engineering data service

8213

ADVANCE DATA

MECHANICAL DATA

Bulb	T-3
Base	E8-10, Subminiature Button
Outline	See Drawing
Basing	8LT
Cathode	Coated Unipotential
Mounting Position	Any

RATINGS1

+180	οC
80,000	Ft.
10^{12}	nv
	+180 80,000 1016 1012

DURABILITY CHARACTERISTICS2

Impact Acceleration3	500 G
Vibration Acceleration for an Extended	
Period ⁴	10 G
On - Off Heater Cycles 5	2000

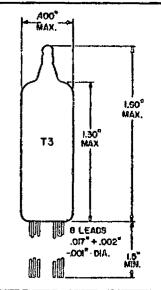
ELECTRICAL DATA

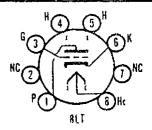
Parallell4 Series15

	ATT 1 - 1 A - 2 - 2 - 2 - 2 - 2	~
HEATER	CHARACTERISTICS	.

Heater Voltage	6.3	12.6 Volts
Heater Current	380	190 mA
Maximum Heater-Cathode		
Voltage (Peak)		200 Volts

CONTROLLED DETRIMENTS


Minimum Interelectrode Insulation [©]	100 Megohms
Maximum Total Grid Current7	-0.5 μAdc
Maximum Vibration Output as Equivalent	
Grid Voltage ⁸	5.3 mVac
Maximum Heater-Cathode Leakage9	10.0 µAdc


DIRECT INTERELECTRODE CAPACITANCES Shielded10

Grid to Plate	1.9 pf
Input: g to (h+k)	7.0 pf
Output: p to (h+k)	3.2 pf

QUICK REFERENCE DATA

The Type 8213 is a subminiature medium mu
triode intended primarily
for cathode follower applications. It is charac
terized by long life and
stable performance under
conditions of high altitude, severe shock, vibra
tion, and high temperature. The 8213 is manufactured and inspected to
meet the applicable MIL-E
l specifications.

SYLVANIA ELECTRONIC TUBES

A Division of Sylvania Electric Products Inc.

OPERATIONS EMPORIUM, PA.

Prepared and Released By The FECHNICAL PUBLICATIONS SECTION EMPORIUM, PENNSYLVANIA

> January 25, 1963 Page 1 of 4

Page 2

RATINGS1 (Absolute Values)

Maximum Heater Voltage Variation	±10% Volts
Maximum Plate Voltage	300 Vdc
Maximum Cathode Current	50 mAde
Maximum Negative Grid Voltage	-40 Volts
Maximum Plate Dissipation	5.0 Watts
Maximum Grid Circuit Resistance	0.5 Meg

Pulse Service (See Chart)

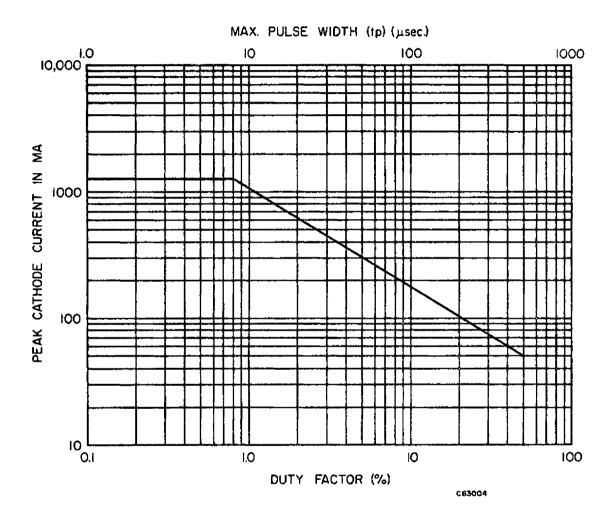
	+5•0
Maximum Heater Voltage Variation	-O Percent
Maximum Negative Grid Voltage	-40 Vdc
Maximum Plate Dissipation	5.0 W
Maximum Average Plate Voltage	150 Vdc
Maximum Instantaneous Forward Plate Voltage 13	300 v
Maximum Instantaneous Heater to Cathode Voltage	100 v
Maximum Grid Dissipation	0.3 W
Maximum Instantaneous Grid to Cathode Voltage	±50 v

AVERAGE CHARACTERISTICS

Heater Voltage	12.6 V
Plate Voltage	105 Vdc
Grid Voltage	O Vdc
Cathode Resistor	75 Ohms
Plate Current	23 mAdc
Transconductance	23,000 µmhos
Amplification Factor	31
Grid Voltage for Ib = 10 μ A (Max.)	-6.0 Vdc
Plate Resistance (Approx.)	13կ8 Ohms
Plate Currentll: With Ef = 12.6 V; Eb = 105 Vdc;	
Ec = -20 Vdc; $Prr = 10,000 pps$;	
tp = 10 μ sec.; egk = 0 V .	80 mAde

Pulse Cathode Current: With Ef = 12.6 V; Eb = 150 Vdc;	1700 ma
Ec = -30 Vdc; egk = +40 V (Measured between grid and	
cathode pins); tp = 10 \u03c4sec.; prr = 1,000 pps; duty	
cycle = 1.0%.	

Minimum Pulse Plate to Cathode Currents Ratio 12	0.7	
Equivalent Noise Resistance (at 50 Mc)	250	Ohms
Hot Input Capacitance (at 50 Mc)	12	pf


NOTES:

- 1. Limiting values beyond which normal tube life and normal tube performance may be impaired.
- 2. Tests performed as a measure of the mechanical durability of the tube structure.
- 3. Force as applied in any direction by the Navy Type High Impact (Flyweight) Shock Machine for Electronic Devices. Shock duration = 3/4 milliseconds.

NOTES: (Cont.)

- 4. Vibrational forces applied in any direction for a period of 6 hours over the range 30 cps to 3000 cps.
- 5. One cycle consists of the application of Ef = 15 V for one minute and interruption of the filament voltage for four minutes. A voltage of Ehk = 140 Vac is applied continuously.
- 6. Measure with Ef = 12.6 V; Eg-all = -100 Vdc; Ep-all = -300 Vdc; Cathode is positive so that no cathode emission occurs.
- 7. Measure with Ef = 12.6 V; Ec = 0 Vdc; Eb = 105 Vdc; Rk = 75 Ohms.
- 8. Test with Ef = 12.6 V; Eb = 150 Vdc; Ec = 0 Vdc; Rk = 75 Ohms; Rp = 2000 Ohms; F = 40 cps; Acc = 15 g; Ck = 1000 µf.
- 9. Measure with Ef = 12.6 V; Ehk = ± 100 Vdc.
- 10. Capacitances are measured with external shield No. 318.
- 11. Measured by method using recurrent wave form. Grid pulse is square wave producing specified egk directly at grid terminal with respect to cathode. Plate current is measured by high impedance oscilloscope or equivalent device connected across 1 ohm resistor in plate circuit.
- 12. Grid pulse is square wave. Peak currents measured using high impedance oscilloscope or equivalent device connected across a cathode or plate resistor of 1.0 ohms.
- 13. Applies only to the spike occurring at the leading edge of the plate waveform. The spike duration must be limited to 0.1 of tp.
- 14. Heater parallel connected, tie pins 4 and 5 together, use center tap pin 8.
- 15. Heater series connected, use pins 4 and 5.

RATING CHART

RATING CHART INTERPRETATION

The area below and to the left of the line establishes permissible peak cathode current for duty factors up to 50 percent. At duty factors greater than 50 percent the maximum average DC current of 50 milliamperes shall be the rating. One thousand two hundred fifty milliamperes is the maximum peak cathode current rating at any duty factor below 0.8 percent. Duty factor is defined as the ratio of the average current to the maximum peak current occurring in any 1000 microsecond period.