but the waveforms can nevertheless also be calculated;
the results are shown by curves c.

Notwithstanding the presenceof the load capacitance C,, = 110 pF,
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7.2 ; The bi-stable multivibrator

the switching time or the duration of the first trigger phase is now much
shorter than in the first-case b. This is due to the fact that the switching
time is now defined by the waveform of V,, which is independent of
C... The switching time is about 0-6 usec, whereas it was about 2 usec
in the first case. :

It can, moreover, be seen that the trigger sensitivity will be better in
the second case. In the first case the grid voltage of the initially con-

ducting tube, V,, has almost reached its cut-off value at the instant

Fig. 26-7.
Oscillogram similar to that shown in fig. 24-7, dis-
playing the anodevoltage variation V,; of tube I7,

at which tube IT starts to draw anode current (at ¢ & 2 usec; see curve b,
fig. 19.7). In the second case, however, the grid voltage of the initially
conducting tube, V, (curve ¢, fig. 18.7), rises at a much slower rate,
due to the influence of C, = 110 pF. At the instant at which tube I
starts to draw current, the (negative) value of V¥, will still be almost
three times that of V, in the first case. In other words: V', rises much
faster than V,, during the same periods of time.

The sensitivity of an asymmetrical multivibrator is thus not the
same for the two stable conditions, and is smallest for the initial con-
dition at which the capacitively loaded tube is conducting. In practice,
this smallest sensitivity defines the usefulness of the circuit.

It can also be seen that sensitivity is improved by loading the multi-

vibrator symmetrically (for example C,, = C,,, = 110 pF). In that case
115
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The multivibrator family ‘ 7

the grid voltage V,, (curve b, fig. 19.7) will rise slower and reach the
cut-off point later, so that it will be easier for the grid voltage of the
other tube to reach the cut-off points.

This fact has been confirmed experimentally. As an example, the
average values of V,,, measured on a series of some 40 experimental
types of double triodes, will be given. For symmetrical, unloaded multi-
vibrator circuits, the critical trigger amplitude had an average value
of 17 V. For an asymmetrical circuit (150 pF load in one of the anode

Fig. 27-7.
Oscillogram similar to that shown in fig. 24-7, dis-
playing the anodevoltage variation V,; of tube I.

circuits), this average value was 38 V. By connecting a load of 150 pF
to both anode circuits, the sensitivity of the multivibrator was increased,
the average value of V., then being 31-5 V.

7.2.5.4. Conclusion

The theoretical investigation of the operation of a bi-stable multi-
vibrator has made it possible to gain an insight into the influence of the
various tube characteristics on the behaviour of the circuit. For a given
circuit, the dependence of the trigger sensitivity on the amplification
factor, the internal resistance and the anode-to-grid capacitance can
be calculated and graphically represented by curves similar to those
shown in figs 14.7, 15.7, 16.7 and 17.7. For a complete survey, a family
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7.3 The monostable multivibrator

of curves should be drawn giving the dependence of the sensitivity on
one of the characteristics with the other two characteristics as para-
meters.

In the preceding sections, the in-
fluence of the tube characteristics on
a given circuit has been investigated.
It is of course also possible to take
the tube as a given starting point and 4, R

i-&—V'

to investigate the circuit in order to G %
determine the optimum results. The "y

. . I R91 ]
speed of the triggering, for example, I
is an important quantity, as this ' l T
determines the maximum frequency T = _w
of the input pulses at which the multi- Fig. 28-7.

vibrator will still operate in the correct

way. It has for example been shown in the preceding pages that the
switching time or duration of the first trigger phase depends on the
capacitive load in one of the anode circuits.

It can, moreover, be seen from eqs (65.7), (66.7), (67.7) and (68.7)
that the amplitude V, of the input trigger pulses always occurs in
combination with the time of rise f,; in fact, the slope V/f, of the leading
edge of the pulse is the principal quantity which determines the trigger
action. The quantity £, moreover, occurs in a few exponential terms.
In all preceding calculations, ¢, was assumed to be constant, namely
0-2 usec. The dependence of the trigger action on the duration {, at a
constant value of V, can obviously also be derived by proceeding in a
similar way.

The ‘most important result of representing the mechanism of the
operation of a triggered bi-stable multivibrator in explicit formulae
‘has been to enable the influence of several tube characteristics on the
trigger action of the circuit in which the tube should operate satis-
factorily, to be evaluated. This has led to the design of the double triode
E 92 CC. Furthermore, it makes it possible to design a bi-stable multi-
vibrator in such a way that optimum results are ensured.

7.3. THE MONOSTABLE MULTIVIBRATOR
7.3.1. INTRODUCTION

The monostable multivibrator can be analysed in the same way
asthe bi-stable multivibrator. Here the trigger pulses, assumed to be
of the same shape as depicted in fig. 2.7, are applied to the control
grid of the tube that is conducting.
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The multivibrator family 7

The basic diagram of the circuit is given in fig. 28.7. As its name
suggests, there is only one stable state of this type of multivibrator.
Tube I will be conducting while tube 11 is cut off; this being caused by
the supply voltage sources 4 V' and —V". The anodes are fed from
the supply voltage source 4 V’. All three sources are assumed to have
negligibly small internal resistance, and the same is assumed for the
trigger voltage source V..

Stray capacitances, except anode-to-grid capacitance, will be taken
into account.

The negative-going front flank of the trigger pulse is assumed to
be so steep that the time it takes to bring the control grid below the
cut-off voltage is small compared with the time constants, which are
typical for the circuit and which determine the transients. This means
that the conducting tube is cut off about immediately at the instant
t = 0 when the trigger pulse starts (see fig. 29.7).

I

t=0 t=t,
|

.y 1

go"'_

a 8

V"l __.vg

Fig. 29-7. Fig. 30-7.

The complete trigger cycle can once again be distinguished by three
phases. The first phase is the period immediately after the starting
of the trigger pulse at the instant ¢ = 0, when both tubes are cut off.
If it is assumed that, at the instant ¢ = ¢, the second tube, initially
cut off, starts conducting, then this instant ¢, is the commencement
of the second phase.

Again, somewhat later, at the instant ¢ = ¢,, say, the grid voltage
of tube I passes the cut-off value in the positive direction, and this
tube starts conducting as well. At this instant, ¢,, the third phase com-
mences. '

It is assumed that at times ¢ < 0, the static condition, which is des-
cribed in the following section, is present.

7.3.2. THE STATIC CONDITION

In this state of the monostable multivibrator, only direct currents
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7.3 The monostable multivibrator

will flow in the circuit, and consideration of capacities in the diagram

can be omitted.
It will be clear that the anode voltage of tube II will be

Ve =V o o oo (84T)

The grid voltage of tube I will be dependent on the amount of grid
current flowing. This, in turn, will be determined by the shape of the
grid current-grid voltage characteristic and by the values of R,; and
V't (see fig. (30.7)).
In fig. 30.7:
cota =R, . . . . . . .. .. (8.7

The intersection of AB and the characteristic curve determines the.
value of I, . The slope of the characteristic is assumed to be so high that

Ve, =0.. . . . . (867 A1 RS2

Then I, is defined by I,
R; Ray (\1 Ry
VIII T 42
J— + - -
I, = B (87.7) y o
5% - >
The voltages at A; and G, are to be Iog
determined from the diagram of fig. Fig. 31-7.

31.7, which is only valid for the static
condition (no capacitances as mentioned before).

In this diagram, 7, represents the internal anode resistance of tube 7,
through which an anode current I, flows, thus:

Vo =Tofu « « o o o oo (88T)

aly

The current I, is distributed over the resistances R, and R + R,
in parallel, in such a way that the current through R, is:

R+ R
I, = ——— % [ =(1—z¢,) I,
Ra, ‘Ra1 + R + Rg2 ay ( sa) @y

The current through R + R, is:
R

a2

I ... S—
R+ Rg, Ral+ R+Rg' ap

=¢,l, ,

where:
gazRal/(Ra1+R+Rﬂ2) ... (89.7)

Moreover, apart from the fact that tube I is conducting or non conducting,
a current I will flow in the circuit, defined by:
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-]

__r+vv_ (90.7)
R, + R + R,
The values of V, and V,, are evidently:
Vao = V' — (1= e Lo + I{R,,,
or:
Va, = (1 —&) (V' —R, I,)—¢&,V" . . . . (9L7)
Ve =—V"+ I —e,1,)R,, . . . . . . (927)
or:
Vo, =—V" + &, (V' + V") —¢,R,,I,,,
where:
¢, =R, (R, +R+R,) . . . .. . .. (937)
Thus:
Voo, =8 (V' — R, I,)—(1—¢&) V". . . . . . (947)

This is assumed to be sufficiently negative to keep tube IT cut off. From
(88.7) and (91.7) the value of I, can be determined:
(1 —e,) V' —¢g, V"

I, = (9
’ ra+(l—8u)Ra1

The value of 7, can be found from the I, - V, characteristic of the
tube, as it is the reciprocal of the slope of the characteristic at Ve, =10
(see fig. 54.6).

From the instant ¢ = 0 onwards, transient phenomena are super-
imposed upon the static condition of the circuit, because of the occurrence
of the trigger pulse. This dynamic condition will now be considered.

7.3.3. THE FIRST PHASE OF THE DYNAMIC CONDITION

The voltage changes at G,, and A, will be derived with the aid of
fig. (32.7), those at G, and 4, with the aid of fig. 33.7.
The D.C. supply sources have been omitted in these figures, as they
are accounted for in the static condition.
In fig. 32.7, the input-voltage source has been converted into an input
current source I, in the usual manner, where:
av,

7 (96.7)

I, =,

I, is the superposition of two step functions, occurring at ¢ = 0 and
L = t, resp.:
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7.3 The monostable multivibrator

Vv
I,.=Cct-° —UW+UE—ty)e . . . . . .. . 917
0
At t =0, the grid current I, suddenly disappears. This is accounted

for by the introduction of an input current step function +1I,, as in-
dicated in fig. 32.7.

(o
i
G A 9
it ——*-4 —nnn——*--,
/] A [ " |
. abe ake .
Cc Igo Rg1 -T-Cg’ ay .?-Caz Rgz :?-ng
\ ' ! !
1
. 1 —_ _I_ -
Fig. 32-7. Fig. 33-7.

Stray capacitances at the input (and output) of the tubes are in-
dicated by dotted lines (C, and C,, resp.).

The sudden interruption of the anode current 7, in the first tube is
accounted for by the input-current step function /,, as indicated in
fig. 33.7. Here stray capacitances are also indicated by dotted lines
(C,, and C,).

The voltage changes at the anodes A4; and A4, and at the grids G,
and G, can now be calculated as the response of the circuits of figs 32.7
and 33.7 to the input current step functions 7,, I, and I,. First the
voltage at G; will be derived.

This voltage, V,,, is defined by the operational impedance Z, between
G, and earth. This impedance is:

14+ A4p
Z, =R, ——————, ... (987
10 (2% 1 + Bp + Epz ( )
d
where: p = 7 differentiation with respect to time

4 = T“z + Tel
B =Ty+T,+T,+T,
E =T4T,+71,T,,+7T,T,
T, =R,C, e e (997
T, =R,C
Tu = Ral Cl
T, =R, (C.+C,)
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The multivibrator family 7

The voltage across this impedance as a result of the current step
function I, 4 I, occurring at the instant { =0 will be:

Vo) = (I + L) R, |l + Kert — (1 + Ky 2|, (100.7)

where:
_hl+4,) o1
P — b,
B 4E
Pl———§E§1——V1——EE% .......... (102.7)
 4E
P2 —_—E§1+V1—§§ .......... (103.7)

{compare with section 5).
At the instant £ = £, a current step function of amplitude I, in the
reverse direction is applied, giving rise to a transient voltage:

Vo (t—tg) = — IR, {1 + Ketttd — (1 + K) er-wg .. (104.7)

In the static condition, ¥, = 0, so that the complete expressions for
V, are:

t=0:V,, =0
0<t=<t:V, () =, +1I,) R, 31 + Kett — (1 + K) ewg. . (105.7)
E24y: Vo (t—to) = LR, |1 + Ket'— (1 + K) ewg +

+ LR, |Kert (1 —e=pts) — (1 + K) et (1 ——e"’*‘o); ... (106.7)

At { = o0, the voltage at G, would be: V, (0) =1, R,.
According to (87.7), this would be:

Vi (o0) = V"', which is evident.

Secondly, the voltage at the anode A, will be derived from fig. 32.7.
It depends on the transfer impedance

Z,, =R, - Jub
v = N0 T U Bp 1+ Ep?

The voltage at A, can be calculated to be:
t<0: Van = Vano= Vv

0L t=<ty: Vou(t) = Vo, + (I + 1) Ry E_@TTELE(‘N — et) (108.7)
2T 1

. (107.7)
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7.3 The monostable multivibrator

T
(2t Vi (0 —t0) = Vg + Lo Ry g (e +
T21
+ IR, ————— P (1l —ePlo) —ePt(l —ePlo) ). . . . (109.7)
" E (py— 1)
At ¢t = oo, this anode voltage would be:
Vau (OO) = Vano =V. (see 84.7)

The third voltage, to be derived with the aid of fig. 33.7, is the anode
voltage of the first tube, V.
The operational impedance between A, and earth is given by:

Z, = R, ———l—ﬂ S e e e . (110.7)
: "1+ Gp+ Hp?
where: :
R, (R + R,)
R, =20 = (] — Coe a
ae Ral + R + R,' (l 80) Ral (lll )
F =T, +8T. . . . . . . . . .. ... (112.7)
R R
= =% _ .. .. (1137
ﬂ R + R,’ ’ ﬁﬂ R + R”’ ( )
T,=R,C, ; T =RC ... ... ... {1147
G =(+eT,+(,+e)T+(E+e)T, . (1157)
T,=R,Coy . . . . . . . . ... (116.7)
_— R”:
“= R, + R+ R,
R S (117.7)
R, + R+ R,
—_ R“l
“TR,+R+R,
H=¢eIT, +eT, T, +T,T.. . .. .. (118.7)

A current step function with amplitude I, at { = 0 causes a transient
voltage across the impedance between A, and earth as given by the
second right-hand term of expression (119.7). The total voltage is:

Va=Va, + Lo Roy|l + Letr — (1 + L)y e . . . (119.7)
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Va4, 1s given by (91.7)

and p b+ Fp) ... (1207)
Ps— b
G 4H
po=—35 1—]/1—5% ..... (121.7)
G 4H
ba "2_1?3““]/1"5 ..... (122.7)

At { = o0, this anode voltage would be:
Va(@)=(1—¢g) V' —eg,V". . . . . .. (123.7)

Finally, the voltage at the grid of tube IT will be given. This depends
on the transfer impedance between 4, and G,

Z,, = R,,,»j—llﬁ——, ........ (124.7)
10 1 + Gp + Hp?
R, R,
where: Raa = m suRg’ = EVRGI P (125.7)
The total voltage at G, for ¢ > 0 is:
Vo = Vo, + Lo Rog JIJ+ Mert — (1 4 My el , . . (1267)
where: M= M ........ . (127.7)
: Py — b

Vg, 18 given by (94.7).
At ¢t = oo:

Vin (@) =,V — (1 —e,) V' . . . . . . (1287)

Tube II was already in the cut-off condition; tube I is cut off
suddenly by the trigger pulse at ¢ = 0. Consequently, the first phase
of the dynamic condition is characterized by the fact that both tubes
are cut off. However, the grid voltages of both tubes tend to final positive
values, namely:

Vo (00) = V" and Vi, (0) = g, V' — (1 —¢,) V",
which is supposed to be positive.

At a given moment, one of the tubes reaches its cut-off point a.nd
will start conducting.
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7.3 The monostable multivibrator

For correct operation of the monostable multivibrator it is necessary
that tube II should reach its cut-off point sooner than tube I. The
times ¢, and £, for which tubes I and IT respectively reach their cut-
off points can be calculated from the relations:

1
Vou (tn) = — - Vg e - o o e (130.7)

where u = amplification factor of the tubes. (compare Sections 7.2.3.1
and 7.2.5.1)

Introducing a correction for the influence of the anode-grid capacitan-
ces, as in the sections mentioned, gives an extra component at grid 1:

Vo () = b T Ry, {1 4 L — (1 + L) eN; , .. (1317
and at grid 2:
Vo () = by [I% R, (o — o) +
E (po— 1)
Ty !
4+ IR, =1t (1 —ePdo) — et (1 —etiho ] ... (1327
“Ep—p 1) (1320
where b, and b, are capacitive voltage divider factors.
C
b, = o oo ... (1337)
C C.+C, + 2o
wa FCF T o,
C
by = L (134.7)
CCG]
Canvn- + Cc =+ Cn, + C+ C,‘,,

The corrected equations (129.7) and '(130.7) are then:

e 1

Val (tl) + Vax (tl) = 7; Val (tl) ------ (135 7)
— 1

Vm (tn) + Van (tn) = _7; Vau (tu) ------- (136 7)

As, stated already, the monostable multivibrator operates in the correct
manner if £ > ¢,
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The multivibrator family

7.3.4. THE SECOND PHASE OF THE DYNAMIC CONDITION

With the aid of (130.7) or (136.7), ¢,, can be determined. Then, at the
instant ¢ = ¢;;,, the second phase of the dynamic condition starts. The
grid voltage V,, (!), which is an

L exponential function, traverses the grid
T base of tube II. This part of the ex-
E. ponential function in the grid base is
0 —V, assumed to be practically linear, as
fz\ depicted in fig. (34.7) (compare section
,"51__|___ 7.2.3.2, fig. 8.7). The time function
| of V,, between the instant ¢  and
Vgot) v 1
Yl t, will be:
) :
Voult)=a E.,, . (13717
Fig. 37 o) =ar+ E,, . (131.7)
where:
T=t—ty, . . . . .. ... . (138.)
and « is a constant, given by:
E E
O=at;, +E, or a=——"=_—""_,
ts t—t,

%y is to be calculated from V,, (%) =0
by substituting ¢ = 4, in expression (126.7).

It is further assumed that, at ¢ = ¢,;, the anode voltage V', has prac-
tically reached the constant final value V, = V',
The anode current for times v = 0 until v = ¢; is defined by:

Vau + 8V

Ia=——-——;——-—-, e (139.7)
whilst:
Var = Veu—Lalop - - - . . . . . (140.7)
Z 45 1s the impedance in the anode circuit, to be defined from fig. 32.7:
1+]p -
= L 41.
Zo Ra21+Bp+Ep” (141.7)

where:
" J =T, + Ty (see 99.7).
Combination of (139.7) and (140.7) gives: ‘
1

a—_-;._ﬁ_(t/mo+yv,,,) S (1427

126



7.3 The monostable multivibrator

Now:
Vi, + Vo = V' + par + pE, = pat (see 138.7).
Thus:
1

Ip=——(uar) . . . . . . . .. 43.7

el (143.7)
From (143.7) and (140.7):

VA
V="V 2 (uatr) . . . . . (144.7)

ally ™~ T
¢ 1.+ Z,

At v =t or t.=1t¢, the grid voltage reaches zero and remains zero,
as it is assumed that the internal grid resistance is negligibly small.
This can be accounted for by assuming a new component of grid voltage
to be present, given by:

Von (t —1t5) = —pa (t—1t) . . . . . . (145.7)
Then, for times v < t54 or ¢ < t,, the following expression holds:
. z, ‘
Ven ¢ —1t) = Vi, — ;—a—_’_—’Z—a’ [,uat — ua (vt — ts)] S § N

By operational methods, mentioned before, V,, can be calculated.
The final results are:

at 0=1=¢ or L, St

t—1,
Vau (t - tz) = Van,, - laVau., e

t4—t2

N
+ o 3ep.(t—¢.) — 12 _

_1+N 3er-<f-f«> — 1d ................. (147.7)
Dels
Atz =t  or t 21,
N Pult=ts) -
Vau (t—t4) = Van, - Aavau. 1 + ;—t— e (l —€ ‘) -
5'5
— 1+ Ne”'(“ﬂ (1 —e“’-")] ............... (148.7)
Pels
Where:
= Re .. (149.7)
7a + Ru,
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N = @;ﬁl;gi) o (150.7)
p5=—lejEM I—Vl z;ii,,])s (151.7)
=" BZ;FEAJ 31 + V (A B41+Ez TP ‘ (152.7)
A= l—z—r+Ra’ ..... ... (1837
The final value of V,, would be:
Vo (00) = AV on, = 7%}-{; Vews - - - - (1547)

This is evident, for in this final state a constant anode current I,
would flow through the external and internal anode resistances, and
have a value:
Van,
Lo = 2
7a + Ra,

This causes a voltage across 7,

rll
14

Vnn (00) = raIa.n = m aty*

The anode voltage V,, determines the grid voltage V, by way of
the voltage divider consisting of C, and Z,.

z
Va=—2Vae, (156.7)

g1
Z, + =
“ TG,

or:

p
=T Vr - - - -
Y14 (T,+T,) 0

v, (157.7)

Keeping in mind that only variable components of V,,; will be passed
through the capacitance C, the steady state component Vi, must
not be substituted in expression (157.7) The final result of evaluating
expression (157.7) is as follows:
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7.3 The monostable multivibrator

T,
at (<t tp Vit —t) = — AV, " [‘ — Tt ) 4
5
+ N 3e?l(“i) R e—(“‘:)/(Tu‘f‘T,x)e ——
A+ ps (T +T,) }
— 1+ N 38p‘(H’)——8_(H')/(T“+Tv‘)d e e e .. .. (158.7)
1+ b (T + T)
. Ty
S Vi () = T, ) (1 — )
5
+ N Seﬁl(”:)(l_e—fl‘n)_e () (T +Ty) 1_._5‘5/'1‘114' 1)2__
1+ p5 (T + T )
N

1 ) (T T ) gepl(Hn)( l—e l’o‘u) _.e—(Hl)/“ u+1,1) (1 e‘S/(Tll+T")$I
é u l [

These two expressions must be added to the value of ¥V, originating
from the first phase, i.e. to expression (106.7). The final value remains
therefore: V,, (00) = V’". This is evident for tube I non-conducting.

Until the instant ¢ = #,, the anode voltage of tube I is represented
by its first phase value, i.e. (119.7). At this instant, ¢, however, V
shows a discontinuity, as it is suddenly kept at a constant value of
zero. This causes transients at anode 4, which can be calculated. However,
since R, will generally be small compared with R and R,, the final
contribution of these transients to the anode voltage of tube I will be
small, and the complicated expression resulting from the calculations
will be omitted.

Recapitulating the second phase voltage changes, it can be said that
V,u is given by (126.7) for 0 < ¢ =1, and is zero for t =1¢,. V, is
given by (147.7) for ¢, =t =1, and by (148.7) for ¢{> {, when it is
assumed that the transients from the first phase have practically died
out. ¥V, is given by expr. (106.7) from the first phase, to which must
be added expression (158.7) for £, = ¢ =1, and (159.7) for t = 4,. V, is
given by expr. (119.7) from the first phase, if the effect of grid current
in tube Il is neglected.

7.3.5. THE THIRD PHASE OF THE DYNAMIC CONDITION

This phase commences as soon as the voltage at G, has increased
to such a level that the cut-off value E, is reached. Let this occur at
the instant ¢ = £, The tube I starts conducting, and the anode voltage
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at A, decreases. This need only be a few volts for tube II to be cut
off. Its anode voltage rises and adds in this way to the increase of V;
the whole process continuing more and more rapidly.

It will be assumed here that

La V, increases so rapidly that we

T can consider the change of V to

Ee be a voltage step from the value

} -~ E, to zero, as represented in

Vg,(t)\-_ fig. 35.7:
t=t Val(t—ts):‘Ec_EcU(t_ts):

*e | (160.7)

' ¢ where U (t—1g) is a unit-step

Fig. 35-7. function occurring at the instant

=t
It is assumed that the final value of expr. (119.7) is practically reached
for { = 1.

This value is:

V(o) =V + 1, Ry . . < - . . . (16L7)

The anode current change is given by:

= Vet pVul—t e

a
I y »

where:
Vo=V, {(©)— ImZ‘,l ........ (163.7)

Z,, 1s given by expr. (110.7).
From (162.7) and (163.7) it follows:

Val (CD) + lu'VﬂI (t - td)

Iyp=-2rr— = .. 4.7
al ra + Za‘ (16 )
Substituting (92.7) yields:
I {
la= 7| Val) +n@Ec—EcU<t—t6>§] .. (165)

However, V, (0) + uE, =0, as E_ is the cut-off voltage at an
anode voltage V, (©); then (165.7) becomes:
1

I, =——
a1 ra+Za1

V(o) U(t—ty) . . . (166.7)
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7.3 The monostable multivibrator

According to (163.7) and (166.7):

Z
Va=Va(@0) ——2 -V, (0)U({t—1t) . . . (167.7)
7, + Zal

The final result of the calculation will be:

<

Vo (t—1g) = Vg (00) — 0,V 4 (00) |1 - Pepsletdl — (1 4 P)eructd|, (168.7)

where:
" R
= #_ e e e e e e 7
%= TR (169.7)
3 1
For R,, see (111.7) p— P21+ TP
75 —758
) G
?.,:__91 +Qa [I—Vl ]
2.4 e.G + 0.F)?
G + Qa [ V ] ra
1’8 2DH + QlG*i— 0a ) » Q4 04 7a+Rav

Another transient component will be caused by the sudden cessation
of the flow of grid current in tube II. This will, for the same reason as
we did not account for its sudden starting, be left out of consideration.

The final value of V, will be that of expression (168.7) at ¢ =0

VaI ﬁnal = QiVaI (w)’
or, with expr. (161.7):
Vg final = o, (V, + I, R,,) .

According to (88.7):

; Ve,

ag ra >
thus:

R R
Val ﬁnal = QiValo ’_’a_—j—__ﬁaf = (] o Qa) Valo Zﬁ'_j;_‘“’.
Ya a
Substituting (169.7) gives:
Vg final =V, .

In other words: the final value of V is the same as the steady state
value before triggering. A complete trigger cycle has elapsed.

131



The multivibrator .family 7

We now consider the anode voltage of tube II. This can easily be
determined by the following reasoning:

At the instant ¢ = #;, the grid G, is practically short-circuited to
earth, and the anode impedance of tube II will be:

R
Z, = @ e 170.7
T TT R, (C K Ca) b (170.7)
or.
Z, = Re, L. Lan

I+ Ta+ Tt

(compare expression (99.7)).

The anode current of tube I7 jumps at ¢ = f{; from zero to a value
I, given by (155.7). This gives rise to a transient voltage at 4,, as
represented by:

Tpe- Ry (1— et/ 4Ty (172.7)

agll *

If it is assumed that the second phase transient (148.7) has reached
its final state (154.7), viz.

I (173.7)

Van. = Z—:*_—-R—a, ali,
at ¢ = t,, then the total voltage at 4, is the sum of (172.7) and (173.7):

R
Var E—1g) = Van,, - ;——{»—a’_é— Vﬂ"o e~ /(Tu+Tyy) (174_7)

Again, the final state is equivalent to the static initial condition.
The grid voltage of tube II, V,,, can be determined with the aid
of the following considerations.

- ~NN— G2 Immediately before the start of the

R Ta, third phase, a practically stationary

Ray a2 Rg, situation was reached with tube I cut off
v I Sy and tube II' conducting. Instead of
= 92 4 fig. 31.7, the circuit of fig. 36.7 is
Fig. 36’—7.. representative for that part of the

circuit at that instant. Without. the
grid current I, the D.C. voltage sources V' and V” would cause a
potential between G and earth:

Vou=—V" + IR,, where I is given by (90.7)
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7.3 The monostable multivibrator

Or:
Vin=1¢V' —(1—¢) V",
where ¢, is given by (93.7).
It is again assumed that I, is such that it causes a voltage drop
across the resistances R, and R + R, in parallel, to compensate the

value of V, given above. This means a zero grid-to-cathode voltage.
With this assumption we obtain the condition:

R,(R+R,) .
S\ e —e )V
Jg Ryl + R + Ral 89 ( 87) ’

from which I, may be derived:

gV —(1—g) V"

g
=R (175.7)

At the instant ¢ = ¢, tube I ¢
becomes conducting, tube I A L 6
is cut off. Then the diagram r—— giniiy ' 2 -,
of fig. 37.7 is valid for cal- | R ;
culating the transients. Caft R; Ray Cots SRy,

The anode voltage V' ,; (t-—t,) | i
is known already and given - g,

by expr. (168.7). Part of this Fig. 37-7.
voltage is conducted to the ,
grid G, by means of the voltage divider consisting of the R~ C parallel
circuit and the R, —C,, parallel circuit.
In operational form, the voltage at G, as a result of V, is:
Vau (al) = R Rg’ s L+ Tﬁ
oWt R 1+ (BT +pT,) 0
For B and B,, see (113.7); for T and T,, see (114.7).
V. represents the transient part of ¥V, from the instant ¢ ==,
onwards. This is the second term of the right-hand part of expr. (168.7)

Ve t—1tg) - (176.7)

Ve = — 04V (0) |1 + Pet™— (1 + P) e"”],

where: T=1f—1g

This may be written in operational form as:
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Vm=~@yumb+P A . ]uww
- P N

(compare expr. (14.5)).

From (176.7) and (177.7) it follows that:

R, 14+ Tp

14 = — - .

) = TR AR 1T BT 6T, 5

p oy P ]
0V 14 P — 4+ Py . ... 178.7
gaum[+ U+ P (178.7)

The influence of the sudden cessation of grid current I, is again
neglected, assuming that the positive voltage ¢, V' — (1 —¢,) V" is
small (see 175.7).

Expression (178.7) then represents the total grid voltage change.
It must be superimposed on the D.C. voltage —V" + IR, (for I, see
expr. 90.7) and can be calculated in the same manner as already dealt
with, namely by splitting into partial fractions. The rather cumbersome
result will be given after examination of the final value for ¢ = 0.
This can be found by putting p = 0 (equivalent to ¢ = o)

Ror V o (00).

Vo () = —m .Y a1
73

Substituting (161.7) and (169.7):

Rﬂ Rav
: (Var, + Raola,)

14 S
(9) = — T

According to (88.7):

Vaxo = 7aIa.,
Thus:
R
Vo (©) = — =" R_I,.
0!1( ) R _+_ Rg’ av® da,
Introducing expr. (111.7) gives:
R, R,
Van (OO) = Ra1 +,}2 —;- Ra, Ia° - eaRa,Iao- (See “7.7)

This is the final state of the transients, caused by the anode voltage
change -of tube I. This must be added to the ever present steady state
components V" 4 IR,. Thus the final expression for V,, will be
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7.3 ‘The monostable multivibrator

V,u (00) total = —V" 4+ (I —¢,[,) R,,, and this is equal to the initial
steady state value given by (92.7).

The total expression for the grid voltage of tube I in the third
phase of the dynamic condition is the sum of the steady state components
—V"” + IR, and the time function corresponding to the p-function
(178.7):

Vo (t—1tg) = &, V' — (1 —¢,) V' —

T—S P 1+ P
—e R I |1 e —(t-14) /S
&R, a,,[+ S §1+1+5P7 1+5p8%e +
1+T, bali~te) 1+ Tps p(u)]
e Pl — " Tepslite| L i
+ 1+5157e (1+P)1+S¢86 , (179.7)

where S = g,T + BT,,.
Summarizing, the voltage changes derived for the third phase com-
mencing at the instant ¢ = g are as follows:
V=0 for t =t
V. 1is given by expr. (168.7)
Ve v 5 o (1747)
Ve o o 0w (179.7)

7.3.6. EXPERIMENTAL VERIFICATION OF THE THEORY

A monostable multivibrator constructed to the circuit of fig. 28.7
with the following data was experimentally investigated.

Volis Volts

0 — 0 Sty
{ t‘/T / Y
-30 A AN — T -30 ]
V,x V’z / &4 ‘{" / V’i
-60)
v
o

<__._._.‘
\\

ty

&
L
+ X
S @
3 3
L
N\
<
Y
—
o
= -
+
=
(%))

t
Var °
+52
+30 430
% %

[ 0

0 126 0 126

—— t(u sec) ——t(u sec)

Fig. 38-7.

135



The multivibrator family 7

»

V' =150 V C,, = 500 pF

V' =100 V C,=1pF
V=0 C, =C, =4 pF
C =C, =100 pF C. =40 pF

R, =R, = R =200 k@
R, =R, =20 kQ

The tube was a development-type double triode with an amplification
factor 4 = 35 and an internal anode resistance 7, = 11.6 kQ.

The anode circuit of tube I was heavily loaded capacitively by
C,, = 500 pF, with the intention of lengthening the duration of the
very first period of the trigger cycle, in order to obtain a clear picture
of these initial transients on an oscilloscope screen. If this is not done,
then f, and ¢, practically coincide, and the saw-tooth figure occurring
at these instants in V, and V,, would not be resolved by the os-
cilloscope (see fig. 38.7).

The following quantities can be calculated and are given below:

I,,=0; Vo, =150 V ; g, = 0-048 ; ¢, = ¢ — 0-476

L,, =45 mA (calculated with 7, = 11-6 kQ);
Vay=9523V ; Vo =—238V ; V,, =0 ;
I,=6 mA (calculated from V, =30 V, ¢, = 0-2 usec)

T =20 usec ; T, =002 usec ; Ty = 2 usec;
T,y = 20usec; T, = 88 usec; T, = 10 usec; Ty = T, = 0-8 usec;
A = 202 uysec ; B = 30-8 usec ; E = 18-18 (usec)? ;
$1 = —0-034.108 sec™! ; p, = —1-66.108 sec! ;
K=—-0-952; R,, =19 kQ

R,, =952 k@
B=8,=05;
F =104 usec ; G =242 psec ; H = 100-18 (usec)? ;
ps = —0-0537.10% sec! ; p, = —0-19.108 sec™!;
L=-—0613 ; M= +4+0103;
A, = 0:633 ; A, = 0-367.
J = 288 usec ; p; = —0-0322.108 sec!;

pe = —4-38.108 sec—1.

N=—01; g,=062; o, =038 ;
P, = —0°079.108 sec? ; p, = —0-322.108 sec! ;
P = —0-236.
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7.3 The monostable multivibrator

Photographs of the traces on the oscilloscope screen have been re-
produced in figs 39.7 up till 43.7.

These pictures have been redrawn in fig. 38.7, in order to indicate
several points of interest, and at the same time to give the phase re-

Fig. 43-7.

lationship between diverse signals at anodes and grids and the input
trigger pulse.

The latter has a rectangular shape, a period of 126 usec corresponding
to about 8000 pulses per second.

The waveform of the voltages calculated with the aid of the values
given above follows the experimental waveform so closely that the
differences cannot be indicated in the drawing. Therefore it will be
sufficient to compare some specific calculated and measured values.

Calculated values are as follows:

to = 0-2 usec
lp=25 ,,
=39

b, =1t —t, = 14 pusec
tg = 90 usec (measured 89:6 usec)
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-3

Voo at ¢ =¢;; —23-3 V (measured —17 V)
b=t —T1 ,, | " —6°5,,)
o b=ty —69  ( " —70 ,,)
» t=tg —386 ,, ( " —4 )

Vo at t =1, T1'32 V

At this value of the anode voltage the cut-off grid voltage of the
tube is —3:1 V. However, at the instant ¢t = £, V,,, is below —6 V, so
that there is no danger that the wrong tube, in this case tube I, will
be conducting first.

At t = ¢, Va=V,(0) =138V
(measured 143 V)
Vou' at £ =4: —6 V (cut-off voltage at V,, = 150 V)
at ¢ =, (end of the period) V,, = —26 V
(measured —25 V)
Vot at ¢ = £y 1295 V (measured 135 V)
w b=1, 150 V { " 150 V)
o, t=1:787 V

7.4. THE ASTABLE MULTIVIBRATOR
7.4.1. INTRODUCTION

The astable multivibrator (to be abbreviated in the following to
AMYV) differs fundamentally in its operation from both other types,
mono- and bi-stable MV, in that the latter need external trigger signals
to obtain any switching- or flip-flop action, whereas the AMV is provided
with such a strong regeneration that it automatically and continuously
goes on triggering itself internally. Thus it is essentially an astable
device; hence its name. It never reaches a steady state. The monostable
and bi-stable MV on the contrary, as their names suggest, possess one
and two stable states respectively. This fact enabled us to describe
their trigger or switching action by starting from their stable, steady
state condition, and then calculating the transients caused by a single
triggering signal. When these signals are of a periodic nature, the results
of the analysis apply only when the periodic time of the triggering
signals is large enough for the transients to have died out before further
triggering takes place.

It is therefore evident that the problem with the AMV will have to be
attacked in another way. However, one thing can be stated in advance:
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7.4 The astable multivibrator

1f the AMV, which is in fact a (relaxation) oscillator, has reached
a stationary state (to be distinguished from steady state), it must be
true that any potential difference or current anywhere in the network
must attain the same value periodically. This will be the starting point
in solving the problem. In particular, the potential difference across the
coupling capacitors between the anodes and grids of the tubes will
be observed by giving it an as yet unknown value at the beginning of
a period, then considering its evolution throughout the complete period,
calculating its value at the end of the period, and finally putting
this value equal to its initial value. This condition of equal values at
the start and at the end of each cycle gives an equation which enables
us to determine the frequency and the waveform of any potential
difference or current in the circuit in general by a graphical method,
and by an explicit expression under certain circumstances.

The method indicated will now be applied to several AMV circuits,
namely to the symmetrical and the asymmetrical MV, both with and
without a D.C. control voltage in the grid circuits of the tubes.

7.4.2. THE SYMMETRICAL AMV
7.4.2.1. Determination of the frequency of the AMV signal

The most general AMV circuit is represented in fig. 44.7.

A D.C. supply voltage source V feeds two tubes A and B, which
need not be triodes as drawn in fig. 44.7, but may also be pentodes,
through anode resistances R;, and Rp respectively.

Grid-leaks R,4 and R, are connected between the grids and the
negative H.T. lead, to which
both cathodes are also con-
nected. This is the case of zero
grid control voltage.

The anodes and grids are
connected cross-wise by coupling
capacitors C, and Cp. With the
following assumptions, a fairly .
quick method of obtaining the Fig. 44-7.
required results is possible:

The internal anode resistances of the tubes in the fully conducting
state and the internal grid resistances at zero or positive grid-to-cathode
potential are very small compared with the external resistances in the
anode and grid circuits.

Furthermore it is assumed that the influence of the stray capacitances
of the valve electrodes and the wiring, which shunt the resistances
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and can have considerable effects on the wave shape of the relaxation
signal at high frequencies, is negligible.

More precisely, this means that the time constants containing these
stray capacitances are very small compared with the period and time
of rise of the relaxation signal.

With these assumptions, the MV action may be described as a switching
device that changes the two valves alternately from the conducting
into the non-conducting state in a switching time that is negligibly
small compared with the total period of the relaxation signal which
results from this switching action.

The MV is symmetrical if tubes A and B are of the same type and

Riy=Rip=R,, Royy =Ry =Ry, C4 =Cp=C.

Then, during one half of the total period of the MV signal, one of
the tubes, say B, is conducting; the other tube, A4, is cut off. During
the second half of the period, the reverse process holds, namely tube B
is cut off and tube A conducting. The equivalent circuit of the MV

will be for the first half of the period as depicted in fig. 45.7, whilst for
the second half period it is as represented in fig. 46.7.

'S ‘ 'S
Ry Ry Ry Ry
A % B
VCAI Ca CB Vi C% CB
R2

. S— : 3 - -
. Fig. 45-7. Fig. 46-7.

=<

From fig. 45.7 it can be stated that the voltage across C,, indicated
by Vi, will ultimately attain a value

Vealt=00)=V . . . . ... (180.7)

If its initial value, at the instant ¢ = 0, when the MV was switched
over to the state depicted in fig. 45.7, was also known, the time function
according to which V., changes would be known, since it will be an
exponential function with a time constant

Te=RCq . . .. ..... (18.7

extending from the initial value, as yet unknown, to the final value V.
The unknown initial value, however, can be determined from con-
sideration of fig. 46.7, since the final value of V., in this circuit will
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7.4 The astable multivibrator

be the same as the initial value of V. from fig. 45.7. If the position
in fig. 46.7 lasted indefinitely, it is clear that V., would attain a value
of zero. This would, at the same time, be the case with the grid voltage
Vg since Vip= —V.,. However, before this voltage V;p can
become zero, it passes the value —E, the cut-off grid voltage of the
tubes. At this instant the MV switches over from one state into the
other. So, the final value of V,, in fig. 46.7 is —E,, the final value
of V¢, then being:

Ves (final) = +E¢ . . . . . .. (182.7)

This is, as already mentioned, the initial value in the circuit of fig. 45.7,
It can therefore be written:

VCA (t - O) = Ec L S Y (]83.7)

From (180.7), (181.7) and (183.7) it is now possible to write down the time
function representing V., in the first half period, namely:

VCA == V— (V -_— Ec) e—tIT(,' ...... (]847)

This voltage, V¢4, however, never reaches its ultimate value V, as, at
a certain instant ¢ = ¢,, the voltage V p of circuit fig. 45.7 passes the
value E., and at the same time the grid voltage Vs, is —E¢. This
means that tube A4 starts conducting and the state of fig. 45.7 is switched
over to the state of fig. 46.7.

If, at this instant, ¢ = ¢,, the voltage V., is V,; then, from (184.7):

Vealt=t)=Vy=V —(V—E;)ehTe . . . (185.7)
For a further ¢; seconds from the instant when ¢ =¢,, the circuit of
fig. 46.7 is valid.

We now know the initial value of V4 (see (185.7)) and its ultimate
value, namely:

Vealt=o00)=0 . . . . .. .. (186.7)
Between these values, V., changes exponentially with a time constant:

T,=R,Cy . . . ... .. ... (187.7)
and can be represented by the time function:

Vea=VeeTa . . . . . .. . . (188.7)

Here the time-scale is different from that in the first half period. The
instant ¢ = 0 from expression (188.7) corresponds with ¢ =1¢, from
expression (184.7).
For ¢t = t,, expression (188.7) must be (in its own time-scale):
VCA (t = tl) = Ec = Vo e——tlle e e s . (189.7)
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Summarizing: expression (184.7) represents V., for the first half period

of #; seconds, and expression (188.7) for the second half period of #,

seconds. The initial value of (187.7) is equal to the final value of (188.7),

namely E; (see (184.7) and (189.7)). The final value of (184.7) is equal

to the initial value of (188.7), namely V, (see (185.7) and (188.7)).
Now, from equations (185.7) and (189.7) it is possible to eliminate

the unknown voltage V, to give one equation with one unknown, ¢,.
It is convenient to introduce a new variable x, as follows:

x=eMla 0 00000 (190.7)
Introducing x in (185.7) and (189.7) gives:
Vo=V—(V—E) x5 . . . . (185a.7)
Ec=Vex . . . ... .. .. . (189a.7)
Eliminating V, gives:
Ec=|V—(V—E;)«TT|x . . . . (191.7)

In general, it will not be easy to solve this equation for x, and so a
graphical method of obtaining x is proposed. In order to obtain a uni-
versal method, it is advantageous to introduce relative values of the
voltages by dividing both (1854.7) and (1894.7) by the supply voltage
V, giving:

L (1 —D)aTaTe L (1856.7)
|4
W Do (1895.7)
|4 X
where:
E
=" . ... .o (1927
D= (192.7)

D is practically constant for a given type of tube, when varying V.
According to (181.7) and (187.7):
&:& (193.7)
T, R,
This is the ratio of the discharging to the charging time constant of the
coupling capacitors C, and Cjp.
Now, the graphical method for solving x from (1855.7) and (1895.7)
is as follows:
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7.4 The astable multivibrator

vV
Draw T/—o according to these equations on the same graph. Then the

point of intersection of the two curves gives the required value of x,
and half the period of the MV signal is given by:

1
h=T,In—, . . ... .. ... (1947
X

as can be derived from (190.7).
The whole period will be:

1
T=2%=2Tn—,....... (195.7)

and the frequenlcy is:

1
2T ,;In —
x

For examples of this graphical solution the reader is referred to the
book mentioned in section 7.1.

It appears that, as D is decreased and T,/T, increased, V, more and
more closely approaches V.

T
In practice, for D < 0,1 and -,1—,3> 1, the approximation Vo=V

is valid. In that case, (1895.7) simplifies to:

x = D, and the following approximate formulae for the MV period
and frequency hold:

7.4.2.2. Waveform of the symmetrical AMV signal

The most important quantities, next to the frequency, which we
like to know, are the changes in anode and grid voltages of both tubes.
These can be derived from the voltage changes across the coupling
capacitors C, and Cgz. From fig. 45.7 it can be seen that for the first
half-period the voltage of tube A is equal to V., so, according to
(184.7):
Vi, 0—t)=Vea=V—(V—E)e" . (199.7)
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During the second half-period this anode voltage is, according to fig.
46.7, given by:

The grid voltage changes of tube B are:
for the first half period (see fig. 45.7):
Veg O—12)=0. . . . . . ... (201.7)

for the second half perlod according to fig. 46.7 and equation
(188.7):

Vep(t,—28) = —V = —VoetTa . . . (202.7)
Because of the symmetrical properties of the circuit, the voltage changes
across capacitor Cy will be equal to those across C, but shifted in time

over half a period (¢, sec).
So, during the first half period:

Vep (0—12) = VoeiTa . . . . .. (203.7)
and during the second half period:

Ve (b—2t) =V —(V—E) e . . (204.7)
Then it is easy to see that:

VypO—2t)=0. . .. ... .. .. {205.7)

Vagty—24) =V —(V—E,)eTe . (206.7)

Ve, 0—t)=—VoetTa, . . . . .. (207.7)

Ve, 4 —24)=0 . . . . . ... .. (208.7)

In fig. 47.7 the various waveforms have been represented, namely:

V¢, according to equations (184.7) and (188.7)
Ves y " " (203.7) and (204.7)
Va, v . (199.7) and (200.7)
Ve, b ,  (207.7) and (208.7)
Vs ’ " " (205.7) and (206.7)
Vs » ’ . (201.7) and (202.7)

If the value of x has been determined by graphical methods, as des-
cribed in the previous section, then from (1894.7) it is found that:
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7.4 The astable multivibrator

The various waveforms are then known. In most practical cases, V,
will be approximately equal to V, as already stated

In the graphs of fig. 47.7, the ‘
difference between T, and T, has been 1
chosen to be not very large. There-
fore V, differs markedly from V.
Should T, be chosen much smaller,
then all curves with the subscript T, .
would rise much more steeply and
attain the V, level in a much shorter
time than #,.

The stationary condition of the
AMV will automatically correct this
inequality of the two half-periods by
taking a higher V, level such that
the T ,curves will reach this level
at the correct instant ¢ = £,.

7.4.2.3. Influence of internal tube
resistances

All previous derivations hold only
for the case that the internal anode-
and grid-resistances of the tubes are
negligibly small compared with the Yo ——=b——
circuit resistances. It can easily be Fuig. 47-7.
shown that this is almost always
satisfied as far as the internal grid resistance is concerned, but
internal anode resistances may assume values up to tens of kilohms.
With pentodes we have almost always to take into account the internal
resistance below the “knee’ of the I V -characteristic. This is because
in the conducting state the tubes always have a grid-to-cathode potential
very near to zero, and the anode load resistance will generally be large
enough to have a voltage drop across this resistance sufficient to bring
the anode-to-cathode voltage below the ‘‘knee” value. If this is not
so, then the tube is not very suitable as a switching device. With triodes,
on the other hand, rather high internal anode resistances may occur.
It is therefore worth while to investigate the influence of this internal
resistance. First the grid circuit will be considered. In fig. 48.7 the grid
current - grid voltage characteristic is represented in-a general form.
Grid current starts at a negative grid voltage value of about 1 V and
increases rapidly for positive values of V.
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7

The straight lines.l1 and /, represent load lines for a certain value of
grid leak resistance for D.C. grid-to-cathode bias voltages of 0 and +V,

V respectively.

As can be seen from fig. 48.7, the grid-to-cathode ‘voltage (V, and

I

f

%A

2 —

Fig. 48-7.

V,) will not be greatly
influenced by large varia-
tionsin grid bias voltage V,,
and we can assume values
always very near to zero (in
practice between —I1 and
+1 V). The assumption of
a zero grid internalresist-
ance implies that the
1,V ~curve coincides with
the wvertical I,-axis, thus

always giving a zero grid-to-cathode voltage for every load line and
bias voltage V,. This approximation can be considered as sufficient to

describe practical circumstances.

The influence of the anode internal resistance, however, needs closer
examination. For both tubes, the introduction of an internal anode
resistance 7, changes the equivalent circuits of the AMV (figs 45.7 and

+ +§-
Ry Ry Ry Ry
Vi Ca Vea Ca V| G, Ca
| Gg -t Ga G Ga
CI= Rz Sf
- -& 3
Fig. 49-7. Fig. 50-7.

46.7) into those depicted in figs 49.7 and 50.7. The situation of fig. 49.7
starts at the instant £ = 0 and ends at ¢ = ¢,. The voltage across capacitor
G, at the instant £, is again assumed to be

Vealt=t)="Vo . . ... ... (2097)

This is, at the same time, the initial value in the situation of fig. 50.7,

which lasts a further ¢, seconds. The valve of V, in this situation tends

r

to .8

Rl + Ya
146

V, as t - o0; so:
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7
Ve, (t = 0) = e 2 210.
cult =) = g (210.7)
Thus, capacitor C, discharges from the initial value V, (at £ =01in a
new time scale), to an ultimate value i " V, according to an ex-
1 a
ponential time function with a time constant
Ry, - R,
T, = (R 1 >=CaR (1 '——1-1’——)=:r 14+ 2), (2117
= CalRat g (1 gR ) =T+ A, @)
where:
A = s (212.7)
SRRy .

(For the transients, R, and 7, may be considered to be in parallel between
point A, and the negative H.T. supply lead.)
Hence:

Voula—2t) = 7 V+(V0—— e V) T, (2137)

1 7 Rl + 7a
Representing the parallel combination of R, and 7, by a value R,
Ry»
R,=—e  (2147) Cack
s -R1 +7, ( ) A
the discharging circuit of C, is given by o R
fig. 51.7. From this circuit it can be g, Yog
easily seen that the change in grid voltage
of tube B during the second half of the
period is: Fig. 51-7.
R
Vey (lh—2t) = — RszR, Ve
Here _VE: represents only the transient component of V., that is
the second term in (213.7), since the D.C. component i does
not affect the voltage across R,. Thus: 17+ 7
R 7
Vi (b — 2t =————2——(V-—— o _V) Ty, (2157
s (h 1) R, + R, 0 R, +7, et ( )

This second half-period lasts ¢, seconds and ends when V, attains
the value —E,, so that ¢, is defined by the relation:
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E,— - (V e V) eHIT's (21647)
¢ R2+Rs 07 R1+7a :

From (213.7) and (216.7) it can be seen that the value of V, at the
end of the second half-period is:

14

R2+Rs

Ve, (24) = vV E, . .. .
Ca ( 1) Rl _|__ 7, + R2 ¢ (2]7 7)
But this is also its initial value for the first half-period:
4 R, + R
Ve, 0) = —2—V 4+ 2_2E, ... (28
Cua ( ) Rl + 7, + R2 [ 2] ( 7)

whilst the ultimate value (for £ = o) would be V. So, the time function
representing V., in the first half period is: '

Ve (0—t) =V —1V—V, (0)§e—f/Tc, C .. (2197
where T, = C4R,, the same value as in previous sections. Substituting
(218.7) and (219.7) gives:

R, Ri+R,
R, +7, R,

Ve, (0—t) =V — ( E) e, (220.7)

At the instant ¢ = ¢,, this capacitor voltage has attained the value V:

R R, + R
Vo=V —(5—ie ¥ — =2 SE)*‘xch C.o(22L
, (Rl—i—raV x e (221.7)
Expression (216.7) can be rearranged as:
vV D
—V—" =Nt (42— (2164.7)
and (221.7) as: ,
Vv ,
= 1—31 A — (1 + 1) D% ATalTe | . (221a.T)
where:
r
= e 222.1
M= (2227
R Ry
A= o= T 223.7
R R R 470 2
E
D=— .. ... ....... 192.7
= (192.7
x=eWTd L. (224.7)
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7.4 . The astable multivibrator

Expressions (2164.7) and (2214.7) must be compared with expressions
(1895.7) and (185b.7) respectively from section 7.4. 2.1, to obtain an idea
of the influence of the internal anode resistance 7,. Thus it will be seen

. vV
that, where (1895.7) represents 7“ as a function of x by a hyperbola

that is-symmetrical with respect to the ‘
horizontal and vertical axis, (2164.7) 4 1
represents a hyperbola shifted upwards by ¥ 12 \
an amount A, with respect to the hori- T \
zontal axis. _ 10

In addition, instead of D, a slightly ool IINTSI I
larger value (14 4,) D must be, substi- A N . q
tuted. In most practical cases, R, will be \\\ { '
much smaller than R, or 2, <K 1. Thus 0«4 \ NI T

. . . . N,

the apparent increase of D will be negli- 02 N N
gibly small. In fig. 52.7, equations (1855.7), T
(1895.7) (21611.7? and (221a.7) are re- 0 %7 oi 06 08 10
presented graphically for a simple case, —_—
namely for Fig. §2-7.

T,)T,=1, T[T, =1, 3,=14 and D = £,

Then these equations are as follows:

14

T/B =1—09%. . ... ... ... (185¢.7)
Ve, 1

T (189¢.7)
Vo 1

-0 T ) — o o 2160.7
7 =4t (0 +4) & (2165.7)

The influence of 1, has been neglected in the graphs of fig. 52.7. From
equations (1895.7) and (1855.7), as well as from (2164.7) and (2214.7), it
can be seen that a solution for x = 1 always occurs (intersection of both
curves in fig. 52.7). . '

This solution, however, has no practical importance, as can easily
be shown for the case of zero internal anode resistance; for according
to (189.7) and (192.7), Vo =E, if x = 1.

This means that the grid voltages would never exceed the cut-off

149



The multivibrator family 7

value, but only just reach this value, so that the tubes could not be
switched from the conducting to the non-conducting state.

Also fig. 52.7 shows that there is always a second point of intersection
of both curves. It can be seen that this occurs at practically the same

14 14
value of _170 , viz. 70 = 0,9, but at different values of x. For the curves

(185¢.7) and (189¢.7), the value of x is 0,11, which is quite near to the
chosen value of D.
For the curves (2165.7) and (2215.7) the solution for x is x = 0,25.
Comparing the two cases, it follows from equation (196.7):
For 7, = 0, the frequency of the AMV signal will be:

1
o=
2T,In —
0,11
For r, = R, (1, = 4), the frequency will be:

1
=
2T, In ——

+ 10525

’

T T
Now, T, =T/, as both Td and ——Ti have been chosen equal to unity;

hence, the ratio: ¢ c
1
In ——
Looto
'f"' = —1'— == 1,6.
° In—
0,25

It is apparent that the influence of the internal anode resistance is to
increase the frequency of the AMV signal, although the charging and
discharging time constants have been kept constant.

’

d . . . . .
The value —— =1 is rather exceptional in practice, as, in general,

’

T c R
T”-} 1, because f@j > 1. If this condition holds, it can easily be shown
c 1

| 4
that in practice T’g is unity for the point of intersection of the two curves
that is of practical importance.

v .
Taking T/2 = 1 reduces equation (2164.7) to:
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D
1=Aa+(1 _!_,j'n)—:
( X

or:

and the AMV-frequency is:

fm (226.7)
2T,/ In

(1+2,)D
As must be expected, this expression changes into (198.7) if 7, is taken
as. zero.

Substituting 4, and 4, (see (222.7) and (223.7)), respectively, in (226.7)
gives:

f= : : C .. (226a7)

2T,/ In
11y
Dgl +,,,(E+E)s

In fig. 53.7, curve I represents equation
(2164.7) for A, = 0,5, 1, =0, D = 0,1 and
T,|T,= 2, whilst curve II represents
equation (221a.7) for the same values of
parameters. Curve II’ also represents sy
(221a.7), except that the value of T,/T,
is taken as unity. Thus, curves I and II’ -
correspond with the upper two curves in 06
fig. 52.7. It can be seen from fig. 53.7 that
the point of intersection of curves I

v
and II' (32 = 09; x = 0.25) shifts to

— <|‘,<
&
Lt

[
K

02

0
0 02 04 06 08 10

—-X

N 4
the point —-2.-0,99, x = 0,2, where curves
|4 Fig. 53-7.

I and IT intersect. The value of x would :
not have been changed much if it was taken from the intersection of

V T,
curve I with the horizontal line T/B = 1. So, for values of —Ti = 2
[

and higher, it is a sufficiently good approximation to say that:
VolV = 1.
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Consequently, equations (225.7), (226.7), (226a.7) are valid for these
cases, which cover the majority of practical applications of the A.M.V.
The waveform of the different voltage changes can be derived from
the expressions (220.7), (213.7), (215.7).
From fig. 49.7 it can be seen that:

Va,0—28) =V, (0—1) = V——g(l —22) V—(142,) E | e (220a.7)

Ve, O—2t)=0.. . . . . ... (227.7)
From fig. 50.7:
Vagh—24) = Ve, (h—24) + Ve, (h—2t) =
1

= AV + (Vo— A, V) e T — (Vo— A, V) e47d

1+ 2,

or:

A, ,
VAA (tl _Ztl) = ]‘aV + 1 + 7\7 (VO - }*aV) e (2287)

Ve, (t,— 2t) = — (Vo— A V) e=Td . . . (215.7)

142,
Because of the symmetrical properties of the AMV, it is clear that:
Vash—24) = V4, (0—1)
VGA;W(tl —24)=0

VAB (O —_tl) = VAA (t1—2t1)
VGA (O _ tl) = VGB (tl —_ 2t1).

For A,= 4, =0, expression
(2204.7) changes into (199.7),
(228.7) into (200.7), and (225.7)
into (202.7), as might be ex-
pected.

The initial value of V,, for
the first half-period is:

Vi, 0 =2,V + (14 4,)E,
Fig. 54-7. (229.7)

The final value of V,, for the first half-period is: V,, (,_) = V,, as can
be seen from (2204.7) and (221.7). The initial value of V,, for the
second half-period is:
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7.4 The astable multivibrator

A A

V, (i) = —2-V —2 V.
a4 (b1+) Y +l+l, 0

The final value of V4, for the second half-period is:
VAA (ztl) = laV + laEc’

as can be seen from (228.7) and (216.7).
From (215.7) it follows:

Vo— 4,V
VGB (t1+) = (1) + A
. g
Vo— 2,V , .
Vg (2t) = — ;’—_}_/}f— e4lTd = — E, (according to (216.7))
g

In fig. 54.7, V,, and V, have been represented graphically.

Vs, has the same waveform as V, shifted in time over a period
¢, seconds.

A comparison of fig. 54.7 with fig. 47.7 shows the influence of the
internal anode resistance 7,. The amplitudes of the different waveforms
have been reduced, whilst the steep negative-going front of the anode
voltage waveform is rounded off at its lower part.

7.4.2.4. Influence of a positive grid-bias voltage

Introducing a D.C. positive voltage source V' in both grid circuits
changes the equivalent circuit diagrams of fig. 49.7 and 50.7 into those
of fig. 55.7 and 56.7.

+
+T %ﬂ R1 f é/?y %Rﬁ
VcAI_ Aa Ag I—Ai— Agg

CA CB VCA CA
v = (] A v ) A
! g Rz R2 §fa
+ +
l V’ v
5 S S & =
Fig. §5-7. . Fig. §6-7.

The complete derivation of the fundamental equations will not be
repeated, but following the same reasoning as before, it is easy to arrive
at the following expressions:

e A —y (A L ... (2307)
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Vv ,
—V-°= 1—31 —Aa— Ay — (1 + 2) Dg *TdTe .. (231.7)
These equations may be compared with (2164.7) and (221a.7) respectivily,
or with (1896.7) and (855.7) respectively.

The quantity y represents the ratio of the grid control voltage V' to
the H.T. supply voltage V:

For y = 0, equations (230.7) and (231.7) change into (2164.7) and
(2214.7). If, moreover, 1, and 4, are taken to be zero, equations (230.7),
(231.7) change into (1895.7) and (185b) respectivily.

The frequency of the AMV can be found from (230.7) and (231.7)
by applying the same graphical procedure as before. Here again there
will always be a solution of x = 1, as can be seen from (230.7) and (231.7),
but this has no further practical importance. The other solution will,
as a rule, be a value of x rather small with respect to unity, and there-
fore the term x%¢c in (231.7) becomes negligible when the ratio T,'/T,
assumes a value of, say, two or more. This will hold in most practical

vV
cases, so that (231.7) simplifies to 7" = 1, and consequently (230.7)
becomes:

D
= d—y+0+2) 02,

or:
1 1 + Yy — 7\a !
—_—= % L. 233.7
x  (1+24)+ D) @530

x was defined by:

x = ¢~4/Td (compare with (224.7)) .
This implies:

1
tl = Td, hl -
X

The AMV signal frequency is:

1 1
f=T='271'n
or:
1
fm——
2Td’1n—;
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Substituting (233.7) yields:

1
f= , ... (2347
AT I TV P
(14 24) (D +v)
where:
Ry
— R 1"a
T, = 2+R1+ra)
| 48 7o . Ry,

E
= A= A= 5 D=,
% Ritre 7 Ri(Ry+70) v

The waveform of the capacitor and anode and’ grid voltages can be
shown to be as follows:
In the first half-period lasting #, seconds: _

Ve, =V — 3(1 —2) V=4,V — (1 + &) EfeT. . (2357)
VGB = 0
Vae=Ve,=V—j1—2) V=2V — (1+4) E,| e (236.7)

The initial values are:

Ve (0) =0
Ve, (0) =V, (0) =4,V + 4,V + M+ A)E, .. . . (231.7)
The final values are:
VGB (tl——) =S 0 ................... (238.7)
Ve, )=Va, s )=Vog . o - o o o o oo oo (239.7)
In the second half-period lasting another ¢, seconds:
Ve, =2,V —V +(Vo— ALV+V)edTd oL (240.7)
’ 1 " ,
Ver=V' — Ty (Vo— AV + V)etTd . . . .. (241.7)
Aﬂ ’ ’
Vi, =24V + T (Vo— AV + V)yetiTd, . . . . (242.7)
The initial values are: .
Ve o b)Y =Vo .o o o v o o 0 oo (243.7)
ALV 42,V —V
Vg, (t,+) = =2 2 L 244.7
Gs ( 1+) 1 + ;.’ ( )
A,(Vo+ V)Y 4+ 2,V
V, (t+) =22 . 245.7
1 () 7 (2457
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The final values are:

Ve, (26) = AV + AV 4+ (1 + 4) E, = Ve, (0) . . . (246.7)
Ves @) =—E,. . . . . . .. ... (247.7)
Va @) =2,V 4+ 4, (V+E). .. .. ... ... (2487

Comparing the amplitudes of the anode and grid voltages with those
of fig. 54.7, it can be seen that the amplitude of the grid voltage is

diminished by an amount ; i" 7 V', whilst that of the anode voltage
g

is diminished by an amount 2,V’. The general aspect of the waveforms
will be the same as depicted in fig. 54.7. Furthermore, it should be noted
that the ultimate value of the grid voltage in the first half of the period
will not be zero (see dotted curve in V, graph, fig. 54.7, following the
instant £)), but V’. So the angle of intersection between the exponential
curve (T,) and the cut-off level (dash-dot line) will be larger with a
certain control voltage V' than without. The larger this angle, the
better will be the frequency stability of the AMV signal, since the shift
of the intersection point because of interference will be smaller for larger
angles. Therefore, from the point of view of frequency stability, it is
better to use a high positive grid-bias voltage with a larger time constant,
T, than no bias at all with a smaller T,, for generating the same
frequency.

7.43. THE ASYMMETRICAL AMV

The fundamental circuit diagram is that of fig. 57.7. The period of
the AMV signal now consists of two quasi-stable states with a different
+Vo- : duration. The first state is
assumed to last #, seconds, the
second £, seconds, the total
period T thus being T = ¢, 4 ¢,.

In fig. 58.7, the first state
(from O to ¢, seconds) is re-
presented in an equivalent
diagram. The second state (from
t, to ¢ + ¢, seconds) {or in a
new time scale from 0 to ¢,

Fig. 57-7.

seconds) is represented in fig. 59.7.
The final value at the instant ¢, of the voltage across C, in fig. 58.7
is assumed to be:
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This is, at the same time, the initial value for the circuit of fig. 59.7.
The ultimate value for infinite time would be:

+2 +¢
Ria Rig Ria Rig
v 144 ‘ Ag v Ay Ag
C, I Ca Cg QAI Ca

C
A B
—16s , A v —Gg A
raBE Ry A R29 gl‘a 4
+ U
Va Ve
- EL - v : — 1

<

4
|4 o4 V—v, 250.7
u(00) = , (250.7)
or:
Ve (0) =4, V—V'g, . . . . . .. (251.7)
where:
ra.A
Gd = e e e e e e .. (2827
* Yaa + RlA

During this second part of the period, the capacitor C, will discharge
with a time constant ‘

7., R
T, =C (R +——1—) .. (2537)
da 4 2B Yo 4 R14 (
according to the exponential function:
VCA = Z'GAV — Vs + (VOA - }'GAV + V'g) eTey (254.7)

The last right-hand component (the transient component) of (254.7)
causes a current to flow through the grid leak R,

1 y
I, = (Vou— Ao,V + V'g) e,
R + 7'aARlA
2
i 7a4 + RlA

or a voltage drop appears across R,,:
. RZB ’ YT’ )
- (VOA_}'aAV'Jf_ VB)e a4,

7, R
R + aattly
2 raA + R]A

vV

Rap
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Introducing

Ay, = __M,A____ (255.7)

o Rza (raA + Rl,q) o )
gives:

1 y
Vi = =T Vou— huV + V') 7o
and the total voltage on the grid of tube B will be:
1 ,
Vey=Vipg———(Vo,— A,V + V'g) eTaa . . (256.7)
14+ 2,,

As soon as this voltage reaches the cut-off value —E., of tube B,
the AMV switches from the state shown in fig. 59.7 to that in fig. 58.7.
This occurs at the instant when ¢ = {,; so: °

1

—Eer =V
g4

(Vo, — A,V + V') e=4Tau, . (251.7)
or:
(Vou—AaiV + V's) e4Tas = (1 + 2,,) (Ec, + V)., (258.7)

From (258.7) and (254.7) it can be seen that the final value of V¢,
in the second part of the period will be:

Veolt) = 2V — V' + (1 + 4,,) (Ecy + V') . . (259.7)
This is also the initial value for the first part of the period (fig. 58.7).
Ve, (0) = Ve, (&)
The ultimate value for infinite time would be:
Vesood=V .. o oo oo (260.7)
The capacitor C, is thus charged with a time cohstant
Te,=CuRyu, . . . .. .. .. (261.7)
according to an exponential function:
Veu=V—|V—Vo,(0)f s,
or:
Veu=V—{V (1 —2,) + V&' — (1 + 4,,) (Ec, + V5| eou,
or: :
%=V—W—MW~M%%M+MWJM%-%M
158



7.4 The astable multivibrator

At the instant ¢ = ¢, V¢, reéches the value ¥V, ; thus:
Vou=V—1—12.) V—12,Vs' — (I + 4,) Ec, o, (263.7)

From equations (258.7) and (263.7) the unknown voltage V,, can be
eliminated, giving one relation between £, and ¢,

Considering the voltage changes across capacitor Cp during-the
whole AMV signal period will give similar expressions as (258.7) and
(263.7); only the indices-4 and B and ¢, and ¢, have been interchanged.
From these expressions the unknown voltage Vo, can be eliminated,
giving another relation between ¢, and f,. The complete derivation will
be omitted here, giving only the final result:

(1 + }wA) (DB + )’B)
I — Aay + va— (1 — Aoy — Apve — (1 + Ay,) Dyl xTeal™s
(1 + A,8) (Dg + v4)

N 1 _}“aB + Ya— ;l _}*aB—— 103‘}/‘4 —_— (1 ——}‘GB) DA% yT'dA/TcB

y = (264.7)

x (265.7)

where:
x = e/Tay
Yy = e—t’/T'dA

. R .
T'yp=Cg (Rh + ﬂ); T’,, see (253.7,

Yau + Rla
Tcy=CgRy,; Tc, see (261.7)

r,.R
i see (255.7); A, = ——22 12
gA ( ) g8 R2A (raB + R]B)
4
252.7) ; =2
Aq, see ( )5 Aas Tt R,
Ec E¢
D, ="2:Dg="22
7 7
V) Vg

7,4=7-; Y=g

Now, ¢, and 4,, or x and y, can be solved graphically by plotting, in the
same graph, y as a function of x according to (264.7), and x asa function
of y according to (265.7). The point of intersection of both curves gives
the solution for x and y. There will always be a solution x =1,y = 1,
which has no practical significance. The other solution will always be
of such values that ¥ and y are small compared with unity, so that it is
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The multivibrator family 7

worthwhile to examine the power of x in (264.7) and that of y in (265.7).
If these powers are sufficiently larger than unity, the last term in both
denominators can be neglected. These powers are:

T’dB /\I& &f and

TCA CA ‘ RIA

T, Cs R,, . _
—— &~ — . —— respectively.
Te, ~Cp Ry, PECHVEY

Generally, the grid leak resistors R,, and R,, will be much larger than
the anode resistors R;, and R,,. Consequently, the powers will be
sufficiently large if Cz and C, do not differ by a large amount. The
asymmetry of the MV will ' mostly be determined by these capacitance

C
values. A ratio C_A of & or 10 will not be exceeded very often. A
R B
ratio of E? larger than 10 will generally be used, so that, in the majority
1
of practical applications, the powers of x and y may be neglected. Then

expressions (164.8) and (265.7) are simplified to the following expressions:

(1 +4,) (Ds + )

=— ... .. 264a.7
y . ( )
1
¥ — (04 455) (D4 + v4) ) (2654.7)
I— }'aB + Va
and the frequency is explicitly defined by:
1 1
1 + t2
bh=Tgpn—, t,=T,In— . . ... ... ... (266.7)
f= ! (267.7)
1— 2, + 7, 1 — 24, + 75 ’

TI

In

(14 A8) (D4 + 74) (14 4,) (D4 +v5)

In practice, the tubes will often be identical, for instance two halves
of a double triode or pentode, whilst the grid bias voltages V', and V',
are taken from the same source. Then, Dy = Dy = D and y, = y5 = .

Moreover, the resistances in both halves of the AMV will often be
the same, ie. Ry, = R,, = R, and R,, = R,, = R,. Then:
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7.4 The astable multivibrator

Aoy=Ayp=124,and 4, =1, =1

g

and expression (267.7) is simplified to:

1
f=-- S . (268.T)
1l — 4, +9
T T \ln——_ a7
(T, + da)n(]+lg)(D+y)

Once x and y have been defined, either graphically or explicitly, the
voltages Vo, and Vo, can be determined, and the waveform of the
different anode and grid voltages can be calculated.

If, in expression (268.7), the time constants 77,, and T’,, are equal,
this expression is identical to (234.7), so that the AMV is symmetrical
again.

7.4.4. CONCLUSION

In section 7.4 a graphical method of determining the frequency and
waveform of an astable multivibrator signal is presented. In most
practical cases simplifications are possible, to give explicit expressions
for those quantities. The influence of internal anode resistance of the
tubes is taken into account, whilst it is shown that the influence of
internal grid resistance will, to a good approximation, always be
negligible. '

Summarizing the explicit expressions for the frequency gives the
following:

a. Asymmetrical AMYV with positive D.C. grid bias voltage:
1

f= — v LR
T/ ].n — Yigp Ya + TI Aln T %au VB
U+ A (Datre) M (14 2,,) (D +vs)
Ay, =
“ TR,
4
}_u — a8
i 7a3 + RlB
RlA
=21
b T Ry,
R
203 = R:: 2'"19
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The Multivibrator Family 7

Ty, =Ty, (1 +4,,)
T,dn = Tda (] + }‘an)

TdA ZCARzn
T,, = CpR,,
Vi
Ya = v
V'
7B =—I7—
E.4
D, ==t
R
E
DB - I;B

b. The quantity y is a measure of the grid control voltage. If grid leaks
are returned to the cathode (negative H.T. line), y is zero and (267.7)
is simplified to:

=

1

1 — 1 _
aB TIdA ln 1 2’01

T, In ——2— L S
(1 '+— j'nuv) DA (] + }'u) Dn

I

aB

c¢. If corresponding quantities with indices 4 and B are equal, the
AMYV becomes symmetrical, and the frequency in the case of positive
grid bias is:
1
= .. . . . (270.7)

1_Aa+y
2T, (1 + 2) In :
R Ty S

(see (234.7)).
Without positive grid bias:

/= ! — (271.7)

2T, (1 + 4,) In

(1+4,)D
(see (226.7))

7.45. EXPERIMENTAL CHECK OF THE THEORY

A symmetrical astable multivibrator circuit according to the circuit
of fig. 44.7 has been investigated. The only difference was in the con-
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7.4 The astable multivibrator

nection of the bottom of the grid leak resistances R,. These were not
connected to the negative terminal, but to the positive terminal of the
H.T. supply. In this case we have to take into account a control voltage

!’

14
V’ equal to the H.T. supply voltage V, so that y = v = 1. The ratio

of the grid-leak resistance to the anode-load resistance was always
sufficiently large to permit expression 234.7 to be used with reasonable
accuracy to determine the frequency.

The tube used was a double triode type E 90 CC. The negative value
of the grid voltage at which the anode current falls to 100 uA was
rather arbitrarily chosen as the cut-off voltage, E. The mean value
of E, for 10 tubes was found to be 10.5 V, with a maximum value of
11.5V and a minimum of 9.2 V. The mean value of the frequency of
these ten tubes used in the circuit, was 1006 cycles per second, with a
maximum value of 1060 c/s and a minimum value of 970 c/s. The circuit
components were:

Anode load R, = 10-1 k@
Grid leak R, =101 k@
Coupling capacitor C = 10,000 pF

Substituting these values and E, = 105V, V=200V, r, = 4 kQ,
y = 1 in expression (234.7) gives a value of 1033 cycles per second for
the frequency. This has a deviation of 2:79 from the measured value.

The influence of several circuit components has been calculated
and measured. The results are given in the following table. The H.T.
supply voltage throughout is ¥ = 200 V, with 7, taken as 4 k2 and
E, chosen to be 10-5 V.

R, R, C f (measured) [ f(calculated) | Deviation
(kQ) (k2) (kpF) (c/s) (c/s) (%)
10-1 101 10 1006 1033 2.7
101 101 15 690 689 0
10-1 10t 56 1705 1840 7-8
10-1 560 10 191 182 —4-6
10-1 1000 10 109 102 —6:3 -
57 101 10 1134 1237 9:0
151 101 10 933 -955 23

The waveforms of a few of these multivibrator circuits have been
given in the oscillograms of figs 60.7 to 63.7. In figs 60.7 and 61.7
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The multivibrator family 7

respectively, the changes of grid and anode voltage are shown. These
waveforms should be compared with the calculated ones given in fig. 54.7.
The circuit conditions were as follows: — Tube E 90 CC with r, = 4 kQ,
E,= 1055V (V =200 V). Coupling capacitors 10 kpF; anode load
resistors R, = 10:1 kQ; grid leak resistors R, = 1 M. The frequency
measured which can be taken from the table above, amounts to 109 c/s.
Thus, the duration of one complete cycle is practically 10 msec. The

!

T R

ratio =, which is 72—2 approximately, is large here (about 100), so that
] 1

the anode voltage V, of the non-conducting tube will reach the value

of the H.T. supply voltage V within a fairly short time. It can be seen
from fig. 61.7 that the anode voltage in the non-conducting half-period
does in fact reach ‘“‘saturation’, that is, the value V, in a time small
compared with the total period of the signal.
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7.4 The astable multivibrator

This time is defined by T, the period mainly by 7, The case of
figs 62.7 and 63.7 is more similar to the pictures of fig. 54.7, and the

T . L
ratio =2 is about 7. Details of circuit components and the valve ‘are:

E 90 CC with r,=4kQ, E, =105V (V = 200 V). Coupling capacitors
C = 10,000 pF, anode load resistors R; = 15:1 k{2, grid-leak resistors
R, = 101 k. The frequency measured is 933 c/s, so that the duration
of one complete cycle is 107 msec.

The general shape of the oscillograms is easily recognized to be that
of the calculated waveforms of fig. 54.7. One deviation can be clearly
distinguished. This is caused by the fact that the internal grid resistance
of the tubes is not zero, as was assumed in the calculations, but has a
finite, though small, value in practice. This causes a kind of overshoot
in the grid-voltage change of the tube becoming conductive. This over-
shoot is also to be seen amplified in the anode voltage at the bottom
of the steeply falling edge. This ‘“negative overshoot’ again appears,
conducted through the coupling capacitor, at the grid of the other tube
which is suddenly cut off. In fig. 64.7, these phenomena have been
identified by dotted curves. )

It is possible that the effect of finite anode internal resistance (rounding
off the otherwise sharp edge at the bottom of the negative-going part
of the anode voltage) nearly compensates for the overshoot effect of
the finite grid internal resistance. This is shown in the oscillograms of
figs 62.7 and 63.7. In the oscillograms of figs 60.7 and 61.7, on the
other hand, the overshoot effect is clearly predominating.

The values of V; and V, from fig. 64.7 must be, according to fig. 54.7:

V,=E, and
Vv Vo— 4,V tivel
= — % respectively.
2 I+ 4 P y

Evaluating these voltages for the multivibrator circuits of figs 60.7
and 62.7 gives a good agreement between the calculated and the measured
values shown in the oscillograms. The ratio of V; to V, could be cal-
culated and measured from the anode voltage waveform (see fig. 64.7).
The agreement is less here, because it is more difficult to eliminate the
disturbing effect of the overshoot of grid voltage.
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8. BLOCKING-OSCILLATOR CIRCUITS

8.1. INTRODUCTION

Another well-known and frequently used circuit in pulse technique
is the blocking oscillator. There are two main types to be distinguished,
comparable with the monostable and astable multivibrators, viz. the
triggered and the free-running blocking oscillators.

The point of comparison is that both circuit types can be described
as consisting principally of a vacuum amplifier tube with strong positive
feed-back; the point of difference is that with multivibrators an extra
vacuum tube is used to feed back the signal in the proper polatity for
regeneration, whereas with blocking oscillators a transformer serves
this purpose. ‘

The analysis of blocking-oscillator operation can be carried out ac-
cording to the principles treated in foregoing sections, but in general
the results are less accurate than with the multivibrator circuits. This
is due to the fact that in general it is easier to avoid excessive stray
inductance than stray capacitance in electronic circuits. The multivibrator
circuits consist of resistances and capacitances only, and extra stray
capacitances generally do not complicate the calculations of network
response. Blocking-oscillator circuits, however, combine resistances and
inductances; taking into account stray capacitances will generally in-
crease the order of the differential equations to be solved in analysing
the circuit behaviour. The above points should be remembered in the
following analysis of the blocking-oscillator operation, where stray
capacitances are not taken into account except when this is unavoidable.

Experience has shown, however, that the results of the relatively
simple analysis can be useful in designing blocking oscillators for special
purposes and in predicting their output-pulse shapes. Moreover, a good
idea of the order of magnitude of anode- and grid dissipation can be
gained.

Because of the flexibility of transformer coupling, several kinds of
blocking-oscillator circuit can be designed. Positive feed-back can be
attained by magnetically coupling either the anode circuit with the
grid circuit, or the anode circuit with the cathode circuit, or the cathode
circuit with the grid circuit.
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8.2 Analysis of triggered blocking oscillator

The analysis is essentially the same for all three modes of feed-back,
so that only one will be treated in detail; for the others the final results
will be given.

The pulse duration of a monostable multivibrator is dependent on a
time constant defined by the product of a resistance value and a ca-
pacitance value. With a blocking oscillator it is dependent on a time
constant which is the quotient of a self-inductance value and a resistance
value.

The frequency of an astable multivibrator is deternrined by RC-time
constants. The treatment of the free-running blocking oscillator will be
restricted to an analysis of the case where the current pulse through
the vacuum tube has a very short duration with respect to the repetition
period of the pulses; some reference will also be made to other possible
cases.

8.2. ANALYSIS OF TRIGGERED BLOCKING OSCILLATOR

As mentioned in the preceding section, one type of triggered blocking
oscillator will be analysed in detail. This type is the one using positive
feed-back from the anode to the grid circuit. Its basic circuit is re-
presented in fig. 1-8. It consists of tube I, whose anode is supplied from

np
Yoo tW H
N2
o Yommmmmmmme- S Sa
- +
_ﬂ_ Vo (= =)V
g?S) ‘y o <>_ ®
T
Rk Ry
= = —_ 96151 _I_
= 96152
Fig. 1.8. Fig. 2.8.

a source +V, volts via the primary winding (#, turns) of a transformer.
The grid of tube I is connected via the secondary winding (%, turns)
to a source of —V ,, volts, which is sufficiently negative to keep the tube
cut off if not triggered. A cathode resistor R, is also incorporated. One
way of triggering is by means of tube II, which is also normally cut off
and only starts to conduct during a positive trigger pulse applied to the
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Blocking-oscillator circuits 8

grid. This induces in the transformer windings voltage pulses of such
polarity as to make tube I conduct. Of course, other ways of triggering
are also possible. For analysing the triggering process, the quiescent state
equivalent circuit of fig. 2-8 is taken as a starting point.

Switches S¢ and S 4 are open and the voltages across them are —V ¢,
and +V, respectively. The effect of a trigger pulse is to close these
switches at, say, the instant { = 0. In foregoing sections we calculated
the effect of suddenly closing a switch. One has to introduce a voltage
equal to the voltage that would be present across the switch if it were
not clossed but of opposite polarity.

This means, in the present case, voltage sources +V, and —V,
across Sg and S 4 respectively. We then have to calculate the response
of the circuit to these voltage sources and to superimpose it on the
undisturbed state. The DC voltage sources —V, and +V, can be
replaced by short-circuits, as their internal resistance is neglected and
their influence is already taken into account in the static condition.
The equivalent circuit, therefore, is as represented in figure 3.8. To
allow for the rectifying properties of the tube, two diodes D¢ and D 4
have been included, which ensures that the voltage source V U (f) cannot

B
&’ n
I
H Ta we,] s34
+ - y +2
Vg, Ut WUt +
Tyl mgt 0

. -7

OL IOl :
/ -3

Ry Lo /

s 0

96153 96154 —

Fig. 3.8. Fig. 4.8.

contribute to the current 7,. The latter can only be caused by induction
from the right-hand mesh of the circuit. The function U (¢) is a unit
step function as previously defined. The impedances r, and 7, denote
the internal resistances between grid and cathode and between anode
and cathode respectively. As the positive feed-back is assumed to be
so strong that the grid-to-cathode potential is positive, this means that
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8.2 Analysis of triggered blocking oscillator

7, is a kind of diode forward resistance, which can be of the order of a
few hundred ohms. The impedance of the anode load is assumed to be
so high that the anode current operating point moves along the “satu-
ration” or “‘bottoming”’ line of slope « as indicated in fig. 4.8 for a triode
and in fig. 50.6 for a pentode. The value of 7, is given by cot «, and can
also be of the order of a few hundred ohms.

8.2.1. CALCULATION OF THE TRANSIENTS

By ‘applying Kirchhoff’s law, two equations can be derived, equation
(1.8) being valid for the right-hand mesh and equation (2.8) for the left-
hand mesh of the network of figure 3.8

, , di di

VU () =4, (ra + Ry + 2Ry + le_tl—Mff T K- )
' , di, di,

0 =1y (r, + Ry) + 1R, + Ly 7 M = (2.8)

L, is the self-inductance of the primary winding (n, turns), L, the self-
inductance of the secondary winding (n, turns). M is the mutual in-
ductance between primary and secondary windings.

In the following it will be assumed that the coupling is so close that

M2=LL, . . .. ... .... (3.8)
The following notation is also introduced:
r,+ R, =R, . . . . . .. ... ... (4.8)
r,+ R, =Ry, . . . . . ...
d
— =P . . e 6.8
o= (6.8
Equations (1.8) and (2.8) then become:
VU({)= R, +Lp)t,—Mp—R)1y . . . . . . (1a.8)
0= (Ry+ Lop) 8y — (Mp—R,)2y, . . . . . . (2a.8)
From (24.8):
. Mp—R
b= ey (7.8)
Lyp + R,

Substituting 7, in (1a.8) gives:

, Mp— R .
VU () = [Rl 4 Lp— (L—i’ﬁ—R)—] i (8.8)
2. 2
or: i, = L + By v,Uu@. . . (98

(Lip + Ry) (Lop + Ry) — (Mp — Ry)*
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Introducing (3.8) gives:
Lyp + R,

(LR, + LR, + 2MR,) p + R\R, — R,? VU (). (10.8)

1'=

We can write:

Ll_n—zsz. .......... (118)
!
=—L, . .. ... ...,
w2 (12.8)

If, moreover, the following notation is introduced:

n,? "y
R1+;2—2R2+2172Rk=R ....... (13.8)
RR,—R2=R2 . ... ... .... (14.8)
then (10.8) can be written: |
s U@, .. ...... (15.8)

“TLRp+ RE
2 p+Rv

and (7.8) becomes:
. _ Mp—R,
==V U@® ......... 16.8
=g VO (168)
From expressions (15.8) and (16.8) the time functions for 4, and ¢, can
be calculated. These are given here since we will want them in the

following considerations:

Ve

. R,R R2—R,R _F*,
1 (@) = 7 I:Rﬁ R e L ] ........ (17.8)
' R+ 2RR .
1z(t)—"—‘5[——"—2R"R+ it 'e“f?']. ... (18.8)

n, R n, R? R

8.2.2. DETERMINATION OF THE OUTPUT-PULSE WIDTH
Tube I cannot remain conducting for an infinitely long time. This
can be seen from the expressions for the anode current i, (¢) and the grid
current 7, (¢) (see (17.8) and (18.8)).
The initial value (at ¢ = 0) of 7, (¢) is:
4 (0) =

...........

%]
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8.2 Analysis of triggered blocking oscillator

The final value (at ¢ = o) would be:
. R,

11(CD) = VbE—z .

(20.8)

. R.2
Now, it can be seen from (13.8) and (14.8) that R > R, and—k;"— <Ry;

R? 2
so: R> R" , and consequently:

N iy (0) < iy ()

Thus, the anode current increases with time,
The initial value of 4, (f) is:

, mV,
0 =——=" .. e 21.8
2 ) n2 R ( )
Its final value would be:
. R
i (oo)=—R"2 > - - (22.8)

Hence, it is clear that the grid current decreases with time, and con-
sequently also the grid-to-cathode voltage.

There must be a certain instant at which the decreasing grid voltage
prevents the anode current from further increase. This will be explained
with the aid of the (idealized) anode current/anode voltage characteristics
of the tube, as represented in fig. 4.8. It is assumed that the anode
current increases along the ‘“‘bottoming” line OA, whereas the initial
grid voltage is of such a value that it corresponds to the characteristic
OAB.

If the grid voltage remained constant at this value, then the anode
current could increase up to the point A, but as soon as it reaches this
point, a discontinuity occurs in the slope of the increasing anode current.
This causes a lower voltage to be induced in the secondary winding of
the transformer; in other words, the grid voltage decreases.

This in turn reduces the anode current still more, again lowering the
grid voltage, and so on. It will thus be clear that at the instant the
anode current value reaches point A4, the tube will be cut off with an
avalanche effect. In practice, however, point A will not be reached,
because during the increase of the anode current, the grid voltage de-
creases, and a point of discontinuity will be reached sooner at a lower
point on the bottoming line. :

The situation of the “knee’-points on the bottoming line is defined
171
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by the following relation:
=SV, .. . .. ... ... (238

where S, is the mutual conductance of the tube along the bottoming
line, i.e. the increase of the anode current 4, per volt increase of the
grid voltage V.

Now, the increase of 7, (f) and the decrease of V, (f), indicated by
dotted arrows in figure 4, meet at a certain instant ¢,, defined by ex-
pression (23.8): )

L) =SV, ) . . .. oL (248

This instant ¢, marks the end of the conducting period of the tube, and
is a measure of the width of the cathode-current pulse.

In order to determine the pulse width from expression (24.8), the grid
voltage must be known. This voltage is equal to the potential drop
across 7, (see fig. 3.8) caused by 7, ; therefore:

Vo) =rgp®). . . . . ... .. (25.8)

Combining expressions (24.8), (25.8), (17.8) and (18.8) gives the following
equation, from which ¢, may be found:
Vs I:RzR R~ R,R ; ’T’]

R LR R,?
n
R2+ 2R.R
_5,’_’1&’[_@13"1{4. n e-’?] (26.8)
“%n, R n, R? R,? '

where T represents the time constant of the circuit:-

L,R
r-2 (27.8)
Expression (26.8) can be reduced to the following form:
ts
£ T = RoR + 7,58, R ... (288
R,R—R2? + 7,5, ("—‘ R, + R,,R)
Ny
or:
RR— R+ 7,5, (2R + R.R)
t,=TIn 2 (29.8)

R.R + 7,5,RR
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8.2 Analysis of triggered blocking oscillator

8.2.3. DISCUSSION OF THE TRANSIENT WAVEFORMS

The sum of the transient anode current and grid current, i.e. the
cathode current, can easily be found by adding expressions (17.8) and
(18.8). The voltage across R, is proportional to this current and can
be examined ‘on an oscilloscope screen without being much influenced
by the introduction of extra stray capacitances, R, generally being a
low impedance. Moreover, as no self-inductances of any importance are
involved in the cathode circuit, the possibility of parasitic oscillations
is much smaller here than in the anode or grid circuits.

The shape of the voltage V (f) across R, is given by the following ex-
pression, derived from R, times the sum of 7, (f) and i, (f):

sz(l +’2)—70R t
v =Sy, [ S— T 30.8
0=%Ve|7s+ R eT| . B0y
From expression (30.8) some interesting properties of the shape of the
voltage pulse V (f) can be derived.
Firstly, it is easy to see that the front-flank is a step-function, since
for t = 0:

R

ny\ R,
V(O)z(l—}——)—Vb. e 1 )
ny/ R
When substituting (4.8), (5.8) and (13.8), this becomes:
ny
1+ o R,
V(O =~ e T
ot =7, + (—‘2+2_1+ 1)R,c
2 2 Mo
or: R
vV (0) = £ — Ve - oo oo (328
ot =70
"y 2*
(12 R+
My "
1+ —
Ny

Secondly, if it is assumed that the tube is suddenly cut off at the instant
defined by expression (29.8), then the rear flank of the output pulse is
a negativegoing step-function.

It must be noted that in practice there will always exist a certain
stray capacitance from cathode to earth, so that no sudden voltage steps
across R, are possible. Nevertheless, if the time constant in the cathode
circuit can be kept small, very steep pulse-flanks can be obtained.
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A third interesting aspect is that expression (30.8) shows that there
must be a condition for which the flatness of the pulse-top is maximal,
in which case the pulse amplitude remains constant at the initial value
V (0) during its whole duration. This situation exists when the ex-
ponential time function of (30.8) has no influence. This leads to the
condition:

R, (1 4 '2) —7R ... (33.8)
Ry

If the tube characteristics and the circuit resistances are known, then
- condition (33.8) affords the possibility of calculating the turns ratio
(ny/n,) , at which maximal flatness occurs.
Substitution of (13.8) and (14.8) in (33.8) gives:
n ‘ 7.\ 2 n
(R,R, — R,2) (1 + —!) =7,R, + 7,R, (—l) + 2r,R, 2.
Ny My ]
The solution of this second-order equation is:
! Rk (fa—?’,) + L + \/{Rk (ra - 1’,) + 1',,1',} 2+ 4raraRk ('u + Rk)

g = | 27, (r, + Ry | (34.8)

For a positive, real value of #,/n, we need only the plus sign.
)

'8.2.4. COMPARISON OF THEORY AND PRACTICE

The circuit of figure 1.8 has been investigated, using an experimental
double-triode type of tube and the following values of circuit com-
ponents and supply voltages:

V, =150 volts, V =06 volts, R, = 47 ohms, transformer windings
ny, = 70 turns, n, = 50 turns, ferroxcube core of permeability u appr.
2000. '

The waveform of the output voltage across R, was observed on an
oscilloscope screen and appeared to have the shape shown by the dotted
curve of figure 5.8,

This voltage pulse has a sharp front-flank and a more gradually falling
rear flank. The latter may be caused by the cathode circuit time-
constant (stray capacitances) and the fact that the tube characteristics
do not possess the sharp bends as assumed in figure 4.8.

Moreover, the primary of the transformer is shunted by a resistor of
1000 ohms, which proved to be necessary to avoid excessive ringing
effects and consequent free-running of the blocking oscillator.

Figure 5.8 shows that the total duration of the pulse is 7 usec,
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8.2 Analysis of triggered blocking oscillator

whereas at about 6 usec the switch-back operation starts. Finally, some
droop is present in the flat part of the pulse.

mA_.Z -
l(t) 300} . Tt \\
it \
T 200 (1) I
/ '
100} ift) | \‘
|
i L ) 1 L A -
0 7 2 3 4 5 ) 7

——> H(ISEC) 4415
Fig. 6.8.

The self-inductance of the secondary winding of the transformer, with
primary winding open-circuited, is measured to be L, = 2.8 mH.

The tube anode current/anode voltage characteristics with control-grid
voltage values ranging from —2 to 410 volts show that ‘the internal
anode resistance along the bottoming line is about 400 ohms and the slope
in this region is about 7 mA/V. For complete calculation of the circuit,
only the value of the internal grid-to-cathode resistance is wanted. As
it is rather difficult to determine this value experimentally at very high
grid-to-cathode voltages without damaging the tube, the following
procedure has been adopted to determine 7,. From the waveform,
observed on the oscilloscope, it appears that at ¢ = 0 the output voltage
V (0) = 17 volts. Substituting this value in equation (30.8) makes it
possible to find the value of 7, which proved to be 7, = 164 ohms.

Other quantities can be calculated, and it is found that the time
constant T = 28 usec, the pulse duration ¢, = 6 usec. The anode current.
and grid current as functions of time are given in the following table.

Time Anode current Grid current Total cathode current
¢ 1 (8) iy () 1 ()
(usec) (mA) (mA) (mA)
0 150 211 361
1 156 201.5 357.5
2 162 192 354
3 167 183 350
4 172 174 346
5 177 165 342
6 182 157 339
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These currents as functions of time have also been represented in
figure 5.8. Comparison of the calculated waveform of 7 (f) with the ex-
perimental one shows that the latter has some overshoot and more droop.
This can possibly be attributed to some oscillating effect due to stray
capacitances, damped by the heavily conducting tube. In conclusion,
however, it can be said that the calculation method gives a good ap-
proximation to the behaviour of the circuit in practice, and it certainly
offers the possibility to have in advance, before designing such a circuit,
an idea of the waveform to be expected and the demands made of the
tube.

8.2.5. SOME DESIGN CONSIDERATIONS

The presence of a cathode resistor R, greatly complicates the formulae
derived in the preceding sections. In many applications one may be more
interested in the current pulse than in the voltage pulse, as for instance
in the case of driving magnetic cores in a memory matrix or switching
circuits.

Therefore it is worth-while to rearrange the formulae by putting
R, =0. ‘

A striking example of simplification gives the expression for the ratio
of the transformer-winding turns that is required for optimum flatness
of the current pulse (see expression (34.8)). This reduces with R, = 0 to

('32—‘) e . (358

\nZ g

With practical values as used in the preceding section, this gives
(ny/n,) 5, = 2.44, whereas expr. (34.8) would give a value 2.4. A
negligible error is made when using the simplified formula. A survey
of the expressions valid for R, = 0 will be given.

Ry=r, .. .. . ... .. . seeexpr. (48)

Ry=vr, . . .. . . . ... . seeexpr. {(58)
A%

R=r,+|—=}r,. . . . . . .seeexpr. (13.8)
2

Ri=r,, . see expr. (14.8)

S R et
+ 1 . 2 q
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8.2 Analysis of triggered blocking oscillator

; . M7
iy (t) = (n1)2 " e T ... (37.8)
L + (= [
Ny
L)+ L) =10 =
2 4
- Ve : [14-(3ﬂ Yo M)y Ml é‘T] ... (388)
v, + (n_l) v, Ny o Ny Ny 7y
gy

The pulse width

In most applications the need will be for a current pulse of a given
amplitude and duration with a flat top; so condition (35.8) will nearly be
satisfied. Introducing this in the expressions for currents and pulse
duration gives the following equations:

¢
am=——5741+?0—£ﬂ$..(m&
T4 (l —i—r—“) ?
t
i, (f) = mr eT .. (42.8)
7, (1 + -—“)
Pn=T2 (43.8)
ra
T=l@+% ............ (44.8)
=T E (45.8)
142

For the design of this kind of blocking-oscillator circuit it will be
useful to have available values of 7,, 7, and S, of the tube types suitable
for this purpose.
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The design procedure is then very simple. Suppose a pulse is wanted
of amplitude I, and duration . Substituting I, in expression (43.8) gives
the value wanted for V,. Substituting v in expression (45.8) gives the
value of the time constant 7', and consequently from expression (44.8)
the.value of L, is known. Depending on the permeability and dimensions

of the transformer-core material, the number of secondary turns #, is
n, r

defined by this value of L,, and as — = "2 the number of primary
Ny £}

turns #, is also known.

8.2.6. THE BLOCKING CONDITION

The width ¢, of the transient current pulses in grid and anode is given
by expression (29.8), which can be written

(r,Sem — 1) Rﬁ]
t,=T1 [1 e 46.8
= T R R 1 7.5, RR (40.8)

where #n = n,/n,.
This formula shows that for

. 1 -
A 47.8
n < , s, ( - )

no positive real value of ¢, can be found.

What this means, physically, can easily be seen. From (17.8) and
(18.8) the initial values of anode and grid currents (at the instant ¢ = 0)
prove to be:

i, (0) = —I;—b e e e (48.8)
and 1'2(0)=n% e e e e oo . (498

Referring to fig. 4.8 it can be seen that blocking-oscillator action can
only occur if the initial value of 7, is smaller than S, (slope) times the
grid-to-cathode voltage V,, or: 7, (0) < S,V, (0).

Now V, =17, so ¢, (0) < Sy, (0).

Substituting (48.8) and (49.8) gives

or N> o e e e e e e (50.8)
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8.2 Analysis of triggered blocking oscillator

This is the condition for correct blocking operation. Comparison with
(47.8) shows that the latter indeed represents the condition for wrong
operation.

Condition (50.8) thus represents, for given tube characteristics (7,
and S,), the minimum amount of positive feedback required from anode
to grid.

8.2.7. ANODE CURRENT AND VOLTAGE

It could happen that use is to be made of the anode-current pulse
instead of the cathode-current pulse. It can then be of interest to in-
vestigate whether the anode-current pulse can also have a flat top.
For the general case of expression (17.8) it leads to the following con-
dition:

R,R=Rp?.
Introducing (14.8), (13.8) and (5.8) leads to the condition:
n= Ry
7o + Ry’

which can never be satisfied, as #» cannot be negative.

At R, = 0, the flat-top condition is # = 0, which is meaningless.
Conclusion: a flat-topped pulse can only be found in the cathode lead.
If the anode-voltage pulse is of interest, it is easy to derive the following

the time function:

r £ .
V() =—Vn? ra—k—”nz;; e T (assuming R, =0). . . (51.8)

8.2.8. ENERGY DISSIPATION IN GRID AND ANODE CIRCUITS

Generally, the transient anode and grid currents can be expressed in
the following form:

L) =A+BeT. . .. ... ... (52.8)
iw@®) =D+EeT. . ... ..... (53.8)
(Compare (17:8) and (18.8))

It is clear that, if these currents flow through resistances 7, and 7,,
resp. during a time interval ¢,, then the dissipated energies in anode and
grid circuits are:

W,,=fi12(t) radt. . .. .. S (54.8)
and
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respectively.
The solution of the integrals is:

W,= A%;y,— 24BT (¢ T—l)r —3TB2(e T— )7, . . . (56.8)
and .
: -k % ’

W,=D%y, —2DET (¢ T —1)r,—3}TE*(¢e T—1)7, . . . (57.8)
Thé mean power during the pulse is:
A w T -% T %
P,=—"= a t-(e T—l)ra—%t—Bz(e T—1)r, (58.8)

s ¢ ]
and
A~ W, T -% T -2
P,=t—=D2r —2DEt (e T—l)r,-—it—Ez (e T—1)r, (59.8)

If trigger pulses are regularly applied, having a repetition period ¢,,
then the long term average power is:

— w | % w A
e Dt ey P ... (60.8)
t' t' t" t‘
P,=Ps, .. .. ..... .. (61.8)
t v
6= t—' duty cycle of the pulses . . (62.8)

r

a. General case

From (17.8) and (18.8) the constants 4, B, D and E can be taken:
R, V, R, v,
A—VbR,’B=E—A-D=—”2Vak—§,E=n7€——D. (63.8)

ts
¢ T-is given by expression (28.8).

Thus, all terms for determining the power dissipations, as given by
(58.8), (59.8), (60.8) and (61.8) are, known.

b. Special case
The experimental case treated in section 8 2.4 and represented in
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8.2 Analysis of triggered blocking oscillator

fig. 5.8 has been calculated as regards the grid and anode dissipation,
and the following data resulted:

P,=1l1watts . . . ... ..... (64.8)
P,—56watts . . ... ...... (65.8)

If the maximum permitted anode dissipation were 1,5 watt, then,
disregarding grid ratings, this would limit the duty cycle to:

s=De_15_ 013
P, 11
t, = o
o r = 0.136°

Now ¢, = 6 usec; so ¢, = 44 usec.
Or the maximum repetition frequency of the pulses, as limited by
anode dissipation, would be

fmas = ti = 23 ke/s.
A maximum permitted grid dissipation of 30 mW would, by similar
reasoning, lead to a max. repetition frequency f,,, = 0.9 kc/s. Life
tests at 1 kc/s and 5 kc/s show that probably more grid dissipation could
be permitted.
5 kc/s operation gives a main grid dissipation

P ——6P = 58; 5.6 watts = 0.17 watts.

c. Requirements for magnetic core drivers
Suppose a vacuum tube of the type mentioned in section 8.2.4 (r, =
400 ohms, 7, = 164 ohms, S, = 7 mA/V) is to supply current pulses
of 2 usec width, 370 mA amplitude, optimum flatness, to switch small
ferroxcube matrix cores (switching time 1.5 usec, outer diameter 2 mm.).
Following the design procedure of section 8.2.5 (final paragraph), this
gives the requirements:
V, = 148 volts
T = 4.75 pusec,
L, = 0.23 mH.

With the aid of the small Fxc closed pot-core D-14/8, it is possible to
make the required transformer. With an air-gap of 0.2 mm, 106 turns
are required for 1 mH self-inductance. For 0.23 mH, therefore the
required number is #, = 106 4/0.23 = 50 turns.
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Since we want a flat-topped pulse, the condition is

n, 7
— = 2 or n = 3% 50 = 122 turns.

ny 7,

The design of the blocking oscillator is now completely defined. The
power dissipation can be calculated. For the flat-topped case, the quan-
tities 4, B, D and E become (see (52.8), (53.8), (41.8) and (42.8)):
Vv vV ' |4
A=-—B=_—__" D—0E= . (66.8)
?q .+ 7, v, + 7,
Calculation of expressions (58.8) and (59.8) gives:

= 10.3 watts, 130 = 7.56 watts.

Max. anode dissipation of 1.5 watt would limit the maximum repetition
frequency to f,,.., = 73 kc/s.

Max. grid dissipation of 30 mW would permit f,,,, = 2 kc/s.

Max. grid dissipation, as in the former case, of 0.17 watt (life-tests)
would permit f, .. = 11.3 kc/s.

If f 00 = 100 kc/s is requlred the average anode and grid dissipations
must be at least:

Pa = 2 watts, P‘v = 1.5 watts.

d. Experimental check
The blocking oscillator just described has been built, and the output
pulse checked. The measured value of L, was 0.243 mH. The pulse width,
0.243

0.23

The cathode-current pulse (= i, (¢) + i, (f)) is observed on an oscil-
loscope screen as the voltage developed across a resistor of 3.1 ohm in
the cathode lead. The oscillograms are shown in fig. 6.8 for four different
tubes of the same type. The scales of the axes are: vertically 1 division =
0.5 volt, horizontally 1 division = 0.25 usec. The pulse-width and the
amplitudes at the central vertical axis are listed below.

instead of 2 ysec, should then be

2 usec = 2.15 usec.

Pulse-width Amplitude Current
Case (volts across
(usec) 3.1 ohm) (mA)
a 2.8 1.2 387
b 3.1 1.3 420
c 3.4 1.8 580
a 3.1 1.4 450
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8.2 Analysis of triggered blocking oscillator

We estimated a pulse-width of 2.15 usec, a current of 370 mA. Practice
shows a considerable spread in different tubes and a mean result that is
only a rough approximation of the calculated values. However, this is
sufficient for practical purposes, since the current value, for instance, can
easily be corrected by means of the anode supply voltage, while the
pulse-width can be corrected by means of the self-inductance.

- Fig. 6.8.

e. Variation of pulse-width

With the closed pot-core D 14/8, the effective air-gap can be varied;
for this purpose a F,, control slug can be screwed into the centre-core.
At an air-gap of 0.2 mm this allows for a total variation of the self-
inductance of 159, The pulse-width of the current pulses of all four
cases, a, b, ¢ and d mentioned before, could also be varied by about the
same amount.
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8.3. OTHER MODES OF FEED-BACK

The method of analysis treated in section 8.2 for the anode-to-grid
coupled blocking oscillator can also be adopted with the other types
of blocking oscillator, characterized by feed-back from anode to cathode
or from cathode to grid.

There appears to be great conformity between the three feedback
cases of a blocking oscillator. Whether feed-back is applied from anode
to grid, from anode to cathode, or from cathode to grid, the following
general expressions are valid:

The anode transient current

V ~ 3
hm=JP+(_%eq ........ (67.8)
r'l) ra ra
The grid transient current
vV, -+
Lb)=N—"eT .. .. ... .. . (68.8)
7"I)
The pulse-width:
@:Tmb+laMﬁr;ﬂ ........ (69.8)
Where: ‘
ro=r.+N¥, . . . . . ... ... (70.8)
=l (71.8)
4

N is a coupling factor, depending on the mode of feed-back used. 7 is
a time constant, also depending on the system of feed-back. A survey of
expressions to be substituted for' N and r with the three types of feed-
back is given below. :

a. Feed-back from anode (n, turns, self-inductance L,) to grid (n,, L,)

"y

=— .. (72.8)
Ny
T = Iiz ............. (73.8)
rV
b. Feed-back from amode (n,, L) to cathode (ng, Ly)
N=Z_ . (74.8)
Ay
T = 5—2 ............ (75.8)
r
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8.3 Other modes of feed-back

c. Feed-back from cathode (n,, L;) to grid (my, L,)

1
— (76.8)
e J
ny
1L,
e 71.
oy (717.8)
General condition for a flat-topped (i, + iy) pulse
=l (78.8)
rﬂ
Then:
2
r, =7, + ’r— .......... (79.8)
g
T—_—(1+f~“)r ......... (80.8)
rﬂ
_t
V T
=21 (81.8)
ra rﬂ
142
_ ’
T
no =t (82.8)
ra rg
14 2e
70
—1
=T 14 =N (83.8)
ra
1428
g

8.3.1. SOME EXPERIMENTAL CHECKS
A relative quantity was calculated and checked by measurements,
viz. the ratio ¢,/L.

a) Anode-to-grid feed-back
According to expressions (39.8) and (40.8):

fy (i+nzl) In (1 +"_’"§C—l), ... (848
L2 rg ra rﬂ
14 n2—

if no cathode resistor R, is present.
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Experiments have been carried out with an E88CC double triode,
using a transformer with constant turns ratio » = 3. The value of #,,
however, (and consequently n,) was varied through values of n, = 90,
120 -and 165 turns, and the air-gap in the core (pot-core type D-18/12
Fxc 3 B) was varied through 0.3, 0.5 and 1.0 mm resp.

Characteristics of the E88CC for positive grid voltages up to 10 volts
were available. From the characteristics I, = f (V,) with V, as para-
meter, the values of 7, and S, can be found and prove to be

r, = § kilo-ohm S, = 14 mA/V.
From the characteristics I, = f (V) with V, as parameter, the value
of 7, can be found; 7, = § kilo-ohm.
With these values, expression (84.8) proves to be:

t sec
2 =00246 —— . . . . . . . ... 85.
7 ) I (85.8)

2

A mean value of 0.0224 sec/H can be obtained from the measurements,
which is in fairly good agreement with (85.8).

b) Anode-to-cathode feed-back.
From expressions (69.8), (70.8), (71.8) and (74.8) it follows that

¢ 1 1 —1)r,S,—1

f=*+m_w;m1+m ) 750 (86.8)
r

2 ’ ° 1+ (n—1)2

7q

Substituting the same values as in the former case gives
, .
- = 0.0145 e . .. (87.8)

2

The mean measured value is 0.0158 sec/H, which again shows a good
agreement.

c) Cathode-to-grid feed-back.
From expressions (69.8), (70.8), (71.8) and (76.8) it can be calculated
sec

Ly
that L~ 0.0069 T (88.8)
The mean experimental value is found to be 0.0097 sec/H. The agreement
is less satisfactory in this case.

In conclusion, it can be stated that an approximate calculatxon of the
transient behaviour of a triggered vacuum tube blocking oscillator is
possible. Three modes of operation can be used, and they are described
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8.4 Free-running blocking oscillator

by quite similar expressions. In all cases anode dissipations and grid
dissipations can be determined, and for given maximum permissible
values of these dissipations, the maximum permissible trigger pulse
repetition frequency can be derived. The formulae can be used to design
a blocking oscillator. For this purpose it will be helpful if tube character-
istics of the following functions are available:

a) I, =1f(V, with 4V, as parameter.
b) I,=/f(V, with 4V, as parameter.

8.4. FREE-RUNNING BLOCKING OSCILLATOR

There are several possible ways of converting a triggered blocking
oscillator into a free-running one. An RC-timing circuit may be in-
corporated either in the grid circuit or in the cathode circuit. In both
cases the pulse width is determined by the magnetic circuit (the trans-
former) and associated resistances, whilst the period of the pulses is
determined by the RC-time constant. Another possibility is to have
both pulse-width and pulse-period determined by the magnetic circuit.

8.4.1. RC-TIMING CIRCUIT IN THE GRID LEAD

The magnetic feed-back circuit may be any of the three types treated
in sections 8.2 and 8.3. In fig. 7.8 it is only schematically indicated by
dotted windings. Also drawn in dotted lines is a circuit across the capa-
citor, with which it is possible, by closing switch S, to keep the capacitor
charged to a voltage V,, such that the
grid-to-cathode voltage V, =V _, — V,
is below the cut-off value —V ', so that
no currents flow in the anode and grid
circuits. Supposing, now, that switch S
is opened at the instant ¢=0, the
capacitor starts to discharge to a final
voltage of zero according to the time
+Vg sess  Tunction

¢
Fig. 7.8. Ve=—Vee ¥ . . . .. .. (80.8)

The voltage between grid and cathode varies according to the time
function

?
Vo=Vao+V,=V,,—Vye ¥ . . . (90.8)

Now, it is supposed that V ,> V, so that, after a certain time¢,, the
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value of V', must be equal to —V ,,, equation (90.8) then reading

—Ve=Vyo—Voe B, . . . . . .. (91.8)
from which ¢, can be found:
A Vvo + Vco

e RC =

.......... (92.8)

Vo, however, has to be defined further. This can be done by assuming
that the free-running oscillator has reached a stationary state. Each time
the grid voltage reaches the cut-off value V, a de-blocking action oc-
curs, a current pulse flows in the anode and grid circuit, the duration
¢, of which is assumed to be very small with respect to the pulse repetition
time f,. The grid-current pulse 7, (f) charges the capacitor C in such
a short time ¢, that the capacitor does not loose an appreciable amount
of charge during the charging time ¢, (this implies ¢, <€ RC). The value
of the charge surge from thé grid current, stored in the capacitor C,
will be

Q= f ) d, .. ... ... (938)
J
and the corresponding voltage increase across the capacitor
1
AV=—=0Q . . . .. .. .. .. 94.8
C Q - ( )

If a stationary state is reached, this increase first brings back the
capacitor voltage to its initial value V. The decrease of the capacitor
voltage during the cut-off period ¢, is to be derived from equation (89.8):

tr
—AVc = ‘Vc (0) - Vc (tr) = _VO + VO e R

or:

av, = Vo(l —c R'_C) .......... (95.8)

[

Thus, in the stationary state we have A4V, = 4V.
Substituting expressions (94.8) and (95.8) gives:

g =V, (1 — %) .......... (96.8)

Eliminating V, from expressions (92.8) and (96.8) results in:
' I . Q
eRC =] o — T ——— L (97.8)
C(Ve+ Veo
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Introducing expression (93.8) gives:
ts

[#200
t,=RCIn [ T Vm)] ...... (98.8)

With expressions (68.8), (69.8) and (71.8) it is easy to calculate the
integral of (98.8), the final result being:

Q=fz()dt—V” NrSe 1 (99.8)

Ta

N———j—r,S,,

Expressions (98.8) and (99.8) combined, give:

7 (N7,5, — 1)
t,=RCIn[1+ ... (1008)
[ ciy+D) (N + r.,s,,)]

Vvo

where y = —V—b ........... (101.8)
a relatlve expression for the grld—blas voltage, and
14
D=2, . ... ... .. I
v, (102.8)

which is nearly the reciprocal value of the amplification factor of the tube.
The time constant 7 is given by expressions (73.8), (75.8) and (77.8),
depending on the mode of feed-back used.
Expressions (101.8) and (102.8) are introduced to obtain a better com-
parison between expression (100.8) and the expressions for the repetition
frequency of the astable multivibrator given in section (7.4.4.).

8.4.2. RC-TIMING CIRCUIT IN THE CATHODE LEAD

_ Similar reasoning to that in the previous section leads to the same
expression as (97.8), with the understanding that Q now represents the
charge given to the capacitor by the sum of the current pulses in anode
and grid circuits; in other words:

s
0= f A () X (103.8)
vV s
0= —"L—¢ +T(1 —.:ﬁ + N) l— r)] .. (104.8)
The repetition period of the pulses is thus given by expressions (97.8)
and (104.8) (for further reference, see the beginning of section 8.3).
It is true that the expressions become rather cumbersome, but they
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do give an idea of the influence of various tube and transformer pro-
perties, circuit component values and bias voltages on the repetition
period of this type of free-running blocking oscillator.

8.4.3. FREQUENCY NOT DEFINED BY AN RC-NETWORK

Up till now we have not taken into account the effects of stray ca-
pacitances. At the instant the tube starts to conduct, its internal re-
sistances (, and 7,) have such a strong damping effect that no serious
complications due to ringing of parasitic resonance circuits have to be
considered. However, at the end of the pulse current, when the tube
is suddenly cut off again, the transformer windings are no longer damped,
and heavy oscillatory effects would occur in the anode and grid circuits
as a result of ringing. To get rid of them, one of the transformer windings
is often shunted by a suitable damping resistance. Preferably, this should
be a non-linear resistance, causing little or no damping during the
“forward stroke” (current pulse) and heavy damping during the back
stroke (non-conducting period); for this purpose a diode is often em-
ployed (see fig. 8.8).

%o t% : +4
g %
thn
L
= 96158
= 98157 Flg 8.8. Flg 9.8.

This principle can be used to give another kind of free-running blocking
oscillator, viz. the push-pull type, sometimes used in chopper circuits.
The basic circuit is given in fig. 9.8. Each tube, with the associated trans-
former windings, represents a blocking-oscillator circuit, but at the same
time it is the damping ‘“‘diode” for the other tube. The output signal
across points AB will be symmetrical and more or less square-wave
shaped. Its repetition period is twice the width of the current pulses
flowing in each tube. The grid-bias voltage V , must be above the cut-
off value for free-running operation. The amplitude of the output pulses
is within certain bounds proportional to the anode-supply voltage V,.
This property can be used for converting a DC-voltage into a proportional
AC-voltage, which is generally easier to amplify than DC-signals.
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LIST OF SYMBOLS AND INDEX

A constant with the dimension of a current (exprs. 2.3); of a
time constant (expr. 184.5); dimensionless (p. 102).

a damping constant (expr. 2.3);
reciprocal time constant (p. 11);
constant of dimension V/sec (expr. 28.7).

A4 (¥) response of a nmetwork to a unit-step function (p. 26).
Astable multivibrator, (p. 18, 75, section 7.4.).
B constant with dimension of a time-constant (expr. 185.5); of a

voltage (p. 102).
b ratio of capacitances (p. 78).
Bi-stable multivibrator, (p. 18, 75; section 7.2.).
C capacitance.
Calculus, operational section 5 (p. 19).

D constant with the dimension of a time-constant (expr. 27.7)
dimensionless (p. 102);
ratio of cut-off voltage of a tube to the H.T. supply voltage
(expr. 192.7).

E voltage;
constant with the dimension of a time-constant squared

(expr. 18c.5).

e base of natural logarithm (2,71828 . ..); input function of a
network (p. 25).

E, E, cut-off voltage of an electron tube
(expr. 17.7; p. 84).

Eccles Jordan flip-flop (p. 75).
F constant (expr. 21.5; 37a.9; p. 102).
f frequency (expr. 196.7); function (p. 29).
Flip-flop circuit (p. 75).
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List of symbols and index

G constant (expr. 395.7; p. 102).

H constant (p. 102; 123).

I, 4 current.

1, anode current of a tube.

I, grid current of a tube.

I, input current of a network (p. 36).

I, auxiliary current source used to account for the effect of

opening a switch in a network (p. 6).

% constant (p. 126).

j imaginary unit (/-1) (p. 21).

K constant (expr. 21a.5; p. 102).

L constant (expr. 21.7).

M constant (p. 124).

Multivibrator (p. 18, 75) astable, (p. 18, 75; section 7.4)

bi-stable, (p. 18, 75; section 7.2)

" monostable, (p. 18, 75; section 7.3)

N constant (p. 128).

Operational calculus section 5 (p. 19).

P constant (expr. 21.7).

P operator of dimension frequency or reciprocal time (p. 19).
Q constant (expr. 40a.7).

R resistance.

7 internal resistance.

7q internal anode resistance of a tube.

7, internal grid resistance of a tube.

) mutul conductance of a tube (p. 61);

constant (p. 135).
Superposition theorem (p. 25).

T time constant; period of astable multivibrator (expr. 195.7,
p. 143).
¢ time.
U (¢ unit-step function: U () =0 at £ <0
U@)=1att>0.



List of symbols and index

U(t-t,)

'[7

Vb, Vb

o
3

2

NSW ® 9=

R

™

AW

8’0@\8“:»0‘,

unit-step function occurring at the instant ¢ = ¢,
U(-t)=0at t<t,
Ue-¢t)=1at t>1,

voltage.
anode voltage of a tube.
battery- or H.T. supply voltage.

auxiliary voltage source used to account for the effect of
closing a switch in a network (p. 4); voltage across a capacitor

(p. 20).

minimum trigger voltage of a bistable multivibrator (p. 103).
grid voltage of a tube.

input voltage (p. 19).

unknown in an equation (p. 102).

unknown in an equation (p. 103).

impedance.

angle (p. 30); ratio of times (expr. 94.6); slope of a voltage
pulse (p. 81).

angle (p. 59);
ratio of voltages (expr. 93.6).

ratio of voltages (expr. 50a.7).

small variation (p. 26).

ratio of resistances (p. 23).

time (fig. 4.5); ratio of resistances (expr. 121.6).
amplification factor of a tube (p. 60, 61).
angular frequency (p. 21).

time (p. 31).

ratio of resistances (expr. 169.7).

infinite (time) (p. 11).
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