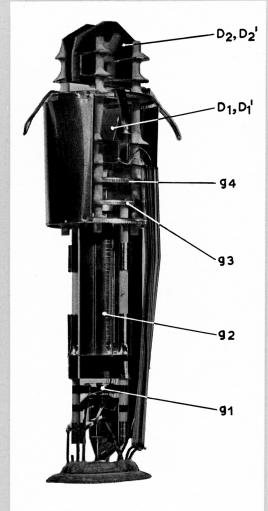

PHILIPS CATHODE-RAY TUBES

for measuring equipment

PHILIPS ELECTRON TUBE DIVISION


DG 10-6 DB 10-6 DP 10-6 DR 10-6

PHILIPS

GENERAL PURPOSE CATHODE RAY TUBE

DG 10-6 DB 10-6 DP 10-6 DR 10-6

- High-tension post-acceleration
- A brilliant spot
- Symmetrical deflection
- Good linearity
- Four screen types

The DG 10-6 is a general-purpose Cathode-Ray Oscilloscope Tube, with a faceplate of 10 cm (4") diameter, featuring electrostatic double symmetrical deflection and extra high tension post-acceleration

Electron gun of the Cathode-Ray Tube DG 10-6

 $D_2 {D_2}^\prime$ — plates for horizontal deflection

 D_1D_1' — plates for vertical deflection g_1 — control grid

g₂g₄ — electrodes for pre-deflection acceleration

g₃ — focusing electrode

The Philips Cathode-Ray Tube DG 10-6, has the following main features

Thanks to the high-grade phosphor screen and extra high-tension post acceleration, high brilliancy at small spot dimensions is achieved.

Symmetrical deflection, providing for low interelectrode capacity and good linearity

For various applications different screen types available

- A green screen for oscilloscopy and recording of medium and high-frequency phenomena.
- A blue screen for photographic recording of non-recurrent high-speed phenomena. В
- A double-layer screen with bluish fluorescence for oscilloscopy and recording of low-frequency and low-speed non-recurrent phenomena.
- A greenish-yellow screen for oscilloscopy and recording of low- and medium-frequency signals*) R

As a result of these electrical and mechanical characteristics, this tube is particularly suitable for measuring equipment.

ELECTRICAL DATA

Screen

	Fluorescence (colour)	Persistence		
Tube type		Character	0.1 ⁰ / ₀ of max. brightness after	
DC 10.6		medium	50 millisec.	
DG 10-6	green			
DB 10-6	blue	short	20 millisec.	
DP 10-6	blue (afterglow	very long	80 sec.	
	greenish-yellow)			
DR 10-6	greenish-yellow	long	20 sec.	

Heating indirect by A.C. or D.C.

Heater voltage

Vf = 6.3 V

Heater current

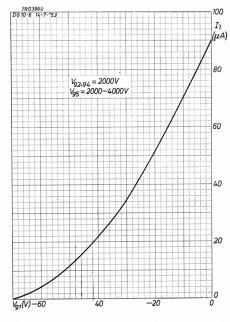
 $I_f = 0.3 \text{ A}$

 D_1D_1' symmetric **Deflection** double electrostatic D_2D_2 symmetric

Focusing electrostatic

Line width at
$$V_{g_5} = 2000 \text{ V}$$

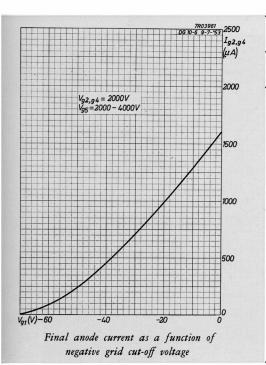
$$V_{(g_2 + g_4)} = 2000 \text{ V}$$
 0.4 mm **)


 $= 0.5 \mu A$ Il

 V_{g_5} = 4000 V

 $V_{(g_2 + g_4)} = 2000 \text{ V}$

 $= 0.5 \mu A$


0.3 mm **)

Screen current as a function of negative grid cut-off voltage

^{*)} Detailed information on all phosphors is given in a folder dealing with data and characteristics of Philips phosphors.

^{**)} Measured on a circle of 50 mm diameter.

INTERELECTRODE CAPACITANCES					
Electrodes	Symbol	Value (pF)			
D_1 to D_1'	$C_{D_1D_1}'$	1.9			
D_2 to D_2'	$C_{D_2D_2'}$	2.5			
D_1 to all	CD_1	4.7			
D_{1}^{\prime} to all	C_{D1}'	4.7			
D_2 to all	CD2	5.5			
D_2 to all	C_{D2}'	5.5			
Grid 1 to all	C_{g_1}	4.6			
Cathode to all	Ck	6.0			

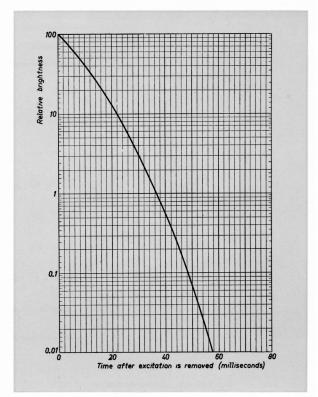
		with po	st with	without post	
Operating characteristics		accelerati	ion accel	acceleration	
Grid No. 5 voltage	V_{g_5}	= 4	4000	2000 V	
Grid No. 2 + No. 4 voltage*)	$V_{(g_2 + g_4)}$	= 2	2000	2000 V	
Grid No. 3 voltage	V_{g_3}	= 400	720 400	720 V	
Negative grid No. 1 voltage **)	$-V_{g_1}$	= 45	100 45	100 V	
Deflection sensitivity	D_1D_1'	= 0.25	0.31 0.32	0.38 mm/V	
Deflection sensitivity	D_2D_2'	= 0.19	0.25 0.24	0.30 mm/V	
Limiting values (design center values)					
•		17	= max.	5000 V	
Grid No. 5 voltage			= max. $=$ max.		
Grid No. 2 and grid No. 4 voltage					
Ratio $V_{g_5}/V_{(g_2+g_4)}$,	$+g_4) = \max$.		
Grid No. 3 voltage			= max.		
Grid No. 1 voltage (negative value)			= max.		
Grid No. 1 voltage (positive value)		$+V_{g_1}$		0 V	
Peak voltage on D_1D_1'			= max.		
Peak voltage on D_2D_2'			= max.		
Voltage between cathode and heater		V_{kf}	= max.		
Screen dissipation		W_l	= max.	3 mW/cm^2	
Grid No. 2 and Grid No. 4 dissipation		$W(g_2 + g_4)$	= max.	4 W	
Maximum circuit values					
Deflection plate circuit resistance		RD	= max.	5 M Ω	
Grid No. 1 circuit resistance		R_{g_1}	= max.	1.5 M Ω	

MECHANICAL DATA

Mounting position any

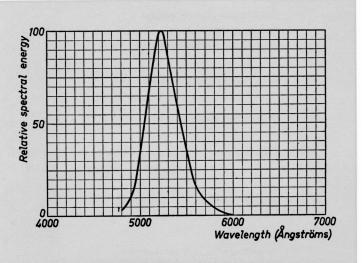
Dimensions overall-length max. 341 mm $(13^{27}/_{64})$ screen diameter 10 cm (4")

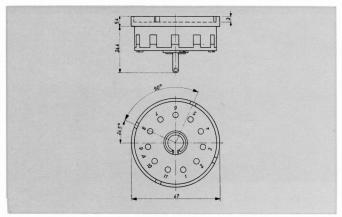

Anode contact B1.885.06.


^{*)} Earthing of g₂, g₄ is recommended.

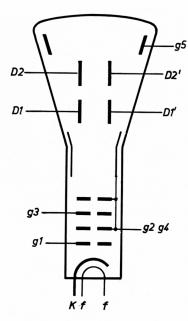
**) For visual extinction of the focused spot.

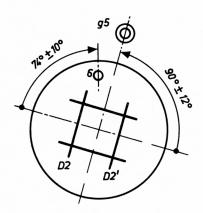
G-screen

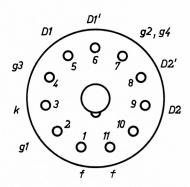

The green fluorescent G-screen provides high visual contrast under conditions of normal ambient illumination. It has medium persistence and can be used for visual observation of recurrent phenomena in the majority of applications.

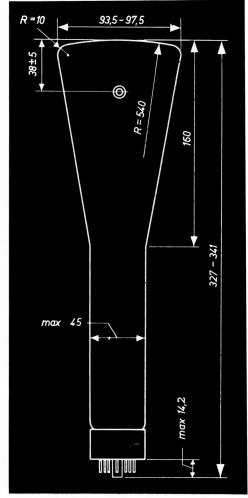


Persistence characteristic of a G-screen.


Brightness of a G-screen as a function of the screen current per square cm screen area, with the accelerating potential as a parameter.


Relative spectral energy distribution of a G-screen


Base: Magnal


Electrode arrangement

Position of the deflection plates

Base connections

Outline drawing of the DG 10-6